
A LIPSCHITZ FUNCTION WHICH IS C1 ON A.E. LINE NEED NOT BEGENERICALLY DIFFERENTIABLE
LUD�EK ZAJ�I�CEK

Abstract. We construct a Lipschitz function f on X = R2 such that, for each 0 6= v 2 X,the function f is C1 smooth on a.e. lines parallel to v and f is Gâteaux non-di�erentiable atall points of X except a �rst category set. Consequently, the same holds if X (dimX > 1) isan arbitrary Banach space and \a.e." has any usual \measure sense". This example gives ananswer to a natural question concerning a recent author's study of linearly essentially smoothfunctions (which generalize essentially smooth functions of Borwein and Moors).

1. IntroductionThere exists a number of results which assert that some \partial or directional smoothnessproperty" (e.g., smoothness on some lines or directional di�erentiability in some directions) ofa function f on a Banach space X implies some \global smoothness property" (e.g. Gâteaux orFr�echet di�erentiability at many points). For results of this sort see e.g. [6], [13], [5], [12].The present note is motivated by the special question whether a \smoothness on many lines"of a Lipschitz function f on X implies generic Fr�echet di�erentiability of f (where \generic" hasthe usual meaning \at all points except a �rst category set").A remarkable result in this direction ([13]) says that if an (a priori arbitrary) function f onX = Rn has all partial directional derivatives at all points (in other words, f is di�erentiable oneach line parallel to a coordinate axis), then f is generically Fr�echet di�erentiable. On the otherhand, ifX = `2, then (see [9]) there exists a Lipschitz function onX which is everywhere Gâteauxdi�erentiable (and so di�erentiable on all lines) which is generically Fr�echet non-di�erentiable.A contribution to this special question is given in the article [15] which was motivated by thepapers [2], [3] of Borwein and Moors on \essentially smooth" functions.For example [15, Theorem 5.2] reads as follows.
Theorem A. Let X be an Asplund space and f : X ! R a Lipschitz function. Suppose thatthere exists a set D which is dense in the unit sphere SX such that, for each v 2 D, f isessentially smooth on a generic line parallel to v. Then f is generically Fr�echet di�erentiable.

Here \f is essentially smooth on the line L" means \the restriction of f is a.e. strictlydi�erentiable on L." So each function which is C1 on a line L is essentially smooth on L. (Recallalso that X is Asplund if and only if Y � is separable for each separable subspace Y � X.)In [15, Remark 1.4(iii)], it was announced that, in Theorem A, it is not possible to supposeonly that f is essentially smooth on each line from a set of lines which is dense in the space ofall lines parallel to v 2 D. (So it is not su�cient to suppose that f is essentially smooth on eachline from a set of lines which is dense in the space of all lines; cf. Remark 3.7).The main aim of the present note is to construct the following much stronger example (The-orem 3.6 below), in which we obtain even generic Gâteaux non-di�erentiability.
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Let X be a Banach space, dimX > 1. Then there exists a Lipschitz function f on X suchthat, for each v 2 SX , f is C1 on a.e. line parallel to v and f is generically Gâteaux non-di�erentiable.
Here \a.e. line parallel to v" is taken in a very strong sense (using \�-nullness", see De�nition3.5). Note that each �-null set is clearly Lebesgue null if X = Rn and is Gaussian (=Aronszajn)null and also �-null if X is separable.Stress that our construction is \two-dimensional"; if we have an example in R2, then theconstruction in a general X is rather obvious. The notion of �-nullness is not of general interest,we introduce it only to be able shortly formulate our result in general X.Further note that in the case X = Rn the function f from our example is C1 on a.e. line inX, which justi�es the title of the note. It is immediately seen from the canonical de�nition ofthe measure on the set of all lines in Rn (see [8, p. 53]).Note also that the main idea of the construction is similar to that of [11].

2. PreliminariesIn the following, if it is not said otherwise, X will be a real Banach space. We set SX :=fx 2 X : kxk = 1g. If a; b 2 X, then a; b denotes the closed segment. By spanM we denotethe linear span of M � X. The equality X = X1 � � � � �Xn means that X is the direct sum ofnon-trivial closed linear subspaces X1; : : : ; Xn and the corresponding projections �i : X ! Xiare continuous.We say that a function f : X ! R is C1 on a line L = a+Rv if the function h(t) := f(a+ tv)is C1 on R. (Clearly, this de�nition does not depend on the choice of a and v.)The symbol B(x; r) will denote the open ball with center x and radius r. The word \generi-cally" has the usual sense; it means \at all points except a �rst category set".The symbol Hk denotes the k-dimensional Hausdor� measure.We will need several times the following easy well-known fact.
Lemma 2.1. Let X be a Banach space, 0 6= u 2 X, and let X = W � spanfug. Then themapping w 2W 7! w + Ru 2 X= spanfug is a linear homeomorphism.

In the following, f is a real function de�ned on an open subset G of X.We say that f has a property generically on G, if f has this property at each point of Gexcept a �rst category set.We say that f is K-Lipschitz (K � 0), if f is Lipschitz with (not necessary least) constantK.Recall the well-known easy fact that
(2.1) if f is Lipschitz and dimX <1, then the Gâteaux and Fr�echet derivatives coincide.

Recall (see [10]) that x� 2 X� is called a strict derivative of f at a 2 G if
lim(x;y)!(a;a); x 6=y f(y)� f(x)� x�(y � x)ky � xk = 0:

It is well-known and easy to see that if f 0(a) is the strict derivative of f at a 2 X and v 2 X,then
(2.2) limn!1 f(an + tnv)� f(an)tn = f 0(a)(v) whenever an ! a; tn ! 0 + :

Strict di�erentiability is a stronger condition than Fr�echet di�erentiability, but (see e.g. [14,Theorem B, p. 476]), for an arbitrary f ,
(2.3) generically Fr�echet di�erentiability of f implies strict di�erentiability of f .
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The directional and one-sided directional derivatives of f at x in the direction v are de�nedrespectively by

f 0(x; v) := limt!0 f(x+ tv)� f(x)t and f 0+(x; v) := limt!0+ f(x+ tv)� f(x)t :
We will need some well-known facts about molli�cation of functions. Let � : Rn ! R be thefunction de�ned as �(x) = 0 for kxk � 1 and �(x) = c exp((kxk2 � 1)�1) for kxk < 1, where cis such that RRn � = 1. For � > 0, we de�ne (the standard molli�er, see [4])

��(x) = 1�n � �x� � ; x 2 Rn:
If f 2 L1loc(Rn), de�ne

f �(x) := �� � f(x) = Z
Rn
��(x� y) f(y) dy = Z

Rn
��(y) f(x� y) dy; x 2 Rn:

We will need the following well-known facts.Fact 2.2. Let f be a K-Lipschitz function on Rn and � > 0. Then(i) f � 2 C1(Rn).(ii) f � ! f (when � ! 0+) uniformly on compact subsets of Rn.(iii) f � is K-Lipschitz.(iv) If x 2 Rn, � > 0, and f equals to an a�ne function � on B(x; �), then f �(x) = �(x).For (i) and (ii) see [4, Theorem 1(i),(ii); p. 123]; (iii) and (iv) are also well-known and almostobvious. So I omit their proof, although I did not found an explicit reference.
3. Main resultLemma 3.1. Let K � 4 and let f 2 C1(R2) be a K-Lipschitz function. Let ; 6= H � R2 bean open set and 0 < " < 1. Then there exist ~f 2 C1(R2), c 2 H and t > 0 with the followingproperties:(i) f(x) = ~f(x) for each x 2 R2 nH.(ii) jf(x)� ~f(x)j < " for each x 2 R2.(iii) ~f is a (K + ")-Lipschitz function.(iv) The points c, c+ te1 and c� te1 (where e1 := (1; 0)) belong to H,

(3.1) ~f(c+ te1)� ~f(c)t � 1 and ~f(c)� ~f(c� te1)t � �1:
Proof. Choose c 2 H and consider the a�ne function �(x) := f(c)+ f 0(c)(x� c); x 2 R2. Sincef 2 C1(R2), we can clearly choose r > 0 such that(3.2) 0 < r < 1; B(c; r) � H and
(3.3) the function f � � is ("=2)-Lipschitz on B(c; r).Observe that kf 0(c)k � K and so � is a K-Lipschitz function. Set

'(x) := �(c)� "2r8K2 + (K + "=2) kx� ck; and g(x) := min('(x); �(x)); x 2 R2:
We will need the following properties of the function g:(P1) g is (K + "=2)-Lipschitz.(P2) g(x) = �(x) for each x 2 R2 nB(c; r=4):(P3) jg(x)� �(x)j < "r=K for each x 2 R2.(P4) There exists t > 0 such that c� te1 2 B(c; r),
(3.4) g(c+ te1)� g(c)t = K + "=2 and g(c)� g(c� te1)t = �(K + "=2):
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To prove these properties, �rst recall that � is K-Lipschitz and since ' is clearly (K + "=2)-Lipschitz, we obtain (P1).If kx� ck � "r=(4K2), we obtain

�(x) � �(c) +Kkx� ck = '(x) + "2r8K2 � ("=2)kx� ck � '(x) + "2r8K2 � ("=2)("r=(4K2)) = '(x)
and (P2) follows since "r=(4K2) < r=4.If kx � ck < "r=(4K2), then j�(x) � �(c)j < K("r=(4K2)) and j'(x) � '(c)j < (K +"=2)("r=(4K2)). Consequently,
jg(x)� �(x)j � j'(x)� �(x)j � j�(c)� '(c)j+ j�(x)� �(c)j+ j'(x)� '(c)j

� "2r8K2 +K("r=(4K2)) + (K + "=2)"r=(4K2)) < "r=K
which gives (P3), since we have proved that g(x) = �(x) if kx� ck � "r=(4K2).Since � and ' are continuous, we can clearly choose t > 0 so small that c � te1 2 B(c; r),'(c+ te1) < �(c+ te1) and '(c� te1) < �(c� te1). Then g(c) = '(c) and g(c� te1) = '(c� te1)and so, by the de�nition of ', we clearly obtain (3.4). Thus we have proved (P4).Now, for � > 0, consider the molli�cation g� of g. By Fact 2.2(i),(iii), we obtain that g� 2C1(R2) and g� is (K + "=2)-Lipschitz.Using (P2) and Fact 2.2(iv) we obtain that, if 0 < � < r=4, then(3.5) g�(x) = g(x) = �(x) for x 2 R2 nB(c; r=2):
So, using Fact 2.2(ii) for the compact set B(c; r), we easily see that we can choose � 2 (0; r=4)so small that(3.6) jg�(x)� g(x)j < "rK for each x 2 R2
and, using (3.4), also
(3.7) g�(c+ te1)� g�(c)t � 2 and g�(c)� g�(c� te1)t � �2:
By (3.6) and (P3) we obtain that
(3.8) jg�(x)� �(x)j < 2"rK for each x 2 R2:

De�ne ~f := f + g� � �. Clearly ~f 2 C1(R2). We will show that ~f has also properties (i) -(iv).By (3.5) we have
(3.9) ~f(x) = f(x) for x 2 R2 nB(c; r=2);which implies (i).By (3.8) we obtain
(3.10) j ~f(x)� f(x)j < 2"rK < " for each x 2 R2;
so (ii) holds.Since ~f := (f ��)+ g�, g� is (K+ "=2)-Lipschitz and f �� is ("=2)-Lipschitz on B(c; r) (see(3.3)), we obtain that
(3.11) ~f is a (K + ")-Lipschitz function on B(c; r).Using (3.5) we obtain that
(3.12) ~f = f + (g� � �) is K-Lipschitz on R2 nB(c; r=2).
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Further consider arbitrary x1; x2 2 R2 such that x1 2 B(c; r=2) and x2 =2 B(c; r). Then, using(3.9) and (3.10), we obtain
j ~f(x2)� ~f(x1)j = jf(x2)� ~f(x1)j � jf(x2)� f(x1)j+ jf(x1)� ~f(x1)j

� Kjx2 � x1j+ 2"rK � Kjx2 � x1j+ (4"=K)jx2 � x1j � (K + ")jx2 � x1j:
This inequality together with (3.11) and (3.12) clearly imply (iii).Finally, since ~f := (f � �) + g�, (3.3), (3.7) and the fact that the points c, c + te1, c � te1belong to B(c; r) easily imply (iv). �

Lemma 3.2. LetMn � R2, n 2 N, be nowhere dense sets. Then there exists a Lipschitz functionf on R2 such that(a) f is C1 on each line which is contained in a set Mn, n 2 N, and(b) f is generically Gâteaux non-di�erentiable.
Proof. We can clearly choose a set D = fdn : n 2 Ng which is dense in R2 and D\Sk2NMk = ;.For each n 2 N, choose 0 < rn < 1=n such that B(dn; rn) \ Snk=1Mk = ; and denote Bn :=B(dn; rn). Set "n := 2�n and e1 := (1; 0).Now we will inductively construct sequences (cn)1n=1 of points in R2, (fn)1n=0 of C1 functionson R2 and (tn)1n=1 of positive reals such that f0(x) = 0, x 2 X, and for each n 2 N the followinghold:(i) fcn; cn + tne1; cn � tne1g � Bn.(ii) fn(cn+tne1)�fn(cn)tn � 1 and fn(cn)�fn(cn�tne1)tn � �1.(iii) fn(x) = fn�1(x) whenever x 2 (R2 nBn) [Sn�1k=1fck; ck + tke1; ck � tke1g.(iv) jfn(x)� fn�1(x)j < "n for each x 2 R2.(v) fn is a (4 +Pnk=1 "k)-Lipschitz function.Of course, we put S0k=1fck; ck + tke1; ck � tke1g := ; (and also P0k=1 "k := 0 below).We set f0(x) := 0, x 2 X. Further suppose that m 2 N is given, cn, fn, tn are de�ned for1 � n < m, and the conditions (i)-(v) hold whenever 1 � n < m.Applying Lemma 3.1 toK := 4+Pm�1k=1 "k, f := fm�1, H := BmnSm�1k=1 fck; ck+tke1; ck�tke1gand " := "m, we obtain a function ~f =: fm, c =: cm 2 H and t =: tm > 0 such that the conditions(i)-(v) clearly hold for n = m.Condition (iv) gives that the seriesf1 + (f2 � f1) + (f3 � f2) + : : :(uniformly) converges on R2 and consequently the sequence (fn) converges to a function f . Sinceall fn are 5-Lipschitz by (v), we obtain that f is a 5-Lipschitz function too.To prove (a), suppose that L is a line in R2, k 2 N and L � Mk. Since Mk � R2 n Bn foreach n � k, we obtain by (iii) that fn(x) = fn�1(x) for each x 2 L and n � k, and consequentlyf(x) = fk(x), x 2 L. Since fk is C1 on R2, we obtain that f is C1 on L.To prove (b), �rst observe that, by (iii), for each n > k and x 2 fck; ck + tke1; ck � tke1g wehave fn(x) = fn�1(x), and so f(x) = fk(x). Thus (ii) implies that, for each k 2 N,
(3.13) f(ck + tke1)� f(ck)tk � 1 and f(ck)� f(ck � tke1)tk � �1:
This easily implies that(3.14) f is not strictly di�erentiable at each point of R2.Indeed, suppose to the contrary that f is strictly di�erentiable at a point x 2 R2. Using (i), wecan clearly �nd a subsequence (cni) of (cn) with cni ! x. Then clearly tni ! 0 and so by (2.2)
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and (3.13) limi!1 f(cni + tnie1)� f(cni)tni = f 0(x)(e1) � 1 and

limi!1 f(cni)� f(cni � tnie1)tni = f 0(x)(e1) � �1;
which is a contradiction. By (3.14), (2.3) and (2.1) we obtain (b). �Proposition 3.3. There exists a Lipschitz function f on R2 such that(a) for each 0 6= v 2 R2, f is C1 on a.e. line parallel to v, and(b) f is generically Gâteaux non-di�erentiable.Proof. Choose a set fdk : k 2 Ng dense in R2. For each n; k 2 N, set
(3.15) Bn;k := B(dk; (2kn)�1) and Gn := 1[

k=1Bn;k:
Then each Gn is clearly open dense, and consequentlyMn := R2nGn is nowhere dense. ApplyingLemma 3.2, we obtain a Lipschitz function f on R2 such that f is generically Gâteaux non-di�erentiable and(3.16) f is C1 on each line which is contained in a set Mn, n 2 N.Fix an arbitrary 0 6= v 2 R2. Let W be the orthogonal complement of spanfvg and let � bethe orthogonal projection on W . Then �(Gn) = S1k=1 �(Bn;k) and so

H1(�(Gn)) � 1X
k=1H1(�(Bn;k)) = 1X

k=1 2(2kn)�1 =
2n:

Consequently
(3.17) H1 1\

n=1�(Gn)
! = 0:

Let now w 2 W n T1n=1 �(Gn). Then there exists n with w =2 �(Gn) and so the line whichcontains w and is parallel to v is contained in Mn. So, by (3.16) and (3.17), f is C1 on a.e. lineparallel to v. �Remark 3.4. The assertion of Proposition 3.3 can be easily strengthened; namely we can consider\a.e." with respect to any generalized Hausdor� measure �h given by a non-decreasing h :[0;1) ! [0;1), see [8, p. 60]. Indeed, it is easy to slightly re�ne the proof of Proposition 3.3.Namely, it is su�cient to make two changes:(a) to set Bn;k := B(dk; rn;k), where rn;k > 0 are so small that P1k=1 h(2rn;k) < 1=n;(b) in the proof of �h(T1n=1 �(Gn)) = 0 to use the de�nition of �h (instead of the subaddi-tivity of H1).To apply Proposition 3.3 in in�nite dimensional spaces, we found useful to introduce thefollowing terminology.De�nition 3.5. Let X be a Banach space with dimX > 1. We say that M � X is �-null ifthere exists 0 6= x� 2 X� such that x�(M) � R is Lebesgue null.Obviously, ifX = Rn, then each �-null set inX is Lebesgue null. IfX is an in�nite dimensionalseparable space, then each �-null set M in X is contained in an Aronszajn null (= Gauss null)and is also �-null. It can be proved directly from de�nitions, but we can use also the followingstandard quicker argument:Let x� be as in De�nition 3.5 and let h be a Lipschitz function on R which is di�erentiableat no point of x�(M) (see [1, p. 165]). Then f := h � x� is clearly a Lipschitz function on X
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which is Gâteaux di�erentiable at no point of M . So our assertions follows from [1, Theorem6.42] and [7, Theorem 5.2.3].Note also that if X is non-separable then it is easy to see that each �-null set M � X is Haarnull. Moreover, using [7, Corollary 5.6.2], it is not di�cult to prove that M is �-null.Theorem 3.6. Let X be a Banach space and dimX � 2. Then there exists a Lipschitz functionf on X such that(i) for each 0 6= v 2 X, the function f is C1 on �-a.e. lines parallel to v and(ii) f is generically Gâteaux non-di�erentiable.(Of course, condition (i) is a short expression of the statement that there exists a �-null setN in X=span fvg such that f is C1 on each line L 2 X=span fvg nN .)
Proof. If dimX = 2, then the assertion clearly follows from Proposition 3.3.So suppose dimX � 3. Write X = P � Y with dimP = 2. By Proposition 3.3 choose aLipschitz function g on P and a �rst category set A � P such that g is Gâteaux non-di�erentiableat all points of P n A and, for each 0 6= u 2 P , the function g is C1 on a.e. line parallel to u.Let � : X ! P be the linear projection of X on P in the direction of V . Set f := g � �.It is easy to see that f is a Lipschitz function which is Gâteaux non-di�erentiable at all pointsoutside the (�rst category) set ��1(A). So (ii) holds.To prove (i), consider an arbitrary 0 6= v 2 X. If u := �(v) = 0, then f is clearly constant oneach line parallel to v. So suppose u 6= 0. Then we can write P = span fug�Z with dimZ = 1.Let ' : Z ! R be a linear homeomorphism. By the choice of g and Lemma 2.1 there existsN � Z such that '(N) � R is Lebesgue null and the function h(t) := g(d + tu); t 2 R, is C1for each d 2 Z nN .Observe that N+Y is �-null in Z+Y . Indeed, for  := '�(� �Z+Y ) we have 0 6=  2 (Z+Y )�and  (N + Y ) = '(N) is Lebesgue null. Now let p 2 (Z + Y ) n (N + Y ). Then we can writep = d+y, where d 2 ZnN and y 2 Y . Observing that f(p+tv) = f(d+y+tv) = g(d+tu) = h(t)and using Lemma 2.1, we easily obtain (i). �Remark 3.7. Each set containing �-a.e. line parallel to v is clearly dense in the spaceX= spanfvg.Consequently the function f from Theorem 3.6 is C1 on a dense set of lines in the space Lof all lines in X. Here we consider the topology on L in which, for a line L = a0 + Rv0,BL := ffa+ Rv : ka� a0k < "; kv � v0k < "g : " > 0gis a basis of the �lter of all neigbourhoods of L.
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