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 Difficulties in modeling blood flow

 Blood Rheology

 Complex  geometry    

 Closed  system

3D flow simulations

are restricted to specific 

regions of interest

Local flow dynamics has 

an important role in the 

systemic circulation (and vice-versa)

MOTIVATION

Hemodynamics vs cardiovascular diseases: local fluid patterns and wall 

shear stress are strictly related to the development of cardiovascular 

diseases (indicator of atherosclerosis)

WSS pulmonary artery 

(congenital heart disease) 



1. Blood rheology

2. Fluid-structure interaction

3. Geometrical multiscale approach

MATHEMATICAL MODEL



Vessel Radius (cm) Number Wall thickness 

(cm)

Average

Re  number

Aorta 1.25 1 0.2 3400

Arteries 0.2 159 0.1 500

Arterioles 1.510-3 5.7107 210-3 0.7

Capillaries 310-4 1.61010 110-4 0.002

Venules 110-3 1.3109 210-4 0.01

Veins 0.25 200 0.05 140

Vena cava 1.5 1 0.15 3300

Relationship between arterial size, number of vessels and average Reynolds numbers

Turbulence can develop in a few cases:

High cardiac output (exercise);   Stenoses;   Low blood density (for example: anemia)

CIRCULATORY SYSTEM: FLUID DYNAMIC VALUES



• Blood is a suspension of

• cells

• erythrocytes (RBCs)

• leukocytes (WBCs)

• platelets

• plasma (90-92% water + proteins, organic salts)

Number/

mm3

Shape

(unstressed)

Size μm

(unstressed)

Volume

Conc.

erythrocytes 4-6106 Biconcave discs

with no nuclei

81-3 45%

leukocytes 4-11 103 roughly 

spherical

7-22

1%

platelets 2.5-5 105 Rounded or oval 

discs

2-4

Plasma

Red blood 

cells

Platelets

White blood 

cells

BLOOD COMPOSITION



 Non-Constant Viscosity 

Shear Thinning

Main Factors:

RBC aggregation 

and 

deformability

Other Factors:

Hematocrit

Osmotic Pressure

Plasma Composition

………………..

 Why is blood a non-Newtonian fluid ?

Courtesy of Prof. K.B. 

Chandran, University of Iowa.

BLOOD RHEOLOGY
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Simple Shear

 shear rate

 velocity field

at constant shear  rate:
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 Shear thinning (or pseudoplastic) fluids 

 Shear thickening (or dilatant) fluids

 Yield stress (Bingham plastic) fluids
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shear-viscosity function
(apparent viscosity)

 Thixotropic fluids (apparent viscosity decreasing in time)

 Rheopectic fluids (apparent viscosity increasing in time)

NEWTONIAN vs NON-NEWTONIAN FLUID BEHAVIOR



(Y.I.Cho and K.R.Kensey, Biorheology, 1991)

¹0 = lim
_°!0

¹( _°) = 0:056Pas ¹1 = lim
_°!1

¹( _°) = 0:00345Pas

Model
¹( _°)¡ ¹1
¹0 ¡ ¹1

Material constants for blood

Powell-Eyring
sinh¡1(¸ _°)

¸ _°
¸ = 5:383s

Cross (1 + (¸ _°)m)¡1 ¸ = 1:007s;m = 1:028

Modified Cross (1 + (¸ _°)m)¡a ¸ = 3:736s;m = 2:406; a = 0:254

Carreau (1 + (¸ _°)2)(n¡1)=2 ¸ = 3:313s; n = 0:3568

Carreau-Yasuda (1 + (¸ _°)a)(n¡1)=a ¸ = 1:902s; n = 0:22; a = 1:25

SHEAR-THINNING BLOOD FLOW MODELS 



BLOOD RHEOLOGY

• Anne M. Robertson, Adélia  Sequeira and Marina V. Kameneva. Hemorheology. 

In: Hemodynamical Flows: Modeling, Analysis and Simulation,  G. P. Galdi,  

R. Rannacher,  A. M. Robertson, S. Turek, Oberwolfach Seminars, Vol. 37, 

pp.63-120, 2008.

• Anne M. Robertson, Adélia  Sequeira and Robert Owens. Rheological models 

for blood. In: Cardiovascular Mathematics, A. Quarteroni, L. Formaggia and 

A. Veneziani (eds.), Springer-Verlag, 2009.



Blood flow: Generalized Newtonian fluid equations

Shear-thinning viscosity Carreau model

Rouleaux aggregation

BLOOD FLOW DYNAMICS



MATHEMATICAL RESULTS



Mechanical model of the arterial 

vessel: linear or non-linear elasticity 

in Lagrangian formulation

INTIMA

MEDIA

ADVENTITIA

Mechanical interaction

(Fluid-wall coupling)

MORPHOLOGY OF THE BLOOD VESSELS

The vessel wall is formed by many layers made 

of tissues with different mechanical characteristics



MECHANICAL FLUID-STRUCTURE INTERACTION

Equations for the deformation of the vessel wall

3D nonlinear hyperelasticity (Lagrangian formulation)
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MECHANICAL FLUID-STRUCTURE INTERACTION

3D nonlinear hyperelasticity  (Lagrangian formulation)
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MECHANICAL FLUID-STRUCTURE INTERACTION

3D nonlinear hyperelasticity (Lagrangian formulation)

( ) ( ) 2S tr E I E   

Green-St Venant strain tensor

(linear response)

with 

( , ), ( , )E E    Lamé constants  (functions of Young modulus, Poisson ratio)

St Venant – Kirchhoff material 



MECHANICAL FLUID-STRUCTURE INTERACTION

Equations for the deformation of the vessel wall (Lagrangian formulation)
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 Blood flow: Generalized Newtonian flow (ALE frame)

MECHANICAL FLUID-STRUCTURE INTERACTION

 Deformation of the vessel wall

 Interface conditions

u = blood velocity

w = domain velocity

p = pressure

ρf = density

μ = viscosity

η = wall displacement

+ initial and boundary

conditions at Γi (i=0,1,2)
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MECHANICAL FLUID-STRUCTURE INTERACTION

 Interface conditions
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Blood: 
Newtonian or non-Newtonian fluid

Deformation of the Vessel Wall: 
3D (nonlinear) elasticity or 2D shell type models

Normal stress

Coupling conditions

Displacement (new domain)

MECHANICAL FLUID-STRUCTURE INTERACTION

implicit coupling

(iterative procedure)

Open problems:

Well posedness of the FSI problem

Contributions given by e.g. : D.Coutand, S. Shkoller, Y.Maday, 

C.Grandmont, B.Desjardins, M.Esteban,  

G.P. Galdi, H.Beirão da Veiga, among others

Devise efficient numerical algorithms

Contributions given by e.g. : P. le Tallec, F.Nobile, 

M.A.Fernandéz,M.Moubachir,J-F.Gerbeau, S.Deparis, 

W.A.Wall, among others



MECHANICAL FLUID-STRUCTURE INTERACTION

Regularity  Assumptions:
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An Energy Estimate for the coupled FSI problem
[ J. Janela, A. Moura, A. S, 2009 – generalization of  L. Formaggia, A. Moura, F. Nobile, 2007 ]

MECHANICAL FLUID-STRUCTURE INTERACTION
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THEOREM: The coupled FSI problem, with homogeneous Dirichlet boundary conditions

satisfies the following energy inequality 

and, consequently, the energy decay property
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Sketch of the PROOF:

MECHANICAL FLUID-STRUCTURE INTERACTION

(shear-thinning  viscosity fluid)

1. Multiply the structure equation by          , integrate over the reference domain,  

use the boundary and matching  conditions

2.   Multiply the fluid equation by        , integrate over the fluid domain, ...
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MECHANICAL FLUID-STRUCTURE INTERACTION

FSI   Algorithm: (adapted from Fernandéz & Moubachir, 2005)

Coupling strategy:  fully implicit coupling based on a  Newton algorithm  with the 

exact computation of the Jacobian

Efficient solvers for each fluid and structure subproblems to  ensure accurate 

and fast convergence of the FSI nonlinear coupled system

ALE formulation to account for the evolution of the computational domain

Fluid equations: Discretization in time: implicit Euler scheme

Discretization in space:  stabilized P1 bubble / P1  FE

Structure equations: Discretization in time:  mid-point Newmark method

Discretization in space:  P1  FE



BLOOD FLOW SIMULATIONS

Newtonian vs non-Newtonian behavior

• 3D Non-Newtonian models for blood flow

• 3D Fluid-Structure Interaction algorithms for pressure 

wave propagation in arteries and detailed flow 

patterns using Newtonian and non-Newtonian blood 

flow models

• Geometrical multiscale simulation of the 

cardiovascular system using non-Newtonian models

Main objectives:



BLOOD FLOW SIMULATIONS

Idealized vs reconstructed geometries 

&

computational grids carotid 

bifurcation



BLOOD FLOW SIMULATIONS

Newtonian vs non-Newtonian

Carotid Bifurcation: Wall Shear Stress (WSS)

Carreau model Newtonian model
0.0035Pas 

A. Moura & J. Janela



BLOOD FLOW SIMULATIONS

Curved vessel: Pressure

Carreau model

A. Moura & J. Janela

Fluid:
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BLOOD FLOW SIMULATIONS

Newtonian vs non-Newtonian

Curved vessel: Wall Shear Stress (WSS)

Carreau model
Newtonian model

0.0035Pas A. Moura & J. Janela



BLOOD FLOW SIMULATIONS

Carreau model

Carotid Bifurcation: Pressure pulse

A. Moura & J. Janela



BLOOD FLOW SIMULATIONS

Newtonian vs non-Newtonian

Carotid Bifurcation: Wall Shear Stress (WSS)

Carreau model
Newtonian model

0.0035Pas A. Moura & J. Janela



Modeling strategy

• use the expensive 3D model only 

in the region of  interest

• couple with network models that 

include peripheral impedances to 

account for global effects

•Global features have influence 

on the local fluid dynamics

• Local changes in geometry or 

material properties (e.g. due to 

surgery, aging, stenosis, …) may 

induce pressure waves reflections

 global effects

GEOMETRICAL MULTISCALE



 Very detailed simulations

Very complex

Computationally very costly

1D

 Evolution in time of mean pressure    

and flux in wide compartments 

 System of ODEs

 Very low computational cost

0D

3D

Allows to take into account the 

global circulation in localized 

simulations and set proper boundary 

conditions

GEOMETRICAL MULTISCALE

Evolution of mean pressure and 

flux in arteries

System of hyperbolic equations

Low computational cost



( )

( , )
z

A z t d
 

 

( )

( )

( , ) ( , )

1
( , ) ( , )

| ( ) |

z

z

z

Q z t u x t d

P z t p x t d
z





 

 










Allows for the simulation of complex 

arterial networks!

Domain decomposition 
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GEOMETRICAL MULTISCALE

1D Model

Area

Flux

Mean Pressure

►describes de wave propagation nature of blood flow

► acts as absorbing boundary condition for the 3D model

► simulation of complex arterial trees by coupling 1D models



0D Lumped parameters (system of linear ODE’s)

• RLC circuits model “large” arteries

• RC circuits account for capillary bed

• Can describe compartments 

(such as peripheral circulation)

The analogy Fluid dynamics Electrical circuits

Pressure Voltage

Flow rate Current

Blood viscosity Resistance R

Blood inertia Inductance L

Wall compliance Capacitance C

GEOMETRICAL MULTISCALE

0D Model



3D and 1D for a cylindrical artery: pressure pulse

3D model (spurious reflections) 3D-1D coupled model

(A. Moura)

GEOMETRICAL MULTISCALE



3D-1D for the carotid bifurcation: velocity field & pressure pulse

(A. Moura)

GEOMETRICAL MULTISCALE



“

MODELING CEREBRAL ANEURYSMS

• Cerebral Aneurysms:
• Most common cause of hemorrhagic strokes

• Tend to be silent until rupture

• High prevalence, low risk

• Main Goal:
• Help improve the evaluation & treatment of cerebral 
aneurysms

• Our Approach:
• Patient-specific image-based CFD modeling to link 
hemodynamics & clinical observations



MECHANISMS

• The mechanisms responsible 

for the development, growth 

and rupture of intracranial 

aneurysms are not well understood

• Better understanding of these 

processes can lead to  better 

patient evaluation and improved treatments



IMAGE-BASED MODELING OF BLOOD FLOWS

blood vessel

imaging

geometry

modeling
flow solution

& visualization
meshingimage

processing
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FLOW COMPLEXITY & STABILITY

simple

complexJ. Cebral, George Mason Univ



DATABASE: ANEURYSM MODELS 

& CLINICAL INFO

J. Cebral, George Mason Univ



CIRCLE of WILLIS:  1D – NETWORK ?



CIRCLE of WILLIS:  1D - NETWORK



MRA-BASED SUBJECT- SPECIFIC MODELING

Semi-manual reconstruction

Vector representation of 

arterial network

3D

model



FINITE ELEMENT MESH

Advancing front method

>20 million tetrahedra



CONCLUSIONS/ OUTCOME

Patient-specific CFD models are capable of realistically 

representing the in vivo hemodynamic characteristics

These models can be used to better understand the 

mechanisms of aneurysm growth and rupture

They can also be used to answer specific clinical questions 

and to improve aneurysm risk assessment

Simulation-assisted treatment planning and patient 

evaluation tools are becoming a reality
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CURRENT  PROJECTS

◙ Multiscale Mathematical Modelling in Biomedicine 

PTDC/ MAT / 68166/ 2006 [2007– 2010]

◙ Cardiovascular Imaging Modeling and Simulation – SIMCARD 

UTAustin/CA/0047/2008 [2009 - 2012]

Eureka ! 4990 SIMCARD

European Partnership:  EPFL – Switzerland

Alfio Quarteroni 
CMCS - Modelling and Scientific Computing Group 
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