A LIPSCHITZ FUNCTION WHICH IS C* ON A.E. LINE NEED NOT BE
GENERICALLY DIFFERENTIABLE

LUDEK ZAJICEK

ABSTRACT. We construct a Lipschitz function f on X = R? such that, for each 0 # v € X,
the function f is C*° smooth on a.e. lines parallel to v and f is Gateaux non-differentiable at
all points of X except a first category set. Consequently, the same holds if X (dim X > 1) is
an arbitrary Banach space and “a.e.” has any usual “measure sense”. This example gives an
answer to a natural question concerning a recent author’s study of linearly essentially smooth
functions (which generalize essentially smooth functions of Borwein and Moors).

1. INTRODUCTION

There exists a number of results which assert that some “partial or directional smoothness
property” (e.g., smoothness on some lines or directional differentiability in some directions) of
a function f on a Banach space X implies some “global smoothness property” (e.g. Gateaux or
Fréchet differentiability at many points). For results of this sort see e.g. [6], [13], [5], [12].

The present note is motivated by the special question whether a “smoothness on many lines”
of a Lipschitz function f on X implies generic Fréchet differentiability of f (where “generic” has
the usual meaning “at all points except a first category set”).

A remarkable result in this direction ([13]) says that if an (a priori arbitrary) function f on
X = R” has all partial directional derivatives at all points (in other words, f is differentiable on
each line parallel to a coordinate axis), then f is generically Fréchet differentiable. On the other
hand, if X = /5, then (see [9]) there exists a Lipschitz function on X which is everywhere Gateaux
differentiable (and so differentiable on all lines) which is generically Fréchet non-differentiable.

A contribution to this special question is given in the article [15] which was motivated by the
papers [2], [3] of Borwein and Moors on “essentially smooth” functions.

For example [15, Theorem 5.2] reads as follows.

Theorem A. Let X be an Asplund space and f : X — R a Lipschitz function. Suppose that
there exists a set D which is dense in the unit sphere Sx such that, for each v € D, f is
essentially smooth on a generic line parallel to v. Then f is generically Fréchet differentiable.

Here “f is essentially smooth on the line L” means “the restriction of f is a.e. strictly
differentiable on L.” So each function which is C! on a line L is essentially smooth on L. (Recall
also that X is Asplund if and only if Y* is separable for each separable subspace Y C X.)

In [15, Remark 1.4(iii)], it was announced that, in Theorem A, it is not possible to suppose
only that f is essentially smooth on each line from a set of lines which is dense in the space of
all lines parallel to v € D. (So it is not sufficient to suppose that f is essentially smooth on each
line from a set of lines which is dense in the space of all lines; cf. Remark 3.7).

The main aim of the present note is to construct the following much stronger example (The-
orem 3.6 below), in which we obtain even generic Gateauz non-differentiability.

1991 Mathematics Subject Classification. Primary 46G05; Secondary 26B05.
Key words and phrases. Gateaux differentiability, essentially smooth functions, Lipschitz function, functions
C® on a.e. lines.
The research was supported by the grant GACR P201/12/0436.
1



2 L. Zajicek

Let X be a Banach space, dim X > 1. Then there exists a Lipschitz function f on X such

that, for each v € Sx, f is C°° on a.e. line parallel to v and f is generically Gateaur non-
differentiable.

Here “a.e. line parallel to v” is taken in a very strong sense (using “s-nullness”, see Definition
3.5). Note that each *-null set is clearly Lebesgue null if X = R” and is Gaussian (=Aronszajn)
null and also I'-null if X is separable.

Stress that our construction is “two-dimensional”; if we have an example in R?, then the
construction in a general X is rather obvious. The notion of *-nullness is not of general interest,
we introduce it only to be able shortly formulate our result in general X.

Further note that in the case X = R” the function f from our example is C° on a.e. line in
X, which justifies the title of the note. It is immediately seen from the canonical definition of
the measure on the set of all lines in R” (see [8, p. 53]).

Note also that the main idea of the construction is similar to that of [11].

2. PRELIMINARIES

In the following, if it is not said otherwise, X will be a real Banach space. We set Sx :=
{x € X :|z| = 1}. If a,b € X, then a,b denotes the closed segment. By span M we denote
the linear span of M C X. The equality X = X| & --- & X, means that X is the direct sum of
non-trivial closed linear subspaces Xi,..., X, and the corresponding projections 7; : X — X;
are continuous.

We say that a function f : X — R is C* on a line L = a+ Ruv if the function h(t) := f(a+tv)
is C* on R. (Clearly, this definition does not depend on the choice of a and v.)

The symbol B(z,r) will denote the open ball with center z and radius r. The word “generi-
cally” has the usual sense; it means “at all points except a first category set”.

The symbol H* denotes the k-dimensional Hausdorff measure.

We will need several times the following easy well-known fact.

Lemma 2.1. Let X be a Banach space, 0 # u € X, and let X = W & span{u}. Then the
mapping w € W — w + Ru € X/ span{u} is a linear homeomorphism.

In the following, f is a real function defined on an open subset G of X.

We say that f has a property generically on G, if f has this property at each point of G
except a first category set.

We say that f is K-Lipschitz (K > 0), if f is Lipschitz with (not necessary least) constant
K

Recall the well-known easy fact that
(2.1) if f is Lipschitz and dim X < oo, then the Gateaux and Fréchet derivatives coincide.

Recall (see [10]) that z* € X* is called a strict derivative of f at a € G if
L W) - @) et a)

=0.
(z,y)—(a,a), Tty ly — ||

It is well-known and easy to see that if f'(a) is the strict derivative of f at a € X and v € X,
then

(2.2) iy 1 (@n +tnv) — flan)

= f'(a)(v) whenever a, —a, t, — 0+.
n—00 tn

Strict differentiability is a stronger condition than Fréchet differentiability, but (see e.g. [14,
Theorem B, p. 476]), for an arbitrary f,

(2.3) generically Fréchet differentiability of f implies strict differentiability of f.
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The directional and one-sided directional derivatives of f at x in the direction v are defined
respectively by
t —
f’(fL‘,U) = lim f(x + 'U) f($)

t—0 t

We will need some well-known facts about mollification of functions. Let n : R®* — R be the
function defined as n(z) = 0 for ||z|]| > 1 and n(z) = c exp((||z]|*> — 1)7!) for ||z|| < 1, where c
is such that [, 7= 1. For d > 0, we define (the standard mollifier, see [4])

1 z "
n(s(fc)=57n(g), z € R™.
If f € L{ . (R"), define

fo(2) =g * f(w) = / ns(x —y) fly) dy = / ns(y) flz —y)dy, «ecR"
We will need the following well-known facts.

Fact 2.2. Let f be a K-Lipschitz function on R and § > 0. Then
() 7 € C(R™).
(ii) f° — f (when § — 0+4) uniformly on compact subsets of R”.
(iii) f is K-Lipschitz.
(iv) If z € R, § > 0, and f equals to an affine function @ on B(z,d), then f°(z) = a(z).

For (i) and (ii) see [4, Theorem 1(i),(ii); p. 123]; (iii) and (iv) are also well-known and almost
obvious. So I omit their proof, although I did not found an explicit reference.

3. MAIN RESULT

Lemma 3.1. Let K > 4 and let f € C‘X’(]R2) be a K-Lipschitz function. Let ) # H C R? be
an open set and 0 < ¢ < 1. Then there exist f € C*®(R?), c € H and t > 0 with the following
properties:

(i) f(z) = f( ) for each x € R? \ H.
(ii) |f(x) — f(z)| < € for each x € R2.
(iii) f is a (K + €)-Lipschitz function.
(iv) The points ¢, ¢+ tey and ¢ —tey (where e; := (1,0)) belong to H,

fle+ter) — f(c) fe) = fc—tey)
t

t

Proof. Choose ¢ € H and consider the affine function a(z) := f(c) + f'(c)(z — ¢), = € R2. Since
f € CY(R?), we can clearly choose r > 0 such that

(3.2) 0<r<1, B(e,r)CH and

(3.1) >1 and < —1.

(3.3) the function f — « is (¢/2)-Lipschitz on B(c,r).

Observe that ||f'(c)|] < K and so « is a K-Lipschitz function. Set
2

8K2
We will need the following properties of the function g:
(P1) g is (K + €/2)-Lipschitz.
(P2) g(z) = a(z) for each z € R?\ B(c,r/4).
(P3) |g(z) — a(x)| < er/K for each z € R%.
(P4) There exists ¢ > 0 such that ¢ +te; € B(c,r),

g(c+te1) — g(c)
t

o(r) == alec) — + (K +4¢/2) ||z —¢|, and g(z):=min(p(z),a(z)), =€ R

— K42 and 2 )_ggc_tel) = —(K +¢/2).

(3.4)
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To prove these properties, first recall that « is K-Lipschitz and since ¢ is clearly (K + ¢/2)-
Lipschitz, we obtain (P1).
If ||z — ¢| > er/(4K?), we obtain

e2r g?r
a(z) < a(c) + Kllz —cfl = ¢(2) + 55 — (€/2) ||z — ¢l < p(@) + o7 — (¢/2)(er/(4K?)) = ()
and (P2) follows since er/(4K?) < r/4.
If ||z — c|| < er/(4K?), then |a(z) — a(c)] < K(er/(4K?)) and |p(z) — p(c)] < (K +
e/2)(er/(4K?)). Consequently,

l9(z) — a(2)] < [e(z) — alz)] < fale) — ()] + |alz) — ale)| + |o(z) — (c)]

627"

<gezt K(er/(AK?) + (K +¢/2)er/(4K?)) < er/K
which gives (P3), since we have proved that g(z) = a(z) if |z — || > er/(4K?).

Since « and ¢ are continuous, we can clearly choose ¢ > 0 so small that ¢ + te; € B(e,r),
o(c+ter) < alc+ter) and p(c—te1) < alc—ter). Then g(c) = p(c) and g(cEter) = (cEter)
and so, by the definition of ¢, we clearly obtain (3.4). Thus we have proved (P4).

Now, for § > 0, consider the mollification ¢° of g. By Fact 2.2(i),(iii), we obtain that ¢° €
C*°(R?) and ¢° is (K + ¢/2)-Lipschitz.

Using (P2) and Fact 2.2(iv) we obtain that, if 0 < § < r/4, then

(3.5) ¢ (z) = g(z) = a(x) for zeR?\ B(c,r/2).

So, using Fact 2.2(ii) for the compact set B(c,r), we easily see that we can choose § € (0,r/4)
so small that

(3.6) 19° (%) — g(z)| < % for each z € R?
and, using (3.4), also

1 _ 0 0 a0
9°(c+ter) — g°(c) >9 and ¢ (c) — g°(c —ter)
t t

By (3.6) and (P3) we obtain that

(3.7) < 2.

2
(3.8) 19°(z) — a(z)| < % for each 1z € R%

Define f := f + ¢° — o. Clearly f € C°°(R2). We will show that f has also properties (i) -
(iv).

By (3.5) we have
(3.9) f(z) = f(z) for z€R?\ B(c,r/2),

which implies (i).
By (3.8) we obtain
2er

(3.10) |f(z) — f(z)] < w <€ for each z € R,

so (ii) holds.
Since f := (f —a) +¢°, ¢° is (K 4 ¢/2)-Lipschitz and f —a is (¢/2)-Lipschitz on B(c,r) (see
(3.3)), we obtain that

(3.11) f is a (K + €)-Lipschitz function on B(c, ).
Using (3.5) we obtain that

(3.12) f=f+(¢° —a) is K-Lipschitz on R*\ B(c,r/2).
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Further consider arbitrary z1,zo € R? such that z1 € B(c,7/2) and 22 ¢ B(c,r). Then, using
(3.9) and (3.10), we obtain

|f(@2) = flan)| = |f (x2) = fl2)] < [f(w2) = f(a1)| + | (1) = (1))
< K|zg — 1|+ 2% < K|zg — x| + (4e/K)|zo — z1] < (K + ¢€)|z2 — 21].

This inequality together with (3. 11) and (3.12) clearly imply (iii).
Finally, since f := (f — ) + ¢°, (3.3), (3.7) and the fact that the points ¢, ¢ + te1, ¢ — te;
belong to B(c,r) easily imply (iv). O

Lemma 3.2. Let M, C R?, n € N, be nowhere dense sets. Then there exists a Lipschitz function
f on R? such that

(a) f is C™ on each line which is contained in a set My, n € N, and
(b) f is generically Gdteauz non-differentiable.

Proof. We can clearly choose a set D = {d,, : n € N} which is dense in R? and DNJ, ey My = 0.
For each n € N, choose 0 < r, < 1/n such that B(d,,r,) NUy_y Mr = 0 and denote By, :=
B(dp,ry). Set e, :=27" and e; := (1,0).

Now we will inductively construct sequences (c,,)S; of points in R2, (f,)2, of C* functions
on R? and (¢,)5%, of positive reals such that fo(z) =0, z € X, and for each n € N the following
hold:

(1) {cn,cn +tner,cn —tper} C By.
(11 fTL Cn+tnel) fn(cn) Z 1 an-d fn(cn)_fn(cn_tnel) S _1

)

) tn
(iii)

)

fu(z) = fn 1(z) whenever z € (R2 \ B,) U UZ;%{ck, ¢+ tgey, cp — ey }.
(iv) |fn(z) = fo—1(z)| <&, for each z € R
(v) fnisa (4+ ) ,_;er)-Lipschitz function.

Of course, we put U2:1{Cka ¢k + trer, cp —tger} := 0 (and also 22:1 e := 0 below).

We set fo(z) := 0, z € X. Further suppose that m € N is given, ¢,, fn, t, are defined for
1 <n < m, and the conditions (i)-(v) hold whenever 1 < n < m.

Applying Lemma 3.1 to K := 4+Ek 1 €k, f = fm—1, H := Bm\UZ:ll{ck,ck—i-tkel,ck—tkel}
and € := g, we obtain a function f =: fim, ¢ =:cm € H and t =: t,, > 0 such that the conditions
(i)-(v) clearly hold for n = m.

Condition (iv) gives that the series

i+ (fe—f1)+(fs = f2) +

(uniformly) converges on R? and consequently the sequence (f,,) converges to a function f. Since
all f,, are 5-Lipschitz by (v), we obtain that f is a 5-Lipschitz function too.

To prove (a), suppose that L is a line in R?, £ € N and L C M. Since M; C R?\ B, for
each n > k, we obtain by (iii) that f,(z) = f,—1(z) for each z € L and n > k, and consequently
f(z) = fy(x), = € L. Since f; is C*® on R?, we obtain that f is C* on L.

To prove (b), first observe that, by (iii), for each n > k and = € {¢, ¢ + tre1, cx — tper} we
have f,(z) = fn—1(x), and so f(x) = fx(z). Thus (ii) implies that, for each k € N,

fler +trer) — fcr) Fle) = flex = teer)

(3.13) >1 and < 1.
tr 12

This easily implies that

(3.14) f is not strictly differentiable at each point of R

Indeed, suppose to the contrary that f is strictly differentiable at a point z € R?. Using (i), we
can clearly find a subsequence (cy,) of (¢,) with ¢,, — z. Then clearly t,, — 0 and so by (2.2)
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and (3.13)
lim S (s + tser) = flens) _ f'(z)(e1) >1 and
i—00 tn,
ng) T tn
ti L) =10 Zte1) g0y < 1,
i—00 ty,
which is a contradiction. By (3.14), (2.3) and (2.1) we obtain (b). O

Proposition 3.3. There exists a Lipschitz function f on R? such that
(a) for each 0 # v € R?, f is C™ on a.e. line parallel to v, and
(b) f is generically Gateaur non-differentiable.

Proof. Choose a set {dy : k € N} dense in R?. For each n,k € N, set

o
(3.15) By := B(dg, (2"n)7") and Gy := ] By
k=1

Then each G, is clearly open dense, and consequently M,, := R?\ G,, is nowhere dense. Applying
Lemma 3.2, we obtain a Lipschitz function f on R? such that f is generically Gateaux non-
differentiable and

(3.16) f is C°° on each line which is contained in a set M,,, n € N.

Fix an arbitrary 0 # v € R?. Let W be the orthogonal complement of span{v} and let 7 be
the orthogonal projection on W. Then 7(G,) = Up—; m(Bnk) and so

H(m(Gn)) < S M (n(Bog)) = 3 2020n) ! = %
k=1 k=1
Counsequently
(3.17) H! (ﬁ W(Gn)> = 0.
n=1

Let now w € W\ (2, 7(Gy). Then there exists n with w ¢ 7(Gy) and so the line which
contains w and is parallel to v is contained in M,. So, by (3.16) and (3.17), f is C*° on a.e. line
parallel to v. 0

Remark 3.4. The assertion of Proposition 3.3 can be easily strengthened; namely we can consider
“a.e.” with respect to any generalized Hausdorff measure A, given by a non-decreasing h :
[0, 00) — [0,00), see [8, p. 60]. Indeed, it is easy to slightly refine the proof of Proposition 3.3.
Namely, it is sufficient to make two changes:
(a) to set By, j := B(dy,Tyx), where ry p > 0 are so small that > 27 h(2r, ) < 1/n;
(b) in the proof of Ay (N2, 7(Gr)) = 0 to use the definition of A, (instead of the subaddi-
tivity of H!).

To apply Proposition 3.3 in infinite dimensional spaces, we found useful to introduce the
following terminology.

Definition 3.5. Let X be a Banach space with dim X > 1. We say that M C X is x-null if
there exists 0 # z* € X* such that z* (M) C R is Lebesgue null.

Obviously, if X = R"”, then each #-null set in X is Lebesgue null. If X is an infinite dimensional
separable space, then each *-null set M in X is contained in an Aronszajn null (= Gauss null)
and is also I'-null. It can be proved directly from definitions, but we can use also the following
standard quicker argument:

Let z* be as in Definition 3.5 and let h be a Lipschitz function on R which is differentiable
at no point of z*(M) (see [1, p. 165]). Then f := h o z* is clearly a Lipschitz function on X
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which is Gateaux differentiable at no point of M. So our assertions follows from [1, Theorem
6.42] and [7, Theorem 5.2.3].

Note also that if X is non-separable then it is easy to see that each x-null set M C X is Haar
null. Moreover, using [7, Corollary 5.6.2], it is not difficult to prove that M is I'-null.

Theorem 3.6. Let X be a Banach space and dim X > 2. Then there exists a Lipschitz function
f on X such that

(i) for each 0 # v € X, the function f is C™ on x-a.e. lines parallel to v and
(ii) f is generically Gateaur non-differentiable.

(Of course, condition (i) is a short expression of the statement that there exists a x-null set
N in X/span{v} such that f is C* on each line L € X/span{v}\ N.)

Proof. If dim X = 2, then the assertion clearly follows from Proposition 3.3.

So suppose dim X > 3. Write X = P& Y with dim P = 2. By Proposition 3.3 choose a
Lipschitz function g on P and a first category set A C P such that g is Gateaux non-differentiable
at all points of P\ A and, for each 0 # u € P, the function g is C* on a.e. line parallel to w.
Let m: X — P be the linear projection of X on P in the direction of V. Set f :=go .

It is easy to see that f is a Lipschitz function which is Gateaux non-differentiable at all points
outside the (first category) set 7=(A). So (ii) holds.

To prove (i), consider an arbitrary 0 # v € X. If u := 7(v) = 0, then f is clearly constant on
each line parallel to v. So suppose u # 0. Then we can write P = span{u} & Z with dim Z = 1.
Let ¢ : Z — R be a linear homeomorphism. By the choice of ¢ and Lemma 2.1 there exists
N C Z such that ¢(N) C R is Lebesgue null and the function h(t) := g(d + tu), ¢t € R, is C*°
for each d € Z\ N.

Observe that N+Y is *-null in Z+Y". Indeed, for ¢ := po(7w [z4y) we have 0 # ¢ € (Z+Y)*
and (N +Y) = ¢(N) is Lebesgue null. Now let p € (Z+Y)\ (N +Y). Then we can write
p =d+y, whered € Z\N and y € Y. Observing that f(p+tv) = f(d+y+tv) = g(d+tu) = h(t)
and using Lemma 2.1, we easily obtain (i). O

Remark 3.7. Each set containing %-a.e. line parallel to v is clearly dense in the space X/ span{v}.
Consequently the function f from Theorem 3.6 is C*° on a dense set of lines in the space £
of all lines in X. Here we consider the topology on £ in which, for a line L = ay + Rug,

Br :={{a+Rv: |la—a| <e,||lv—-wvol <e}: e>0}
is a basis of the filter of all neigbourhoods of L.

REFERENCES

[1] Y. Benyamini, J. Lindenstrauss, Geometric Nonlinear Functional Analysis, Vol. 1, Colloquium Publica-
tions 48, American Mathematical Society, Providence, 2000.

[2] J.M. Borwein, W.B. Moors, Essentially smooth Lipschitz functions, J. Funct. Anal. 149 (1997) 305-351.

[3] J. Borwein, W.B. Moors, Null sets and essentially smooth Lipschitz functions, STAM J. Optim. 8 (1998)
309-323.

[4] L. Evans, R. Gariepy, Measure theory and fine properties of functions, Studies in Advanced Mathematics,
CRC Press, Boca Raton, 1992.

[5] D.D. Ilmuradov, On differential properties of real functions, Ukrainian Math. J. 46 (1994), 922-928
(translated from Ukrain. Mat. Zh. 46 (1994), 842-848).

[6] M. Jarnicki, P. Pflug, Directional regularity vs. joint regularity, Notices Amer. Math. Soc. 58 (2011),
896-904.

[7] J. Lindenstrauss, D. Preiss, J. Tiser, Fréchet differentiability of Lipschitz maps and porous sets in Banach
spaces, Princeton University Press, Princeton 2012.

[8] P. Mattila, Geometry of sets and measures in Euclidean spaces, Fractals and rectifiability, Cambridge
Studies in Advanced Mathematics 44, Cambridge University Press, Cambridge, 1995.

[9] D. Preiss, Gateaux differentiable Lipschitz functions need not be Fréchet differentiable on a residual
subset, Proceedings of the 10th Winter School on Abstract Analysis (Srni, 1982), Rend. Circ. Mat.
Palermo (2) (1982) 217-222.



8 L. Zajicek

[10] B.S. Mordukhovich, Variational analysis and generalized differentiation I, Basic theory, Grundlehren
der Mathematischen Wissenschaften 330, Springer-Verlag, Berlin, 2006.

[11] D. Pokorny, The approximate and the Clarke subdifferentials can be different everywhere, J. Math.
Anal. Appl. 347 (2008), 652-658.

[12] D. Preiss, L. Zajicek, Directional derivatives of Lipschitz functions, Israel J. Math. 125 (2001), 1-27.

[13] J. Saint-Raymond, Sur les fonctions munies de dérivées partielles, Bull. Sci. Math. (2) 103 (1979),
375-378.

[14] L. Zajicek, Fréchet differentiability, strict differentiability and subdifferentiability, Czechoslovak Math.
J. 41(116) (1991) 471-489.

[15] L. Zajicek, Generic Fréchet differentiability on Asplund spaces via a.e. strict differentiability on many
lines, J. Convex Anal. 19 (2012), 23-48.

E-mail address: zajicek@karlin.mff.cuni.cz

CHARLES UNIVERSITY, FACULTY OF MATHEMATICS AND PHYSICS, SOKOLOVSKA 83, 186 75 PRAHA 8-KARLIN,
CzeECH REPUBLIC



