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1. THE TWO FUNDAMENTAL FORMS OF A SURFACE

fa,ﬁ, ... €{1,2} - —‘

Summation convention
w: open in R?
0:wCR?— O(w) CR3
0 is “smooth enough”

O(w): surface

Yl, Yy2. curvilinear coordinates

.

ERHHAE . . -
ﬁf’ City University Linear and Nonlinear Korn’s Inequalities on a Surface — p. 3

of Hong Kong



Assume @ is an immersion: 0,0 linearly independent in w

. . def def a1 N\ a2
covariant basis: aqg = 0,0, a3z =

- |CL1 AN a2|
First fundamental form: Ao .- ag = 0,0 - 030
0 2/
Second fundamental form: bag def Oaag - az = 0,30 - 010 N 02
1010 A 020

First fundamental form: “metric notions”, such as lengths, areas, angles .'. a.k.a. metric

tensor
(aap): symmetric positive-definite matrix field

Second fundamental form: “curvature notions”
(bag): symmetric matrix field
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df”

length of 6(~) = / \/aaﬁ FO) LS ) a

Curvature of () at 0(y), y = f(t), when 8(~) lies in a plane

normal to the surface 0(w) at 0(y):

dfe
dt

dfe
dt

fﬁ

dt
dfs

dt

a8(F (1))
aozﬁ(f(t>)

(1)
(1)

(t)
(t)
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Portion of a cylinder

Rcos g

0:(p,z) — | Rsinyp
| Z .
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Portion of a torus

(R + 7 cos x) cos ¢

0:(o,x) — | (R+ rcos‘x) sin ¢

\_ . | rsiny | | J
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Cartesian coordinates

X

0 (z,y) — Y

L o | | ) : \/Rz_(x2+y2) J
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Spherical coordinates

L J
B
hE L2 T TSN (Pt e

S

' b

.

b4
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¢
’y
» .
¥ |
4
"
P

R cos cos ¢ | |
0:(p,¥) — | Rcostsinyp | | | |
Rsin ' | ‘
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Stereographic coordinates

| %‘\ ' ‘ v
(TN
Sl
/ ¥ \.,,_,” U'

2R%u

: | ‘ 2,
0.(u,v)_—>(u2+v2+R2> 2R*v

1
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The components a3 : w — R and b, 3 : w — R of the two fundamental forms cannot be
arbitrary functions: Let

def

(a(”) e def def

(aaﬁ)_17 FozﬁT — 804016 -a,r and Fgﬁ = CLUTFQBT

The functions I', 3 and Fgﬁ are the Christoffel symbols

Then it is easy to see that:

8aaaﬁ ar = 80FaBT - FZ/BFO'T,LL - baﬁbaTa

Besides,

é%MTﬁé’::éimﬁolg < é%xa(lﬁ ::éilB(lU — { oo ﬁ T ‘XB o T
aagaﬁ . a,3 = aOé/Ba’O' . a3

. |
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Necessary conditions

8ﬂFOéO'T - aO'FaBT + FZBFUTIUJ - FggFﬁT'u — bao’bﬁT - baﬁba’r in w

Gauld equations

Opbac — Oobap + Thobsy — T jboy =0 inw

Codazzi-Mainardi equations

Remarkably, these conditions are also sufficient if w is simply-connected (see next theorem).
Observe that the Christoffel symbols I', 3~ and I'? 5 can be expressed solely in terms of the
components of the first fundamental form:

1 .
FO&ﬁT = 5(8501047' + aaa/ﬁT - 8Ta’aﬂ) and Fgﬁ — aUTFO‘ﬁT with (CLUT) — (aaﬁ)_l

Consequently, the Gaul? and Codazzi-Mainardi equations are (nonlinear) relations between

the first and second fundamental forms.
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e -

S2 = {symmetric 2 x 2 matrices }
S? %ef { symmetric positive-definite 2 x 2 matrices }
@i def { proper orthogonal 3 x 3 matrices }

FUNDAMENTAL THEOREM OF SURFACE THEORY:-

w C R?: open, connected, simply connected. Let there be given (a,z) € C?(w;S%) and
(bag) € Ct(w;S?) satisfying the GauR and Codazzi-Mainardi equations in w.

Then there exists 8 € C3(w; R3) such that:

010 N\ 02,0 )
a3 = 0a0-030 and b,g = 0,30 - in
Gab g B= e 500020

Uniqueness holds modulo isometries of R3: All other solutions are:

y€cew—xy =a+ QO(y) Witha€R3,Q€@i<:>(x,9)ER

S. Mardare (2003): (an5) € W1P(w;S2) and (byg) € LP(w;S?),p > 2. Then

Le € W2P(w; R3) J
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COROLLARY: There exists a well-defined mapping:

- |

(aap) € C2(w;82>)
(bag) c Cl(w;SQ)

satisfying the Gaul’ and :
ying }—>eec3(w;R3)/R
Codazzi-Mainardi equations

Questions:

Is the mapping F' continuous and, if so, for which topologies?
Is the mapping differentiable?

Note: F'is defined on a manifold .-, differentiability of F' is a delicate issue

Motivations:

1. Differential Geometry

2. Intrinsic nonlinear shell theory

.

'

FERH AL
City University
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2. NONLINEAR SHELL THEORY: THE CLASSICAL AND INTRINSIC APPR OACHES

EXAMPLES OF SHELLS:

Blades of a rotor:

. |
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Inner tube

. R - o
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COoIing tower

. . B
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HOW IS A SHELL PROBLEM POSED?

R SO __,,m\\\

‘M\KDOWI\

/.(e(w) deformed R

middle surface

- - rae
ﬂ”
P
-

given e (,g‘b

, S -9 (oo) :Undeformed

midadle 3urf-ace.
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CLASSICAL APPROACH

Unknown : ¢ : w — R3: deformation of middle surface S

Boundary conditions : ¢ = 6 on ~g (simple support), or
@ = 6 and 0, = 0,0 on ~y (clamping) (length vo > 0)

Applied forces : f = (f;) : w — R?
Lamé constants of the elastic material: A > 0, © > 0

4>\/J, B Jé; 6} —1
———a®Pa’” +2u(a®°a”” +a*"a”?), where (a?7) = (a,
S u ) (4°7) = (aap)

afBorT __

There exists co > 0 such that A%P97 (y)tsrtag > co D a8 ltagl? forally € @, (tog) € S?
Thickness of the shell: 2¢ > 0

Area element along S : \/ady where a = det(aqyg)

P.G. Ciarlet: Mathematical Elasticity, Vol. Ill: Theory of Shells, North-Holland, 2000

. |
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roblem : To find ¢ : @ — R3 such that:

J(p) = inf{ J(®); @ : w — R3 smooth enough; @ = 6 on vy }

Total energy of the shell — W.T. Koiter (1966):

9

J(P)
63 ~
< AaBUT bor

S

—/wf-?o\/ady,

~

~ def

dop = Oa@ - Osp and S

> / AP (Gor — a6 )(@as — Gas)Vady

— bor) (b — bag)Vady

baﬁ — aaﬁaé

<4 membrane energy

~

« flexural energy

« forces

O1p N\ O2¢p

i L <« fundamental forms
|01 A D269

of the unknown

.
'

EBHHAE
City University
of Hong Kong

surface ¢p(w)
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INTRINSIC APPROACH:
Another look at the energy of the shell:

_ £ _
J(Qo> = 5 / AQBGT(UJUT - acﬂ')(aaﬁ - aaﬂ)\/ady <« membrane energy
g
E/ AP (byr — bor)(bap — bag)Vady <« flexural energy
—/ f-®Vady « forces

Hence the fundamental forms @, and b, of the unknown surface  @(w) appear as

natural unknowns
This is the basis of the intrinsic approach

S.S. Antman (1976)
W. Pietraszkiewicz (2001)
S. Opoka & W. Pietraszkiewicz (2004)

. |
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But, if @, and b, are chosen as the primary unknowns:

— How to express in terms of (a, ) and (Eag) the integral [  f - ¢+/ady taking into
account the forces in the energy?

— How to express in terms of (a,g) and (Eag) the boundary condition ,e.g., o =80
on I'g, that the admissible deformations must satisfy?

— How to handle such expressions if minimizing sequences are considered:

ak — an3 and bF —>ga5 — P p?

of k— o0

— Constrained minimization problem : The new unknowns @, 3 and b, must satisfy the
(highly nonlinear!) Gaul3 and Codazzi-Mainardi equations

Hence the need to study the mapping
((@ap); (bap)) — 6
using topologies of ad hoc function spaces : C™(w),C™(w), W™ P (w),...

. |
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3. CONTINUITY OF A SURFACE AS A FUNCTION OF ITS FUNDAMENTAL FO RMS

Notation: « € w means that « is a compact subset of w
Given f € Ct(w;R) or ¢ € C(w;RY)

[ flle,x = sup |07 f(y)|  |[Ylle,x = sup [0P9(y)]

YER YER
|p| < |p|<Z

oo
Letk; Ew, ki Cintkir1, 1 >0, w= | Ky
1=0

1 |v—x

Letde(,x) = »

1=0

L, K;
— 2t for all ¢, x € C¥(w;RY)
20 1+ | — xlle,x;

Then C*(w; R?) is a locally convex topological space with the semi-norms ||-
and its topology is metrizable, with distance d, (Fréchet topology ). Besides,

o foralk Ew

[ — 4

tw — 0 foral k€ w <= do(F,9) — 0
— 0

k— oo

. |
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Notation: Equivalence class 6 of 0 : w C R2 — R3 modulo R:

6 = {x:wCR?— R with x(y) = a+ QO(y), y € w, forsome a € R?, Q € 0% }

THEOREM: w C RZ?: open, connected, simply connected. Given immersions
0F c C3(w;R3), let

510% A 95,0F

- inw,
1010% A 020F|

al 5 :=0a0" - 036" and bL;:=0,30"

Assume

VK @w,HCI/(’;B —Cbaﬁ|2,f<c k::;oo and ||b(l§é5 _bozBHl,m k::;oo

Then there exists an immersion 8 € C3(w; R3) such that

010 N\ 020
ag =0a0-030 and b,z = 0,50 -
Gaf 8 8= Y87 156 A 020
and there exist 8% ¢ ék, k > 1, such that Vi € w,||0F — 0|3, R 0

ERHHAE . . , .
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This result can be recast as a continuity result between metric spaces: Let the quotient set
C3(w; R?) /R be equipped with the distance d3 defined by d3(¢, 6) = inf (., d3(, )
X €O

COROLLARY . The following mapping between metric spaces is continuous:

o C?(w;S? satisfying the GauR and .
F:{ (CL B)G (w >) fy g }—>9€CS(C¢);R3)/R

(bap) € Ct(w;S?) Codazzi-Mainardi equations in w ~
. ~— v equipped with ds
equipped with do X dq

P.G. Ciarlet: J. Math. Pures Appl. (2003)

Proof relies on an analogous result “in 3d”: A 3d-deformation is a continuous function of its
metric tensor:

P.G. Ciarlet & F. Laurent: Arch. Rational Mech. Anal. (2003)

. |
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RECOVERY AND CONTINUITY OF A SURFACE “UP TO THE BOUNDARY”

THEOREM: w C R?: open, simply-connected; Lipschitz boundary

Given (ang) € C?(w;S2) and (b,g) € Cl(w;S?) satisfying the GauB and Codazzi-Mainardi
equations in w, there exists 8 € C3(w; R3) such that:

010 N\ 020
|(919 VAN 829|

Aag :8a9-859 and baﬁ =8a59-

P.G. Ciarlet & C. Mardare, Analysis and Applications (2005)

. |
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THEOREM: Assume in addition that w is bounded. Then the following mapping between
subsets of Banach spaces is locally Lipschitz-continuous

{ (anp) € C*(w;S2) satisfying the GauR and

—0eC3(wR3)/R
(bap) € Cl(w;S?) Codazzi-Mainardi equations in w } ( )/

Again, proof relies on an analogous result “in 3d":
P.G. Ciarlet & C. Mardare: J. Math. Pures Appl. (2004)

M. Szopos: Extension to a simply-connected Riemannian space w C RP isometrically
immersed in RPT4, Analysis and Applications (2005).

’ ERHHAE
‘ﬂr City University
of Hong Kong
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4. A NONLINEAR KORN INEQUALITY ON A SURFACE

In what follows: p>2

6 c Whe(w;R3), aq = 0.0 | ( Gap = Qo -ag € LP/2 (W)

a; Naz #0a.e. inw b = < bag=—0aaz-agc LP/2(w)
_ a1/haz 1,p(,, R3

e a1 A\ a2 € WPl RY) ) \ Cap = Daas - Opaz € LP/?(w)

Ry and R»: principal radii of curvature of the surface 6(w)

. |
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HEOREM: w C R? bounded, open, connected, Lipschitz boundary
Let 8 € C'(w; R3): immersion such that as € C! (w; R3).
Given ¢ > 0, there exists a constant ¢(0; £) with the following property:

Given any 6 € WP (w;R3) such that @1 A @z # 0 a.e. inw, as € WhHP(w; R3),

|Ri| > eand |Rs| > cae. inw,
there exista = a(0,0,¢) € R® and Q = Q(6, 0,¢) € 03 such that

“distance” between surfaces 6 (w) and 6 (w)

7\

~

[(a+ QE) - 9||W1ap(w;R3) + [|Qasz — a3||W1’p(w;R3)

~ 1/2 7 1/2
< ¢(0,){11@ap — aap)ll}2 g2y + 1Bas = bap)l 0z g2y

~ 1/2
1 @ap = cad)lly oo gy

"

“change of metric” and “change of curvature”

.

'

EBEHKB
City University
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As a corollary: Sequential continuity of a surface as a function of its fundamental forms with
respect to Sobolev norms:

THEOREM: w C R? bounded, open, connected, Lipschitz boundary
Let 6% € WP (w;R3) such that a¥ € WP (w;R3), k > 1, and there exists ¢ > 0, such that

R} and R5: principal radii of curvature of each surface 6% (w), k > 1, satisfy |R¥| > ¢ and
|R5| > eforall k > 1.

Let 8 € C'(w;R3): immersion such that a3 € C! (w; R3). Assume that:

aaﬁ — Qa3 b(kiﬁ — baﬁy C]; — Cap in Lp/2(w)

k— oo B k— oo

Then there exist a* € R3, Q* € 0%,k > 1, such that

ak + QFo* 0 in WP (w;R3)

= 6" =6 inwir(w;R3)/R

’ FERH AL
ﬁ’r City University
of Hong Kong
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Proofs rely on

(a) the “geometric rigidity lemma”:
There exists a constant A(Q2) such that, for each 8 € H!(Q; R™) satisfying det V@ > 0 a.e.
in 2, there exists R = R(0) € O such that

IV — Rl| 12 (qm) < AQ) [|dist(VO, 0F)|| 2

G. Friesecke, R.D. James, S. Muller, Comm. Pure Appl. Math. (2002).

This lemma was extended to the “LP-case” by Conti (2004).

(b) a “nonlinear 3d-Korn inequality ”: P.G. Ciarlet, C. Mardare, J. Nonlinear Sci. (2004).
See also: Y.G. Reshetnyak, Siberian Math. J. (2003)

. |

FERH AL . . .
ﬁf’ City University Linear and Nonlinear Korn’s Inequalities on a Surface — p. 33

of Hong Kong



5. CLASSICAL LINEAR SHELL THEORY — KORN'S INEQUALITY ON A SUR FACE

-

Contravariant basis (a’): a® = a*Pag, (a®’) = (as-)"', @®> = az. Thena’ - a; = §’.

-

n = n;a’ : w — R: displacement field (note that o = 8 + 7))
n=(n):w— R
Undeformed surface: (ang) and (b, 3); deformed surface: (aqg(n)) and (bos(mn)).

FERH AL . . , "
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def 1 lin 1 ~ ~
Yap(m) = 5 [3ap(M) —aas] ™ = 7(8aT - ap + 9pM - aa)
1

= 5(304775 + 9ana) — 'Y 3n0 — bapns

Linearized change of metric tensor

def lin ~ o ~
Papg (77) = [baﬁ (77) - baﬁ] — (aaﬁn - Faﬁaffn) *as

= Oapns + AZ5300m; + Bl zni

Linearized change of curvature tensor

Ne € H'(w) and n3 € L?(w) = Yo (M) € L?(w)
N € H'(w) and n3 € H*(w) = pag(n) € L?(w)

. |
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Koiter’s linear shell equations (Koiter [1970])

w: open, bounded, connected in R2, Lipschitz boundary
vo C Ow with length v > 0

¢ = (()EV(W) = {n=(n) € H'(w) x H'(w) x H2(w); mi = dymz =0 0n o}

j(¢) = inf{j(n); n € V(w)}, where

S

i = 5 [ AN e () Vady

83 oPoT
+E/ AP por (M) pas(n)Vady

—/wf-n\/ady

. |
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THEOREM: KORN'S INEQUALITY ON A SURFACE
There exists ¢ > 0 such that

normon H (w)x H! (w)x H?(w)

N\

Ve

] ] 1/2
LS Il oy + sl |

1/2
<o 3 Iy + X lraslliae, | forallne vi
a,B a,B

Existence then follows by the Lax-Milgram lemma

M. Bernadou & Ciarlet (1976)

M. Bernadou, P.G. Ciarlet & B. Miara (1994)
A. Blouza & H. Le Dret (1999)

P.G. Ciarlet & S. Mardare (2001)

. |
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6. INTRINSIC LINEAR SHELL THEORY

Pure traction problem

J(€) = infyev () i(n), where V(w) = H'(w) x H'(w) x H*(w)

. € affoT
jm = 5 / AP, (M) Yap(M)Vady
63 B
+€/ A®PTT por (M) pas(n)vady

—/wf-ﬁ\/ady

Intrinsic approach: cas = va3(n) € L?(w) and rog := pas(n) € L?(w) become the
primary unknowns instead of the covariant components n, € H'(w) and n3 € H?(w) of
the displacement field.

. |
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THEOREM: w C RZ?: bounded, simply-connected, connected, Lipschitz boundary
Given (¢, r) € L?(w;S?) x L?(w;S?), there exists n € V(w) s.t.

(e,r) = ((VQB("?)) 3 (paﬁ(n>) <~ R(c,7)=0 in D,(w)

Uniqueness of n: uptoa+b A 0

COROLLARY: Existence and uniqueness of solution to the minimization problem of intrisic
linear shell theory:

k(c*,r*) = inf k(e,r
( ) (e,r)EE(w) ( )

(,7) € L2 (w) X L2 (w); R(e,m) =0 in D' (w) ]

o
&
—
(oW
o
N A~

3
/ AQBO—TCO'TCQ/B\/ady + %/ AQBUTT'O'TTO(B\/ady - A(C7 T)

\_As expected: ¢* = (7,3(€)) and r* = (p,3(C€)). J
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