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Quasistatic rate-independent processes:

∂uE(t, u, z) = 0, (1a)

∂ dz
dt
R
(
z ,

dz

dt

)
+∂zE(t, u, z) 3 0. (1b)

with
u ∈ U a “fast” variable,
z ∈ Z an “slow” variable with activated evolution,
E : [0,T ]× U × Z → IR ∪ {∞} the stored energy,
R : Z × Z → IR ∪ {∞} the dissipation pseudopotential
R(z , ·) (positively) homogeneous degree-1

Functional-analytical ansatz: U , Z Banach spaces,
u : [0,T ]→ U ,
z : [0,T ]→ Z,
R and E coercive.

Initial-value problem: z(0) = z0 (and also u(0) = u0).
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General ansatz.
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Treatment of the general ansatz:
General theory of rate-independent processes based on dissipation distance:

D(z0, z1) := inf

{∫ 1

0

R
(
z̃(t),

dz̃

dt
(t)
)
dt;

z̃∈C 1([0, 1];V), z̃(0) = z0, z̃(1) = z1

}

In principle, D the dissipation distance can be treated as itself even
without referring to R and without any linear structure on Z.

But we will not pursue this high generality here.

Simplification: R(z , dz
dt ) = R(dz

dt ).
Then D(z0, z1) = R(z1−z0) is translation invariant
and we assume R : Z → IR ∪ {∞} homogeneuous degree-1 and coercive.
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General ansatz.
Definition of energic solution.
Approximate solution.
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We call q = (u, z) : [0,T ]→ Q = U × Z an energetic solution to the
problem (1) with the initial conditions if

z : [0,T ]→ Z with z([0,T ]) relatively compact,

VarR(z ; 0,T ) = (the variation of z over [0,T ] w.r.t. R) <∞ ,

t 7→ ∂tE(t, u(t), z(t)) is integrable on [0,T ],

and if

the energy equality holds, i.e.

E
(
T , u(T ), z(T )

)
+ VarR(z ; 0,T )

= E
(
0, u0, z0

)
+

∫ T

0

∂tE(t, u(t), z(t))dt,

the stability holds for all ũ ∈ U , z̃ ∈ Z and for t∈ I :

E
(
t, u(t), z(t)

)
≤ E

(
t, ũ, z̃

)
+R

(
z̃−z(t)

)
the initial conditions u(0) = u0 and z(0) = z0 are satisfied.

Advantage: no dz
dt and ∂uE and ∂zE explicitly involved.

Convexity of E(t, ·, ·): energetic solutions with dz
dt ∈ L1(I ;Z) solve

∂uE(t, u, z) = 0 and ∂R
(

dz
dt

)
+ ∂zE(t, u, z) 3 0.
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and if

the energy equality holds, i.e.

E
(
T , u(T ), z(T )

)
+ VarR(z ; 0,T )

= E
(
0, u0, z0

)
+

∫ T

0

∂tE(t, u(t), z(t))dt,

the stability holds for all ũ ∈ U , z̃ ∈ Z and for t∈ I :

E
(
t, u(t), z(t)

)
≤ E

(
t, ũ, z̃

)
+R

(
z̃−z(t)

)
the initial conditions u(0) = u0 and z(0) = z0 are satisfied.

But it works even without convexity:

maximum-dissipation principle (or Levitas’ realizability principle)
competing with minimum-stored-energy principle.
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General ansatz.
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Discretization in time by a fully implicit formula:

∂uEk
τ (uk

τ , z
k
τ ) = 0,

∂R
(zk

τ − zk−1
τ

τ

)
+ ∂zEk

τ (uk
τ , z

k
τ ) 3 0

where Ek
τ (u, z) := Eτ (kτ, u, z) with Eτ (t, u, z) := 1

τ

∫ 0

−τE(t+ξ, u, z)dξ,

for k = 1, ...,T/τ and using, for k = 1,

z0
τ = z0,

The existence of the discrete solution (uk
τ , z

k
τ ):

the direct method: (uk
τ , z

k
τ ) can be taken as a solution to:

minimize τR
(z−zk−1

τ

τ

)
+ Ek

τ

(
u, z
)

subject to (u, z) ∈ Q = U × Z.

 (Pk
τ )

It suggests a conceptually implementable numerical strategy.
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General ansatz.
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Comparing values (Pk
τ ) at the level k with those in a general (ũ, z̃)

and using degree-1 homogeneity of R, we obtain the discrete
stability:

Ek
τ (uk

τ , z
k
τ ) ≤ Ek

τ (ũ, z̃) +R(z̃−zk−1
τ )−R(zk

τ−zk−1
τ )

≤ Ek
τ (ũ, z̃) +R(z̃−zk

τ );

we thus get the stability for the discrete solution, i.e.:

Ēτ
(
t, ūτ (t), z̄τ (t)

)
≤ Ēτ

(
t, ũ, z̃

)
+R

(
z̃ − z̄τ (t)

)
holds for all ũ ∈ U , z̃ ∈ Z, and t ∈ [0,T ].
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Comparing values of (Pk
τ ) at the level k with those in (uk−1

τ , zk−1
τ )

gives an upper estimate of the energy balance:

Ek
τ (uk

τ , z
k
τ ) +R(zk

τ−zk−1
τ )−Ek−1

τ (uk−1
τ , zk−1

τ )

≤ Ek
τ (uk−1

τ , zk−1
τ ) +R(zk−1

τ −zk−1
τ )−Ek−1

τ (uk−1
τ , zk−1

τ )

=

∫ kτ

(k−1)τ

∂

∂t
E(t, uk−1

τ , zk−1
τ )dt.

Eventually, written the stability at the level k−1 and test it by
(ũ, z̃) = (uk

τ , z
k
τ ) gives a lower estimate of the energy balance:

Ek
τ (uk

τ , z
k
τ ) +R(zk

τ−zk−1
τ )− Ek−1

τ (uk−1
τ , zk−1

τ )

= Ek−1
τ (uk

τ , z
k
τ ) +

∫ kτ

(k−1)τ

∂

∂t
E(t, uk

τ , z
k
τ )dt +R(zk

τ−zk−1
τ )− Ek−1

τ (uk−1
τ , zk−1

τ )

≥
∫ kτ

(k−1)τ

∂

∂t
E(t, uk

τ , z
k
τ )dt.
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τ , z
k
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τ )− Ek−1

τ (uk−1
τ , zk−1

τ )+

∫ kτ
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∂

∂t
E(t, uk

τ , z
k
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∫ kτ

(k−1)τ

0.
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General ansatz.
Definition of energic solution.
Approximate solution.
Two-sided approximate energy balance

Summing it for k = 1, ..., s/τ ∈ IN, we get the
two-sided approximate energy balance:

E
(
0, u0, z0

)
+

∫ s

0

∂tEτ
(
t, uτ (t), zτ (t)

)
dt

≤ E
(
s, uτ (s), zτ (s)

)
+ VarR

(
zτ ; 0, s

)
≤ E

(
0, u0, z0

)
+

∫ s

0

∂tEτ
(
t, uτ (t), zτ (t)

)
dt,

where
uτ := piecewise affine interpolation of {uk

τ}
T/τ
k=0 ,

uτ := “forward” piecewise constant interpolation of {uk
τ}

T/τ
k=0 ,

uτ := “backward” piecewise constant interpolation of {uk
τ}

T/τ
k=0 ,

and similarly for zτ , zτ , and zτ .

Possibility of a-posteriori check:
if not satisfied, optimization algorithm for (Pk

τ ) may have failed
⇒ return back and run it with different initial guess
energy-based “backtracking” strategy (A.Mielke, T.R., J.Zeman, 2007)
possibly with a multigrid strategy in space diescretization (B.Benešová, 2009).
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Assumptions
Convergence.
Further developments: stability through Γ-convergence
Numerics conceptually

Standard assumptions on:
coercivity,
lower semicontinuity,
compactness of level sets, etc.

An essential assumption:
existence of a joint recovery sequence in the sense

∀(t`, u`, z`)→ (t, u, z) ∀ (ũ, z̃) ∈ U × Z ∃ (ũ`, z̃`)`∈IN :

lim sup
`→∞

(
E(t`, ũ`, z̃`)+R(z̃` − z`)−E(t`, u`, z`)

)
≤ E(t, ũ, z̃)+R(z̃ − z)−E(t, u, z).

Possibly, we also benefit from assuming a uniform monotonicity of ∂uE(t, ·, z).
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Assumptions
Convergence.
Further developments: stability through Γ-convergence
Numerics conceptually

Step 1: a-priori estimates: from the approximate energy balance by
Gronwall inequality: ∥∥uτ∥∥L∞([0,T ];U))

≤ C1, (5a)

max
t∈[0,T ]

Ēτ (t, ūτ (t), z̄τ (t)) ≤ C2, (5b)

∥∥zτ∥∥L∞([0,T ];Z)
≤ C3; (5c)

VarR(z̄τ ; 0,T ) ≤ C4. (5d)
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Assumptions
Convergence.
Further developments: stability through Γ-convergence
Numerics conceptually

Step 2: selection of subsequences

weakly* converging (Banach’s selection principle) to some u and z ,

pointwise converging (Helly’s selection principle):

zτ (t)→ z(t) weakly in Z for all t.

in case of a uniform monotonicity of ∂uE(t, ·, z) also

uτ → u strongly in Lp([0,T ];U).
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Assumptions
Convergence.
Further developments: stability through Γ-convergence
Numerics conceptually

Step 3: limit passage in the stability:
using the joint-recovery-sequence condition for the (integrated)
approximate stability∫ T

0

Ēτ
(
t, ūτ (t), z̄τ (t)

)
dt ≤

∫ T

0

Ēτ
(
t, ũ(t), z̃(t)

)
+R

(
z̃(t)− z̄τ (t)

)
dt

to get the limit stability∫ T

0

E
(
t, u(t), z(t)

)
dt ≤

∫ T

0

E
(
t, ũ(t), z̃(t)

)
+R

(
z̃(t)− z(t)

)
dt

for all (ũ, z̃) ∈ L∞([0,T ];U × Z).
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Assumptions
Convergence.
Further developments: stability through Γ-convergence
Numerics conceptually

Step 3: limit passage in the stability:
using the joint-recovery-sequence condition for the (integrated)
approximate stability∫ T

0

Ēτ
(
t, ūτ (t), z̄τ (t)

)
dt ≤

∫ T

0

Ēτ
(
t, ũ(t), z̃(t)

)
+R

(
z̃(t)− z̄τ (t)

)
dt

to get the limit stability and desintegrating it∫ T

0

E
(
t, u(t), z(t)

)
dt ≤

∫ T

0

E
(
t, ũ(t), z̃(t)

)
+R

(
z̃(t)− z(t)

)
dt

for all (ũ, z̃) ∈ U × Z and a.a. t ∈ [0,T ].
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Assumptions
Convergence.
Further developments: stability through Γ-convergence
Numerics conceptually

Step 4: limit passage in the upper energy inequality:

E
(
T , uτ (T ), zτ (T )

)
+ VarR

(
zτ ; 0,T

)
≤ E

(
0, u0, z0

)
+

∫ T

0

∂tEτ
(
t, uτ (t), zτ (t)

)
dt.

by lower semicontinuity in the l.h.s. and continuity in the r.h.s.
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Step 5: the lower energy inequality:

stability (suffices a.e.) allows

by Riemann-sum approximation of Lebesgue integral to show

the opposite inequality ⇒ the energy equality!

T.Roub́ıček (Dec.15,2009, Nečas’ workshop, Prague) COMPUTATIONAL RATE-INDEPENDENT PROCESSES



Introduction, rate-independent processes, discretization.
Convergence analysis outlined

Some applications outlined
Beyond rate independency

Assumptions
Convergence.
Further developments: stability through Γ-convergence
Numerics conceptually

Step 6: Improved convergence.

∀ t ∈ [0,T ] : VarR1 (zτ ; [0, t])→ VarR1 (z ; [0, t]);

∀ t ∈ [0,T ] : E(t, uτ (t), zτ (t))→ E(t, u(t), z(t));

∂tE(·, uτ (·), zτ (·))→ ∂tE(·, u(·), z(·)) in L1((0,T )).
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Convergence.
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Numerics conceptually

Stability under data perturbation:

Γ-convergence of {E`(t̃, ·, ·)}`∈IN,t̃→t towards E∞(t, ·, ·), i.e.

(u`, z`)→ (u, z) =⇒ E∞(t, u, z) ≤ lim inf
t̃→t,`→∞

E`(t̃, u`, z`),

∀ (û, ẑ) ∈ U × Z ∃{(û`, ẑ`)}`∈IN with (û`, ẑ`)→ (û, ẑ) :

E∞(t, u, z) ≥ lim sup
t̃→t,`→∞

E`(t̃, û`, ẑ`),

Γ-convergence of {R`}`∈IN towards R∞ and

joint-recovery-sequence condition before:

∀(t`, u`, z`)→ (t, u, z) ∀ (ũ, z̃) ∈ U × Z ∃ (ũ`, z̃`)`∈IN :

lim sup
`→∞

(
E`(t`, ũ`, z̃`)+R`(z̃` − z`)−E`(t`, u`, z`)

)
≤ E∞(t, ũ, z̃)+R∞(z̃ − z)−E∞(t, u, z).

Energetic solutions to (U × Z, E`,R`) converge (as subsequences)
to energetic solutions to (U × Z, E∞,R∞)

(A.Mielke, T.R., U.Stefanelli, 2008)
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E`(t`, ũ`, z̃`)+R`(z̃` − z`)−E`(t`, u`, z`)

)
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Combination with time-discretization:
(uk
`,τ , z

k
`,τ ) can be taken as a solution to:

minimize R
`

(
z−zk−1

τ

)
+
[
E
`

]k
τ

(
u, z
)

subject to (u, z) ∈ Q = U × Z.

}
(Pk
`,τ )

Then (ū`,τ , z̄`,τ ) converges for `→∞ and τ → 0 (as subsequences) to
solutions to (U×Z, E∞,R∞).

Numerics:

domE`(t, ·, ·) a (time-independent) finite-dimensional subspace of U×Z.

Then (Pk
`,τ ):

computationally implementable,
Mosco’s type transformation if epi(R

`
) polyhedral,

energy-based backtracking at disposal for global optimization

convergence analysis at disposal.
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Particular examples of joint-recovery-sequence conditions:

1 {E`(t̃, ·, ·)}`∈IN,t̃→t Γ-converges to E∞(t, ·, ·) and
R` → R∞ continuously
(j.r.s. just the same as for E` → E∞)

2 R` = R∞ = R0 + δK for a cone K ⊂ Z
(i) E` = E0 + δQ` with E0(t, ·, ·) quadratic and Q` ⊂ U × Z

finite-dimensional:
j.r.s. by “binomial trick”

(ii) general E∞ and E`: case by case
(e.g. holomic constraints in E∞ needs penalization etc.).

(A.Mielke, T.R. in M2AN, 2009)

Error estimates in case 2(i):
A.Mielke, L.Paoli, A.Petrov, U.Steffanelli, 2009.
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Plasticity with hardening
Damage
Delamination/debonding.
Shape-memory alloys

Linearized plasticity with hardening of Prager/Ziegler’s type at small strains:

Ω ⊂ IRd a bounded domain,
u = displacement,
z = (π, η) = the plastic deformation and the hardening parameter,
U = W 1,2(Ω; IRd),
Z = L2(Ω; IRd×d

sym,0 × IR),

with IRd×d
sym,0 :=

{
A∈ IRd×d ; A> = A, tr(A) = 0

}
,

E(t, u, π, η) =

∫
Ω

1

2
C
(
e(u)−π

)
:
(
e(u)−π

)
+

1

2
Hπ:π +

b

2
η2 − f (t)·u dx ,

with e(u) = 1
2 (∇u)> + 1

2∇u small-strain tensor,
b > 0 isotropic-hardening coefficient,
H ≥ 0 kinematic-hardening coefficient (a d×d-tensor),

R(π̇, η̇) =

∫
Ω

δ∗S(π̇, η̇) dx ,

with S ⊂ IRn×n
sym,0×IR be a convex closed neighbourhood of the origin,

δS is its indicator function, and δ∗S the conjugate functional to δS .
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Plasticity with hardening
Damage
Delamination/debonding.
Shape-memory alloys

Main features (the case “2a”):
R discontinous but E(t, ·, ·, ·) convex and quadratic.
Joint recovery sequence by the “binominal trick” (H = 0 for simplicity):

lim sup
`→∞

(
E(t`, ũ`, z̃`)+R(z̃` − z`)−E(t`, u`, z`)

)
= lim sup

`→∞

(∫
Ω

(1

2
C(e(ũ`+u`)− π`−π̃`) : (e(ũ`−u`) + π`−π̃`)

+
1

2
b(η̃`+η`)(η̃`−η`)dx +R(π̃`−π`, η̃`−η`)

)
=

∫
Ω

(1

2
C(e(ũ+u)− π−π̃)

)
:(e(ũ−u) + π−π̃)

+
1

2
b(η+η̃)(η−η̃)dx +R(π̃−π, η̃−η)

= E(t, ũ, z̃)+R(z̃ − z)−E(t, u, z),

if we choose ũ` := ũ − u + u`, π̃` := π̃ − π + π` and η̃` := η̃ − η + η`.

Numerics: P1-FEM for u, P0-FEM for π and η.
Similar results by H.-D.Alber, C.Carstensen, C.Chelminski,
W.Han & D.Reddy, A.Mielke, at al.
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:(e(ũ−u) + π−π̃)

+
1

2
b(η+η̃)(η−η̃)dx +R(π̃−π, η̃−η)
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+
1

2
b(η̃`+η`)(η̃`−η`)dx +R(π̃`−π`, η̃`−η`)

)
=

∫
Ω

(1

2
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Sample calculations:
twisting experiment, steel specimen, loading by hard device (=Dirichlet b.c.):

twist-grid

Calculations and visualization: courtesy of Soeren Bartels (Univ. Bonn).
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Plasticity with hardening
Damage
Delamination/debonding.
Shape-memory alloys

No hardening (H = 0 and b = 0):
Prandtl-Reuss elastic/perfectly plastic model

classical books:
Nečas, Hlaváček, 1981

Lov́ı̌sek, Nečas, Hlaváček, Haslinger

newest treatment, BD-space, energetic solutions
G. Dal Maso, A. DeSimone, M.G. Mora (in ARMA, 2006)

limit for H→ 0 and b → 0
S.Bartels, A.Mielke, T.R. (in progress)
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Gradient damage (partial) at small strains:

Ω ⊂ IRd a bounded domain,
u = displacement,
z = a scalar damage parameter,
U = W 1,2(Ω; IRd),
Z = W 1,p(Ω),

E`(t, u, z) =

∫
Ω

z

2
Ce(u):e(u) + δ[ 1

` ,1](z) + b|∇z |p − f (t) · u dx ,

with b > 0 nonlocal-influence parameter,

R(ż) =

∫
Ω

δ(−∞,0](ż)− κż dx ,

with κ > 0 the energy per d-dimensional volume dissipated by damage.
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Main features (the case “2b”):

R discontinous and E`(t, ·, ·) nonconvex
but ∂uE(t, ·, z) uniformly monotone.

Joint recovery sequence (for p > d):

ũ` := ũ, z̃` := Π`
((

z̃ −
∥∥z` − z

∥∥
L∞(Ω)

)+)
; Π` a projector Z → Z`

note that 0 ≤ z̃` ≤ z` a.e. (if z̃ ≤ z because p > d) and z̃` → z̃ .
A.Mielke & T.R.

For p ≤ d a more complicated construction: A.Mielke & M.Thomas, 2009.

Numerics: both U` and Z` P1-FEM.

After having the energetic solution of the regularized problem, passage
`→∞ to the complete damage possible because E` Γ-converges to E∞
One trouble: lost of coercivity ⇒
only the bulk-load f = 0 and hard-device load must be used.
u and e(u) loose a sense where z = 0, only Ce and Ce:e have a good sense.

G.Bouchitté, A.Mielke & T.R., 2007 (for p > d)
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2D-numerical
experiments:

Courtesy:
J.Zeman
(Czech Technical Univ.,
Prague).
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Delamination/debonding at small strains: Griffith-type model:
Ω ⊂ IRd a bounded domain,
Γ a d−1 dimensional manifold inside Ω,
u = displacement,
z = a scalar delamination parameter,
U = W 1,2(Ω \ Γ; IRd),
Z = L∞(Γ),

E∞(t, u, z) =


∫

Ω

Ce(u):e(u)

2
− f ·udx if u|ΓDir = uDir(t) on ΓDir,

[u(x)]Γ = 0 if z(x) > 0,
[u] · ν ≥ 0 and 0 ≤ z ≤ 1 on Γ,

+∞ elsewhere.

with ν the normal to Γ,

R(ż) =

∫
Γ

δ(−∞,0](ż)− κż dS , with

κ > 0 the energy per d−1-dimensional surface dissipated by delamination.
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Delamination/debonding at small strains: Griffith-type model:
Ω ⊂ IRd a bounded domain,
Γ a d−1 dimensional manifold inside Ω,
u = displacement,
z = a scalar delamination parameter,
U = W 1,2(Ω \ Γ; IRd),
Z = L∞(Γ),

E∞(t, u, z) =


∫

Ω

Ce(u):e(u)

2
− f ·udx if u|ΓDir = uDir(t) on ΓDir,

z(x)[u(x)]Γ = 0,
[u] · ν ≥ 0 and 0 ≤ z ≤ 1 on Γ,

+∞ elsewhere.

with ν the normal to Γ,

R(ż) =

∫
Γ

δ(−∞,0](ż)− κż dS , with

κ > 0 the energy per d−1-dimensional surface dissipated by delamination.
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Delamination/debonding at small strains: regularized model:
Ω ⊂ IRd a bounded domain,
Γ a d−1 dimensional manifold inside Ω,
u = displacement,
z = a scalar delamination parameter,
U = W 1,2(Ω \ Γ; IRd),
Z = L∞(Γ),

E`(t, u, z) =


∫

Ω

Ce(u):e(u)

2
− f ·udx+`

∫
Γ

z [u]2
ΓdS if u|ΓDir = uDir(t) on ΓDir,

[u]·ν≥0 and 0≤z≤ 1 on Γ,
+∞ elsewhere.

with ν the normal to Γ,

R(ż) =

∫
Γ

δ(−∞,0](ż)− κż dS , with

κ > 0 the energy per d−1-dimensional surface dissipated by delamination.
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Main features (the case “2b”):

R discontinous and E∞(t, ·, ·) nonconvex discontinuous,
E` (t, ·, ·) nonconvex continuous,

but we benefit from compactness of trace operator on Γ
(⇒ no gradient of z nedeed),

∂uE(t, ·, z) uniformly monotone.

Γ-limit of E` towards E∞ for `→∞: a joint recovery sequence:

ũ` := ũ, z̃` :=

{
z`z̃/z where z > 0,

0 where z = 0.

T.R. & L.Scardia & C.Zanini, 2008.

Numerics: P1-FEM for u, P0-FEM for z .
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Delamination 2D-experiments documenting energetics (including Clapeyron’s effect)

Calculations & visualisation: M. Kočvara (Acad. Sci. Prague, now Univ. Birmingham).
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Meaning of particular curves:

(1) work done by loading calculated as
∫ t

0
∂
∂t E
(
t, y(t), z(t)

)
dt,

(2) work done by loading calculated as E
(
t
)

+R
(
z(t)−z0

)
− E

(
0),

(3) energy stored in the bulk,

(4) energy dissipated thru delamination,

(5) energy stored in the adhesive.

Clapeyron’s effect: work done splits to 50% stored and 50% dissipated energy.
i.e. here: (1) = 1

2 (3) = 1
2 (4) (at least at some occasions)

Calculations & visualisation: M. Kočvara (Acad. Sci. Prague, now Univ. Birmingham).
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Left figure: The delamination parameter takes mostly values 0 or 1:
Righ figure: Active debonding area is localized on the crack tip:

Calculations & visualisation: M. Kočvara (Acad. Sci. Prague, now Univ. Birmingham).
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From 3D to 2D:

1 From damage to delamination:

Suitable scalling: R`: damage activation threshold ∼ `,
E`: smart choice of a nonlinear material.

(M.Thomas & T.R., in progress.)

2 From damage in the bulk to damage in the plate: Kirchhoff-Love plates.
(T.R. & G.Tomassetti, in progress too.)

3 From delamination in the bulk to cracks in a Kirchhoff-Love plate.
(L.Fredi, R.Paroni, T.R. & C.Zanini, in progress too.)

4 From plasticity in the bulk to plasticity in a Kirchhoff-Love plate.
(M.Liero & A.Mielke, 2009)
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Example of an multiscale modelling: microstructure evolution in
shape-memory alloys:
“Micro-level”: u := y=large deformation,

z := volume fraction.
Multi-well stored energy: St.Venant-Kirchhoff form of each well:

E`(t, y , z) :=


∫

Ω

min
κ=1,..,K

(
Cκεκ:εκ

2
+cκ

)
+

1

`
|∇2y |2dx if z = L(∇y),

+∞ elsewhere

where εκ :=
(U>κ )−1∇y>∇yU−1

κ −I
2 with Uκ the stretch tensor of the

particular variant, and L : IRd×d → IRK .
Dissipation:

R(z) :=

∫
Ω

|Sz |dx ,

with S a “smoothening” compact operator like (I−ε∆)−1 with ε>0 small.
Then R continuous.
Existence + numerical approximation of energetic solutions (the case “1”).
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Experiments by L.Straka, V.Novák, M.Landa, O.Heczko, 2004:
Compression experiment: reorientation of tetragonal martensite in a
(001)-oriented singlecrystal NiMnGa under temperature 293 K:

Stress-strain diagram at temperature 293 K (left) and 323 K (right):
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Computational simulations:
Compression experiment with NiMnGa (001)-oriented singlecrystal

Reorientation of martensite during a compression experiment at 293 K .
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Stress/strain response during a compression experiment at 293 K and at 323 K .
Calculations, visualizations: courtesy of Marcel Arndt, Univ. Bonn (presently in Munich)
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Fighting with multiscales: the limit passage `→∞ :
“Meso-level”: u := (y , ν)=large deformation×a gradient Young measure,

z := volume fraction.

E∞(t, y , ν, z) :=


[∫

Ω

min
κ=1,..,K

(Cκεκ:εκ

2
+cκ

)]
(F )dνx(F )dx if z =

∫
IRd×d

L(F )dνx(F )

+∞ elsewhere

Γ-limit E` → E∞.

Numerics: P1-FEM for y , P0-FEM for z , element-wise homogeneous
laminates for k-th order for ν. Convergence to an energetic solution.

(M.Kruž́ık, A.Mielke, T.R., 2005)
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Computational experiments with CuAlNi (1,0,0)-oriented single crystal
based on 2nd-order laminate.
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Stress/strain response.

A lab experiment.

1 compression: austenite −→ twinned martensite,
2 more compression: twinned martensite −→ detwinned martensite,
3 and back. Calculations: courtesy of Martin Kruž́ık.

Experiment: courtesy of Yongzhong Huo.
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Computational experiments with CuAlNi (1,0,0)-oriented single crystal
based on 2nd-order laminate.

CuAlNi

1 compression: austenite −→ twinned martensite,
2 more compression: twinned martensite −→ detwinned martensite,
3 and back.

Calculations: courtesy of Martin Kruž́ık.
Visualization: courtesy of Jan Koutný.
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Different orientations of the CuAlNi single crystal give different response:

Stress-strain response under cyclic compression

load of a (0,tgα,1)-oriented single-crystal de-

pends substantially on α. Here α = 0◦, 10◦,

20◦, and 30◦ is depicted.

Specimen, here (0,tg10◦,1)-

oriented CuAlNi single crystal,

under compression loading at

200 MPa.

Calculations & visualization: courtesy of Jan Koutný.
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Computational experiments with NiTi (1,0,0)-oriented single crystal
based on 2nd-order laminate, cubic/rhomboedric phase transformation
between austenite and R-phase (1 to 4 variants):

NiTi

1 compression: austenite −→ austenite co-existing with twinned R-phase,
2 more compression: austenite is vanishing.

Calculations and visualization: courtesy of Barbora Benešová.
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A detail of reconstructed microstructure:

NiTi

Calculations and visualization: courtesy of Barbora Benešová.
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Beyond rate independency:

Inertia and viscosity:
Combination of rate-independent processes vs. rate-dependent processes.

T ′ d
2u

dt2
+R′2

du

dt
+ ∂uE(t, u, z) = 0, (7a)

∂ dz
dt
R1

(
z ,

dz

dt

)
+ ∂zE(t, u, z) 3 0. (7b)

with
u ∈ U a “displacement” determined essentially by z
z ∈ Z an “internal” variable with activated evolution,
E : U × Z → IR ∪ {∞} the stored energy,
R1 : Z × Z → IR ∪ {∞} the dissipation pseudopotential
R1(z , ·) (positively) homogeneous degree-1
R2 : V → IR the dissipation pseudopotential of viscous forces, quadratic
T : H → IR the kinetic energy, quadratic
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Beyond rate independency:

Inertia and viscosity:
Combination of rate-independent processes vs. rate-dependent processes.

T ′ d
2u

dt2
+R′2

du

dt
+ ∂uE(t, u, z) = 0, (7a)

∂ dz
dt
R1

(
z ,

dz

dt

)
+ ∂zE(t, u, z) 3 0. (7b)

with
u ∈ U a “displacement” evolving “viscously”
z ∈ Z an “internal” variable with activated evolution,
E : U × Z → IR ∪ {∞} the stored energy,
R1 : Z × Z → IR ∪ {∞} the dissipation pseudopotential
R1(z , ·) (positively) homogeneous degree-1
R2 : V → IR the dissipation pseudopotential of viscous forces, quadratic
T : H → IR the kinetic energy, quadratic
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Beyond rate independency:

Inertia and viscosity:
Combination of rate-independent processes vs. rate-dependent processes.

T ′ d
2u

dt2
+R′2

du

dt
+ ∂uE(t, u, z) = 0, (7a)

∂ dz
dt
R1

(
z ,

dz

dt

)
+ ∂zE(t, u, z) 3 0. (7b)

with
u ∈ U a “displacement” evolving “viscously” and “inertially”
z ∈ Z an “internal” variable with activated evolution,
E : U × Z → IR ∪ {∞} the stored energy,
R1 : Z × Z → IR ∪ {∞} the dissipation pseudopotential
R1(z , ·) (positively) homogeneous degree-1
R2 : V → IR the dissipation pseudopotential of viscous forces, quadratic
T : H → IR the kinetic energy, quadratic
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Thermodynamical expansion possible:

E = E0 + θE1 temperature dependent,
heat-transfer equation of the type:

cv (θ)
∂θ

∂t
− div

(
K(θ, u, z)∇θ

)
= R1

(∂z

∂t

)
+ 2R2

(∂u

∂t

)
︸ ︷︷ ︸

dissipative heat

+ θ[E1]′u
∂u

∂t
+ θ[E1]′z

∂z

∂t︸ ︷︷ ︸
adiabatic heat

.

Fully implicit time discretization does not yield an incremental
problem with a variational structure (existence by Schauder fixed
point only)

energetic-solution concept important
(weak convergence of the dissipative heat source)

L1-theory for heat equation (Boccardo, Galouët, et al.) and
interpolation of the adiabatic-heat term (Gagliardo, Nirenberg)
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Example: Thermo-visco-elasticity with rate-independent plasticity:
temperature evolution during heating:

temp

Calculations and visualization: courtesy of Soeren Bartels (Univ. Bonn).
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Example: Thermo-visco-elasticity with rate-independent plasticity:
stress evolution during heating - residual stresses after plasticizing visible:

stress

Calculations and visualization: courtesy of Soeren Bartels (Univ. Bonn).
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More on: www.karlin.mff.cuni.cz/ ˜roubicek/trpublic.htm

Thanks a lot for your attention.
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