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Abstract. For a domain Ω ⊂ Rn we denote

qΩ(p) := sup
{
r ∈ [1,∞]; for all f : Ω→ R : (f ∈W 1,p(Ω)⇒ f ∈ Lr(Ω))

}
.

Let p0 ∈ [2,∞). We construct a domain Ω ⊂ R2 such that qΩ(p) is discontinuous
at p0.

1. Introduction

We study the Sobolev embedding theorem on domains with non-Lipschitz bound-
ary. The Sobolev embedding theorem on a domain Ω ⊂ Rn with Lipschitz boundary
claims

f ∈ W 1,p(Ω), p 6= n⇒ f ∈ Lp∗(p)(Ω), where

(1.1) p∗(p) =

{
np
n−p , for 1 ≤ p < n,

∞, for n < p <∞.
Inspired by this theorem, we can define the function of the optimal embedding for

a domain Ω ⊂ Rn as

(1.2) qΩ(p) := sup
{
r ∈ [1,∞]; for all f : Ω→ R : (f ∈ W 1,p(Ω)⇒ f ∈ Lr(Ω))

}
.

There are a lot of results on the field of characterization of qΩ(p) for classes of domains.
For a Lipschitz domain Ω the function p∗(p) = qΩ(p) is continuous and even smooth,
(see (1.1)), this was proven by Sobolev in 1938 [12]. Later, the embedding was
examined on some more problematic classes of domains by V. G. Maz’ya [9, 10], O.
V. Besov and V. P. Il’in [3], T. Kilpeläinen and J. Malý [5], D. A. Labutin [6, 7],
B. V. Trushin [13, 14] and others. For further results and motivation we recommend
the introduction by O. V. Besov [2]. Even considering somehow irregular domains,
examined classes of domains have always qΩ(p) somehow nice and continuous. We
construct a domain Ω such that the function of the optimal embedding qΩ(p) is
continuous up to some point, has a leap at this point and then it is continuous again.
The point of discontinuity p0 ∈ [n,∞) and the size of the leap can be chosen as
desired.

Our work is inspired by the construction of a domain in [4], but our proof is
completely different. The original article shows the construction of such a domain
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only in case p0 = n = 2 and the proof is based on change of variables. We prove the
same result by chaining Poincaré inequalities and we generalize the construction for
the point of discontinuity anywhere in [n,∞). This result can be generalized to any
dimension too, but for simplicity we show the calculations only in case n = 2.

It would be nice to see explicit example of domain with a point of discontinuity
under the point of dimension, i.e. p0 ∈ (1, n).

First of all, we suggest the shape of a domain Ω in dependence on parameters
such that qΩ(p) is not continuous at point p0 ≥ 2 = n. We prove this statement by
verifying the embedding W 1,p(Ω) ⊂ Lq(p)(Ω) and by constructing the counterexamples
that show the optimality of qΩ(p).

1.1. Construction of Ωα,β and embedding theorem. Firstly, we construct a do-
main Ωα,β ⊂ R2 for parameters α ≥ 1, β > α. The point of discontinuity of qΩα,β(p)
is p0 = α + 1, parameter β determinates the size of the leap limt→p0+ qΩα,β(t) −
limt→p0− qΩα,β(t).

Let us denote by Ti the family of domains in R2

(1.3)
Ti :=

{
[x1, x2] ∈ R2 : x1 ∈

(
− 2−i

2

i−1, (−2−i
2

+ 2−i)i−1
)
,

x2 ∈
(
2−i+1, 2−i+1 + (x1 + 2−i

2

i−1)α2−i(β−α)i−1+α
)}
.

2−i
2
i−1

(2−i − 2−i
2
)i−1

2−iβi−1Ti

Figure 1. The domain Ti

The shape of Ti is the sub-graph of y(x) = xα function on some right neighbourhood
of 0. Let us denote open square S ⊂ R2 by S := (−4, 0)× (−2, 2). Now we define

Ωα,β :=
⋃

i∈N

Ti ∪ S.

We define qΩα,β(p) : [1,∞)→ [1,∞) by

qΩα,β(p) :=

{
p for 1 ≤ p < α + 1,
(β+1)p
β+1−p for α + 1 ≤ p < β + 1.

The function qΩα,β(p) has a leap at p0 = α + 1 of size

limt→p0+ qΩα,β(t)− limt→p0− qΩα,β(t) =
(α + 1)2

β − α .
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S
T1

T2

T3

Figure 2. The domain Ωα,β

From (1.1) it is easy to see that qΩα,β(p) ≤ p∗(p) for p 6= n, p 6= α + 1. This property
holds for any qΩ(p) from (1.2), the nicer domain Ω is, the lower function qΩ(p) is. If
the domain Ω has Lipschitz boundary then the function qΩ(p) = p∗(p) is the lowest
possible.

Theorem 1 (Optimal Sobolev embedding Theorem for Ωα,β). Let α > 0, β > α and
1 ≤ p < 1 + β. Then

W 1,p(Ωα,β) ⊂ Lq(p)(Ωα,β).

Moreover, for every ε > 0 there exists a function g : Ωα,β → R satisfying

g ∈ W 1,p(Ωα,β) and g /∈ Lq(p)+ε(Ωα,β).

We prove the first part of Theorem 1 in Section 3. The optimality part of Theorem
1 is proven in Section 4.

We would like to thank to author’s supervisor Stanislav Hencl for introducing this
field, pointing out this problem and supporting and useful advices during work itself.

2. Preliminaries

For simplicity we use notation Ω = Ωα,β and q(p) = qΩα,β(p). By C we denote the
generic positive constant whose exact value may change at each occurrence. We write
for example C(a, b, c) if C may depend on parameters a, b and c.

Definition 1. We define Lebesgue norm ‖f‖Lp(Ω) for measurable function f : Ω ⊂
Rn → R, p ∈ [1,∞] as

(2.1) ‖f‖Lp(Ω) :=

{ ( ∫
Ω
|f |p
) 1
p for p ∈ [1,∞),

esssupΩ |f | for p =∞.
We define Lebesgue space Lp(Ω) as a set of all functions with finite norm ‖f‖Lp(Ω).

Definition 2. Let A ⊂ Rn be an open set and v ∈ L1
loc(A) be a function. We call the

function u : A→ Rn weak derivative of v, if for all φ ∈ C∞0 (A) we have∫

A

Oφvdx = −
∫

A

uφdx.
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We use the notation u = Dv, ui = Div.

Definition 3. We define Sobolev norm ‖f‖W 1,p(Ω) for function f : Ω ⊂ Rn → R, p ∈
[1,∞] as

(2.2) ‖f‖W 1,p(Ω) :=

{ (
‖f‖pLp(Ω) +

∑n
i=1 ‖Dif‖pLp(Ω)

) 1
p for p ∈ [1,∞)

max{‖f‖Lp(Ω), ‖D1f‖Lp(Ω), . . . ‖Dnf‖Lp(Ω)} for p =∞.

We define Sobolev space W 1,p(Ω) as a set of all functions with finite norm ‖f‖W 1,p(Ω).

We use notation ai ' bi, if there exists a constant K > 0 such that

1

K
<
ai
bi
< K for every i ∈ N.

We denote the integral average by

fA := −
∫

A

f =
1

|A|

∫

A

f.

The following Poincaré-type inequality will be essential.

Lemma 1. Let b be a bi-Lipschitz mapping b : B(0, r) ⊂ Rn → Rn with a bi-Lipschitz
constant L > 0, and set A := b(B(0, r)). Let 1 ≤ p ≤ ∞, p 6= n and 1 ≤ m ≤ p∗(p).
Then there exists a constant C(n, p,m, L) such that for f ∈ W 1,p(A) we have

|A|− 1
m‖f − fA‖Lm(A) ≤ C(n, p,m, L)r|A|− 1

p‖Df‖Lp(A).

We use the convention |A|− 1
∞ = 1.

Let p = n and 1 ≤ m <∞. Then there exists a constant C(n,m,L), such that for
f ∈ W 1,p(A) it holds

|A|− 1
m‖f − fA‖Lm(A) ≤ C(n,m,L)r|A|− 1

n‖Df‖Ln(A).

Proof. In case b is identity and p = q we get classical result. The more difficult case
1 ≤ q ≤ p∗(p) can be found in [8] as Theorem 12.23 and Exercise 12.24 and with
the help of Hölder’s inequality. The general case for b not being identity follows by a
simple change of variables. �

3. The proof of Sobolev embedding Theorem for Ωα,β

In this section we prove Theorem 1 for the case α ≥ 1. We give the details for
α > 1 and the case α = 1 is only sketched.

Let us suppose that α > 1. Then for every i ∈ N we define the covering of Ti \ S
by domains bi-Lipschitz equivalent to balls. The proof of W 1,p ⊂ Lq(p) for p < α + 1
is elementary from the Definition 3, as every function in W 1,p belongs to Lp. Further
we suppose that p > α + 1.
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3.1. Covering of Ti. We define kα = 3
2

(
2

α−1

) 1
α−1 ,

(3.1)
si,j :=kα2i

β−α
α−1 i−1j−

1
α−1 ,

ri,j :=
1

2
kαα2i

β−α
α−1 i−1j−

α
α−1 .

For fixed i ∈ N we define the sequence of domains Qi,j, j ∈ N
(3.2)

Qi,j :=
{

[x1, x2] ∈ Ti : x1 ∈
(
si,j − ri,j, si,j + ri,j

)
∩ (−2−i

2

i−1, (−2−i
2

+ 2−i)i−1
)}
.

S

Ti

Qi,ji,∞ Qi,j

Qi,ji,0

si,j − ri,j si,j
si,j + ri,j

Figure 3. The covering of Ti

Lemma 2 (Covering lemma). Let i ∈ N, Ti be given by (1.3) and the sequence of
domains Qi,j by (3.2). Then

(i) Qi,j are bi-Lipschitz equivalent to balls with radius ri,j with the same bi-Lipschitz
constant L independent on i and j.

(ii) For fixed j0 there exists only a finite number of domains Qi,j with non-empty
intersection with Qi,j0. This number is bounded by some constant C(α, β).

(iii) For fixed j0 let Ai,j0 := Qi,j0 ∩ Qi,j0+1. There exists some constant C(α, β) > 0

such that C(α, β) <
|Ai,j0 |
|Qi,j0 |

<
|Ai,j0 |
|Qi,j0+1| .

(iv) There exists ji,∞, the smallest index satisfying Qi,ji,∞ ⊂ S, and there exists ji,0,

the biggest index satisfying si,ji,0 + ri,ji,0 ≥ (−2−i
2

+ 2−i)i−1 = ”height of Ti”.
Estimated values are

(3.3)
ji,∞ ' 2i(β−α)+i2(α−1),

ji,0 ' 2i(β−1).

The proof is rather technical but straightforward and can be done by basic calculus,
therefore we only outline it.
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Sketch of the proof of Lemma 2. We define two bi-Lipschitz mappings:

b1,i,j :B(0, ri,j)→ (−ri,j, ri,j)× (0, ri,j),

b2,i,j :(−ri,j, ri,j)× (0, ri,j)→ Qi,j,

b2,i,j(x1, x2) :=
(
x1 + si,j, 2

−i+1 +
x2

ri,j
(x1 + si,j + 2−i

2

i−1)α2−i(β−α)i−1+α
)
.

The mapping b1,i,j maps a ball to the half of a square and has bi-Lipschitz constant
L1 independent on i and j, its exact formula can be found easily. Let us consider
Jacobi matrices of both b2,i,j and b−1

2,i,j

Db2,i,j(x1, x2) =

(
1 x2

ri,j
α(x1 + si,j + 2−i

2
i−1)α−12−i(β−α)i−1+α

0 r−1
i,j (x1 + si,j + 2−i

2
i−1)α2−i(β−α)i−1+α

)

Db−1
2,i,j

(b2,i,j(x1, x2)) =

(
1 −x2α(x1 + si,j + 2−i

2
i−1)−1

0 ri,j(x1 + si,j + 2−i
2
i−1)−α2i(β−α)i1−α

)
.

By a direct computation it is not difficult to check that all partial derivatives are
bounded by constant, i.e. the second mapping b2,i,j has bi-Lipschitz constant L2,i,j

depended on i and j, and it can be estimated by L2 common for all i and j. The key
observation is, that L2,i,j is monotone sequence in both i and j. We found bi-Lipschitz
mapping b2,i,j ◦ b1,i,j : B(0, ri,j) → Qi,j with constant L = L1L2 and the first part is
proven.

Second part can be proven by verifying statement limj→∞ si,j − si,j+1 = ri,j for
every i ∈ N.

To prove third part we define Pi,j ⊂ Ai,j, Pi,j := (si,j+1, si,j)×(2−i+1, 2−i+1 +ri,j+1).

We estimate
|Pi,j |
|Qi,j | and we easily find C(α, β) such that C(α, β) <

|Pi,j |
|Qi,j | .

The fourth part is important for further calculations. We estimate the indexes ji,0
and ji,∞ by definition of ri,j (3.1). From diam(Qi,ji,∞) ' ”width of Ti\S on left edge”
and diam(Qi,ji,∞) ' ri,ji,∞ for ji,∞ and diam(Qi,ji,0) ' ”width of Ti \S on right edge”
and diam(Qi,ji,0) ' ri,ji,0 for ji,0 we get

(3.4)
2−iβi−1 ' ri,ji,0 '

1

2
kαα2i

β−α
α−1 i−1j

− α
α−1

i,0 ,

(2−i
2

i−1)α2−i(β−α)i−1+α ' ri,ji,∞ '
1

2
kαα2i

β−α
α−1 i−1j

− α
α−1

i,∞

which implies (3.3). �

3.2. Proof of Theorem 1 for p > α + 1, α ≥ 1.

Proof. We estimate the power of norm

‖f‖qLq(Ω) ≤ ‖f‖
q
Lq(S) + ‖f‖qLq(⋃i∈N Ti\S) ≤ ‖f‖

q
Lq(S) +

∑

i∈N

‖f‖qLq(Ti\S).

The part ‖f‖qLq(S) is bounded for any q ∈ [1,∞) thanks to Sobolev embedding theorem

for Lipschitz domains W 1,p(S) ⊂ L∞(S), p > n = 2. Therefore we have ‖f‖qLq(S) ≤ C.
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For every x ∈ Ti \ S we find ji,x such that x ∈ Qi,ji,x . We estimate

(3.5)

‖f‖qLq(Ω) ≤‖f‖
q
Lq(S) + C

∞∑

i=1

∫

Ti\S

(
|f(x)− fQi,ji,x |+

ji,∞∑

j=ji,x

|fQi,j − fQi,j−1
|
)q
dx

≤C + C
∞∑

i=1

∫

Ti\S

( ji,∞∑

j=ji,x

|fQi,j − fQi,j−1
|
)q
dx

+ C

∞∑

i=1

∫

Ti\S

(
|f(x)− fQi,ji,x |

)q
dx.

By (1.3), Lemma 1 for m =∞, Lemma 2 (ii) and ri,j ≤ 1 we have

(3.6)

∞∑

i=1

∫

Ti\S

(
|f(x)− fQi,ji,x |

)q
≤

∞∑

i=1

∫

Ti\S

(
‖f(x)− fQi,ji,x‖L∞(Qi,ji,x )

)q

≤
∞∑

i=1

∫

Ti\S

(
Cr

p−2
p

i,ji,x
‖Df‖W 1,p(Qi,ji,x )

)q

≤ C
∞∑

i=1

|Ti|‖Df‖qW 1,p(Ω) ≤ C

By Lemma 1 and Lemma 2 (iii) we have an estimate
(3.7)

|fQi,j − fQi,j−1
| ≤

(
−
∫

Ai,j−1

|fQi,j − f(y)|dy +−
∫

Ai,j−1

|fQi,j−1
− f(y)|dy

)

≤ C
(
−
∫

Qi,j

|fQi,j − f(y)|dy +−
∫

Qi,j−1

|fQi,j−1
− f(y)|dy

)

≤ C
(
r
p−2
p

i,j

(∫

Qi,j

|Df(y)|pdy
) 1
p

+ r
p−2
p

i,j−1

(∫

Qi,j−1

|Df(y)|pdy
) 1
p
)
.

By this estimate and Hölder inequality for sums and Lemma 2 (ii) we get

(3.8)

∫

Ti\O

( ji,∞∑

j=ji,x

|fQi,j − fQi,j−1
|
)q ≤

∫

Ti

C
( ji,∞∑

j=ji,x

r
p−2
p

i,j

(∫

Qi,j

|Df(y)|pdy
) 1
p
)q
dx

≤ C

∫

Ti

( ji,∞∑

j=ji,x

r
p−2
p

( p
p−1

)

i,j

) q(p−1)
p
( ji,∞∑

j=ji,x

(∫

Qi,j

|Df(y)|pdy
)p 1

p
) q
p
dx

≤ C|Ti|
( ji,∞∑

j=ji,0

r
p−2
p−1

i,j

) q(p−1)
p
.
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From (3.1), (3.5), (3.6), (3.8) and (1.3) we have

‖f‖qLq(Ω) ≤ C + C
∞∑

i=1

i−22−i(β+1)
( ji,∞∑

j=ji,0

r
p−2
p−1

i,j

) q(p−1)
p

≤ C + C

∞∑

i=1

i−
qp−2q+2p

p 2i
(

(β−α)q(p−2)
(α−1)p

−(β+1)
)( ji,∞∑

j=ji,0

j−
α(p−2)

(α−1)(p−1)

) q(p−1)
p
.

We estimate the sum over j as an integral and we get

(3.9)

ji,∞∑

j=ji,0

j−
α(p−2)

(α−1)(p−1) ≤ C
[
x

α+1−p
(α−1)(p−1)

]ji,∞
ji,0
≤ C2i

(β−1)(α+1−p)
(α−1)(p−1) ,

where the integral can be estimated by smaller index (that is ji,0 by (3.3)) since
p > α + 1. Finally we put the estimates together and we get

‖f‖qLq(Ω) ≤ C + C
∞∑

i=1

i−
qp−2q+2p

p 2i
(

(β−α)q(p−2)
(α−1)p

−(β+1)
)(

2i
(β−1)(α+1−p)

(α−1)(p−1)

) q(p−1)
p

≤ C + C
∞∑

i=1

i−
qp−2q+2p

p 2i
(
−(β+1)+q β+1−p

p

)
.

The proof is done, because the sum is finite if q ≤ (β+1)p
β+1−p .

Let us consider the case α = 1. We have to change the definition (3.1) of si,j and
ri,j and the definition (3.2) of Qi,j as

(3.10) ri,j := ri,0(1 + 2−i(β−1)−1)j, for ri,0 = 2−i
2−i(β−1)−1i−1 and si,j :=

j−1∑

k=0

ri,j.

We define Qi,j as trapezoids with average of basis equal to height and half of this
height we denote by ri,j, that is

Qi,j = Ti ∩ {x ∈ R2 : x2 ∈ (si,j − ri,j, si,j + ri,j)}.
Let us denote, that the sequences ri,j and si,j are strictly decreasing with respect to

Ti

Qi,j

∑j−1
k=0 ri,k − ri,j

∑j
k=0 ri,k

∑j−1
k=0 ri,k

Figure 4. The domain Qi,j
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index j in case α > 1, but these sequences are strictly increasing in case α = 1.
The Lemma 2 holds and it is proven in the same way as for α > 1, only the indexes

of border Qi,j are

ji,∞ = −1

and by analogy of (3.4)

2−iβi−1 ' ri,ji,0 = (1 + 2−i(β−1)−1)ji,02−i
2−i(β−1)−1i−1

we get

ji,0 '
ln(2)(i2 − i)

ln(1 + 2−i(β−1)−1)
.

The idea of chaining Poinceré inequality is analogous, and after easy modification we
get our result. We can copy all arguments and calculations from (3.5), (3.6), (3.8),
then we use (1.3) for α = 1, new definition of ri,j and estimates for ji,0, ji,∞ and we
get

‖f‖qLq(Ω) ≤C + C
∞∑

i=1

i−22−i(β+1)
( ji,0∑

j=ji,∞

r
p−2
p−1

i,j

) q(p−1)
p

≤C + C
∞∑

i=1

i−
2p+q(p−2)

p 2−i(1+β)+(−i2−i(β−1))
q(p−2)
p

((1 + 2−i(β−1)−1)
p−2
p−1

(
ln(2)(i2−i)

ln(1+2−i(β−1)−1)
+2) − 1

(1 + 2−i(β−1)−1)
p−2
p−1 − 1

) q(p−1)
p
,

where the final term comes from the sum of geometric series. The right hand side
can be estimated and after easy calculation we have

‖f‖qLq(Ω) ≤ C + C
∞∑

i=1

i−
2p+q(p−2)

p 2i
q(β+1−p)−(β+1)p

p .

The right hand side is finite if q ≤ p(β+1)
p−(β+1)

and the proof is done.

The complete proof for α = 1 with all details can be found in [11]. �

4. Optimality of q(p) for Ωα,β

Proof of the optimality. We construct the function g by the choice of the proper func-
tions gi : Ti → R and the sequence di of positive numbers. We denote q := q(p) + ε.
We define

g(x1, x2) =

{
0 for (x1, x2) ∈ S,
digi(x1, x2) for (x1, x2) ∈ Ti \ S,∀i ∈ N.

Clearly

(4.1) ‖g‖pW 1,p(Ωα) =
∞∑

i=1

dpi ‖gi‖pW 1,p(Ti)
and ‖g‖qLq(Ω) =

∞∑

i=1

dqi‖gi‖qLq(Ti).

The choice of gi and di depends on p and α+ 1, so we split the proof into two parts.
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4.1. The case p < α + 1. Let us consider p ∈ [1, α + 1). We define

(4.2)
gi(x1, x2) :=

(
x1 + 2−i

2

i−1
)−α
− (2−i

2

i−1)−α for (x1, x2) ∈ Ti \ S,

di := (2−i
2

i−1)α2
i(β+1)
q i

2
q .

For fixed i ∈ N we estimate the norm in space Lq(Ti). By (1.3) the width of Ti for

x1 ∈
(
− i−12−i

2
, i−1(2−i − 2−i

2
)
)

is

(4.3) l(x1) =
(
x1 + 2−i

2

i−1
)α

2iα−iβiα−1

and we get
(4.4)

‖gi‖qLq(Ti) =

∫ 2−i−2−i
2

i

0

∣∣∣
(
x1 + 2−i

2

i−1
)−α − (2−i

2

i−1)−α
∣∣∣
q

l(x1)dx1

=

∫ 2−i−2−i
2

i

0

∣∣∣
(
x1 + 2−i

2

i−1
)−α − (2−i

2

i−1)−α
∣∣∣
q(
x1 + 2−i

2

i−1
)α

2iα−iβiα−1dx1.

We can see that the important part is only some left neighbourhood of 2−i−2−i
2

i
,

which determine the size of integral. We estimate

(4.5)
‖gi‖qLq(Ti) '

∫ 2−i−2−i
2

i

0

(2−i
2

i−1)−αq
(
x1 + 2−i

2

i−1
)α

2iα−iβiα−1dx1

' iαq−22i
2αq−i−iβ.

By (4.2) we get

‖g‖qLq(Ω) =
∞∑

i=1

dqi‖gi‖qLq(Ti) ≥ C

∞∑

i=1

i020 =∞.

We need to prove the convergence of ‖g‖pW 1,p(Ωα). First of all we estimate

‖gi‖pW 1,p(Ti)
≤ 2 max{‖gi‖pLp(Ti)

, ‖Dgi‖pLp(Ti)
}.

The estimate of the norm of gi in Lp(Ti) is analogical to (4.5), by interchanging the
role of p and q we get

‖gi‖pLp(Ti)
' iαp−22i

2αp−i−iβ.

We use q = q(p) + ε = p+ ε and estimate the norm of g in Lp(Ω)

‖g‖pLp(Ω) =
∞∑

i=1

dpi ‖gi‖pLp(Ti)
≤ C

∞∑

i=1

i−2(2−i−iβ)
q−p
q <∞.

Let us express the norm of gi by derivative

‖Dgi(x1, x2)‖pLp(Ti)
=

∫

Ti

∣∣∣∣
∂gi(x1, x2)

∂x1

∣∣∣∣
p

.
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The estimate is similar to (4.4). The proof splits in two cases, firstly, we consider
p > 1 and we get

(4.6)

∫

Ti

∣∣∣ ∂gi
∂x1

∣∣∣
p

≤C
∫ 2−i−2−i

2

i

0

(
x1 + 2−i

2

i−1
)α+p(−α−1)

2i(−β+α)iα−1dx1

≤C2i(−β+α)iα−1
[(
x1 + 2−i

2

i−1
)(1−p)(α+1)

]i−1(2−i−2−i
2
)

0
.

We can see analogously to (4.5), that the important part is only some right neigh-
bourhood of 0, so we estimate

‖Dgi‖pLp(Ti)
≤ Cip(α+1)2i(−β+α)−i2(1−p)(α+1).

It follows that

‖Dg‖pLp(Ω) =
∞∑

i=1

dpi ‖Dgi‖pLp(Ti)
≤

∞∑

i=1

Ci2
p−q
q

+p(α+1)2i(−β+α+
(β+1)p

q
)2i

2(p−α−1) <∞.

The proof of finiteness of the norm in case p = 1 is similar, except the estimate in
(4.6) involves

∫
(x1 + C)−1 = log |x1 + C|. It is easy to finish the proof in this case

too.

4.2. The case p > α + 1. We define

(4.7)
gi(x1, x2) :=

(
x1 + 2−i

2

i−1
)α
− (2−i

2

i−1)α for (x1, x2) ∈ Ti \ S,

di := 2i
(
β+1
q

+α
)
iα+ 2

q .

We use (4.1), (4.3) and we estimate the norms of gi as in previous case. Analogously
to (4.4) and (4.5) we have

(4.8)

‖gi‖qLq(Ti) =

∫ 2−i−2−i
2

i

0

∣∣∣
(
x1 + 2−i

2

i−1
)α − (2−i

2

i−1)α
∣∣∣
q

l(x1)dx1

'
∫ 2−i−2−i

2

i

0

(
x1 + 2−i

2

i−1
)(q+1)α

2iα−iβiα−1dx1

' i−αq−22−i(qα+1+β).

We estimate ‖g‖qLq(Ω) by

‖g‖qLq(Ω) =
∞∑

i=1

dqi‖gi‖qLq(Ti) ≥ C
∞∑

i=1

i020 =∞.

Now we need to prove the convergence of norm of g and Dg in Lp(Ω). Analogously
to (4.8), by interchanging the role of p and q we get

‖gi‖pLp(Ti)
' i−αp−22−i(pα+1+β).
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We use q = q(p) + ε > p+ ε and we estimate the norm of g in Lp(Ω)

‖g‖pLp(Ωα) =
∞∑

i=1

dpi ‖gi‖pLp(Ti)
≤ C

∞∑

i=1

(i−22−i−iβ)
q−p
q <∞.

Let us express the norm of gi by derivative and we estimate

∫

Ti

∣∣∣ ∂gi
∂x1

∣∣∣
p

≤C
∫ 2−i−2−i

2

i

0

(
x1 + 2−i

2

i−1
)(α−1)p+α

2i(−β+α)iα−1dx1

≤C2i(−β+α)iα−1
[(
x1 + 2−i

2

i−1
)αp−p+α+1

] 2−i−2−i
2

i

0

≤Cip(−α+1)−22i(−αp+p−β−1).

It follows that

‖Dg‖pLp(Ωα) =
∞∑

i=1

dpi ‖Dgi‖pLp(Ti)
≤

∞∑

i=1

Cip−2 q−p
q 2i
(
p+(β+1) p−q

q

)
<∞,

where the finiteness follows from q = (β+1)p
β+1−p + ε. �
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