BILINEAR WEIGHTED HARDY INEQUALITY
FOR NONINCREASING FUNCTIONS

MARTIN KREPELA

ABSTRACT. We characterize the validity of the bilinear Hardy inequality for nonincreasing func-
tions
1£** 9" [ Law) < ClFIart (1) 19 aP2 (vs)>
in terms of the weights v1, v2, w, covering the complete range of exponents p1,p2,q € (0, c0].
The problem is solved by reducing it into the iterated Hardy-type inequalities
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Validity of these inequalities is characterized here for 0 < a < 8 < oo and 0 <y < co.

1. INTRODUCTION

Consider the bilinear Hardy operator

(100 = 5 [ 7()ds [ g(s)ds.
0 0

defined for all nonnegative measurable functions f,g on (0,00). In this article, we will find neces-
sary and sufficient conditions for the boundedness

H2 . Lpl (Ul) x Lpz

dec dec

(v2) = L(w)

with p1,pa,q € (0,00]. In other words, the goal is to provide equivalent estimates of the constant

19" | Law
(1) Cy = sup ()
fgett | Fllart (o) 9] P2 (02)

in terms of py, po, q, v1, V2, W.

Let us at first summarize the used notation and symbols. Let (Z, 1) be an arbitrary totally o-
finite measure space. Then .# denotes the cone of all extended real-valued p-measurable functions
on #Z. Next, .#, denotes the cone of all extended nonnegative Lebesgue-measurable functions on
(0, 00).

If pe (0,1) u (1, 00], then p' := ﬁ. If p=1, then p’ := co. Notice that for p € (0,1) the number

p' is negative. Furthermore, the conventions “% =
throughout the text.

A weight is any nonnegative measurable function v on (0, 00) such that for all ¢ € (0, 00) it holds
0 <V (t) < oo, where V is defined by V(¢t) := fot v. If the weight is denoted by another letter, the
corresponding capital letter plays an analogous role.

We say that a function w € .#, is integrable near the origin if there exists € > 0 such that

fOE u < oo. Notice that weights are integrable near the origin by definition.

0.00 := 0" and “§ = 00” for a € (0, 00] are used

Key words and phrases. Hardy operators, bilinear operators, weights, inequalities for monotone functions.
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2 MARTIN KREPELA

The symbol A $ B means that A < CB, where C is an absolute constant independent of relevant
quantities in A, B. In fact, throughout this article such C' depends only on the exponents (p, ¢, «,
B, ete.), thus it does not even depend on the weights. If both A < B and B < A, we write A ~ B.

By A(.) we denote the characteristic condition which appears on the line denoted by the
number in the brackets. Certain significant optimal constants C_y are denoted in a similar way.
These symbols have a unique meaning throughout the whole paper. Symbols By, Bi, etc. are
used in the proofs as an auxiliary notation for various quantities, and their meaning may differ
between the theorems. However, within the proof of a single theorem or lemma, each symbol B;
is uniquely defined.

The text deals with various function spaces. The weighted Lebesgue space LP(v) consists of
all extended real-valued Lebesgue-measurable functions i on (0, 00) such that [A] zr(,) < co. The
functional | - | 1s (. is defined by

1

Al o) = ( / |h<x)|%<x>dx) , pe(0,0),
0

|A]l oo (v = esssup |h(z)[v(z), p=oo.
x>0

The symbol L (v) stands for the set of all nonnegative and nonincreasing functions from L”(v).
If f e #, then f* denotes its nonincreasing rearrangement and f** the Hardy-Littlewood
mazimal function of f,i.e.

t
£ ¢=%/f*(s)ds, 0.
0

For details see [3]. For the definitions of rearrangement-invariant (abbreviated r.i.) spaces and
r.i. (quasi-)norms see [3, 7, 18]. If X and Y are r.i. spaces (or just r.i. lattices), we say that X is
embedded into Y and write X < Y if there exists C € (0, 00) such that for all f € X it holds

[£ly <Clflx.

The least possible constant C' in this inequality is called the optimal constant of the embedding
X =Y and is equal to the norm of the identity operator between X and Y, denoted |Id|x_y .

Let v be a weight and p € (0,00]. The weighted Lorentz spaces AP(v) and I'’(v) consist of all
functions f € .# for which || f|ar) < 0o and | f|rr(y) < 00, respectively. Here it is

[ £lar ) = 17y and [ flre) = 157 2o )-

For more information about the Lorentz A and I spaces see e.g. [7] and the references therein.
Let ¢, 1 be weights. For g € .# define

lgllses () = f(f(g**(t))%(t)dt) Y(z)dz| a, B e (0,00),
0 0
lgll yoeo (o) = esssup (f(g”(t))%(t)dt) P(x), ae(0,00),
0

Wl

B

lollces oy = | | ( / (g**(t))%(t)dt) p@yde| . 5 (0,00),
0 x

a

900~y = esssup ( / (g**(t))%(t)dt) v(@), e (0,)
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Then, as usual, it is J*%(p,0) = {f € M; |fljosppy < oo} and K*P(p, ) = {f €
M5 | flreas(ppy < 00} The “K-spaces” were defined in [18], where they appeared as opti-
mal spaces in certain Young-type convolution inequalities. Besides that, in [16] it was shown that
the associate space to the generalized I" space is also a “K-space”.

Now, let us briefly present some background to the problems we are about to investigate. The
aforementioned operator Hy is a bilinear version of the classical Hardy operator H;, which is
defined by

miw=7 [ 1(s)ds
0

for all f e #,. Boundedness of H; between weighted Lebesgue spaces is equivalent to the validity
of the weighted Hardy inequality

(2) [foo(iff(s)ds)qw(x)dx ' gC(]ofp(x)v(a:)dx)p
0 0 0

for all f € .#,, with C being a constant independent of f. The weights v, w for which this
inequality is valid, have been characterized by Muckenhoupt [23], Bradley [5] and Maz’ja [22].
The weighted Hardy inequality has a broad variety of applications and represents now a basic tool
in many parts of mathematical analysis, namely in the study of weighted function inequalities.
For the results, history and applications of this problem, see [21, 25, 20].

In the last decades, much attention has been drawn by the so-called restricted inequalities.
By this term it is meant that an inequality is not supposed to be satisfied by the whole set of
nonnegative functions, but rather only by a certain, restricted, subset. In this way, one may
ask under which conditions the inequality (2) is satisfied for all nonincreasing f € .#,. This is

equivalent to the validity of
< c(f (f*(t))pv(t)dt) .
0

) t q
(3) [f (1 f f*(s)ds) w(t) dt

0 ¢ 0
for all f € .#, with an independent C. Moreover, this corresponds to the boundedness Hj :
L. (v) = LY (w), or, in yet different words, the existence of the embedding of the Lorentz spaces
AP(v) = T9(w).

The first results on the case AP(v) = I'P(v), 1 < p < oo were obtained by Boyd [4] and in
an explicit form by Arino and Muckenhoupt [2]. The problem with v # w and p # ¢, 1 < p,q < o
was first successfully solved by Sawyer [26]. Many articles on this topic followed, providing the
results for a wider range of parameters, see [30, 8, 9, 28, 10, 7, 6]. In [7] the results available in
2000 were surveyed.

The restricted operator inequalities may often be handled by the so-called “reduction theo-
rems”. These, in general, reduce a restricted inequality into certain nonrestricted inequalities. For
example, the restriction to nonincreasing or quasiconcave functions may be handled in this way,
see e.g. [27, 15, 17, 12].

q

Let us however turn the focus to the bilinear variants of the Hardy-type inequalities. Recently,
Aguilar, Ortega and Ramirez [1] found necessary and sufficient conditions for the boundedness
Hy : LP1(vy) x LP?(vy) — L), where @(t) := t>%w(t). In other words, they characterized the

validity of the weighted bilinear Hardy inequality
1 a1
q oo Pl (oo}
SC([fplvl) (/ngUQ)
0 0

(4) ljo(ff(s) dsjg(s)ds) w(t) dt
0 \0 0

for all f,g € .#.. The covered range of exponents in there was 1 < p,q < oco. For some related
results see also the references in [1].

1
P2




4 MARTIN KREPELA

The paper [1] motivated the work presented here. Indeed, here we consider a restricted version
of (4) which may be called the bilinear Hardy inequality for nonincreasing functions and written
in the form

1

l / ( [roaf g*(s)ds) qsc( / (f*)”lvl)pl( / (g*)%)
0 0 0 0 0

Notice that Cy) is the least constant C' for which the above inequality holds for all f,g e .Z.

The proofs in [1] are based on the standard technique of discretization. Here, however, we
choose a different approach. The idea is as follows. In the first step, let g in (1) be fixed. Treating
C(1) as the optimal constant in the embedding AP*(vy) < I'? ((g**)%w), one gets

1
P2

w(t) oy
t2q

11d] ar1 (01) > (g 3w)

C(1y = sup
geM lgll a2 v2)
The two-side estimate of [Id|ar1 (v,)>ra((g++)aw) s known for all p1,q € (0, c0] and it is equivalent
to |lg|x, a certain rearrangement-invariant (quasi-)norm of g. Hence, in the next step, if we can
find the optimal constant |/d| sz (v,)-x, the whole problem is solved.

It will be shown that ||-| x can be expressed as a sum of (quasi-)norms in the r.i. spaces J*# (¢, )
and K*P(p,1) (see Section 2 for the definitions). In Section 3 we find characterizations of the
embeddings A7 (w) = J*8(p,1) and AY(w) = K*P(p,1)) for 0 < a < < oo and 0 <y < oo. In
other words, we characterize the weights and exponents such that the inequalities

/ ( / (g**(t))%(t)dt) b(@)d sc( / (g*(a:))m(x)dx) ,
0 0 0

/ ( / (g“(t))%(t)dt) b(@)da sO( / (g*(x))vwmdx)
0 T 0

hold for all functions g € .#. These results will be then used to find the desired estimates of the
optimal constant C(yy in the bilinear Hardy inequality (this is the matter of Section 4). However,
the description of the relation of the K-spaces to the other types of r.i. spaces, as well as the above
weighted inequalities, are of independent interest.

2=

Tl
I

2. AUXILIARY RESULTS

Here we present various, usually known propositions which will be useful further on. First we
may recall the following simple but useful principle. Let a,b € [-00, 00] and let f, g be nonnegative
continuous functions on (a,b), f nondecreasing and g nonincreasing. Then the derivatives f'(z),
g'(z) exist at a.e. x € (a,b). Denote f(a+) :=limy_q+ f(x), f(b-) :=limy_p- f(x), similarly for g.
Integration by parts then gives

b b
[ F@)g@) e+ flan)gar) = 10-)90-) - [ F@)g' () de,

with the convention “0.co := 0”7 taking effect if needed. Thus, if we, for instance, consider a := 0,
bi=oo, f=W g:=V % and o, B € (0,0), we get

(5) [W”‘_l(x)w(w)V_’B(x) dz =~ W(00)VP(00) + /W"‘(x)V‘ﬂ_l(x)v(:v)dm.
0 0

Analogous situations arise if we take f(z) := ( [ w)a, etc. However, if a < 1, there might appear
a certain problem related to the integrability of the involved functions (cf. [28, p. 93]). Observe
that if we take o € (0,1) in (5) and a function w € .#, which is not integrable near the origin,
then the equivalence in (5) fails, as the left-hand side is equal to zero while the right-hand side
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is infinite. Since we originally assumed that w was a weight, which is by definition integrable
near the origin, this problem, in fact, could not arise in (5). It may nevertheless do so in other
situations when the involved function is not a weight in this sense and which thus require slightly
more attention. We return to this issue in Proposition 2.3 below.

Anyway, combining or splitting weighted conditions using integration by parts in the described
way is a common trick (see e.g. [30, Lemma, p. 176]). If there is no potential danger as described
above (e.g. if the relevant exponents are grater than 1), we will use the technique throughout the
text without detailed comments, and we will refer to it simply as to integration by parts.

Another well-known principle, to which we refer as to the LP-duality, is expressed as follows. If
fey, pe(l,00) and v is a weight, then

1
oo P oo d
(/ P (z)v(z) dx) = sup Jo f(@)g(@) dz -
0 getls ([37 g7 ()07 (x) dz) "
We continue with other preliminary results.

Proposition 2.1. Let f,ge . #, and 0 < XA < oo. Then the identity
A-1

z . A x T
(% f([ f(t)dt) g(s)ds :)\f(x)f([ f(t)dt) g(s)ds
0 \s 0 s

holds for a.e. x >0 for which the integral on the left-hand side is finite. Analogously, the identity
oo A-1

s A 0 [ s
20 ( / f(t)dt) g(s)ds|=Af() [ ( / f(t)dt) 9(s)ds

T

holds for a.e. x >0 for which the integral on the left-hand side is finite.

Proof. Let us prove the first statement, the second one is analogous. Let

T xr )\
Zo :=suplx € [0,00]; f(ff(t)dt) g(s)ds < oo
0 s
Then, for any z € [0, x), Fubini theorem yields
. A-1

T A - = y
/ (f / “W) syas= [ [ A( / f(t)dt) f()dy | g(s) ds
0 0 e

S S

A-1

=Aff(y)f(fyf(t)dt) g(s)dsdy.
0 0 s

The expression on the second line is nondecreasing and continuous in x, therefore its derivative
A-1
with respect to z exists and is equal to Af(z) [, ([ f(t)dt)" g(s)ds at a.e. point z € (0,20). O

Proposition 2.2. Let 0<p<q< oo and let v,w be weights. Then it holds
1 S
(Jy ¢ (2)w(a) dz)° (f ) (f )
sup T ~sup w v )
@ is nofliijelgreasing (fo @p(x)v(x) dl’) P z>0 pd J

Proof. This statement is analogous to a similar statement for nonincreasing functions (see [7,

Theorem 3.1]). From there it can be also obtained directly by the change of variables z % in

the integrals. O

Proposition 2.3. Let 1<p<oo and 0<g<p<oco. Let v,w be weights. Then

(6) Cror 1= sup U™ (7 () tw(t) de) *
U e (o (f*@®)ro(t) dt)%

~ A(7) + A(g),
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where
(7) A(7) — /(m)p—qw(t)dt] f(m)p—qv(t)dt] + W%(OO)V_%(OO)
0
and
0 / oo e, , (1;—_1q)q g
ol (e
0 \t d

In particular, if C(g) < oo, then the function s — v(s)s?' VP (s) is integrable near the origin.
Furthermore, if ¢ > 1, or if ¢ <1 and the function s — v(s)sp'V’p,(s) is integrable near the
origin, then Ag) =~ Agy, where

(a=)p pq

N F P N s\ e
) Aw) = f(t Squ) (0 V7' (s) ds) 0

0

Proof. This assertion is stated in [7, Theorem 4.1(iii)] under the additional condition that g # 1.
However, it is true even for ¢ = 1, which may be checked using [11, Theorem 3.1(iv)] and [14,
Theorem 3.1].

Let us say more on the equivalence Ag) ~ Aw). If ¢ > 1 and the function u, defined by
u(s) = v(s)s? VP (s) for s > 0, is not integrable near the origin (a simple example of such
function u was given in [28, p. 93]), then both Ay and A(g) are infinite. However, if ¢ <1 and

u is not integrable near the origin, then Ay = co but Ay = 0, since the exponent %

negative. O

is

Proposition 2.3 will be later used e.g. in the proofs of Lemmas 3.2 and 3.3 and Theorem 4.3. In
the calculations within the proofs, we will need to use conditions in the form of A ). The reason
is that the function involving w appears only once in there and the resulting expression may be
understood as the (quasi-)norm in a certain space. Nevertheless, for the final conditions which we
state in the lemmas or theorems, we prefer the “safe” form in the style of A(g), i.e. avoiding the
potentially negative exponents. In this way, the finiteness of the condition automatically implies
the integrability of the “problematic” function near the origin.

The proposition below is a modification of [29, Proposition 2.7].

Proposition 2.4. Let ||-|x be a functional acting on A such that for all X >0 and all g,h € 4.
such that g < h a.e. it holds |g||x < |h|x and |[Ag|x < Mlglx. Let v be a weight. Then

-1
(10) sup I x (ess sup v(y))
ye(0,0)

et | fllas=(v)
Proof. Let f* € #. Then, by the properties of | - ||x, one has

X

-1
[/ x <esssup f*(z)esssup v(y) || esssup v(y))
x>0

ye(0,z) ye(0,0) ¥
-1
=esssup v(y)esssup f*(x) ||| esssup v(y)
y>0 ze(y,00) ye(0,0) X

= [ flla= (o)

-1
(ess sup v(y))
ye(0,0)
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Taking the supremum over f € .#, we get the inequality “<” in (10). Next, there exists g € #
-1
such that ¢g* = (ess SUD ye(0,0) v(y)) a.e. It is easy to observe that

-1
lgll A (v) = esssup v(x) (ess sup v(y)) =1.
x>0 ye(0,z)

; lg™| - — -1 s g g
Hence, it holds Hg\liﬁ = |g*||lx = H(esssupye(o’_)v(y)) HX and thus the “>” inequality in (10)

is satisfied. O

3. EMBEDDINGS

In this section we characterize certain embeddings A — J and A — K. These results will later
form a crucial step in the proof of the bilinear Hardy inequality.

At first, observe that the embedding AY(w) = K**(p,) is characterized easily by rephrasing
the problem as an embedding A < T'.

Proposition 3.1. Let v, ¥, w be weights and 0 < v, 3,7y < oo. Then
1A Ax ()= Koo (,) = €58 sup V(@) [ 1] A~ ()T (pxpa.con)-
x>
Proof. We have

(f;o(g**)a@)éw(x) (f;o(g**)aw)é

sup esssup T =esssup ¥ (x) sup ——F—

ged x>0 (f0°° (g*)'yw)¥ z>0 ge (fo‘x’ (g*)ww)?

= esssup V(@) 1 1d] Av ()~ T (oxpa.o0y) - O
x>

The embeddings A — T" have been fully characterized (see [7], [6]). Similarly it can be dealt
with the embedding AY(w) - J**°(p,1), where the problem reduces to a characterization the
boundedness of the dual Hardy operator on the cone of nonincreasing functions. Results regarding
the latter problem are also at our disposal, se e.g. [17].

Recall that if ¢, 9, w are weights, then ®(t) := fot 0, U(t):= fotz/;, Q(t) == fotw for ¢t > 0. In the
couple of lemmas below there will appear a function o, defined by

Yo
e
3

(11) o(x) = sup (1077 (1)) x>0,

te(0,x)

where w is a weight and «,7 € (0, 00) are exponents specified later. The function o is continuous
and nondecreasing on (0, 00 ), hence its derivative o’ exists at almost every point 2 > 0 and, further-

more, for all z > 0 it holds o(z) = [, 0/(t) dt + 6(0+), where ¢(0+) := limsup,_, (tQ_%(t))ﬁ .
This notation and properties of o are used in the lemmas without further comment.

The lemma below brings a characterization of the embedding AY(w) < J%?(p,4) for 0 < a <
B < oo and a <7y < oo.

Lemma 3.2. Let ¢, 1, w be weights. Denote

-

(5 U5 y9)* ey aa)”
(12) Cl2) = sup .

1
ge Ml (fO (gx-)'yw)'v
(i) Let 0<a<y<fB<oo and 1 <v. Then C(19) =~ A3y + A(1a), where

Jalni=d 1

z 5 x Sa [ \B
(13) Agig) = supQ_%(x) (f <I>§1/)) +sup(f @*Qawvw) (/ 1/))
z>0 z>0
0 0 x
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—a

o (7

- a(y-1)
=1

1 gl [([20) A2 [,
L0 0

+ igg) /( Sot(a)dt) 7JJ(S)dSI (0 S(Z,Y{J,J((:)) ds) .

xT

S

(i) Let 0<a<f<y<oo and1<vy. Then C(19) = A1) + A(ig), where

ol e]
Y8

(15) Ags) = fmﬁw(x)(f @5¢) _ <1>5(x)¢(x)dx]

EYE: e o\ 75 e
+ [(f @wzaQazww) ( )<I)v Fma () Qe W(x)w(x)(f w) j|
_0 0 x

and
[ B(y-a) %ﬁﬁ
of = 25 s 2 D) \aGoB), o, 25
(¢ s Tw e
(16) Aig):= f /( o( )dt) 90(&)( 1;27, (v) dy) ds (f¢) w(z)d
0 0 s 5 0 (y) x

B(w—l)

+ 0[0° j([sspt(j)dt)ad}(g)ds ('Ozgj)j(jtp;?dt)i/z(y)dy(f 0 ((:99)) ) dx

¥

(iii) Let0<a<y<f<oo andy<1. Let o be given by (11). Then Criay = Aisy + Airy, where

Yo

(17) Aqry = su%) |:f( wg)dt) _ &j) o(s) ds] (f 1/J)
v 0 s 5 x
FsupaE (2) [ [ ( 20 dt) U(s)d ]

x

(iv) Let 0<a<f<vy<1. Let o be given by (11). Then C(12) = A15) + A1s) + A19), where

o a1

B
and

(19) Ay = f f( <Pt(at) dt) P(s)ds
0 T

x

B(y-a)

=% B [ oo \ 725
‘p(t)dt) ‘p() (s)ds) (fw) b(z) de

x

x

S

8
-B

-8
B

x jf’( ap(t) dt)aw(s) ds % o565 (x) dx]
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Proof. We have

(20) C(12) = sup sup 1 — (fo h(x) fox(j**(t))o‘gi(t) dtdz)®
gett et (fooo hﬁ%w‘%ﬂ) e (fo (Q*)VW)7
(21) - swp ﬁ L (fo (g** (1) (1) [ h(x)dxdt)ﬁ
he (]Ooo hmwﬁ) Ba ge//l (fo (g )'Yw)
= Bo.

In step (20) we used duality of LP-spaces and (21) follows by Fubini theorem and changing the
order of the suprema.
To make the notation shorter, define the function u by

(22) u(s) = 8;5((5)), s> 0.

Now suppose that v > 1. Assume that u is integrable near the origin. Then by Proposition 2.3 it
holds

Yoo

(fooo (Jo @) [~ h(z) dz dt)v%a Q55 (s)w(s) ds) h

Bo = hselj}l) B o
+ (o nrwsn) ™
([ o(t) [ h(z) dzdt)™

+ sup - oo
(o ) 07 (e0)
2a-1) T
(fo (fé S"(t)ft h(z )d:z:dt)w (fg u(y)dy) u(s)ds)
+ sup =
hedl (/o - 7) B
=: Bl + BQ +Bg.

Consider now the case (i). It holds

o

([0(>o (fo h() dx)w%a Q‘%”(S)W(s) ds) o
(23) By~ sup —
e (fo B L’WJ 5) -
(fooo (/;7 h(z) dx)w%a 7w ()5 (s)w(s) ds)

+ sup o

he. B «
eM, (_[0 T 713)[3

(o) sl oo ()

T

Yo
a

(24)

12
=
[=he)
—_—
5@\
2
Q
4
&

where (23) follows by Fubini theorem and (24) by Hardy inequality (see [21, p. 3-4]). Next, Fubini
theorem and LP-duality yield

(25) (f Py ) —i(oo):s;ig(fm @Zd,)ﬁ(ga“w(oo))m.
0
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Therefore, we have

© TZ o \ B
BQ+B1:sup(QJ—xv(oo)+/Qa ww) (/CIM ) +sup([<1>vjaﬂazww) (/1/)) = A3y
x>0 x>0
0

€T €T

Notice that this equivalence in fact does not involve the function u at all, hence it holds for any
u € M#,. The assumption on v will be used only in the next part. By Fubini theorem, Bj is equal
to

o e

y(a=1)

foo(/ooh(w)/x@t(?dtdx)w(fsu(y)dy) o u(s)ds
0 s s

0

sup
he

B—a
0, B _a \ Ba
(jO hB-a /(/)(x—[:f )
This expression is, by the dual version of [24, Theorem 1.1], equivalent to
y(e —1)

szlig) f( g@(t) dt)(fu(y)dy) - u(s)ds (fw)
0 \% 0

1
B B -1

| [ ([ 5] won] (froar)

T 0

which is, in turn, equivalent to A4y by Proposition 2.3, since u is integrable at the origin. Finally,
observe that if u is not integrable at the origin, then necessarily both By = oo (see the proof sketch
of Proposition 2.3) and A(14) = co. On the other hand, if A4y < oo, then u is integrable at the
origin. Hence, C(12) = By < o0 holds if and only if A(;3)+A(14) < 00. Moreover, C(12y = A(13)+A(14),
all without any additional assumptions on the weight w.

In case (ii), using an appropriate version of Hardy inequality and LP-duality (cf. the analogous
situation in (23), (24) and (25)), we prove that B; + By ~ A(j5). To estimate Bz, we use [24,
Theorem 1.2]. Then we get
-8

r B(y-a)
ol y(=1) 15 e

A e® )7 [rew ) e Fo)
[ ([5ie) 6] (4] v

0

2

B3

k3
o\)g

B ~¥(8-1) P

+! [(T ‘ptg)dt b(s)ds (0 “gf((j))ds) 2w(@) 4,

Using the assumption of integrability at the origin of u, one may show then by integration by parts
that the above expression is equivalent to A(;6). While handling the second term in the sum, one
also needs to use Proposition 2.1. Finally, the additional assumption on u is removed in the same
way as in case (i).

Now we assume 0 <y < 1. From [6, Theorem 3.1] it follows that By = By + B + By, where

/ sup( ) / (1) h(z)dzdt @fh(x)dxds
o O<tss Vw(t) 2 te ] s« J
By = sup

B-
B
he (fo 67 ) B

Jox
ya
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Furthermore,
o 15
[/0“’ a'(s) ([oo £l =, x)dxdt)“‘ ds] ’
(26) By ~ sup =
hed's (fo hﬁ oulpoc B) ¢
1
o (O+)( - ‘ps((f) [oo h(x) dxds)a
+ sup o
he.ds L T
(Jo~ h7ew=7)
» () 251
[/O o'(s) ([ h(w) [ 2 dtda) T ds]
(27) = sup =

he ( fo B ) 3

o (04) (o~ h(x) Jy %";a) ds da)

m‘

Q=

+ sup ; =
he A . (fooo hfi-iad)%—ﬁ) Ba
=: B5 + BG.

For (26) one uses integration by parts and (27) follows by Fubini theorem. Next, by LP-duality,
we get

(28) Bs =05 (0+) f( ‘p(s )a b(z) de

Consider now the case (iii). From the dual version of [24, Theorem 1.1] it follows

e % oo % x s o s £
ol fe® N o N o) .\
By ~ bmlig O/( i dt) a'(s)ds ([ w) + Zlig(ofa) f (m o dt) P(s)ds

S x T

1
B

Using this characterization, the expression of Bg from (28) and integrating by parts, one obtains
Bs + B ~ A(17). Earlier (when considering >y > 1) we proved that By + Ba ~ A(3). The same
is true here, as the argument is correct even for 8 > v with 0 < v < 1. Hence, it follows that
Ca2y = By + By + Bs + Bg ~ A(13) + A(17) and the proof of this part is complete.

We proceed with (iv). Estimating By and By is done in the same way as in (ii). It remains to
show that Bs + Bg ~ A(13) + A(19)- By the dual version of [24, Theorem 1.2], one has

_ -8
By—a) B

o B j"( e dt)wgf<s)ds)“(” () e
0 0 s T

-8

(7 e

g ¥-B = m
((f) dt) P(s)ds (/ 0) o'(x)dx
0 x T 0

=: B7 + BS.

Now, integration by parts provides

N
[

_B_ 5

B
o/ a-B) [ ®© \7F
(30) Aqs) = Br +07 (0+) f ( f ”tf) dt) ( [ w) () de
0 0 x

|
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Next, it holds

5 Y8 e

sup foo(fmw)ww(t)dt (fw) ~ 1,

thus, by Proposition 2.2, we get

a(v=8) a
B B B

]o( x@;j)dt)m(fw)ww(x)dx S fw(fx i(,f) ds)aw(w)dw
0 0 0

x 0

Applying this in (30) (and considering (28)) we obtain
(31) Br $ A1s) S Br + Bg.

Furthermore, from Proposition 2.1 and integration by parts it follows that Bg + Bg ~ A(19). Com-
bining this estimate with (31) and (29), we finally get Bs + Bg ~ Bg + By + Bg ~ A(18) + A(19), which
we needed to prove. O

The next lemma characterizes the embedding A7 (w) < K*#(p,9) for 0 < a < B < 0o and
a <7y < oo.

Lemma 3.3. Let ¢, 9, w be weights. Denote
B oo *%\ o g %
(/5 U )e) ™ wiw) )
(32) Cl32) = sup )

1
ge (fO (gx—)'yw)’y
(i) Let 0<a<y<f<oo and 1 <. Then Csg) =~ Asz) + Aza) + A(ss), where

oo S ,y_ia % x T g %
(33) A(sz) =sup f (f(p) Q7 (s)w(s) ds \I/%(a:)JrsupQ*%(x) / (fgo) P(s)ds|
x>0 x>0
x T 0 s
oo =) e s ’ al-l) %
o) e [ ry el )T 1
34 Aigg)i=s f dt / d d B
(34) (34) 1= SUD ( o ) w \J o y s (z)
and
o/ o g I 3
t)y . \° 7 w(s) K
35 Ags) =5 f f £ g d ds| .
(35) (35) = SUD ( o P(s)ds ) @) s
(ii) Let 0<a<f<y<oo and1<vy. Then C(zz) = Aze) + A(sry + A(ss), where
[ B(y=—a) ’Zy;[fﬁ
oo oo s ,y,ia a(v=-pB)
- _B_
(36) Aze) = f f ([ tp) Qo= (s)w(s)ds) U8 (z)(z)dz
0 T T
] pa)
[ oo x T s % x T foa "
ayan ([ so) b(s)ds /([ so) U(s)ds o) Q75 (2)da |
0 0 s 0 s
B(y-a) =7
N a(r)  \aGoB e

60w [ ( %"(”dt)_ “”S(j)( 1;2“’((;’))@) Cas| @) e
0 T s 0
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and

5 y=8
e 8 By-1) B

(38) Ags) = f f(f ‘pt(of)dt) b(s)ds (f (i(aﬂdt) ¢(x)( 5;;((88)) ds) e
0 x s x 0

(iii) Let0<a<y<f<oo andy<1. Let o be given by (11). Then C(zy = A(zs) + A(39) + Ara0),

where
w0\ T
(39) Asg) = sug f( ('Ot&)dt) %a(s)ds \II%(Q:)
xr>
and
oo ) £ %
40 A(40) = sup o5 (z 40) dt] (s)ds
(40)
x>0 pd 2 te

(iv) Let 0<a<f<vy<1. Let o be given by (11). Then C(3g) = A(zg) + A(z2) + A(az), where

-8
Bly-a) 5

cof oo/ oo ,\,C_X a(y-B)
(41) Ay = /(/( ('Ot(j) dt) 905( )U(S)ds) \I/w%(a:)z/)(m)dx

0

x

and

1=y

(42) Asny = [ / ( ‘Pt((f)dt) b(s)ds ( f [eW) 4 ) W(2) oD () da
0 s

X

Proof. The proof is to a great extent analogous to that of Lemma 3.2 but there are some additional
steps which we show below.
Let u be defined by (22). If 1 >+, LP-duality and Proposition 2.3 gives

c ) 1 ) (= (5™ () p(0) J§ ha) dardt)
12) = Su 5= Su T
T ey (5 ()
(/5™ (0 o ey dae) ™ @75 )ty ds)
~ sup

B=
B

he ([0 BL a ) o
(/5 e(®) fy h(w)dzdt)”

" Slj}f) ] B2
o, 2 _a a 1
" (fyn ) T Q3 (o)
o th(t) ’Y = Lp( 9 a’(y’yul) 77(;1
o (/e fo h(z) dx dt) ]o h(t)dt (fo u(y) dy) ds
(43) + sup — .

he . (fo hB aw(k )/m
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If u is integrable near the origin, then the term (43) is equivalent to

T 2(a-1) ETy
(5 (82 Jonw) dwde) ™ (i uwydy) ™ () ds
hSELj/E)Jr 0o, B _a %
(fo hﬁ’awa’ﬁ)

(i) Suppose that u is integrable near the origin. As in Lemma 3.2(i), using Hardy inequality,
[24, Theorem 1.1] and the dual version of it one shows that C(39) ~ A(33) + B1 + A(35), where

y(a-1) T

Flre® N7 e Y7 7 wis) 3
B, = f dt d ds|  UE(2).
P ( i ) (ofww>y s | VT

S

Integration by parts gives By + By ~ A4y with
1

Fo®) N Fvow Y 2
Bs:=s dt d VB ().
’ ﬁg(w te ) (0 7 (y) )

Using the proof idea of [13, Lemma 2.2] (a similar problem was also treated in [19, Proposition
3.2]), one checks that By $ By + A(ss). This implies that By + A(s5) ~ A(gs) + A(s5), hence C(3g) =
A(zz) + Aay + A(ssy. Finally, we make the following observation, same as in Lemma 3.2. If v is
not integrable near the origin, then C3z) = oo (see (43)) and A(s5) = co. Hence, the equivalence
Cl32) ~ A(zz) + B1 + A(35) holds even without additional assumptions on .

(ii) Analogously to (i) we assume that w is integrable near the origin and get C(39) ~ A(s6) +
B3 + A(sg), where

N ~(a1) e =
7 oogp(t) U Sy’Y'w(y) B Svlw(s) B8
Bs = f f dt d d W ~-5 d
K ( to ) (Oﬂww 0 IO Rl B

By integration by parts it follows that Bs + By ~ A(37), where

=8
B(x-1) ~B

770 YOO frew Ny

Following the idea of [14, Theorem 3.1] (cf. [19, Proposition 3.3]) one shows that By § Bs + Asg).
Then Bs + A(zg) = Azr) + Asgy and thus Csa) = A(se) + A(zr) + A(g)- The final dropping of the
integrability assumption on w is performed in the same way as in (i).

In the remaining part of the proof we will assume that + € (0, 1], which is the case in (iii) and

(iv).

(iii) Using the same ideas as in Lemma 3.2(iii), one shows that C(s) = A(33) + Bs + A(40), where

Bs :=sup [(
x>0 s

Integration by parts yields

Yoo

Yo

tg) dt)w_aa'(s)ds 7 ().

[}

S

Fo) \° a2
B5+sup( Sot(a)dt) UWT(x)\II%(x):A(gg),

x>0

hence Bjs $ A(3gy. Moreover, it also holds

oo
sup
x>0
P

B\ s
t(a) dt) CTVWT(I')\II% (z) S Bs + Awo),
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which is proved by using the same argument from [13] as in (i). Combining the obtained relations,
we conclude that C(3g) = A(33) + A39) + A(a0)-
(iv) In an analogy to Lemma 3.2(iv) it is proved that C(sg) = A(36) + Be + A(42), where

-8
B(y—a) B

cof oo 7_% a(v-8)
Bg = f f( <p(t) dt) o'(s)ds ‘Ilﬁ(x)w(m) dz
0 s

x

For any x > 0, integration by parts gives

e A i

/oo( wsot(j) dt)w 905(8) o(s) ds = f(/w@t(j) dt)w;'(s)dﬁ(/w@s((f) ds)wo—(x).

x x S

Hence, one gets

5
- VB B

oo a(v=B)
(y=c)
Ay =Bo+| [ ( 2s) ) 0 (2) W7 () (x) da
| 0

xT

Sa

14

&

+
0\8

W a(v-8)
[£(s) ds) (/ a') \IJ“/‘%B(x)ib(a:)dx
T 0

T
ro 0| [ ( g”("S)ds) U5 () () da

s
| 0

=: BG +B7+Bs.

Using the same argument as in (ii) (based on [14]), we can show that B7 S Bg + A(42). Next, since
©(s)

s

the function s+~ is nonincreasing, we obtain

a(w B)

wlp

foo(]fi(j) ds)a&_ﬁ)\ﬂfﬁ(x)%/f(z)dx f (f(p(s) dS) ¥(x)d
o \z

by using the characterization of the embedding A = A [7, Theorem 3.1]. Thus, since

1
B

70| [ ( [%‘fds) v()dr| S Ao,

0

we get the inequality Bg § A(42). Summarizing, we obtained A41) + A42) = Bs + A(42), hence

~

C32) = Aze) + A@a1) + A2y and the proof is completed. U

Although « < v was assumed in the above statements, the proof method is not limited to this
case. In fact, only the assumption a < ( is crucial for the duality approach. We may hence

consider the case 0 <y < a < 8 < 0o and characterize the embedding A”(w) = J*?(y,1)) using the
same technique as before. The proof becomes actually considerably simpler in this case.

Proposition 3.4. Let v, ¢, w be weights.
(i) Let 1<y<a<f<oo. Then Cray =~ Augy + Awus), where

e A = sup(/¢2¢) Q_i(z)Jrsgg(fU)) 3 ()27 (x)
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and

(45) A(ss) ) = sup f(f i(j)ds) Y(t)dt ( tgpw((f)) dt)
0

x x

1
3

(ii) Let 0<y <1 andy<a<B<oo. Then Crig) = Ay + Aus), where
s 7

(46) Aae) = sub [( Qp(s ds) Y(tydt| 207 ().

Proof. Just as in (20) and (21), one has

Caz = sup L W m)e® ) h(:c)olacdt)é -

(e ) (s y)’

Consider the case (i). Then

1

Q=

(¢ h(s)dsdt)~ Q™ ~

(47) B~ hsg}[) sug (jo a )jf (s)ds )ﬁ a 7 ()

e M, T> (-[0 hﬁaqﬁaﬂ)ﬁa

. (/= = = sy dsar)” (f7 ' w(n@ () dt)”
sup su
he,/}zr w>g (fo gi )[ﬁ:
“he)T = )¢ o3 (z)0-t

(48) ~ sup sup s 1®) (i)u +sup sup (") (@) 57533)

x>0 he (f hﬁ awa ﬁ) « x>0 he (foo h%w%ﬁ)w
(/.= ns) [ €L drds ) (J5 7wty (t)dt)%
+sup sup

x>0 hedy (f hﬁ awa ﬁ) 5&
(49) = Agaa) + Aas)-

Step (47) follows by [7, Theorem 4.1(i)], step (48) by Fubini theorem and changing the order of
the suprema, and (49) is due to LP-duality.
Case (ii) is proved analogously, using [7, Theorem 4.1(ii)] to estimate B. O

Proving an analogous proposition concerning the embedding A (w) = K*?(p,4), 0 <y < a <
B < o0, is left to an interested reader.

4. BILINEAR HARDY INEQUALITY

At this point we have all the preliminary results needed to characterize the validity of the
Hardy-type inequality (4) or, in other words, to provide equivalent estimates on C(;y. The form
of the results depends on the values of the exponents p;, po and ¢ and their mutual relation. In
fact, in this three-parameter setting, 23 different cases are possible and need separate treatment.
For a better orientation, we present all the possible settings in the table below with references to
the theorem in which each particular case is presented. Note that in some cases the roles of pq
and ps may be switched in the corresponding theorem, compared with the entry in the table.
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Configuration of the exponents Theorem
q < o0 4.2(i)
0<p17p2£1 q:OO 44(1)
q < oo 4.1(i1)
0<p1£1<p2 - o P2 < 00 44(11)
0<p1,p2<q 17 P2 = o 1.4(i1)
g < oo 4.1(i)
1, P2 < 00 4.4(iv)
1< pq,
P1,p2 q =00 p1 < p2 =00 4.4(v)
P1 =pP2 =0 44(V1)
P <1 4.2(iii)
O<pr <1 T<ps<oo 12(1)
0<p1<q<ps Py = 00 4.5(ii)
p2 < 00 A1(1)
L<p Do = 00 4.5(1)
1/g>1/p1 +1/ps 4.3(v)
0<p1,p2<1 ;
b1 b2 1/q> 1/p1 +1/ps 4.3(vi)
coo | Maz1/py+1/ps | 4.3(iii)
O<pe<l<pg h 1/g>1/p1+1/pa | 4.3(iv)
0<q<p1,p2 p1 =0 4.5(iv)
g>1/pr+1/ps | 4.3(i)
) < e
1< Pr,p2 <00 1/g>1/p1 +1/pe | 4.3(ii)
P1.p2 P1 < pa = 00 4.5(iii)
P1=p2 =00 4.5(v)

Let us now present and prove the results. We start with the configurations in which only
the “classical” spaces appear, i.e. those where all the exponents are finite. First such case is
1<pp £g<oo.

Theorem 4.1. Let vi,ve, w be weights.

(i) Let 1 <p1,p2<q. Then Cpy = Azo) + Aém) A?E)ll) + A(s2), where

(50) Agsoy s=sup W o (O, 7 (V™ (1)
(51) AE’;I) = sup ( w(j) ds) V;E(x) /Lj(s) ds
O<t<z<oo 7 S 3 V ()
and

w(S) splm(S) i t 5p2U2(5) i
%mﬁ%& o7 )(fvmg )(fvw@ )'

0 0

(ii) Let 0<py<1<py<q. Then Cyy = Aoy + A(52) A?;l + A(s3), where

(52) N@“S@(fw@ )< @ )

O<t<z<oo

and

rw(s)
53 A = f
(53) (53) = SUD ( J "

1
q t p/ p’l 2
ds) ([ ‘Slgfl((‘s))ds) 1V, 7 (1).
Vit(s

0
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(iii) Let 1 <p; £ q<pg<oo. Define rg:= ’;2qu. Then C(1y = Asa) + A(ss) + Ase), where
1
1 pd - 2
(54) Asayi= sug Vi ™ () / P2 (t)w(t)V " (t) dt) ,
x>
0
1 [ T x % t p' ;Tz %
— 2
(55) Assy=supV; ™ (x) f(f w(;) ds) w(qt) ([UQ(j)S ds) dt
x>0 [ 0 1 S t 0 ‘/2 2(8)
and
1 &
P P1 t _r2
656 Agy=sp [ 22 [ o) " e v (1) dt
x>0 d Vpl (S) t4
1
T ’ i/ oo oo 2 t ’ Ti? T2
P Py P2 p Ph
+ sup f Mds / w(;) ds wgt) f U2(f)8 - ds| dt
=0\ VI (s) 2\ 7 AL ()
Proof. Since 1 < p; < q< oo, by [7, Theorem 4.1(i)], we get
1
T . )
Cayx s sw| [ (o)) Vi @)lglaba)
geAP2 (vy) >0 0
- 1 a
(V)4 o Z . P
+ sup sup / Mds f wds 19135 (o
geAP2 (vp) «>0 \ 54 i lel (3)
L v
=supV; " () sup f (") | g3 (o
>0 geAP2 (vs)
x ’ ir (o) 1
P Py *% q 1
+ sup f wds sup f Mds 1913Es (o)
x>0 0 ‘/1131 (3) geAP2 (vg) pt s
L
= Sligvi " (‘/E)HIdHA"72 (v2)—=T(wxr0,2])
T ’ o
sP1o1(s) 1
+sup f ,7d8 HIdHAP vg)—>T9(s—>w(s)s™4 s))*
>0 (0 VFi(s) ) 2 (v2) > T4 (s0w(8)5™ X[z, 00) (5))
=: Bl + BQ.
Now we separate the different cases. In (i), [7, Theorem 4.1(i)] yields By + By =~ A5 + A(51
A(51) + A(s2). In (ii), [7, Theorem 4.1(ii)] gives that By ~ Asg) + A(52) and By ~ A(sl) + As)-
Finally, in (iii), Proposition 2.3 yields By + By = A(sy) + A(s5) + A(s6)- O
Now we consider the case 0 <p; <1, p; <q.
Theorem 4.2. Let v1,vq,w be weights.
(i) Let 0<pi,p2<1 and 0<py,p2 <q. Then Cy = Agso) + A (52) A?;Q) A1527) +A?57), where

i w(s)

(57) 57 =

sup
O<z<t<oo

e

ds) tV " (t)zV; ] ().
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(11) Let 0<p; <1<py<oo and p1 <q<p2. Then C(l) ~ A(54) + A(55) + A(58) + A(59), where

. 1
r2 >y

oo t P2
-L w(s w(t), -2
(58) Agss) = supaV, " () f ( f S(q) ds) t(q)v2 72 (1) dt

x

and

T2 2
(o]

4 oo Pa t p12 ph
(59) A(sgy i=supaV; ** () f f w(25) ds wgt) f i 1?2(3) ds] dt
>0 S s s V)2 (s)

T 0

(iii) Let 0<py <q<p2<1. Then Cry = Asa) + Ass) + Aoy, where

r2

-4 O w(s) ” w(t) s
(60) Aoy =supV; ™ (x) [ f . ds . SUp — dt
x>0 i 7 § 17 se(0t) Vv, (s)

L
T2

r2
_ L = 7 P2 t T2
+supzV; ™ (x) f(/ U;(Qz) ds) fuzgq) sup fz dt
T t

x>0 s€(0,t) VQE(S)

Proof. Similarly as in Theorem 4.1, by [7, Theorem 4.1(ii)] (since 0 < p; < 1, p; < ¢ < 00) we obtain

geAP2 (vy) >0

1
xr q _L
Coy= sup sup( / (g**)qw) V, 7 (@) g ks (o)
0

1
£ (g**(s)w(s to-x _
_ sup( / (Q“)Ud) oV, 7 () ol R o

geAP2 (UZ) x>0

1
) sug Vi " (@) [ d] arz (03) - Ta (wxgo, o)
x>

_ L
+ b]‘ilg .13‘/1 " ('T) HIdHAP2(vz)%Fq(s»—»w(s)s‘qx[zyw)(5))'

=: Bl + BQ.

In (i), by [7, Theorem 4.1(ii)], we have By + By ~ A(50) + Aéé) + A?glz) + Azﬁ) + A?élﬂ. In (ii) it is
By + By = A(sg) + A(ss) + Assy + A(s9) by Proposition 2.3 and finally in (iii) one gets By + By =

Asay + A(ss) + A(goy by [6, Theorem 3.1]. 0

We continue with the case 0 < g < p1,ps < 0. This case is usually the most complicated one,
especially if p1,ps < 1. Recall that if g€ (0,1) U (1,00), then ¢’ := q%l, while if g = 1, then ¢’ := co.

Theorem 4.3. Let v1, ve, w be weights. Let 0 < q < p1,ps < 00. Define r; = p?i_qq, i€{l1,2}, and
R = __ PiP2q )
P1p2—P19-pP2q
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(i) Let 1< py,po and % < p% + p%. Then C(1y = A )2 +A?611) +Az622) +A2 ! +A1 2 +A(26§)

A1 2 )+ A?M), where

(61) Ady=sw| [ Wp?wvi‘“) vV, " (@),

x>0

(62) A

el [ [0 ) o] (] )

(63) AEGJ'S) = sup O/( wt(qt) dt) 1105) (ft"’/':z((t)) dt) ds Vj_ﬁ(:v)

and

| Few Yoo Fruo, 0y
(64) A(64)—§cgg xf( = dt) = (fv 0 ) ds ([ 7 ) .

.. 1.1 .1 1,2 2,1 1,2 2,1 1,2 2,1
(ii) Let 1 < py,p2 and Rt Then Cqy = Ajfey + A(65) + A(66) + A(66) + A(67 + A(G7 ,

. \‘
K
e

(65)
where
N 1
_ i 1
ol R R 2 —
63 Agy=| [{ [y, ) W (@w(@)V, 7 @)V, () de|
0
i v i
) oo oo Kl wi(t q oy J
(66) Al = f f(f t(q)dt) V7 (s);(s) ds
0 x T
T pi(r;-1) %
Pi T z p,'L- . P~y
x w(x)f fw(t) dt) V; @ (s)vi(s)ds fs ?Z(S) ds dz| ,
x4 t4 5 th(S)
S f( w(q)dt) w(qs)( ypvz(y) y) o
0 \0 \s t 5 o Vit (v)
@ F Fu® 7w [ frtew Y !
x L2 f( e dt) e ( s dy) dsV”f(x)dx
r 0 s t 5 sz(y)
and
FF(Few N e [ rew, V)
i w(t “w(s yPiv; (y i
(67) A(677) _/ f( +2q ) 529 ( D’ ) ds
0 x s 0 V (y)
ri(pj—1) %

3

i

( w(t) , ) w(x)( ””ypégxy)dy)‘”
: SRR

Pj=T

(/ mds) dz

0
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(iii) Let pa <1< pq and%gp%+pi2. Then Cqy = A 2 +A21 +A12 +A63)+A(68), where

(61)

To -

x xT Do r 2
t _r2 L
6 Ay =so| [{ [ 2D ) ) wp )| v @)
x>0 i J t ST 4e(0,s)
oo s ¢ q oy I _1
+ sup f w( )dt) Vi *(s)vi(s)ds| aV, " (z)
x>0 4
" 2 P} Py
+sup / wg )dt wis) sup y"2V, ”Q(y) ds [S Ul(s)
z>0 [ 4\ 4 14 521 4e(0,5) 0 Vpl(s)
[ oo oo L l ] %
t P1 Pl —-L
+sup f w(t) dt Fw(s) y vl(y) dy dS zV, " ().
x>0 124 52 Vpl (y)

(iv) Let pp <1<p; and % > p% + p%. Then C(1y = Aé625) + A?ﬁé) + Aééj + A9, where

T2

(69) Aeo) = fm(f (fx w(t) dt) j) S(l(l)I))yrzvz_;g(y)ds)p1
0 \0 yellys

S

T2-P2 %
w(aj f w(t) w(s) sup y"QVQ_E(y) dsvlﬁ(x) da
5T ye(0.s)

[/ (f (/' w(t) dt) Vl_q(S)m(s)ds)
U}(m f (f w(t) dt) d q (8)’111(8) ds S(lép)yR‘/”l p2 (y)
* ¢ ye(0,x
oo (e} by w(t) 2 'LU(S) Ty P1
+ f / — 2 dt —~ sup ymv pg(y) ds
0 (:p (S t2q ) 529 ye(0.5) 2
r ” TR b
N r g P1-T2
X f wgt) dt ’UJ(Qx) sup yrzv (y) / wds dx
z t=a T2 ye(0,2) J lel(s)

r
™ 1 1

s e s P1 v, *, p2-T1
() (] o)
0 T s 5 0 Vl(y)

x® p1 pa Pl T 1
« fw(S) ds w(sc) f S UI(S) ds sup yRVQ”’”(y)dx
@) )

ye(0,z)

2=
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(v) Let p1,p2 <1 and % < p% + p%, Then C(yy = A2621) + A2 ! )+ Al%) + A??oy where

(70) [

. 1
Fo) ) w(s) - —
- Cla)] X SV () ds| VT (@),
S VR e

(71)

p 7w P w(s N
A(71) —supr 7(:)3) f( t(‘l)d) ()

V. pJ ( )ds
and
n 1
y - OPARREO) ’
72 AV =sup 2V, P (x [ w( dt] —=* su TJV 5
(72) (r2) = sup 2V, ™ () J (s 20 21 S vV (y)
. 1.1 .1 1,2 2,1 1,2 2,1 1,2 2,1
(vi) Let p1,p2 <1 and R Then C(yy = A (65) A(65) A(73) A(73 A (74) A(74)
1,2 2,1
A(75) + A(75), where

Pl (7 em Y )
73 Al e f f fw( at st ’“Jv o
(73) | ) T s S Y (y)

e iy %
p t J T3
X w(z) f w )dt w(s) sup y”V " (y) dsV i (:I:)dx ,
x4 4 J td ST ye(0,s)
v —
T T e® ) w5 ]
(14) Al = f f( T dt) )y (5)as
0 T T
o/ s L G
t J
x w(qx) [ w(q) dt w(:) V. 5 (s) ds sup y"V/7 pl( )dz
z? S\ 1 s ye(0,2)
and

y t) |\ w(s) =
75 A= f [ w@t) 4| 2l sup y"7V, " (y
( ) (75) J J J t2q 524 4e(0.5) ( )

J

u;g? dt)pj w(x) o 4

S sup YV, P (y) sup "V (t) da
T ye(0,x) te(0,x)

==

. ( i
Proof. Consider first the case 1 < p;. Assume that the function w; defined by

up () ::fxspllvl(s)ds

o , x>0,
0 Vll(s)
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is integrable near the origin. Then, applying Proposition 2.3, we obtain

1

(/000 (/ox(g**)qw)% Vl_% (z)v1(x) d;v) b

(76) Cay = sup - T
ge M ([O (g*)p2v2)172
" 0 &
oo o **(s))w(s a x sPly zP1lv (z
(jO (fx e (8?1) ( )ds) ! (/O pll(()) ds ) Pll((w)) da )
+ sup -+
geH (fooo(gx—)pQ,UQ):lQ
1 _1
©(**)4) 7V, 1 (o0
+sup(f0 (9"") ) 1¢( )
ge M (fooo(g*)pz,UZ)PQ
=: Bl + BQ + Bg.
(i) We use Lemma 3.2(i) with the setting a := q, 8 :=r1, 7 := p2, @ == w, ¥(t) = (t)vl(t)

w = vy, we obtain the characterization of B;, and Proposition 2.3 to get the characterlzatlon of
B3. We obtain the equivalence

2,1 2,1
B1 +Bg :B4+A(62 A (63)

where
xrl_g%,L QCTQ_Q%,L
By := Sup(/ Way, ¢ vl) V, 72 (x) +sup(f Wav, * vg) Vi P ().
x>0 0 x>0 5
Integration by parts yields
1
Al +A§61)_B4+supw (x)Vy 1(:5)‘/2_5(:17).

Moreover, the following series of inequalities holds true.

T (fom(g*(t))”W;i(t)w(t)Vl_:é(t)dt)Tl
sup WE(x)Vl L (1‘)‘/'2 P2 (;U) ~ sup

0 (g ()Pl dr)

1

(fO (g7 ()W (Bw(t)V; ,77 (t)dt)

< sup

ge.tt (= (g ()P2ua(t) dt) =
(/o"" (e )™ (g ), ™ (0 dt) h
< sup
get (= (g (1)) Pua(t) dt) 2
~ B1 + Bg.

The first step is due to the characterization of A = A [7, Theorem 3.1(ii)] and the last equivalence
follows by integration by parts. Notice that the resulting relation

(77) supW (z)V, "o (z)V, ” (z) $ By + B3

x>0
is established also if we consider the settings of cases (iii) and (v), i.e. if p; <1 or ps <1 and the
other relations between the parameters remain unchanged. To continue, combining the obtained
estimates we get

1,2 2,1 2,1 2,1
(78) Bi+Bs = Ay + Ay + Aga) + Ay
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To deal with Bz, we use Lemma 3.3(i), setting a := ¢, 8 = r1, 7 = p2, (1) = “}t(qt), P(t) =

/ - _
(fot sP101(s)V; P (s) ds) “ Py (£)V] P (t), w = va. We obtain

Elr T2 o ot R
BQ—A 2 +A(Gi)+sup / fwdt [t ?1(” at] 2 Ul( ) ds| V, " (x)
=0l \5 0 V() VP (s)

e 7~ oow(t)d% P (1) }sp’lvl(s)dsrl( tp2v2(t) )
b f ( = t) (f v t) vii(s) / 0

We now handle the third term in the sum by integration by parts and the fourth one in the same

way as an analogous term in the proof of Lemma 3.3(i), concluding that By ~ Az622) +A2623) +A%63)

A?ﬁi) Together we get

(79) Cay = Aggry + Algry *+ Atdny + Ay + Adany *+ Alisy *+ Ay + Aloayy
still assuming the integrability of u; near the origin. Now we perform the usual final argument
to drop the assumption on u;. If u; is not integrable near the origin, then both Aé622) = oo and
Bj = oo, the latter by Proposition 2.3. Since By = oo, it also holds C(;) = co. Then the both sides
of (79) are infinite, hence the equivalence holds trivially. The same argument may be repeated in
cases (ii)—(iv), only replacing Aéé) with another appropriate condition, when needed.

(ii) Here we use Lemmas 3.2(ii) and 3.3(ii) again, with the same respective settings of parameters
as in the case (i), to estimate By and By. Besides that, we also make use of Proposition 2.3 to
estimate Bs. For B; and B3 we so obtain

,2 2,1
B1 + Bg ~ A (65) A(65)

2,1
A(66)'
In order to get this equivalence, we in fact also need to prove the inequality

1
1 b

z p r _ri\P2m1 r _ri r1
f (f Wit wV, ) Wi (2)w(z)V, 7 (2)Vy 7 (¢)de | < B+ B
0 0

It is done by reusing the argument used to establish (77) (notice the supremal condition from (77)
being replaced by an integral condition this time, this is due to the different setting of parameters).
The above inequality is also true in case (iv). Now we continue with Bs. We get

oo oo s w(t) % o
By~ / f ([ tth) V, © (s)va(s)ds
0 T T
1
ra(p1-1) R

P P1-T2
) ( ano) ds) L
0

T2
pP1-7T2

r2

) Tf(! wt(qt) dt) ‘é%(y)vz(y)dy

VPi(s)

r
L L
a’

(7] m@a) (frinm,,) wine,
|/ f(s ) ( V() y) VP (s)

y w(m) w(t) Y"1 (y) sy (s) ds =2 2)de
f( ) ( Vi) y) Vi

+B5+B67
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where

==

P1

pl(r2 1)

FlF( Feo, )”zqu<s> ( ) | ) s pl72( I5p3“1<5>d5) Tt (@)
J~~/(s o e ) @ vaflw> Vi (a)

T

T2 2

and

1

T(F(F0) (] 0]
0 s t 0 Vit(w) Vit(s)

x

(/%

), )( w?@>ﬁqw?@%/¢?@>) .
) Vi) Vi) \3 %(s)

Using integration by parts together with Propomtlon 2.1, one shows that the first two terms in
B, are equivalent to Aé(’%), hence By ~ A2 + By + Bg. Similarly we prove that Bs =~ A?élﬂ. Next,

‘%
U=

(66)
again by integration by parts we get

- T1P2 - ’(7‘11)2 5 pz(nfl) %
w(t) a(p2—-T1 ypllUl(y) py(p2—71 5p2'U2(S) p2-T1
(67)_ f( 24 ) /T Y fT 5 dw| 5 Bs+Bs,
hence Bs + Bg ~ A2 + A% and therefore also Bs ~ A 2 oAy A2 1 . Altogether, it holds
67) T “67) 66) T 167 g
,2 2,1 1,2 2,1 1,2 2,1
C( 1) = Bi + By + Bg ~ A (65) A(65) A( A(GG) A(G A(67)

Finally, the assumption of integrability of u; is removed in a similar way as in (i).
(iii) Using Lemmas 3.2(iii) and 3.3(iii) with the same setting as in (i) and then repeating the
argument from (i) to show (78), we get

C(l "’Bl+B2+B3—A12

2,1 1,2 1,2
©1) A(6 + A+ A

(62) 63+ Ags)-

Then we prove that this statement holds also if u; is not integrable near the origin, by imitating
the argument from (i).

(iv) Here we use Lemmas 3.2(iv) and 3.3(iv) to get the estimate of By + By + Bs. Further
adjustments of the conditions are made using the corresponding arguments from (ii). We omit the
details.

Now suppose that p; <1, which is the case in (v) and (vi). For i € {1,2} denote

oi(x) = sup y"V; " (y), x>0.

O<y<z
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Using [6, Theorem 3.1] and integration by parts, we obtain

1

(17 (1 e ) et )

(80) C(l) ~ By + Bg + sup - =N
ge (fO (g*)pz,UQ)Pz
o X
(fo (o @ )9 ,(x)dx)
~ By + B3+ sup N
ge M (jom(g*)mvz)m
1 (O+) (f (9”(923‘111)(95) dz )
+ Sup T
ge M (fo‘x’(g*)pz,u2)p2

=: Bl +Bg+B7+Bg.
71
(v) We use Lemma 3.2(iii), setting «:=q, S :=71, 7:=pa, p = w, ¢ := V 7 v1, w = vy, to obtain
estimates of By; Lemma 3.3(iii), setting « := q, 8 = r1, v = pa, @(t) := wt(qt), = 01, W= v, to
estimate Br; and [6, Theorem 3.1] to estimate B3 and Bs. Using the obtained expressions in (80)
and applying also the argument used in (i) to show (77), we get

1,2 2,1 2,1 1,2
(81) C( 1) = A(Gl) +A(61) +BQ+BIO+BII +312 +Blg+A(70) -i-14(72)7

where

A h
dt] Vi *(s)vi(s)ds|

By : —Supc722(x) foo(fw

x

Buo = o1 (0+) f(f w(t) dt) “’JE”””) V% () de| |
0 0

ta q

1
T T oo o
By :=sup f f w(t) dt|] V, ? (s)va(s)ds|
x>0 t4

- 1 -

xT xT
Bio == sup /(
x>0 0

S

5
-Q‘N

1
1

w(t) dt) (s)ds| Vo (a),

™

= sup 022 (z) f ( uzgz) dt) o1(s)ds

S

1
1

By

w

By integration by parts one verifies the following inequalities: By § A%'., Byg+ By S A2

(71)’ (71)?

Bis S A(70) and Bi3 S A 72) From these estimates and (81) it follows

2 2,1 1,2 21 1,2 21 1,2 2,1
Cay s A )+ A(Gl) + A(m) + A )+ A(71) + A )+ A(72) + A(72

Next, integration by parts yields the following: A(m) Big + Byo, A(n) Big + B11 + Byo,

A?711) Bg + A(71) and A(72) Bz + A(72) Using all these inequalities in (81), we get

1,2 2,1 1,2 2,1 1,2 2,1 1,2 2,1
A (61) A(61) A (70) A(70) A(71 A(71) A(72 A (72) ® S Ca)

The proof of this part is then completed.
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(vi) Analogously to the case (v) we use Lemma 3.2(iv) to estimate B;, Lemma 3.3(iv) to
estimate Bz, and [6, Theorem 3.1] to get an estimate of By and Bg. Inserting these expressions
into (80) and merging some of them by integration by parts (similarly to the case (ii)), we obtain

2,1 1,2 1,2 1,2
(82) Cay=4 (65) + Algsy + Agiy + Azs) + A7) + Bro + Bia + Bus + Bug,

where
T TR S 7
By = f [([ “’tth) V] (s)vi(s)ds
0 T x
[e<] S 1 %
w(x w(t foon P
;q)/(f t(q)dt) Vi *(s)vi(s)dsoyt ™ (z)dz|
- . 1 . ®
o0 o0 t) Ta g p1mr2 z p2-T1
By = f [( w dt) V, * (s)va(s)ds (f O'i) oy(x)dz|
0 T T 0
oo T T o p;fl’”l T T L %
q P1 1
Big = [ f [ wt(;)dt) o1(s)ds %f (/ wt(;)dt) o1(s)ds Vi1 72 (z)dz
0 0 s 0 s

Performing integration by parts, one gets Big S A 74), B4 S A?%i), Bis S Aé;i) and Big S A273)
We apply these inequalities to replace the “B-parts” in (82), and so we obtain

2,1 1,2 2,1 1,2 2,1 1,2 2,1
Cays A(65 + Ay + Agay F Aay H Aray Ay T Airs) A

Now observe that

S ool 2O 4\ v
(83) A?%) :BlG+011(0+)([ t(q)dt) V, "2 (c0)
0

rori (00| [ ( o d"‘) VI (2)en(a) da

0
oo x & %
% w(t) a P2
< Bug + Bio + 0]’ (0+) [ ft—th VP (2)vs(2) do
0 \0
(84) S Big + Big
o _r2 =
t P2 P1 P2
(] (P i
0 \0
(85) S Big + Bio.

Indeed, the estimates (83) and (85) follow by integration by parts, while (84) is granted by Proposi-
tion 2.2. We proved that A%l < Big+Bio. By similar means it is shown that A(74) < Bio+Bis+Bis

andA <Bl4+A

()

Using these three estimates together with (82), we get

(74) (73)°

1,2 2,1 2 , 2 ; 2,1
A(Gs) + A(65) + A(73) + A(73) + A(74) + A(74) + A(75) + A(75) SCu)
This completes case (vi) and thus the whole proof. t
The next part deals with the “weak cases”, i.e. such configurations of p1, p2, ¢ that at least one
of these exponents is infinite. The following theorem covers the case g = co.
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Theorem 4.4. Let vy, va, w be weights. Let q = co.
(i) Let 0 <py,p2<1. Then C(1y =~ Ags), where

(86) A(gg) = esssup w(Zx) sup sV, "' (s) sup tV, "2 (t).
>0 T7 se(0,x) te(0,z)

(ii) Let 0<p; <1<pg<oo. Then Cry = A(sr), where

=
Py

1 o, .
(87) Agsr) 3= esssup “’ij’) s(t;p)sVl P (s) ( f A p2(t)dt)
T se(0,x 0

(iii) Let 0<py <1<py=oo. Then C(yy~ Ass), where

N dt
(88) A(gg) = esssup w(;:) sup sV; "' (s) f .
z>0 I7  se(0,z) b €SSSUP ye(0,t) V2 (y)

(iv) Let 1 <py,pz <oo. Then C(1y =~ A(sg), where

1 1

r 7’ _n' prl pd 7 o p’2

(89) Asg) = ess§(1)1p % (f sP1—1V11 P1(s) ds) (/ tpz—lvzl P2(¢) dt) .
* 0 0

(v) Let 1<py <py=oo. Then C(yy =~ Agp), where

1
[ 11 nor dt
(90) Aoy = eSSS(L)lp % (f spl—lvll Pi(s) dS) [
* 0

J esSSUP ye(o.4) V2(Y)

(vi) Let p1 =pa =oo0. Then Cqy = Aoy, where

r d r dt
(91) Ag1) = esssup w(;;) f i f )
w0 @2 S esssup () v1(y) J esSsup ye(o) va(y)
Proof. We have

C(1) = sup sup esssup .0 [ (2)g"" (z)w(z)
st gett | flari il glare o)
w(z) A g de
5~ sup su
fett HfHAPI(vl) ge M HQHAPZ(vg)

= esssup
z>0 X

w(z)
ZGS;SC%IP 22 HId||Ap1(v1)_>A1(X(O,I))HIdHApz(UQ)QAl(X(O,I))'

Now, in all the cases we simply use the characterizations of the embedding AP(v) < Al (X(O,a:))
provided by [7, Theorem 3.1] and Proposition 2.4.

Finally, we complete the list with the last remaining case in which 0 < g < oo and 0 < py < py = oo.

Theorem 4.5. Let v1, v, w be weights. Let p; = 0o and 0 < q < co.
(i) Let 1 <pa<q. Then C(yy =~ Aga) + A(gs), where

1
fw(s) /S d q at|
J s J eSSSUD ye(o,1) v1(y)

1

(92) Aggg) = sgg V;E (z)

and

|~

oo s q q T ’
yo P
(93) Agg) = sup f w(Qs) f di dt f %ds .
a0 [ 8% \J esssup ye(o,r) U1 (y) VP2 (s)

0

o
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(ii) Let 0<pz2 <1 and pa <q. Then C(1y =~ Agg) + A(ga), where

oo s q
(94) A(94 = Sup f w(S) f de dt
>0 | J 524 J esssup e, v1(y)

(iii) Let 1 <ps < oo and 0<q<py. Then Cgy = Ags) + A(ge), where

1
q

_ L
aVy " (2).

s
[}

(95) f (o/ w(S)(f esssupyj:wvl(y)) dt)

T q %
x w(x) / V, 72 (z)dx
g ©SSSUD ye(o,r) vi(y)

and

r2

(96) A(ge) = Ojo([ooigj) (/ esssupyjzﬂg)vl(y)) dt)w

T

xT q rf? "~
5 w(x) f dt f 51’21172(5)(1 - dx
24 Jesssup e, v1(y) Vp2 (s)

0

(iv) Let 0<q<pa<1. Then Cy = Agsy + Aoz, where

T

0o [ oo s q P2
(97) aon=| [ [ wls) / at dt
21 \J esssub oo 1)

0 T

T q )
w(z dt e
* x(2q) (f esssup v ( )) sup 1y " (w) de
0 ye(0,t) Y1 Y ye(0,z)

(v) Let 0<q<py=oo. Then C(1) =~ Ags), where

1

o T T q q
(98) Aoy = [ w(z) [ dt f ds N, q.
J x24 J esSsup ye(o,p) v1(y) J esSSUD ye(o,s) va(y)

Proof. From Proposition 2.4 it follows

(J5" (7 (@)2(g* () w (=) de)

Q=

C(1) = sup sup

gedl fel 1A% o) HQHAPz(Uz)
¢ 73
d
€SSSUP y¢(0,s) V1 (v)
~ sup
ge.tt Hg\lsz (v2)

= Hld”/\m (Uz)—’rq(x’—’%[(ess SUD ye(0,5) V1 (y))_l]q)-

The rest is done by application of the characterization of the involved embedding I" = A, which
can be found in [7, Theorem 4.1] (cases (i) and (ii)), Proposition 2.3 (for case (iii)), [6, Theorem

3.1] (case (iv)) and finally Proposition 2.4 for case (v).
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