A Stokes-like system of fourth order Christian G. Simader (Bayreuth)

Let $G \subset \mathbb{R}^{n}$ be a bounded Lipschitz domain. Let $H_{0}^{1}:=H_{0}^{1,2}(G)$ and $H_{0}^{2}:=H_{0}^{2,2}(G)$ be the "usual" Sobolev spaces equipped with inner products $\langle\nabla u, \nabla v\rangle$ resp. $\langle\Delta u, \Delta v\rangle$. Let $\underline{H}_{0}^{2}:=\left(H_{0}^{2}\right)^{n}$ and let $H_{0,0}^{1}:=$ $\left\{p \in H_{0}^{1}: \int_{G} p d x=0\right\}$. Given $\underline{F}^{*} \in\left(\underline{H}_{0}^{2}\right)^{*}$ we are looking for $\underline{u} \in \underline{H}_{0}^{2}$ and $p \in H_{0,0}^{1}$ such that
(1) $\langle\Delta \underline{u}, \Delta \underline{\phi}\rangle+\langle\nabla p, \nabla \operatorname{div} \underline{\phi}\rangle=\underline{F}^{*}(\underline{\phi}) \quad \forall \underline{\phi} \in \underline{H}_{0}^{2}$
and $\operatorname{div} \underline{u}=0$ a. e. in G. The left hand side is the weak form of $\Delta^{2} \underline{u}+\nabla \Delta p$. Ch. Amrouche and V . Girault regarded in Portugal. Math 49 (1992), 463 503, left hand sides of the type $\Delta^{2} \underline{u}+\nabla p$.

$$
A:=\operatorname{div}: \underline{H}_{0}^{2} \rightarrow H_{0,0}^{1}
$$

is a bounded linear operator. For $p \in H_{0}^{1}$ and $\underline{\phi} \in \underline{H}_{0}^{2}$ let

$$
\underline{L}(\underline{\phi}):=\langle\nabla p, \nabla \operatorname{div} \underline{\phi}\rangle=\langle\nabla p, \nabla A \underline{\phi}\rangle
$$

Since $\|\nabla \operatorname{div} \underline{\phi}\| \leq\|\Delta \underline{\phi}\| \forall \underline{\phi} \in \underline{H}_{0}^{2}$ we see $\underline{L} \in\left(\underline{H}_{0}^{2}\right)^{*}$ and by Riesz's theorem $\exists_{1} \underline{v} \in \underline{H}_{0}^{2}$:

$$
\begin{equation*}
\langle\Delta \underline{v}, \Delta \underline{\phi}\rangle=\langle\nabla p, \nabla \operatorname{div} \underline{\phi}\rangle \quad \forall \underline{\phi} \in \underline{H}_{0}^{2} \tag{2}
\end{equation*}
$$

Let $\underline{A}^{*}: H_{0,0}^{1} \rightarrow \underline{H}_{0}^{2}, \underline{A}^{*} p:=\underline{v}$. Then

$$
\left\langle\Delta \underline{A}^{*} p, \Delta \underline{\phi}\right\rangle=\langle\nabla p, \nabla A \underline{\phi}\rangle \quad \forall p \in H_{0,0}^{1}, \quad \forall \underline{\phi} \in \underline{H}_{0}^{2}
$$

Since $\underline{C}_{0}^{\infty} \subset \underline{H}_{0}^{2}$ is dense, by partial integration
(3) $\quad\langle\nabla g, \nabla \operatorname{div} \underline{f}\rangle=\langle\nabla g, \Delta \underline{f}\rangle \quad \forall g \in H_{0}^{1}, \quad \forall \underline{f} \in \underline{H}_{0}^{2}$.

Lemma 1 (M. Bogovskii; see also G. P. Galdi or H. Sohr). Let $G \subset \mathbb{R}^{n}$ be a bounded Lipschitz domain. Then there is a constant $C>0$ such that for every $p_{0} \in H_{0,0}^{1}$ there is (at least) one $\underline{v} \in \underline{H}_{0}^{2}$ such that $\operatorname{div} \underline{v}=p_{0}$ and

$$
\|\Delta \underline{v}\| \leq C\left\|\nabla p_{0}\right\| .
$$

Application:
Lemma 2 There is a constant $C>0$ such that
(4) $\quad\left\|\nabla p_{0}\right\| \leq C \sup _{0 \neq \underline{\neq} \in \underline{H}_{0}^{2}} \frac{\left\langle\nabla p_{0}, \nabla \operatorname{div} \underline{\phi}\right\rangle}{\|\Delta \underline{\phi}\|} \quad \forall p \in H_{0,0}^{1}$

For $p_{0} \in H_{0,0}^{1}$ let $\underline{A}^{*} p_{0}:=\underline{v} \in \underline{H}_{0}^{2}$, where

$$
\langle\Delta \underline{v}, \Delta \underline{\phi}\rangle=\langle\nabla p, \nabla \operatorname{div} \underline{\phi}\rangle \quad \forall \underline{\phi} \in \underline{H}_{0}^{2}
$$

Let $\underline{M}^{2}:=\left\{\underline{A}^{*} p_{0}: p_{0} \in H_{0,0}^{1}\right\}$. With the help of (4) it is readily proved

Theorem 1 Let $p_{0} \in H_{0,0}^{1}$ and let $\underline{v}:=\underline{A}^{*} p_{0} \in \underline{H}_{0}^{2}$. With $C>0$ by (4)

$$
\begin{equation*}
C^{-1}\left\|\nabla p_{0}\right\| \leq\|\Delta \underline{v}\| \leq\left\|\nabla p_{0}\right\| \tag{5}
\end{equation*}
$$

$\underline{A}^{*}: H_{0,0}^{1} \rightarrow \underline{H}_{0}^{2}$ is bijective $\left\|\underline{A}^{*}\right\| \leq 1,\left\|\underline{A}^{*-1}\right\| \leq C$. In addition
(6) $\quad\|\nabla \operatorname{div} \underline{v}\| \leq\|\Delta \underline{v}\| \leq C\|\nabla \operatorname{div} \underline{v}\| \quad \forall \underline{v} \in \underline{M}^{2}$

Furthermore \underline{M}^{2} is closed and the orthogonal decomposition

$$
\begin{equation*}
\underline{H}_{0}^{2}=\underline{M}^{2} \oplus \underline{N}(A) \tag{7}
\end{equation*}
$$

holds true, where $\underline{N}(A)=\left\{\underline{u} \in \underline{H}_{0}^{2}: \operatorname{div} \underline{u}=0\right.$ a. e. $\}$
Theorem 2 1. $\left\{\operatorname{div} \underline{v}: \underline{v} \in \underline{M}^{2}\right\} \subset H_{0,0}^{1}$ is closed and

$$
R\left(\underline{A}^{*}\right)=\left\{\underline{A}^{*} g: g \in H_{0,0}^{1}\right\}=\underline{M}^{2}
$$

is closed too. $\underline{A}^{*}: H_{0,0}^{1} \rightarrow \underline{H}_{0}^{2}$ is bijective, $\underline{A}^{*}, \underline{A}^{*-1}$ are continuous.
2. $\left\{\operatorname{div} \underline{v}: \underline{v} \in \underline{M}^{2}\right\}=H_{0,0}^{1}$ and $\operatorname{div}: \underline{M}^{2} \rightarrow H_{0,0}^{1}$ is bijective and continuous and the inverse (div) ${ }^{-1}$: $H_{0,0}^{1} \rightarrow \underline{M}^{2}$ is continuous too.

Theorem 3 With $C>0$ by Lemma 2 for $p_{0} \in H_{0,0}^{1}$

$$
\begin{aligned}
\left\|\nabla p_{0}\right\| \leq C \sup _{0 \neq \underline{v} \in \underline{M}^{2}} \frac{\left\langle\nabla p_{0}, \nabla \operatorname{div} \underline{v}\right\rangle}{\|\Delta \underline{v}\|} & \leq \\
& \leq C \sup _{0 \neq \underline{v} \in \underline{M}^{2}} \frac{\left\langle\nabla p_{0}, \nabla \operatorname{div} \underline{v}\right\rangle}{\|\nabla \operatorname{div} \underline{v}\|}
\end{aligned}
$$

Solution of system (1):
Theorem 4 Let $\underline{F}^{*} \in\left(\underline{H}_{0}^{2}\right)^{*}$ be given. Then there is a unique pair $\left(\underline{u}, p_{0}\right) \in \underline{H}_{0}^{2} \times H_{0,0}^{1}$ such that

$$
\langle\Delta \underline{u}, \Delta \underline{\phi}\rangle+\left\langle\nabla p_{0}, \nabla \operatorname{div} \underline{\phi}\right\rangle=\underline{F}^{*}(\underline{\phi}) \quad \forall \underline{\phi} \in \underline{H}_{0}^{2}
$$

and $\operatorname{div} \underline{u}=0$ a.e. in G. Further
(8) $\quad\|\Delta \underline{u}\|+\left\|\nabla p_{0}\right\| \leq(1+C)\left\|\underline{F}^{*}\right\|_{\left(H_{0}^{1,2}\right)^{*}}$

Proof. Uniqueness is trivial. Existence: There is a unique $\underline{w} \in \underline{H}_{0}^{2}$ such that

$$
\langle\Delta \underline{w}, \Delta \underline{\phi}\rangle=\underline{F}^{*}(\underline{\phi}) \quad \forall \underline{\phi} \in \underline{H}_{0}^{2}
$$

and $\|\Delta \underline{w}\|=\left\|\underline{F}^{*}\right\|_{\left(\underline{H}_{0}^{1,2}\right)^{*}}$. By (7) there is $\underline{u} \in \underline{N}(A)$ and $\underline{v} \in \underline{M}^{2}$ with

$$
\underline{w}=\underline{u}+\underline{v}, \quad\|\Delta \underline{w}\|^{2}=\|\Delta \underline{u}\|^{2}+\|\Delta \underline{v}\|^{2} .
$$

Since there is a unique $p_{0} \in H_{0,0}^{1}$ such that

$$
\langle\Delta \underline{v}, \Delta \underline{\phi}\rangle=\left\langle\nabla p_{0}, \nabla \operatorname{div} \underline{\phi}\right\rangle \quad \forall \underline{\phi} \in \underline{H}_{0}^{2}
$$

$\left\|\nabla p_{0}\right\| \leq C\|\Delta \underline{v}\|$ (by Theorem 3). Since $\|\Delta \underline{u}\| \leq\|\Delta \underline{w}\|$ and $\|\Delta \underline{v}\| \leq\|\Delta \underline{w}\|$, (8) follows.

A refined decomposition of $H_{0,0}^{1}$:
Theorem 5 Let

$$
\tilde{A}:=\left\{\Delta s: s \in H_{0}^{3}\right\} \subset H_{0,0}^{1}
$$

and

$$
\widetilde{B}:=\left\{p_{b} \in H_{0,0}^{1} \cap C^{\infty}: \int_{G} p_{b} \Delta^{2} \phi=0 \quad \forall \phi \in C_{0}^{\infty}\right\}
$$

Then in the sense of an orthogonal decomposition

$$
\begin{gathered}
H_{0,0}^{1}=\tilde{A} \oplus \tilde{B}, \quad p_{0}=\Delta s+p_{b} \\
\|\nabla \Delta s\|^{2}+\left\|\nabla p_{b}\right\|^{2}=\left\|\nabla p_{0}\right\|^{2}
\end{gathered}
$$

Proof. For $p_{0} \in H_{0,0}^{1}$ and $\phi \in H_{0}^{3}$

$$
\left|\left\langle\nabla p_{0}, \nabla \Delta \phi\right\rangle\right| \leq\left\|\nabla p_{0}\right\|\|\nabla \Delta \phi\|
$$

By $\langle\nabla \Delta s, \nabla \Delta \phi\rangle$ an inner product is defined on H_{0}^{3} and by the Riesz theorem there exists a unique $s \in H_{0}^{3}$ such that

$$
\langle\nabla \Delta s, \nabla \Delta \phi\rangle=\left\langle\nabla p_{0}, \nabla \Delta \phi\right\rangle \quad \forall \phi \in H_{0}^{3}
$$

Let $p_{b}:=p_{0}-\Delta s$. For $\phi \in C_{0}^{\infty}$

$$
0=\left\langle\nabla p_{b}, \nabla \Delta \phi\right\rangle=-\left\langle p_{b}, \Delta^{2} \phi\right\rangle
$$

and by Weyl's lemma for Δ^{2} follows $p_{b} \in C^{\infty}$ and $\Delta^{2} p_{b}=0$. Since C_{0}^{∞} is dense in H_{0}^{3} with respect to $\| \nabla \Delta$. $\|$-norm it follows

$$
\left\langle\nabla p_{b}, \nabla \Delta s\right\rangle=0 \quad \forall p_{b} \in \tilde{B}, \forall \Delta s \in \tilde{A} .
$$

Let $s \in H_{0}^{3}$ and put $\underline{v}:=\nabla s \in \underline{H}_{0}^{2}$. Then $\operatorname{div} \underline{v}=\Delta s$ and first for $\phi \in C_{0}^{\infty}$
(9) $\langle\Delta \underline{v}, \Delta \underline{\phi}\rangle=\langle\Delta \nabla s, \Delta \phi\rangle=$

$$
=-\langle\Delta s, \Delta \operatorname{div} \underline{\phi}\rangle=1 \cdot\langle\nabla \operatorname{div} \underline{v}, \nabla \operatorname{div} \underline{\phi}\rangle
$$

and finally by approximation for all $\phi \in \underline{H}_{0}^{2}$. By (9) $\lambda=$ 1 is an eigenvalue of infinite multiplicity and $\left\{\underline{v}=\nabla s: s \in H_{0}^{3}\right\}$ belongs to the eigenspace.

Thorsten Riedl proved the analogous theory for $1<$ $q<\infty$, where in (1) $\underline{u} \in \underline{H}_{0}^{2, q}(G), p \in H_{0,0}^{1, q}(G), \underline{F}^{*} \in$ $\left(\underline{H}_{0}^{2, q^{\prime}}(G)\right)^{*},\left(q^{\prime}=\frac{q}{q-1}\right)$ and (1) holds for all $\underline{\phi} \in \underline{H}_{0}^{2, q^{\prime}}(G)$.

$$
\begin{array}{r}
p_{b} \in \widetilde{B}^{q}:=\left\{p_{b} \in H_{0,0}^{1, q}(G) \cap C^{\infty}(G): \int_{G} p_{b} \Delta^{2} \phi=0\right. \\
\left.\quad \forall \phi \in C_{0}^{\infty}(G)\right\}
\end{array}
$$

and $\underline{v} \in \underline{H}_{0}^{2, q}(G)$ satisfies

$$
\text { (10) } \quad\langle\Delta \underline{v}, \Delta \underline{\phi}\rangle=\left\langle\nabla p_{b}, \nabla \operatorname{div} \underline{\phi}\right\rangle \quad \forall \underline{\phi} \in \underline{H}_{0}^{2, q^{\prime}}(G)
$$

then it is readily seen that $\operatorname{div} \underline{v} \in \widetilde{B}^{q}$. We write Z_{q} : $\widetilde{B}^{q} \rightarrow \widetilde{B}^{q}, Z_{q} p_{b}:=\operatorname{div} \underline{v}$ with \underline{v} by (10). For $p_{b} \in \widetilde{B}^{q}$ Riedl proved $Z_{q} p_{b}-\frac{1}{2} p_{b} \in H^{2, q}(G) \cap H_{0,0}^{1, q}(G)$ and with $C>0$
(11)

$$
\left\|Z_{q} p_{b}-\frac{1}{2} p_{b}\right\|_{H^{2, q}(G)} \leq C\left\|\nabla p_{b}\right\|_{q} \quad \forall p_{b} \in \widetilde{B}^{q}
$$

From this follows (since the imbedding from $H^{2, q}(G) \cap$ $H_{0,0}^{1, q}(G)$ in $H_{0,0}^{1, q}(G)$ is compact) compactness of the operator $Z_{q}-\frac{1}{2} I: \widetilde{B}^{q} \rightarrow \widetilde{B}^{q}$. By the spectral theorem and some easy calculations we get an infinite series $\left(\lambda_{k}\right) \subset \mathbb{R}$ and corresponding $\underline{v}_{k} \in \bigcap_{1<t<\infty} \underline{H}_{0}^{2, t}(G)$ such that

$$
\begin{aligned}
& \left\langle\underline{v}_{k}, \Delta \underline{\phi}\right\rangle=\lambda_{k}\left\langle\nabla \operatorname{div} \underline{v}_{k}, \nabla \operatorname{div} \underline{\phi}\right\rangle \\
& \forall \underline{\phi} \in \underline{H}_{0}^{2, t^{\prime}}(G), 1<t^{\prime}<\infty
\end{aligned}
$$

and $\lambda_{k} \rightarrow 2(k \rightarrow \infty)$.

