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∂v

∂t
+ (v − ξ − ω × x) · gradv + ω × v = ν∆v − grad p

div v = 0

 in D × (0,∞)

v(y, t) = ξ(t) + ω(t)× y, (y, t) ∈ Σ× (0,∞)

lim
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D domain, complement of a compact set in R3 ()

v, p

ξ, ω
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Suppose ξ and ω are time-independent .

One can look for solutions (v = v(x) , p = p(x)), describing the .

Without loss (by the Mozzi-Chasles theorem), we can assume ξ‖ω and
set

ω = ω e1 , ξ = ξ e1 , d = diameter of B .
Introduce the dimensionless numbers

Re =
ξd

ν
(Reynolds number) Ta =

|ω|d2

ν
(Taylor number)

Thus, the relevant equations in non-dimensional form become

∆v + Re (e1 − v) · gradv + Ta (e1 × x · gradv − e1 × v) = grad p

div v = 0

}
in D

v(y) = e1 + e1 × y, y ∈ Σ , lim
|x|→∞

v(x) = 0
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Question 1

Give arbitrary Re > 0 and Ta ≥ 0 (non-dimensional translational and
angular velocity of B) .

Does the following boundary-value problem
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Steady-State Flow: Existence of Solutions

Question 2

If Question 1 is affirmatively answered, is the solution Physically
Reasonable (PR) in the sense of R. Finn? That is:

(A) v = v(x) decays, uniformly, ' |x|−1, and even faster, ' |x|−2, in
the upstream direction (existence of the “wake”) ;

(B) (v, p) satisfies the energy balance equation:∫
Σ

(Re e1 + Ta e1 × y) · T (v, p) · n =
∫
D
|D(v)|2 ;

(C) For “small” data, (v, p) is unique in the class of PR solutions and
stable in the sense of Lyapounov .

All properties listed in (A), (B) and (C) are related to the
Asymptotic Spatial Structure of the velocity field v.
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Absence of Rotation: Existence of Solutions

Case 1: Ta = 0 (the body translates without spinning)

Both questions have been thoroughly investigated for > 50 years. Here is
some basic facts:

LERAY (1933): Existence of smooth solutions (v, p) for data, with
gradv ∈ L2(D).
Asymptotic properties:∫

Ω

|gradv|2 <∞ =⇒
∫

Ω

|v|6 <∞ (by Sobolev inequality) .

A solution with gradv ∈ L2(Ω) is called LERAY SOLUTION

FINN (1965): Existence of PR solutions for data of

BABENKO (1972), GPG (1992): Every Leray solution is PR
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Rotation and Translation: Existence of Solutions

Case 2: Ta 6= 0 (the body translates and rotates)

The answers to Questions 1 & 2 can not be obtained by a perturbative
argument to the results established for the case Ta = 0:

∆v + Re (e1 − v) · gradv + Ta (e1 × x · gradv − e1 × v) = grad p

div v = 0

}
in D

Unbounded Coefficient! |e1 × x| → ∞ as |x| → ∞
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Over the past decades, both Questions 1 and 2 have been addressed,
from different perspectives and by different approaches, by many authors:

T. HISHIDA (1999-2008), GPG (2003),
R. FARWIG, T. HISHIDA, & D. MÜLLER (2004-2009),
A.L. SILVESTRE, M. KEYD & GPG (2007-2009),
R. FARWIG & J. NEUSTUPA (2009),
P. DEURING, S. KRAČMAR, M. KRBEC, S. NEČASOVA & P. PENEL
(2005-2009)
T. HISHIDA & Y. SHIBATA (2006-2009) . . . . . .

yet, without a definite answer.

Objective of this talk is to prove (or to give a flavor of the proof) that
both Questions 1 and 2 are

In other words, for data of arbitrary size, there is always a
corresponding, smooth PR solution.
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Existence of Leray Solution (Data of arbitrary size)

The “rotational term” satisfies the fundamental property:∫
D

(e1 × x · gradu− e1 × u) · u = 0 , for all u ∈ C∞0 (D), div u = 0 .

Thanks to this property, the above problem (1) admits the formal a priori
estimate ∫

D
|gradv|2 ≤ C(D,Re,Ta)

By coupling this inequality with,e.g., Galerkin’s method, one can show
the following result.

Theorem 1 (Weinberger, 1982; Serre, 1987; Borchers, 1992)

Let D be an exterior domain in R3. For any Re > 0 and Ta ≥ 0, there
exists at least one (v, p) ∈ C∞(D)×C∞(D) (Leray solution) to problem
(1) .
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The “canonical” way of showing existence of a PR solution (i.e. with the
pointwise decay 1/|x|) develops along the following steps:

I Use a perturbation argument around the solution to the linear
problem. in the domain D.

I By a “localization procedure”, reduce this latter to the study of the
asymptotic properties and corresponding estimates of solutions
(u, p) to the linear problem in the whole space:

∆u + Re
∂u

∂x1
+ Ta (e1 × x · gradu− e1 × u) = grad p + f

div u = 0

 in R3

I Obtain the asymptotic properties of u and the corresponding
estimates by means of its representation through the fundamental
tensor solution G:

u(x) =
∫

R3
G(x, y) · f(y)dy .
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However, this approach does not look to be feasible, and it is discouraged
by the following two facts:

I The form of the fundamental tensor solution G is very complicated ;

I Unlike the case Ta = 0 (no rotation), the fundamental tensor G
does not satisfy the uniform estimate (that would be the starting
point to establish asymptotic properties):

|G(x, y)| ≤ C

|x− y|
, for all x, y ∈ R3

for some C independent of x, y (Farwig, Hishida & Müller, 2004).

Therefore, one would like to argue in a different way.
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GPG (2003)

Let

Q(t) =


1 0 0

0 cos(Ta t) − sin(Ta t)

0 sin(Ta t) cos(Ta t)

 , t ≥ 0 (rotation matrix around e1)

Set:

y = Q(t) · x , t ≥ 0 .

Define

w(y, t) := Q(t) · u(Q>(t) · y) , π(y, t) := p(Q>(t) · y) ,

F (y, t) := Q(t) · f(Q>(t) · y) .
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In these new variables, the original problem

∆u + Re
∂u

∂x1
+ Ta (e1 × x · gradu− e1 × u) = grad p + f

div u = 0

 in R3

transforms into the following Oseen

∂w

∂t
= ∆w + Re

∂w

∂y1
− gradπ − F

div w = 0

 in R3 × (0,∞)

w(y, 0) = u(y)
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If u and f have a mild degree of regularity as |x| → ∞,
e.g. u ∈ Lq1(R3), f ∈ Lq2(R3), for some qi ∈ [1,∞], i = 1, 2,
then w(y, t) can be represented as follows:

w(y, t) =
∫

R3
Γ(x−y, t)·u(y)dy+

∫
R3

∫ t

0

Γ(x−y, t−τ)·F (y, τ) dτ dy , t > 0 .

where Γ = {Γij(x, t; Re)} is the fundamental tensor solution to the
time-dependent Oseen problem:

∂Γij

∂τ
= Re

∂Γij

∂x1
+ ∆Γij −

∂γi

∂xj
+ δijδ(x)δ(t)

∂Γij

∂yi
= 0 .
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One can then prove that Γ satisfies the following fundamental estimates
(Silvestre and GPG, 2006)

∫ ∞

0

|Γ(ξ, t)|dt ≤ 2
|ξ|(1 + 2Re s(ξ))∫ ∞

0

|gradΓ(ξ, t)|dt ≤ Cβ

 Re
1
2 |ξ|−3/2(1 + 2Re s(ξ))−3/2, if |ξ| ≥ β/Re,

|ξ|−2, if |ξ| ∈ (0, β/Re) ,
(1)

where s(x) = |ξ|+ ξ · e1. Moreover:∣∣∣∣∫
R3

Γ(y − z, t) · u(z)dz
∣∣∣∣ ≤ C t−3/(2q1)‖u‖q1 .

Remark

The estimates (2) coincide with those well known for the
time-independent Oseen fundamental tensor Γ0 = {Γ0ij(x; Re)}:

∆Γ0ij + Re
∂Γ0ij

∂x1
=
∂γ0i

∂xj
+ δijδ(x) ,

∂Γ0ij

∂yi
= 0 .
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|w(y, t)| ≤ C t−3/(2q1)‖u‖q1 + 2
∫

R3

sup
t≥0

|F (z, t)|

|y − z|(1 + 2Re s(y − z))
d z .

Assume

|f(x)| ≤ G(x) , G(A · x) = G(x) for all proper rotation matrices A

Recalling that

|w(y, t)| = |Q(t) · u(x)| = |u(x)| , F (y, t) = Q(t) · f(Q>(t) · y)

we find

|u(x)| ≤ C t−3/(2q1)‖u‖q1 + 2
∫

R3

G(z)
|x− z|(1 + 2Re s(x− z))

d z .

which, in the limit t→∞ furnishes

|u(x)| ≤ 2
∫

R3

G(z)
|x− z|(1 + 2Re s(x− z))

d z .
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Likewise,

|gradu(x)| ≤ C1

∫
|x−z|≤ β

Re

G(z)
|x− z|2

d y

+C2

√
Re
∫
|x−z|≥ β

Re

G(z)
|x− z|3/2(1 + 2Re s(x− z)3/2)

d y
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Using these estimates one shows (Silvestre & GPG 2007):

Suppose

|f(x)| ≤ M

(1 + |x|)5/2(1 + Re s(x))5/2
≡ G(x) .

Then, the linear problem

∆u + Re
∂u

∂x1
+ Ta (e1 × x · gradu− e1 × u) = grad p + f

div u = 0

 in R3

has one and only one solution such that

sup
x∈R3

[|u(x)|(1 + |x|)(1 + Re s(x))] <∞

sup
x∈R3

[
|gradu(x)|(1 + |x|)3/2(1 + Re s(x))3/2

]
<∞ ,

and satisfying corresponding estimates . In particular, the solution is PR .
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Existence of PR Solutions (Data of restricted size)

By using the previous result and the “canonical” procedure described
earlier, one can prove the following.

Theorem 2 (Silvestre & GPG, 2007)

There exists M > 0 such that, if 0 ≤ Re + Ta ≤M, the nonlinear
problem:

∆v + Re (e1 − v) · gradv + Ta (e1 × x · gradv − e1 × v) = grad p

div v = 0

}
in D

v(y) = e1 + e1 × y, y ∈ Σ , lim
|x|→∞

v(x) = 0

has a unique (smooth) PR solution, with the following asymptotic
properties:

sup
x∈R3

[|v(x)|(1 + |x|)(1 + Re s(x))] <∞

sup
x∈R3

[
|gradv(x)|(1 + |x|)3/2(1 + Re s(x))3/2

]
<∞ .
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Remark 1

Leray solutions exist for translational and angular velocities of arbitrary
size.

The existence of PR solutions is known if translational and angular
velocities have

Remark 2
Every PR solution is also a Leray solution (simple to show).

Question

Is a Leray solution a PR solution? Is it so for data of arbitrary size?
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Theorem 2 (Kyed & GPG, 2009)

Let Re,Ta > 0 be given. Assume that (v, p) is a smooth pair satisfying
the following equations

∆v + Re (e1 − v) · gradv + Ta (e1 × x · gradv − e1 × v) = grad p

div v = 0

}
in D

Then, if for some R > 0,

gradv ∈ L2(D ∩ {|x| > R}) , v ∈ L6(D ∩ {|x| > R}) ,

for all sufficiently large |x| we have

|v(x)| ≤ V1(x) + V2(x)

where

V1(x) = O([(1+|x|)(1+Re s(x))]−1) , V2(x) = O(|x|−3/2+δ), arbitrary δ > 0 .
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Remark 1

Analogous estimates (with improved bounds) hold for the velocity
gradient gradv(x).

Remark 2

The asymptotic estimate for v(x) is sharp in the following sense. From

|v(x)| = O([(1 + |x|)(1 + Re s(x))]−1)

and the regularity of v it follows

v ∈ Lq(D) , for all q > 2.

It can be shown that

v ∈ L2(D) =⇒ v(x) ≡ 0 .
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Leray Solutions are PR Solutions: Sketch of Proof

Without loss, we may set Re = Ta = 1.

Step 1: Reduction to a Problem in the Whole Space.

For a fixed and sufficiently large ρ > 0, take a smooth “cut-off” function
ψρ = ψρ(x) that is 0 if |x| < R and is 1 if |x| > 2ρ, and set

u := ψρv − z , div z = v · gradψρ , p := ψρ p

Then, the original problem for (v, p) goes into the following one:

∆u +
∂u

∂x1
+ (e1 × x · gradu− e1 × u)

= div [(ψρv)⊗ (ψρv)]− grad p + f c

div u = 0

 in R3

where f c ∈ C∞0 (R3).
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ψρ = ψρ(x) that is 0 if |x| < R and is 1 if |x| > 2ρ, and set
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Then, the original problem for (v, p) goes into the following one:

∆u +
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Leray Solutions are PR Solutions: Sketch of Proof

Step 2: Change into an Oseen-like Time-Dependent Problem.

Set y = Q(t) · x and define

w(y, t) := Q(t) · u(Q>(t) · y) , π(y, t) := p(Q>(t) · y)

V (y, t) := Q(t) · [ψρv](Q>(t) · y) , F c(y, t) := Q(t) · f c(Q
>(t) · y)

Then (w, π) satisfies the following IVP

∂w

∂t
= ∆w +

∂w

∂x1
− div [V ⊗ V ]− gradπ − F c

div w = 0

 in R3 × (0,∞)

w(y, 0) = u(y) ,

with F c ∈ L∞(0,∞;C∞0 (R3)) .
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Leray Solutions are PR Solutions: Sketch of Proof

Step 3: Representation via the Oseen Fundamental Tensor.

Since gradw ∈ L∞(0,∞;L2(R3)), w ∈ L∞(0,∞;L6(R3)) (Leray
solution), we can prove the following representation for w:

w(y, t) = w1(y, t) + w2(y, t) + w3(y, t)

where

w1(y, t) =
∫

R3
Γ(y − z, t) · u(z) dz

w2(y, t) = −
∫

R3

∫ t

0

Γ(y − z, τ) · F c(z, t− τ) dτ dz

w3(y, t) = −
∫

R3

∫ t

0

gradΓ(y − z, τ) : [V ⊗ V ](z, t− τ)dτ dz
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Leray Solutions are PR Solutions: Sketch of Proof

Step 4: Estimates of the Functions wi, i = 1, 2, 3.

We easily show that

|w1(y, t)| =
∣∣∣∣∫

R3
Γ(y − z, t) · u(z) dz

∣∣∣∣ ≤ C t−1/4‖v‖6

Moreover, using the estimate∫ ∞

0

|Γ(ξ, t)|dt ≤ 2
|ξ|(1 + 2 s(ξ))

,

and the fact that F c ∈ L∞(0,∞;C∞0 (R3)), we also (easily) show

|w2(y, t)| =
∣∣∣∣∫

R3

∫ t

0

Γ(y − z, τ) · F c(z, t− τ) dτ dz
∣∣∣∣ ≤ ‖f c‖r

(1 + |y|)(1 + s(y))
.

for some r > 3 and all |y| ≥ 2R.



Leray Solutions are PR Solutions: Sketch of Proof

Step 4: Estimates of the Functions wi, i = 1, 2, 3.

We easily show that

|w1(y, t)| =
∣∣∣∣∫

R3
Γ(y − z, t) · u(z) dz

∣∣∣∣ ≤ C t−1/4‖v‖6

Moreover, using the estimate∫ ∞

0

|Γ(ξ, t)|dt ≤ 2
|ξ|(1 + 2 s(ξ))

,

and the fact that F c ∈ L∞(0,∞;C∞0 (R3)), we also (easily) show

|w2(y, t)| =
∣∣∣∣∫

R3

∫ t

0

Γ(y − z, τ) · F c(z, t− τ) dτ dz
∣∣∣∣ ≤ ‖f c‖r

(1 + |y|)(1 + s(y))
.

for some r > 3 and all |y| ≥ 2R.



Leray Solutions are PR Solutions: Sketch of Proof

Step 4: Estimates of the Functions wi, i = 1, 2, 3.

We easily show that

|w1(y, t)| =
∣∣∣∣∫

R3
Γ(y − z, t) · u(z) dz

∣∣∣∣ ≤ C t−1/4‖v‖6

Moreover, using the estimate∫ ∞

0

|Γ(ξ, t)|dt ≤ 2
|ξ|(1 + 2 s(ξ))

,

and the fact that F c ∈ L∞(0,∞;C∞0 (R3)), we also (easily) show

|w2(y, t)| =
∣∣∣∣∫

R3

∫ t

0

Γ(y − z, τ) · F c(z, t− τ) dτ dz
∣∣∣∣ ≤ ‖f c‖r

(1 + |y|)(1 + s(y))
.

for some r > 3 and all |y| ≥ 2R.



Leray Solutions are PR Solutions: Sketch of Proof

Step 4: Estimates of the Functions wi, i = 1, 2, 3 (cont’d)

Finally, using the estimate

∫ ∞

0

|gradΓ(ξ, t)|dt ≤ Cβ

 |ξ|−3/2(1 + 2s(ξ))−3/2, if |ξ| ≥ β,

|ξ|−2, if |ξ| ∈ (0, β) ,

we show

|w3(y, t)| =
∣∣∣∣∫

R3

∫ t

0

gradΓ(y − z, τ) : [V ⊗ V ](z, t− τ)dτ dz
∣∣∣∣

≤ Cθ

(∫
|z|≥R

|gradv|2
)1−θ

,

for all θ > 0, all |y| ≥ 2R, and arbitrary R > ρ/2.
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Leray Solutions are PR Solutions: Sketch of Proof

Step 4: Estimates of the Functions wi, i = 1, 2, 3 (cont’d)

Collecting the previous inequalities and transforming back to the original
variable v and x, one concludes

|v(x)| ≤ Cθ

t−1/4‖v‖6 +
‖f c‖r

(1 + |x|)(1 + s(x))
+

(∫
|y|≥R

|gradv|2
)1−θ

 .
for all θ > 0 and all |x| ≥ 2R.

So, in the limit t→∞,

|v(x)| ≤ Cθ

 ‖f c‖r

(1 + |x|)(1 + s(x))
+

(∫
|y|≥R

|gradv|2
)1−θ

 .
for all θ > 0 and all |x| ≥ 2R.
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Leray Solutions are PR Solutions: Sketch of Proof

Step 5: Estimates of the term

∫
|z|≥R

|gradv|2 for large R.

This is the most challenging part of the proof. The following result holds:

Key Lemma

For all ε > 0, there is C = C(v, ε) > 0 such that∫
|z|≥R

|gradv|2 ≤ C R−1+ε

A crucial step in the proof of this lemma is to show the following:

v ∈ Ls1(DR) , gradv ∈ Ls2(DR) , D2v ∈ Ls3(DR) ,

all s1 > 2, s2 > 4/3, s3 > 1 ,

where DR := D ∩ {|y| ≥ R} . Notice that, at the outset, we only know

v ∈ L6(DR) , gradv ∈ L2(DR) .
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Leray Solutions are PR Solutions: Sketch of Proof

Step 6: A First Pointwise Estimate for v(x).

Replace the estimate ∫
|z|≥R

|gradv|2 ≤ C R−1+ε

into the inequality

|v(x)| ≤ Cθ

 ‖f c‖r

(1 + |x|)(1 + s(x))
+

(∫
|y|≥R

|gradv|2
)1−θ

 .
and choose R = |x|. We thus find

|v(x)| ≤ Cη

(
‖f c‖r

(1 + |x|)(1 + s(x))
+

1
|x|1−η

)
, for all η > 0 .
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Leray Solutions are PR Solutions: Sketch of Proof

Step 7: Boot-strap Argument: End of Proof.

We use the estimate
v(x) = O(1/|x|1−η)

back into the term

w3(y, t) =
∫

R3

∫ t

0

gradΓ(y − z, τ) : [V ⊗ V ](z, t− τ)dτ dz ,

V (y, t) := Q(t) · [ψρv](Q>(t) · y) ,

to find

|w3(y, t)| ≤ Cδ
1

|y|3/2−δ
, arbitrary δ > 0

Since

|v(x)| ≤ C
‖f c‖r

(1 + |x|)(1 + s(x))
+ |w3(y, t)| , |y| = |x|

this ends the proof of the theorem .
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Conclusions & Final Remarks.

I To any arbitrary rigid motion of the body, there corresponds a
smooth flow of the Navier-Stokes liquid that is Physically
Reasonable. In particular, the velocity field v = v(x) has the
following asymptotic behavior

|v(x)| ≤ V1(x) + V2(x)

where

V1(x) = O([(1 + |x|)(1 + Re s(x))]−1) , V2(x) = O(|x|−3/2+δ),

arbitrary δ > 0 .

I This estimate is sharp, in the sense that

v ∈ L2(D) =⇒ v(x) ≡ 0 .
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Conclusions & Final Remarks.

I There is still one question that remains open, concerning the leading
term in the asymptotic expansion.

In other words, it is expected that v = v(x) can be expressed, for
large |x|, as:

v(x) = v1(x) + v2(x)

with

|v1(x)| = O([(1 + |x|)(1 + Re s(x))]−1) , v2(x) = O(|x|−3/2+δ),

arbitrary δ > 0, but no proof is available (yet).
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