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Let G ⊂ Rn be a bounded Lipschitz domain. Let
H1

0 := H1,2
0 (G) and H2

0 := H2,2
0 (G) be the “usual”

Sobolev spaces equipped with inner products ⟨∇u,∇v⟩
resp. ⟨∆u,∆v⟩. Let H2

0 :=
(
H2

0

)n
and let H1

0,0 :={
p ∈ H1

0 :
∫
G

pdx = 0

}
. Given F ∗ ∈

(
H2

0

)∗
we are look-

ing for u ∈ H2
0 and p ∈ H1

0,0 such that

(1) ⟨∆u,∆ϕ⟩+ ⟨∇p,∇div ϕ⟩ = F ∗(ϕ) ∀ϕ ∈ H2
0

and div u = 0 a. e. in G. The left hand side is the
weak form of ∆2u + ∇∆p. Ch. Amrouche and V.
Girault regarded in Portugal. Math 49 (1992), 463 –
503, left hand sides of the type ∆2u+∇p.

A := div : H2
0 → H1

0,0

is a bounded linear operator. For p ∈ H1
0 and ϕ ∈ H2

0
let

L(ϕ) := ⟨∇p,∇div ϕ⟩ = ⟨∇p,∇Aϕ⟩

Since ∥∇div ϕ∥ ≤ ∥∆ϕ∥ ∀ϕ ∈ H2
0 we see L ∈

(
H2

0

)∗
and

by Riesz’s theorem ∃1 v ∈ H2
0:
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(2) ⟨∆v,∆ϕ⟩ = ⟨∇p,∇div ϕ⟩ ∀ϕ ∈ H2
0

Let A∗ : H1
0,0 → H2

0, A∗p := v. Then

⟨∆A∗p,∆ϕ⟩ = ⟨∇p,∇Aϕ⟩ ∀p ∈ H1
0,0, ∀ϕ ∈ H2

0

Since C∞
0 ⊂ H2

0 is dense, by partial integration

(3) ⟨∇g,∇div f⟩ = ⟨∇g,∆f⟩ ∀g ∈ H1
0 , ∀f ∈ H2

0.

Lemma 1 (M. Bogovskii; see also G. P. Galdi or H.
Sohr). Let G ⊂ Rn be a bounded Lipschitz domain.
Then there is a constant C > 0 such that for every
p0 ∈ H1

0,0 there is (at least) one v ∈ H2
0 such that

div v = p0 and

∥∆v∥ ≤ C∥∇p0∥.

Application:

Lemma 2 There is a constant C > 0 such that

(4) ∥∇p0∥ ≤ C sup
0 ̸=ϕ∈H2

0

⟨∇p0,∇div ϕ⟩
∥∆ϕ∥

∀p ∈ H1
0,0

For p0 ∈ H1
0,0 let A∗p0 := v ∈ H2

0, where

⟨∆v,∆ϕ⟩ = ⟨∇p,∇div ϕ⟩ ∀ϕ ∈ H2
0
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Let M2 :=
{
A∗p0 : p0 ∈ H1

0,0

}
. With the help of (4) it

is readily proved

Theorem 1 Let p0 ∈ H1
0,0 and let v := A∗p0 ∈ H2

0.
With C > 0 by (4)

(5) C−1∥∇p0∥ ≤ ∥∆v∥ ≤ ∥∇p0∥

A∗ : H1
0,0 → H2

0 is bijective ∥A∗∥ ≤ 1, ∥A∗−1∥ ≤ C. In
addition

(6) ∥∇div v∥ ≤ ∥∆v∥ ≤ C∥∇div v∥ ∀v ∈ M2

Furthermore M2 is closed and the orthogonal decom-
position

(7) H2
0 = M2 ⊕N(A)

holds true, where N(A) =
{
u ∈ H2

0 : div u = 0 a. e.
}

Theorem 2 1.
{
div v : v ∈ M2

}
⊂ H1

0,0 is closed and

R(A∗) =
{
A∗g : g ∈ H1

0,0

}
= M2

is closed too. A∗ : H1
0,0 → H2

0 is bijective, A∗, A∗−1

are continuous.

2.
{
div v : v ∈ M2

}
= H1

0,0 and div : M2 → H1
0,0 is

bijective and continuous and the inverse (div)−1 :
H1

0,0 → M2 is continuous too.

Theorem 3 With C > 0 by Lemma 2 for p0 ∈ H1
0,0
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∥∇p0∥ ≤ C sup
0 ̸=v∈M2

⟨∇p0,∇div v⟩
∥∆v∥

≤

≤ C sup
0̸=v∈M2

⟨∇p0,∇div v⟩
∥∇div v∥

Solution of system (1):

Theorem 4 Let F ∗ ∈
(
H2

0

)∗
be given. Then there is

a unique pair (u, p0) ∈ H2
0 ×H1

0,0 such that

⟨∆u,∆ϕ⟩+ ⟨∇p0,∇div ϕ⟩ = F ∗(ϕ) ∀ϕ ∈ H2
0

and div u = 0 a.e. in G. Further

(8) ∥∆u∥+ ∥∇p0∥ ≤ (1 + C)∥F ∗∥(H1,2
0 )

∗

Proof. Uniqueness is trivial. Existence: There is a
unique w ∈ H2

0 such that

⟨∆w,∆ϕ⟩ = F ∗(ϕ) ∀ϕ ∈ H2
0

and ∥∆w∥ = ∥F ∗∥(H1,2
0 )

∗. By (7) there is u ∈ N(A) and

v ∈ M2 with

w = u+ v, ∥∆w∥2 = ∥∆u∥2 + ∥∆v∥2.

Since there is a unique p0 ∈ H1
0,0 such that
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⟨∆v,∆ϕ⟩ = ⟨∇p0,∇div ϕ⟩ ∀ϕ ∈ H2
0

∥∇p0∥ ≤ C∥∆v∥ (by Theorem 3). Since ∥∆u∥ ≤ ∥∆w∥
and ∥∆v∥ ≤ ∥∆w∥, (8) follows.

A refined decomposition of H1
0,0:

Theorem 5 Let

Ã :=
{
∆s : s ∈ H3

0

}
⊂ H1

0,0

and

B̃ :=

pb ∈ H1
0,0 ∩ C∞ :

∫
G

pb∆
2ϕ = 0 ∀ϕ ∈ C∞

0


Then in the sense of an orthogonal decomposition

H1
0,0 = Ã⊕ B̃, p0 = ∆s+ pb

∥∇∆s∥2 + ∥∇pb∥2 = ∥∇p0∥2

Proof. For p0 ∈ H1
0,0 and ϕ ∈ H3

0

|⟨∇p0,∇∆ϕ⟩| ≤ ∥∇p0∥∥∇∆ϕ∥.

By ⟨∇∆s,∇∆ϕ⟩ an inner product is defined on H3
0 and

by the Riesz theorem there exists a unique s ∈ H3
0 such

that
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⟨∇∆s,∇∆ϕ⟩ = ⟨∇p0,∇∆ϕ⟩ ∀ϕ ∈ H3
0

Let pb := p0 −∆s. For ϕ ∈ C∞
0

0 = ⟨∇pb,∇∆ϕ⟩ = −⟨pb,∆2ϕ⟩

and by Weyl’s lemma for ∆2 follows pb ∈ C∞ and
∆2pb = 0. Since C∞

0 is dense in H3
0 with respect to

∥∇∆.∥–norm it follows

⟨∇pb,∇∆s⟩ = 0 ∀pb ∈ B̃, ∀∆s ∈ Ã.

Let s ∈ H3
0 and put v := ∇s ∈ H2

0. Then div v = ∆s
and first for ϕ ∈ C∞

0

(9) ⟨∆v,∆ϕ⟩ = ⟨∆∇s,∆ϕ⟩ =
= −⟨∆s,∆div ϕ⟩ = 1 · ⟨∇div v,∇div ϕ⟩

and finally by approximation for all ϕ ∈ H2
0. By (9) λ =

1 is an eigenvalue of infinite multiplicity and{
v = ∇s : s ∈ H3

0

}
belongs to the eigenspace.

Thorsten Riedl proved the analogous theory for 1 <
q < ∞, where in (1) u ∈ H2,q

0 (G), p ∈ H1,q
0,0(G), F ∗ ∈(

H2,q′

0 (G)
)∗

,
(
q′ = q

q−1

)
and (1) holds for all ϕ ∈ H2,q′

0 (G).

If
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pb ∈ B̃q :=

pb ∈ H1,q
0,0(G) ∩ C∞(G) :

∫
G

pb∆
2ϕ = 0

∀ϕ ∈ C∞
0 (G)


and v ∈ H2,q

0 (G) satisfies

(10) ⟨∆v,∆ϕ⟩ = ⟨∇pb,∇div ϕ⟩ ∀ϕ ∈ H2,q′

0 (G)

then it is readily seen that div v ∈ B̃q. We write Zq :
B̃q → B̃q, Zqpb := div v with v by (10). For pb ∈ B̃q

Riedl proved Zqpb − 1
2
pb ∈ H2,q(G) ∩ H1,q

0,0(G) and with
C > 0

(11)

∥∥∥∥Zqpb −
1

2
pb

∥∥∥∥
H2,q(G)

≤ C∥∇pb∥q ∀pb ∈ B̃q.

From this follows (since the imbedding from H2,q(G)∩
H1,q

0,0(G) in H1,q
0,0(G) is compact) compactness of the

operator Zq − 1
2
I : B̃q → B̃q. By the spectral theorem

and some easy calculations we get an infinite series
(λk) ⊂ R and corresponding vk ∈

∩
1<t<∞

H2,t
0 (G) such

that

⟨∆vk,∆ϕ⟩ = λk⟨∇div vk,∇div ϕ⟩
∀ϕ ∈ H2,t′

0 (G),1 < t′ < ∞

and λk → 2 (k → ∞).
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