LINEAR AND NONLINEAR KORN＇S INEQUALITIES ON A SURFACE

Philippe G．Ciarlet
City University of Hong Kong

Outline

1．The two fundamental forms of a surface
2．Nonlinear shell theory－The classical and intrinsic approaches
3．Continuity of a surface as a function of its two fundamental forms
4．A nonlinear Korn inequality on a surface
5．Classical linear shell theory－Korn＇s inequality on a surface
6．Intrinsic linear shell theory

1．THE TWO FUNDAMENTAL FORMS OF A SURFACE

$$
\alpha, \beta, \ldots \in\{1,2\}
$$

Summation convention
ω ：open in \mathbb{R}^{2}
$\boldsymbol{\theta}: \omega \subset \mathbb{R}^{2} \rightarrow \boldsymbol{\theta}(\omega) \subset \mathbb{R}^{3}$
$\boldsymbol{\theta}$ is＂smooth enough＂

Assume $\boldsymbol{\theta}$ is an immersion：$\partial_{\alpha} \boldsymbol{\theta}$ linearly independent in ω covariant basis：$\quad \boldsymbol{a}_{\alpha} \stackrel{\text { def }}{=} \partial_{\alpha} \boldsymbol{\theta}, \quad \boldsymbol{a}_{3} \stackrel{\text { def }}{=} \frac{\boldsymbol{a}_{1} \wedge \boldsymbol{a}_{2}}{\left|\boldsymbol{a}_{1} \wedge \boldsymbol{a}_{2}\right|}$

First fundamental form：$\quad a_{\alpha \beta} \stackrel{\text { def }}{=} \boldsymbol{a}_{\alpha} \cdot \boldsymbol{a}_{\beta}=\partial_{\alpha} \boldsymbol{\theta} \cdot \partial_{\beta} \boldsymbol{\theta}$
Second fundamental form：$\quad b_{\alpha \beta} \stackrel{\text { def }}{=} \partial_{\alpha} \boldsymbol{a}_{\beta} \cdot \boldsymbol{a}_{3}=\partial_{\alpha \beta} \boldsymbol{\theta} \cdot \frac{\partial_{1} \boldsymbol{\theta} \wedge \partial_{2} \boldsymbol{\theta}}{\left|\partial_{1} \boldsymbol{\theta} \wedge \partial_{2} \boldsymbol{\theta}\right|}$

First fundamental form：＂metric notions＂，such as lengths，areas，angles \therefore a．k．a．metric tensor
$\left(a_{\alpha \beta}\right)$ ：symmetric positive－definite matrix field

Second fundamental form：＂curvature notions＂ $\left(b_{\alpha \beta}\right)$ ：symmetric matrix field

$$
\operatorname{area} \boldsymbol{\theta}\left(\omega_{0}\right)=\int_{\omega_{0}} \sqrt{\operatorname{det}\left(a_{\alpha \beta}(y)\right)} \mathrm{d} y
$$

Linear and Nonlinear Korn＇s Inequalities on a Surface－p． 5
length of $\boldsymbol{\theta}(\boldsymbol{\gamma})=\int_{I} \sqrt{a_{\alpha \beta}(\boldsymbol{f}(t)) \frac{\mathrm{d} f^{\alpha}}{\mathrm{d} t}(t) \frac{\mathrm{d} f^{\beta}}{\mathrm{d} t}(t)} \mathrm{d} t$

Curvature of $\boldsymbol{\theta}(\boldsymbol{\gamma})$ at $\boldsymbol{\theta}(y), y=\boldsymbol{f}(t)$ ，when $\boldsymbol{\theta}(\boldsymbol{\gamma})$ lies in a plane normal to the surface $\boldsymbol{\theta}(\omega)$ at $\boldsymbol{\theta}(y)$ ：

$$
\frac{1}{R}=\frac{b_{\alpha \beta}(\boldsymbol{f}(t)) \frac{\mathrm{d} f^{\alpha}}{\mathrm{d} t}(t) \frac{\mathrm{d} f^{\beta}}{\mathrm{d} t}(t)}{a_{\alpha \beta}(\boldsymbol{f}(t)) \frac{\mathrm{d} f^{\alpha}}{\mathrm{d} t}(t) \frac{\mathrm{d} f^{\beta}}{\mathrm{d} t}(t)}
$$

Portion of a cylinder

$$
\boldsymbol{\theta}:(\varphi, z) \rightarrow\left(\begin{array}{c}
R \cos \varphi \\
R \sin \varphi \\
z
\end{array}\right)
$$

Portion of a torus

$$
\boldsymbol{\theta}:(\varphi, \chi) \rightarrow\left(\begin{array}{c}
(R+r \cos \chi) \cos \varphi \\
(R+r \cos \chi) \sin \varphi \\
r \sin \chi
\end{array}\right)
$$

Cartesian coordinates

$$
\boldsymbol{\theta}:(x, y) \rightarrow\left(\begin{array}{c}
x \\
y \\
\sqrt{R^{2}-\left(x^{2}+y^{2}\right)}
\end{array}\right)
$$

Spherical coordinates

$$
\boldsymbol{\theta}:(\varphi, \psi) \rightarrow\left(\begin{array}{c}
R \cos \psi \cos \varphi \\
R \cos \psi \sin \varphi \\
R \sin \psi
\end{array}\right)
$$

Stereographic coordinates

$$
\boldsymbol{\theta}:(u, v) \rightarrow \frac{1}{\left(u^{2}+v^{2}+R^{2}\right)}\left(\begin{array}{c}
2 R^{2} u \\
2 R^{2} v \\
R\left(u^{2}+v^{2}-R^{2}\right)
\end{array}\right)
$$

The components $a_{\alpha \beta}: \omega \rightarrow \mathbb{R}$ and $b_{\alpha \beta}: \omega \rightarrow \mathbb{R}$ of the two fundamental forms cannot be arbitrary functions：Let

$$
\left(a^{\sigma \tau}\right) \stackrel{\text { def }}{=}\left(a_{\alpha \beta}\right)^{-1}, \quad \Gamma_{\alpha \beta \tau} \stackrel{\text { def }}{=} \partial_{\alpha} \boldsymbol{a}_{\beta} \cdot \boldsymbol{a}_{\tau} \quad \text { and } \quad \Gamma_{\alpha \beta}^{\sigma} \stackrel{\text { def }}{=} a^{\sigma \tau} \Gamma_{\alpha \beta \tau}
$$

The functions $\Gamma_{\alpha \beta \tau}$ and $\Gamma_{\alpha \beta}^{\sigma}$ are the Christoffel symbols
Then it is easy to see that：

$$
\begin{aligned}
\partial_{\alpha \sigma} \boldsymbol{a}_{\beta} \cdot \boldsymbol{a}_{\tau} & =\partial_{\sigma} \Gamma_{\alpha \beta \tau}-\Gamma_{\alpha \beta}^{\mu} \Gamma_{\sigma \tau \mu}-b_{\alpha \beta} b_{\sigma \tau} \\
\partial_{\alpha \sigma} \boldsymbol{a}_{\beta} \cdot \boldsymbol{a}_{3} & =\partial_{\sigma} b_{\alpha \beta}+\Gamma_{\alpha \beta}^{\mu} b_{\sigma \mu} .
\end{aligned}
$$

Besides，

$$
\partial_{\alpha \sigma \beta} \boldsymbol{\theta}=\partial_{\alpha \beta \sigma} \boldsymbol{\theta} \quad \Longleftrightarrow \quad \partial_{\alpha \sigma} \boldsymbol{a}_{\beta}=\partial_{\alpha \beta} \boldsymbol{a}_{\sigma} \Longleftrightarrow\left\{\begin{array}{l}
\partial_{\alpha \sigma} \boldsymbol{a}_{\beta} \cdot \boldsymbol{a}_{\tau}=\partial_{\alpha \beta} \boldsymbol{a}_{\sigma} \cdot \boldsymbol{a}_{\tau} \\
\partial_{\alpha \sigma} \boldsymbol{a}_{\beta} \cdot \boldsymbol{a}_{3}=\partial_{\alpha \beta} \boldsymbol{a}_{\sigma} \cdot \boldsymbol{a}_{3}
\end{array}\right.
$$

Necessary conditions:

$$
\partial_{\beta} \Gamma_{\alpha \sigma \tau}-\partial_{\sigma} \Gamma_{\alpha \beta \tau}+\Gamma_{\alpha \beta}^{\mu} \Gamma_{\sigma \tau \mu}-\Gamma_{\alpha \sigma}^{\mu} \Gamma_{\beta \tau \mu}=b_{\alpha \sigma} b_{\beta \tau}-b_{\alpha \beta} b_{\sigma \tau} \quad \text { in } \omega
$$

Gauß equations

$$
\partial_{\beta} b_{\alpha \sigma}-\partial_{\sigma} b_{\alpha \beta}+\Gamma_{\alpha \sigma}^{\mu} b_{\beta \mu}-\Gamma_{\alpha \beta}^{\mu} b_{\sigma \mu}=0 \quad \text { in } \omega
$$

Codazzi-Mainardi equations

Remarkably, these conditions are also sufficient if ω is simply-connected (see next theorem). Observe that the Christoffel symbols $\Gamma_{\alpha \beta \tau}$ and $\Gamma_{\alpha \beta}^{\sigma}$ can be expressed solely in terms of the components of the first fundamental form:

$$
\Gamma_{\alpha \beta \tau}=\frac{1}{2}\left(\partial_{\beta} a_{\alpha \tau}+\partial_{\alpha} a_{\beta \tau}-\partial_{\tau} a_{\alpha \beta}\right) \quad \text { and } \quad \Gamma_{\alpha \beta}^{\sigma}=a^{\sigma \tau} \Gamma_{\alpha \beta \tau} \quad \text { with }\left(a^{\sigma \tau}\right)=\left(a_{\alpha \beta}\right)^{-1}
$$

Consequently, the Gauß and Codazzi-Mainardi equations are (nonlinear) relations between the first and second fundamental forms.

```
S 2 年 = { symmetric 2 < 2 matrices }
S S
\mp@subsup{O}{+}{3}}\stackrel{\mathrm{ def }}{=}\quad{\mathrm{ proper orthogonal 3 }\times3\mathrm{ matrices }
```


FUNDAMENTAL THEOREM OF SURFACE THEORY：

$\omega \subset \mathbb{R}^{2}$ ：open，connected，simply connected．Let there be given $\left(a_{\alpha \beta}\right) \in \mathcal{C}^{2}\left(\omega ; \mathbb{S}_{>}^{2}\right)$ and $\left(b_{\alpha \beta}\right) \in \mathcal{C}^{1}\left(\omega ; \mathbb{S}^{2}\right)$ satisfying the Gauß and Codazzi－Mainardi equations in ω ． Then there exists $\boldsymbol{\theta} \in \mathcal{C}^{3}\left(\omega ; \mathbb{R}^{3}\right)$ such that：

$$
a_{\alpha \beta}=\partial_{\alpha} \boldsymbol{\theta} \cdot \partial_{\beta} \boldsymbol{\theta} \quad \text { and } \quad b_{\alpha \beta}=\partial_{\alpha \beta} \boldsymbol{\theta} \cdot \frac{\partial_{1} \boldsymbol{\theta} \wedge \partial_{2} \boldsymbol{\theta}}{\left|\partial_{1} \boldsymbol{\theta} \wedge \partial_{2} \boldsymbol{\theta}\right|} \quad \text { in } \omega
$$

Uniqueness holds modulo isometries of \mathbb{R}^{3} ：All other solutions are：

$$
y \in \omega \rightarrow \boldsymbol{\chi}(y)=\boldsymbol{a}+\boldsymbol{Q} \boldsymbol{\theta}(y) \quad \text { with } \boldsymbol{a} \in \mathbb{R}^{3}, \boldsymbol{Q} \in \mathbb{O}_{+}^{3} \Longleftrightarrow(\boldsymbol{\chi}, \boldsymbol{\theta}) \in \mathcal{R}
$$

S．Mardare（2003）：$\left(a_{\alpha \beta}\right) \in W^{1, p}\left(\omega ; \mathbb{S}_{>}^{2}\right)$ and $\left(b_{\alpha \beta}\right) \in L^{p}\left(\omega ; \mathbb{S}^{2}\right), p>2$ ．Then $\boldsymbol{\theta} \in W^{2, p}\left(\omega ; \mathbb{R}^{3}\right)$

COROLLARY：There exists a well－defined mapping：

$$
\boldsymbol{F}:\left\{\begin{array}{ll}
\left(a_{\alpha \beta}\right) \in \mathcal{C}^{2}\left(\omega ; \mathbb{S}_{>}^{2}\right) & \text { satisfying the Gauß and } \\
\left(b_{\alpha \beta}\right) \in \mathcal{C}^{1}\left(\omega ; \mathbb{S}^{2}\right) & \text { Codazzi-Mainardi equations }
\end{array}\right\} \longrightarrow \dot{\boldsymbol{\theta}} \in \mathcal{C}^{3}\left(\omega ; \mathbb{R}^{3}\right) / \mathcal{R}
$$

Questions：

Is the mapping \boldsymbol{F} continuous and，if so，for which topologies？
Is the mapping differentiable？
Note： \boldsymbol{F} is defined on a manifold \therefore differentiability of \boldsymbol{F} is a delicate issue

Motivations：

1．Differential Geometry
2．Intrinsic nonlinear shell theory

2．NONLINEAR SHELL THEORY：THE CLASSICAL AND INTRINSIC APPROACHES

EXAMPLES OF SHELLS：

Blades of a rotor

Inner tube
(而)

Cooling tower

$$
40
$$

HOW IS A SHELL PROBLEM POSED？

CLASSICAL APPROACH

Unknown：$\varphi: \bar{\omega} \rightarrow \mathbb{R}^{3}$ ：deformation of middle surface S
Boundary conditions： $\boldsymbol{\varphi}=\boldsymbol{\theta}$ on γ_{0}（simple support），or
$\boldsymbol{\varphi}=\boldsymbol{\theta}$ and $\partial_{\nu} \boldsymbol{\varphi}=\partial_{\nu} \boldsymbol{\theta}$ on γ_{0}（clamping）（length $\gamma_{0}>0$ ）
Applied forces： $\boldsymbol{f}=\left(f_{i}\right): \omega \rightarrow \mathbb{R}^{3}$
Lamé constants of the elastic material：$\lambda>0, \mu>0$

$$
A^{\alpha \beta \sigma \tau}=\frac{4 \lambda \mu}{\lambda+2 \mu} a^{\alpha \beta} a^{\sigma \tau}+2 \mu\left(a^{\alpha \sigma} a^{\beta \tau}+a^{\alpha \tau} a^{\beta \sigma}\right), \quad \text { where }\left(a^{\sigma \tau}\right)=\left(a_{\alpha \beta}\right)^{-1}
$$

There exists $c_{0}>0$ such that $A^{\alpha \beta \sigma \tau}(y) t_{\sigma \tau} t_{\alpha \beta} \geq c_{0} \sum_{\alpha, \beta}\left|t_{\alpha \beta}\right|^{2}$ for all $y \in \bar{\omega},\left(t_{\alpha \beta}\right) \in \mathbb{S}^{2}$
Thickness of the shell： $2 \varepsilon>0$
Area element along $S: \sqrt{a} \mathrm{~d} y$ where $a=\operatorname{det}\left(a_{\alpha \beta}\right)$
P．G．Ciarlet：Mathematical Elasticity，Vol．III：Theory of Shells，North－Holland， 2000

Problem：To find $\varphi: \bar{\omega} \rightarrow \mathbb{R}^{3}$ such that：

$$
J(\boldsymbol{\varphi})=\inf \left\{J(\widetilde{\boldsymbol{\varphi}}) ; \widetilde{\boldsymbol{\varphi}}: \bar{\omega} \rightarrow \mathbb{R}^{3} \text { smooth enough; } \widetilde{\boldsymbol{\varphi}}=\boldsymbol{\theta} \text { on } \gamma_{0}\right\}
$$

Total energy of the shell－W．T．Koiter（1966）：

$$
\begin{aligned}
& J(\widetilde{\boldsymbol{\varphi}})= \frac{\varepsilon}{2} \int_{\omega} A^{\alpha \beta \sigma \tau}\left(\widetilde{a}_{\sigma \tau}-a_{\sigma \tau}\right)\left(\widetilde{a}_{\alpha \beta}-a_{\alpha \beta}\right) \sqrt{a} \mathrm{~d} y \\
&+ \frac{\varepsilon^{3}}{6} \int_{\omega} A^{\alpha \beta \sigma \tau}\left(\widetilde{b}_{\sigma \tau}-b_{\sigma \tau}\right)\left(\widetilde{b}_{\alpha \beta}-b_{\alpha \beta}\right) \sqrt{a} \mathrm{~d} y \\
&-\int_{\omega} f \cdot \widetilde{\boldsymbol{\varphi}} \sqrt{a} \mathrm{~d} y, \\
& \widetilde{a}_{\alpha \beta} \stackrel{\text { def }}{=} \partial_{\alpha} \widetilde{\boldsymbol{\varphi}} \cdot \partial_{\beta} \widetilde{\boldsymbol{\varphi}} \text { and } \widetilde{b}_{\alpha \beta} \stackrel{\text { def }}{=} \partial_{\alpha \beta} \widetilde{\boldsymbol{\varphi}} \cdot \frac{\partial_{1} \widetilde{\boldsymbol{\varphi}} \wedge \partial_{2} \widetilde{\boldsymbol{\varphi}}}{\left|\partial_{1} \widetilde{\boldsymbol{\varphi}} \wedge \partial_{2} \widetilde{\boldsymbol{\varphi}}\right|}
\end{aligned}
$$

« membrane energy
« flexural energy
＜forces
« fundamental forms of the unknown surface $\widetilde{\boldsymbol{\varphi}}(\omega)$

INTRINSIC APPROACH：

Another look at the energy of the shell：

$$
\begin{array}{rlr}
J(\widetilde{\boldsymbol{\varphi}})= & \frac{\varepsilon}{2} \int_{\omega} A^{\alpha \beta \sigma \tau}\left(\widetilde{a}_{\sigma \tau}-a_{\sigma \tau}\right)\left(\widetilde{a}_{\alpha \beta}-a_{\alpha \beta}\right) \sqrt{a} \mathrm{~d} y \\
+ & \frac{\varepsilon^{3}}{6} \int_{\omega} A^{\alpha \beta \sigma \tau}\left(\widetilde{b}_{\sigma \tau}-b_{\sigma \tau}\right)\left(\widetilde{b}_{\alpha \beta}-b_{\alpha \beta}\right) \sqrt{a} \mathrm{~d} y \\
& -\int_{\omega} f \cdot \widetilde{\boldsymbol{\varphi}} \sqrt{a} \mathrm{~d} y & \text { \& membrane energy } \\
\end{array}
$$

Hence the fundamental forms $\widetilde{a}_{\alpha \beta}$ and $\widetilde{b}_{\alpha \beta}$ of the unknown surface $\widetilde{\boldsymbol{\varphi}}(\omega)$ appear as natural unknowns
This is the basis of the intrinsic approach
S．S．Antman（1976）
W．Pietraszkiewicz（2001）
S．Opoka \＆W．Pietraszkiewicz（2004）

But，if $\widetilde{a}_{\alpha \beta}$ and $\widetilde{b}_{\alpha \beta}$ are chosen as the primary unknowns：
－How to express in terms of $\left(\widetilde{a}_{\alpha \beta}\right)$ and $\left(\widetilde{b}_{\alpha \beta}\right)$ the integral $\int_{\omega} \boldsymbol{f} \cdot \widetilde{\boldsymbol{\varphi}} \sqrt{a} \mathrm{~d} y$ taking into account the forces in the energy？
－How to express in terms of（ $\widetilde{a}_{\alpha \beta}$ ）and（ $\widetilde{b}_{\alpha \beta}$ ）the boundary condition，e．g．，$\widetilde{\boldsymbol{\varphi}}=\boldsymbol{\theta}$ on Γ_{0} ，that the admissible deformations must satisfy？
－How to handle such expressions if minimizing sequences are considered：

$$
\widetilde{a}_{\alpha \beta}^{k} \underset{k \rightarrow \infty}{\longrightarrow} \widetilde{a}_{\alpha \beta} \quad \text { and } \quad \widetilde{b}_{\alpha \beta}^{k} \underset{k \rightarrow \infty}{\longrightarrow} \widetilde{b}_{\alpha \beta} \quad \Longrightarrow \quad \widetilde{\boldsymbol{\varphi}}^{k} \rightarrow \widetilde{\boldsymbol{\varphi}} ?
$$

－Constrained minimization problem：The new unknowns $\widetilde{a}_{\alpha \beta}$ and $\widetilde{b}_{\alpha \beta}$ must satisfy the （highly nonlinear！）Gauß and Codazzi－Mainardi equations

Hence the need to study the mapping

$$
\left(\left(a_{\alpha \beta}\right),\left(b_{\alpha \beta}\right)\right) \rightarrow \dot{\boldsymbol{\theta}}
$$

using topologies of ad hoc function spaces： $\mathcal{C}^{m}(\omega), \mathcal{C}^{m}(\bar{\omega}), W^{m, p}(\omega), \ldots$

3．CONTINUITY OF A SURFACE AS A FUNCTION OF ITS FUNDAMENTAL FORMS

Notation：$\kappa \Subset \omega$ means that κ is a compact subset of ω Given $f \in \mathcal{C}^{\ell}(\omega ; \mathbb{R})$ or $\psi \in \mathcal{C}^{\ell}\left(\omega ; \mathbb{R}^{d}\right)$

$$
\|f\|_{\ell, \kappa}=\sup _{\left\{\begin{array}{l}
y \in \kappa \\
|p| \leq \ell
\end{array}\right.}\left|\partial^{p} f(y)\right| \quad\|\psi\|_{\ell, \kappa}=\sup _{\left\{\begin{array}{l}
y \in \kappa \\
|p| \leq \ell
\end{array}\right.}\left|\partial^{p} \psi(y)\right|
$$

Let $\kappa_{i} \Subset \omega, \quad \kappa_{i} \subset \operatorname{int} \kappa_{i+1}, i \geq 0, \quad \omega=\bigcup_{i=0}^{\infty} \kappa_{i}$
Let $d_{\ell}(\psi, \chi)=\sum_{i=0}^{\infty} \frac{1}{2^{i}} \frac{\|\psi-\chi\|_{\ell, \kappa_{i}}}{1+\|\psi-\chi\|_{\ell, \kappa_{i}}}$ for all $\psi, \chi \in \mathcal{C}^{\ell}\left(\omega ; \mathbb{R}^{d}\right)$
Then $\mathcal{C}^{\ell}\left(\omega ; \mathbb{R}^{d}\right)$ is a locally convex topological space with the semi－norms $\|\cdot\|_{\ell, \kappa}$ for all $\kappa \Subset \omega$ and its topology is metrizable，with distance d_{ℓ}（Fréchet topology）．Besides，

$$
\left\|\psi^{k}-\psi\right\|_{\ell, \kappa} \underset{k \rightarrow \infty}{\longrightarrow} 0 \quad \text { for all } \quad \kappa \Subset \omega \Longleftrightarrow d_{\ell}\left(\psi^{k}, \psi\right) \underset{k \rightarrow \infty}{\longrightarrow} 0
$$

Notation：Equivalence class $\dot{\boldsymbol{\theta}}$ of $\boldsymbol{\theta}: \omega \subset \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ modulo \mathcal{R} ：

$$
\dot{\boldsymbol{\theta}}=\left\{\boldsymbol{\chi}: \omega \subset \mathbb{R}^{2} \rightarrow \mathbb{R}^{3} \text { with } \boldsymbol{\chi}(y)=\boldsymbol{a}+\boldsymbol{Q} \boldsymbol{\theta}(y), y \in \omega, \text { for some } \boldsymbol{a} \in \mathbb{R}^{3}, \boldsymbol{Q} \in \mathbb{O}_{+}^{3}\right\}
$$

THEOREM：$\omega \subset \mathbb{R}^{2}$ ：open，connected，simply connected．Given immersions $\boldsymbol{\theta}^{k} \in \mathcal{C}^{3}\left(\omega ; \mathbb{R}^{3}\right)$ ，let

$$
a_{\alpha \beta}^{k}:=\partial_{\alpha} \boldsymbol{\theta}^{k} \cdot \partial_{\beta} \boldsymbol{\theta}^{k} \quad \text { and } \quad b_{\alpha \beta}^{k}:=\partial_{\alpha \beta} \boldsymbol{\theta}^{k} \cdot \frac{\partial_{1} \boldsymbol{\theta}^{k} \wedge \partial_{2} \boldsymbol{\theta}^{k}}{\left|\partial_{1} \boldsymbol{\theta}^{k} \wedge \partial_{2} \boldsymbol{\theta}^{k}\right|} \quad \text { in } \omega,
$$

Assume

$$
\forall \kappa \Subset \omega,\left\|a_{\alpha \beta}^{k}-a_{\alpha \beta}\right\|_{2, \kappa} \underset{k \rightarrow \infty}{\longrightarrow} 0 \quad \text { and } \quad\left\|b_{\alpha \beta}^{k}-b_{\alpha \beta}\right\|_{1, \kappa} \underset{k \rightarrow \infty}{\longrightarrow} 0
$$

Then there exists an immersion $\boldsymbol{\theta} \in \mathcal{C}^{3}\left(\omega ; \mathbb{R}^{3}\right)$ such that

$$
a_{\alpha \beta}=\partial_{\alpha} \boldsymbol{\theta} \cdot \partial_{\beta} \boldsymbol{\theta} \quad \text { and } \quad b_{\alpha \beta}=\partial_{\alpha \beta} \boldsymbol{\theta} \cdot \frac{\partial_{1} \boldsymbol{\theta} \wedge \partial_{2} \boldsymbol{\theta}}{\left|\partial_{1} \boldsymbol{\theta} \wedge \partial_{2} \boldsymbol{\theta}\right|} \quad \text { in } \omega
$$

and there exist $\boldsymbol{\theta}^{k} \in \dot{\boldsymbol{\theta}}^{k}, k \geq 1$ ，such that

$$
\forall \kappa \Subset \omega,\left\|\boldsymbol{\theta}^{k}-\boldsymbol{\theta}\right\|_{3, \kappa} \underset{k \rightarrow \infty}{\longrightarrow} 0
$$

This result can be recast as a continuity result between metric spaces: Let the quotient set $\mathcal{C}^{3}\left(\omega ; \mathbb{R}^{3}\right) / \mathcal{R}$ be equipped with the distance \dot{d}_{3} defined by $\dot{d}_{3}(\dot{\boldsymbol{\varphi}}, \dot{\boldsymbol{\theta}})=\inf \left\{\begin{array}{c}\boldsymbol{\psi} \in \dot{\varphi} \\ \boldsymbol{\chi} \in \dot{\boldsymbol{\theta}}\end{array} d_{3}(\boldsymbol{\psi}, \boldsymbol{\chi})\right.$

COROLLARY. The following mapping between metric spaces is continuous:

$$
F: \underbrace{\left\{\begin{array}{l}
\left(a_{\alpha \beta}\right) \in \mathcal{C}^{2}\left(\omega ; \mathbb{S}_{>}^{2}\right) \quad \text { satisfying the Gauß and } \\
\left(b_{\alpha \beta}\right) \in \mathcal{C}^{1}\left(\omega ; \mathbb{S}^{2}\right) \\
\text { Codazzi-Mainardi equations in } \omega
\end{array}\right\}}_{\text {equipped with } d_{2} \times d_{1}} \longrightarrow \underbrace{\dot{\boldsymbol{\theta}} \in \mathcal{C}^{3}\left(\omega ; \mathbb{R}^{3}\right) / \mathcal{R}}_{\text {equipped with } \dot{d}_{3}}
$$

P.G. Ciarlet: J. Math. Pures Appl. (2003)

Proof relies on an analogous result "in 3d": A 3d-deformation is a continuous function of its metric tensor:
P.G. Ciarlet \& F. Laurent: Arch. Rational Mech. Anal. (2003)

RECOVERY AND CONTINUITY OF A SURFACE "UP TO THE BOUNDARY"

THEOREM: $\omega \subset \mathbb{R}^{2}$: open, simply-connected; Lipschitz boundary

Given $\left(a_{\alpha \beta}\right) \in \mathcal{C}^{2}\left(\bar{\omega} ; \mathbb{S}_{>}^{2}\right)$ and $\left(b_{\alpha \beta}\right) \in \mathcal{C}^{1}\left(\bar{\omega} ; \mathbb{S}^{2}\right)$ satisfying the Gauß and Codazzi-Mainardi equations in ω, there exists $\boldsymbol{\theta} \in \mathcal{C}^{3}\left(\bar{\omega} ; \mathbb{R}^{3}\right)$ such that:

$$
a_{\alpha \beta}=\partial_{\alpha} \boldsymbol{\theta} \cdot \partial_{\beta} \boldsymbol{\theta} \quad \text { and } \quad b_{\alpha \beta}=\partial_{\alpha \beta} \boldsymbol{\theta} \cdot \frac{\partial_{1} \boldsymbol{\theta} \wedge \partial_{2} \boldsymbol{\theta}}{\left|\partial_{1} \boldsymbol{\theta} \wedge \partial_{2} \boldsymbol{\theta}\right|} \quad \text { in } \bar{\omega}
$$

P.G. Ciarlet \& C. Mardare, Analysis and Applications (2005)

THEOREM：Assume in addition that ω is bounded．Then the following mapping between subsets of Banach spaces is locally Lipschitz－continuous

$$
\left\{\begin{array}{l}
\left(a_{\alpha \beta}\right) \in \mathcal{C}^{2}\left(\bar{\omega} ; \mathbb{S}_{>}^{2}\right) \quad \text { satisfying the Gauß and } \\
\left(b_{\alpha \beta}\right) \in \mathcal{C}^{1}\left(\bar{\omega} ; \mathbb{S}^{2}\right) \text { Codazzi-Mainardi equations in } \omega
\end{array}\right\} \rightarrow \dot{\boldsymbol{\theta}} \in \mathcal{C}^{3}\left(\bar{\omega} ; \mathbb{R}^{3}\right) / \mathcal{R}
$$

Again，proof relies on an analogous result＂in 3d＂：
P．G．Ciarlet \＆C．Mardare：J．Math．Pures Appl．（2004）
M．Szopos：Extension to a simply－connected Riemannian space $\omega \subset \mathbb{R}^{p}$ isometrically immersed in \mathbb{R}^{p+q} ，Analysis and Applications（2005）．

City University
of Hong Kong

4. A NONLINEAR KORN INEQUALITY ON A SURFACE

In what follows: $\quad p \geq 2$

$$
\left.\begin{array}{l}
\boldsymbol{\theta} \in W^{1, p}\left(\omega ; \mathbb{R}^{3}\right), \boldsymbol{a}_{\alpha}=\partial_{\alpha} \boldsymbol{\theta} \\
\boldsymbol{a}_{1} \wedge \boldsymbol{a}_{2} \neq \mathbf{0} \text { a.e. in } \omega \\
\boldsymbol{a}_{3}=\frac{\boldsymbol{a}_{1} \wedge \boldsymbol{a}_{2}}{\left|\boldsymbol{a}_{1} \wedge \boldsymbol{a}_{2}\right|} \in W^{1, p}\left(\omega ; \mathbb{R}^{3}\right)
\end{array}\right\} \Longrightarrow\left\{\begin{array}{l}
a_{\alpha \beta}=\boldsymbol{a}_{\alpha} \cdot \boldsymbol{a}_{\beta} \in L^{p / 2}(\omega) \\
b_{\alpha \beta}=-\partial_{\alpha} \boldsymbol{a}_{3} \cdot \boldsymbol{a}_{\beta} \in L^{p / 2}(\omega) \\
c_{\alpha \beta}=\partial_{\alpha} \boldsymbol{a}_{3} \cdot \partial_{\beta} \boldsymbol{a}_{3} \in L^{p / 2}(\omega)
\end{array}\right.
$$

\widetilde{R}_{1} and \widetilde{R}_{2} : principal radii of curvature of the surface $\widetilde{\boldsymbol{\theta}}(\omega)$

THEOREM：$\omega \subset \mathbb{R}^{2}$ bounded，open，connected，Lipschitz boundary
Let $\boldsymbol{\theta} \in \mathcal{C}^{1}\left(\bar{\omega} ; \mathbb{R}^{3}\right)$ ：immersion such that $\boldsymbol{a}_{3} \in \mathcal{C}^{1}\left(\bar{\omega} ; \mathbb{R}^{3}\right)$ ．
Given $\varepsilon>0$ ，there exists a constant $c(\boldsymbol{\theta} ; \mathcal{E})$ with the following property：
Given any $\widetilde{\boldsymbol{\theta}} \in W^{1, p}\left(\omega ; \mathbb{R}^{3}\right)$ such that $\widetilde{\boldsymbol{a}}_{1} \wedge \widetilde{\boldsymbol{a}}_{2} \neq 0$ a．e．in $\omega, \widetilde{\boldsymbol{a}}_{3} \in W^{1, p}\left(\omega ; \mathbb{R}^{3}\right)$ ， $\left|\widetilde{R}_{1}\right| \geq \varepsilon$ and $\left|\widetilde{R}_{2}\right| \geq \underset{\sim}{\varepsilon}$ a．e．in ω ， there exist $\boldsymbol{a}=\boldsymbol{a}(\boldsymbol{\theta}, \widetilde{\boldsymbol{\theta}}, \varepsilon) \in \mathbb{R}^{3}$ and $\boldsymbol{Q}=\boldsymbol{Q}(\boldsymbol{\theta}, \widetilde{\boldsymbol{\theta}}, \varepsilon) \in \mathbb{O}_{+}^{3}$ such that

| $\overbrace{\\|(\boldsymbol{a}+\boldsymbol{Q} \widetilde{\boldsymbol{\theta}})-\boldsymbol{\theta}\\|_{W^{1, p}\left(\omega ; \mathbb{R}^{3}\right)}+\left\\|\boldsymbol{Q} \widetilde{\boldsymbol{a}}_{3}-\boldsymbol{a}_{3}\right\\|_{W^{1, p}\left(\omega ; \mathbb{R}^{3}\right)}}^{\text {＂distance＂between surfaces } \boldsymbol{\theta}(\omega) \text { and } \widetilde{\boldsymbol{\theta}}(\omega)}$ | | |
|---|---|---|---|---|---|---|
| $\left.\begin{array}{r}\leq c(\boldsymbol{\theta}, \varepsilon)\left\{\left\\|\left(\widetilde{a}_{\alpha \beta}-a_{\alpha \beta}\right)\right\\|_{L^{p / 2}\left(\omega ; \mathbb{S}^{2}\right)}^{1 / 2}+\left\\|\left(\widetilde{b}_{\alpha \beta}-b_{\alpha \beta}\right)\right\\|_{L^{p / 2}\left(\omega ; \mathbb{S}^{2}\right)}^{1 / 2}\right. \\ +\left\\|\left(\widetilde{c}_{\alpha \beta}-c_{\alpha \beta}\right)\right\\|_{L^{p / 2}\left(\omega ; \mathbb{S}^{2}\right)}^{1 / 2}\end{array}\right\}$ |

As a corollary: Sequential continuity of a surface as a function of its fundamental forms with respect to Sobolev norms:

THEOREM: $\omega \subset \mathbb{R}^{2}$ bounded, open, connected, Lipschitz boundary
Let $\boldsymbol{\theta}^{k} \in W^{1, p}\left(\omega ; \mathbb{R}^{3}\right)$ such that $\boldsymbol{a}_{3}^{k} \in W^{1, p}\left(\omega ; \mathbb{R}^{3}\right), k \geq 1$, and there exists $\varepsilon>0$, such that R_{1}^{k} and R_{2}^{k} : principal radii of curvature of each surface $\boldsymbol{\theta}^{k}(\omega), k \geq 1$, satisfy $\left|R_{1}^{k}\right| \geq \varepsilon$ and $\left|R_{2}^{k}\right| \geq \varepsilon$ for all $k \geq 1$.
Let $\boldsymbol{\theta} \in \mathcal{C}^{1}\left(\bar{\omega} ; \mathbb{R}^{3}\right)$: immersion such that $\boldsymbol{a}_{3} \in \mathcal{C}^{1}\left(\bar{\omega} ; \mathbb{R}^{3}\right)$. Assume that:

$$
a_{\alpha \beta}^{k} \underset{k \rightarrow \infty}{\longrightarrow} a_{\alpha \beta}, \quad b_{\alpha \beta}^{k} \underset{k \rightarrow \infty}{\longrightarrow} b_{\alpha \beta}, \quad c_{\alpha \beta}^{k} \underset{k \rightarrow \infty}{\longrightarrow} c_{\alpha \beta} \quad \text { in } L^{p / 2}(\omega)
$$

Then there exist $\boldsymbol{a}^{k} \in \mathbb{R}^{3}, \boldsymbol{Q}^{k} \in \mathbb{O}_{+}^{3}, k \geq 1$, such that

$$
\boldsymbol{a}^{k}+\boldsymbol{Q}^{k} \boldsymbol{\theta}^{k} \underset{k \rightarrow \infty}{\longrightarrow} \boldsymbol{\theta} \text { in } W^{1, p}\left(\omega ; \mathbb{R}^{3}\right) \Longleftrightarrow \dot{\boldsymbol{\theta}}^{k} \rightarrow \dot{\boldsymbol{\theta}} \text { in } W^{1, p}\left(\omega ; \mathbb{R}^{3}\right) / \mathcal{R}
$$

Proofs rely on
（a）the＂geometric rigidity lemma＂：
There exists a constant $\Lambda(\Omega)$ such that，for each $\boldsymbol{\theta} \in H^{1}\left(\Omega ; \mathbb{R}^{n}\right)$ satisfying det $\boldsymbol{\nabla} \boldsymbol{\theta}>0$ a．e． in Ω ，there exists $\boldsymbol{R}=\boldsymbol{R}(\boldsymbol{\theta}) \in \mathbb{O}_{+}^{n}$ such that

$$
\|\boldsymbol{\nabla} \boldsymbol{\theta}-\boldsymbol{R}\|_{L^{2}\left(\Omega ; \mathbb{M}^{n}\right)} \leq \Lambda(\Omega)\left\|\operatorname{dist}\left(\boldsymbol{\nabla} \boldsymbol{\theta}, \mathbb{O}_{+}^{n}\right)\right\|_{L^{2}(\Omega)}
$$

G．Friesecke，R．D．James，S．Müller，Comm．Pure Appl．Math．（2002）．
This lemma was extended to the＂L^{p}－case＂by Conti（2004）．
（b）a＂nonlinear 3d－Korn inequality＂：P．G．Ciarlet，C．Mardare，J．Nonlinear Sci．（2004）．
See also：Y．G．Reshetnyak，Siberian Math．J．（2003） City University of Hong Kong

5．CLASSICAL LINEAR SHELL THEORY－KORN＇S INEQUALITY ON A SURFACE

Contravariant basis $\left(\boldsymbol{a}^{i}\right): \boldsymbol{a}^{\alpha}=\boldsymbol{a}^{\alpha \beta} \boldsymbol{a}_{\beta},\left(a^{\alpha \beta}\right)=\left(a_{\sigma \tau}\right)^{-1}, \boldsymbol{a}^{3}=\boldsymbol{a}_{3}$ ．Then $\boldsymbol{a}^{i} \cdot \boldsymbol{a}_{j}=\delta_{j}^{i}$ ． $\Gamma_{\alpha \beta}^{\sigma}=\boldsymbol{a}^{\sigma} \cdot \partial_{\alpha} \boldsymbol{a}_{\beta}$

$\widetilde{\boldsymbol{\eta}}=\eta_{i} \boldsymbol{a}^{i}: \omega \rightarrow \mathbb{R}:$ displacement field（note that $\boldsymbol{\varphi}=\boldsymbol{\theta}+\widetilde{\boldsymbol{\eta}}$ ）
$\boldsymbol{\eta}=\left(\eta_{i}\right): \omega \rightarrow \mathbb{R}^{3}$
Undeformed surface：$\left(a_{\alpha \beta}\right)$ and $\left(b_{\alpha \beta}\right)$ ；deformed surface：$\left(a_{\alpha \beta}(\boldsymbol{\eta})\right)$ and $\left(b_{\alpha \beta}(\boldsymbol{\eta})\right)$ ．

$$
\begin{aligned}
\gamma_{\alpha \beta}(\boldsymbol{\eta}) & \stackrel{\text { def }}{=} \frac{1}{2}\left[a_{\alpha \beta}(\boldsymbol{\eta})-a_{\alpha \beta}\right]^{\operatorname{lin}}=\frac{1}{2}\left(\partial_{\alpha} \widetilde{\boldsymbol{\eta}} \cdot \boldsymbol{a}_{\beta}+\partial_{\beta} \widetilde{\boldsymbol{\eta}} \cdot \boldsymbol{a}_{\alpha}\right) \\
& =\frac{1}{2}\left(\partial_{\alpha} \eta_{\beta}+\partial_{\beta} \eta_{\alpha}\right)-\Gamma_{\alpha \beta}^{\sigma} \eta_{\sigma}-b_{\alpha \beta} \eta_{3}
\end{aligned}
$$

Linearized change of metric tensor

$$
\begin{aligned}
\rho_{\alpha \beta}(\boldsymbol{\eta}) & \stackrel{\text { def }}{=}\left[b_{\alpha \beta}(\boldsymbol{\eta})-b_{\alpha \beta}\right]^{\operatorname{lin}}=\left(\partial_{\alpha \beta} \widetilde{\boldsymbol{\eta}}-\Gamma_{\alpha \beta}^{\sigma} \partial_{\sigma} \widetilde{\boldsymbol{\eta}}\right) \cdot \boldsymbol{a}_{3} \\
& =\partial_{\alpha \beta} \eta_{3}+A_{\alpha \beta}^{\sigma i} \partial_{\sigma} \eta_{i}+B_{\alpha \beta}^{i} \eta_{i}
\end{aligned}
$$

Linearized change of curvature tensor
$\eta_{\alpha} \in H^{1}(\omega) \quad$ and $\quad \eta_{3} \in L^{2}(\omega) \Longrightarrow \gamma_{\alpha \beta}(\boldsymbol{\eta}) \in L^{2}(\omega)$
$\eta_{\alpha} \in H^{1}(\omega) \quad$ and $\quad \eta_{3} \in H^{2}(\omega) \Longrightarrow \rho_{\alpha \beta}(\boldsymbol{\eta}) \in L^{2}(\omega)$

Koiter＇s linear shell equations（Koiter［1970］）

ω ：open，bounded，connected in \mathbb{R}^{2} ，Lipschitz boundary
$\gamma_{0} \subset \partial \omega$ with length $\gamma_{0}>0$

$$
\begin{aligned}
\boldsymbol{\zeta}= & \left(\zeta_{i}\right) \in \boldsymbol{V}(\omega) \stackrel{\text { def }}{=}\left\{\boldsymbol{\eta}=\left(\eta_{i}\right) \in H^{1}(\omega) \times H^{1}(\omega) \times H^{2}(\omega) ; \eta_{i}=\partial_{\nu} \eta_{3}=0 \text { on } \gamma_{0}\right\} \\
j(\boldsymbol{\zeta})= & \inf \{j(\boldsymbol{\eta}) ; \boldsymbol{\eta} \in \boldsymbol{V}(\omega)\}, \text { where } \\
j(\boldsymbol{\eta})= & \frac{\varepsilon}{2} \int_{\omega} A^{\alpha \beta \sigma \tau} \gamma_{\sigma \tau}(\boldsymbol{\eta}) \gamma_{\alpha \beta}(\boldsymbol{\eta}) \sqrt{a} \mathrm{~d} y \\
& +\frac{\varepsilon^{3}}{6} \int_{\omega} A^{\alpha \beta \sigma \tau} \rho_{\sigma \tau}(\boldsymbol{\eta}) \rho_{\alpha \beta}(\boldsymbol{\eta}) \sqrt{a} \mathrm{~d} y \\
& -\int_{\omega} \boldsymbol{f} \cdot \boldsymbol{\eta} \sqrt{a} \mathrm{~d} y
\end{aligned}
$$

THEOREM：KORN＇S INEQUALITY ON A SURFACE

There exists $c>0$ such that

$$
\begin{aligned}
& \overbrace{\left\{\sum_{\alpha}\left\|\eta_{\alpha}\right\|_{H^{1}(\omega)}^{2}+\left\|\eta_{3}\right\|_{H^{2}(\omega)}^{2}\right\}^{1 / 2}}^{\text {norm on } H^{1}(\omega) \times H^{1}(\omega) \times H^{2}(\omega)} \\
& \quad \leq c\left\{\sum_{\alpha, \beta}\left\|\gamma_{\alpha \beta}(\eta)\right\|_{L^{2}(\omega)}^{2}+\sum_{\alpha, \beta}\left\|\rho_{\alpha \beta}(\eta)\right\|_{L^{2}(\omega)}^{2}\right\}^{1 / 2} \quad \text { for all } \eta \in \boldsymbol{V}(\omega)
\end{aligned}
$$

Existence then follows by the Lax－Milgram lemma
M．Bernadou \＆Ciarlet（1976）
M．Bernadou，P．G．Ciarlet \＆B．Miara（1994）
A．Blouza \＆H．Le Dret（1999）
P．G．Ciarlet \＆S．Mardare（2001）

6．INTRINSIC LINEAR SHELL THEORY

Pure traction problem

$$
j(\boldsymbol{\zeta})=\inf _{\boldsymbol{\eta} \in \boldsymbol{V}(\omega)} j(\boldsymbol{\eta}), \quad \text { where } \boldsymbol{V}(\omega)=H^{1}(\omega) \times H^{1}(\omega) \times H^{2}(\omega)
$$

$$
\begin{aligned}
j(\boldsymbol{\eta})= & \frac{\varepsilon}{2} \int_{\omega} A^{\alpha \beta \sigma \tau} \gamma_{\sigma \tau}(\boldsymbol{\eta}) \gamma_{\alpha \beta}(\boldsymbol{\eta}) \sqrt{a} \mathrm{~d} y \\
& +\frac{\varepsilon^{3}}{6} \int_{\omega} A^{\alpha \beta \sigma \tau} \rho_{\sigma \tau}(\boldsymbol{\eta}) \rho_{\alpha \beta}(\boldsymbol{\eta}) \sqrt{a} \mathrm{~d} y \\
& -\int_{\omega} \boldsymbol{f} \cdot \tilde{\boldsymbol{\eta}} \sqrt{a} \mathrm{~d} y
\end{aligned}
$$

Intrinsic approach：$c_{\alpha \beta}:=\gamma_{\alpha \beta}(\boldsymbol{\eta}) \in L^{2}(\omega)$ and $r_{\alpha \beta}:=\rho_{\alpha \beta}(\boldsymbol{\eta}) \in L^{2}(\omega)$ become the primary unknowns instead of the covariant components $\eta_{\alpha} \in H^{1}(\omega)$ and $\eta_{3} \in H^{2}(\omega)$ of the displacement field．

THEOREM：$\omega \subset \mathbb{R}^{2}$ ：bounded，simply－connected，connected，Lipschitz boundary Given $(\boldsymbol{c}, \boldsymbol{r}) \in L^{2}\left(\omega ; \mathbb{S}^{2}\right) \times L^{2}\left(\omega ; \mathbb{S}^{2}\right)$ ，there exists $\boldsymbol{\eta} \in \boldsymbol{V}(\omega)$ s．t．

$$
(\boldsymbol{c}, \boldsymbol{r})=\left(\left(\gamma_{\alpha \beta}(\boldsymbol{\eta})\right),\left(\rho_{\alpha \beta}(\boldsymbol{\eta})\right) \quad \Longleftrightarrow \quad \boldsymbol{R}(\boldsymbol{c}, \boldsymbol{r})=0 \quad \text { in } \mathcal{D}^{\prime}(\omega)\right.
$$

Uniqueness of $\boldsymbol{\eta}$ ：up to $\boldsymbol{a}+\boldsymbol{b} \wedge \boldsymbol{\theta}$
COROLLARY：Existence and uniqueness of solution to the minimization problem of intrisic linear shell theory：

$$
\kappa\left(\boldsymbol{c}^{*}, \boldsymbol{r}^{*}\right)=\inf _{(\boldsymbol{c}, \boldsymbol{r}) \in \boldsymbol{E}(\omega)} \kappa(\boldsymbol{c}, \boldsymbol{r})
$$

$$
\begin{aligned}
\boldsymbol{E}(\omega) & \stackrel{\text { def }}{=}\left\{(\boldsymbol{c}, \boldsymbol{r}) \in L_{\mathrm{sym}}^{2}(\omega) \times L_{\mathrm{sym}}^{2}(\omega) ; \boldsymbol{R}(\boldsymbol{c}, \boldsymbol{r})=0 \text { in } \mathcal{D}^{\prime}(\omega)\right\} \\
\kappa(\boldsymbol{c}, \boldsymbol{r}) & \stackrel{\text { def }}{=} \frac{\varepsilon}{2} \int_{\omega} A^{\alpha \beta \sigma \tau} c_{\sigma \tau} c_{\alpha \beta} \sqrt{a} \mathrm{~d} y+\frac{\varepsilon^{3}}{6} \int_{\omega} A^{\alpha \beta \sigma \tau} r_{\sigma \tau} r_{\alpha \beta} \sqrt{a} \mathrm{~d} y-\Lambda(c, r)
\end{aligned}
$$

As expected： $\boldsymbol{c}^{*}=\left(\gamma_{\alpha \beta}(\boldsymbol{\zeta})\right)$ and $\boldsymbol{r}^{*}=\left(\rho_{\alpha \beta}(\boldsymbol{\zeta})\right)$.

