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Motivation — Homogenization

I Physical setting
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I Mathematical setting

−div (ap(x)∇up) = f − div (b∇u) = f

I For computation reason: fine structure needs fine
discretization and large number of equations.
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Homogenization-Mathematical Approach
I Sequence of problems with diminishing period (Babuška 1972)
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I In the mathematical setting: {εh}, εh → 0

−div (aε(x)uε) = f aε(x) = a
(x

ε

)
a(y)− Y−periodic

I Questions:
• Convergence of the solutions uε

• The form of the limit problem
• Formulae for the homogenized coefficients b,
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Sketch of the proof

−div (aε(x)∇uε) = f with aε(x) = a
(x

ε

)
Weak solutions uε — exist, bounded, ηε ≡ aε · ∇uε — bounded

=⇒ ∇uε′
⇀ ∇u∗ and ηε′

⇀ η∗ — weakly
Passing to the limit in the weak formulation of the problem:∫

Ω
∇v · aε′ · ∇uε′

dx ≡
∫

Ω
∇v · ηε′

dx =

∫
Ω

fv dx

↓∫
Ω
∇v · η∗dx =

∫
Ω

fv dx

Crucial step: ηε = aε′ · ∇uε′
=⇒ η∗ = b · ∇u∗

Problem – product of two weakly converging sequences

fn −→ f ∗

gn −→ g∗

}
=⇒ fn gn → f ∗ g∗
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An example in L2(0, 2π):

The sequences
uk(x) = sin(kx) ⇀ 0

vk(x) = sin(kx) ⇀ 0

but

uk(x) · vk(x) = sin2(kx) =
1

2
6= 0 · 0

Solution

I Spagnolo, Babuška, Sanchez Palencia, . . .
I Murat-Tartar (div-curl lemma),

I Periodic case: Two-scale convergence — Nguetseng (1989),
Allaire (1992)

I General case: Σ convergence — Nguetseng (2004)
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Two-scale convergence – classical approach

G. Nguetseng Université de Yaoundé, Cameroon

Ω ⊂ RN , Y – unit cube in RN , {uε}ε sequence in Lp(Ω),

the limit u0(x , y) in Lp(Ω× Y )
– 2 variables: x ∈ Ω — global y ∈ Y — local behavior.

Definition uε(x) 2-scale (weakly) converges to u0(x , y) iff∫
Ω

uε(x)ϕ
(
x ,

x

ε

)
dx →

∫
Ω×Y

u0(x , y)ϕ(x , y)dy dx

for all ϕ(x , y) Y -periodic.

If moreover ‖uε‖p;Ω → ‖u0‖p;Ω×Y

then the convergence is called 2-scale strong.
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Example

Let f (x), g(x) in Lp(Ω)

ϕ(y) – bounded, Y -periodic
∫
Y ψ(y)dy = 0.

Then the sequence

uε(x , y) = f (x) · ψ
(

x
ε

)
+ g(x).

I is bounded in Lp(Ω)
I two-scale converges (weakly and strongly) in Lp(Ω) to

u0(x , y) = f (x)ψ(y) + g(x).

I converges weakly (not strongly) to g(x) in Lp(Ω).

Local behavior of uε and ϕ(x , x/ε) — are in “resonance”

If not in resonance – e.g. uε(x , y) = f (x) · ψ
(

x√
2ε

)
+ g(x),

then uε 2-scale converge (only weakly) u0(x , y) = g(x)
— local behavior in the limit u0 is lost.
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Fundamental properties

Comparison of convergences in Lp(Ω):

strong ⇒ strong two-scale ⇒ weak two-scale ⇒ weak.

Theorem – Compactness Each sequence {uε} contains a
subsequence {uε′} 2-scale (weakly) converging to a limit u0(x , y).

Theorem – Convergence result Let the sequences

uε ⇀ u0 2-scale (weakly) in Lp(Ω) and

v ε → u0 2-scale strongly in Lq(Ω).
Then

uε v ε ⇀ u0 v0 2-scale (weakly) in Lr (Ω).

Particularly for any ϕ ∈ Ls(Ω) 1
p + 1

q + 1
s = 1∫

Ω
uε(x) v ε(x)ϕ(x)dx −→

∫∫
Ω×Y

u0(x , y) v0(x , y)ϕ(x)dxdy .
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Application to the homogenization problem:

∫
Ω
∇v · aε′ · ∇uε′

dx =

∫
Ω

fv dx

↓ ↓∫
Ω
∇v · η∗dx =

∫
Ω

fv dx

aε(x) converge 2-scale strong to a(y)

∇uε′
(x) = ξε′

(x) converge 2-scale weak to some ξ0(x , y).

thus the limit is
∫
Y a(y)ξ0(x , y) dy .



Problem: Choice of the space for test functions

In definition ϕ ∈ Lp(Ω× Y ) yields undefined ϕ(x , x/ε)
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An “adjoint” definition of two-scale convergence removes the
problem.
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An “adjoint” definition of two-scale convergence removes the
problem.



Adjoint definition using periodic unfolding
Arbogast-Douglas-Hornung 1990, Casado 2000,
Cioranescu-Damlamian-Griso 2002, 2008, Nechvatal 2004

Classical two-scale convergence:
test function ϕ(x , y) converted into ϕ(x , x/ε)
and convergence tested in Lp(Ω)

Alternative two-scale convergence – using periodic unfolding:
uε(x) converted into ûε(x , y)
and the convergence

ûε(x , y)→ u0(x , y)

is tested in the classical Lp(Ω× Y )

where the two-scale transform is define by means of the mapping:

τ ε : (x , y) 7→ ε
[x
ε

]
+ εy

and
ûε(x , y) = uε(τ ε(x , y) ≡ uε(ε

[x
ε

]
+ εy)
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ûε(x , y)→ u0(x , y)

is tested in the classical Lp(Ω× Y )

where the two-scale transform is define by means of the mapping:

τ ε : (x , y) 7→ ε
[x
ε

]
+ εy

and
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Two-scale mapping – periodic unfolding
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two-scale mapping: tε : Ω× Y → Ω

uε(x) 7→ ûε(x , y) = uε(tε(x , y))



Example



Transformed uε for ε = 1
2 ,

1
4 ,

1
8 and u0



Problem: boundary cells
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Problem: boundary cells

'

&

$

%
Boundary incomplete cells – undefined – zero extension

Problem: measure conserving property does not hold

‖ûε‖Lp(Ω×Y ) = ‖uε‖Lp(Ω)

solved by a new concept in Cioranescu-Damlamian-Griso 2008.
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A new simple solution
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Survey of the modified two-scale transform'

&

$

%
Inner cells: two-scale transform

ûε(x , y) = uε(ε
[x
ε

]
+ εy)

Incomplete boundary cells: no transform

ûε(x , y) = uε(x)

measure conserving property holds.



Survey of the modified two-scale transform

I No problem with the space for test function

I The whole space L2(Ω× Y ) for u0 and the same for test
functions

I Natural definition of the weak and strong two-scale convergence

I With measure conserving property the proofs from Lp-theory
I Compactness
I Passing to the limit is possible in case of:

weak 2-scale × strong 2-scale



New general approach by Nguetseng (2004)

It covers periodic, quasi-periodic and non-periodic structures

Let Π – bounded continuous functions f on RN having the mean
value — the L∞(RN)-weak*limit M(f ) = limε→0 f

(
x
ε

)
(Π, ‖ · ‖max) – Banach algebra = Banach space + multiplication:

f , g ∈ Π⇒ f · g ∈ Π

here pointwise multiplication (f · g)(x) = f (x) · g(x).

Structural representation —
— a countable multiplicative subgroup Γ in Π .

H-structure — a class Σ of structural representations Γ
generating the same linear subspace in Π.

H-algebra — Banach algebra A ≡ AΣ in Π spanned by Σ.



The key notion – Spectrum of an algebra

Given algebra A – its spectrum ∆(A)
— a subset of the dual A∗

— the set of all nonzero continuous multiplicative linear
functionals on A:

F (f · g) = F (f ) · F (g).

∆(A) in weak topology: compact space.

Gelfand representation: A ←→ C(∆(A))

f ∈ A 7→ G(f ) ∈ C(∆(A)) defined by G(f )(s) = s(f ) ∀ s ∈ ∆(A)

Example: If A – Y -periodic functions, then ∆(A) ≈ Y



Structures on the spectrum

Radon measure β on ∆(A) — induced by the mean value M(f )

M(f ) =

∫
∆(A)
G(f )(s)dβ(s) ∀ f ∈ A.

Lebesgue spaces on ∆(A) X p
Σ

— closure of the Banach algebra A = AΣ in the norm

sup
0<ε≤1

(∫
|x |<1

|u
(x

ε

)
|p
)1/p

Gelfand mapping can be extended to G : X p
Σ → Lp(∆(A)).

Sobolev-type space H1(∆(A)) — Gelfand mapping yields
derivatives in A ←→ derivatives in C(∆(A))
Completion of smooth functions A∞ — W 1,p(∆(A)).



Σ-convergence

Generalization of 2-scale convergence:
Definition {uε}ε in L2(Ω) weakly Σ-converge to an
u0 ∈ L2(Ω,∆(A)) if∫

Ω
uε(x)v ε(x) dx →

∫∫
Ω×∆(A)

u0(x , s)v̂(x , s)dx dβ(s)

for each v ∈ L2(Ω; A), where v ε(x) = v(x , x/ε) and v̂ = G ◦ v .

Compactness: each sequence uε bounded in L2(Ω) contains a
subsequence uε′ weakly Σ-converging to an u0 ∈ L2(Ω,∆(A)).

A stronger version is called strong Σ-convergence.

H-structure Σ — is proper if it satisfies some density, regularity
and reflexivity conditions.

The H-structures of periodic and almost periodic functions are
proper.



Some of my souvenirs to professor Jinďrich Nečas

During my studies at Faculty of Mathematics and Physics 1971-76
prof. Nečas red us the course on P. D. E.

Later we were invited to his Seminar on P.D.E. I remember a
lecture of prof. Nečas. He was an excellent speaker, his speech was
a performance.

I compared my feelings from his lecture to listening to a French
chanson (e. g. Edith Piaf, Brel, Aznavour, etc.):
I understood nothing but I liked it, it impessed me very much, it
was for me a deep aesthetic experience.

In 1977–80 I was a Ph.D. student of prof. Nečas.

In the beginning he choose literature to my study: looking into his
bookshelves he pulled out 14 books for me to study – to write
down their titles – there were: 3 in English, 4 in French, 3 in
Russian, 2 in Italian and 2 in Czech – and all were very thick.
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In the beginning he choose literature to my study: looking into his
bookshelves he pulled out 14 books for me to study – to write
down their titles – there were: 3 in English, 4 in French, 3 in
Russian, 2 in Italian and 2 in Czech – and all were very thick.



Some of my souvenirs to professor Jinďrich Nečas

During my studies at Faculty of Mathematics and Physics 1971-76
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To the rigorous exam he order me to learn the last chapter of a
book on P.D.E.: Minimal surface equation. To study the last
chapter I had to study almost all preceding chapters, I spent many
days by trying to learn it but with quite weak result – I could not
say that I learned it.

In the beginning of the exam professor Nečas proclaimed:
“Yesterday I looked at that chapter and founded it to be very
difficult, it would need months to study it.”

In 1978 prof. Nečas accepted from prof. Václav Horák a proposal
to study a new method described in papers written by Ivo Babuška.

Since he was busy, he gave me the papers to refer it in his seminar
and write a report on it and promised me a part of the money he
would received for it.

In this way I met homogenization and started to be interested in it.
He was lending me all papers on the homogenization he was
receiving. Besides the seminar I wrote my dissertation and several
further papers on the topic.
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“Yesterday I looked at that chapter and founded it to be very
difficult, it would need months to study it.”

In 1978 prof. Nečas accepted from prof. Václav Horák a proposal
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Professor Nečas in my pictures – with prof. Jan Polášek

























Professor Nečas in middle of students in Olomouc 1999


