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General remarks about the system



Introduction

J. Frehse University Bonn

We consider

u̇ν + Luν + ανuν = Hν(x, u,∇u)

ν = 1, . . . , N , in Ω ⊂ R
N

where

Lνv = −

n
∑

i,k=1

Di

(

aν
ik(x)Dkv

)

and H = (H1,...,HN ) is a Caratheodory function

H : Ω × R
n × R

n×N → R
N

with quadratic growth in ∇u

∣

∣H(x, u,∇u)
∣

∣ ≤ K|∇u|2 +K0
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Well known: Quadratic behaviour of H creates singularities:

scalar case:

u = ln
∣

∣ ln |x|
∣

∣

this implies

−△u = |∇u|2

u bounded & H1, scalar → regularity (Ladyzhenskaya, Uralzeva)



Counterexamples for elliptic systems
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Bounded solutions to elliptic systems, may be irregular even for dimensions
n ≥ 2

scalar complex valued example

u = ei ln
∣

∣ ln |x|
∣

∣

solves

−△u = (1 + i)|∇u|2u

this can be interpreted as real valued system
Harmonic mappings (n ≥ 3):

x

|x|
solves

∫

|∇u|2dx = min, subject to |u| = 1

−△u = u|∇u|2

Consequence: additional structure for H is needed
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A standard structure condition where the step

L∞ ⇒ H1 ∩ Cα ∩W 2,p

works is

For 2 equations
{

|H1(x, p)| ≤ K|p|2 +K

|H2(x, p)| ≤ K|p2|
2 +K|p1| |p2| +K

For 3 equations






|H1(x, p)| ≤ K|p1|
2 +K|p1| |p2| +K|p1| |p3| +K

|H2(x, p)| ≤ K|p1|
2 +K|p2|

2 +K|p2| |p3| +K

|H3(x, p)| ≤ K|p1|
2 +K|p2|

2 +K|p3|
2 +K.

These conditions arise from stochastic differential games



Special structure of H
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Hν(x, u,∇u) = H0ν(x, u,∇ui) −∇ui · L(x, u,∇u)−

− uiFi(x, u,∇u) + fi(x) ,

with

H0i(x, u,∇u)
Fi(x, u,∇u)

}

quadratic growth in ∇u

L(x, u,∇u) linear growth in ∇u

The case H0ν = 0, Fi ≥ 0 has been treated by Wiegner , say

−△u+ u|∇u|2 = f

permits full regularity , i.e. W 2,p-solutions

open:

−△uν + uν |∇u|
2 = f + bν |∇uν |

2



Applications to stochastic differential
games



Stochastic Differential Games with Discount Control
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Consider N players , who can modify the evolution of a dynamic system

dddy = g(y, v1, . . . , vN )dddt+ σ(y)dddw

y(0) = x

g(t) drift term
σ(t) diffusion term
w(t) Wiener process

v1(t), . . . , vn(t) controls
y(t) state at time t



Cost functional of player iii
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Ji

(

x, v(·)
)

= Ei

[

∫ τ

0

li
(

y(t); v(t)
)

exp
(

−

∫ t

0

ci
(

y(s), v(s)
)

dx
)

+

+ φi

(

y(τ )
)

exp

(

−

∫ τ

0

ci(y(t)), v(t) dt

)

]

τ exit time of y(t)
The factor

exp

(

−

∫ t

0

ci
(

y(s), v(s)
)

dt

)

is the discount factor of the iii-th player which can be influenced by him/her.



Nash Point
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Find v̂1(·), . . . , v̂N (·) such that

Ji

(

x, v̂1(·), . . . , v̂i(·), . . . , v̂N (·)
)

≤ Ji

(

x, v̂1, . . . ,v(·), . . . v̂N (·)
)

li(x, v1, . . . , vN ), ci(x, v1, . . . , vN ), φi(x)
are given functions



The Hamiltonian
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Li(x, λi, pi, v) = li(x, v) + pig(x, v) − λici(x, v)

Fixing x, λi, pi, we look for a Nash point V̂1(x, λ, p), . . . , V̂N (x, λ, p) for the
functionals Li.

λ = (λi, . . . , λN )
p = (p1, . . . , pN )

We define

Hi(x, λ, p) = Li

(

x, λi, pi, V̂ (x, λ, p)
)



The Hamiltion-Bellmann equations
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Aui = Hi(x, u,Du) , ui = 0 on ∂Ω

A = −
∑

i,j

aij

∂2

∂xi, ∂xj

Once we have found a regular solution , say ui ∈W 2,p(Ω), p > n, we may set

v̂i(x) = V̂i

(

x, u(x), Du(x)
)

and obtain an optimal feedback for the player i, in the sense that

v̂i(t) = v̂i

(

y(t)
)
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A Standard Example for Lagrangians Modelling Discount
Control

A reasonably simple class of Lagrangians Li is

Li(x, λi, pi, v) =
1

2
vi ·Bivi + pi

N
∑

ν=1

Aνvν−

−
1

2
λi

(

N
∑

ν=1

vν · Ci
νvν

)

+ fi(x) .

A Nash point v∗ of Li satisfies

Biv
∗
i +AT

i pi − λiC
i
iv

∗
i = 0 and

v∗i = −(Bi − λiC
i
i )

−1AT
i pi
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Hi(x, u,∇u) =
1

2
Ei∇ui ·BiEi∇ui−

−∇ui ·
N
∑

ν=1

AνEν∇uν −
1

2
ui

N
∑

ν=1

Eν∇uν · Ci
νEν∇uν + fi(x) =:

=: H0i(x, u,∇ui) −∇ui · L(x, u,∇u) − uiFi(x, u,∇u)

where

Ei := −(Bi − uiCi)
−1AT

i .



Cyclic Games
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Interesting examples for Lagrangians: Cyclic games

L ν(x, v) :=
1

2
|vν |

2 +
N
∑

i=1
i 6=ν

θvνvi + pν ·
N
∑

i=1

Aivi

Theory works for |θ| < 1

Stackelberg games :

The j-player knows the strategy of the players 1, . . . , j − 1



Analysis of elliptic systems arising from
problems with discount controls
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Discussion of the Hamiltonian with Respect to PDE-Theory

The Hamiltonian is of the form

Hi(x, u,∇u) = H0i(x, u,∇ui) −∇uiL(x, u,∇u)−

− uiFi(x, u,∇u) + fi .

a priori condition

λ0Id ≤ Bi − uiC
i
i ≤ Λ0Id

H0i, L, Fi are Lipschitz continuous on

compact subsets of Ω̄ × R
n × R

nm

|H0i(x, u, ηi)| ≤ K|ηi|
2 +K0

0 ≤ Fi(x, u, η) ≤ K|η|2 +K0

|L(x, u, η)| ≤ K|η| +K0



Theorem
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Let H satisfy the structure condition

|H0i(x, u, ηi)| ≤ K|ηi|
2 +K0

0 ≤ Fi(x, u, η) ≤ K|η|2 +K0

|L(x, u, η)| ≤ K|η| +K0

Let f ∈ L∞ and n = 2
then there exists a regular solution.
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Iterated Exponential Test Functions

We work with the iterated exponential functions

ψi = τ (eβui − e−βui) exp

(

c

N
∑

ν=1

(

eβuν + e−βuν

)

)

In this simple case, double iterated epxonentials are sufficient
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Effect of the test function on the right hand side of the
Hamiltonian

−∆ui + αiui = H0i(x, u,∇ui) −∇uiL(x, u,∇u)−

− uiFi(x, u,∇u) + fi(x)

⇒⇒⇒

N
∑

ν=1

∫

[

|∇uν |
2(eβuν + e−βuν ) + (ανuν − fν)(eβuν − e−βuν )

]

×

× exp
(

c

N
∑

µ=1

(eβuν + e−βuν

)

)τ dx ≤

≤ −
N
∑

ν=1

∫

∇uν(eβuν − e−βuν ) exp
(

c

N
∑

ν=1

(eβuν + e−βuν )
)

∇τ dx .
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L∞-Estimates

Lemma:
Let w ∈ C(Ω) ∩H1

ΓD
(Ω) be a weak solution and assume our structure conditions.

Then

α−1
0 ess inf[f ]− ≤ w ≤ α−1

0 ess sup[f ]+

Notation:

[f ]− = min{f, 0}

[f ]+ = max{f, 0}
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A Logarithmic Morrey Estimate for ∇u

Lemma:
Let u ∈ L∞ ∩H1 be a solution of the system and assume the growth and sign
conditions. Let αi ≥ 0, i = 1, . . . , N , and f ∈ Lq, with some q > 1. Then, for every
α ∈ (0, 1) there is a constant Kα such that

∫

B 1

2

(x0)∩Ω

|∇u|2
∣

∣ ln |x− x0|
∣

∣

α
dx ≤ Kα , x0 ∈ Ω
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Cα-Estimates

Combine the uniform estimate
∫

BR

|∇u|2dx ≤ K| lnR|−δ

with a global hole filling argument
⇒⇒⇒ estimate:

SR0
:=:=:= sup

BR

R≤R0

R−2α

∫

BR

|∇u|2dx

SR0
≤ S2R0

+K

⇒⇒⇒ u ∈ Cα due to Morrey’s lemma for n = 2



General case



The standard structure conditions
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−
n
∑

i,k=1

Di

(

aν
ik(x)Dku)

)

= Hν(x, u,∇u) ν = 1, . . . , N

|H1(x, u,∇u)| ≤ K|∇u1|
2 +K|∇u||∇u1| +K

|H2(x, u,∇u)| ≤ K|∇u1|
2 +K|∇u2|

2 +K|∇u||∇u2| +K

|H3(x, u,∇u)| ≤ K
(

|∇u1|
2 + |∇u2| + |∇u3|

)

+K|∇u||∇u3| +K

...

|Hn−1(x, u,∇u)| ≤ K
(

|∇u1| + . . .+ |∇un−1|
)

+K|∇u||∇un−1| +K

Cα-regularity for u in arbitrary dimension is obtained via testfunctions using
iterated exponentials
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