LINEAR AND NONLINEAR KORN'S INEQUALITIES ON A SURFACE

Philippe G. Ciarlet City University of Hong Kong

Outline

- 1. The two fundamental forms of a surface
- 2. Nonlinear shell theory The classical and intrinsic approaches
- 3. Continuity of a surface as a function of its two fundamental forms
- 4. A nonlinear Korn inequality on a surface
- 5. Classical linear shell theory Korn's inequality on a surface
- 6. Intrinsic linear shell theory

1. THE TWO FUNDAMENTAL FORMS OF A SURFACE

 $\alpha,\beta,\ldots\in\{1,2\}$

Summation convention ω : open in \mathbb{R}^2 $\boldsymbol{\theta}: \omega \subset \mathbb{R}^2 \to \boldsymbol{\theta}(\omega) \subset \mathbb{R}^3$ $\boldsymbol{\theta}$ is "smooth enough"

$oldsymbol{ heta}(\omega)$:	surface
y_1,y_2 :	curvilinear coordinates

Assume $\boldsymbol{\theta}$ is an immersion: $\partial_{\alpha} \boldsymbol{\theta}$ linearly independent in ω

covariant basis: $\boldsymbol{a}_{\alpha} \stackrel{\text{def}}{=} \partial_{\alpha} \boldsymbol{\theta}, \quad \boldsymbol{a}_{3} \stackrel{\text{def}}{=} \frac{\boldsymbol{a}_{1} \wedge \boldsymbol{a}_{2}}{|\boldsymbol{a}_{1} \wedge \boldsymbol{a}_{2}|}$

First fundamental form:	$a_{lphaeta} \stackrel{def}{=} oldsymbol{a}_lpha \cdot oldsymbol{a}_eta = \partial_lpha oldsymbol{ heta} \cdot \partial_eta oldsymbol{ heta}$
Second fundamental form:	$b_{lphaeta} \stackrel{def}{=} \partial_{lpha} oldsymbol{a}_{eta} \cdot oldsymbol{a}_3 = \partial_{lphaeta} oldsymbol{ heta} \cdot rac{\partial_1 oldsymbol{ heta} \wedge \partial_2 oldsymbol{ heta}}{ \partial_1 oldsymbol{ heta} \wedge \partial_2 oldsymbol{ heta} }$

First fundamental form: "*metric notions*", such as lengths, areas, angles ∴ a.k.a. **metric** tensor

 $(a_{\alpha\beta})$: symmetric positive-definite matrix field

Second fundamental form: "*curvature notions*" $(b_{\alpha\beta})$: symmetric matrix field

length of
$$\boldsymbol{\theta}(\boldsymbol{\gamma}) = \int_{I} \sqrt{a_{\alpha\beta}(\boldsymbol{f}(t)) \frac{\mathrm{d}f^{\alpha}}{\mathrm{d}t}(t) \frac{\mathrm{d}f^{\beta}}{\mathrm{d}t}(t)} \,\mathrm{d}t$$

Curvature of $\theta(\gamma)$ at $\theta(y)$, y = f(t), when $\theta(\gamma)$ lies in a plane normal to the surface $\theta(\omega)$ at $\theta(y)$:

$$\frac{1}{R} = \frac{b_{\alpha\beta}(\boldsymbol{f}(t))\frac{\mathrm{d}f^{\alpha}}{\mathrm{d}t}(t)\frac{\mathrm{d}f^{\beta}}{\mathrm{d}t}(t)}{a_{\alpha\beta}(\boldsymbol{f}(t))\frac{\mathrm{d}f^{\alpha}}{\mathrm{d}t}(t)\frac{\mathrm{d}f^{\beta}}{\mathrm{d}t}(t)}$$

Portion of a cylinder

Portion of a torus

Cartesian coordinates

Spherical coordinates

Stereographic coordinates

The components $a_{\alpha\beta}: \omega \to \mathbb{R}$ and $b_{\alpha\beta}: \omega \to \mathbb{R}$ of the two fundamental forms *cannot be arbitrary functions*: Let

$$(a^{\sigma\tau}) \stackrel{\text{def}}{=} (a_{\alpha\beta})^{-1}, \quad \Gamma_{\alpha\beta\tau} \stackrel{\text{def}}{=} \partial_{\alpha} \boldsymbol{a}_{\beta} \cdot \boldsymbol{a}_{\tau} \quad \text{and} \quad \Gamma^{\sigma}_{\alpha\beta} \stackrel{\text{def}}{=} a^{\sigma\tau} \Gamma_{\alpha\beta\tau}$$

The functions $\Gamma_{\alpha\beta\tau}$ and $\Gamma_{\alpha\beta}^{\sigma}$ are the **Christoffel symbols**

Then it is easy to see that:

$$\partial_{\alpha\sigma} \boldsymbol{a}_{\beta} \cdot \boldsymbol{a}_{\tau} = \partial_{\sigma} \Gamma_{\alpha\beta\tau} - \Gamma^{\mu}_{\alpha\beta} \Gamma_{\sigma\tau\mu} - b_{\alpha\beta} b_{\sigma\tau},$$

$$\partial_{\alpha\sigma} \boldsymbol{a}_{\beta} \cdot \boldsymbol{a}_{3} = \partial_{\sigma} b_{\alpha\beta} + \Gamma^{\mu}_{\alpha\beta} b_{\sigma\mu}.$$

Besides,

$$\partial_{\alpha\sigma\beta}\boldsymbol{\theta} = \partial_{\alpha\beta\sigma}\boldsymbol{\theta} \iff \partial_{\alpha\sigma}\boldsymbol{a}_{\beta} = \partial_{\alpha\beta}\boldsymbol{a}_{\sigma} \iff \begin{cases} \partial_{\alpha\sigma}\boldsymbol{a}_{\beta} \cdot \boldsymbol{a}_{\tau} = \partial_{\alpha\beta}\boldsymbol{a}_{\sigma} \cdot \boldsymbol{a}_{\tau} \\ \partial_{\alpha\sigma}\boldsymbol{a}_{\beta} \cdot \boldsymbol{a}_{3} = \partial_{\alpha\beta}\boldsymbol{a}_{\sigma} \cdot \boldsymbol{a}_{3} \end{cases}$$

Necessary conditions:

$$\partial_{\beta}\Gamma_{\alpha\sigma\tau} - \partial_{\sigma}\Gamma_{\alpha\beta\tau} + \Gamma^{\mu}_{\alpha\beta}\Gamma_{\sigma\tau\mu} - \Gamma^{\mu}_{\alpha\sigma}\Gamma_{\beta\tau\mu} = b_{\alpha\sigma}b_{\beta\tau} - b_{\alpha\beta}b_{\sigma\tau} \quad \text{in } \omega$$

Gauß equations

$$\partial_{\beta}b_{\alpha\sigma} - \partial_{\sigma}b_{\alpha\beta} + \Gamma^{\mu}_{\alpha\sigma}b_{\beta\mu} - \Gamma^{\mu}_{\alpha\beta}b_{\sigma\mu} = 0 \quad \text{in } \omega$$

Codazzi-Mainardi equations

Remarkably, these conditions are also *sufficient* if ω is *simply-connected* (see next theorem). Observe that the Christoffel symbols $\Gamma_{\alpha\beta\tau}$ and $\Gamma^{\sigma}_{\alpha\beta}$ can be expressed solely in terms of the components of the first fundamental form:

$$\Gamma_{\alpha\beta\tau} = \frac{1}{2} (\partial_{\beta} a_{\alpha\tau} + \partial_{\alpha} a_{\beta\tau} - \partial_{\tau} a_{\alpha\beta}) \quad \text{and} \quad \Gamma_{\alpha\beta}^{\sigma} = a^{\sigma\tau} \Gamma_{\alpha\beta\tau} \quad \text{with} \ (a^{\sigma\tau}) = (a_{\alpha\beta})^{-1}$$

Consequently, the Gauß and Codazzi-Mainardi equations are (nonlinear) relations between the first and second fundamental forms.

- $\mathbb{S}^2 \stackrel{\text{def}}{=} \{ \text{ symmetric } 2 \times 2 \text{ matrices } \}$
- $\mathbb{S}^2_{>} \stackrel{\text{def}}{=} \{ \text{ symmetric positive-definite } 2 \times 2 \text{ matrices } \}$
- $\mathbb{O}^3_+ \stackrel{\text{def}}{=} \{ \text{ proper orthogonal } 3 \times 3 \text{ matrices } \}$

FUNDAMENTAL THEOREM OF SURFACE THEORY:

 $\omega \subset \mathbb{R}^2$: open, connected, simply connected. Let there be given $(a_{\alpha\beta}) \in C^2(\omega; \mathbb{S}^2)$ and $(b_{\alpha\beta}) \in C^1(\omega; \mathbb{S}^2)$ satisfying the Gauß and Codazzi-Mainardi equations in ω . Then there exists $\theta \in C^3(\omega; \mathbb{R}^3)$ such that:

$$a_{lphaeta} = \partial_{lpha} oldsymbol{ heta} \cdot \partial_{eta} oldsymbol{ heta} \quad ext{and} \quad b_{lphaeta} = \partial_{lphaeta} oldsymbol{ heta} \cdot rac{\partial_1 oldsymbol{ heta} \wedge \partial_2 oldsymbol{ heta}}{|\partial_1 oldsymbol{ heta} \wedge \partial_2 oldsymbol{ heta}|} \quad ext{in } \omega$$

Uniqueness holds modulo isometries of \mathbb{R}^3 : All other solutions are:

 $y \in \omega \to \boldsymbol{\chi}(y) = \boldsymbol{a} + \boldsymbol{Q} \boldsymbol{\theta}(y) \quad \text{with } \boldsymbol{a} \in \mathbb{R}^3, \ \boldsymbol{Q} \in \mathbb{O}^3_+ \Longleftrightarrow (\boldsymbol{\chi}, \boldsymbol{\theta}) \in \mathcal{R}$

S. Mardare (2003): $(a_{\alpha\beta}) \in W^{1,p}(\omega; \mathbb{S}^2_{>})$ and $(b_{\alpha\beta}) \in L^p(\omega; \mathbb{S}^2), p > 2$. Then $\theta \in W^{2,p}(\omega; \mathbb{R}^3)$

COROLLARY: There exists a well-defined mapping:

Questions:

Is the mapping *F* continuous and, if so, for *which topologies*? Is the mapping *differentiable*?

Note: F is defined on a manifold ... differentiability of F is a delicate issue

Motivations:

- 1. Differential Geometry
- 2. Intrinsic nonlinear shell theory

2. NONLINEAR SHELL THEORY: THE CLASSICAL AND INTRINSIC APPROACHES

EXAMPLES OF SHELLS:

7

M

Inner tube

M

(Here)

Cooling tower

Hangar for Zeppelins (upside down)

.0(%

HOW IS A SHELL PROBLEM POSED?

CLASSICAL APPROACH

Unknown: $\varphi : \overline{\omega} \to \mathbb{R}^3$: **deformation** of middle surface *S*

Boundary conditions: $\varphi = \theta$ on γ_0 (simple support), or $\varphi = \theta$ and $\partial_{\nu} \varphi = \partial_{\nu} \theta$ on γ_0 (clamping) (length $\gamma_0 > 0$)

Applied forces: $\boldsymbol{f} = (f_i) : \omega \to \mathbb{R}^3$

Lamé constants of the elastic material: $\lambda > 0$, $\mu > 0$

$$A^{\alpha\beta\sigma\tau} = \frac{4\lambda\mu}{\lambda+2\mu} a^{\alpha\beta} a^{\sigma\tau} + 2\mu (a^{\alpha\sigma} a^{\beta\tau} + a^{\alpha\tau} a^{\beta\sigma}), \quad \text{where } (a^{\sigma\tau}) = (a_{\alpha\beta})^{-1}$$

There exists $c_0 > 0$ such that $A^{\alpha\beta\sigma\tau}(y)t_{\sigma\tau}t_{\alpha\beta} \ge c_0 \sum_{\alpha,\beta} |t_{\alpha\beta}|^2$ for all $y \in \overline{\omega}$, $(t_{\alpha\beta}) \in \mathbb{S}^2$ Thickness of the shell: $2\varepsilon > 0$

Area element along $S : \sqrt{a} dy$ where $a = det(a_{\alpha\beta})$

P.G. Ciarlet: Mathematical Elasticity, Vol. III: Theory of Shells, North-Holland, 2000

Problem: To find $\varphi : \overline{\omega} \to \mathbb{R}^3$ such that:

Hong Kong

 $J(\boldsymbol{\varphi}) = \inf\{ \ J(\widetilde{\boldsymbol{\varphi}}); \ \widetilde{\boldsymbol{\varphi}} : \overline{\boldsymbol{\omega}} \to \mathbb{R}^3 \text{ smooth enough}; \ \widetilde{\boldsymbol{\varphi}} = \boldsymbol{\theta} \text{ on } \gamma_0 \ \}$

Total energy of the shell – W.T. Koiter (1966):

$$J(\widetilde{\boldsymbol{\varphi}}) = \frac{\varepsilon}{2} \int_{\omega} A^{\alpha\beta\sigma\tau} (\widetilde{a}_{\sigma\tau} - a_{\sigma\tau}) (\widetilde{a}_{\alpha\beta} - a_{\alpha\beta}) \sqrt{a} \, \mathrm{d}y + \frac{\varepsilon^3}{6} \int_{\omega} A^{\alpha\beta\sigma\tau} (\widetilde{b}_{\sigma\tau} - b_{\sigma\tau}) (\widetilde{b}_{\alpha\beta} - b_{\alpha\beta}) \sqrt{a} \, \mathrm{d}y + \frac{\varepsilon^3}{6} \int_{\omega} f \cdot \widetilde{\boldsymbol{\varphi}} \sqrt{a} \, \mathrm{d}y, \\ -\int_{\omega} f \cdot \widetilde{\boldsymbol{\varphi}} \sqrt{a} \, \mathrm{d}y, \\ \widetilde{a}_{\alpha\beta} \stackrel{\text{def}}{=} \partial_{\alpha} \widetilde{\boldsymbol{\varphi}} \cdot \partial_{\beta} \widetilde{\boldsymbol{\varphi}} \quad \text{and} \quad \widetilde{b}_{\alpha\beta} \stackrel{\text{def}}{=} \partial_{\alpha\beta} \widetilde{\boldsymbol{\varphi}} \cdot \frac{\partial_1 \widetilde{\boldsymbol{\varphi}} \wedge \partial_2 \widetilde{\boldsymbol{\varphi}}}{|\partial_1 \widetilde{\boldsymbol{\varphi}} \wedge \partial_2 \widetilde{\boldsymbol{\varphi}}|} \quad \mathbf{4} \text{ fundamental forms} \\ \mathbf{6} \text{ fundamental fundamental forms} \\ \mathbf{6} \text{ fundamental f$$

surface $\widetilde{\boldsymbol{\varphi}}(\omega)$

INTRINSIC APPROACH:

Another look at the energy of the shell:

$$\begin{split} J(\widetilde{\boldsymbol{\varphi}}) &= \frac{\varepsilon}{2} \int_{\omega} A^{\alpha\beta\sigma\tau} (\widetilde{a}_{\sigma\tau} - a_{\sigma\tau}) (\widetilde{a}_{\alpha\beta} - a_{\alpha\beta}) \sqrt{a} \, \mathrm{d}y \\ &+ \frac{\varepsilon^3}{6} \int_{\omega} A^{\alpha\beta\sigma\tau} (\widetilde{b}_{\sigma\tau} - b_{\sigma\tau}) (\widetilde{b}_{\alpha\beta} - b_{\alpha\beta}) \sqrt{a} \, \mathrm{d}y \\ &- \int_{\omega} f \cdot \widetilde{\boldsymbol{\varphi}} \sqrt{a} \, \mathrm{d}y \end{split} \qquad \blacktriangleleft \text{ flexural energy} \end{split}$$

Hence the fundamental forms $\tilde{a}_{\alpha\beta}$ and $\tilde{b}_{\alpha\beta}$ of the unknown surface $\tilde{\varphi}(\omega)$ appear as natural unknowns

This is the basis of the intrinsic approach

S.S. Antman (1976)W. Pietraszkiewicz (2001)S. Opoka & W. Pietraszkiewicz (2004)

But, if $\tilde{a}_{\alpha\beta}$ and $\tilde{b}_{\alpha\beta}$ are chosen as the primary unknowns:

– How to express in terms of $(\tilde{a}_{\alpha\beta})$ and $(\tilde{b}_{\alpha\beta})$ the integral $\int_{\omega} \boldsymbol{f} \cdot \boldsymbol{\tilde{\varphi}} \sqrt{a} \, dy$ taking into account the forces in the energy?

– How to express in terms of $(\tilde{a}_{\alpha\beta})$ and $(\tilde{b}_{\alpha\beta})$ the **boundary condition**, e.g., $\tilde{\varphi} = \theta$ on Γ_0 , that the admissible deformations must satisfy?

- How to handle such expressions if **minimizing sequences** are considered:

$$\widetilde{a}^k_{lphaeta} \underset{k o \infty}{\longrightarrow} \widetilde{a}_{lphaeta} \quad ext{and} \quad \widetilde{b}^k_{lphaeta} \underset{k o \infty}{\longrightarrow} \widetilde{b}_{lphaeta} \quad \Longrightarrow \quad \widetilde{arphi}^k o \widetilde{arphi} \ ?$$

– Constrained minimization problem: The new unknowns $\tilde{a}_{\alpha\beta}$ and $\tilde{b}_{\alpha\beta}$ must satisfy the (highly nonlinear!) Gauß and Codazzi-Mainardi equations

Hence the need to study the mapping

$$((a_{\alpha\beta}), (b_{\alpha\beta})) \to \dot{\boldsymbol{\theta}}$$

using topologies of ad hoc function spaces: $C^m(\omega), C^m(\overline{\omega}), W^{m,p}(\omega), \ldots$

3. CONTINUITY OF A SURFACE AS A FUNCTION OF ITS FUNDAMENTAL FORMS

Notation: $\kappa \Subset \omega$ means that κ is a compact subset of ω Given $f \in C^{\ell}(\omega; \mathbb{R})$ or $\psi \in C^{\ell}(\omega; \mathbb{R}^d)$

$$||f||_{\ell,\kappa} = \sup_{\substack{y \in \kappa \\ |p| \le \ell}} |\partial^p f(y)| \qquad ||\psi||_{\ell,\kappa} = \sup_{\substack{y \in \kappa \\ |p| \le \ell}} |\partial^p \psi(y)|$$

Let
$$\kappa_i \Subset \omega$$
, $\kappa_i \subset \operatorname{int} \kappa_{i+1}$, $i \ge 0$, $\omega = \bigcup_{i=0}^{\infty} \kappa_i$
Let $d_\ell(\psi, \chi) = \sum_{i=0}^{\infty} \frac{1}{2^i} \frac{\|\psi - \chi\|_{\ell,\kappa_i}}{1 + \|\psi - \chi\|_{\ell,\kappa_i}}$ for all $\psi, \chi \in \mathcal{C}^{\ell}(\omega; \mathbb{R}^d)$

Then $\mathcal{C}^{\ell}(\omega; \mathbb{R}^d)$ is a locally convex topological space with the semi-norms $\|\cdot\|_{\ell,\kappa}$ for all $\kappa \Subset \omega$ and its topology is metrizable, with distance d_{ℓ} (Fréchet topology). Besides,

$$\|\psi^k - \psi\|_{\ell,\kappa} \underset{k \to \infty}{\longrightarrow} 0 \quad \text{for all} \quad \kappa \Subset \omega \Longleftrightarrow d_{\ell}(\psi^k, \psi) \underset{k \to \infty}{\longrightarrow} 0$$

Notation: Equivalence class $\dot{\theta}$ of $\theta : \omega \subset \mathbb{R}^2 \to \mathbb{R}^3$ modulo \mathcal{R} :

$$\dot{\boldsymbol{\theta}} = \{ \boldsymbol{\chi} : \omega \subset \mathbb{R}^2 \to \mathbb{R}^3 \text{ with } \boldsymbol{\chi}(y) = \boldsymbol{a} + \boldsymbol{Q} \boldsymbol{\theta}(y), \ y \in \omega, \text{ for some } \boldsymbol{a} \in \mathbb{R}^3, \ \boldsymbol{Q} \in \mathbb{O}^3_+ \}$$

THEOREM: $\omega \subset \mathbb{R}^2$: open, connected, simply connected. Given immersions $\theta^k \in C^3(\omega; \mathbb{R}^3)$, let

$$a_{lphaeta}^k := \partial_lpha oldsymbol{ heta}^k \cdot \partial_eta oldsymbol{ heta}^k$$
 and $b_{lphaeta}^k := \partial_{lphaeta} oldsymbol{ heta}^k \cdot rac{\partial_1 oldsymbol{ heta}^k \wedge \partial_2 oldsymbol{ heta}^k}{|\partial_1 oldsymbol{ heta}^k \wedge \partial_2 oldsymbol{ heta}^k|}$ in ω ,

Assume

$$\forall \kappa \Subset \omega, \|a_{\alpha\beta}^k - a_{\alpha\beta}\|_{2,\kappa} \xrightarrow[k \to \infty]{} 0 \quad \text{and} \quad \|b_{\alpha\beta}^k - b_{\alpha\beta}\|_{1,\kappa} \xrightarrow[k \to \infty]{} 0$$

Then there exists an immersion $\theta \in C^3(\omega; \mathbb{R}^3)$ such that

$$a_{\alpha\beta} = \partial_{\alpha} \boldsymbol{\theta} \cdot \partial_{\beta} \boldsymbol{\theta} \quad \text{and} \quad b_{\alpha\beta} = \partial_{\alpha\beta} \boldsymbol{\theta} \cdot \frac{\partial_1 \boldsymbol{\theta} \wedge \partial_2 \boldsymbol{\theta}}{|\partial_1 \boldsymbol{\theta} \wedge \partial_2 \boldsymbol{\theta}|} \quad \text{in } \omega$$

and there exist $\theta^k \in \dot{\theta}^k$, $k \ge 1$, such that

$$\forall \kappa \Subset \omega, \| \boldsymbol{\theta}^k - \boldsymbol{\theta} \|_{3,\kappa} \underset{k \to \infty}{\longrightarrow} 0$$

Linear and Nonlinear Korn's Inequalities on a Surface - p. 26

This result can be recast as a *continuity result between metric spaces*: Let the quotient set $\mathcal{C}^3(\omega; \mathbb{R}^3)/\mathcal{R}$ be equipped with the distance \dot{d}_3 defined by $\dot{d}_3(\dot{\boldsymbol{\varphi}}, \dot{\boldsymbol{\theta}}) = \inf_{\substack{\boldsymbol{\psi} \in \dot{\boldsymbol{\varphi}} \\ \boldsymbol{\chi} \in \dot{\boldsymbol{\theta}}}} d_3(\boldsymbol{\psi}, \boldsymbol{\chi})$

COROLLARY. The following mapping between metric spaces is continuous:

P.G. Ciarlet: J. Math. Pures Appl. (2003)

Proof relies on an analogous result "in 3d": A 3d-deformation is a continuous function of its metric tensor:

P.G. Ciarlet & F. Laurent: Arch. Rational Mech. Anal. (2003)

RECOVERY AND CONTINUITY OF A SURFACE "UP TO THE BOUNDARY"

THEOREM: $\omega \subset \mathbb{R}^2$: open, simply-connected; Lipschitz boundary

Given $(a_{\alpha\beta}) \in C^2(\overline{\omega}; \mathbb{S}^2_{>})$ and $(b_{\alpha\beta}) \in C^1(\overline{\omega}; \mathbb{S}^2)$ satisfying the Gauß and Codazzi-Mainardi equations in ω , there exists $\theta \in C^3(\overline{\omega}; \mathbb{R}^3)$ such that:

$$a_{lphaeta} = \partial_{lpha} oldsymbol{ heta} \cdot \partial_{eta} oldsymbol{ heta}$$
 and $b_{lphaeta} = \partial_{lphaeta} oldsymbol{ heta} \cdot rac{\partial_1 oldsymbol{ heta} \wedge \partial_2 oldsymbol{ heta}}{|\partial_1 oldsymbol{ heta} \wedge \partial_2 oldsymbol{ heta}|}$ in $\overline{\omega}$

P.G. Ciarlet & C. Mardare, Analysis and Applications (2005)

THEOREM: Assume in addition that ω is bounded. Then the following mapping between subsets of Banach spaces is locally Lipschitz-continuous

 $\left\{\begin{array}{ll} (a_{\alpha\beta}) \in \mathcal{C}^2(\overline{\omega}; \mathbb{S}^2_{>}) & \text{satisfying the Gauß and} \\ (b_{\alpha\beta}) \in \mathcal{C}^1(\overline{\omega}; \mathbb{S}^2) & \text{Codazzi-Mainardi equations in } \omega\end{array}\right\} \rightarrow \dot{\boldsymbol{\theta}} \in \mathcal{C}^3(\overline{\omega}; \mathbb{R}^3)/\mathcal{R}$

Again, proof relies on an analogous result "in 3d":

P.G. Ciarlet & C. Mardare: J. Math. Pures Appl. (2004)

M. Szopos: Extension to a simply-connected Riemannian space $\omega \subset \mathbb{R}^p$ isometrically immersed in \mathbb{R}^{p+q} , Analysis and Applications (2005).

4. A NONLINEAR KORN INEQUALITY ON A SURFACE

In what follows:

$$p \ge 2$$

$$\begin{aligned} \boldsymbol{\theta} \in W^{1,p}(\omega; \mathbb{R}^3), \quad \boldsymbol{a}_{\alpha} &= \partial_{\alpha} \boldsymbol{\theta} \\ \boldsymbol{a}_1 \wedge \boldsymbol{a}_2 &\neq \mathbf{0} \text{ a.e. in } \omega \\ \boldsymbol{a}_3 &= \frac{\boldsymbol{a}_1 \wedge \boldsymbol{a}_2}{|\boldsymbol{a}_1 \wedge \boldsymbol{a}_2|} \in W^{1,p}(\omega; \mathbb{R}^3) \end{aligned} \right\} \implies \begin{cases} a_{\alpha\beta} &= \boldsymbol{a}_{\alpha} \cdot \boldsymbol{a}_{\beta} \in L^{p/2}(\omega) \\ b_{\alpha\beta} &= -\partial_{\alpha} \boldsymbol{a}_3 \cdot \boldsymbol{a}_{\beta} \in L^{p/2}(\omega) \\ c_{\alpha\beta} &= \partial_{\alpha} \boldsymbol{a}_3 \cdot \partial_{\beta} \boldsymbol{a}_3 \in L^{p/2}(\omega) \end{cases} \end{aligned}$$

 \widetilde{R}_1 and \widetilde{R}_2 : principal radii of curvature of the surface $\widetilde{\theta}(\omega)$

THEOREM: $\omega \subset \mathbb{R}^2$ bounded, open, connected, Lipschitz boundary Let $\theta \in C^1(\overline{\omega}; \mathbb{R}^3)$: immersion such that $\mathbf{a}_3 \in C^1(\overline{\omega}; \mathbb{R}^3)$. Given $\varepsilon > 0$, there exists a constant $c(\theta; \mathcal{E})$ with the following property: Given any $\widetilde{\theta} \in W^{1,p}(\omega; \mathbb{R}^3)$ such that $\widetilde{\mathbf{a}}_1 \wedge \widetilde{\mathbf{a}}_2 \neq 0$ a.e. in ω , $\widetilde{\mathbf{a}}_3 \in W^{1,p}(\omega; \mathbb{R}^3)$, $|\widetilde{R}_1| \ge \varepsilon$ and $|\widetilde{R}_2| \ge \varepsilon$ a.e. in ω , there exist $\mathbf{a} = \mathbf{a}(\theta, \widetilde{\theta}, \varepsilon) \in \mathbb{R}^3$ and $\mathbf{Q} = \mathbf{Q}(\theta, \widetilde{\theta}, \varepsilon) \in \mathbb{O}^3_+$ such that

As a corollary: Sequential continuity of a surface as a function of its fundamental forms with respect to Sobolev norms:

THEOREM: $\omega \in \mathbb{R}^2$ bounded, open, connected, Lipschitz boundary Let $\theta^k \in W^{1,p}(\omega; \mathbb{R}^3)$ such that $\mathbf{a}_3^k \in W^{1,p}(\omega; \mathbb{R}^3), k \ge 1$, and there exists $\varepsilon > 0$, such that R_1^k and R_2^k : principal radii of curvature of each surface $\theta^k(\omega), k \ge 1$, satisfy $|R_1^k| \ge \varepsilon$ and $|R_2^k| \ge \varepsilon$ for all $k \ge 1$. Let $\theta \in \mathcal{C}^1(\overline{\omega}; \mathbb{R}^3)$: immersion such that $\mathbf{a}_3 \in \mathcal{C}^1(\overline{\omega}; \mathbb{R}^3)$. Assume that:

$$a^k_{\alpha\beta} \xrightarrow[k \to \infty]{} a_{\alpha\beta}, \quad b^k_{\alpha\beta} \xrightarrow[k \to \infty]{} b_{\alpha\beta}, \quad c^k_{\alpha\beta} \xrightarrow[k \to \infty]{} c_{\alpha\beta} \quad \text{in } L^{p/2}(\omega)$$

Then there exist $a^k \in \mathbb{R}^3, Q^k \in \mathbb{O}^3_+, k \ge 1$, such that

$$\boldsymbol{a}^{k} + \boldsymbol{Q}^{k} \boldsymbol{\theta}^{k} \xrightarrow[k \to \infty]{} \boldsymbol{\theta} \quad \text{in } W^{1,p}(\omega; \mathbb{R}^{3}) \qquad \Longleftrightarrow \qquad \dot{\boldsymbol{\theta}}^{k} \to \dot{\boldsymbol{\theta}} \quad \text{in } W^{1,p}(\omega; \mathbb{R}^{3}) / \mathcal{R}$$

Proofs rely on

(a) the "geometric rigidity lemma":

There exists a constant $\Lambda(\Omega)$ such that, for each $\theta \in H^1(\Omega; \mathbb{R}^n)$ satisfying det $\nabla \theta > 0$ a.e. in Ω , there exists $\mathbf{R} = \mathbf{R}(\theta) \in \mathbb{O}^n_+$ such that

$$\left\|\boldsymbol{\nabla}\boldsymbol{\theta} - \boldsymbol{R}\right\|_{L^{2}(\Omega;\mathbb{M}^{n})} \leq \Lambda(\Omega) \left\|\operatorname{dist}(\boldsymbol{\nabla}\boldsymbol{\theta},\mathbb{O}^{n}_{+})\right\|_{L^{2}(\Omega)}$$

G. Friesecke, R.D. James, S. Müller, *Comm. Pure Appl. Math.* (2002). This lemma was extended to the " L^p -case" by Conti (2004).

(b) a "**nonlinear 3d-Korn inequality**": P.G. Ciarlet, C. Mardare, *J. Nonlinear Sci.* (2004). See also: Y.G. Reshetnyak, *Siberian Math. J.* (2003)

5. CLASSICAL LINEAR SHELL THEORY – KORN'S INEQUALITY ON A SURFACE

Contravariant basis (a^i) : $a^{\alpha} = a^{\alpha\beta}a_{\beta}$, $(a^{\alpha\beta}) = (a_{\sigma\tau})^{-1}$, $a^3 = a_3$. Then $a^i \cdot a_j = \delta^i_j$. $\Gamma^{\sigma}_{\alpha\beta} = a^{\sigma} \cdot \partial_{\alpha}a_{\beta}$

 $\widetilde{\boldsymbol{\eta}} = \eta_i \boldsymbol{a}^i : \omega \to \mathbb{R}$: displacement field (note that $\boldsymbol{\varphi} = \boldsymbol{\theta} + \widetilde{\boldsymbol{\eta}}$) $\boldsymbol{\eta} = (\eta_i) : \omega \to \mathbb{R}^3$ Undeformed surface: $(a_{\alpha\beta})$ and $(b_{\alpha\beta})$; deformed surface: $(a_{\alpha\beta}(\boldsymbol{\eta}))$ and $(b_{\alpha\beta}(\boldsymbol{\eta}))$.

$$\begin{split} \gamma_{\alpha\beta}(\boldsymbol{\eta}) &\stackrel{\text{def}}{=} \quad \frac{1}{2} \left[a_{\alpha\beta}(\boldsymbol{\eta}) - a_{\alpha\beta} \right]^{\text{lin}} = \frac{1}{2} (\partial_{\alpha} \widetilde{\boldsymbol{\eta}} \cdot \boldsymbol{a}_{\beta} + \partial_{\beta} \widetilde{\boldsymbol{\eta}} \cdot \boldsymbol{a}_{\alpha}) \\ &= \quad \frac{1}{2} (\partial_{\alpha} \eta_{\beta} + \partial_{\beta} \eta_{\alpha}) - \Gamma^{\sigma}_{\alpha\beta} \eta_{\sigma} - b_{\alpha\beta} \eta_{3} \end{split}$$

Linearized change of metric tensor

$$\rho_{\alpha\beta}(\boldsymbol{\eta}) \stackrel{\text{def}}{=} \left[b_{\alpha\beta}(\boldsymbol{\eta}) - b_{\alpha\beta} \right]^{\text{lin}} = \left(\partial_{\alpha\beta} \boldsymbol{\widetilde{\eta}} - \Gamma^{\sigma}_{\alpha\beta} \partial_{\sigma} \boldsymbol{\widetilde{\eta}} \right) \cdot \boldsymbol{a}_{3}$$
$$= \partial_{\alpha\beta} \eta_{3} + A^{\sigma i}_{\alpha\beta} \partial_{\sigma} \eta_{i} + B^{i}_{\alpha\beta} \eta_{i}$$

Linearized change of curvature tensor

$$\eta_{\alpha} \in H^{1}(\omega) \text{ and } \eta_{3} \in L^{2}(\omega) \Longrightarrow \gamma_{\alpha\beta}(\eta) \in L^{2}(\omega)$$

 $\eta_{\alpha} \in H^{1}(\omega) \text{ and } \eta_{3} \in H^{2}(\omega) \Longrightarrow \rho_{\alpha\beta}(\eta) \in L^{2}(\omega)$

Koiter's linear shell equations (Koiter [1970])

 ω : open, bounded, connected in \mathbb{R}^2 , Lipschitz boundary $\gamma_0 \subset \partial \omega$ with length $\gamma_0 > 0$

$$\begin{split} \boldsymbol{\zeta} &= (\zeta_i) \in \boldsymbol{V}(\omega) \stackrel{\text{def}}{=} \left\{ \boldsymbol{\eta} = (\eta_i) \in H^1(\omega) \times H^1(\omega) \times H^2(\omega); \ \eta_i = \partial_{\nu} \eta_3 = 0 \text{ on } \gamma_0 \right\} \\ j(\boldsymbol{\zeta}) &= \inf\{j(\boldsymbol{\eta}); \ \boldsymbol{\eta} \in \boldsymbol{V}(\omega)\}, \text{ where} \\ j(\boldsymbol{\eta}) &= \frac{\varepsilon}{2} \int_{\omega} A^{\alpha\beta\sigma\tau} \gamma_{\sigma\tau}(\boldsymbol{\eta}) \gamma_{\alpha\beta}(\boldsymbol{\eta}) \sqrt{a} \, \mathrm{d}y \\ &+ \frac{\varepsilon^3}{6} \int_{\omega} A^{\alpha\beta\sigma\tau} \rho_{\sigma\tau}(\boldsymbol{\eta}) \rho_{\alpha\beta}(\boldsymbol{\eta}) \sqrt{a} \, \mathrm{d}y \\ &- \int_{\omega} \boldsymbol{f} \cdot \boldsymbol{\eta} \sqrt{a} \, \mathrm{d}y \end{split}$$

$$\begin{array}{l} \hline \textbf{THEOREM: KORN'S INEQUALITY ON A SURFACE} \\ \hline \textbf{There exists } c > 0 \textit{ such that} \\ \hline \textbf{norm on } H^1(\omega) \times H^1(\omega) \times H^2(\omega) \\ \hline \hline \left\{ \sum_{\alpha} \|\eta_{\alpha}\|_{H^1(\omega)}^2 + \|\eta_{3}\|_{H^2(\omega)}^2 \right\}^{1/2} \\ \hline \left\{ \sum_{\alpha,\beta} \|\gamma_{\alpha\beta}(\eta)\|_{L^2(\omega)}^2 + \sum_{\alpha,\beta} \|\rho_{\alpha\beta}(\eta)\|_{L^2(\omega)}^2 \right\}^{1/2} \textit{ for all } \eta \in \mathbf{V}(\omega) \end{array}$$

Existence then follows by the Lax-Milgram lemma

M. Bernadou & Ciarlet (1976)M. Bernadou, P.G. Ciarlet & B. Miara (1994)A. Blouza & H. Le Dret (1999)P.G. Ciarlet & S. Mardare (2001)

6. INTRINSIC LINEAR SHELL THEORY

Pure traction problem

 $j(\boldsymbol{\zeta}) = \inf_{\boldsymbol{\eta} \in \boldsymbol{V}(\omega)} j(\boldsymbol{\eta}), \quad \text{where } \boldsymbol{V}(\omega) = H^1(\omega) \times H^1(\omega) \times H^2(\omega)$

$$j(\boldsymbol{\eta}) = \frac{\varepsilon}{2} \int_{\omega} A^{\alpha\beta\sigma\tau} \gamma_{\sigma\tau}(\boldsymbol{\eta}) \gamma_{\alpha\beta}(\boldsymbol{\eta}) \sqrt{a} \, \mathrm{d}y \\ + \frac{\varepsilon^3}{6} \int_{\omega} A^{\alpha\beta\sigma\tau} \rho_{\sigma\tau}(\boldsymbol{\eta}) \rho_{\alpha\beta}(\boldsymbol{\eta}) \sqrt{a} \, \mathrm{d}y \\ - \int_{\omega} \boldsymbol{f} \cdot \widetilde{\boldsymbol{\eta}} \sqrt{a} \, \mathrm{d}y$$

Intrinsic approach: $c_{\alpha\beta} := \gamma_{\alpha\beta}(\eta) \in L^2(\omega)$ and $r_{\alpha\beta} := \rho_{\alpha\beta}(\eta) \in L^2(\omega)$ become the primary unknowns instead of the covariant components $\eta_{\alpha} \in H^1(\omega)$ and $\eta_3 \in H^2(\omega)$ of the displacement field.

THEOREM: $\omega \subset \mathbb{R}^2$: bounded, simply-connected, connected, Lipschitz boundary Given $(c, r) \in L^2(\omega; \mathbb{S}^2) \times L^2(\omega; \mathbb{S}^2)$, there exists $\eta \in V(\omega)$ s.t.

$$(\boldsymbol{c}, \boldsymbol{r}) = ((\gamma_{\alpha\beta}(\boldsymbol{\eta})), (\rho_{\alpha\beta}(\boldsymbol{\eta})) \iff \boldsymbol{R}(\boldsymbol{c}, \boldsymbol{r}) = 0 \text{ in } \mathcal{D}'(\omega)$$

Uniqueness of η : up to $\boldsymbol{a} + \boldsymbol{b} \wedge \boldsymbol{\theta}$

COROLLARY: Existence and uniqueness of solution to the minimization problem of intrisic linear shell theory:

$$\kappa(oldsymbol{c}^*,oldsymbol{r}^*) = \inf_{(oldsymbol{c},oldsymbol{r})\inoldsymbol{E}(\omega)}\kappa(oldsymbol{c},oldsymbol{r})$$

$$\begin{split} \boldsymbol{E}(\omega) &\stackrel{\text{def}}{=} & \left\{ (\boldsymbol{c}, \boldsymbol{r}) \in L^2_{\text{sym}}(\omega) \times L^2_{\text{sym}}(\omega); \boldsymbol{R}(\boldsymbol{c}, \boldsymbol{r}) = 0 \quad \text{in } \mathcal{D}'(\omega) \right\} \\ \kappa(\boldsymbol{c}, \boldsymbol{r}) &\stackrel{\text{def}}{=} & \frac{\varepsilon}{2} \int_{\omega} A^{\alpha\beta\sigma\tau} c_{\sigma\tau} c_{\alpha\beta} \sqrt{a} \, \mathrm{d}y + \frac{\varepsilon^3}{6} \int_{\omega} A^{\alpha\beta\sigma\tau} r_{\sigma\tau} r_{\alpha\beta} \sqrt{a} \, \mathrm{d}y - \Lambda(c, r) \end{split}$$

As expected:
$$\boldsymbol{c}^* = (\gamma_{\alpha\beta}(\boldsymbol{\zeta}))$$
 and $\boldsymbol{r}^* = (\rho_{\alpha\beta}(\boldsymbol{\zeta}))$.

