Higher order estimates for the curvature and nonlinear stability of stationary solutions for the curvature flow with triple junction

Daniel Ševčovič
Comenius University, Bratislava

joint work with Harald Garcke and Yoshihito Kohsaka
Workshop Nonlinear PDEs to commemorate the work of J. Nečas Prague 13.12.2009

Introduction

Motion of the curvature driven flow Γ_{t} with the triple junction at $p(t)$ (left) and its steady state Γ_{*} (right).

$$
\begin{gathered}
\beta^{i} V^{i}=\gamma^{i} \kappa^{i} \quad \text { on } \quad \Gamma_{t}^{i} \\
\Gamma_{t}^{i} \perp \partial \Omega \quad i=1,2,3 \\
\sum_{i=1}^{3} \gamma^{i} T^{i}=0 \quad \text { at } p(t)
\end{gathered}
$$

\Uparrow Triple junctions in metallurgy ($\mathrm{Cu}-\mathrm{Fe}-$ Sulfide) \Uparrow

- The curvature driven flow of is a gradient flow for the total length energy functional

$$
E(\Gamma)=\sum_{i=1}^{3} \gamma^{i} L\left[\Gamma^{i}\right], \quad L\left[\Gamma^{i}\right] \text { is the length of } \Gamma^{i}
$$

- the angles θ^{i} between the tangents T_{j} and T_{k} fulfill

$$
\frac{\sin \theta^{1}}{\gamma^{1}}=\frac{\sin \theta^{2}}{\gamma^{2}}=\frac{\sin \theta^{3}}{\gamma^{3}} \quad \text { Young's law }
$$

- The constants γ^{i} can be interpreted as surface free energy densities (surface tensions)

Parameterization and local existence

Description of the local parameterization of the curve Γ^{i}.

Functions Φ^{i} parameterize the curves Γ^{i} in the neighbrhd of Γ_{*}^{i}

$$
\Phi^{i}(\sigma)=\Psi^{i}\left(\sigma, \rho^{i}(\sigma), \mu^{i}\right), \sigma \in\left[0, l^{i}\right] .
$$

where $\mu^{i}=\left(\boldsymbol{p}, T_{*}^{i}\right)_{\mathbb{R}^{2}}, \quad \mu_{\partial \Omega}^{i}(q)=\max \left\{\sigma \mid \Phi_{*}^{i}(\sigma)+q N_{*}^{i} \in \bar{\Omega}\right\}$. $\Psi^{i}\left(\sigma, q, \mu^{i}\right)=\Phi_{*}^{i}\left(\xi^{i}\left(\sigma, q, \mu^{i}\right)\right)+q N_{*}^{i} \quad \Gamma_{*}^{i}=\left\{\Phi_{*}^{i}(\sigma) \mid \sigma \in\left[0, l^{i}\right]\right\}$ $\xi^{i}\left(\sigma, q, \mu^{i}\right)=\mu^{i}+\frac{\sigma}{l^{i}}\left(\mu_{\partial \Omega}^{i}(q)-\mu^{i}\right)$

- We are led to the following nonlinear nonlocal partial differential equations for displacement functions $\rho^{i}(\sigma, t)$ ($i=1,2,3$):

$$
\begin{aligned}
\rho_{t}^{i} & =\overbrace{a^{i}\left(\rho^{i}, \rho_{\sigma}^{i}, \mu^{i}\right) \rho_{\sigma \sigma}^{i}}^{\text {diffusive part }} \overbrace{\Lambda^{i}\left(\rho^{i}, \rho_{\sigma}^{i}, \mu^{i}\right) \sum_{j=1}^{3} a_{1}^{i j}\left(\mathcal{T}^{0} \boldsymbol{\rho}, \mathcal{T}^{0} \boldsymbol{\rho}_{\sigma}, \boldsymbol{\mu}\right) \mathcal{T}^{0} \rho_{\sigma \sigma}^{j}}^{\text {nonlocal part }} \\
& +\underbrace{f^{i}\left(\rho^{i}, \partial_{\sigma} \rho^{i}, \mathcal{T}^{0} \boldsymbol{\rho}, \mathcal{T}^{0} \boldsymbol{\rho}_{\sigma}, \boldsymbol{\mu}\right)}_{\text {lower order terms }}, \quad(\sigma, t) \in\left(0, l^{i}\right) \times(0, T)
\end{aligned}
$$

where \mathcal{T}^{0} is the trace operator to $\sigma=0$, i.e. $\mathcal{T}^{0} f=\left.f\right|_{\sigma=0}$ $\boldsymbol{\mu}^{T}=Q \boldsymbol{\rho}^{T}(0)=Q\left(\mathcal{T}^{0} \boldsymbol{\rho}\right)^{T}, \quad Q$ is a rotation marix

- the solution $\rho(., t)$ subject to nonlinear nonlocal boundary (compatibility) conditions at $\sigma=0$ and $\sigma=l^{i}$.

Parameterization and local existence

Theorem (Garcke, Kohsaka, Ševčovič, 2009)
Let $\alpha \in(0,1)$ and let us assume that $\rho_{0}^{i} \in C^{2+\alpha}\left(\mathcal{I}^{i}\right)(i=1,2,3)$ with sufficiently small $\left\|\rho_{0}^{i}\right\|_{C^{2+\alpha}\left(\mathcal{I}^{i}\right)}$ fulfill the compatibility conditions. Then there exists a

$$
T_{0}=T_{0}\left(1 /\left\|\rho_{0}\right\|_{C^{2+\alpha}}\right)>0
$$

such that the problem with $\rho^{i}(\cdot, 0)=\rho_{0}^{i}(i=1,2,3)$ has a unique solution $\boldsymbol{\rho} \in C^{2+\alpha, 1}\left(\overline{\mathcal{Q}_{0, T_{0}}^{1}}\right)$

1. linearization of around the initial data $\rho_{0}^{i} \in C^{2+\alpha}\left(\mathcal{I}^{i}\right)(i=1,2,3)$.
2. verification of the complementing conditions for the linearized system
3. existence and uniqueness of a solution to the linearized system via optimal regularity theory on C^{β} spaces due to A.Lunardi
4. contraction mapping principle a la S. Angenent idea for nonlinear semiflows L^{2} norm of curvature κ controls just H^{2} norm of ρ
\Rightarrow we need to control H^{1} norm of curvature

Theorem (Yanagida \& Ikota, 2003)

The maximal eigenvalue of the linearized problem at $\boldsymbol{\rho}=0$ is negative and the stationary solution is linearly stable if one of the following conditions is satisfied:
a) either all $h_{*}^{1}, h_{*}^{2}, h_{*}^{3}>0$ are positive,
b) or, at most one of them is nonpositive, and

$$
\gamma^{1}\left(1+l^{1} h_{*}^{1}\right) h_{*}^{2} h_{*}^{3}+\gamma^{2}\left(1+l^{2} h_{*}^{2}\right) h_{*}^{1} h_{*}^{3}+\gamma^{3}\left(1+l^{3} h_{*}^{3}\right) h_{*}^{1} h_{*}^{2}>0
$$

Case b) where $h_{*}^{1}, h_{*}^{2}>0$ but $h_{*}^{3}<0$

Ikota R. and Yanagida E.:
h_{*}^{i} is the curvature of the outer boundary $\partial \Omega$ at the contact point of Γ_{*}^{i} with $\partial \Omega$

A stability criterion for stationary curves to the curvature-driven motion with a triple junction, Differential Integral Equations 16 (2003), 707-726.

Linearization

Bilinear form:

$$
I_{*}[\boldsymbol{w}, \boldsymbol{w}]=\sum_{i=1}^{3} \gamma^{i}\left\{\int_{0}^{l^{i}}\left|w_{s}^{i}\right|^{2} d s+\left.h_{*}^{i}\left|w^{i}\right|^{2}\right|_{s=l^{i}}\right\}
$$

for all $\boldsymbol{w}=\left(w^{1}, w^{2}, w^{3}\right)^{T}$ with H^{1}-functions $w^{i}, i=1,2,3$
defined on the curve Γ_{*}^{i} and such that $\sum_{i=1}^{3} \gamma^{i} w^{i}(0)=0$.

Lemma

Let λ be the maximal eigenvalue of the linearized system. Then for any $\varepsilon>0$ there exists $\delta>0$ such that

$$
I_{*}[\boldsymbol{w}, \boldsymbol{w}]>(-\lambda-\varepsilon)\|\boldsymbol{w}\|_{L^{2}}^{2}+\delta \sum_{i=1}^{3} \gamma^{i}\left\|w_{s}^{i}\right\|_{L^{2}}^{2}
$$

Let $X:=\left\{\boldsymbol{\rho} \in H^{2}\right.$ with $\left.\gamma^{1} \rho^{1}(0)+\gamma^{2} \rho^{2}(0)+\gamma^{3} \rho^{3}(0)=0\right\}$.

Lemma

Let I_{*} be positive definite. Then there exists a H^{2}-neighborhood of $\boldsymbol{\rho} \equiv 0$ in X, such that $\boldsymbol{\rho} \equiv 0$ is the only solution of the problem

$$
\begin{aligned}
\kappa^{i} & =0, \varangle\left(\partial \Omega, \Gamma_{t}^{i}\right)=\pi / 2, \\
\varangle\left(\Gamma^{i}(t), \Gamma^{j}(t)\right) & =\cos \theta^{k} \quad \text { for } \quad i, j, k \in\{1,2,3\} \quad \text { mut. diff. }
\end{aligned}
$$

Furthermore, there exist a constant $C>0$ and an L^{2}-neighborhood $\left\{\kappa,\|\kappa\|_{L^{2}}<\delta\right\}$ of $\kappa=0$ with $\delta>0$ sufficiently small and such that

$$
\|\rho\|_{H^{2}} \leq C\|\kappa\|_{L^{2}} \quad \text { for any }\|\kappa\|_{L^{2}}<\delta
$$

Proof. The idea of the proof is to use the local inverse mapping theorem for the curvature operator with appropriate boundary conditions.

Equation for the curvature

Mean curvature flow $V^{i}=\kappa^{i}$ fulfills the curvature equation:

$$
\kappa_{t}^{i}=\kappa_{s s}^{i}+\left(\kappa^{i}\right)^{3}+\kappa_{s}^{i} v^{i}, \quad s \in\left(0, l^{i}\right)
$$

- We choose the tangential velocity v^{i} such that $v_{s}^{i}=\left|\kappa_{i}\right|^{2}$
- At triple junction $p(t): \quad \sum_{i=1}^{3} \gamma^{i} \kappa^{i}=0$,

$$
\kappa_{s}^{1}+\kappa^{1} v^{1}=\kappa_{s}^{2}+\kappa^{2} v^{2}=\kappa_{s}^{3}+\kappa^{3} v^{1}
$$

- At $^{\boldsymbol{\Gamma}}{ }_{t}^{i} \cap \partial \Omega: \quad\left(\partial_{s}+h^{i}\right) \kappa^{i}=0$.

Here h^{i} is the curvature of $\partial \Omega$ at the points $X^{i}\left(r^{i}(t), t\right) \in \Gamma_{t}^{i} \cap \partial \Omega$ and $v^{i}=\left(X_{t}^{i}, T^{i}\right)_{\mathbb{R}^{2}}$ is the tangential velocity. $s \in\left[0, r^{i}(t)\right]$ where $r^{i}(t)=L\left(\Gamma_{t}^{i}\right)$ is the length of Γ_{t}^{i}.

Lemma

A solution κ fulfills

$$
\begin{aligned}
& \frac{d}{d t} E\left[\Gamma_{t}\right]+\sum_{i=1}^{3} \gamma^{i} \int_{\Gamma_{t}^{i}}\left(\kappa^{i}\right)^{2} d s=0 \\
& \frac{d}{d t} \sum_{i=1}^{3} \gamma^{i} \int_{\Gamma_{t}}\left|\kappa^{i}\right|^{2} d s=-2 \sum_{i=1}^{3} \gamma^{i}\left\{\int_{\Gamma_{t}^{i}}\left|\kappa_{s}^{i}\right|^{2} d s+h^{i}\left|\kappa^{i}\left(r^{i}, t\right)\right|^{2}\right\} \\
& \quad+\sum_{i=1}^{3} \gamma^{i} \int_{\Gamma_{t}^{i}}\left|\kappa^{i}\right|^{4} d s+\left.\sum_{i=1}^{3} \gamma^{i}\left(\kappa^{i}\right)^{2} v^{i}\right|_{s=0}
\end{aligned}
$$

where h^{i} is curvature of $\partial \Omega$ evaluated at $X^{i}\left(r^{i}(t), t\right) \in \partial \Omega$.
$I[\boldsymbol{w}, \boldsymbol{w}]=\sum_{i=1}^{3} \gamma^{i}\left\{\int_{\Gamma_{t}^{i}}\left|\boldsymbol{w}_{s}^{i}\right|^{2} d s+h^{i}\left|\boldsymbol{w}^{i}\left(r^{i}\right)\right|^{2}\right\}$ is the same bilinear form as in the Ikota \& Yannagida linearized stability theorem

First order estimates for curvature

Lemma

Let λ be the maximal eigenvalue of the linearized problem. For $\varepsilon>0$ there exist $\delta>0$ and $\mu>0$ such that, for any perturbation satisfying $\left\|\rho^{i}\right\|_{C^{0}}<\delta$ we have

$$
I[\boldsymbol{w}, \boldsymbol{w}]>(-\lambda-\varepsilon) \sum_{i=1}^{3}\left(w^{i}, w^{i}\right)_{L^{2}}+\mu \sum_{i=1}^{3} \gamma^{i}\left\|w_{s}^{i}\right\|_{L^{2}}^{2}
$$

for $\boldsymbol{w}=\left(w^{1}, w^{2}, w^{3}\right)^{T}$ with H^{1}-functions $w^{i}, i=1,2,3$, defined on the curve Γ^{i} and such that $\sum_{i=1}^{3} \gamma^{i} w^{i}(0)=0$.

Notice that $\left\|\rho^{i}\right\|_{C^{0}} \ll 1$ implies: $\left|h^{i}-h_{*}^{i}\right| \ll 1$ and $\sum_{i=1}^{3}\left|L\left[\Gamma^{i}\right]-L\left[\Gamma_{*}^{i}\right]\right| \ll 1$

The first order energy functional $\Lambda(t):=\sum_{i=1}^{3} \gamma^{i}\left\|\kappa^{i}(., t)\right\|_{L^{2}}^{2}$ satisfies, for small $\Lambda(0) \ll 1$,

$$
\begin{aligned}
& \frac{d}{d t} \Lambda(t)+\frac{(-\lambda)}{2 \gamma} \Lambda(t)+\nu_{*} \gamma \sum_{i=1}^{3}\left\|\kappa_{s}^{i}(., t)\right\|_{L^{2}}^{2} \leq 0 \\
& \quad \sum_{i=1}^{3} \gamma^{i}\left\|\kappa^{i}(., t)\right\|_{L^{2}}^{2} \leq e^{-t \frac{-\lambda}{2 \gamma}} \sum_{i=1}^{3} \gamma^{i}\left\|\kappa^{i}(., 0)\right\|_{L^{2}}^{2}
\end{aligned}
$$

for any $t \in[0, T]$, and, moreover,

$$
\sum_{i=1}^{3} \int_{0}^{T}\left\|\kappa_{s}(., \tau)\right\|_{L^{2}}^{2} d \tau \leq \frac{1}{\nu_{*} \gamma} \Lambda(0)
$$

As $\|\rho\|_{H^{2}} \leq C\|\boldsymbol{\kappa}\|_{L^{2}}$ it implies bound of the $C^{1+\alpha}$ norm of the displacement ρ.
Still not enough to get global existence of smooth solutions

Higher order estimates for curvature

We shall derive a priori bound for the time derivative $w^{i}=\kappa_{t}^{i}$.
Equations for the time derivative of the curvatures

$$
w_{t}^{i}=w_{s s}^{i}+3\left(\kappa^{i}\right)^{2} w^{i}+v^{i} w_{s}^{i}+v_{t}^{i} \kappa_{s}^{i}
$$

- At the triple junction: $\quad \sum_{i=1}^{3} \gamma^{i} w^{i}=0$ and

$$
w_{s}^{i}+w^{i} v^{i}=G^{\prime}(t)-\kappa^{i} \frac{d}{d t} v^{i}
$$

where $G=G(t) \equiv \kappa_{s}^{1}+\kappa^{1} v^{1}=\kappa_{s}^{2}+\kappa^{2} v^{2}=\kappa_{s}^{3}+\kappa^{3} v^{1}$

- At the outer boundary contact with $\partial \Omega$

$$
w_{s}^{i}+h^{i} w^{i}=d^{i} \equiv\left(w^{i}-\left(\kappa^{i}\right)^{3}-\left(h^{i}-v^{i}\right) h^{i} \kappa^{i}\right) v^{i}-\left|\kappa^{i}\right|^{2}\left(\nabla h^{i}, N^{i}\right)
$$

Multiplying the equation for w by itself:

$$
\begin{aligned}
& \frac{1}{2} \frac{d}{d t} \sum_{i=1}^{3} \gamma^{i} \int_{\Gamma^{i}}\left|w^{i}\right|^{2} d s+I(w, w) \\
& =\left.\sum_{i=1}^{3} \gamma^{i} w^{i} d^{i}\right|_{s=r^{i}}-\left.\sum_{i=1}^{3} \gamma^{i} w^{i} w_{s}^{i}\right|_{s=0} \\
& \quad+3 \int_{\Gamma^{i}}\left|\kappa^{i}\right|^{2}\left|w^{i}\right|^{2} d s+\int_{\Gamma^{i}}\left(v^{i} w^{i} w_{s}^{i}+v_{t}^{i} w^{i} \kappa_{s}^{i}\right) d s
\end{aligned}
$$

Here we have used the identity: $w_{s}^{i}+w^{i} v^{i}=G^{\prime}(t)-\kappa^{i} v_{t}^{i}$ at $s=0$ and the fact that, in the triple junction we have

$$
0=\frac{d}{d t} \sum_{i=1}^{3} \gamma^{i} \kappa^{i}=\sum_{i=1}^{3} \gamma^{i} w^{i}
$$

Higher order estimates for curvature

Recall that, for any perturbation satisfying $\left\|\rho^{i}\right\|_{C^{0}}<\delta$ we have

$$
I[\boldsymbol{w}, \boldsymbol{w}]>(-\lambda-\varepsilon) \sum_{i=1}^{3}\left(w^{i}, w^{i}\right)_{L^{2}}+\mu \sum_{i=1}^{3} \gamma^{i}\left\|w_{s}^{i}\right\|_{L^{2}}^{2}
$$

where λ is the maximal eigenvalue of the linearized problem. and, consequently, the estimate

$$
\begin{gathered}
\frac{1}{2} \frac{d}{d t}\|w\|_{2}^{2}+I(w, w) \leq C\left(\left(\|\kappa\|_{\infty}^{2}+\|\kappa\|_{\infty}^{3}+\|\kappa\|_{\infty}^{4}\right)\|w\|_{\infty}+\|\kappa\|_{\infty}\|w\|_{\infty}^{2}\right. \\
\left.+\|\kappa\|_{\infty}^{2}\|w\|_{2}^{2}+\|\kappa\|_{\infty}\|w\|_{2}\left\|w_{s}\right\|_{2}+\|w\|_{\infty}\|w\|_{2}\left\|\kappa_{s}\right\|_{2}\right)
\end{gathered}
$$

Using Gagliardo-Nirenberg interpolation inequalities:

$$
\begin{gathered}
\|\kappa\|_{\infty} \leq C_{0}\|\kappa\|_{2,2}^{\frac{1}{4}}\|\kappa\|_{2}^{\frac{3}{4}}, \quad\left\|\kappa_{s}\right\|_{2} \leq C_{0}\|\kappa\|_{2,2}^{\frac{1}{2}}\|\kappa\|_{2}^{\frac{1}{2}} \\
\|w\|_{\infty} \leq C_{0}\|w\|_{1,2}^{\frac{1}{2}}\|w\|_{2}^{\frac{1}{2}} .
\end{gathered}
$$

and the Young inequality we obtain

$$
\frac{1}{2} \frac{d}{d t}\|\boldsymbol{w}(., t)\|_{2}^{2} \leq C_{1}+C_{2} \eta(t)\|\boldsymbol{w}(., t)\|_{2}^{2}
$$

where $\eta(t)=1+\|\kappa(., t)\|_{2}^{2}+\left\|\kappa_{s}(., t)\right\|_{2}^{2}$ is such that $\int_{0}^{T} \eta(\tau) d \tau<\infty$

Higher order estimates for curvature

For any finite $T<\infty \sup _{0<t<T}\|w(t)\|_{2}^{2}<\infty$.
Since $\left\|\kappa_{s s}\right\|_{2} \leq C\left(\|\kappa\|_{2}+\|w\|_{2}\right)$ and $\|\kappa\|_{2}$ was already shown to be small and bounded and the norm $\|\rho\|_{C^{2+\alpha}}$ can be estimated by the H^{2} norm of κ we just have shown the following conclusion:

Theorem (Garcke, Kohsaka, Ševčovič, 2009)
The maximal time of existence of a solution $\rho(., t) \in C^{2+\alpha}$ is infinite, $T=+\infty$ and hence it exists globally in time.
H. Garcke, Y. Kohsaka, and D. Ševčovič:

Nonlinear stability of stationary solutions for curvature flow with triple junction, Hokkaido Mathematical Journal, 38(4), 2009, s. 721-769
www.arxiv.org/abs/0802.3036 www.iam.fmph.uniba.sk/institute/sevcovic

Theorem (Garcke, Kohsaka, Ševčovič, 2009)

Let Γ_{*} be such that I_{*} is positive definite, i.e. the maximal eigenvalue of the linearized problem is negative. Then there exist constants $C, \omega, \delta>0$ such that

$$
\sum_{i=1}^{3}\left\|\rho^{i}(., t)\right\|_{H^{2}} \leq C e^{-\omega t} \sum_{i=1}^{3}\left\|\kappa^{i}(., 0)\right\|_{L^{2}}
$$

for any $t \geq 0$ and $\sum_{i=1}^{3}\left\|\kappa^{i}(., 0)\right\|_{L^{2}}<\delta$. Moreover,

$$
\sum_{i=1}^{3}\left\|\rho^{i}(., t)\right\|_{C^{1+\alpha}} \leq C e^{-\omega t} \sum_{i=1}^{3}\left\|\rho^{i}(., 0)\right\|_{C^{2+\alpha}}
$$

for any $t \geq 0$ and $\sum_{i=1}^{3}\left\|\rho^{i}(., 0)\right\|_{C^{2+\alpha}}<\delta$

References

[1] H. Garcke, Y. Kohsaka, and D. Ševčovič: Nonlinear stability of stationary solutions for curvature flow with triple junction, Hokkaido Mathematical Journal, 38(4), 2009, s. 721-769
[2] Garcke, H., Ito, K., and Kohsaka, Y.: Nonlinear stability of stationary solutions for surface diffusion with boundary conditions, SIAM J. Math. Anal. Volume 40, Issue 2, pp. 491-515 (2008)
[3] Ikota R. and Yanagida E., A stability criterion for stationary curves to the curvature-driven motion with a triple junction, Differential Integral Equations 16 (2003), 707-726.

www.iam.fmph.uniba.sk/institute/sevcovic

