
Introduction

Motion of the curvature driven flow Γt with the triple junction
at p(t) (left) and its steady state Γ∗ (right).

βiV i = γiκi on Γi
t

Γi
t⊥∂Ω i = 1, 2, 3

∑3
i=1 γiT i = 0 at p(t)
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Comenius University, Bratislava

joint work with Harald Garcke and Yoshihito Kohsaka

Workshop Nonlinear PDEs to commemorate the work of J. Nečas
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Parameterization and local existence

Description of the local parameterization of the curve Γi.

Functions Φi parameterize the curves Γi in the neighbrhd of Γi
∗

Φi(σ) = Ψi(σ, ρi(σ), µi) , σ ∈ [0, li] .

where µi = (p, T i
∗)R2 , µi

∂Ω(q) = max{σ | Φi
∗(σ) + qN i

∗ ∈ Ω } .
Ψi(σ, q, µi) = Φi

∗(ξ
i(σ, q, µi)) + qN i

∗ Γi
∗ = {Φi

∗(σ) | σ ∈ [0, li]}
ξi(σ, q, µi) = µi + σ

li
(µi

∂Ω(q) − µi)

◮ The curvature driven flow of is a gradient flow for the total
length energy functional

E(Γ) =

3∑

i=1

γiL[Γi] , L[Γi] is the length of Γi

◮ the angles θi between the tangents Tj and Tk fulfill

sin θ1

γ1
=

sin θ2

γ2
=

sin θ3

γ3
Young’s law

◮ The constants γi can be interpreted as surface free energy
densities (surface tensions)



Parameterization and local existence

Theorem (Garcke, Kohsaka, Ševčovič, 2009)

Let α ∈ (0, 1) and let us assume that ρi
0 ∈ C2+α(I i) (i = 1, 2, 3)

with sufficiently small ‖ρi
0‖C2+α(Ii) fulfill the compatibility

conditions. Then there exists a

T0 = T0

(

1/‖ρ0‖C2+α

)

> 0

such that the problem with ρi(·, 0) = ρi
0 (i = 1, 2, 3) has a unique

solution ρ ∈ C2+α,1(Q1
0,T0

)

1. linearization of around the initial data ρi
0 ∈ C2+α(Ii) (i = 1, 2, 3).

2. verification of the complementing conditions for the linearized system

3. existence and uniqueness of a solution to the linearized system via optimal
regularity theory on Cβ spaces due to A.Lunardi

4. contraction mapping principle a la S. Angenent idea for nonlinear semiflows

L2 norm of curvature κ controls just H2 norm of ρ

⇒ we need to control H1 norm of curvature

◮ We are led to the following nonlinear nonlocal partial
differential equations for displacement functions ρi(σ, t)
(i = 1, 2, 3):

ρi
t =

diffusive part
︷ ︸︸ ︷

ai(ρi, ρi
σ, µi)ρi

σσ +

nonlocal part
︷ ︸︸ ︷

Λi(ρi, ρi
σ , µi)

3∑

j=1

aij
1 (T 0

ρ,T 0
ρσ,µ)T 0ρj

σσ

+ f i(ρi, ∂σρi,T 0
ρ,T 0

ρσ,µ)
︸ ︷︷ ︸

lower order terms

, (σ, t) ∈ (0, li) × (0, T )

where T 0 is the trace operator to σ = 0, i.e. T 0f = f
∣
∣
σ=0

µ
T = Qρ

T (0) = Q(T 0
ρ)T , Q is a rotation marix

◮ the solution ρ(., t) subject to nonlinear nonlocal boundary
(compatibility) conditions at σ = 0 and σ = li.



Linearization

Bilinear form:

I∗[w,w] =

3∑

i=1

γi

{∫ li

0
|wi

s|
2 ds + hi

∗|w
i|2|s=li

}

for all w = (w1, w2, w3)T with H1-functions wi, i = 1, 2, 3
defined on the curve Γi

∗ and such that
∑3

i=1 γiwi(0) = 0.

Lemma
Let λ be the maximal eigenvalue of the linearized system. Then
for any ε > 0 there exists δ > 0 such that

I∗[w,w] > (−λ − ε)‖w‖2
L2 + δ

3∑

i=1

γi‖wi
s‖

2
L2 .

Theorem (Yanagida & Ikota, 2003)

The maximal eigenvalue of the linearized problem at ρ = 0 is
negative and the stationary solution is linearly stable if one of
the following conditions is satisfied:

a) either all h1
∗, h

2
∗, h

3
∗ > 0 are positive,

b) or, at most one of them is nonpositive, and

γ1(1 + l1h1
∗)h

2
∗h

3
∗ + γ2(1 + l2h2

∗)h
1
∗h

3
∗ + γ3(1 + l3h3

∗)h
1
∗h

2
∗ > 0

Case b) where h1
∗, h

2
∗ > 0 but h3

∗ < 0 hi
∗ is the curvature of the

outer boundary ∂Ω at the
contact point of Γi

∗ with ∂Ω

Ikota R. and Yanagida E.:
A stability criterion for stationary curves to the
curvature-driven motion with a triple junction, Differential
Integral Equations 16 (2003), 707–726.



Equation for the curvature

Mean curvature flow V
i
= κ

i fulfills the curvature equation:

κi
t = κi

ss + (κi)3 + κi
sv

i, s ∈ (0, li)

◮ We choose the tangential velocity vi such that vi
s = |κi|

2

◮ At triple junction p(t):
∑3

i=1 γiκi = 0,

κ1
s + κ1v1 = κ2

s + κ2v2 = κ3
s + κ3v1

◮ At Γi
t ∩ ∂Ω: (∂s + hi)κi = 0.

Here hi is the curvature of ∂Ω at the points
Xi(ri(t), t) ∈ Γi

t ∩ ∂Ω and vi = (Xi
t , T

i)R2 is the tangential
velocity. s ∈ [0, ri(t)] where ri(t) = L(Γi

t) is the length of Γi
t.

Let X := {ρ ∈ H2 with γ1ρ1(0) + γ2ρ2(0) + γ3ρ3(0) = 0} .

Lemma
Let I∗ be positive definite. Then there exists a H2-neighborhood
of ρ ≡ 0 in X, such that ρ ≡ 0 is the only solution of the
problem

κi = 0 ,∢(∂Ω,Γi
t) = π/2 ,

∢(Γi(t),Γj(t)) = cos θk for i, j, k ∈ {1, 2, 3} mut. diff.

Furthermore, there exist a constant C > 0 and an

L2–neighborhood {κ, ‖κ‖L2 < δ} of κ = 0 with δ > 0 sufficiently
small and such that

‖ρ‖H2 ≤ C‖κ‖L2 for any‖κ‖L2 < δ,

Proof. The idea of the proof is to use the local inverse mapping theorem for the

curvature operator with appropriate boundary conditions.



First order estimates for curvature

Lemma
Let λ be the maximal eigenvalue of the linearized problem. For
ε > 0 there exist δ > 0 and µ > 0 such that, for any
perturbation satisfying ‖ρi‖C0 < δ we have

I[w,w] > (−λ − ε)
3∑

i=1

(wi, wi)L2 + µ
3∑

i=1

γi‖wi
s‖

2
L2

for w = (w1, w2, w3)T with H1-functions wi, i = 1, 2, 3, defined
on the curve Γi and such that

∑3
i=1 γiwi(0) = 0.

Notice that ‖ρi‖C0 ≪ 1 implies: |hi − hi
∗| ≪ 1 and

∑3
i=1 |L[Γi] − L[Γi

∗]| ≪ 1

Lemma
A solution κ fulfills

d

dt
E[Γt] +

3∑

i=1

γi

∫

Γi
t

(κi)2 ds = 0,

d

dt

3∑

i=1

γi

∫

Γt

|κi|2 ds = −2
3∑

i=1

γi

{∫

Γi
t

|κi
s|

2ds + hi|κi(ri, t)|2
}

+

3∑

i=1

γi

∫

Γi
t

|κi|4ds+

3∑

i=1

γi(κi)2vi
∣
∣
s=0

where hi is curvature of ∂Ω evaluated at Xi(ri(t), t) ∈ ∂Ω.

I[w,w] =
∑3

i=1 γi

{
∫

Γi
t
|wi

s|
2ds + hi|wi(ri)|2

}

is the same

bilinear form as in the Ikota & Yannagida linearized stability
theorem



Higher order estimates for curvature

We shall derive a priori bound for the time derivative wi = κi
t .

Equations for the time derivative of the curvatures

wi
t = wi

ss + 3(κi)2wi + viwi
s + vi

tκ
i
s

◮ At the triple junction:
∑3

i=1 γiwi = 0 and

wi
s + wivi = G′(t) − κi d

dt
vi .

where G = G(t) ≡ κ1
s + κ1v1 = κ2

s + κ2v2 = κ3
s + κ3v1

◮ At the outer boundary contact with ∂Ω

wi
s + hiwi = di ≡ (wi − (κi)3 − (hi − vi)hiκi)vi − |κi|2(∇hi, N i)

The first order energy functional Λ(t) :=
∑3

i=1 γi‖κi(., t)‖2
L2

satisfies, for small Λ(0) ≪ 1, :

d

dt
Λ(t) +

(−λ)

2γ
Λ(t) + ν∗γ

3∑

i=1

‖κi
s(., t)‖

2
L2 ≤ 0.

◮

3∑

i=1

γi‖κi(., t)‖2
L2 ≤ e

−t−λ
2γ

3∑

i=1

γi‖κi(., 0)‖2
L2 ,

for any t ∈ [0, T ], and, moreover,

◮

3∑

i=1

∫ T

0
‖κs(., τ)‖2

L2 dτ ≤
1

ν∗γ
Λ(0)

As ‖ρ‖H2 ≤ C‖κ‖L2 it implies bound of the C1+α norm of the displacement ρ.

Still not enough to get global existence of smooth solutions



Higher order estimates for curvature

Recall that, for any perturbation satisfying ‖ρi‖C0 < δ we
have

I[w,w] > (−λ − ε)

3∑

i=1

(wi, wi)L2 + µ

3∑

i=1

γi‖wi
s‖

2
L2

where λ is the maximal eigenvalue of the linearized problem.
and, consequently, the estimate

1

2

d

dt
‖w‖2

2+I(w,w) ≤ C
(
(‖κ‖2

∞+‖κ‖3
∞+‖κ‖4

∞)‖w‖∞+‖κ‖∞‖w‖2
∞

+‖κ‖2
∞‖w‖2

2 + ‖κ‖∞‖w‖2‖ws‖2 + ‖w‖∞‖w‖2‖κs‖2

)

Multiplying the equation for w by itself:

1

2

d

dt

3∑

i=1

γi

∫

Γi

|wi|2ds + I(w,w)

=
3∑

i=1

γiwidi|s=ri−
3∑

i=1

γiwiwi
s|s=0

+ 3

∫

Γi

|κi|2|wi|2ds +

∫

Γi

(
viwiwi

s + vi
tw

iκi
s

)
ds

Here we have used the identity: wi
s + wivi = G′(t) − κivi

t at s = 0 and the fact
that, in the triple junction we have

0 =
d

dt

3
X

i=1

γiκi =
3

X

i=1

γiwi



Higher order estimates for curvature

For any finite T < ∞ sup0≤t<T ‖w(t)‖2
2 < ∞ .

Since ‖κss‖2 ≤ C (‖κ‖2 + ‖w‖2) and ‖κ‖2 was already shown to
be small and bounded and the norm ‖ρ‖C2+α can be estimated
by the H2 norm of κ we just have shown the following
conclusion:

Theorem (Garcke, Kohsaka, Ševčovič, 2009)

The maximal time of existence of a solution ρ(., t) ∈ C2+α is
infinite, T = +∞ and hence it exists globally in time.

H. Garcke, Y. Kohsaka, and D. Ševčovič:
Nonlinear stability of stationary solutions for curvature flow with triple junction,
Hokkaido Mathematical Journal, 38(4), 2009, s. 721-769
www.arxiv.org/abs/0802.3036 www.iam.fmph.uniba.sk/institute/sevcovic

Using Gagliardo-Nirenberg interpolation inequalities:

‖κ‖∞ ≤ C0‖κ‖
1
4
2,2‖κ‖

3
4
2 , ‖κs‖2 ≤ C0‖κ‖

1
2
2,2‖κ‖

1
2
2

‖w‖∞ ≤ C0‖w‖
1
2
1,2‖w‖

1
2
2 .

and the Young inequality we obtain

1

2

d

dt
‖w(., t)‖2

2 ≤ C1 + C2η(t)‖w(., t)‖2
2

where η(t) = 1 + ‖κ(., t)‖2
2 + ‖κs(., t)‖

2
2 is such that

∫ T

0 η(τ)dτ < ∞
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Theorem (Garcke, Kohsaka, Ševčovič, 2009)

Let Γ∗ be such that I∗ is positive definite, i.e. the maximal
eigenvalue of the linearized problem is negative. Then there
exist constants C,ω, δ > 0 such that

3∑

i=1

‖ρi(., t)‖H2 ≤ Ce−ωt
3∑

i=1

‖κi(., 0)‖L2

for any t ≥ 0 and
∑3

i=1 ‖κ
i(., 0)‖L2 < δ. Moreover,

3∑

i=1

‖ρi(., t)‖C1+α ≤ Ce−ωt
3∑

i=1

‖ρi(., 0)‖C2+α

for any t ≥ 0 and
∑3

i=1 ‖ρ
i(., 0)‖C2+α < δ


