BI-SOBOLEV HOMEOMORPHISM WITH ZERO JACOBIAN ALMOST
EVERYWHERE
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ABSTRACT. Let N > 3. We construct a homeomorphism f in the Sobolev space W 1((0, 1), (0, 1))
such that =t € Wh1((0,1)V,(0,1)N), J; =0 ae. and Jg—1 =0 ae.. It follows that f maps a
set of full measure to a null set and a remaining null set to a set of full measure. We also show that
such a pathological homeomorphism cannot exist in dimension N = 2 or with higher regularity
fewhN-1,

1. INTRODUCTION

Suppose that © C RY is an open set and f : © — RY is a mapping of the Sobolev class
WhP(Q,RY), p > 1. Here WP(Q, RY) consists of all p-integrable mappings of 2 into RY whose
coordinate functions have p-integrable distributional derivatives. In geometric function theory we
study mappings f and their properties. One of the most important properties are the fact that f
maps sets of measure zero to sets of measure zero and that preimages of sets of measure zero have
zero measure. If we imagine our mapping f as the deformation of the body in the space than these
properties have the following physical interpretation: new material cannot be created from ‘nothing’
and no material can be ‘lost’ during our transformation. From the mathematical point of view these
properties are strongly connected with the validity of change of variables formula which is crucial in
the development of the theory. For an overview of the field, discussion of interdisciplinary links and
further references see [11].

It was known already to Ponomarev [17] that it is possible to construct a Sobolev homeomorphism
which maps a null set to a set of positive measure (see also [15], [12]). On the other hand under
suitable assumptions (see e.g. [16], [13] and references given there) we know that a Sobolev home-
omorphism f satisfies the Lusin (N) condition, i.e. maps sets of measure zero to sets of measure
zero. Using Cantor type construction similar to [17] one can show that there are Lipschitz mappings
which map a set of positive measure to a null set and thus J; = 0 on this set of positive measure
while such examples cannot exist for reasonable mappings f (see [15] and [14]). For an overview on
this subject, detailed proofs and counterexamples we recommend [8].

Motivated by these results and also by some results about the sign of the Jacobian [9] it was
recently shown in [6] that it is possible to construct even homeomorphism in the the Sobolev space
wtr((0,1)V,(0,1)), 1 < p < N, such that J; = 0 a.e. This mapping cannot be obtained as a
simple iteration of known counterexamples and it requires several new ideas and a novel construction.
Let us mention some strange consequences of the existence of a mapping such that J; = 0 a.e. The
area formula for Sobolev mappings (see e.g. [5]) holds up to a set of measure zero Z, i.e.

0= [ nw=[ 1-zy(r@\2).
oz F(\2)
but Ln(2\ Z) = Ly(€2). It also follows that

Ln(Z)=0 but Ln(f(2)) = Ln(f(R)).

It means that such a mapping simultaneously sends a null set to a set of full measure and a
set of full measure to a null set. On the other hand each homeomorphism in the Sobolev space
WLN((0,1)V,RY) satisfies the Lusin (N) condition [16] and therefore the image of each null set is a
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null set, in particular there is no homeomorphism in W1 such that J ¢ = 0 a.e. Similar construction
with finer choice of parameters and estimates was later used by Cerny [1] to obtain such a mapping
with the sharp integrability of the derivative slightly below W1,

In this paper we address the issue of the possible Sobolev regularity of the inverse of this patho-
logical homeomorphism. In particular we would like to know if there is such a bi-Sobolev home-
omorphism, i.e. homeomorphism with f € Wb! and f~! € W'l We recommend [10] for basic
properties and applications of bi-Sobolev mappings.

Theorem 1.1. Let N > 3. There is a bi-Sobolev homeomorphism f : (0,1)N — (0,1)N such that
Jg(x) =0 and Jp-1(y) = 0 almost everywhere.

We combine some nontrivial known results to show that such a pathological homeomorphism
cannot exist in dimension N = 2 or in higher dimension with W~ =1 regularity of f. Let us recall
that the construction in [6] and [1] gives a Sobolev homeomorphism (but not bi-Sobolev) in W1-?
for every p < N.

Theorem 1.2. Let N > 2 and let f € WHN=1((0, 1)V, RY) be a bi-Sobolev homeomorphism. Then
Jr(x) # 0 on a set of positive measure.

To construct a mapping f in Theorem 1.1 we use some ideas and notations from the previous
paper [6] but our construction is essentially more complicated and it requires several new ideas and
improvements. We know from [10] that each bi-Sobolev mapping satisfies J(z) =0 = adj Df(z) =
0 a.e. and thus our mapping must satisfy also adj Df(z) = 0 a.e. in (0,1)". Here adj D f(x) denotes
the adjugate matrix (matrix of all (N — 1) x (N — 1) subdeterminants of D f(x)). To obtain a map
with zero Jacobian in the previous constructions it was enough to squeeze certain Cantor type set
only in one direction, but we have to squeeze these sets in two directions to obtain mapping with
adjDf =0 a.e.

The mappings are constructed as a composition of many mappings and the derivative is computed
using chain rule as a product of derivatives of corresponding functions. In [6] it was essential that
all the matrices involved are almost diagonal and thus we can make better estimates of the norm
of their product than simply estimate norm of each matrix. After squeezing in two directions our
mappings are no longer almost diagonal but we repair this by choosing different coordinate systems
in different steps of our construction. This linear transformation allows us to make some of the
matrices almost upper triangular which will be sufficient for our estimates.

Of course we need to estimate also the derivatives of the inverse mappings in these constructions.
After applying all the improvements described above we would get a mapping f whose inverse does
have an integrable derivative. The main new ingredient is the following which makes the properties
of f and f~! somewhat similar. We will construct a sequence of homeomorphisms F; which will
eventually converge to f and disjoint Cantor type sets C; such that £3(C;) > 0 and Jp, = 0 a.e.
on C; for j € Upen{6k + 1,6k 4 2,6k + 3} while L3(F;(C;)) > 0 and JFj—l = 0 a.e. on F;(C;) for

J € Upen{6k + 4,6k + 5,6k + 6}. The mappings Fgy1 and F&;H are squeezing the Cantor type
set in the direction of x and y axes, Fgr+2 and F&c{rs are squeezing after rotation in the directions

x and z and finally Fgrq3 and Fﬁ_kiﬁ are squeezing after rotation in the directions y and z.

It would be nice to determine all possible values of p and g for which there is a bi-Sobolev mapping
with f € WP, f=1 € Wb and Jr = 0 a.e. We have not pursued this direction. We will use the
usual convention that C denotes a generic constant whose value may change at each occurrence.

2. PROOF OF THEOREM 1.2

Suppose for contrary that there is a bi-Sobolev homeomorphism f € WH¥~1 such that J; = 0
a.e. From [10] we know that each bi-Sobolev mapping is a mapping of finite inner distortion, i.e. for
almost every = we have

Ji(z)=0=adjDf(x) =0 a.e..
Since J¢(z) = 0 a.e. we obtain that adj D f(z) =0 a.e.
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From [4] (see also [7], [3] and [2]) we know that each W"~1 homeomorphism of finite inner
distortion satisfies f~' € W1 and we have the following identity

[ Jadips@ldo= [ Dr ) dy.
(0,H¥ F0,1)N)

Since the left hand side equals to zero we obtain that D f~1(y) = 0 a.e. Using the absolute continuity
of f~! on almost all lines it is not difficult to deduce that f~' maps everything to a point which
clearly contradicts the fact that f is a homeomorphism.

Now we can proceed to the construction in Theorem 1.1. From some technical reasons we construct
a mapping from some rhomboid onto the same rhomboid and not from the unit cube onto the unit
cube. This difference is of course immaterial. We give the details of the construction f = (f1, fa, f3)
in dimension N = 3. In general dimension it is possible to use for example the mapping

f(xla'r27 s 7$N) = (fl(xl,l'g,xg),f2(.771,$2,$3)7f3($17$2,$3),$4, s axN)

which is again a bi-Sobolev homeomorphism with zero Jacobian a.e.

3. BASIC BUILDING BLOCK

We begin by defining “building blocks”. For 0 < w and s € (0,1), we denote the diamond of
width w by

Q*(w) = {(z,y,2) € R?: |z + [y| < w(l — |z])}.
We will often work with the inner smaller diamond and the outer annular diamond defined as
I*(w,) = Q* (ws) and O%(w, ) = Q(w) \ Q*(ws).

Given parameters s € [£,1),s" € [1,1), we will repeatedly employ the mapping i sert QF(w) —
Q*(w) defined by

1— ! I 1— ’ ’_
o) | T O D iy ey (L WS =St 2) (@0,2) € 0% (w, ),
w,s,s’ ' I - ’ s’ )

%$7?y,2 ($7yvz) € IZ(U),S)

If 8 < s, then this homeomorphism horizontally compresses I*(w, s) onto I*(w, s"), while stretching
O*(w, s) onto O*(w, s). Note that ¢, , ., is the identity on the boundary of Q*(w).

Fig. 1. The restriction of the mapping ¢;, ; ./ to the z, z-plane

If (x,y, ) is an interior point of I*(w, s), then

(3.1) Dy, o o (2,y,2) =

O O wnl
Oule, O
o
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and if (x,y, ) is an interior point of O%*(w, s) and z # 0, then

(3.2)
D(pfu,s,s’(aj?:%Z) =
=4 (- = (o - o) (1= Jehws=s (- s o
s = \ =T — T = |~ Talrivne = Tel+1v]
_ s'—s [ sgn(z)y 1-s’ _ s'—s 1 _ _sgn(y)y 8 —ssgn(z)y
(= lehwi= (- &) =+ (- D= (e - o) v
0 0 1

Clearly % <1 and since s > % we have (|1£|‘+Z|BTU < 2 for every (z,y,2) € O*(w, s). We will have
to work quite often with this matrix and therefore we will use a notation ¢ to denote an expression
which may depend on z,y, z but we know that |¢| < 1. This expression may have a different value
at each occurrence but it will not depend on various parameters w, s, k,[,t. Using this convention

we may write

1—s' s'—s s'—s s'—s
1-s +,4C 1-s 2c 1-s cw 1/ s
z _ _
(33) D(pw,s,s/(xay7z) - 26% — C’LUS1 j
0 0 1

Note that by choosing w sufficiently small we can make the first two terms in the last column
arbitrarily small. Later we will rotate this matrix in the first two coordinates and we obtain almost
upper triangular matrix.

We will need also to estimate the derivative of the inverse mapping

D(szzu,s,s’)_l(‘pzzu,s,s/ (1’7 Y, Z)) =

s s—s’ 1 sgn(z)z s—s’ sgn(y)z s—s’ sgn(z)x
= |Z‘)wﬁ(\w\+\y\(_) (EEmE) ) (1= 2)wi=5 (= Grefype) » wizy (= (le-(%lz)/l))
sgn (x)y —s s—s sgn(y)y s—s' (_ sgn(z)y
(1= [2wi=5 (— k) =+ (1= [hwi= B’(ImHly\ Telro?)  @i=y (CQarn)
and by s’ > 1 we have (Ef‘gq‘” < 4 and hence we may rewrite this as in (3.3)
vrBeiDy ey ewisy
(34) D(pru,s,s/)il(pru,s,s/(zv Y, Z)) = 4Ci:z: 1 5/ + 861 s C’LU‘Iq 8;
0 0 1

Suppose that Q* is a scaled and translated version of Q*(w). We define apg;,s, to be the corre-
sponding scaled and translated version of ¢, ; .. By I§). and Of). we will denote the corresponding
inner diamond and outer annular diamond.

Suppose that QY and QF are scaled and translated copy of rotated diamonds

Q¥(w) = {(z,y,2) € R? : |z + |2] <w(l -y} and Q" (w) = {(z,y,2) € R® : [y| + |2| <w(l —|z|)}

We define gogys o and ‘szs » to be the corresponding rotated, scaled and translated version of @i’u 5.5/
and ¢y, . That is gpw 5. maps QY onto QY and it is the identity on the boundary; analogously

for @8 s~ We will also use a notation I¢), and Op), for the corresponding inner diamond and
outer annular diamond. It is also easy to see that each of these mappings is bi-Lipschitz. By the
composition of finitely many of these mappings we always get a bi-Lipschitz mapping.

4. CHOICE OF PARAMETERS AND LEMMATA

Let €7 and C5 be absolute constants whose exact value we will specify later. We can clearly fix
t > 1 such that
2

(4.1) 0102(%)6 <

| =
N
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For k € N, we set

k+1 1 , k
(42) 'lUk:tk27_17 Skzl_@ and Sk:Skm.
In this case,
1—¢ tk? + k Sk — S tk? — 1
4.3 k= d kwy = 1.
(43) 1—s,  k+l M1 T Ty

It is also easy to check that 0 < s; < 1 and

o0
H s; > 0.
=1

We will need the following elementary consequence of area formula for mappings whose Jacobian
is almost constant on some subset.

Lemma 4.1. Let 6 > 0, 0 < s < 1 and let A C P satisfy |A| = s|P|. Suppose that F €
Whi((0,1)N,RYN) is a homeomorphism, P C F((0,1)N), F satisfies the Lusin (N) condition on
F~Y(P) and

Jr(x) < (14 0)Jr(y) for every x,y € F~1(P) .

Then .
mIF_l(A)I <[FTHP)s < 1+ 8)|FH(A)] .
Proof. Let us denote
m= il | Jp(x)| and M = o | Tr(2)] -
The area formula is valid for Sobolev homeomorphisms that satisfy the Lusin (N) condition (see
e.g. [5]) and hence

mlF) < [

Tp(x)| dr = | A] = s|P| = /
F-1(A)

F-1(

|Jp(x)| de < sM|F~Y(P)] .
P)

Since M < (1+9)m we obtain the first inequality and the second one can be shown analogously. O

Later we apply this lemma for parameters ), and we use that the product of (1 + dx) is bounded
1

= ?’

Given a matrix B and a set @ C RN we use the notation BQ = {Bxz : z € Q}.

(4.4) Ok Ap =TI (146) and A:=T2,(146;) = Jim Ay < oo

Lemma 4.2. Let k e N, L > 1 and 0 < ry < ﬁ. Suppose that for every x € [0,1]® there is a
matriz B, with ||B,|| < L and ||B; || < L. Then we can cover the whole set by scaled, translated
and rotated copies of QY, . In particular

0,1 =NU U 7By, (z; + QY,)

j=1
where the sets are pairwise disjoint, L3(N) =0 and r; < rg.
Proof. Set e1 = Lrg and ry = % = ry and consider the ;-grid in R3
Gi:={z € (&1N)*: B(z,Lr) C (0,1)%} .
In the first step we choose diamonds
Dy = |J nB.(z+@QY,)
r€Gy

and we obtain finitely many diamonds that are pairwise disjoint. Since [QY, | > k% it is not difficult
to check that

Ls(Dy) > Co(L,t)

> S La((0,1)°)
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Now we choose €5 > 0 so small that
1
Ls({z € (0,1)*\ Dy : dist(z, D1) > e2}) > 553((0, 13\ Dy) .
We set 75 = 2 and we consider a grid
Gy = {x € (e2N)® : B(x, Lry) € (0,1)>\ Dy} .
We add disjoint diamonds
D, = U roBa(z + Q)
z€Go

and it is easy to check that diamonds from D; and D are pairwise disjoint. Again it is not difficult

to check that
1 Co(L,t)

L3(Dy) > 5 2 £3((0,1)3\ Dy) .

We continue by induction. Now we choose €; > 0 so small that for the already covered set
Di .= J/Z] D; we have

. 1 .
Ls({z € (0,1)*\ D7 : dist(z, D;) > ¢e;}) > 5@,((0,1)5’3\173) .
We set r; = 3 and we consider a grid
Gj={x € (;N)*: B(x,Lr;) C (0,1)*\ D7} .
We add pairwise disjoint diamonds
D= |J rBu(x+QL,)
(L‘EGJ'
and again it is not difficult to check that
1Co(L,t)
Since this inequality holds for all j it is easy to see that the measure of the set

L5((0,1)*\ DY) .

N:=1[0,1\ U D satisfies L3(N) = 0.
j=1

O

We will need to decompose some matrices to the product of rotation and upper triangular matrix
(i.e. all terms below the diagonal are zero) with the help of the well-known QR decomposition
theorem. Recall that the matrix @ is orthogonal if the columns are unitary vectors, @~! = Q7 and

QI < 1.

Theorem 4.3. For every N x N matrix A we can find an orthogonal matriz Q@ and an upper
triangular matriz R such that A = QR.

5. CONSTRUCTION AND DIFFERENTIABILITY OF F}

5.1. Construction of Fj. Let us denote Qp := Q*(w;). We will construct a sequence of bi-
Lipschitz mappings fi1 : Qo — Qo and our mapping Fy € W11(Qp, R3) will be later defined as
Fi(z) = limg—co fr,1(x). We will also construct a Cantor-type set C; of positive measure such that
Jr, = 0 almost everywhere on Cj.

We define a sequence of families {Qy 1} of building blocks, and a sequence of homeomorphisms
fk,l: Qo — Qo. Let Q171 = Qz(wl) = Qo, and define f1712 QO — QO by

fl,l(z7yvz) = 8050175175/1 (I,y,Z).

Clearly fi,1 is a bi-Lipschitz homeomorphism. Now each f; 1 will equal to fi; on the set G :=
O%(w1, s1) and it remains to define it on Ry 1 := I*(w1, s1). Clearly

L3(G1,1) = (1 - 51)L3(Qo) and L3(Ry,1) = s7L3(Qo).
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Let Q31 be any collection of disjoint, scaled and translated copies of Q*(ws) which covers
fi,1(Ri,1) = I?(ws,s]) up to a set of measure zero. That is any two elements of Qs have dis-
joint interiors, and there is a set Fa1 C I?(w1, s}) of measure 0 such that

Iz(wlvsll)\EQ.,l c U QZ QIZ<U}178/1)'
Q*€Q21

Clearly such a collection exists. Note that if % € Qs 1, then the inverse image of Q% under f; ;
is a scaled and translated copy of Q*(% : Lwy) = Q%(2wsy) and

I*(wi,s1) \ (fi,1) ' (E21) C U (f11) (@) C I* (w1, s1).

Q*€Q2 1

Note that Jy, , # 0 a.e. and hence the inverse image of a null set F5; has measure zero.
We define fo1: Qo — Qo by

For(z,y,2) = %032,32,3/2 ofii(x,y,2) fii(z,y,z) € Q* € Qa1,
R fia(z,y,2) otherwise.

It is not difficult to check that f; is a bi-Lipschitz homeomorphism. From now on each fj ; will
equal to fa 1 on
Gl,l U G2,1 U (f171)_1(E2,1), where G271 = f;ll( U 02222)
Q?*€Q2,1
and it remains to define it on
Ror=fit (U 13)
QEQ21

Since each f; 11 (Q?) is a scaled and translated copy of our basic building block and the ratio ss is
fixed, we obtain

3(Ga) = Y Ls(fi1(03)) = D L3(07 )
Q*€Qs, Q€21 v
= Z (1-s3)Ls (ff%(@z)) =(1- 5%)53(31,1)~
Q*€Q2 1

It is also easy to see that
£3(R2,1) = 8%53(1%171).
We continue inductively. Assume that Q 1, fr,1, Gi,1 and Ry 1 have already been defined. We
find a family of disjoint scaled and translated copies of Q%(wg+1) that cover fi 1(Rp1) up to a set
of measure zero Ej1,1. Define p11,1: Qo — Qo by

Q* z
z,y, T,Y,z) € Q S Qk 1
Pr+1,1(2,y,2) = {(ple o P02 58 ). o
(z,y,2) otherwise.

The mapping fry1,1: Qo — Qo is now defined by @iy1,1 0 fr1. Clearly each mapping fry11 is a
bi-Lipschitz homeomorphism. We further define the sets

Gea=fit (U opt)and Ren= st (U 15
Q7€Qk+1.1 Q*€Qx41,1

Again it is not difficult to check that

L3(Gry11) = (1= si41)Ls(Rr1) and Ly(Ryi11) = 5741 L3(Ri1)-
Using £3(G11) = (1 — s3)L3(Qo) and L3(Ry11) = s3L3(Qo) we easily obtain
(5.1) L3(Ri1) = 5783 51.L3(Qo) and L3(Gy.1) = s7s5 -+~ si_1(1 — s7)L3(Qo)-
It follows that the resulting Cantor type set

Cl = ﬂ Rk,l
k=1
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satisfies

oo
53(01) = £3(Q0) H 812 > 0.
i=1
It is clear from the construction that fi 1 converge uniformly and hence the limiting map F(z) :=
limy .o fr,1(x) exists and is continuous. It is not difficult to check that F} is a one-to-one mapping
of Qg onto Q. Since Qg is compact and Fj is continuous we obtain that Fj is a homeomorphism.
It remains to verify that fi 1 and f, % form a Cauchy sequence in W' and thus F} is a bi-Sobolev

mapping.
5.2. Weak differentiability of Fj. Let us estimate the derivative of our functions f,, 1. Let us

fix m,k € N such that m > k. If Q% € Q1 and (z,y,2) € int(fhl)_l(IQz) then we have squeezed
our diamond k-times. Using (3.1), (4.2) and the chain rule we obtain

%

k 4 0 0 = 0 0
(5.2) Dfia(zy.2) =] 0 & 0 ]= 0 = 0
=1\ 0 0 1 0o 0 1

Moreover, if (z,y,z) € int(fml)_l(OQZ) then we have squeezed our diamond &k — 1 times and then
we have stretched it once. It follows from (3.1), (4.2), (3.3), (4.3) and the chain rule that

tk>+k tk*—1 tk*—1 i
w1 At , 265 ¢ k=1 7y 00
j— —_ — 3
Dfma(z,y,2) = 2cthi =1 wrik ettt o | JTL 0 m7 0
0 0 1 i=1 0 0 1
5.3
(5-3) tk+1+gtk2—1 2c tk®—1 c
k+1 k k+1 & k+1
- 2c tk?—1 thtl | dct tk2—1 =: Ay
k k+1 k+1 kk+1 ’ ’
0 0 1

It is easy to see that the norm of this matrix can be estimated by Ct.
Now let us fix m,n € N, m > n. Since f, 1 = fm,1 outside of R, ; we obtain

Dt — fu)| = / Dt — fud)|

Rn ,1

Ryp,1\Rm 1 R
From (5.2) and (5.1) we obtain

/ |IDfn1l < CL3(Rp1 \ Rm,1) "0
n,1\Rm,1

Qo

IDfs — Dfs] +C Z/ D fosl-

m,1 k=n+1" Gr1

and

1 1 C  nooo
Dfmi—Dfn <C< _ )< 0.
/Rm,1| fm faal < n+tl m+1)"n+1

From (5.3) and (5.1) we obtain

Z /G IDfmal <C > Ls(Gralt

k=n-+1 k=n-+1
m
<C Y (1-spt
k=n+1
AR |
n—oo
<C Z a2zt o
k=n+1

It follows that the sequence D fj 1 is Cauchy in L' and thus we can easily obtain that fj 1 is Cauchy
in Wb, Since fx1 converge to Fy uniformly we obtain that Fy € W1, Moreover, using (5.2) and
(5.3) it is not difficult to see that Fy is in fact Lipschitz mapping with Lipschitz constant Ct.
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From (5.2) we obtain that the derivative of fj 1 on Ry 1 and especially on C; equals to

g0 0
ka,1(517>y): 0 E+1 0
0 0 1

Since D fy 1 converge to DFy in L' we obtain that for almost every (z,y, z) € C; we have

0 0 O
DFi(z,y)=1 0 0 0
0 0 1

and therefore Jpg, (z,y,2z) = 0. From now on each Fj will equal to Fy on C; and we need to define it
only on @ \ C1. Moreover it is easy to see from the construction that Jg, # 0 a.e. on Qo \ C1. It
follows that the preimage of each null set in F;(Q)o \ C1) has zero measure.

In the rest of the paper we will not explicitly mention all the exceptional null sets but we will
keep in mind that they are not important for our considerations and estimates.

5.3. Weak differentiability of | '. Let us estimate the derivative of our functions fn;’ll. Let us

fix m,k € N such that m > k. If Q* € Qi and (z,y,2) € int(]éi), then we have squeezed our

diamond k-times by fi 1 and the derivative of f, i can be computed as an inverse matrix to (5.2)
and we get

kE+1 0 0
(5.4) Dfyi(x,y,2) = 0 k41 0
0 0 1

Moreover, if (z,y,2) € int(OZfz), then we have squeezed our diamond by f,,, 1 kK — 1 times and then
we have stretched it once. Hence we can compute its derivative as an inverse matrix to (5.3) and
with the help of (3.4) we get

k+1 tk?—1 th?—1 k+1
X T2k +82€k(tk+1) 4ck(tk+1)2 CH TR k0 0
Df1(z.v.2) — th—1 ket 1 th?—1 ket 1 0 k 0
T (.9, 2) degirrn w21k T 8CEGrTD  CoAin
) 00 1
5.5
( ) k+1 +80tk2—1 4ctk2—1 ckt1
tk+1 2 tk+1 tk+1 R tk2+k
— tk—1 k+1 tk“—1 k+1
4 ot TOCHTT Carak
0 0 1

and hence ||Df,;}1 (z,y,2)|| < Ck.
Analogously to the proof of (5.1) we may deduce from the construction that for every k we have

(5.6) Ls(fror1,1(Rrt1,1)) = (841)°L3(fr1(Ry,1)) and hence L3(fr1(Ry,1)) < % :
Moreover, by (5.6) and (4.2) we can deduce that for every m > k
(5.7)
C
L3(fm1(Gr1)) = (1= (1)) Ls(fr-11(Be-1,0)) = (s1)%(s2)* -+ (s5-1)* (1 = (1)) £3(Q0) < 75 -

Now let us fix m,n € N, m > n. Since f, 1 = fm,1 outside of R, ; we obtain

Lo =bi= [ g - g
QO frn,l(Rn,l)

g/ |Df,:&|+/ |Df;,11|+/ DSl
f'm,l(Rn,l) f'm,l(Rvn,l) fvn,l(U Zl:,H,l Gk,l)

From (5.4) and (5.6) we obtain

— 1 n—oo
[ IDES EalfmaRasn = Ll (B < yn "0
fm,1(Rn



10 LUIGI D’ONOFRIO, STANISLAV HENCL AND ROBERTA SCHIATTARELLA

and

_ 1 R
/ D < Lo(funt (R < —om "5 0,
m,1(Rm,1) m

From (5.5) and (5.6) we obtain

m m 1 oo
/ DEAE Y Ll GOk <O Y Ck™ 0

m 1 (Uil 1 Gh1) k=n+1 k=n-+1

It follows that the sequence D f, i is Cauchy in L' and thus we can easily obtain that f,_ i is Cauchy
in Wb, Since fl;% converge to Ffl uniformly we obtain that Ffl € Wh! (see Lemma 3.1 [4]).

6. CONSTRUCTION AND DIFFERENTIABILITY OF Fj

6.1. Construction of F,. We will construct a sequence of homeomorphisms fi 2 : Qo — Qo and
our mapping Fy € WH1(Qo,R?) will be later defined as Fa(x) = limg_ o fr2(x). We will also
construct a Cantor-type set Co C Qg \ C1 of positive measure such that Jg, = 0 almost everywhere
on Cs.

The set C; is closed and thus we can find Q; 2, a collection of disjoint, scaled, translated and
‘rotated’copies of Q¥(w1) which cover F1(Qo \ C1) up to a set of measure zero Eq . In the later
computations it will be essential for us to compute with almost upper diagonal but the matrix from
(5.3) is not like that. Therefore we use the QR decomposition Theorem 4.3 and we cover the set
F1(Qo \ C1) using Lemma 4.2 by ‘rotated’ diamonds and then we apply similar procedure as in the
construction of Fy. That is instead of a mapping wgys - we work with the map B~'o apgys o © B for
some properly chosen linear map B. We will use the symbol B to denote both the linear mapplng and
the corresponding matrix. By the chain we obtain that the derivative of this map is B~ 1D<pw s, B-

Recall that the constants ¢ in (5.3) depend on z,y, z but in a locally continuous way. For each
(x,y, 2) € F1(Gg,1) we have a matrix

th+1 + 461 th?—1 2co th>—1
k+1 k+1 k k41
Ak(x, Y, Z) p— 2;3 t/;;_*jl t]f_tll + 4C4 tl;;—‘rfll
0 0 1

where the constants ¢, co, c3,cq are the evaluations of the constants from (5.3) for this particular
point (z,y,z). By QR-decomposition Theorem 4.3 there exists a orthogonal matrix @) and an
upper triangular matrix Ry such that Ag(z,y,2) = QrRi. Hence, taking B; = Q,;l we know that
B1Ag(x,y,2) is upper triangular matrix and ||BjAg| < ||Ag|| < Ct. By the continuous depen-
dence of constants ¢y, ca,c5 and ¢y it is easy to see that there is r(x,y,z) > 0 such that for every
(«',y,2"), (', y,2")—(x,y,2)| < r(x,y,z) we know that the matrix By Ag(z’, 1y, 2’) is almost upper
triangular, i.e. the numbers below the diagonal are between —1 and 1. As t is chosen large enough
these terms will not be important in the estimates of the norm of product of matrices in Section 7.

From the construction of F; we know that for every cube compactly inside each int F;(Og=) we
may choose 7(z,y,z) > ro > 0 by local continuity of constants c¢. Hence we can use Lemma 4.2 to
cover this cube by scaled, translated and rotated copies of Q¥(w;). In this way we cover F1(Qo\C1)
up to a set of measure zero. For simplicity of notation we denote the ‘rotation’ matrix by B; but
we keep in mind that its entries are different for each rotated diamond from Q; o.

We will moreover require two additional properties. We know that Qo \ C; is equal up to a set of
measure zero to Uloil G),1. Hence we will also require that

(6.1) for each QY € Q5 there is I € N such that F; *(B1QY) C G1.

Secondly, we know that Jp, is continuous in each diamond from G ; (see (3.2)) and thus we may
assume that Fy ' (B;QY) is a subset of one diamond and it is so small that

(6.2)  Jr (w1,y1,21) < (L4 82)JF, (2, Y2, 22) for every (w1,v1,21), (T2,Y2,22) € Fy (B1QY).
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This fact, Lg(Bllély) = S%,Cg(Ble), Lg(Blijy) = (1 - S%)Eg(Ble) and Lemma 4.1 1mply that

1
mﬁg(Ffl(Bllgy)) < s1L3(Fy 1 (B1QY)) < (14 62)Ls(Fy H(B11g,)) and
(6.3)
1

E3(F1_1(B108y)) S (1 - S%)ﬁg(Fl_l(Ble)) S (1 +52)£3(F1—1(3108 ))
1 +62 y
We define f1,2: QO — QO by

Bl_l ) @3151753 oByoFi(z,y,2) Fi(z,y,2) € Q¥ € Q1 9,

Fi(z,y,2) otherwise.

fl,Q(IvyaZ) = {

It is not difficult to check that f; 2 is a homeomorphism. Moreover it is a bi-Sobolev mapping since
it is a composition of a bi-Sobolev and bi-Lipschitz mapping. From now on each f; o will equal to
fi,2 on
C1 U Gy, where Gy 5 = F;l( U Blog;y)
QYEQ: >

and it remains to define it on

Ripi=F (U Bug):

QVEQ1 2

Let us note that Jp, # 0 on Qo \ C1 and thus the preimage of the null set Eq o under Fj is a null
set. By summing up (6.3) we obtain

1

70, L3(Ri2) < 57L3(Qo \ C1) < (1+62)L3(Ry2) and
1

170, L3(G12) < (1= 57)L3(Qo \C1) < (14 62)L3(Gr2).

We continue inductively. Assume that Qj 2, fr 2, Gk 2 and Ry 2 have already been defined. We find
a family of disjoint scaled, translated and rotated copies of Q¥(wy41) that cover fio(Ry2) up to
a set of measure zero Ej1,2. The rotation here is given by the same matrix B; as in the previous
steps, i.e. in the rotated diamond we have smaller diamonds that are rotated in the same direction
(but for each diamond in Q; » we have possibly different rotation B;). Define ppi11,2: Qo — Qo by
Qy

Wh41,5k+1,54 41

B;lo(p OBl(l‘,y,Z) (.’IJ,y,Z) EQy S Qk+l,2a
(z,y,2) otherwise.

¢k+1,2($,y72) = {

The mapping fry1,2: Qo — Qo is now defined by @iy1,2 © fr2. Clearly each mapping fiy12 is a
homeomorphism. Moreover it is a bi-Sobolev mapping since it is a composition of a bi-Sobolev and
bi-Lipschitz mapping. We further define the sets

Grite ::f,;;( U 02;;1) and Ry 10 ;:f,;;( U 1;;;1).
QVEQrt1,2 QYEQri1,2

The linear maps ¢; 2, 1 < 7 < k, on inner diamonds do not change the ratio of volumes of Q¥ and
022’“,;17 QY € Qk11,2. Therefore we obtain that

La(F1(Gri12)) = (1 = s341)La(F1(Ry2)) and L3(F1(Ri+1,2)) = sjy1L3(Fi(Ri2))-
Analogously as before we obtain
L3(Fi(Ry2)) = sis5 - siL3(F1(Qo \ C1))
and
L3(F1(Gy2)) = 513+~ 571 (1 = s3)L3(F1(Qo \ C1)).
Therefore using (6.2) and Lemma 4.1 we obtain that

1
(64) 1 T 62 £3(Rk72) S S%Sg e Siﬁg (Qo \Cl) S (1 + 52)£3(Rk72)
and
1 2.2 2 2
(65) Eg(th) < 8785 Skfl(l — Sk)ﬁg, (Qo \Cl) < (1 + 62)£3(Gk,2).

144
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Since the sets QY, Q¥ € Q. 2, cover F1(G; 1) up to a null set (see (6.1)) we can moreover obtain the
similar estimate on each G 1, [ € N. Therefore

1
(6.6) mﬁs(Gk,Q NG1) < S%SQ Si (1= )Eg(Gl 1) < (1402)L3(Gr2NGia).
It follows from (6.4) that the resulting Cantor type set
CQ = ﬂ Rkyg
k=1
satisfies

L3(C2) =

,Cg Q() \C1 H S; > 0.
i=1
It is clear from the construction that f » converge uniformly and hence it is not difficult to check
that the limiting map F5(z) := limg_,o0 fr 2(2) exists and is a homeomorphism. It remains to verify
that fi o and f,;21 form a Cauchy sequence in W' and thus F, is bi-Sobolev.

14

6.2. Weak differentiability of F,. Let us estimate the derivative of our functions f,, 2. Let us fix

m, k € N such that m > k. If Q¥ € Q2 and (z,y,2) € int(fr2)*( Qy) then after applying F; and
B; we have squeezed our diamond k-times. Analogously to (5.2) we can use (3.1), (4.2), the chain
rule and By 'B; = I to obtain

k 0
Dfya(z,y, 2) HBll 1
0

i1

0
0 By | DFy(2,y, 2)
(6.7) u

o) 0
=B;! 0 0 B1DF\(z,y,2).
00 ik

k+1

Moreover, if (z,y,z) € int(fmyg)’l(OQy) then after applying F} and B; we have squeezed our
diamond %k — 1 times and then we have stretched it once. Analogously to (5.3) we can use (3.1),
(4.2), (3.3), (4.3) and the chain rule to obtain that

(6.8)
tk2 4k th?—1 tk2—1
w1 TACET 2e5%7 § 00
Dfmvg(x,yﬂ):Bfl 0 1 0 0 1 0 | BiDFi(z,y,2)
tk®—1 tk>+k tk2—1 1
2659 ¢ G T4 00 3%
tk+1+gtk2—1 2¢ thk?—1
k+1 kE k+1 kE k+1
=Bt 0 1 0 B1DF\(z,y,2).
2c tk?—1 c tk+1+gtk2—1
k k+1 k+1 k k+1

Now let us fix m,n € N, m > n. Since f, 2 = fm,2 outside of R,, » we obtain

D(fs — fro)| = /R Dz — fu)|

SC/ |Dfn,2|+0/ D fn2 — Dfusl +C Z/ D2l
Ry 2\Rm,2 R

k=n+1 G,z

Qo

By (6.7), || B{Y|| €1 and || By|| < 1 we get
/ Dfusl <C DR "= 0
Rn 2\R7n 2 Rn 2 Rm 2

since |[DFy| € L' and L3(Rp2 \ Rm2) — 0. Analogously we may use (6.7) to obtain

1 1 n—>OO
Df, o— <<7—7)/ DF. 0.
[, 1Ptma=Dhal < (7 - og) [, 1A
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We need to estimate the norm of the matrix

(6.9)
-1 ._
Akl,kg = Bl Ak2BlAk1 =
tho+1 4c thy—1 ¢ 2¢ thy—1 thy 41 4c thi—1 2c thi—1 c
ka1 ko k241 ko ko+1 k1+1 7261 ki+1 N k1+1
B! 0 1 0 By 2c thi—1 thi+1 | 4cthi—1
@tkgfl thot 1 n Etk:gfl k1 ki+1 ki+1 N k1+1
ko ko+1 ko+1 ko ko1 0 0

It is easy to see that the norm of the second matrix can be estimated by Ct and the norm of the
last also by Ct and hence || By ! Ay, B1 Ay, || < Ct? where C does not depend on ky, ko, x,y, z. Thus
we may use (5.3), (6.8), (5.1) and (6.6) to obtain

3 / Dfsl< 3 Z/ Do)

ko=n+1 ko=n+1k;=1 Gk2 2mlel
m e

< Z ZL3(Gk2,2mle,l)HAkhkz”
(610) k2:7::+1 k;jl
kg:n-‘rlkl:l

1 n—oo
<o 3 S dnece $ 4
th2t 2
ko=n+1k;=1 o=n

It follows that the sequence D fj 2 is Cauchy in L' and thus we can easily obtain that fj o is Cauchy
in WHl. Since fi2 converge to F uniformly we obtain that Fy € W11, Moreover, using (5.2),
(6.7), (5.3) and (6.8) it is not difficult to see that F is Lipschitz mapping with Lipschitz constant
Ct2.

From (6.7) we obtain that the derivative of fj 2 on Ry 2 and especially on Cs equals to

1

T 0

0
1 0 B1DFy(x,y, 2).
0

k+1

Dfya2(z,y,2) = B!

o O+

Since D fi o converge to DFy in L' we obtain that for almost every (z,y, 2) € C2 we have

Jr, (z,y,2) = det klim B!

B
e O—&-‘»—'
—

0 0
1 0 |BDF(xyz2]|=o0.
1
0 w1
From now on each Fj will equal to Fy on C; UCs and we need to define it only on Qg \ (C1 U Cs).

Analogously as before Jg, # 0 a.e. on (g \ (C1 UCs) and thus the preimages of the exceptional null
sets will be null sets.

6.3. Weak differentiability of F, '. Let us estimate the derivative of our functions f,;}Q. Let us

fix m,k € N such that m > k. If Q¥ € Q2 and (z,y,2) € irlt(fgf'y)7 then after applying F} we
have squeezed our diamond k-times by fj 2 and the derivative of f;- 21 can be computed as an inverse
matrix to (6.7) and we get

k+1 0 0
. 5 'ray7z = L 337972' 1 1
6.11 Dfis DFT Y (a',y, 7)) By 0o 1 0 B
0 0 k+1

where (2/,y/,2") = gpl_éoso;é@ . ~o<p,;é(x, y, z). Moreover, if (z,y,z) € int(O;kf ), then after applying
Fy and B; we have squeezed our diamond by f, 2 k2 — 1 times and then we have stretched it once.
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Hence we can compute its derivative as an inverse matrix to (6.9) and we get
~1

thotl | 4ctk3—1 c 2¢ th3—1
1 1 ka+1 ko ko+1 ko ko+1
(6.12) Df,. 2(1’ y,z) = (DF; (o', y/,2")) B; 0 1 0 B; .
2¢ thy—1 tho+1 n 4c thZ—1
ko ko1 ko+1 Ko k2+1

By using analogy of (5.5) and also the same estimate for DF;! we obtain ||Dfn;’2(x, Y, 2)|| < Ckiks

for every (x,y,2) € int(OQk;) such that f, 2(.’L‘ y,2) € Gy, 1. Analogously to the proof of (5.1) we
may deduce from the construction that for every k we have

(6.13) L3(frr1,2(Riy1.2)) = (5h41)°La(fr2(Rr2)) and hence L3(fr2(Rx2)) < klg :

By (5.7) we know that L3(F1(Gg, 1)) < k% and analogously we can deduce that for every m > k
L5(fn2(Gr2)) = (1) (s5-1)*(1 = (s1)*)La(F1(Qo \ C1) < 45 -

Since Qo \ C1 = UZ?:l G, ,1 we can apply similar estimate on each Fy(Gy, 1) and we obtain

C
(6.14) Eg(fm)g(leyl n szﬁg)) < W and Eg(fm Q(le 1N R, 2)) < k3n2 .

Now let us fix m,n € N, m > n. Since f, 2 = fm,2 outside of R, » we obtain

/'wuzz—ﬁ3n=/ DL — fob)]
QO fm,,2(Rn,2)

<[ wrye [ prbief Dfbl
fm,2(Rn,2) m,2(Rm,2) m,2(Up,, 1 Gr,2)
As Qo \ C1 = Uy, Gk, 1, from (6.11) and (6.14) we obtain

DY < / DY)
/f( ey 1

k=17 fm.2(Gry 1NRn 2)

1 n— o0
< Z L3 fm Q(Gkh] NR, 2))Ck1n < Z Ckln — 0
ki=1 k1=1 kin?
and

DfY) < / DS
/ﬂn,?(Rm.Z ? Z 12

kl 1 nL Q(le.lman 2)

1 n—oo
< Z L3(fm,2(Gry1 N Ry 2))Chim < Z T sClym "=7 0 .
kl 1 k‘l 1

From (6.12), (5.5) and (6.14) we obtain

/ LIED YW | DY
-fm=2(ULn=rL+IG

kz 41 k=1 fm2(Gry 1NGry 2)

< > Zﬁzs(fm,z(le,lﬂsz ))Chiky < Z Z Oklkf”’"
ko=n+1k;=1 ko=n+1ki= 1

It follows that the sequence D f- ; is Cauchy in L' and thus we can easily obtain that I, % is Cauchy
in Wbl Since fk_; converge to F{l uniformly we obtain that F2_1 e Whi,

The mapping Fg is constructed in a similar way as mapping F5 using translated and scaled copies
of @*. Again we need to use ‘rotations’ Bs in this step to adjust Ay, to obtain almost upper
triangular matrix. Derivatives of F3 and Fj ! can be estimated as in the general step below. Now
we give details of the construction of Fj which is different because we do similar construction in the
target and not in the domain as for Fy, Fy and Fj3.
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7. CONSTRUCTION AND DIFFERENTIABILITY OF Fj

7.1. Key estimate. Later we estimate the norm of the derivative by the chain rule as the norm
of the product of corresponding matrices. The following estimate will be the key for the Sobolev
regularity of function f. Let us estimate the derivative of the product

1 0 0
] 1 1 ths+1l | 4ctk3—1 2¢ thi—1 _1
Aky ko ks = By Ag, BaBy " Ay, B1 Ay, = B, € Rl T ks kst ks ka+1 BBy -
c 2c thi—1 tha+l | 4 thi—1
k3 k3+1 k3+1 k3 k3z+1
thy 41 | dc thi—1 2¢ thi—1 thi+l | dethi-1 2c th1—1 c
ko+1 ko ko1 ko ka1 ki+1 §1 ki+1 k1 ki+1 )
0 1 0 - B - 2¢ tki—1 thitl 4c thyi—1
2¢ th2—1 thytl | de thy—1 k1 ’8“ kit ko katl
k2 Fotl € Fat1 T ks Fatl

Note that we can obviously estimate the norm of each Ay, by Ct and thus the norm of the product
can be estimated by Ct3. This would not be sufficient in the general step but in our construction
we have chosen B; and then B so that By Ay, and By By 1Ak2 are almost upper triangular matrices
which leads to a better estimate. It is easy to see that in B; Ay, we need to rotate only in the
x,y-coordinates and in By By ' Ay, we need to rotate only in z, z-coordinates. After these rotations
we obtain a matrix (here Cc¢t means a term that may depend on (z,y,z2),t,k but is bounded in
absolute value by Ct)

(7.1)
1 0 0 Cet ¢ Cect Cet Cect c
Ak ko ks = B;l c Cec Cet |- c ¢ Ccet |- c Cc c
¢ Cect Cet c ¢ Cect 0 0 1
1 0 0 Cet? Cet? Cet Cet? Cet? Cct
=By'| ¢ Cct Cect |-| Cct Cet Cct | =By'-| Cct? Cet? Cct?
c Cect Cet Cet Cect Cect Cect? Cct? Cet?

and thus we may estimate ||Ag, g, .k, || < Ct2.

7.2. Construction of Fy. We will construct a sequence of homeomorphisms f,; i 1 Qo — Qo and
our mapping Fy € Wh(Qo, R3) will be later defined as Fy(z) = limj_, o0 fr4(x). So far we have
constructed disjoint Cantor type sets such that Jp =0 a.e. on C;, Jp, =0 a.e. on Cz and Jp, =0
a.e. on C3. Now we will construct a Cantor type set Cy of positive measure in the image so that
Jp-1 =0 a.e. on Cy and so that L3(F; *(Cy)) = 0.

4

The set C* = C; UCy UCs is closed and thus we can find Q1 4, a collection of disjoint, scaled and
translated copies of Q*(w;) which cover F3(Qo\C?) up to a set of measure zero. We will also require
that

(7.2) for each Q% € Q; 4 there are k1, ko, k3 € N such that F; *(Q?) C Gr,1 N Gryo N Gy 3.

Secondly, we know that Jg, is continuous in each diamond from Gy, 1 N Gk, 2 N G, 3 and thus we
may assume that F; '(Q?) is a subset of one diamond and it is so small that

(7.3) Jry (21,91, 21) < (14 84) Ty (02, Y2, 22) for every (z1,y1,21), (T2,y2,22) € Fy H(Q7).
We define fi;: Qo — Qo by

f_l(ZE y Z) _ F3_10<Pgl73175/1($ay,2) (Z‘,y,Z) EQZ S Ql,4a
LA F3_1(as,y,z) otherwise.

It is not difficult to check that f; 4 is a homeomorphism. Moreover it is a bi-Sobolev mapping since
it is a composition of a bi-Sobolev and bi-Lipschitz mapping. From now on each f, i will equal to

ffi on
f174(C4 U G174), where GN'174 = U OSle and G1,4 = fl_,i(élA)
Q*€Q1 4
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and it remains to define it on R1,4 = f1,4(R1,4), where
Ry = fii( U Iéi).
Q*€Q1,4

Analogously as before we obtain
L3(Ri4) = s1L3(F3(Qo \ C*)) and L3(Gr4) = (1 — s7)Ls(F5(Qo \ C*)).

We continue inductively. Assume that O 4, fi 4, Gia and Ry 4 have already been defined. We
find a family of disjoint scaled and translated copies of Q*(wy+1) that cover Ry 4 up to a set of
measure zero. Define ¢p41.4: Qo — Qo by

) z
= DY E z,Y,2) € Q° € Qpi1,4,
PE+1,4 (z,y,2) { ’ka+175k+1’5k+1( y.2) (z,y ) k+1.4
(z,y,2) otherwise.

The mapping fk;ll +: Qo — Qo is now defined by f];i 0 ¢Yp11,4. Clearly each mapping fry1.4 is a
homeomorphism. Moreover it is a bi-Sobolev mapping since it is a composition of a bi-Sobolev and
bi-Lipschitz mapping. We further define the sets

Gena= |J 05, Grr1a = fri1a(Greva),
Q*€Qry1,4

Repia= |J 12 and  Rppia= fil 4(Regra).
Q*€EQk4t1,4

The linear maps ¢; 4, 1 < j < k, on inner diamonds do not change the ratio of volumes of @* and
Ozfz“, Q? € Qp41,4. Therefore we obtain that

(7.4) Eg(ék+1,4) = (1 — SiJrl)Eg(RkA) and ﬁg(}ék+1’4) = Si+1£3(}~‘zk’4).
Analogously as before we obtain

(7.5) L3(Ria) = sis3 - spLs(F3(Qo \ C*))

and

L3(Gra) = sis3 - sp_1 (1 — sp)Ls(F3(Qo \ CY)).
Therefore using (7.4) and Lemma 4.1 with A = G, 4 and P = F3(Qq \ C*), we obtain that

_1
14044

Since the sets Q%, Q% € Qk+1,4 are uniformly places among F3(Gy;), ¢ € {1,2,3}, up to a null set
(see (7.2) and (4.4)) we can moreover obtain

L3(Grya) < 785+ s5,1(1—s7,)L3(Qo \ C*) < (14 64)L3(Gr,.a)-

4 3 4
1
(76) Eﬁg (Q Gk,,z) S S%S% . SZ4_1(1 — Si4)£3 (Q Gki,i) S A4£3 (Q Gk‘{,,i)'
It follows from (7.5) that the resulting Cantor type set
é4 = ﬂ Rk14
k=1
satisfies
. 1 s
> — 4 >0.
L3(Cy) > A4£3(Q0 \eH]]si>0

i=1
It is clear from the construction that f, i converge uniformly and hence it is not difficult to check

that the limiting map Fy(z) := limy_oo fi,4(2) exists and it is a homeomorphism. It remains to
verify that f, ; and fj 4 form a Cauchy sequence in W' and thus Fy is bi-Sobolev.
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7.3. Weak differentiability of F, . Let us estimate the derivative of our functions fn_lh. Let us

fix m,k € N such that m > k. If Q% € Qp 4 and (z,y,2) € int(Ig“z), then we have squeezed our

diamond k-times and then we apply F; '. Analogously to (5.2) we can use (3.1), (4.2) and the chain
rule to obtain

(7.7) Dfpy(x,y,2) = DF; (2’ y', ')

S
S O+
—_

0
01,
1

ko
©+"—‘ e}
=

/
S

where (z/,y/,2") = gpii o...0 gpl;}l(:v,y,z). Moreover, if (x,y,2) € int(Og), then we stretch our
diamond once, then we squeeze it k — 1 times and then we apply F5 ! Analogously to (5.3) we can
use (3.1), (4.2), (3.3), (4.3) and the chain rule to obtain that

thk+1 _i_gtk?q 2c tk*—1 c

. L k+1 k k+1 kok+1
(78)  Diiwy2)=DF\y,#) | dgl demgueata
0 0 1

Now let us fix m,n € N, m > n. Since f;}l = fn;h outside of R,, 4 we obtain

/ DL — b)) = / DY — £
Qo Ry 4

m
< / (DS D) + / D - £+ Y / Df
Rn,4\Rm,4 R

ka=n—+1 C;k4 »4

m,4

By (7.7), (7.8), DF; ' € L' and £3(R,4 \ Rm.4) — 0 we obtain
| prspgipsc [ pE T,
Rn,4\Rm,4 Rn,4\an,4
y (7.7) and DF; ' € L' we obtain

1 1
Dtk — fabl < ¢( ————)/ DF;Y"=00 .
Jo 1PUR b < O( iy ) [, IR

The last term can be estimated with the help of (7.6) by

Z / IDf LI < Z Z L5(fr,a(Gry N Gry2 N Gy 3) N Gy 1) Clirkokst
.

ka=n+17Chy.a k1,k2,ks=1ka=n+1

o0 m C
< a5 Ckikokst "7 0 .
PIEDY T T R
k1,k2,k3=1ks=n+1
It follows that the sequence D f;- i is Cauchy in L' and thus we can easily obtain that Ik, i is Cauchy
in Wb, Since fk_i converge to F4_1 uniformly we obtain that F4_1 e Wwhi,

From (7.7) we obtain that the derivative of f, i on RkA and especially on C~4 equals to

0 O
Df];i($7yaz):DFS_I(xlay/aZ/) %.1_1 0
0 1

o O+‘>—‘
—

In the limit we obtain that JF;1 =0 a.e. on 54.

7.4. Weak differentiability of Fj. Let us estimate the derivative of our functions f,, 4. Let us
fix m, k € N such that m > k. If Q% € Qx4 and (z,y,2) € int fT;}4(I§2’;), then after applying F3 we
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have squeezed our diamond k-times and the derivative of fi 4 can be computed as an inverse matrix
to (7.7) and we get

k+1 0 0
(7.9) Dfya(z,y,2) = 0 k+1 0 | DF3(z,y,2).
0 0 1

Moreover, if (z,y,2) € int f,;h(Og’;‘), then after applying F5 we have stretched our diamond ky — 1
times and then we have squeezes it once. Hence we can compute its derivative as an inverse matrix
to (7.8) and we get

; -1
thatl | dcthi—1 2¢ th2—1

ka+1 k1274 ka+1 Ky k4+1k2 ¢
7.10 D T,Y,2) = 2c¢ thy—1 thatl | 4cthi—1 DFs3(x,y,2) .
( ) fm,4( » Y, ) Fx Fadl Fatl Ta FaTl c 3( » Y, )
0 0 1

By using analogy of (5.5) we obtain || D f,, 4(z,y, 2)|| < Ck4||DF3| for every (z,y, z) € int f7;714(022k;‘).
Analogously to the proof of (5.1) we may deduce from the construction that for every k we have

1
(7.11) L3(Rit1.4) = (sfc+1)2£3(R;€74) and hence L3(Ry.4) < =R

and
L3(Gry1,4) = (1 = (5441)*) L3 (Rpa)-
By (5.1) and (6.5), we can deduce that:
= C 2 C
L Gi,i) < As——5—5-—= and L Gr,i NRp4) <Asg—5—5—5— -
3@1 i) = B9zt 3@1 R N T

Now let us fix m,n € N, m > n. Since f, 4 = fm 4 outside of R, 4 we obtain

Dot — )| = / Dt — fod)]

Ry a4

< / D fal + / 1D foa] + / D fomal-
Rn,a R4 Uky=n+t1 Graa

From (7.9), (7.10) and (7.11) we obtain

00 3
/ |Dfn,4| S Z Eg(m qu-,,'i n Rn74)C’t3n

Qo

BRn4 ki,ka,ks=1 =1
oo
C n—oo
E — "0
- th2tk3tkin?
k1,ka,k3=1

and

o0 3
/ |D fm,al < Z Eg(ﬂ G, N Rm74)0t3m

Rm.a ko, ks=1  i=1

> c
—  Ct*m"=0.
2 e tkStkZm2
k1,ka,k3=1

From (7.10) and (7.11) we obtain

00 m 4
/ Dfmal < > > Ls([)Grii)Ctha
Ztl:"‘*'le‘LA k1,k2,ks=1ks=n+1 i=1

o0 m C
3; Nn—oo
P DR D e AU M
ki,ko,k3=1kg=n+1 1 277374
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It follows that the sequence D fj 4 is Cauchy in L' and thus we can easily obtain that fj 4 is Cauchy
in Wb, Since fr,a converge to Fy uniformly we obtain that Fy € wht,

Set Cy = F4_1(é4). From now on each F}, will equal to F; on C; UCy UC3 UCy and we need to
define it only on the complement of this compact set. It is not difficult to check that Jp, # 0 a.e.
on Qg \ (C1 UCy UC3UCy) and thus the preimages of the exceptional null sets will be null sets.

8. CONSTRUCTION AND DIFFERENTIABILITY OF GENERAL Fj

8.1. Construction of Fj. Assume that the mapping F;_; and the Cantor type set C;_; have
already been defined. We will construct a sequence of homeomorphisms f;; : Qo — Qo and
our mapping F; € Wh1(Qp,R?) will be later defined as Fj(z) = limj_oo fx,;(z). We will also
construct a Cantor-type set C; C Qo \ (UZ[C;) such that £3(C;) > 0 and Jr; = 0 ae. on Cj
for j € U,en{6l + 1,60 + 2,60 4 3} while L3(F;(C;)) > 0 and JFj—l = 0 a.e. on Fj;(C;) for j €
U eni6l+44,60+5,6+6}. The mappings F 41 and F6?i4 are constructed using diamonds Q*, Fgi1o
and F&is are constructed using ‘rotated’ diamonds Q¥ and finally Fg;43 and F6;}r6 are constructed
using ‘rotated’ diamonds Q. For simplicity we give the details of the construction only for j = 6143
as the estimates in other cases are similar. The construction in the case j € (J;cn{61+4, 6145, 6[+6}
is similar to the construction of Fy, i.e. we are constructing in the target and not in the domain.

The set CJ := UZ;ll C; is closed and thus we can find @ ;, a collection of disjoint, scaled, translated
and rotated copies of Q% (w;) (recall that j = 6]+ 3) which cover F;_1(Qo\C?) up to a set of measure
zero. We will moreover require that

j—1
(8.1) for each Q" € Q1 ; there are ky,...,k;j_1 € N such that Fjill(Qw) C ﬂ Gp, i -
i=1

Secondly, we know that Jr,_, is continuous in each diamond from G ; (see (3.2)) and thus we may

assume that Fjill (Q*) is a subset of one diamond from the previous construction and it is so small

that

(8.2) JFj_l(Il,thD <(1+ 5j)JFj_1($2ay27Z2) for every (w1,y1,21), (%2,¥2,22) € FJ:11(QI)-
We define ijI QO — QO by

Biliewl | aeBiioFia(r,y.z) Fia(r,yz)€Q €y,

Fi_1(z,y,2) otherwise.

f(y,2) = {

It is not difficult to check that f; ; is a bi-Sobolev homeomorphism since it is a composition of a
bi-Sobolev and bi-Lipschitz mapping. From now on each f; ; will equal to f ; on

Cj U Gl,ja where Gl,j = F]f_ll( U Osle)
QTEQ

R =F (U 18):

QTEQL,;

and it remains to define it on

Clearly
L3(Fj—1(R1;)) = 51L3(F;-1(Qo \ €7)) and

L3(Fj—1(Gr5)) = (1 = s7)L3(Fj-1(Qo \ 7).

We continue inductively. Assume that Qy ;, fi j, Gk, and Ry ; have already been defined. We
find a family of disjoint scaled, translated and rotated copies of Q7 (wyy1) that cover f ;j(Ry ;) up
to a set of measure zero Fy1 ;. Define ¢p 41 ;: Qo — Qo by
o*

Wh41,Sk+1,5k 11

© ijl('f?yvz) (axy,z) € Qw € Qk+1,jv

(z,y,2) otherwise.

B! o
sokle,j(xayaZ) :{ -t

The matrix B;_; is chosen so that Bj—lBj_,lgAkj,l is almost upper triangular. The mapping
fr+1,5: Qo — Qo is now defined by ¢ri1,; o fi ;. Clearly each mapping fiy1; is a bi-Sobolev
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homeomorphism since it is a composition of a bi-Sobolev and bi-Lipschitz mapping. We further
define the sets

—1 . —1 S ke
Gk+1,j = fk,j ( U Ost;rl) and RkJrLj = fk,j ( U Iz;;rl)
QTEQk41,5 QTEQk+1,j

The maps ¢; j, 1 <4 < k, on inner diamonds do not change the ratio of volumes of @ and OZ;T,* ',
Therefore we obtain that

L3(Fj—1(Grs14)) = (1= s311)Ls(Fj_1(Ry;)) and L3(Fj1(Riy15)) = si1La(Fjo1(Rej))-

Analogously as before we obtain using (8.2) and Lemma 4.1 that

1 )
mES(Rk,j) < 3%9% T Siﬁi%(QO \C]) < (1 +65)L3(Rk,5)
j
and
1 .
mEB(Gk,j) < 5%53 T 5/%—1(1 - Slzc)£3 (QO \CJ) <(1+ 51)53(6:’“71')'
J

Since the sets Q” are uniformly placed among all F;_1(G;;) for i = 1,...,5 — 1 (see (8.1)) we
moreover obtain using (4.4) that

1 J j—1 J
(8.3) A La(() Grii) < ststooost, (1= s3,)La([) Groa) < AiLs(() Giai):
J i=1 i=1 i=1
It follows that the resulting Cantor type set
Cj = ﬂ Rk’j
k=1
satisfies
1 T
(8.4) £3(C)) 2 1~ La(Qu\C) [ 57 > 0.
J =1

It is clear from the construction that fi ; converge uniformly and hence it is not difficult to check
that the limiting map Fj(x) := limg_,o fi () exists and is a homeomorphism. It remains to verify
that fy ; and f,- jl form a Cauchy sequence in W1 and thus Fj is a bi-Sobolev mapping.

8.2. Weak differentiability of F;. Let us estimate the derivative of our functions f,, ;. Let us fix
m, k € N such that m > k. If Q* € Qi ; and (z,y,2) € int(fk,j)_l(lg’;), then after applying Fj_
we have squeezed our diamond k-times. Analogously to (5.2) we can use (3.1), (4.2) and the chain
rule to obtain

1 0 0
(8.5) Dfy(z,y,2) = B;_ll 0 ﬁ (1) B, 1DF;_(z,y,z2).
0 0

k+1

Moreover, if (x,y, z) € int(fo, j)_l(Og“,), then after applying F;_; we have squeezed our diamond
k — 1 times and then we have stretched it once. Analogously to (5.3) we can use (3.1), (4.2), (3.3),
(4.3) and the chain rule to obtain that

(8.6)
1 2 O 2 02 1 0 O
_ -1 th2 4k th2—1 th2—1 1
Dfmj(x,y,2) =B~ [ ¢ T31 +f‘c ] , 25T , 0 % (1) B _1DF;j_i(z,y,2)
th2—1 th2 1k th2—1 1
¢ 20557 1 T AT 00 %
1 0 0
_ p-1 th+1l | 4dctk®—1 2c tk*—1
=B | ¢ %31 T F ker E kt1 Bj 1DFj_y(,y,2).
c 2c tk*—1 tk+1+£tk271
E kt1 [ R Py
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Now let us fix m,n € N, m > n. Since f, ; = f, ; outside of R, ; we obtain

D(fs — fui)] = / D (s — )]
Qo R, ;

so/R y |Dfn,J|+c/ Dy = Dfagl +0 Z/ DS

k =n+1
By (8.5) we get

g/ |DF;_1| =70

n,j\RnL J

/ D fn.;
Rnﬁj\mej
since DF;_q1 € L' and L3(R,,; \ Rm,j) — 0. From (8.5) we obtain

1 n— 00
Dfmj—Dfnjl < DF. — 0.
/Rm)j| f »J f,,]| n+1 R ‘ 1|

m,j

In the estimate of the norm of the derivative in the remaining term we use the chain rule and then
we multiply triples of adjacent matrices and then we use our key estimate (7.1). Now we use (8.6),

(83), A; <A Y & = ”—2 and we proceed similarly to (6.10)

Z/ D] < 3 Z / 1Dfms

kj=n-+1 kej=n-+1ky,. . kj_1=1
m o) j
<= L3(() Groi) 1o s - 1Akl Ak oty |
(8.7) k7:n+l k17 1k1—1:1 =1 ) 2
<CA( 2 G ) ( Z Z W)
k1,ka,ks,ka ks, ke=1 thitkyths  kyksks kj=n+1k;_2,kj_1=1 tkj*2tkj*1tkj
7T g m 1 e
<O(CC t 1) (C—t 1 7)11 0.
> 1 2( 6 ) 1 .§+1 kj‘? —

As before this implies that F; € W11 and similarly we also obtain that J r; = 0 almost everywhere
on C; and that Jr, # 0 almost everywhere on Qo \ C7.

8.3. Weak differentiability of F j_l. Let us estimate the derivative of our functions fw_:j. Let us
fix m,k € N such that m > k. If Q* € Qy; and (z,y,2) € int(Ig‘,;), then after applying F;_1 we

have squeezed our diamond k-times by fi ; and the derivative of f, ]1 can be computed as an inverse
matrix to (8.5) and we get

1 0 0
(8.8) DfiMz,y,2) = (DFj_a(2'y,2") 'B;iY | 0 k+1 0 | By
0 0 k+1

where (2/,y,2') = @f; o cp;; <pk . Moreover, if (x,y,2) € int(Ogj), then after applying Fj_;
we have squeezed our diamond by fm’J k; — 1 times and then we have stretched it once. Hence we
can compute its derivative as an inverse matrix to (8.6) and we get

(8.9) X
1 0 0 N
-1 roor oo lp—1 thi+1 4dc thi—1 thi—1
Dfo(x,y,2) = (DFj1 (2,9, 2) By | ¢ Far ky T+ Ic k; +1 Bj_1.
2c th3—1 thy+1 th2—1
¢ k; 4L ) kj )

By using analogy of (5.5) we obtain HDf,;lj(:my, 2)|| < Ck;||DF; 1| for every (x,y,2) € 1nt(OQp ).
Analogously to the proof of (5.6) we may deduce from the constructlon that for every k we have

(8.10) L3(fm,j(Re+14)) = (s41)°L3(fr,;(Re,;)) and hence L3(fm (R ;)) < klg :
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Moreover, we can deduce that

J
1 1 1
Ly (frng ([ ] Grii)) < and
7 Dl KFkSKS th3th2th? " K3k kD
j—1
1 1 1
Ls(fm; () Ghosi N Ry)) <
3(f ’J(Dl o ) < e v k3 _,k3_n?

Now let us fix m,n € N, m > n. Since f, ; = fn, ; outside of R, ; we obtain

DU = £DI= [ DU~ £
/QO 7 7 fm‘j(Rn,j) N N

< / IDfojl + / [IDfsl + / IDf)
fm,j(Rn,j) m,j(Rm,j) fmyj (UZ;=¢L+1 Gk,j)

From (8.8) and (8.10) we obtain

9] j—1
/ ‘Dfn_,gl| < Z £3(fm,j(m Gki,z‘ N Rn,j))Oleka?,Oth . "ij_gkj_ln
Fm.i(Rn j kiyenkj_1=1 i=1
> Cgklk‘gk‘?, C1t2 Ck‘,lk“,gn n—oo
< 2 PR s R rr e p« pae
E1yeenkj_1=1 1™v2"™3 4%v5 Ve j—2"j—1
and
[e%s} Jj—1
/f " )|Dfm 1< > Ls(fms([) Ghii N B j))CakikoksCit® - - Chj_okj_ym
m,j Ftm,j Eiyeonkj_1=1 i=1
< > 02k1k2k3 Cth ij_lkj_gm n—oo 0
< 2 BI3kS k2t kK3 m?
k17»--7k_7'—1:1 123 4 5 6 j—2 _]—1

From (8.9) and (8.10) we obtain
(8.11)

/ ‘Df;llﬁ < Z Z L3(fm,;( mle,z )) Ok koksCit? - Ckj_okj_1k;
fmj(UZLJHrle' i) k

Lyeeny kj_1=1k;=n+1

m

Z Z Cokikoks  Cit? Cokj_1kj_ok; nooo

< .
KTRERY USURZRE KDk kD

ki,.nkj—1=1kj=n+1

It follows that the sequence D f;- Jl is Cauchy in L' and thus we can easily obtain that I, Jl is Cauchy
in Wht. Since fk_]1 converge to Fj_1 uniformly we obtain that Fj_1 e whi,

9. PROPERTIES OF f

Now we define f(z) = limj_,o Fj(z). Since F; converge uniformly it is easy to see that f is a
homeomorphism. It remains to show that DF; and DF j_l is Cauchy in L' and thus f is bi-Sobolev.

Since F; = Fj_; on Uf;ll C; we obtain
[, 1o =ris [ @oR1+0Ea) + 3 [ (pBI+ DR
0 J kj=1

We will proceed analogously to (8.7) but we will estimate the multiplicative constant more carefully.
Again we will suppose that j = 6] + 3 but everything works for other j analogously. Analogously to
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(8.7) we can use (4.1) to obtain

i/ (IDFj| + |DFj ) < Z / |DF|+|DFJ 1)

kiyekj=1
00 J
(91) <C Z 3(ﬂ Gki,i) ||Ak1,k27k3|| : ||Ak47k57k6|| e ||Akj—27k'j—17kj H
kiyooky=1  i=1
2 i=s i=s
<efeentre) T o)
From (8.5) we know that
1 0 0
Dfy i(z,y,2) = Bj:ll 0 %_H 0 B;_1DF;_i(z,y, 2)
0 0 =5
on C;. Since the limit as k — oo exists it is easy to see that |DF};| < |DF;_,| there. Hence
/ (IDFj| + |DFj_1]) < C / |DF; |
: L Fra=17CiNIZ Gy
[} j—1 i—3

< Y LN G Akl 14k < 0(5) T

k1yenkj_1=1 i=1

Z/Q ID(F; — Fj_1)| < o0
j=1"Qo

and thus DF; forms a Cauchy sequence in L' and f € W1,
From (8.4) we know that

It follows that

1 j—1 oo
£4(;) = 1 £3(Qo\ i_Ulci) II<

for each j € (J;cn{60 + 1,60 + 2,60 + 3}. For j € ;{60 + 4,60 + 5,60 + 6} we can easily deduce
from area formula for Fj_1 that £3(C;) = 0 since JF;1 =0 a.e. on Fj(C;). Since [[;2, s? > 0 we
easily obtain

ﬁs(UC) £3(Qo).

Together with Jp, = 0 on C} for each j € UleN{Gl + 1,60+ 2,6l + 3} and Fy, = F; on C; for each
k > j this implies that J = 0 almost everywhere on Qo Analogously we will deduce that J-1=0
a.e. on Q.

It remains to show that DF j_l is Cauchy in L'. For simplicity we again assume that j = 61 + 3.
Since F; = Fj_1 on U{;jc and L3(F;(C;)) = 0 we obtain

/0 |D(F; D < Z/ |DF;1| +|DF;4)) -

kj=1

Analogously to (8.11) and (9.1) we may estimate

S [ o worteptys Y [ (or D)
kal Fj(ij,j) ki,.. ,k =1
<o i Cikikoks — Cqt? Ckj_1kj_2k;

A KSkSKS thitk3thg T K3 k3 (k3

2 j i=3

<o(ae(T)’ t—l) c<c( )
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It follows that -
S [ b - <o
j=17@o

and thus DFj_1 forms a Cauchy sequence in L' and f~! € W1,
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