$$
\begin{aligned}
& \text { Blow up } \\
& \text { or } \\
& \text { Regularity? } \\
& U(x, t)=\frac{1}{\sqrt{2 a(T-t)}} \cup\left(\frac{x}{\sqrt{2 a(T-t)}}\right)
\end{aligned}
$$

Steady-State Navier-Stokes Flow Past a Rotating Body:
 Leray Solutions are Physically Reasonable

Giovanni P. Galdi
Department of Mechanical Engineering \& Materials Science and
Department of Mathematics
University of Pittsburgh

Prague, December 142009

Description of the Problem

Description of the Problem

We are interested in the mathematical analysis of the flow of a Navier-Stokes liquid, \mathcal{L}, past a rigid body \mathcal{B}, that is allowed to translate and to rotate

Description of the Problem

We are interested in the mathematical analysis of the flow of a Navier-Stokes liquid, \mathcal{L}, past a rigid body \mathcal{B}, that is allowed to translate and to rotate

Description of the Problem

We are interested in the mathematical analysis of the flow of a Navier-Stokes liquid, \mathcal{L}, past a rigid body \mathcal{B}, that is allowed to translate and to rotate

Description of the Problem

We are interested in the mathematical analysis of the flow of a Navier-Stokes liquid, \mathcal{L}, past a rigid body \mathcal{B}, that is allowed to translate and to rotate

Description of the Problem

We are interested in the mathematical analysis of the flow of a Navier-Stokes liquid, \mathcal{L}, past a rigid body \mathcal{B}, that is allowed to translate and to rotate

Description of the Problem

The motion of \mathcal{L} is described from a frame, $\mathcal{S}=\left\{C, \boldsymbol{e}_{i}^{\prime}\right\}$, attached to \mathcal{B}

Description of the Problem

The motion of \mathcal{L} is described from a frame, $\mathcal{S}=\left\{C, \boldsymbol{e}_{i}^{\prime}\right\}$, attached to \mathcal{B}

Description of the Problem

The motion of \mathcal{L} is described from a frame, $\mathcal{S}=\left\{C, \boldsymbol{e}_{i}^{\prime}\right\}$, attached to \mathcal{B}

In this way, the region occupied by \mathcal{L} becomes time-independent

Description of the Problem

The motion of \mathcal{L} is described from a frame, $\mathcal{S}=\left\{C, \boldsymbol{e}_{i}^{\prime}\right\}$, attached to \mathcal{B}

In this way, the region occupied by \mathcal{L} becomes time-independent

Description of the Problem

The motion of \mathcal{L} is described from a frame, $\mathcal{S}=\left\{C, e_{i}^{\prime}\right\}$, attached to \mathcal{B}

In this way, the region occupied by \mathcal{L} becomes time-independent

Description of the Problem: Governing Equations

The motion of \mathcal{L} in the frame $\mathcal{S}=\left\{C, \boldsymbol{e}_{i}^{\prime}\right\}$ is governed by the following equations

Description of the Problem: Governing Equations

The motion of \mathcal{L} in the frame $\mathcal{S}=\left\{C, \boldsymbol{e}_{i}^{\prime}\right\}$ is governed by the following equations

$$
\left.\begin{array}{l}
\frac{\partial \boldsymbol{v}}{\partial t}+(\boldsymbol{v}-\boldsymbol{\xi}-\boldsymbol{\omega} \times \boldsymbol{x}) \cdot \operatorname{grad} \boldsymbol{v}+\boldsymbol{\omega} \times \boldsymbol{v}=\nu \Delta \boldsymbol{v}-\operatorname{grad} p \\
\operatorname{div} \boldsymbol{v}=0
\end{array}\right\} \text { in } \mathcal{D} \times(0, \infty)
$$

Description of the Problem: Governing Equations

The motion of \mathcal{L} in the frame $\mathcal{S}=\left\{C, \boldsymbol{e}_{i}^{\prime}\right\}$ is governed by the following equations

$$
\begin{aligned}
& \left.\begin{array}{l}
\frac{\partial \boldsymbol{v}}{\partial t}+(\boldsymbol{v}-\boldsymbol{\xi}-\boldsymbol{\omega} \times \boldsymbol{x}) \cdot \operatorname{grad} \boldsymbol{v}+\boldsymbol{\omega} \times \boldsymbol{v}=\nu \Delta \boldsymbol{v}-\operatorname{grad} p \\
\operatorname{div} \boldsymbol{v}=0
\end{array}\right\} \text { in } \mathcal{D} \times(0, \infty) \\
& \qquad \boldsymbol{v}(\boldsymbol{y}, t)=\boldsymbol{\xi}(t)+\boldsymbol{\omega}(t) \times \boldsymbol{y}, \quad(\boldsymbol{y}, t) \in \Sigma \times(0, \infty)
\end{aligned}
$$

Description of the Problem: Governing Equations

The motion of \mathcal{L} in the frame $\mathcal{S}=\left\{C, \boldsymbol{e}_{i}^{\prime}\right\}$ is governed by the following equations

$$
\left.\begin{array}{c}
\frac{\partial \boldsymbol{v}}{\partial t}+(\boldsymbol{v}-\boldsymbol{\xi}-\boldsymbol{\omega} \times \boldsymbol{x}) \cdot \operatorname{grad} \boldsymbol{v}+\boldsymbol{\omega} \times \boldsymbol{v}=\nu \Delta \boldsymbol{v}-\operatorname{grad} p \\
\operatorname{div} \boldsymbol{v}=0
\end{array}\right\} \text { in } \mathcal{D} \times(0, \infty)
$$

Description of the Problem: Governing Equations

The motion of \mathcal{L} in the frame $\mathcal{S}=\left\{C, \boldsymbol{e}_{i}^{\prime}\right\}$ is governed by the following equations

$$
\left.\begin{array}{c}
\frac{\partial \boldsymbol{v}}{\partial t}+(\boldsymbol{v}-\boldsymbol{\xi}-\boldsymbol{\omega} \times \boldsymbol{x}) \cdot \operatorname{grad} \boldsymbol{v}+\boldsymbol{\omega} \times \boldsymbol{v}=\nu \Delta \boldsymbol{v}-\operatorname{grad} p \\
\operatorname{div} \boldsymbol{v}=0
\end{array}\right\} \text { in } \mathcal{D} \times(0, \infty)
$$

\mathcal{D} domain, complement of a compact set in \mathbb{R}^{3} (exterior domain)

Description of the Problem: Governing Equations

The motion of \mathcal{L} in the frame $\mathcal{S}=\left\{C, \boldsymbol{e}_{i}^{\prime}\right\}$ is governed by the following equations

$$
\left.\begin{array}{c}
\frac{\partial \boldsymbol{v}}{\partial t}+(\boldsymbol{v}-\boldsymbol{\xi}-\boldsymbol{\omega} \times \boldsymbol{x}) \cdot \operatorname{grad} \boldsymbol{v}+\boldsymbol{\omega} \times \boldsymbol{v}=\nu \Delta \boldsymbol{v}-\operatorname{grad} p \\
\operatorname{div} \boldsymbol{v}=0
\end{array}\right\} \text { in } \mathcal{D} \times(0, \infty)
$$

\mathcal{D} domain, complement of a compact set in \mathbb{R}^{3} (exterior domain) \boldsymbol{v}, p velocity and pressure of \mathcal{L} in \mathcal{S}

Description of the Problem: Governing Equations

The motion of \mathcal{L} in the frame $\mathcal{S}=\left\{C, \boldsymbol{e}_{i}^{\prime}\right\}$ is governed by the following equations

$$
\left.\begin{array}{c}
\frac{\partial \boldsymbol{v}}{\partial t}+(\boldsymbol{v}-\boldsymbol{\xi}-\boldsymbol{\omega} \times \boldsymbol{x}) \cdot \operatorname{grad} \boldsymbol{v}+\boldsymbol{\omega} \times \boldsymbol{v}=\nu \Delta \boldsymbol{v}-\operatorname{grad} p \\
\operatorname{div} \boldsymbol{v}=0
\end{array}\right\} \text { in } \mathcal{D} \times(0, \infty)
$$

\mathcal{D} domain, complement of a compact set in \mathbb{R}^{3} (exterior domain)
\boldsymbol{v}, p velocity and pressure of \mathcal{L} in \mathcal{S}
$\boldsymbol{\xi}, \boldsymbol{\omega}$ translational and angular velocity of \mathcal{B} in \mathcal{S}

Description of the Problem: Governing Equations

The motion of \mathcal{L} in the frame $\mathcal{S}=\left\{C, \boldsymbol{e}_{i}^{\prime}\right\}$ is governed by the following equations

$$
\left.\begin{array}{c}
\frac{\partial \boldsymbol{v}}{\partial t}+(\boldsymbol{v}-\boldsymbol{\xi}-\boldsymbol{\omega} \times \boldsymbol{x}) \cdot \operatorname{grad} \boldsymbol{v}+\boldsymbol{\omega} \times \boldsymbol{v}=\nu \Delta \boldsymbol{v}-\operatorname{grad} p \\
\operatorname{div} \boldsymbol{v}=0
\end{array}\right\} \text { in } \mathcal{D} \times(0, \infty)
$$

\mathcal{D} domain, complement of a compact set in \mathbb{R}^{3} (exterior domain)
\boldsymbol{v}, p velocity and pressure of \mathcal{L} in \mathcal{S}
$\boldsymbol{\xi}, \boldsymbol{\omega}$ translational and angular velocity of \mathcal{B} in \mathcal{S}
ν coefficient of kinematic viscosity of \mathcal{L}

Description of the Problem: Governing Equations

Interesting feature of the governing equations:

$$
\left.\begin{array}{c}
\frac{\partial \boldsymbol{v}}{\partial t}+(\boldsymbol{v}-\boldsymbol{\xi}-\boldsymbol{\omega} \times \boldsymbol{x}) \cdot \operatorname{grad} \boldsymbol{v}+\boldsymbol{\omega} \times \boldsymbol{v}=\nu \Delta \boldsymbol{v}-\operatorname{grad} p \\
\operatorname{div} \boldsymbol{v}=0
\end{array}\right\} \text { in } \mathcal{D} \times(0, \infty)
$$

Description of the Problem: Governing Equations

Interesting feature of the governing equations:

$$
\left.\begin{array}{c}
\frac{\partial \boldsymbol{v}}{\partial t}+(\boldsymbol{v}-\boldsymbol{\xi}-\boldsymbol{\omega} \times \boldsymbol{x}) \cdot \operatorname{grad} \boldsymbol{v}+\boldsymbol{\omega} \times \boldsymbol{v}=\nu \Delta \boldsymbol{v}-\operatorname{grad} p \\
\operatorname{div} \boldsymbol{v}=0
\end{array}\right\} \text { in } \mathcal{D} \times(0, \infty)
$$

Unbounded coefficient $|\boldsymbol{\omega} \times \boldsymbol{x}| \rightarrow \infty$ as $|x| \rightarrow \infty$

Description of the Problem: Steady-State Flow

Description of the Problem: Steady-State Flow

Suppose $\boldsymbol{\xi}$ and $\boldsymbol{\omega}$ are time-independent.

Description of the Problem: Steady-State Flow

Suppose $\boldsymbol{\xi}$ and $\boldsymbol{\omega}$ are time-independent.
One can look for solutions ($\boldsymbol{v}=\boldsymbol{v}(x), p=p(x)$), describing the steady-state flow of \mathcal{L} in \mathcal{S}.

Description of the Problem: Steady-State Flow

Suppose $\boldsymbol{\xi}$ and $\boldsymbol{\omega}$ are time-independent.
One can look for solutions ($\boldsymbol{v}=\boldsymbol{v}(x), p=p(x)$), describing the steady-state flow of \mathcal{L} in \mathcal{S}.

Without loss (by the Mozzi-Chasles theorem), we can assume $\boldsymbol{\xi} \| \boldsymbol{\omega}$ and set

$$
\boldsymbol{\omega}=\omega \boldsymbol{e}_{1}, \quad \boldsymbol{\xi}=\xi \boldsymbol{e}_{1}, \quad d=\text { diameter of } \mathcal{B} .
$$

Description of the Problem: Steady-State Flow

Suppose $\boldsymbol{\xi}$ and $\boldsymbol{\omega}$ are time-independent.
One can look for solutions ($\boldsymbol{v}=\boldsymbol{v}(x), p=p(x)$), describing the steady-state flow of \mathcal{L} in \mathcal{S}.

Without loss (by the Mozzi-Chasles theorem), we can assume $\boldsymbol{\xi} \| \boldsymbol{\omega}$ and set

$$
\boldsymbol{\omega}=\omega \boldsymbol{e}_{1}, \quad \boldsymbol{\xi}=\xi \boldsymbol{e}_{1}, \quad d=\text { diameter of } \mathcal{B} .
$$

Introduce the dimensionless numbers

$$
\operatorname{Re}=\frac{\xi d}{\nu} \text { (Reynolds number) } \mathrm{Ta}=\frac{|\boldsymbol{\omega}| d^{2}}{\nu} \text { (Taylor number) }
$$

Description of the Problem: Steady-State Flow

Suppose $\boldsymbol{\xi}$ and $\boldsymbol{\omega}$ are time-independent.
One can look for solutions ($\boldsymbol{v}=\boldsymbol{v}(x), p=p(x)$), describing the steady-state flow of \mathcal{L} in \mathcal{S}.

Without loss (by the Mozzi-Chasles theorem), we can assume $\boldsymbol{\xi} \| \boldsymbol{\omega}$ and set

$$
\boldsymbol{\omega}=\omega \boldsymbol{e}_{1}, \quad \boldsymbol{\xi}=\xi \boldsymbol{e}_{1}, \quad d=\text { diameter of } \mathcal{B} .
$$

Introduce the dimensionless numbers

$$
\operatorname{Re}=\frac{\xi d}{\nu} \text { (Reynolds number) } \mathrm{Ta}=\frac{|\boldsymbol{\omega}| d^{2}}{\nu} \text { (Taylor number) }
$$

Thus, the relevant equations in non-dimensional form become

Description of the Problem: Steady-State Flow

Suppose $\boldsymbol{\xi}$ and $\boldsymbol{\omega}$ are time-independent.
One can look for solutions ($\boldsymbol{v}=\boldsymbol{v}(x), p=p(x)$), describing the steady-state flow of \mathcal{L} in \mathcal{S}.

Without loss (by the Mozzi-Chasles theorem), we can assume $\boldsymbol{\xi} \| \boldsymbol{\omega}$ and set

$$
\boldsymbol{\omega}=\omega \boldsymbol{e}_{1}, \quad \boldsymbol{\xi}=\xi \boldsymbol{e}_{1}, \quad d=\text { diameter of } \mathcal{B} .
$$

Introduce the dimensionless numbers

$$
\operatorname{Re}=\frac{\xi d}{\nu} \text { (Reynolds number) } \mathrm{Ta}=\frac{|\boldsymbol{\omega}| d^{2}}{\nu} \text { (Taylor number) }
$$

Thus, the relevant equations in non-dimensional form become

$$
\left.\begin{array}{l}
\Delta \boldsymbol{v}+\operatorname{Re}\left(\boldsymbol{e}_{1}-\boldsymbol{v}\right) \cdot \operatorname{grad} \boldsymbol{v}+\operatorname{Ta}\left(\boldsymbol{e}_{1} \times \boldsymbol{x} \cdot \operatorname{grad} \boldsymbol{v}-\boldsymbol{e}_{1} \times \boldsymbol{v}\right)=\operatorname{grad} p \\
\operatorname{div} \boldsymbol{v}=0
\end{array}\right\} \text { in } \mathcal{D}
$$

Description of the Problem: Steady-State Flow

Suppose $\boldsymbol{\xi}$ and $\boldsymbol{\omega}$ are time-independent.
One can look for solutions ($\boldsymbol{v}=\boldsymbol{v}(x), p=p(x)$), describing the steady-state flow of \mathcal{L} in \mathcal{S}.

Without loss (by the Mozzi-Chasles theorem), we can assume $\boldsymbol{\xi} \| \boldsymbol{\omega}$ and set

$$
\boldsymbol{\omega}=\omega \boldsymbol{e}_{1}, \quad \boldsymbol{\xi}=\xi \boldsymbol{e}_{1}, \quad d=\text { diameter of } \mathcal{B} .
$$

Introduce the dimensionless numbers

$$
\operatorname{Re}=\frac{\xi d}{\nu} \quad \text { (Reynolds number) } \mathrm{Ta}=\frac{|\boldsymbol{\omega}| d^{2}}{\nu} \text { (Taylor number) }
$$

Thus, the relevant equations in non-dimensional form become

$$
\left.\begin{array}{l}
\Delta \boldsymbol{v}+\operatorname{Re}\left(\boldsymbol{e}_{1}-\boldsymbol{v}\right) \cdot \operatorname{grad} \boldsymbol{v}+\operatorname{Ta}\left(\boldsymbol{e}_{1} \times \boldsymbol{x} \cdot \operatorname{grad} \boldsymbol{v}-\boldsymbol{e}_{1} \times \boldsymbol{v}\right)=\operatorname{grad} p \\
\operatorname{div} \boldsymbol{v}=0
\end{array}\right\} \text { in } \mathcal{D}
$$

$$
\boldsymbol{v}(\boldsymbol{y})=\boldsymbol{e}_{1}+\boldsymbol{e}_{1} \times \boldsymbol{y}, \quad \boldsymbol{y} \in \Sigma
$$

Description of the Problem: Steady-State Flow

Suppose $\boldsymbol{\xi}$ and $\boldsymbol{\omega}$ are time-independent.
One can look for solutions ($\boldsymbol{v}=\boldsymbol{v}(x), p=p(x)$), describing the steady-state flow of \mathcal{L} in \mathcal{S}.

Without loss (by the Mozzi-Chasles theorem), we can assume $\boldsymbol{\xi} \| \boldsymbol{\omega}$ and set

$$
\boldsymbol{\omega}=\omega \boldsymbol{e}_{1}, \quad \boldsymbol{\xi}=\xi \boldsymbol{e}_{1}, \quad d=\text { diameter of } \mathcal{B} .
$$

Introduce the dimensionless numbers

$$
\operatorname{Re}=\frac{\xi d}{\nu} \quad \text { (Reynolds number) } \mathrm{Ta}=\frac{|\boldsymbol{\omega}| d^{2}}{\nu} \text { (Taylor number) }
$$

Thus, the relevant equations in non-dimensional form become

$$
\left.\begin{array}{l}
\Delta \boldsymbol{v}+\operatorname{Re}\left(\boldsymbol{e}_{1}-\boldsymbol{v}\right) \cdot \operatorname{grad} \boldsymbol{v}+\operatorname{Ta}\left(\boldsymbol{e}_{1} \times \boldsymbol{x} \cdot \operatorname{grad} \boldsymbol{v}-\boldsymbol{e}_{1} \times \boldsymbol{v}\right)=\operatorname{grad} p \\
\operatorname{div} \boldsymbol{v}=0
\end{array}\right\} \text { in } \mathcal{D}
$$

$$
\boldsymbol{v}(\boldsymbol{y})=\boldsymbol{e}_{1}+\boldsymbol{e}_{1} \times \boldsymbol{y}, \quad \boldsymbol{y} \in \Sigma, \quad \lim _{\boldsymbol{x} \mid \rightarrow \infty} \boldsymbol{v}(\boldsymbol{x})=0
$$

Steady-State Flow: Existence of Solutions

Question 1

Steady-State Flow: Existence of Solutions

Question 1

Give arbitrary $\mathrm{Re}>0$ and $\mathrm{Ta} \geq 0$ (non-dimensional translational and angular velocity of \mathcal{B}).

Steady-State Flow: Existence of Solutions

Question 1

Give arbitrary $\mathrm{Re}>0$ and $\mathrm{Ta} \geq 0$ (non-dimensional translational and angular velocity of \mathcal{B}).
Does the following boundary-value problem

$$
\left.\begin{array}{l}
\Delta \boldsymbol{v}+\operatorname{Re}\left(\boldsymbol{e}_{1}-\boldsymbol{v}\right) \cdot \operatorname{grad} \boldsymbol{v}+\operatorname{Ta}\left(\boldsymbol{e}_{1} \times \boldsymbol{x} \cdot \operatorname{grad} \boldsymbol{v}-\boldsymbol{e}_{1} \times \boldsymbol{v}\right)=\operatorname{grad} p \\
\operatorname{div} \boldsymbol{v}=0
\end{array}\right\} \text { in } \mathcal{D}
$$

Steady-State Flow: Existence of Solutions

Question 1

Give arbitrary $\mathrm{Re}>0$ and $\mathrm{Ta} \geq 0$ (non-dimensional translational and angular velocity of \mathcal{B}).
Does the following boundary-value problem

$$
\left.\begin{array}{l}
\Delta \boldsymbol{v}+\operatorname{Re}\left(\boldsymbol{e}_{1}-\boldsymbol{v}\right) \cdot \operatorname{grad} \boldsymbol{v}+\operatorname{Ta}\left(\boldsymbol{e}_{1} \times \boldsymbol{x} \cdot \operatorname{grad} \boldsymbol{v}-\boldsymbol{e}_{1} \times \boldsymbol{v}\right)=\operatorname{grad} p \\
\operatorname{div} \boldsymbol{v}=0 \\
\qquad \boldsymbol{v}(\boldsymbol{y})=\boldsymbol{e}_{1}+\boldsymbol{e}_{1} \times \boldsymbol{y}, \quad \boldsymbol{y} \in \Sigma, \quad \lim _{|\boldsymbol{x}| \rightarrow \infty} \boldsymbol{v}(\boldsymbol{x})=0
\end{array}\right\} \text { in } \mathcal{D}
$$

have at least one (smooth) solution?

Steady-State Flow: Existence of Solutions

Question 2

Steady-State Flow: Existence of Solutions

Question 2
If Question 1 is affirmatively answered, is the solution Physically Reasonable (PR) in the sense of R. Finn?

Steady-State Flow: Existence of Solutions

Question 2
If Question 1 is affirmatively answered, is the solution Physically Reasonable (PR) in the sense of R. Finn? That is:

Steady-State Flow: Existence of Solutions

Question 2
If Question 1 is affirmatively answered, is the solution Physically
Reasonable (PR) in the sense of R. Finn? That is:
(A) $\boldsymbol{v}=\boldsymbol{v}(x)$ decays, uniformly, $\simeq|x|^{-1}$, and even faster, $\simeq|x|^{-2}$, in the upstream direction (existence of the "wake");

Steady-State Flow: Existence of Solutions

Question 2

If Question 1 is affirmatively answered, is the solution Physically Reasonable (PR) in the sense of R. Finn? That is:
(A) $\boldsymbol{v}=\boldsymbol{v}(x)$ decays, uniformly, $\simeq|x|^{-1}$, and even faster, $\simeq|x|^{-2}$, in the upstream direction (existence of the "wake");
(B) (\boldsymbol{v}, p) satisfies the energy balance equation:

$$
\int_{\Sigma}\left(\operatorname{Re} \boldsymbol{e}_{1}+\operatorname{Ta} \boldsymbol{e}_{1} \times \boldsymbol{y}\right) \cdot \boldsymbol{T}(\boldsymbol{v}, p) \cdot \boldsymbol{n}=\int_{\mathcal{D}}|\boldsymbol{D}(\boldsymbol{v})|^{2}
$$

Steady-State Flow: Existence of Solutions

Question 2

If Question 1 is affirmatively answered, is the solution Physically Reasonable (PR) in the sense of R. Finn? That is:
(A) $\boldsymbol{v}=\boldsymbol{v}(x)$ decays, uniformly, $\simeq|x|^{-1}$, and even faster, $\simeq|x|^{-2}$, in the upstream direction (existence of the "wake");
(B) (\boldsymbol{v}, p) satisfies the energy balance equation:

$$
\int_{\Sigma}\left(\operatorname{Re} \boldsymbol{e}_{1}+\operatorname{Ta} \boldsymbol{e}_{1} \times \boldsymbol{y}\right) \cdot \boldsymbol{T}(\boldsymbol{v}, p) \cdot \boldsymbol{n}=\int_{\mathcal{D}}|\boldsymbol{D}(\boldsymbol{v})|^{2}
$$

(C) For "small" data, (\boldsymbol{v}, p) is unique in the class of $P R$ solutions and stable in the sense of Lyapounov.

Steady-State Flow: Existence of Solutions

Question 2

If Question 1 is affirmatively answered, is the solution Physically Reasonable (PR) in the sense of R. Finn? That is:
(A) $\boldsymbol{v}=\boldsymbol{v}(x)$ decays, uniformly, $\simeq|x|^{-1}$, and even faster, $\simeq|x|^{-2}$, in the upstream direction (existence of the "wake");
(B) (\boldsymbol{v}, p) satisfies the energy balance equation:

$$
\int_{\Sigma}\left(\operatorname{Re} \boldsymbol{e}_{1}+\operatorname{Ta} \boldsymbol{e}_{1} \times \boldsymbol{y}\right) \cdot \boldsymbol{T}(\boldsymbol{v}, p) \cdot \boldsymbol{n}=\int_{\mathcal{D}}|\boldsymbol{D}(\boldsymbol{v})|^{2}
$$

(C) For "small" data, (\boldsymbol{v}, p) is unique in the class of $P R$ solutions and stable in the sense of Lyapounov.

All properties listed in (A), (B) and (C) are related to the Asymptotic Spatial Structure of the velocity field \boldsymbol{v}.

Absence of Rotation: Existence of Solutions

Case 1: $\mathrm{Ta}=0$ (the body translates without spinning)

Absence of Rotation: Existence of Solutions

Case 1: $\mathrm{Ta}=0$ (the body translates without spinning)

Both questions have been thoroughly investigated for >50 years. Here is some basic facts:

Absence of Rotation: Existence of Solutions

Case 1: $\mathrm{Ta}=0$ (the body translates without spinning)
Both questions have been thoroughly investigated for >50 years. Here is some basic facts:

LERAY (1933): Existence of smooth solutions (\boldsymbol{v}, p) for all data, with $\operatorname{grad} \boldsymbol{v} \in L^{2}(\mathcal{D})$.

Absence of Rotation: Existence of Solutions

Case 1: $\mathrm{Ta}=0$ (the body translates without spinning)

Both questions have been thoroughly investigated for >50 years. Here is some basic facts:

LERAY (1933): Existence of smooth solutions (\boldsymbol{v}, p) for all data, with $\operatorname{grad} \boldsymbol{v} \in L^{2}(\mathcal{D})$.
Asymptotic properties:

$$
\int_{\Omega}|\operatorname{grad} \boldsymbol{v}|^{2}<\infty \Longrightarrow \int_{\Omega}|\boldsymbol{v}|^{6}<\infty \text { (by Sobolev inequality). }
$$

Absence of Rotation: Existence of Solutions

Case 1: $\mathrm{Ta}=0$ (the body translates without spinning)

Both questions have been thoroughly investigated for >50 years. Here is some basic facts:

LERAY (1933): Existence of smooth solutions (\boldsymbol{v}, p) for all data, with $\operatorname{grad} \boldsymbol{v} \in L^{2}(\mathcal{D})$.
Asymptotic properties:

$$
\int_{\Omega}|\operatorname{grad} \boldsymbol{v}|^{2}<\infty \Longrightarrow \int_{\Omega}|\boldsymbol{v}|^{6}<\infty \text { (by Sobolev inequality). }
$$

A solution with $\operatorname{grad} \boldsymbol{v} \in L^{2}(\Omega)$ is called LERAY SOLUTION

Absence of Rotation: Existence of Solutions

Case 1: $\mathrm{Ta}=0$ (the body translates without spinning)
Both questions have been thoroughly investigated for >50 years. Here is some basic facts:

LERAY (1933): Existence of smooth solutions (v, p) for all data, with $\operatorname{grad} \boldsymbol{v} \in L^{2}(\mathcal{D})$.
Asymptotic properties:

$$
\int_{\Omega}|\operatorname{grad} \boldsymbol{v}|^{2}<\infty \Longrightarrow \int_{\Omega}|\boldsymbol{v}|^{6}<\infty \text { (by Sobolev inequality). }
$$

A solution with grad $\boldsymbol{v} \in L^{2}(\Omega)$ is called LERAY SOLUTION FINN (1965): Existence of PR solutions for data of restricted size

Absence of Rotation: Existence of Solutions

Case 1: $\mathrm{Ta}=0$ (the body translates without spinning)
Both questions have been thoroughly investigated for >50 years. Here is some basic facts:

LERAY (1933): Existence of smooth solutions (v, p) for all data, with $\operatorname{grad} \boldsymbol{v} \in L^{2}(\mathcal{D})$.
Asymptotic properties:

$$
\int_{\Omega}|\operatorname{grad} \boldsymbol{v}|^{2}<\infty \Longrightarrow \int_{\Omega}|\boldsymbol{v}|^{6}<\infty \text { (by Sobolev inequality). }
$$

A solution with grad $\boldsymbol{v} \in L^{2}(\Omega)$ is called LERAY SOLUTION FINN (1965): Existence of PR solutions for data of restricted size BABENKO (1972), GPG (1992): Every Leray solution is PR

Rotation and Translation: Existence of Solutions

Case 2: $\mathrm{Ta} \neq 0$ (the body translates and rotates)

Rotation and Translation: Existence of Solutions

Case 2: $\mathrm{Ta} \neq 0$ (the body translates and rotates)

The answers to Questions $1 \& 2$ can not be obtained by a perturbative argument to the results established for the case $\mathrm{Ta}=0$:

Rotation and Translation: Existence of Solutions

Case 2: $\mathrm{Ta} \neq 0$ (the body translates and rotates)

The answers to Questions $1 \& 2$ can not be obtained by a perturbative argument to the results established for the case $\mathrm{Ta}=0$:

$$
\left.\begin{array}{l}
\Delta \boldsymbol{v}+\operatorname{Re}\left(\boldsymbol{e}_{1}-\boldsymbol{v}\right) \cdot \operatorname{grad} \boldsymbol{v}+\operatorname{Ta}\left(\boldsymbol{e}_{1} \times \boldsymbol{x} \cdot \operatorname{grad} \boldsymbol{v}-\boldsymbol{e}_{1} \times \boldsymbol{v}\right)=\operatorname{grad} p \\
\operatorname{div} \boldsymbol{v}=0
\end{array}\right\} \text { in } \mathcal{D}
$$

Rotation and Translation: Existence of Solutions

Case 2: $\mathrm{Ta} \neq 0$ (the body translates and rotates)

The answers to Questions $1 \& 2$ can not be obtained by a perturbative argument to the results established for the case $\mathrm{Ta}=0$:

$$
\left.\begin{array}{l}
\Delta \boldsymbol{v}+\operatorname{Re}\left(\boldsymbol{e}_{1}-\boldsymbol{v}\right) \cdot \operatorname{grad} \boldsymbol{v}+\operatorname{Ta}\left(\boldsymbol{e}_{1} \times \boldsymbol{x} \cdot \operatorname{grad} \boldsymbol{v}-\boldsymbol{e}_{1} \times \boldsymbol{v}\right)=\operatorname{grad} p \\
\operatorname{div} \boldsymbol{v}=0
\end{array}\right\} \text { in } \mathcal{D}
$$

Unbounded Coefficient! $\left|\boldsymbol{e}_{1} \times \boldsymbol{x}\right| \rightarrow \infty$ as $|x| \rightarrow \infty$

Rotation and Translation: Main Contributions

Rotation and Translation: Main Contributions

Over the past decades, both Questions 1 and 2 have been addressed, from different perspectives and by different approaches, by many authors:

Rotation and Translation: Main Contributions

Over the past decades, both Questions 1 and 2 have been addressed, from different perspectives and by different approaches, by many authors:
T. HISHIDA (1999-2008),

Rotation and Translation: Main Contributions

Over the past decades, both Questions 1 and 2 have been addressed, from different perspectives and by different approaches, by many authors:
T. HISHIDA (1999-2008), GPG (2003),

Rotation and Translation: Main Contributions

Over the past decades, both Questions 1 and 2 have been addressed, from different perspectives and by different approaches, by many authors:
T. HISHIDA (1999-2008), GPG (2003),
R. FARWIG, T. HISHIDA, \& D. MÜLLER (2004-2009),

Rotation and Translation: Main Contributions

Over the past decades, both Questions 1 and 2 have been addressed, from different perspectives and by different approaches, by many authors:
T. HISHIDA (1999-2008), GPG (2003),
R. FARWIG, T. HISHIDA, \& D. MÜLLER (2004-2009),
A.L. SILVESTRE, M. KEYD \& GPG (2007-2009),

Rotation and Translation: Main Contributions

Over the past decades, both Questions 1 and 2 have been addressed, from different perspectives and by different approaches, by many authors:
T. HISHIDA (1999-2008), GPG (2003),
R. FARWIG, T. HISHIDA, \& D. MÜLLER (2004-2009),
A.L. SILVESTRE, M. KEYD \& GPG (2007-2009),
R. FARWIG \& J. NEUSTUPA (2009),

Rotation and Translation: Main Contributions

Over the past decades, both Questions 1 and 2 have been addressed, from different perspectives and by different approaches, by many authors:
T. HISHIDA (1999-2008), GPG (2003),
R. FARWIG, T. HISHIDA, \& D. MÜLLER (2004-2009),
A.L. SILVESTRE, M. KEYD \& GPG (2007-2009),
R. FARWIG \& J. NEUSTUPA (2009),
P. DEURING, S. KRAČMAR, M. KRBEC, S. NEČASOVA \& P. PENEL
(2005-2009)

Rotation and Translation: Main Contributions

Over the past decades, both Questions 1 and 2 have been addressed, from different perspectives and by different approaches, by many authors:
T. HISHIDA (1999-2008), GPG (2003),
R. FARWIG, T. HISHIDA, \& D. MÜLLER (2004-2009),
A.L. SILVESTRE, M. KEYD \& GPG (2007-2009),
R. FARWIG \& J. NEUSTUPA (2009),
P. DEURING, S. KRAČMAR, M. KRBEC, S. NEČASOVA \& P. PENEL
(2005-2009)
T. HISHIDA \& Y. SHIBATA (2006-2009)

Rotation and Translation: Main Contributions

Over the past decades, both Questions 1 and 2 have been addressed, from different perspectives and by different approaches, by many authors:
T. HISHIDA (1999-2008), GPG (2003),
R. FARWIG, T. HISHIDA, \& D. MÜLLER (2004-2009),
A.L. SILVESTRE, M. KEYD \& GPG (2007-2009),
R. FARWIG \& J. NEUSTUPA (2009),
P. DEURING, S. KRAČMAR, M. KRBEC, S. NEČASOVA \& P. PENEL
(2005-2009)
T. HISHIDA \& Y. SHIBATA (2006-2009)
yet, without a definite answer.

Rotation and Translation: Main Contributions

Over the past decades, both Questions 1 and 2 have been addressed, from different perspectives and by different approaches, by many authors:
T. HISHIDA (1999-2008), GPG (2003),
R. FARWIG, T. HISHIDA, \& D. MÜLLER (2004-2009),
A.L. SILVESTRE, M. KEYD \& GPG (2007-2009),
R. FARWIG \& J. NEUSTUPA (2009),
P. DEURING, S. KRAČMAR, M. KRBEC, S. NEČASOVA \& P. PENEL (2005-2009)
T. HISHIDA \& Y. SHIBATA (2006-2009)
yet, without a definite answer.
Objective of this talk is to prove (or to give a flavor of the proof) that both Questions 1 and 2 are positively answered.

Rotation and Translation: Main Contributions

Over the past decades, both Questions 1 and 2 have been addressed, from different perspectives and by different approaches, by many authors:
T. HISHIDA (1999-2008), GPG (2003),
R. FARWIG, T. HISHIDA, \& D. MÜLLER (2004-2009),
A.L. SILVESTRE, M. KEYD \& GPG (2007-2009),
R. FARWIG \& J. NEUSTUPA (2009),
P. DEURING, S. KRAČMAR, M. KRBEC, S. NEČASOVA \& P. PENEL
(2005-2009)
T. HISHIDA \& Y. SHIBATA (2006-2009)
yet, without a definite answer.
Objective of this talk is to prove (or to give a flavor of the proof) that both Questions 1 and 2 are positively answered.
In other words, for data of arbitrary size, there is always a corresponding, smooth PR solution.

Rotation and Translation: Leray Solutions

Rotation and Translation: Leray Solutions

Existence of Leray Solution (Data of arbitrary size)

Rotation and Translation: Leray Solutions

Existence of Leray Solution (Data of arbitrary size)
The "rotational term" satisfies the fundamental property:

$$
\int_{\mathcal{D}}\left(\boldsymbol{e}_{1} \times \boldsymbol{x} \cdot \operatorname{grad} \boldsymbol{u}-\boldsymbol{e}_{1} \times \boldsymbol{u}\right) \cdot \boldsymbol{u}=0, \quad \text { for all } \boldsymbol{u} \in C_{0}^{\infty}(\mathcal{D}), \quad \operatorname{div} \boldsymbol{u}=0
$$

Rotation and Translation: Leray Solutions

Existence of Leray Solution (Data of arbitrary size)
The "rotational term" satisfies the fundamental property:
$\int_{\mathcal{D}}\left(\boldsymbol{e}_{1} \times \boldsymbol{x} \cdot \operatorname{grad} \boldsymbol{u}-\boldsymbol{e}_{1} \times \boldsymbol{u}\right) \cdot \boldsymbol{u}=0, \quad$ for all $\boldsymbol{u} \in C_{0}^{\infty}(\mathcal{D}), \operatorname{div} \boldsymbol{u}=0$.
Thanks to this property, the above problem (1) admits the formal a priori global estimate

$$
\int_{\mathcal{D}}|\operatorname{grad} \boldsymbol{v}|^{2} \leq C(\mathcal{D}, \mathrm{Re}, \mathrm{Ta})
$$

Rotation and Translation: Leray Solutions

Existence of Leray Solution (Data of arbitrary size)
The "rotational term" satisfies the fundamental property:
$\int_{\mathcal{D}}\left(\boldsymbol{e}_{1} \times \boldsymbol{x} \cdot \operatorname{grad} \boldsymbol{u}-\boldsymbol{e}_{1} \times \boldsymbol{u}\right) \cdot \boldsymbol{u}=0, \quad$ for all $\boldsymbol{u} \in C_{0}^{\infty}(\mathcal{D}), \quad \operatorname{div} \boldsymbol{u}=0$.
Thanks to this property, the above problem (1) admits the formal a priori global estimate

$$
\int_{\mathcal{D}}|\operatorname{grad} \boldsymbol{v}|^{2} \leq C(\mathcal{D}, \mathrm{Re}, \mathrm{Ta})
$$

By coupling this inequality with, e.g., Galerkin's method, one can show the following result.

Rotation and Translation: Leray Solutions

Existence of Leray Solution (Data of arbitrary size)
The "rotational term" satisfies the fundamental property:
$\int_{\mathcal{D}}\left(\boldsymbol{e}_{1} \times \boldsymbol{x} \cdot \operatorname{grad} \boldsymbol{u}-\boldsymbol{e}_{1} \times \boldsymbol{u}\right) \cdot \boldsymbol{u}=0, \quad$ for all $\boldsymbol{u} \in C_{0}^{\infty}(\mathcal{D}), \quad \operatorname{div} \boldsymbol{u}=0$.
Thanks to this property, the above problem (1) admits the formal a priori global estimate

$$
\int_{\mathcal{D}}|\operatorname{grad} \boldsymbol{v}|^{2} \leq C(\mathcal{D}, \mathrm{Re}, \mathrm{Ta})
$$

By coupling this inequality with,e.g., Galerkin's method, one can show the following result.

Theorem 1 (Weinberger, 1982; Serre, 1987; Borchers, 1992) Let \mathcal{D} be an exterior domain in \mathbb{R}^{3}. For any $\operatorname{Re}>0$ and $\mathrm{Ta} \geq 0$, there exists at least one $(\boldsymbol{v}, p) \in C^{\infty}(\mathcal{D}) \times C^{\infty}(\mathcal{D})$ (Leray solution) to problem (1).

Rotation and Translation: PR Solutions

Rotation and Translation: PR Solutions

The "canonical" way of showing existence of a PR solution (i.e. with the pointwise decay $1 /|x|$) develops along the following steps:

Rotation and Translation: PR Solutions

The "canonical" way of showing existence of a PR solution (i.e. with the pointwise decay $1 /|x|$) develops along the following steps:

- Use a perturbation argument around the solution to the linear problem in the domain \mathcal{D}.

Rotation and Translation: PR Solutions

The "canonical" way of showing existence of a PR solution (i.e. with the pointwise decay $1 /|x|$) develops along the following steps:

- Use a perturbation argument around the solution to the linear problem in the domain \mathcal{D}.
- By a "localization procedure", reduce this latter to the study of the asymptotic properties and corresponding estimates of solutions $(\boldsymbol{u}, \mathrm{p})$ to the linear problem in the whole space:

$$
\left.\begin{array}{l}
\Delta \boldsymbol{u}+\operatorname{Re} \frac{\partial \boldsymbol{u}}{\partial x_{1}}+\operatorname{Ta}\left(\boldsymbol{e}_{1} \times \boldsymbol{x} \cdot \operatorname{grad} \boldsymbol{u}-\boldsymbol{e}_{1} \times \boldsymbol{u}\right)=\operatorname{grad} \mathrm{p}+\boldsymbol{f} \\
\operatorname{div} \boldsymbol{u}=0
\end{array}\right\} \text { in } \mathbb{R}^{3}
$$

Rotation and Translation: PR Solutions

The "canonical" way of showing existence of a PR solution (i.e. with the pointwise decay $1 /|x|$) develops along the following steps:

- Use a perturbation argument around the solution to the linear problem in the domain \mathcal{D}.
- By a "localization procedure", reduce this latter to the study of the asymptotic properties and corresponding estimates of solutions $(\boldsymbol{u}, \mathrm{p})$ to the linear problem in the whole space:

$$
\left.\begin{array}{l}
\Delta \boldsymbol{u}+\operatorname{Re} \frac{\partial \boldsymbol{u}}{\partial x_{1}}+\operatorname{Ta}\left(\boldsymbol{e}_{1} \times \boldsymbol{x} \cdot \operatorname{grad} \boldsymbol{u}-\boldsymbol{e}_{1} \times \boldsymbol{u}\right)=\operatorname{grad} \mathrm{p}+\boldsymbol{f} \\
\operatorname{div} \boldsymbol{u}=0
\end{array}\right\} \text { in } \mathbb{R}^{3}
$$

- Obtain the asymptotic properties of \boldsymbol{u} and the corresponding estimates by means of its representation through the fundamental tensor solution \mathfrak{G} :

$$
\boldsymbol{u}(x)=\int_{\mathbb{R}^{3}} \mathfrak{G}(x, y) \cdot \boldsymbol{f}(y) d y
$$

Rotation and Translation: PR Solutions

However, this approach does not look to be feasible, and it is discouraged by the following two facts:

Rotation and Translation: PR Solutions

However, this approach does not look to be feasible, and it is discouraged by the following two facts:

- The form of the fundamental tensor solution \mathfrak{G} is very complicated;

Rotation and Translation: PR Solutions

However, this approach does not look to be feasible, and it is discouraged by the following two facts:

- The form of the fundamental tensor solution \mathfrak{G} is very complicated;
- Unlike the case $\mathrm{Ta}=0$ (no rotation), the fundamental tensor \mathfrak{G} does not satisfy the uniform estimate (that would be the starting point to establish asymptotic properties):

$$
|\mathfrak{G}(x, y)| \leq \frac{C}{|x-y|}, \quad \text { for all } x, y \in \mathbb{R}^{3}
$$

for some C independent of x, y (Farwig, Hishida \& Müller, 2004).

Rotation and Translation: PR Solutions

However, this approach does not look to be feasible, and it is discouraged by the following two facts:

- The form of the fundamental tensor solution \mathfrak{G} is very complicated;
- Unlike the case $\mathrm{Ta}=0$ (no rotation), the fundamental tensor \mathfrak{G} does not satisfy the uniform estimate (that would be the starting point to establish asymptotic properties):

$$
|\mathfrak{G}(x, y)| \leq \frac{C}{|x-y|}, \quad \text { for all } x, y \in \mathbb{R}^{3}
$$

for some C independent of x, y (Farwig, Hishida \& Müller, 2004).
Therefore, one would like to argue in a different way.

Rotation and Translation: PR Solutions

GPG (2003)

Rotation and Translation: PR Solutions

GPG (2003)
Let
$\boldsymbol{Q}(t)=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos (\mathrm{Ta} t) & -\sin (\mathrm{Ta} t) \\ 0 & \sin (\mathrm{Ta} t) & \cos (\mathrm{Ta} t)\end{array}\right], t \geq 0$ (rotation matrix around $\left.\boldsymbol{e}_{1}\right)$

Rotation and Translation: PR Solutions

GPG (2003)
Let
$\boldsymbol{Q}(t)=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos (\mathrm{Ta} t) & -\sin (\mathrm{Ta} t) \\ 0 & \sin (\mathrm{Ta} t) & \cos (\mathrm{Ta} t)\end{array}\right], t \geq 0$ (rotation matrix around $\left.\boldsymbol{e}_{1}\right)$
Set:

$$
\boldsymbol{y}=\boldsymbol{Q}(t) \cdot \boldsymbol{x}, \quad t \geq 0 .
$$

Rotation and Translation: PR Solutions

GPG (2003)
Let
$\boldsymbol{Q}(t)=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos (\mathrm{Ta} t) & -\sin (\mathrm{Ta} t) \\ 0 & \sin (\mathrm{Ta} t) & \cos (\mathrm{Ta} t)\end{array}\right], t \geq 0$ (rotation matrix around $\left.\boldsymbol{e}_{1}\right)$
Set:

$$
\boldsymbol{y}=\boldsymbol{Q}(t) \cdot \boldsymbol{x}, \quad t \geq 0 .
$$

Define

$$
\begin{aligned}
& \boldsymbol{w}(\boldsymbol{y}, t):=\boldsymbol{Q}(t) \cdot \boldsymbol{u}\left(\boldsymbol{Q}^{\top}(t) \cdot \boldsymbol{y}\right), \quad \pi(\boldsymbol{y}, t):=\mathrm{p}\left(\boldsymbol{Q}^{\top}(t) \cdot \boldsymbol{y}\right), \\
& \boldsymbol{F}(\boldsymbol{y}, t):=\boldsymbol{Q}(t) \cdot \boldsymbol{f}\left(\boldsymbol{Q}^{\top}(t) \cdot \boldsymbol{y}\right)
\end{aligned}
$$

Rotation and Translation: PR Solutions

In these new variables, the original problem

$$
\left.\begin{array}{l}
\Delta \boldsymbol{u}+\operatorname{Re} \frac{\partial \boldsymbol{u}}{\partial x_{1}}+\operatorname{Ta}\left(\boldsymbol{e}_{1} \times \boldsymbol{x} \cdot \operatorname{grad} \boldsymbol{u}-\boldsymbol{e}_{1} \times \boldsymbol{u}\right)=\operatorname{grad} \mathrm{p}+\boldsymbol{f} \\
\operatorname{div} \boldsymbol{u}=0
\end{array}\right\} \text { in } \mathbb{R}^{3}
$$

Rotation and Translation: PR Solutions

In these new variables, the original problem

$$
\left.\begin{array}{l}
\Delta \boldsymbol{u}+\operatorname{Re} \frac{\partial \boldsymbol{u}}{\partial x_{1}}+\operatorname{Ta}\left(\boldsymbol{e}_{1} \times \boldsymbol{x} \cdot \operatorname{grad} \boldsymbol{u}-\boldsymbol{e}_{1} \times \boldsymbol{u}\right)=\operatorname{grad} \mathrm{p}+\boldsymbol{f} \\
\operatorname{div} \boldsymbol{u}=0
\end{array}\right\} \text { in } \mathbb{R}^{3}
$$

transforms into the following Oseen initial-value problem

$$
\begin{gathered}
\frac{\partial \boldsymbol{w}}{\partial t}=\Delta \boldsymbol{w}+\operatorname{Re} \frac{\partial \boldsymbol{w}}{\partial y_{1}}-\operatorname{grad} \pi-\boldsymbol{F} \\
\operatorname{div} \boldsymbol{w}=0 \\
\boldsymbol{w}(\boldsymbol{y}, 0)=\boldsymbol{u}(y)
\end{gathered}
$$

Rotation and Translation: PR Solutions

If \boldsymbol{u} and \boldsymbol{f} have a mild degree of regularity as $|x| \rightarrow \infty$, e.g. $\boldsymbol{u} \in L^{q_{1}}\left(\mathbb{R}^{3}\right), \boldsymbol{f} \in L^{q_{2}}\left(\mathbb{R}^{3}\right)$, for some $q_{i} \in[1, \infty], i=1,2$, then $\boldsymbol{w}(y, t)$ can be represented as follows:
$\boldsymbol{w}(y, t)=\int_{\mathbb{R}^{3}} \boldsymbol{\Gamma}(x-y, t) \cdot \boldsymbol{u}(y) d y+\int_{\mathbb{R}^{3}} \int_{0}^{t} \boldsymbol{\Gamma}(x-y, t-\tau) \cdot \boldsymbol{F}(y, \tau) d \tau d y, \quad t>0$.

Rotation and Translation: PR Solutions

If \boldsymbol{u} and \boldsymbol{f} have a mild degree of regularity as $|x| \rightarrow \infty$, e.g. $\boldsymbol{u} \in L^{q_{1}}\left(\mathbb{R}^{3}\right), \boldsymbol{f} \in L^{q_{2}}\left(\mathbb{R}^{3}\right)$, for some $q_{i} \in[1, \infty], i=1,2$, then $\boldsymbol{w}(y, t)$ can be represented as follows:
$\boldsymbol{w}(y, t)=\int_{\mathbb{R}^{3}} \boldsymbol{\Gamma}(x-y, t) \cdot \boldsymbol{u}(y) d y+\int_{\mathbb{R}^{3}} \int_{0}^{t} \boldsymbol{\Gamma}(x-y, t-\tau) \cdot \boldsymbol{F}(y, \tau) d \tau d y, \quad t>0$.
where $\boldsymbol{\Gamma}=\left\{\boldsymbol{\Gamma}_{i j}(x, t ; \operatorname{Re})\right\}$ is the fundamental tensor solution to the time-dependent Oseen problem:

$$
\begin{aligned}
\frac{\partial \Gamma_{i j}}{\partial \tau} & =\operatorname{Re} \frac{\partial \Gamma_{i j}}{\partial x_{1}}+\Delta \Gamma_{i j}-\frac{\partial \gamma_{i}}{\partial x_{j}}+\delta_{i j} \delta(x) \delta(t) \\
\frac{\partial \Gamma_{i j}}{\partial y_{i}} & =0
\end{aligned}
$$

Rotation and Translation: PR Solutions

One can then prove that $\boldsymbol{\Gamma}$ satisfies the following fundamental estimates (Silvestre and GPG, 2006)

Rotation and Translation: PR Solutions

One can then prove that $\boldsymbol{\Gamma}$ satisfies the following fundamental estimates (Silvestre and GPG, 2006)

$$
\begin{align*}
& \int_{0}^{\infty}|\boldsymbol{\Gamma}(\xi, t)| d t \leq \frac{2}{|\xi|(1+2 \operatorname{Re} s(\xi))} \\
& \int_{0}^{\infty}|\operatorname{grad} \boldsymbol{\Gamma}(\xi, t)| d t \leq C_{\beta}\left\{\begin{array}{l}
\operatorname{Re}^{\frac{1}{2}}|\xi|^{-3 / 2}(1+2 \operatorname{Re} s(\xi))^{-3 / 2}, \quad \text { if }|\xi| \geq \beta / \operatorname{Re}, \\
|\xi|^{-2}, \quad \text { if }|\xi| \in(0, \beta / \operatorname{Re})
\end{array}\right. \tag{1}
\end{align*}
$$

where $s(x)=|\boldsymbol{\xi}|+\boldsymbol{\xi} \cdot \boldsymbol{e}_{1}$. Moreover:

$$
\left|\int_{\mathbb{R}^{3}} \boldsymbol{\Gamma}(y-z, t) \cdot \boldsymbol{u}(z) d z\right| \leq C t^{-3 /\left(2 q_{1}\right)}\|\boldsymbol{u}\|_{q_{1}} .
$$

Rotation and Translation: PR Solutions

One can then prove that $\boldsymbol{\Gamma}$ satisfies the following fundamental estimates (Silvestre and GPG, 2006)

$$
\begin{align*}
& \int_{0}^{\infty}|\boldsymbol{\Gamma}(\xi, t)| d t \leq \frac{2}{|\xi|(1+2 \operatorname{Re} s(\xi))} \\
& \int_{0}^{\infty}|\operatorname{grad} \boldsymbol{\Gamma}(\xi, t)| d t \leq C_{\beta}\left\{\begin{array}{l}
\operatorname{Re}^{\frac{1}{2}}|\xi|^{-3 / 2}(1+2 \operatorname{Re} s(\xi))^{-3 / 2}, \quad \text { if }|\xi| \geq \beta / \operatorname{Re}, \\
|\xi|^{-2}, \quad \text { if }|\xi| \in(0, \beta / \operatorname{Re})
\end{array}\right. \tag{1}
\end{align*}
$$

where $s(x)=|\boldsymbol{\xi}|+\boldsymbol{\xi} \cdot \boldsymbol{e}_{1}$. Moreover:

$$
\left|\int_{\mathbb{R}^{3}} \boldsymbol{\Gamma}(y-z, t) \cdot \boldsymbol{u}(z) d z\right| \leq C t^{-3 /\left(2 q_{1}\right)}\|\boldsymbol{u}\|_{q_{1}} .
$$

Remark

Rotation and Translation: PR Solutions

One can then prove that $\boldsymbol{\Gamma}$ satisfies the following fundamental estimates (Silvestre and GPG, 2006)

$$
\begin{align*}
& \int_{0}^{\infty}|\boldsymbol{\Gamma}(\xi, t)| d t \leq \frac{2}{|\xi|(1+2 \operatorname{Re} s(\xi))} \\
& \int_{0}^{\infty}|\operatorname{grad} \boldsymbol{\Gamma}(\xi, t)| d t \leq C_{\beta}\left\{\begin{array}{l}
\operatorname{Re}^{\frac{1}{2}}|\xi|^{-3 / 2}(1+2 \operatorname{Re} s(\xi))^{-3 / 2}, \quad \text { if }|\xi| \geq \beta / \operatorname{Re}, \\
|\xi|^{-2}, \quad \text { if }|\xi| \in(0, \beta / \operatorname{Re})
\end{array}\right. \tag{1}
\end{align*}
$$

where $s(x)=|\boldsymbol{\xi}|+\boldsymbol{\xi} \cdot \boldsymbol{e}_{1}$. Moreover:

$$
\left|\int_{\mathbb{R}^{3}} \boldsymbol{\Gamma}(y-z, t) \cdot \boldsymbol{u}(z) d z\right| \leq C t^{-3 /\left(2 q_{1}\right)}\|\boldsymbol{u}\|_{q_{1}} .
$$

Remark

The estimates (2) coincide with those well known for the time-independent Oseen fundamental tensor $\boldsymbol{\Gamma}_{0}=\left\{\Gamma_{0 i j}(x ; \mathrm{Re})\right\}$:

$$
\Delta \Gamma_{0 i j}+\operatorname{Re} \frac{\partial \Gamma_{0 i j}}{\partial x_{1}}=\frac{\partial \gamma_{0 i}}{\partial x_{j}}+\delta_{i j} \delta(x), \quad \frac{\partial \Gamma_{0 i j}}{\partial y_{i}}=0
$$

Rotation and Translation: PR Solutions

We next replace these estimates:

$$
\begin{aligned}
& \int_{0}^{\infty}|\boldsymbol{\Gamma}(\xi, t)| d t \leq \frac{2}{|\xi|(1+2 \operatorname{Re} s(\xi))} \\
& \int_{0}^{\infty}|\operatorname{grad} \boldsymbol{\Gamma}(\xi, t)| d t \leq C_{\beta}\left\{\begin{array}{l}
\operatorname{Re}^{\frac{1}{2}}|\xi|^{-3 / 2}(1+2 \operatorname{Re} s(\xi))^{-3 / 2}, \quad \text { if }|\xi| \geq \beta / \operatorname{Re}, \\
|\xi|^{-2}, \quad \text { if }|\xi| \in(0, \beta / \operatorname{Re}),
\end{array}\right. \\
& \left|\int_{\mathbb{R}^{3}} \boldsymbol{\Gamma}(y-z, t) \cdot \boldsymbol{u}(z) d z\right| \leq C t^{-3 /\left(2 q_{1}\right)}\|\boldsymbol{u}\|_{q_{1}}
\end{aligned}
$$

Rotation and Translation: PR Solutions

We next replace these estimates:

$$
\begin{aligned}
& \int_{0}^{\infty}|\boldsymbol{\Gamma}(\xi, t)| d t \leq \frac{2}{|\xi|(1+2 \operatorname{Re} s(\xi))} \\
& \int_{0}^{\infty}|\operatorname{grad} \boldsymbol{\Gamma}(\xi, t)| d t \leq C_{\beta}\left\{\begin{array}{l}
\operatorname{Re}^{\frac{1}{2}}|\xi|^{-3 / 2}(1+2 \operatorname{Re} s(\xi))^{-3 / 2}, \quad \text { if }|\xi| \geq \beta / \operatorname{Re}, \\
|\xi|^{-2}, \quad \text { if }|\xi| \in(0, \beta / \operatorname{Re}),
\end{array}\right. \\
& \left|\int_{\mathbb{R}^{3}} \boldsymbol{\Gamma}(y-z, t) \cdot \boldsymbol{u}(z) d z\right| \leq C t^{-3 /\left(2 q_{1}\right)}\|\boldsymbol{u}\|_{q_{1}}
\end{aligned}
$$

into the equation:

$$
\boldsymbol{w}(y, t)=\int_{\mathbb{R}^{3}} \boldsymbol{\Gamma}(y-z, t) \cdot \boldsymbol{u}(z) d z+\int_{\mathbb{R}^{3}} \int_{0}^{t} \boldsymbol{\Gamma}(y-z, t-\tau) \cdot \boldsymbol{F}(z, \tau) d \tau d z, \quad t>0
$$

Rotation and Translation: PR Solutions

We next replace these estimates:

$$
\begin{aligned}
& \int_{0}^{\infty}|\boldsymbol{\Gamma}(\xi, t)| d t \leq \frac{2}{|\xi|(1+2 \operatorname{Re} s(\xi))} \\
& \int_{0}^{\infty}|\operatorname{grad} \boldsymbol{\Gamma}(\xi, t)| d t \leq C_{\beta}\left\{\begin{array}{l}
\operatorname{Re}^{\frac{1}{2}}|\xi|^{-3 / 2}(1+2 \operatorname{Re} s(\xi))^{-3 / 2}, \quad \text { if }|\xi| \geq \beta / \operatorname{Re}, \\
|\xi|^{-2}, \quad \text { if }|\xi| \in(0, \beta / \operatorname{Re}),
\end{array}\right. \\
& \left|\int_{\mathbb{R}^{3}} \boldsymbol{\Gamma}(y-z, t) \cdot \boldsymbol{u}(z) d z\right| \leq C t^{-3 /\left(2 q_{1}\right)}\|\boldsymbol{u}\|_{q_{1}}
\end{aligned}
$$

into the equation:
$\boldsymbol{w}(y, t)=\int_{\mathbb{R}^{3}} \boldsymbol{\Gamma}(y-z, t) \cdot \boldsymbol{u}(z) d z+\int_{\mathbb{R}^{3}} \int_{0}^{t} \boldsymbol{\Gamma}(y-z, t-\tau) \cdot \boldsymbol{F}(z, \tau) d \tau d z, \quad t>0$,
and obtain

Rotation and Translation: PR Solutions

$$
|\boldsymbol{w}(y, t)| \leq C t^{-3 /\left(2 q_{1}\right)}\|\boldsymbol{u}\|_{q_{1}}+2 \int_{\mathbb{R}^{3}} \frac{\sup _{t \geq 0}|\boldsymbol{F}(z, t)|}{|y-z|(1+2 \operatorname{Re} s(y-z))} d z
$$

Rotation and Translation: PR Solutions

$$
|\boldsymbol{w}(y, t)| \leq C t^{-3 /\left(2 q_{1}\right)}\|\boldsymbol{u}\|_{q_{1}}+2 \int_{\mathbb{R}^{3}} \frac{\sup _{t \geq 0}|\boldsymbol{F}(z, t)|}{|y-z|(1+2 \operatorname{Re} s(y-z))} d z
$$

Assume

$$
|\boldsymbol{f}(x)| \leq G(x), \quad G(\boldsymbol{A} \cdot \boldsymbol{x})=G(x) \text { for all proper rotation matrices } \boldsymbol{A}
$$

Rotation and Translation: PR Solutions

$$
|\boldsymbol{w}(y, t)| \leq C t^{-3 /\left(2 q_{1}\right)}\|\boldsymbol{u}\|_{q_{1}}+2 \int_{\mathbb{R}^{3}} \frac{\sup _{t \geq 0}|\boldsymbol{F}(z, t)|}{|y-z|(1+2 \operatorname{Re} s(y-z))} d z
$$

Assume

$$
|\boldsymbol{f}(x)| \leq G(x), \quad G(\boldsymbol{A} \cdot \boldsymbol{x})=G(x) \text { for all proper rotation matrices } \boldsymbol{A}
$$

Recalling that

$$
|\boldsymbol{w}(y, t)|=|\boldsymbol{Q}(t) \cdot \boldsymbol{u}(x)|=|\boldsymbol{u}(x)|, \quad \boldsymbol{F}(y, t)=\boldsymbol{Q}(t) \cdot \boldsymbol{f}\left(\boldsymbol{Q}^{\top}(t) \cdot \boldsymbol{y}\right)
$$

we find

$$
|\boldsymbol{u}(x)| \leq C t^{-3 /\left(2 q_{1}\right)}\|\boldsymbol{u}\|_{q_{1}}+2 \int_{\mathbb{R}^{3}} \frac{G(z)}{|x-z|(1+2 \operatorname{Re} s(x-z))} d z .
$$

Rotation and Translation: PR Solutions

$$
|\boldsymbol{w}(y, t)| \leq C t^{-3 /\left(2 q_{1}\right)}\|\boldsymbol{u}\|_{q_{1}}+2 \int_{\mathbb{R}^{3}} \frac{\sup _{t \geq 0}|\boldsymbol{F}(z, t)|}{|y-z|(1+2 \operatorname{Re} s(y-z))} d z
$$

Assume

$$
|\boldsymbol{f}(x)| \leq G(x), \quad G(\boldsymbol{A} \cdot \boldsymbol{x})=G(x) \text { for all proper rotation matrices } \boldsymbol{A}
$$

Recalling that

$$
|\boldsymbol{w}(y, t)|=|\boldsymbol{Q}(t) \cdot \boldsymbol{u}(x)|=|\boldsymbol{u}(x)|, \quad \boldsymbol{F}(y, t)=\boldsymbol{Q}(t) \cdot \boldsymbol{f}\left(\boldsymbol{Q}^{\top}(t) \cdot \boldsymbol{y}\right)
$$

we find

$$
|\boldsymbol{u}(x)| \leq C t^{-3 /\left(2 q_{1}\right)}\|\boldsymbol{u}\|_{q_{1}}+2 \int_{\mathbb{R}^{3}} \frac{G(z)}{|x-z|(1+2 \operatorname{Re} s(x-z))} d z
$$

which, in the limit $t \rightarrow \infty$ furnishes

$$
|\boldsymbol{u}(x)| \leq 2 \int_{\mathbb{R}^{3}} \frac{G(z)}{|x-z|(1+2 \operatorname{Re} s(x-z))} d z
$$

Rotation and Translation: PR Solutions

Likewise,

$$
\begin{aligned}
|\operatorname{grad} \boldsymbol{u}(x)| \leq & C_{1} \int_{|x-z| \leq \frac{\beta}{\mathrm{Re}}} \frac{G(z)}{|x-z|^{2}} d y \\
& +C_{2} \sqrt{\operatorname{Re}} \int_{|x-z| \geq \frac{\beta}{\mathrm{Re}}} \frac{G(z)}{|x-z|^{3 / 2}\left(1+2 \operatorname{Re} s(x-z)^{3 / 2}\right)} d y
\end{aligned}
$$

Rotation and Translation: PR Solutions

Using these estimates one shows (Silvestre \& GPG 2007):

Rotation and Translation: PR Solutions

Using these estimates one shows (Silvestre \& GPG 2007): Suppose

$$
|\boldsymbol{f}(x)| \leq \frac{M}{(1+|x|)^{5 / 2}(1+\operatorname{Re} s(x))^{5 / 2}} \equiv G(x)
$$

Rotation and Translation: PR Solutions

Using these estimates one shows (Silvestre \& GPG 2007): Suppose

$$
|\boldsymbol{f}(x)| \leq \frac{M}{(1+|x|)^{5 / 2}(1+\operatorname{Re} s(x))^{5 / 2}} \equiv G(x)
$$

Then, the linear problem

$$
\left.\begin{array}{l}
\Delta \boldsymbol{u}+\operatorname{Re} \frac{\partial \boldsymbol{u}}{\partial x_{1}}+\operatorname{Ta}\left(\boldsymbol{e}_{1} \times \boldsymbol{x} \cdot \operatorname{grad} \boldsymbol{u}-\boldsymbol{e}_{1} \times \boldsymbol{u}\right)=\operatorname{grad} \mathrm{p}+\boldsymbol{f} \\
\operatorname{div} \boldsymbol{u}=0
\end{array}\right\} \text { in } \mathbb{R}^{3}
$$

has one and only one solution such that

$$
\begin{aligned}
& \sup _{x \in \mathbb{R}^{3}}[|\boldsymbol{u}(x)|(1+|x|)(1+\operatorname{Re} s(x))]<\infty \\
& \sup _{x \in \mathbb{R}^{3}}\left[|\operatorname{grad} \boldsymbol{u}(x)|(1+|x|)^{3 / 2}(1+\operatorname{Re} s(x))^{3 / 2}\right]<\infty,
\end{aligned}
$$

and satisfying corresponding estimates.

Rotation and Translation: PR Solutions

Using these estimates one shows (Silvestre \& GPG 2007): Suppose

$$
|\boldsymbol{f}(x)| \leq \frac{M}{(1+|x|)^{5 / 2}(1+\operatorname{Re} s(x))^{5 / 2}} \equiv G(x)
$$

Then, the linear problem

$$
\left.\begin{array}{l}
\Delta \boldsymbol{u}+\operatorname{Re} \frac{\partial \boldsymbol{u}}{\partial x_{1}}+\operatorname{Ta}\left(\boldsymbol{e}_{1} \times \boldsymbol{x} \cdot \operatorname{grad} \boldsymbol{u}-\boldsymbol{e}_{1} \times \boldsymbol{u}\right)=\operatorname{grad} \mathrm{p}+\boldsymbol{f} \\
\operatorname{div} \boldsymbol{u}=0
\end{array}\right\} \text { in } \mathbb{R}^{3}
$$

has one and only one solution such that

$$
\begin{aligned}
& \sup _{x \in \mathbb{R}^{3}}[|\boldsymbol{u}(x)|(1+|x|)(1+\operatorname{Re} s(x))]<\infty \\
& \sup _{x \in \mathbb{R}^{3}}\left[|\operatorname{grad} \boldsymbol{u}(x)|(1+|x|)^{3 / 2}(1+\operatorname{Re} s(x))^{3 / 2}\right]<\infty,
\end{aligned}
$$

and satisfying corresponding estimates. In particular, the solution is PR.

Rotation and Translation: PR Solutions

Existence of PR Solutions (Data of restricted size)

Rotation and Translation: PR Solutions

Existence of PR Solutions (Data of restricted size)
By using the previous result and the "canonical" procedure described earlier, one can prove the following.

Rotation and Translation: PR Solutions

Existence of PR Solutions (Data of restricted size)
By using the previous result and the "canonical" procedure described earlier, one can prove the following.
Theorem 2 (Silvestre \& GPG, 2007)

Rotation and Translation: PR Solutions

Existence of PR Solutions (Data of restricted size)
By using the previous result and the "canonical" procedure described earlier, one can prove the following.
Theorem 2 (Silvestre \& GPG, 2007)
There exists $M>0$ such that, if $0 \leq \mathrm{Re}+\mathrm{Ta} \leq M$,

Rotation and Translation: PR Solutions

Existence of PR Solutions (Data of restricted size)

By using the previous result and the "canonical" procedure described earlier, one can prove the following.
Theorem 2 (Silvestre \& GPG, 2007)
There exists $M>0$ such that, if $0 \leq \mathrm{Re}+\mathrm{Ta} \leq M$, the nonlinear problem:

$$
\begin{aligned}
& \Delta \boldsymbol{v}+\operatorname{Re}\left(\boldsymbol{e}_{1}-\boldsymbol{v}\right) \cdot \operatorname{grad} \boldsymbol{v}+\operatorname{Ta}\left(\boldsymbol{e}_{1} \times \boldsymbol{x} \cdot \operatorname{grad} \boldsymbol{v}-\boldsymbol{e}_{1} \times \boldsymbol{v}\right)=\operatorname{grad} p \\
& \operatorname{div} \boldsymbol{v}=0
\end{aligned}
$$

$$
\boldsymbol{v}(\boldsymbol{y})=\boldsymbol{e}_{1}+\boldsymbol{e}_{1} \times \boldsymbol{y}, \quad \boldsymbol{y} \in \Sigma, \quad \lim _{|\boldsymbol{x}| \rightarrow \infty} \boldsymbol{v}(\boldsymbol{x})=\mathbf{0}
$$

has a unique (smooth) $P R$ solution,

Rotation and Translation: PR Solutions

Existence of PR Solutions (Data of restricted size)
By using the previous result and the "canonical" procedure described earlier, one can prove the following.
Theorem 2 (Silvestre \& GPG, 2007)
There exists $M>0$ such that, if $0 \leq \mathrm{Re}+\mathrm{Ta} \leq M$, the nonlinear problem:

$$
\left.\begin{array}{l}
\Delta \boldsymbol{v}+\operatorname{Re}\left(\boldsymbol{e}_{1}-\boldsymbol{v}\right) \cdot \operatorname{grad} \boldsymbol{v}+\operatorname{Ta}\left(\boldsymbol{e}_{1} \times \boldsymbol{x} \cdot \operatorname{grad} \boldsymbol{v}-\boldsymbol{e}_{1} \times \boldsymbol{v}\right)=\operatorname{grad} p \\
\operatorname{div} \boldsymbol{v}=0
\end{array}\right\} \text { in } \mathcal{D}
$$

$$
\boldsymbol{v}(\boldsymbol{y})=\boldsymbol{e}_{1}+\boldsymbol{e}_{1} \times \boldsymbol{y}, \quad \boldsymbol{y} \in \Sigma, \quad \lim _{\boldsymbol{x} \mid \rightarrow \infty} \boldsymbol{v}(\boldsymbol{x})=\mathbf{0}
$$

has a unique (smooth) $P R$ solution, with the following asymptotic properties:

$$
\begin{aligned}
& \sup _{x \in \mathbb{R}^{3}}[|\boldsymbol{v}(x)|(1+|x|)(1+\operatorname{Re} s(x))]<\infty \\
& \sup _{x \in \mathbb{R}^{3}}\left[|\operatorname{grad} \boldsymbol{v}(x)|(1+|x|)^{3 / 2}(1+\operatorname{Re} s(x))^{3 / 2}\right]<\infty .
\end{aligned}
$$

Rotation and Translation: Leray vs PR Solutions

Rotation and Translation: Leray vs PR Solutions

Remark 1

Rotation and Translation: Leray vs PR Solutions

Remark 1
Leray solutions exist for translational and angular velocities of arbitrary size.

Rotation and Translation: Leray vs PR Solutions

Remark 1
Leray solutions exist for translational and angular velocities of arbitrary size.
The existence of PR solutions is known if translational and angular velocities have restricted size.

Rotation and Translation: Leray vs PR Solutions

Remark 1
Leray solutions exist for translational and angular velocities of arbitrary size.
The existence of $P R$ solutions is known if translational and angular velocities have restricted size.

Remark 2
Every PR solution is also a Leray solution (simple to show).

Rotation and Translation: Leray vs PR Solutions

Remark 1
Leray solutions exist for translational and angular velocities of arbitrary size.
The existence of $P R$ solutions is known if translational and angular velocities have restricted size.

Remark 2
Every PR solution is also a Leray solution (simple to show).
Question

Rotation and Translation: Leray vs PR Solutions

Remark 1
Leray solutions exist for translational and angular velocities of arbitrary size.
The existence of $P R$ solutions is known if translational and angular velocities have restricted size.

Remark 2
Every PR solution is also a Leray solution (simple to show).
Question
Is a Leray solution a $P R$ solution?

Rotation and Translation: Leray vs PR Solutions

Remark 1
Leray solutions exist for translational and angular velocities of arbitrary size.
The existence of $P R$ solutions is known if translational and angular velocities have restricted size.

Remark 2
Every PR solution is also a Leray solution (simple to show).
Question
Is a Leray solution a $P R$ solution? Is it so for data of arbitrary size?

Rotation and Translation: Leray Solutions are PR Solutions

Rotation and Translation: Leray Solutions are PR Solutions

Theorem 2 (Kyed \& GPG, 2009)

Rotation and Translation: Leray Solutions are PR Solutions

Theorem 2 (Kyed \& GPG, 2009)
Let $\mathrm{Re}, \mathrm{Ta}>0$ be given.

Rotation and Translation: Leray Solutions are PR Solutions

Theorem 2 (Kyed \& GPG, 2009)
Let $\mathrm{Re}, \mathrm{Ta}>0$ be given. Assume that (\boldsymbol{v}, p) is a smooth pair satisfying the following equations

$$
\left.\begin{array}{l}
\Delta \boldsymbol{v}+\operatorname{Re}\left(\boldsymbol{e}_{1}-\boldsymbol{v}\right) \cdot \operatorname{grad} \boldsymbol{v}+\operatorname{Ta}\left(\boldsymbol{e}_{1} \times \boldsymbol{x} \cdot \operatorname{grad} \boldsymbol{v}-\boldsymbol{e}_{1} \times \boldsymbol{v}\right)=\operatorname{grad} p \\
\operatorname{div} \boldsymbol{v}=0
\end{array}\right\} \text { in } \mathcal{D}
$$

Rotation and Translation: Leray Solutions are PR Solutions

Theorem 2 (Kyed \& GPG, 2009)
Let $\mathrm{Re}, \mathrm{Ta}>0$ be given. Assume that (\boldsymbol{v}, p) is a smooth pair satisfying the following equations

$$
\left.\begin{array}{l}
\Delta \boldsymbol{v}+\operatorname{Re}\left(\boldsymbol{e}_{1}-\boldsymbol{v}\right) \cdot \operatorname{grad} \boldsymbol{v}+\operatorname{Ta}\left(\boldsymbol{e}_{1} \times \boldsymbol{x} \cdot \operatorname{grad} \boldsymbol{v}-\boldsymbol{e}_{1} \times \boldsymbol{v}\right)=\operatorname{grad} p \\
\operatorname{div} \boldsymbol{v}=0
\end{array}\right\} \text { in } \mathcal{D}
$$

Then, if for some $R>0$,

$$
\operatorname{grad} \boldsymbol{v} \in L^{2}(\mathcal{D} \cap\{|x|>R\}), \quad \boldsymbol{v} \in L^{6}(\mathcal{D} \cap\{|x|>R\}),
$$

Rotation and Translation: Leray Solutions are PR Solutions

Theorem 2 (Kyed \& GPG, 2009)
Let $\mathrm{Re}, \mathrm{Ta}>0$ be given. Assume that (\boldsymbol{v}, p) is a smooth pair satisfying the following equations

$$
\left.\begin{array}{l}
\Delta \boldsymbol{v}+\operatorname{Re}\left(\boldsymbol{e}_{1}-\boldsymbol{v}\right) \cdot \operatorname{grad} \boldsymbol{v}+\operatorname{Ta}\left(\boldsymbol{e}_{1} \times \boldsymbol{x} \cdot \operatorname{grad} \boldsymbol{v}-\boldsymbol{e}_{1} \times \boldsymbol{v}\right)=\operatorname{grad} p \\
\operatorname{div} \boldsymbol{v}=0
\end{array}\right\} \text { in } \mathcal{D}
$$

Then, if for some $R>0$,

$$
\operatorname{grad} \boldsymbol{v} \in L^{2}(\mathcal{D} \cap\{|x|>R\}), \quad \boldsymbol{v} \in L^{6}(\mathcal{D} \cap\{|x|>R\}),
$$

for all sufficiently large $|x|$ we have

$$
|\boldsymbol{v}(x)| \leq \mathcal{V}_{1}(x)+\mathcal{V}_{2}(x)
$$

where
$\mathcal{V}_{1}(x)=O\left([(1+|x|)(1+\operatorname{Re} s(x))]^{-1}\right), \quad \mathcal{V}_{2}(x)=O\left(|x|^{-3 / 2+\delta}\right)$, arbitrary $\delta>0$.

Rotation and Translation: Leray Solutions are PR Solutions

Remark 1

Rotation and Translation: Leray Solutions are PR Solutions

Remark 1
Analogous estimates (with improved bounds) hold for the velocity gradient $\operatorname{grad} \boldsymbol{v}(x)$.

Rotation and Translation: Leray Solutions are PR Solutions

Remark 1
Analogous estimates (with improved bounds) hold for the velocity gradient $\operatorname{grad} \boldsymbol{v}(x)$.
Remark 2

Rotation and Translation: Leray Solutions are PR Solutions

Remark 1
Analogous estimates (with improved bounds) hold for the velocity gradient $\operatorname{grad} \boldsymbol{v}(x)$.
Remark 2
The asymptotic estimate for $\boldsymbol{v}(x)$ is sharp in the following sense.

Rotation and Translation: Leray Solutions are PR Solutions

Remark 1

Analogous estimates (with improved bounds) hold for the velocity gradient $\operatorname{grad} \boldsymbol{v}(x)$.
Remark 2
The asymptotic estimate for $\boldsymbol{v}(x)$ is sharp in the following sense. From

$$
|\boldsymbol{v}(x)|=O\left([(1+|x|)(1+\operatorname{Re} s(x))]^{-1}\right)
$$

and the regularity of \boldsymbol{v} it follows

$$
\boldsymbol{v} \in L^{q}(\mathcal{D}), \quad \text { for all } q>2
$$

Rotation and Translation: Leray Solutions are PR Solutions

Remark 1

Analogous estimates (with improved bounds) hold for the velocity gradient $\operatorname{grad} \boldsymbol{v}(x)$.
Remark 2
The asymptotic estimate for $\boldsymbol{v}(x)$ is sharp in the following sense. From

$$
|\boldsymbol{v}(x)|=O\left([(1+|x|)(1+\operatorname{Re} s(x))]^{-1}\right)
$$

and the regularity of \boldsymbol{v} it follows

$$
\boldsymbol{v} \in L^{q}(\mathcal{D}), \quad \text { for all } q>2
$$

It can be shown that

$$
\boldsymbol{v} \in L^{2}(\mathcal{D}) \Longrightarrow \boldsymbol{v}(x) \equiv \mathbf{0}
$$

Leray Solutions are PR Solutions: Sketch of Proof

Leray Solutions are PR Solutions: Sketch of Proof

Without loss, we may set $\mathrm{Re}=\mathrm{Ta}=1$.

Leray Solutions are PR Solutions: Sketch of Proof

Without loss, we may set $\operatorname{Re}=\mathrm{Ta}=1$.
Step 1: Reduction to a Problem in the Whole Space.

Leray Solutions are PR Solutions: Sketch of Proof

Without loss, we may set $\operatorname{Re}=\mathrm{Ta}=1$.
Step 1: Reduction to a Problem in the Whole Space.
For a fixed and sufficiently large $\rho>0$, take a smooth "cut-off" function $\psi_{\rho}=\psi_{\rho}(x)$ that is 0 if $|x|<R$ and is 1 if $|x|>2 \rho$, and set

$$
\boldsymbol{u}:=\psi_{\rho} \boldsymbol{v}-\boldsymbol{z}, \quad \operatorname{div} \boldsymbol{z}=\boldsymbol{v} \cdot \operatorname{grad} \psi_{\rho}, \quad \mathrm{p}:=\psi_{\rho} p
$$

Leray Solutions are PR Solutions: Sketch of Proof

Without loss, we may set $\operatorname{Re}=\mathrm{Ta}=1$.
Step 1: Reduction to a Problem in the Whole Space.
For a fixed and sufficiently large $\rho>0$, take a smooth "cut-off" function $\psi_{\rho}=\psi_{\rho}(x)$ that is 0 if $|x|<R$ and is 1 if $|x|>2 \rho$, and set

$$
\boldsymbol{u}:=\psi_{\rho} \boldsymbol{v}-\boldsymbol{z}, \quad \operatorname{div} \boldsymbol{z}=\boldsymbol{v} \cdot \operatorname{grad} \psi_{\rho}, \quad \mathrm{p}:=\psi_{\rho} p
$$

Then, the original problem for (\boldsymbol{v}, p) goes into the following one:

$$
\left.\begin{array}{l}
\Delta \boldsymbol{u}+\frac{\partial \boldsymbol{u}}{\partial x_{1}}+\left(\boldsymbol{e}_{1} \times \boldsymbol{x} \cdot \operatorname{grad} \boldsymbol{u}-\boldsymbol{e}_{1} \times \boldsymbol{u}\right) \\
\operatorname{div} \boldsymbol{u}=0 \quad=\operatorname{div}\left[\left(\psi_{\rho} \boldsymbol{v}\right) \otimes\left(\psi_{\rho} \boldsymbol{v}\right)\right]-\operatorname{grad} p+\boldsymbol{f}_{c}
\end{array}\right\} \text { in } \mathbb{R}^{3}
$$

where $\boldsymbol{f}_{c} \in C_{0}^{\infty}\left(\mathbb{R}^{3}\right)$.

Leray Solutions are PR Solutions: Sketch of Proof

Step 2: Change into an Oseen-like Time-Dependent Problem.

Leray Solutions are PR Solutions: Sketch of Proof

Step 2: Change into an Oseen-like Time-Dependent Problem.
Set $\boldsymbol{y}=\boldsymbol{Q}(t) \cdot \boldsymbol{x}$ and define

$$
\begin{aligned}
\boldsymbol{w}(y, t) & :=\boldsymbol{Q}(t) \cdot \boldsymbol{u}\left(\boldsymbol{Q}^{\top}(t) \cdot \boldsymbol{y}\right), \quad \pi(y, t):=\mathrm{p}\left(\boldsymbol{Q}^{\top}(t) \cdot \boldsymbol{y}\right) \\
\boldsymbol{V}(y, t) & :=\boldsymbol{Q}(t) \cdot\left[\psi_{\rho} \boldsymbol{v}\right]\left(\boldsymbol{Q}^{\top}(t) \cdot \boldsymbol{y}\right), \quad \boldsymbol{F}_{c}(y, t):=\boldsymbol{Q}(t) \cdot \boldsymbol{f}_{c}\left(\boldsymbol{Q}^{\top}(t) \cdot \boldsymbol{y}\right)
\end{aligned}
$$

Leray Solutions are PR Solutions: Sketch of Proof

Step 2: Change into an Oseen-like Time-Dependent Problem.
Set $\boldsymbol{y}=\boldsymbol{Q}(t) \cdot \boldsymbol{x}$ and define

$$
\begin{aligned}
\boldsymbol{w}(y, t) & :=\boldsymbol{Q}(t) \cdot \boldsymbol{u}\left(\boldsymbol{Q}^{\top}(t) \cdot \boldsymbol{y}\right), \quad \pi(y, t):=\mathrm{p}\left(\boldsymbol{Q}^{\top}(t) \cdot \boldsymbol{y}\right) \\
\boldsymbol{V}(y, t) & :=\boldsymbol{Q}(t) \cdot\left[\psi_{\rho} \boldsymbol{v}\right]\left(\boldsymbol{Q}^{\top}(t) \cdot \boldsymbol{y}\right), \quad \boldsymbol{F}_{c}(y, t):=\boldsymbol{Q}(t) \cdot \boldsymbol{f}_{c}\left(\boldsymbol{Q}^{\top}(t) \cdot \boldsymbol{y}\right)
\end{aligned}
$$

Then (\boldsymbol{w}, π) satisfies the following IVP

$$
\left.\begin{array}{rl}
\frac{\partial \boldsymbol{w}}{\partial t} & =\Delta \boldsymbol{w}+\frac{\partial \boldsymbol{w}}{\partial x_{1}}-\operatorname{div}[\boldsymbol{V} \otimes \boldsymbol{V}]-\operatorname{grad} \pi-\boldsymbol{F}_{c} \\
\operatorname{div} \boldsymbol{w} & =0 \\
\boldsymbol{w}(y, 0) & =\boldsymbol{u}(y)
\end{array}\right\} \text { in } \mathbb{R}^{3} \times(0, \infty)
$$

Leray Solutions are PR Solutions: Sketch of Proof

Step 2: Change into an Oseen-like Time-Dependent Problem.
Set $\boldsymbol{y}=\boldsymbol{Q}(t) \cdot \boldsymbol{x}$ and define

$$
\begin{aligned}
\boldsymbol{w}(y, t) & :=\boldsymbol{Q}(t) \cdot \boldsymbol{u}\left(\boldsymbol{Q}^{\top}(t) \cdot \boldsymbol{y}\right), \quad \pi(y, t):=\mathrm{p}\left(\boldsymbol{Q}^{\top}(t) \cdot \boldsymbol{y}\right) \\
\boldsymbol{V}(y, t) & :=\boldsymbol{Q}(t) \cdot\left[\psi_{\rho} \boldsymbol{v}\right]\left(\boldsymbol{Q}^{\top}(t) \cdot \boldsymbol{y}\right), \quad \boldsymbol{F}_{c}(y, t):=\boldsymbol{Q}(t) \cdot \boldsymbol{f}_{c}\left(\boldsymbol{Q}^{\top}(t) \cdot \boldsymbol{y}\right)
\end{aligned}
$$

Then (\boldsymbol{w}, π) satisfies the following IVP

$$
\left.\begin{array}{rl}
\frac{\partial \boldsymbol{w}}{\partial t} & =\Delta \boldsymbol{w}+\frac{\partial \boldsymbol{w}}{\partial x_{1}}-\operatorname{div}[\boldsymbol{V} \otimes \boldsymbol{V}]-\operatorname{grad} \pi-\boldsymbol{F}_{c} \\
\operatorname{div} \boldsymbol{w} & =0 \\
\boldsymbol{w}(y, 0) & =\boldsymbol{u}(y)
\end{array}\right\} \text { in } \mathbb{R}^{3} \times(0, \infty)
$$

Leray Solutions are PR Solutions: Sketch of Proof

Step 3: Representation via the Oseen Fundamental Tensor.

Leray Solutions are PR Solutions: Sketch of Proof

Step 3: Representation via the Oseen Fundamental Tensor. Since $\operatorname{grad} \boldsymbol{w} \in L^{\infty}\left(0, \infty ; L^{2}\left(\mathbb{R}^{3}\right)\right)$, $\boldsymbol{w} \in L^{\infty}\left(0, \infty ; L^{6}\left(\mathbb{R}^{3}\right)\right)$ (Leray solution), we can prove the following representation for \boldsymbol{w} :

Leray Solutions are PR Solutions: Sketch of Proof

Step 3: Representation via the Oseen Fundamental Tensor.
Since $\operatorname{grad} \boldsymbol{w} \in L^{\infty}\left(0, \infty ; L^{2}\left(\mathbb{R}^{3}\right)\right), \boldsymbol{w} \in L^{\infty}\left(0, \infty ; L^{6}\left(\mathbb{R}^{3}\right)\right)$ (Leray solution), we can prove the following representation for \boldsymbol{w} :

$$
\boldsymbol{w}(y, t)=\boldsymbol{w}_{1}(y, t)+\boldsymbol{w}_{2}(y, t)+\boldsymbol{w}_{3}(y, t)
$$

Leray Solutions are PR Solutions: Sketch of Proof

Step 3: Representation via the Oseen Fundamental Tensor.
Since $\operatorname{grad} \boldsymbol{w} \in L^{\infty}\left(0, \infty ; L^{2}\left(\mathbb{R}^{3}\right)\right), \boldsymbol{w} \in L^{\infty}\left(0, \infty ; L^{6}\left(\mathbb{R}^{3}\right)\right)$ (Leray solution), we can prove the following representation for \boldsymbol{w} :

$$
\boldsymbol{w}(y, t)=\boldsymbol{w}_{1}(y, t)+\boldsymbol{w}_{2}(y, t)+\boldsymbol{w}_{3}(y, t)
$$

where

$$
\boldsymbol{w}_{1}(y, t)=\int_{\mathbb{R}^{3}} \boldsymbol{\Gamma}(y-z, t) \cdot \boldsymbol{u}(z) d z
$$

Leray Solutions are PR Solutions: Sketch of Proof

Step 3: Representation via the Oseen Fundamental Tensor.
Since $\operatorname{grad} \boldsymbol{w} \in L^{\infty}\left(0, \infty ; L^{2}\left(\mathbb{R}^{3}\right)\right), \boldsymbol{w} \in L^{\infty}\left(0, \infty ; L^{6}\left(\mathbb{R}^{3}\right)\right)$ (Leray solution), we can prove the following representation for \boldsymbol{w} :

$$
\boldsymbol{w}(y, t)=\boldsymbol{w}_{1}(y, t)+\boldsymbol{w}_{2}(y, t)+\boldsymbol{w}_{3}(y, t)
$$

where

$$
\begin{gathered}
\boldsymbol{w}_{1}(y, t)=\int_{\mathbb{R}^{3}} \boldsymbol{\Gamma}(y-z, t) \cdot \boldsymbol{u}(z) d z \\
\boldsymbol{w}_{2}(y, t)=-\int_{\mathbb{R}^{3}} \int_{0}^{t} \boldsymbol{\Gamma}(y-z, \tau) \cdot \boldsymbol{F}_{c}(z, t-\tau) d \tau d z
\end{gathered}
$$

Leray Solutions are PR Solutions: Sketch of Proof

Step 3: Representation via the Oseen Fundamental Tensor.
Since $\operatorname{grad} \boldsymbol{w} \in L^{\infty}\left(0, \infty ; L^{2}\left(\mathbb{R}^{3}\right)\right), \boldsymbol{w} \in L^{\infty}\left(0, \infty ; L^{6}\left(\mathbb{R}^{3}\right)\right)$ (Leray solution), we can prove the following representation for \boldsymbol{w} :

$$
\boldsymbol{w}(y, t)=\boldsymbol{w}_{1}(y, t)+\boldsymbol{w}_{2}(y, t)+\boldsymbol{w}_{3}(y, t)
$$

where

$$
\begin{gathered}
\boldsymbol{w}_{1}(y, t)=\int_{\mathbb{R}^{3}} \boldsymbol{\Gamma}(y-z, t) \cdot \boldsymbol{u}(z) d z \\
\boldsymbol{w}_{2}(y, t)=-\int_{\mathbb{R}^{3}} \int_{0}^{t} \boldsymbol{\Gamma}(y-z, \tau) \cdot \boldsymbol{F}_{c}(z, t-\tau) d \tau d z \\
\boldsymbol{w}_{3}(y, t)=-\int_{\mathbb{R}^{3}} \int_{0}^{t} \operatorname{grad} \boldsymbol{\Gamma}(y-z, \tau):[\boldsymbol{V} \otimes \boldsymbol{V}](z, t-\tau) d \tau d z
\end{gathered}
$$

Leray Solutions are PR Solutions: Sketch of Proof

Step 4: Estimates of the Functions $\boldsymbol{w}_{i}, i=1,2,3$.

Leray Solutions are PR Solutions: Sketch of Proof

Step 4: Estimates of the Functions $\boldsymbol{w}_{i}, i=1,2,3$.
We easily show that

$$
\left|\boldsymbol{w}_{1}(y, t)\right|=\left|\int_{\mathbb{R}^{3}} \boldsymbol{\Gamma}(y-z, t) \cdot \boldsymbol{u}(z) d z\right| \leq C t^{-1 / 4}\|\boldsymbol{v}\|_{6}
$$

Leray Solutions are PR Solutions: Sketch of Proof

Step 4: Estimates of the Functions $\boldsymbol{w}_{i}, i=1,2,3$.
We easily show that

$$
\left|\boldsymbol{w}_{1}(y, t)\right|=\left|\int_{\mathbb{R}^{3}} \boldsymbol{\Gamma}(y-z, t) \cdot \boldsymbol{u}(z) d z\right| \leq C t^{-1 / 4}\|\boldsymbol{v}\|_{6}
$$

Moreover, using the estimate

$$
\int_{0}^{\infty}|\boldsymbol{\Gamma}(\xi, t)| d t \leq \frac{2}{|\xi|(1+2 s(\xi))},
$$

and the fact that $\boldsymbol{F}_{c} \in L^{\infty}\left(0, \infty ; C_{0}^{\infty}\left(\mathbb{R}^{3}\right)\right)$, we also (easily) show

$$
\left|\boldsymbol{w}_{2}(y, t)\right|=\left|\int_{\mathbb{R}^{3}} \int_{0}^{t} \boldsymbol{\Gamma}(y-z, \tau) \cdot \boldsymbol{F}_{c}(z, t-\tau) d \tau d z\right| \leq \frac{\left\|\boldsymbol{f}_{c}\right\|_{r}}{(1+|y|)(1+s(y))} .
$$

for some $r>3$ and all $|y| \geq 2 R$.

Leray Solutions are PR Solutions: Sketch of Proof

Step 4: Estimates of the Functions $\boldsymbol{w}_{i}, i=1,2,3$ (cont'd)

Leray Solutions are PR Solutions: Sketch of Proof

Step 4: Estimates of the Functions $\boldsymbol{w}_{i}, i=1,2,3$ (cont'd)
Finally, using the estimate

$$
\int_{0}^{\infty}|\operatorname{grad} \boldsymbol{\Gamma}(\xi, t)| d t \leq C_{\beta}\left\{\begin{array}{l}
|\xi|^{-3 / 2}(1+2 s(\xi))^{-3 / 2}, \quad \text { if }|\xi| \geq \beta \\
|\xi|^{-2}, \quad \text { if }|\xi| \in(0, \beta),
\end{array}\right.
$$

Leray Solutions are PR Solutions: Sketch of Proof

Step 4: Estimates of the Functions $\boldsymbol{w}_{i}, i=1,2,3$ (cont'd)
Finally, using the estimate

$$
\int_{0}^{\infty}|\operatorname{grad} \boldsymbol{\Gamma}(\xi, t)| d t \leq C_{\beta}\left\{\begin{array}{l}
|\xi|^{-3 / 2}(1+2 s(\xi))^{-3 / 2}, \quad \text { if }|\xi| \geq \beta \\
|\xi|^{-2}, \quad \text { if }|\xi| \in(0, \beta),
\end{array}\right.
$$

we show

$$
\begin{aligned}
\left|\boldsymbol{w}_{3}(y, t)\right| & =\left|\int_{\mathbb{R}^{3}} \int_{0}^{t} \operatorname{grad} \boldsymbol{\Gamma}(y-z, \tau):[\boldsymbol{V} \otimes \boldsymbol{V}](z, t-\tau) d \tau d z\right| \\
& \leq C_{\theta}\left(\int_{|z| \geq R}|\operatorname{grad} \boldsymbol{v}|^{2}\right)^{1-\theta},
\end{aligned}
$$

for all $\theta>0$, all $|y| \geq 2 R$, and arbitrary $R>\rho / 2$.

Leray Solutions are PR Solutions: Sketch of Proof

Step 4: Estimates of the Functions $\boldsymbol{w}_{i}, i=1,2,3$ (cont'd)

Leray Solutions are PR Solutions: Sketch of Proof

Step 4: Estimates of the Functions $\boldsymbol{w}_{i}, i=1,2,3$ (cont'd)
Collecting the previous inequalities and transforming back to the original variable \boldsymbol{v} and x, one concludes
$|\boldsymbol{v}(x)| \leq C_{\theta}\left[t^{-1 / 4}\|\boldsymbol{v}\|_{6}+\frac{\left\|\boldsymbol{f}_{c}\right\|_{r}}{(1+|x|)(1+s(x))}+\left(\int_{|y| \geq R}|\operatorname{grad} \boldsymbol{v}|^{2}\right)^{1-\theta}\right]$.
for all $\theta>0$ and all $|x| \geq 2 R$.

Leray Solutions are PR Solutions: Sketch of Proof

Step 4: Estimates of the Functions $\boldsymbol{w}_{i}, i=1,2,3$ (cont'd)
Collecting the previous inequalities and transforming back to the original variable \boldsymbol{v} and x, one concludes
$|\boldsymbol{v}(x)| \leq C_{\theta}\left[t^{-1 / 4}\|\boldsymbol{v}\|_{6}+\frac{\left\|\boldsymbol{f}_{c}\right\|_{r}}{(1+|x|)(1+s(x))}+\left(\int_{|y| \geq R}|\operatorname{grad} \boldsymbol{v}|^{2}\right)^{1-\theta}\right]$.
for all $\theta>0$ and all $|x| \geq 2 R$.
So, in the limit $t \rightarrow \infty$,

$$
|\boldsymbol{v}(x)| \leq C_{\theta}\left[\frac{\left\|\boldsymbol{f}_{c}\right\|_{r}}{(1+|x|)(1+s(x))}+\left(\int_{|y| \geq R}|\operatorname{grad} \boldsymbol{v}|^{2}\right)^{1-\theta}\right] .
$$

for all $\theta>0$ and all $|x| \geq 2 R$.

Leray Solutions are PR Solutions: Sketch of Proof

Step 5: Estimates of the term $\int_{|z| \geq R}|\operatorname{grad} \boldsymbol{v}|^{2}$ for large R.

Leray Solutions are PR Solutions: Sketch of Proof

Step 5: Estimates of the term $\int_{|z| \geq R}|\operatorname{grad} \boldsymbol{v}|^{2}$ for large R.
This is the most challenging part of the proof.

Leray Solutions are PR Solutions: Sketch of Proof

Step 5: Estimates of the term $\int_{|z| \geq R}|\operatorname{grad} \boldsymbol{v}|^{2}$ for large R.
This is the most challenging part of the proof. The following result holds: Key Lemma

Leray Solutions are PR Solutions: Sketch of Proof

Step 5: Estimates of the term $\int_{|z| \geq R}|\operatorname{grad} \boldsymbol{v}|^{2}$ for large R.
This is the most challenging part of the proof. The following result holds:
Key Lemma
For all $\varepsilon>0$, there is $C=C(\boldsymbol{v}, \varepsilon)>0$ such that

$$
\int_{|z| \geq R}|\operatorname{grad} \boldsymbol{v}|^{2} \leq C R^{-1+\varepsilon}
$$

Leray Solutions are PR Solutions: Sketch of Proof

Step 5: Estimates of the term $\int_{|z| \geq R}|\operatorname{grad} \boldsymbol{v}|^{2}$ for large R.
This is the most challenging part of the proof. The following result holds:
Key Lemma
For all $\varepsilon>0$, there is $C=C(\boldsymbol{v}, \varepsilon)>0$ such that

$$
\int_{|z| \geq R}|\operatorname{grad} \boldsymbol{v}|^{2} \leq C R^{-1+\varepsilon}
$$

A crucial step in the proof of this lemma is to show the following:

$$
\begin{gathered}
\boldsymbol{v} \in L^{s_{1}}\left(\mathcal{D}^{R}\right), \quad \operatorname{grad} \boldsymbol{v} \in L^{s_{2}}\left(\mathcal{D}^{R}\right), \quad D^{2} \boldsymbol{v} \in L^{s_{3}}\left(\mathcal{D}^{R}\right), \\
\text { all } s_{1}>2, s_{2}>4 / 3, s_{3}>1
\end{gathered}
$$

where $\mathcal{D}^{R}:=\mathcal{D} \cap\{|y| \geq R\}$.

Leray Solutions are PR Solutions: Sketch of Proof

Step 5: Estimates of the term $\int_{|z| \geq R}|\operatorname{grad} \boldsymbol{v}|^{2}$ for large R.
This is the most challenging part of the proof. The following result holds:
Key Lemma
For all $\varepsilon>0$, there is $C=C(\boldsymbol{v}, \varepsilon)>0$ such that

$$
\int_{|z| \geq R}|\operatorname{grad} \boldsymbol{v}|^{2} \leq C R^{-1+\varepsilon}
$$

A crucial step in the proof of this lemma is to show the following:

$$
\begin{gathered}
\boldsymbol{v} \in L^{s_{1}}\left(\mathcal{D}^{R}\right), \quad \operatorname{grad} \boldsymbol{v} \in L^{s_{2}}\left(\mathcal{D}^{R}\right), \quad D^{2} \boldsymbol{v} \in L^{s_{3}}\left(\mathcal{D}^{R}\right), \\
\text { all } s_{1}>2, s_{2}>4 / 3, s_{3}>1
\end{gathered}
$$

where $\mathcal{D}^{R}:=\mathcal{D} \cap\{|y| \geq R\}$. Notice that, at the outset, we only know $\boldsymbol{v} \in L^{6}\left(\mathcal{D}^{R}\right), \quad \operatorname{grad} \boldsymbol{v} \in L^{2}\left(\mathcal{D}^{R}\right)$.

Leray Solutions are PR Solutions: Sketch of Proof

Step 6: A First Pointwise Estimate for $\boldsymbol{v}(x)$.

Leray Solutions are PR Solutions: Sketch of Proof

Step 6: A First Pointwise Estimate for $\boldsymbol{v}(x)$.
Replace the estimate

$$
\int_{|z| \geq R}|\operatorname{grad} \boldsymbol{v}|^{2} \leq C R^{-1+\varepsilon}
$$

into the inequality

$$
|\boldsymbol{v}(x)| \leq C_{\theta}\left[\frac{\left\|\boldsymbol{f}_{c}\right\|_{r}}{(1+|x|)(1+s(x))}+\left(\int_{|y| \geq R}|\operatorname{grad} \boldsymbol{v}|^{2}\right)^{1-\theta}\right] .
$$

and choose $R=|x|$.

Leray Solutions are PR Solutions: Sketch of Proof

Step 6: A First Pointwise Estimate for $\boldsymbol{v}(x)$.
Replace the estimate

$$
\int_{|z| \geq R}|\operatorname{grad} \boldsymbol{v}|^{2} \leq C R^{-1+\varepsilon}
$$

into the inequality

$$
|\boldsymbol{v}(x)| \leq C_{\theta}\left[\frac{\left\|\boldsymbol{f}_{c}\right\|_{r}}{(1+|x|)(1+s(x))}+\left(\int_{|y| \geq R}|\operatorname{grad} \boldsymbol{v}|^{2}\right)^{1-\theta}\right] .
$$

and choose $R=|x|$. We thus find

$$
|\boldsymbol{v}(x)| \leq C_{\eta}\left(\frac{\left\|\boldsymbol{f}_{c}\right\|_{r}}{(1+|x|)(1+s(x))}+\frac{1}{|x|^{1-\eta}}\right), \quad \text { for all } \eta>0
$$

Leray Solutions are PR Solutions: Sketch of Proof

Step 7: Boot-strap Argument: End of Proof.

Leray Solutions are PR Solutions: Sketch of Proof

Step 7: Boot-strap Argument: End of Proof.
We use the estimate

$$
\boldsymbol{v}(x)=O\left(1 /|x|^{1-\eta}\right)
$$

back into the term

$$
\begin{gathered}
\boldsymbol{w}_{3}(y, t)=\int_{\mathbb{R}^{3}} \int_{0}^{t} \operatorname{grad} \boldsymbol{\Gamma}(y-z, \tau):[\boldsymbol{V} \otimes \boldsymbol{V}](z, t-\tau) d \tau d z \\
\boldsymbol{V}(y, t):=\boldsymbol{Q}(t) \cdot\left[\psi_{\rho} \boldsymbol{v}\right]\left(\boldsymbol{Q}^{\top}(t) \cdot \boldsymbol{y}\right)
\end{gathered}
$$

Leray Solutions are PR Solutions: Sketch of Proof

Step 7: Boot-strap Argument: End of Proof.
We use the estimate

$$
\boldsymbol{v}(x)=O\left(1 /|x|^{1-\eta}\right)
$$

back into the term

$$
\begin{gathered}
\boldsymbol{w}_{3}(y, t)=\int_{\mathbb{R}^{3}} \int_{0}^{t} \operatorname{grad} \boldsymbol{\Gamma}(y-z, \tau):[\boldsymbol{V} \otimes \boldsymbol{V}](z, t-\tau) d \tau d z \\
\boldsymbol{V}(y, t):=\boldsymbol{Q}(t) \cdot\left[\psi_{\rho} \boldsymbol{v}\right]\left(\boldsymbol{Q}^{\top}(t) \cdot \boldsymbol{y}\right)
\end{gathered}
$$

to find

$$
\left|\boldsymbol{w}_{3}(y, t)\right| \leq C_{\delta} \frac{1}{|y|^{3 / 2-\delta}}, \quad \text { arbitrary } \delta>0
$$

Leray Solutions are PR Solutions: Sketch of Proof

Step 7: Boot-strap Argument: End of Proof.
We use the estimate

$$
\boldsymbol{v}(x)=O\left(1 /|x|^{1-\eta}\right)
$$

back into the term

$$
\begin{gathered}
\boldsymbol{w}_{3}(y, t)=\int_{\mathbb{R}^{3}} \int_{0}^{t} \operatorname{grad} \boldsymbol{\Gamma}(y-z, \tau):[\boldsymbol{V} \otimes \boldsymbol{V}](z, t-\tau) d \tau d z \\
\boldsymbol{V}(y, t):=\boldsymbol{Q}(t) \cdot\left[\psi_{\rho} \boldsymbol{v}\right]\left(\boldsymbol{Q}^{\top}(t) \cdot \boldsymbol{y}\right)
\end{gathered}
$$

to find

$$
\left|\boldsymbol{w}_{3}(y, t)\right| \leq C_{\delta} \frac{1}{|y|^{3 / 2-\delta}}, \quad \text { arbitrary } \delta>0
$$

Since

$$
|\boldsymbol{v}(x)| \leq C \frac{\left\|\boldsymbol{f}_{c}\right\|_{r}}{(1+|x|)(1+s(x))}+\left|\boldsymbol{w}_{3}(y, t)\right|, \quad|y|=|x|
$$

this ends the proof of the theorem.

Conclusions \& Final Remarks.

Conclusions \& Final Remarks.

- To any arbitrary rigid motion of the body, there corresponds a smooth flow of the Navier-Stokes liquid that is Physically Reasonable.

Conclusions \& Final Remarks.

- To any arbitrary rigid motion of the body, there corresponds a smooth flow of the Navier-Stokes liquid that is Physically Reasonable. In particular, the velocity field $\boldsymbol{v}=\boldsymbol{v}(x)$ has the following asymptotic behavior

$$
|\boldsymbol{v}(x)| \leq \mathcal{V}_{1}(x)+\mathcal{V}_{2}(x)
$$

where

$$
\begin{aligned}
& \quad \mathcal{V}_{1}(x)=O\left([(1+|x|)(1+\operatorname{Re} s(x))]^{-1}\right), \quad \mathcal{V}_{2}(x)=O\left(|x|^{-3 / 2+\delta}\right) \\
& \text { arbitrary } \delta>0
\end{aligned}
$$

Conclusions \& Final Remarks.

- To any arbitrary rigid motion of the body, there corresponds a smooth flow of the Navier-Stokes liquid that is Physically Reasonable. In particular, the velocity field $\boldsymbol{v}=\boldsymbol{v}(x)$ has the following asymptotic behavior

$$
|\boldsymbol{v}(x)| \leq \mathcal{V}_{1}(x)+\mathcal{V}_{2}(x)
$$

where

$$
\mathcal{V}_{1}(x)=O\left([(1+|x|)(1+\operatorname{Re} s(x))]^{-1}\right), \quad \mathcal{V}_{2}(x)=O\left(|x|^{-3 / 2+\delta}\right)
$$

arbitrary $\delta>0$.

- This estimate is sharp, in the sense that

$$
\boldsymbol{v} \in L^{2}(\mathcal{D}) \Longrightarrow \boldsymbol{v}(x) \equiv \mathbf{0}
$$

Conclusions \& Final Remarks.

- There is still one question that remains open, concerning the leading term in the asymptotic expansion.

Conclusions \& Final Remarks.

- There is still one question that remains open, concerning the leading term in the asymptotic expansion.
In other words, it is expected that $\boldsymbol{v}=\boldsymbol{v}(x)$ can be expressed, for large $|x|$, as:

$$
\boldsymbol{v}(x)=\boldsymbol{v}_{1}(x)+\boldsymbol{v}_{2}(x)
$$

with

$$
\left|\boldsymbol{v}_{1}(x)\right|=O\left([(1+|x|)(1+\operatorname{Re} s(x))]^{-1}\right), \quad \boldsymbol{v}_{2}(x)=O\left(|x|^{-3 / 2+\delta}\right),
$$

arbitrary $\delta>0$,

Conclusions \& Final Remarks.

- There is still one question that remains open, concerning the leading term in the asymptotic expansion.
In other words, it is expected that $\boldsymbol{v}=\boldsymbol{v}(x)$ can be expressed, for large $|x|$, as:

$$
\boldsymbol{v}(x)=\boldsymbol{v}_{1}(x)+\boldsymbol{v}_{2}(x)
$$

with

$$
\left|\boldsymbol{v}_{1}(x)\right|=O\left([(1+|x|)(1+\operatorname{Re} s(x))]^{-1}\right), \quad \boldsymbol{v}_{2}(x)=O\left(|x|^{-3 / 2+\delta}\right),
$$

arbitrary $\delta>0$, but no proof is available (yet).

