RICH FAMILIES AND PROJECTIONAL SKELETONS IN ASPLUND WCG SPACES

MAREK CÚTH, MARIÁN FABIAN

ABSTRACT. We show a way of constructing projectional skeleton using the concept of rich families in Banach spaces which admit a projectional generator. If a Banach space X is Asplund and weakly compactly generated, then we show the existence of a commutative 1-projectional skeleton $(Q_\gamma : \gamma \in \Gamma)$ on X such that $(Q_\gamma^* : \gamma \in \Gamma)$ is a commutative 1-projectional skeleton on X^*. We consider both, real and also complex, Banach spaces.

Systems of bounded linear projections on Banach spaces are an important tool for the study of structure of non-separable Banach spaces. They sometimes enable us to transfer properties from smaller (separable) spaces to larger ones. One such concept is a projectional resolution of the identity (PRI, for short); see, e.g. [8, page 103] and [6, page 106] for a definition and results on constructing a PRI in various classes of Banach spaces. A PRI is often constructed via a projectional generator (PG, for short), a technical tool from which the existence of a PRI follows (see e.g. [8, Theorem 3.42]).

Recently, W. Kubiš introduced in [11] a concept of projectional skeleton, which provides a bit better knowledge of the Banach space in question. Spaces with a 1-projectional skeleton have a PRI with an additional property that the range of each projection from this PRI has again a 1-projectional skeleton [9, Theorem 17.6]. Consequently, an inductive argument works well when “putting separable pieces from PRI together” and thus we can prove that those spaces inherit certain properties of separable spaces. For example, every space with a projectional skeleton has an equivalent LUR renorming and admits a bounded injective linear operator into $c_0(\Gamma)$ for some set Γ [9, Corollary 17.5].

W. Kubiš proved, using a set-theoretical method of suitable models, that every space which admits a PG not only admits a PRI, but also a projectional skeleton, see [11, Proposition 7]. The class of Banach spaces admitting a PG is quite large. It includes weakly compactly generated spaces (WCG, for short), a bigger class of weakly K-countably determined spaces, i.e. Vašák spaces, yet a bigger class of weakly Lindelöf determined spaces (WLD, for short), yet bigger Plichko spaces (in particular, duals to C^* algebras are such), and duals of Asplund spaces, see [6], [8, page 166] and [1, Corollary 1.3]. Under some extra conditions, the class of WLD spaces coincides with that of WCG spaces. This is the case if X is Asplund or if X is isomorphic to the dual of an arbitrary C^* algebra, see [6, Theorem 8.3.3] and [1, Theorem 1.1].

2010 Mathematics Subject Classification. 46B26, 46B20.

Key words and phrases. Primary: projectional skeleton; Real or complex Banach space, Asplund space, weakly compactly generated space, weakly Lindelöf determined space, 1-Plichko space, commutative projectional skeleton, projectional generator, rich family.

The first author is a junior researcher in the University Centre for Mathematical Modeling, Applied Analysis and Computational Mathematics (MathMAC) and was supported by grant P201/12/0290. The second author was supported by grant P201/12/0290 and by RVO: 67985840.
In this note, we present a construction of a projectional skeleton from the existence of a PG, using rich families instead of suitable models, and thus making it more accessible for non-experts in set-theory; see Proposition 11. Moreover, we give a further insight to the projectional skeleton on the dual of an Asplund space, see Theorem 13. This strengthens [4, Theorem 2.3]. Finally, in every Asplund space \((X, \| \cdot \|)\) which is WCG, we construct, using suitable rich families, a 1-projectional skeleton \((Q_\gamma : \gamma \in \Gamma)\) on \(X\) such that \((Q_\gamma^* : \gamma \in \Gamma)\) is a 1-projectional skeleton on \((X^*, \| \cdot \|)\), see Theorem 14. As a consequence, this yields a classical fact that has been known already for three decades that every Asplund space \((X, \| \cdot \|)\) which is WCG admits a projectional resolution of the identity \((Q_\alpha : \omega \leq \alpha \leq \mu)\) such that \((Q_\alpha^* : \omega \leq \alpha \leq \mu)\) is a projectional resolution of the identity on \((X^*, \| \cdot \|)\); for details see [6, Proposition 6.1.10].

1. PRELIMINARIES

Let \(\mathbb{R}\) and \(\mathbb{C}\) denote the field of real and complex numbers, respectively. A Banach space over \(\mathbb{R}\) or \(\mathbb{C}\) is called real Banach space or complex Banach space, respectively. If we speak about just a Banach space, it means that related reasonings work for both cases. Below we gather most relevant notions, definitions and notation. If \(X\) is a complex Banach space, we denote by \(X_\mathbb{R}\) the space \(X\) where the multiplication of vectors by just real numbers is considered, and we endowed it by the norm inherited from \(X\). Thus \(X_\mathbb{R}\) becomes a real Banach space. The set of rational numbers is denoted by \(\mathbb{Q}\). For an infinite set \(M\) the symbol \([M]^{\leq \omega}\) means the family of all at most countable subsets of \(M\). Let \((X, \| \cdot \|)\) be a real or complex Banach space with the topological dual \((X^*, \| \cdot \|)\). For \(x \in X^*\) and \(x^* \in X^*\) the number \(x^*(x)\) is sometimes denoted as \(\langle x^*, x \rangle\). The adjective linear means the stability under the operation + and multiplication by elements from \(\mathbb{R}\) or \(\mathbb{C}\). The symbol \(B_X\) means the closed unit ball of \(X\). For a set \(A \subseteq X\), the symbols, \(\sp A\), \(\sp P A\), \(\sp Q A\) and \(\sp Q+iQ A\) mean the linear span of \(A\), the norm-closed linear span of \(A\) and the set consisting of all finite linear combinations of elements from \(A\) with coefficients from \(\mathbb{Q}\) and coefficients from the set \(\mathbb{Q}+i\mathbb{Q}\), respectively. Further, for \(A \subseteq X^*\) the symbol \(\overline{A}^{w^*}\) denotes the weak* closure of \(A\). By a projection in \(X\) we mean a bounded linear operator \(P : X \to X\) such that \(P \circ P = P\). (Hence, if \(X\) is complex, we require that \(P(\lambda x) = \lambda Px\) for all \(\lambda \in \mathbb{C}\) and \(x \in X\).) Given \(r \geq 1\), a set \(D \subseteq X^*\) is called \(r\)-norming if

\[
\|x\| \leq r \cdot \sup \{ |x^*(x)| : x^* \in D \cap B_{X^*} \} \quad \text{for every} \quad x \in X.
\]

We say that a set \(D \subseteq X^*\) is norming if it is \(r\)-norming for some \(r \geq 1\). For \(Y \subseteq X^*\) and \(V \subseteq X\) we put \(Y_\downarrow := \{ x \in X : \forall y \in Y \ y(x) = 0 \} \) and \(V_\downarrow := \{ x^* \in X^* : \forall v \in V \ x^*(v) = 0 \} \).

A partially ordered set is called \(\sigma\)-complete if every increasing sequence in it admits a supremum. A projectional skeleton in the Banach space \((X, \| \cdot \|)\) is a family of projections \((P_s : s \in \Gamma)\) on \(X\), indexed by an up-directed \(\sigma\)-complete partially ordered set \((\Gamma, \leq)\), such that

(i) \(P_sX\) is separable for every \(s \in \Gamma\),

(ii) \(X = \bigcup_{s \in \Gamma} P_sX\),

(iii) \(P_t \circ P_s = P_s \circ P_t\) whenever \(s, t \in \Gamma\) and \(s \leq t\), and

(iv) Given a sequence \(s_1 < s_2 < \cdots\) in \(\Gamma\) and \(t := \sup_{n \in \mathbb{N}} s_n\), then \(P_t X = \bigcup_{n \in \mathbb{N}} P_{s_n} X\).
For \(r \geq 1 \), we say that \((P_s : s \in \Gamma) \) is an \(r \)-\emph{projectional skeleton} if it is a projectional skeleton and \(\|P_s\| \leq r \) for every \(s \in \Gamma \). We say that a projectional skeleton \((P_s : s \in \Gamma) \) is \emph{commutative} if \(P_t \circ P_s = P_s \circ P_t \) for every \(s, t \in \Gamma \).

Let \(X \) be a Banach space. By \(\mathcal{S}(X) \) we denote the family of all closed separable subspaces of it. (Recall that, in the case of complex \(X \), every element of \(E \in \mathcal{S}(X) \) satisfies \(iE = E \).) Note that \((\mathcal{S}(X), "\subset") \) is an up-directed \(\sigma \)-complete partially ordered set. Of big importance in the sequel is the concept of a \emph{rich family}. This instrument was for the first time articulated by J.M. Borwein and W. Moors in [2].

We say that a family in the sequel is the concept of a rich family. This instrument was for the first time articulated by J.M. Borwein and W. Moors in [2]. We say that a family \(\mathcal{R} \subset \mathcal{S}(X) \) is rich in \(X \) if (i) it is \emph{cofinal}, i.e., for every \(V \in \mathcal{S}(X) \) there is a \(V' \in \mathcal{R} \) with \(V' \supset V \); and (ii) it is \(\sigma \)-closed, i.e., whenever \(V_1, V_2, \ldots \) is an increasing sequence in \(\mathcal{R} \), then \(\bigcup V_i \in \mathcal{R} \). Following [4], for two Banach spaces \(X, Z \), we denote by \(\mathcal{S}_{\bot}(X \times Z) \) the family of all “rectangles” \(V \times Y \) where \(V \in \mathcal{S}(X) \) and \(Y \in \mathcal{S}(Z) \); clearly, this is a rich family in \(X \times Z \). (Let us note that if \(X, Z \) are complex spaces, then we consider only rectangles \(V \times Y \) such that \(iV = V \) and \(iZ = Z \).

A \emph{projectional generator} in a Banach space \(X \) is a couple \(\langle D, \Phi \rangle \) such that \(D \) is a norming closed linear subspace of \(X^* \) and \(\Phi : D \rightarrow [X]^\leq \omega \) is a mapping such that for every \(E \in [D]^\leq \omega \), with \(\overline{E} \) linear, \(\Phi(E)^\perp \cap \overline{E}^{\omega^*} = \{0\} \). We say that \(X \) \emph{admits a PG with domain} \(D \) if there exists a projectional generator \(\langle D, \Phi \rangle \) in \(X \).

For a set \(M \) in a topological space we define \(\text{dens}(M) \) as the minimum of all ordinals \(\alpha \) such that there is a dense subset \(D \subset M \) satisfying \(\text{card} \, \alpha = \text{card} \, D \). A \emph{projectional resolution of the identity} (PRI, for short) on a Banach space \((X, \| \cdot \|) \) is a family \((P_\alpha : \omega \leq \alpha \leq \text{dens}(X)) \) of projections on \(X \) such that \(P_\omega = 0 \), \(P_{\text{dens}(X)} \) is the identity mapping, and for all \(\omega \leq \alpha \leq \text{dens}(X) \) the following hold:

\begin{enumerate}[(i)]
 \item \(\|P_\alpha\| = 1 \) and \(\text{dens} \, P_\alpha X \leq \text{card} \, \alpha \),
 \item \(P_\alpha \circ P_\beta = P_\beta \circ P_\alpha = P_\alpha \) whenever \(\beta \in [\omega, \alpha] \), and
 \item \(\alpha \neq \omega \Rightarrow \bigcup_{\beta < \alpha} P_{\beta + 1} X = P_\alpha X \)
\end{enumerate}

We say that a class \(\mathcal{C} \) of Banach spaces is a \emph{\(\mathcal{P} \)-class} if, for every \(X \in \mathcal{C} \), there exists a PRI \((P_\alpha : \omega \leq \alpha \leq \text{dens}(X)) \) such that \((P_{\alpha + 1} - P_\alpha)(X) \in \mathcal{C} \) for every \(\alpha \in [\omega, \text{dens}(X)] \) [8, page 107].

A family of pairs \(\{(x_i, x_i^*)\}_{i \in I} \) in \(X \times X^* \) is called a \emph{Markushevich basis} in \(X \) if \(\text{sp} \{x_i : i \in I\} = X \), if \(\text{sp} \{x_i^* : i \in I\} \) is weak* dense in \(X^* \), and if \(x_i^*(x_j) = \delta_{i,j} \), where \(\delta_{i,j} \) is the Kronecker delta.

Finally, we recall that a real Banach space is called \emph{Asplund} if every convex continuous function defined on an open convex subset \(\Omega \) of it is Fréchet differentiable at each point of a dense subset of \(\Omega \). We say that a complex Banach space \(X \) is \emph{Asplund} if its “real companion” \(X_R \) is Asplund. For readers not familiar with differentiability we recall that a \emph{real or complex Banach space is Asplund if and only if every separable subspace of it has separable dual}, see Theorem 3.

2. Technicalities concerning the complex case

Since there are natural examples of \emph{complex} Banach spaces with a projectional skeleton (e.g. duals of \(C^* \) algebras), we believe that it is useful to prove our results also in the complex case. In order to do so, we need to show that certain earlier results hold also in this case.

If \(a \in \mathbb{C} \), then \(\text{Re} \, a \) means the real part of \(a \). Let \((X, \| \cdot \|) \) be a complex Banach space. We define the mapping \(\text{Re}_X : X^* \rightarrow (X_\mathbb{R})^* \) by \(\text{Re}_X(x^*)(x) := \text{Re} \, x^*(x) \), \(x \in X, \ x^* \in X^* \).
Proposition 1. [10, Proposition 2.1] Let $(X, \| \cdot \|)$ be a complex Banach space. Then $\text{Re}_X : X^* \to (X_\mathbb{R})^*$ is a real-linear isometry onto and it is a weak*-to-weak* homeomorphism. Moreover, for each $x^* \in X^*$ and $x \in X$ we have $x^*(x) = \text{Re}_X(x^*)(x) - i\text{Re}_X(x^*)(ix) = \text{Re}_X(x^*)(x) - i\text{Re}_X(ix^*)(x)$, and for each $f \in (X_\mathbb{R})^*$ and each $x \in X$ we have $\text{Re}_X^{-1}(f)(x) = f(x) - if(ix)$.

Of some importance will be the following statement.

Proposition 2. Let X be a complex Banach space. Then the family

$$\mathcal{R} := \{ V \times Y \in \mathcal{S}((X_\mathbb{R} \times X_\mathbb{R})^* : iV = V \text{ and } i\text{Re}_X^{-1}(Y) = \text{Re}_X^{-1}(Y) \}$$

is rich in $X_\mathbb{R} \times X_\mathbb{R}^*$ and for every rich subfamily $\mathcal{R}' \subset \mathcal{R}$ the family $\{ V \times \text{Re}_X^{-1}(Y) : V \times Y \in \mathcal{R}' \}$ is rich in the (complex) space $X \times X^*$.

Proof. Since the mapping Re_X^{-1} is an isometry, \mathcal{R} and also the other family is σ-closed.

In order to verify the cofinality of \mathcal{R}, fix any $Z \in \mathcal{S}(X_\mathbb{R} \times X_\mathbb{R}^*)$. Find countable sets $C_0 \subset X$, $D_0 \subset X_\mathbb{R}^*$ such that $C_0 \times D_0 \supset Z$. Put $V := \overline{\text{spt}}C_0$. Let $n \in \mathbb{N}$ and assume that we have already constructed a countable set $D_{n-1} \subset X^*$. Pick then a countable \mathbb{Q}-linear set $D_n \supset D_{n-1}$ such that $i\text{Re}_X^{-1}(D_{n-1}) \subset \text{Re}_X^{-1}(D_n)$; for instance, take $D_n := \text{sp}_{\mathbb{Q}}(\text{Re}_X(i\text{Re}_X^{-1}(D_{n-1})) \cup D_{n-1})$. Doing so for every $n \in \mathbb{N}$, put finally $Y := \bigcup_{n=0}^\infty D_n$. Clearly, V and Y are separable subspaces and $Z \subset V \times Y$. Moreover, it follows from the construction that $iV \subset V$ and $i\text{Re}_X^{-1}(Y) \subset \text{Re}_X^{-1}(Y)$. Therefore, $V \times Y \in \mathcal{R}$ and the cofinality of \mathcal{R} is proved.

Now, let a rich subfamily $\mathcal{R}' \subset \mathcal{R}$ be given. It remains to check the cofinality of the second family. So, consider any $Z \in \mathcal{S}(X \times X^*)$. Find $Z_1 \in \mathcal{S}(X)$ and $Z_2 \in \mathcal{S}(X^*)$ so that $Z_1 \times Z_2 \supset Z$. Then $Z_1 \times \text{Re}_X(Z_2) \in \mathcal{S}((X_\mathbb{R} \times X_\mathbb{R})^*)$. From the cofinality of \mathcal{R}' we find $V \times Y \in \mathcal{R}'$ such that $V \times Y \supset Z_1 \times \text{Re}_X(Z_2)$. Then $V \times \text{Re}_X^{-1}(Y) \supset Z_1 \times Z_2 \supset Z$.

Theorem 3. Let $(X, \| \cdot \|)$ be a (real or complex) Banach space. Then the following assertions are equivalent.

(i) X is an Asplund space.
(ii) Every separable subspace of X has separable dual.
(iii) There exists a rectangle-family $\mathcal{A} \subset \mathcal{S}(X \times X^*)$, rich in $X \times X^*$, such that $Y_1 \subset Y_2$ whenever $V_1 \times Y_1$, $V_2 \times Y_2$ are in \mathcal{A} and $V_1 \subset V_2$, and for every $V \times Y \in \mathcal{A}$ the assignment $Y \ni x^* \mapsto x^*|_V \in V^*$ is a surjective isometry.

Proof. First, assume that X is a real Banach space. The equivalence (i)\iff(ii) is well known and can be found, for instance, in [5, Theorem 11.8]. The chain (i)\implies(iii)\implies(ii) can be found in [4, Theorem 2.3].

Second, assume that X is complex. The proof of the implication implication (iii)\implies(ii) is easy and is the same as in the real case, see [4].

Assume that (i) holds. Then $X_\mathbb{R}$ is Asplund and, by the validity of the statement for real Banach spaces, there is a rich family $\mathcal{A}_1 \subset \mathcal{S}(X_\mathbb{R} \times X_\mathbb{R}^*)$ with the properties as in (iii). Let \mathcal{R} be the rich family found in Proposition 2; this is a rich family in $X_\mathbb{R} \times X_\mathbb{R}^*$. Put $\mathcal{A} := \{ V \times \text{Re}_X^{-1}(Y) : V \times Y \in \mathcal{A}_1 \cap \mathcal{R} \} \subset \mathcal{S}(X \times X^*)$. By the second part of Proposition 2, this is a rich family in the complex space $X \times X^*$. By the properties of \mathcal{A}_1, we have $Y_1 \subset Y_2$ whenever $V_1 \times Y_1$, $V_2 \times Y_2$ are in \mathcal{A} and $V_1 \subset V_2$. We shall prove that
the assignment $\Re_X^{-1}(Y) \ni x^* \mapsto x^*|_V \in V^*$ is an isometry onto as well. So, fix any $x^* \in \Re_X^{-1}(Y)$. We have by Proposition 1 and the real case

$$
\|x^*\| = \|\Re_X(x^*)\| = \|\Re_X(x^*)|_{V_R}\| = \sup \langle \Re_X(x^*), B_{V_R} \rangle \leq \sup \|x^*|_V\| \leq \|x^*\|.
$$

It follows that the latter assignment is an isometry. Now, take any $v^* \in V^*$. By the real case applied to $\Re_V(v^*)$ we find $y \in Y (\subset X_R^*)$ such that $y|_{V_R} = \Re_V(v^*)$. Put $x^* := \Re_X^{-1}(y)$. Then for every $v \in V$, from Proposition 1, we have

$$
\langle x^*, v \rangle = \Re_X(x^*)(v) - i \Re_X(x^*)(iv) = \langle y, v \rangle - i \langle y, iv \rangle = \Re_V(v^*)(v) - i \Re_V(v^*)(iv) = v^*(v).
$$

Therefore $x^*|_V = v^*$ and the surjectivity is verified. We proved (iii).

Finally, assume that (ii) holds. In order to show the validity of (i), pick any separable subspace $Y \subset X_R$. Put $Z := CY$; this is a complex separable subspace of X. By (ii), Z^* is separable. By Proposition 1, Z_R^* is separable. Hence Y_R^*, a quotient of Z_R^*, is also separable. Having this proved, the real case of our theorem reveals that X_R is Asplund, i.e. X is (complex) Asplund. We thus got (i). □

For later purposes, we show that for an Asplund space X, there is a Markushevich basis in X^*. This is well-known in the case of real Banach spaces, see [6, Theorem 8.2.2]. Below we show that the same result holds also for complex Banach spaces, see Theorem 6. The proof we give goes through Theorem 3, which seems to be a new approach even in the case of real Banach spaces. First, similarly as in the real case, we observe that it suffices to prove that the class of duals to Asplund spaces is a \mathcal{P}-class.

Theorem 4. Let \mathcal{C} be a \mathcal{P}-class of (real or complex) Banach spaces. Then every $X \in \mathcal{C}$ has a Markushevich basis.

Theorem 4 is known and formulated for the case of real Banach spaces, see [8, Theorem 5.1]; the identical proof works for complex Banach spaces. Let us note that it depends on the fact that separable complex Banach spaces admit a Markushevich basis (the proof of this is the same as in the real case, see [8, Theorem 1.22]) and on the fact that it is possible to glue a Markushevich basis from bases on certain subspaces (the proof is identical with the real case, see that of [6, Proposition 6.2.4]).

We need one more technical statement.

Lemma 5. Let $(P_s : s \in \Gamma)$ be an r-projectional skeleton in a Banach space Z and let $A \subset \Gamma$ be an up-directed subset of Γ. Then the formula

$$
P_A(z) := \lim_{s \in A} P_s(z), \quad z \in Z,
$$

well defines a projection of Z onto $\bigcup_{s \in A} P_s Z$.

The real case of it is just [11, Lemma 11]. For the complex case the identical argument works.

Theorem 6. The class of duals to (real or complex) Asplund spaces is a \mathcal{P}-class. Consequently, if X is Asplund, then X^* has a Markushevich basis.
Proof. Let \((X, \| \cdot \|)\) be any Asplund space. If \(X\) is separable, then, \(X^*\) being separable, has a Markushevich basis by a complex analogue of [8, Theorem 1.22]. Assume further that \(X\) is not separable. Let \(\mathcal{A} \subset \mathcal{S}_\square (X \times X^*)\) be the rich family from Theorem 3 (iii). It is easy to check that the family

\[A_X := \left\{ V \in \mathcal{S}(X) : \exists Y \in \mathcal{S}(X^*) \text{ such that } V \times Y \in \mathcal{A} \right\} \]

is rich in \(\mathcal{S}(X)\) and, for every \(V \in A_X\), there is a unique \(Y_V \in \mathcal{S}(X^*)\) with \(V \times Y_V \in \mathcal{A}\). For \(V \in A_X\), denote by \(R_V\) the restriction mapping \(R_V : Y_V \to V^*\) defined by \(R_V(x^*) := x^*|_V\), \(x^* \in Y_V\). By the properties of the family \(\mathcal{A}\), we have that \(R_V\) is a (complex) linear isometry onto. Define \(P_V : X^* \to X^*\) by \(P_V(x^*) := R_V^{-1}(x^*|_V)\), \(x^* \in X^*\). It is easy to see that \(P_V\) is a (complex) projection with \(\|P_V\| = 1\), \(P_V(X^*) = Y_V\) and \(P_V^{-1}(0) = V^\perp\). Hence, for \(V, V' \in \mathcal{R}_X\), with \(V \subseteq V'\), we have \(P_{V'} \circ P_V = P_V = P_V \circ P_{V'}\) and \((P_V : V \in A_X)\) is a 1-projectional skeleton on \((X^*, \| \cdot \|)\).

For an up-directed set \(A \subset A_X\) we put \(V_A := \bigcup\{V : V \in A\}\) and \(Y_A := \bigcup\{Y : Y \in A\}\). By Lemma 5, there is a projection \(P_A : X^* \to X^*\) with \(P_A X^* = Y_A\) and \(P_A(x^*) = \lim_{V \in A} P_V(x^*)\) for every \(x^* \in X^*\).

Claim. If \(A \subseteq B\) are two up-directed subsets of \(A_X\), then we have \(P_B \circ P_A = P_A = P_A \circ P_B\) and \((P_B - P_A)(X^*)\) is isometric with \((V_B/V_A)^*\).

Proof of the Claim. Fix \(A, B\) as above. Since \(Y_A \subseteq Y_B\), we have \(P_A = P_B \circ P_A\). For each \(V \in A\) we have that \(B' := \{V' \in B : V' \supseteq V\}\) is cofinal in \(B\) and up-directed. So, for each \(x^* \in X^*\), we have

\[P_V \circ P_B(x^*) = \lim_{V' \in B'} P_V \circ P_{V'}(x^*) = \lim_{V' \in B'} P_V(x^*) = P_V(x^*); \]

hence, for every \(V \in A\) we have \(P_V = P_V \circ P_B\) and, passing to a limit, we get \(P_A = P_A \circ P_B\).

Observe that, for every up-directed set \(C \subset A_X\) and every \(x^* \in X^*\), we have

\[(P_C x^*)|_V = x^*|_V \quad \text{and} \quad \|P_C x^*\| = \|x^*|_V\|. \tag{1} \]

Indeed, pick \(V \in C\) and \(v \in V\). Then the set \(C' := \{V' \in C : V' \supseteq V\}\) is cofinal in \(C\) and so we have

\[P_C x^*(v) = \lim_{V' \in C'} (P_C x^*)(v) = \lim_{V' \in C'} (R_{V'}(x^*|_{V'}))(v) = \lim_{V' \in C'} x^*(v) = x^*(v). \]

Since \(v \in V\) was arbitrary, we get \(P_C x^*|_V = x^*|_V\) for every \(V \in C\); hence, \((P_C x^*)|_V = x^*|_V\). As to the second equality in (1), for every \(V \in C\) and every \(x^* \in Y_V\), we have \(\|x^*|_V\| = \|x^*\|\); hence, the norm of every \(x^* \in \bigcup\{Y : Y \in C\}\) is realized on the set \(V_C\). Therefore, for every \(x^* \in P_C x^* = Y_C\) we have \(\|x^*\| = \|x^*|_{V_C}\|\) and so, for every \(x^* \in X^*\), we get \(\|P_C x^*\| = \|(P_C x^*)|_{V_C}\| = \|x^*|_{V_C}\|\) by (1).

As to the isometric statement, we proceed similarly as in the proof of [6, Proposition 6.1.9 (iv)]. We define a mapping \(\varphi : (P_B - P_A)(X^*) \to (V_B/V_A)^*\) by

\[\varphi(x^*)([v]) := x^*(v), \quad x^* \in (P_B - P_A)(X^*), \quad [v] \in V_B/V_A. \]

It is well defined since, by (1), for \(x^* \in X^*\), we have \((P_A x^*)|_{V_A} = x^*|_{V_A} = (P_B x^*)|_{V_A}\); hence, for \(x^* \in X^*\) and \(v \in V_A\), we get \(((P_B - P_A)(x^*))(v) = 0\). Moreover for every
\(x^* \in (P_B - P_A)(X^*) \subset P_B X^*\) we get
\[
\|\varphi(x^*)\| = \sup \{\varphi(x^*)(v) : [v] \in V_B/V_A, \|v]\| < 1\}
= \sup \{x^*(v) : v \in V_B, \|v\| < 1\} = \|x^*|_{V_B} \overset{(1)}{\|P_B x^*\| = \|x^*\|}.
\]
It remains to prove that \(\varphi\) is onto. Let \(v^* \in (V_B/V_A)^*\) be given and define \(f \in (V_B)^*\) by \(f(v) = v^*(v)\), \(v \in V_B\). Pick \(\tilde{f} \in X^*\), a (real or complex) Hahn-Banach extension of \(f\), see [5, Theorem 2.2]. Then, by (1), we have \(\|P_A \tilde{f}\| = \|\tilde{f}|_{V_A}\| = \|f|_{V_A}\| = 0\); thus, \(P_A \tilde{f} = 0\). Hence for all \([v] \in V_B/V_A\) we get
\[
\varphi((P_B - P_A)(\tilde{f}))(v) = (P_B - P_A)(\tilde{f})(v) = (P_B \tilde{f})(v) = (P_B \tilde{f})(v) = f(v) = v^*(v); \\
\]
that is, \(\varphi((P_B - P_A)(\tilde{f})) = v^*,\) which means that \(\varphi\) is surjective. \(\square\)

Now, the rest of the proof is easy. Fix a continuous chain of up-directed sets \(\{A_\alpha : \omega \leq \alpha \leq \text{dens } X\}\) in \(\mathcal{A}_X\) such that \(\bigcup\{V : V \in \bigcup_{\omega \leq \alpha \leq \text{dens } X} A_\alpha\}\) is dense in \(X^*\); the continuity of our chain means that \(A_\beta = \bigcup_{\alpha < \beta} A_\alpha\) whenever \(\beta\) is a limit ordinal. Then, using the claim above, it is easy to see that \((P_{A_\alpha} : \omega \leq \alpha \leq \text{dens } X)\) is a PRI on \((X^*, \|\cdot\|)\) such that \((P_{A_{\alpha+1}} - P_{A_\alpha})(X^*)\) is isometric with \((V_{A_{\alpha+1}}/V_{A_\alpha})^*\) which is the dual of the Asplund space \(V_{A_{\alpha+1}}/V_{A_\alpha}\), see [6, Theorem 1.1.2 (ii)]. \(\square\)

We recall that WCG, even Vašák, even WLD real Banach spaces admit a projectional generator with domain \(X^*\), see [6, pages 125, 153]. Also, duals to Asplund spaces admit it, see [6, page 150]. For an inquisitive reader we indicate how to construct a projectional generator in real WCG Banach spaces. Assume that \(K\) is a weakly compact and linearly dense set in a real Banach space \(X\). According to Krein-Shmulian theorem we may and do assume that \(K\) is convex. Define \(\Phi : X^* \to K\) by \(\Phi(x^*) = k\), where \(k \in K\) is such that \(x^*(k) = \sup \{x^*(h) : h \in K\}\), and put \(\Phi(x^*) := k\). Then the couple \((X^*, \Phi)\) is a projectional generator on \(X\). This follows, after some effort, from Mackey-Arens theorem, see [8, Proposition 3.43]. The next statement enables us to transfer a projectional generator from \(X_R\) to \(X\).

Proposition 7. Let \(X\) be a complex Banach space and \(D \subset X^*\) a norming (complex) subspace. If \(X_R\) admits a projectional generator with domain \(\text{Re}_X(D)\), then \(X\) admits a projectional generator with domain \(D\).

Proof. Let \(\langle \text{Re}(D), \Phi_0 \rangle\) be a PG in \(X_R\). Define \(\Phi : D \to [X]^{<\omega}\) by \(\Phi(d) := \Phi_0(\text{Re}(d)) \cup \Phi_0(\text{Re}(id)), d \in D\). In order to verify that \(\langle D, \Phi \rangle\) is a PG, fix any \(E \in [D]^{<\omega}\) such that \(\overline{E}\) is (complex) linear and pick any \(g \in \Phi(E)^\perp \cap \overline{E}^{w*}\). We have \(ig \in \Phi(E)^\perp \cap i\overline{E}^{w*}\). Note that \(\text{Re}_X(E)\) and \(\text{Re}_X(iE)\) are linear. Therefore, by Proposition 1 and the definition of \(\Phi\), we have \(\text{Re}_X(g) \in \Phi_0(\text{Re}(E))^\perp \cap \overline{\text{Re}_X(E)}^{w*}\) and \(\text{Re}_X(ig) \in \Phi_0(\text{Re}(iE))^\perp \cap \overline{\text{Re}_X(iE)}^{w*}\); hence, \(\text{Re}_X(g) = 0\) and \(\text{Re}_X(ig) = 0\). Hence, by Proposition 1, \(g = 0\). Therefore, \(\Phi(E)^\perp \cap i\overline{E}^{w*} = \{0\}\) and \(\langle D, \Phi \rangle\) is a PG in \(X\). \(\square\)

3. CONSTRUCTION OF PROJECTIONAL SKELETONS USING RICH FAMILIES

We start with the following instrument for constructing projections, see [6, Lemma 6.1.1].
Lemma 8. Let \((X, \| \cdot \|)\) be a (real or complex) Banach space, \(r \geq 1\), and \(D \subset X^*\) a closed linear \(r\)-norming subspace. Assume there are closed linear subspaces \(V \subset X\) and \(Y \subset D\) such that

(i) for every \(v \in V\) we have \(\|v\| \leq r \cdot \sup \{|y(v)| : y \in Y \cap B_{X^*}\}\)

(ii) \(V\) separates the points of \(\overline{Y}^w\), that is, \(V^\perp \cap \overline{Y}^w = \{0\}\).

Then there exists a projection \(P : X \to X\) such that \(\|P\| \leq r\), \(PX = V\), \(P^{-1}(0) = Y_\perp\), and \(P^*X^* = \overline{Y}^w\).

Proof. Fix a rectangle \(V \times Y \subset X \times D\) as above. Then for each \(v \in V \cap Y_\perp\) we have \(\|v\| \leq r \cdot \sup \{|y(v)| : y \in Y \cap B_{X^*}\} = 0\); hence, \(V \cap Y_\perp = \{0\}\). Moreover, for each \(v \in V\) and \(x \in Y_\perp\) we have

\[\|v\| \leq r \cdot \sup \{|y(v)| : y \in Y \cap B_{X^*}\} = r \cdot \sup \{|y(v + x)| : y \in Y \cap B_{X^*}\} \leq r \|v + x\|;\]

hence, the projection \(P : V + Y_\perp \to V\) defined by \(V + Y_\perp \ni (v + x) \mapsto v =: Px\) is (complex linear if \(X\) is complex) and has norm \(\leq r\). It follows that \(V + Y_\perp\) is a closed subspace of \(X\). We actually have that \(V + Y_\perp = X\). Assume this is not so, i.e., there is \(x \in X \setminus (V + Y_\perp)\). Then there exists \(0 \neq x^* \in (V + Y_\perp)^\perp\). Thus \(x^* \in V^\perp \cap (Y_\perp)^\perp = V^\perp \cap \overline{Y}^w\), where for the last equality we used the (complex) bipolar theorem [5, Theorem 3.38]. This is in contradiction with the condition (ii). Therefore, the projection \(P\) defined above has \(X\) as its domain. From the above we also have that \(PX = V\) and \(P^{-1}(0) = Y_\perp\). The last equality follows from this via [5, Corollary 3.34]. \(\square\)

Now, we show that a rich family consisting of certain rectangles already gives us a projectional skeleton.

Lemma 9. Let \((X, \| \cdot \|)\) be a (real or complex) Banach space, \(r \geq 1\), \(D \subset X^*\) a closed linear \(r\)-norming subspace, and assume that there exists a rich family \(\Gamma \subset S_{\overline{\cap}}(X \times D)\) such that for every \(\gamma := V \times Y \in \Gamma\) there is a projection \(Q_\gamma : X \to X\) with \(\|Q_\gamma\| \leq r\), \(Q_\gamma X = V\), \(Q_\gamma^{-1}(0) = Y_\perp\), and \(Q_\gamma^*X^* = \overline{Y}^w\).

Then \((Q_\gamma : \gamma \in \Gamma)\) is an \(r\)-projectional skeleton in \(X\) with \(\bigcup_{\gamma \in \Gamma} Q_\gamma^*X^* \supset D\), where we consider on \(\Gamma\) the order given by the inclusion.

Proof. Recall that our \(\Gamma\) is \(\sigma\)-closed and thus it is suitable for indexing a skeleton. We check the four properties from the definition of an \(r\)-projectional skeleton. The cofinality of \((\text{up-directed poset}) (S_{\overline{\cap}}(X \times D), \subset)\) immediately yields that \(X = \bigcup_{\gamma \in \Gamma} Q_\gamma X\) and \(\bigcup_{\gamma \in \Gamma} Q_\gamma^*X^* \supset D\). If \(V \times Y \subset V' \times Y'\) are two rectangles from \(\Gamma\), then \(Q_{V \times Y} X = V \subset V' = Q_{V' \times Y'} X\) and \(Q_{V \times Y}^{-1}(0) = Y_\perp \subset Y'_\perp = Q_{V' \times Y'}^{-1}(0)\), which implies that \(Q_{V \times Y} = Q_{V' \times Y'} \circ Q_{V \times Y} = Q_{V' \times Y'} \circ Q_{V' \times Y'}\). Finally, consider an increasing sequence \(\gamma_1 \subset \gamma_2 \subset \cdots\) in \(\Gamma\) and put \(\gamma := \sup_{n \in \mathbb{N}} \gamma_n\). This means that \(\gamma = \gamma_1 \cup \gamma_2 \cup \cdots\). Therefore \(Q_\gamma X = Q_{\gamma_1} X \cup Q_{\gamma_2} X \cup \cdots\). \(\square\)

Next, we show how to produce a projectional skeleton from a projectional generator via rich families. For a set \(M \subset X\) and \(x^* \in X^*\) we put \(\text{supp}_M(x^*) := \{m \in M : x^*(m) \neq 0\}\).

Lemma 10. Let \(X\) be a (real or complex) Banach space. Assume there is a linearly dense set \(M \subset X\) and a subspace \(D \subset X^*\) such that, for every \(d \in D\), the set \(\text{supp}_M(d)\) is countable.

Then the family \(\mathcal{R} := \{V \times Y \in S_{\overline{\cap}}(X \times D) : M \setminus V \subset Y_\perp\}\) is rich in \(X \times D\).

8
Proof. In order to verify the cofinality of R, fix any $Z \in \mathcal{S}(X \times D)$. Find countable sets $C_0 \subset X$, $E_0 \subset D$ such that $\overline{C_0} \times \overline{E_0} \supset Z$. Put $C := C_0 \cup \bigcup_{e \in E_0} \text{supp}_M(e)$. Then it is easy to see that $\text{sp} C \times \overline{E} \in R$; hence, the cofinality of R is proved. Further, let $V_1 \times Y_1, V_2 \times Y_2, \ldots$ be an increasing sequence in R and put $V \times Y := V_1 \times Y_1 \cup V_2 \times Y_2 \cup \cdots$. Then $V = V_1 \cup V_2 \cdots$ and $Y = Y_1 \cup Y_2 \cup \cdots$ and we have

$$M \setminus V \subset M \setminus \bigcup V_n = \bigcap (M \setminus V_n) \subset \bigcap Y_n = (\bigcup Y_n) = Y.$$

Thus the σ-closeness of our family is verified. \hfill \square

Proposition 11. Let $(X, \|\cdot\|)$ be a (real or complex) Banach space admitting a projectional generator (D, Φ) where $D \subset X^\ast$ is r-norming for some $r \geq 1$.

Then there exists a rich family $\mathcal{W} \subset \mathcal{S}_0(X \times D)$ such that for every $\gamma := (\frac{x}{x}) \in \mathcal{W}$ there is a projection $Q_{\gamma} : X \to X$ with $\|Q_{\gamma}\| \leq r$, $Q_{\gamma}X = V$, $Q_{\gamma}^{-1}(0) = Y$, and $Q_{\gamma}^*X^* = \overline{V}^{\ast\ast}$; and hence $(Q_{\gamma} : \gamma \in \mathcal{W})$ is a r-projectional skeleton on $(X, \|\cdot\|)$, with $\gamma \in \mathcal{W}$. Further, if there is a linearly dense set $M \subset X$ such that, for every $d \in D$, the set $\text{supp}_M(d)$ is countable, then there exists a rich family $\mathcal{W}_1 \subset \mathcal{W}$ such that $(Q_{\gamma} : \gamma \in \mathcal{W}_1)$ is a commutative r-projectional skeleton and $\bigcup_{\gamma \in \mathcal{W}_1} Q_{\gamma}X^* \supset D$.

Proof. For every $x \in X$ pick a countable set $\psi(x) \subset D \cap B_X$ such that $\|x\| \leq r \cdot \sup \{\psi(x) : v \in \psi(x)\}$. Define \mathcal{W} as the family of all $V \times Y \in \mathcal{S}_0(X \times D)$ such that there are countable sets $C \subset V, E \subset Y$ satisfying $C = V$, $E = Y$, $\Phi(E) \subset C$, and $\psi(C) \subset E$. For every $n \in \mathbb{N}$ find countable sets $C_n \subset V_n$

In order to verify the cofinality of \mathcal{W}, fix any $Z \in \mathcal{S}(X \times D)$. Find countable sets $C_0 \subset X$, $E_0 \subset D$ such that $\overline{C_0} \times \overline{E_0} \supset Z$. Let $n \in \mathbb{N}$ and assume that we have already constructed countable sets $C_{n-1} \subset X$, $E_{n-1} \subset D$. If the Banach space X is over the field of reals, put $C_n := \text{sp}_0(C_{n-1} \cup \Phi(E_{n-1}))$ and $E_n := \text{sp}_0(E_{n-1} \cup \psi(C_n))$; otherwise, put $C_n := \text{sp}_0(C_{n-1} \cup \Phi(E_{n-1}))$ and $E_n := \text{sp}_0(E_{n-1} \cup \psi(C_n))$. Doing so for every $n \in \mathbb{N}$, put finally $C := C_0 \cup C_1 \cup \cdots$ and $E := E_0 \cup E_1 \cup \cdots$. Clearly, C and E are countable, $V \times Y := \overline{C} \times \overline{E} \in \mathcal{S}_0(X \times D)$ and $V \times Y \supset Z$. Also, clearly, $\Phi(E) \subset C$ and $\psi(C) \subset E$. Thus $V \times Y \in \mathcal{W}$ and the cofinality of \mathcal{W} is proved.

Further, let $V_1 \times Y_1, V_2 \times Y_2, \ldots$ be an increasing sequence in \mathcal{W} and put $V \times Y := V_1 \times Y_1 \cup V_2 \times Y_2 \cup \cdots$. Clearly, $V \times Y \in \mathcal{S}_0(X \times D)$. For every $n \in \mathbb{N}$ find countable sets $C_n \subset V_n$, $E_n \subset Y_n$ satisfying $\overline{C_n} = V_n$, $\overline{E_n} = Y_n$, $\Phi(E_n) \subset C_n$, and $\psi(C_n) \subset E_n$. Put $C := C_1 \cup C_2 \cup \cdots$ and $E := E_1 \cup E_2 \cup \cdots$. Clearly $\overline{C} = V$, $\overline{E} = Y$, $\Phi(E) = \Phi(E_1) \cup \Phi(E_2) \cup \cdots \subset C_1 \cup C_2 \cup \cdots = C$, and $\psi(C) = \psi(C_1) \cup \psi(C_2) \cup \cdots \subset E_1 \cup E_2 \cup \cdots = E$. Therefore, $V \times Y \in \mathcal{W}$ and the σ-closeness of our family is verified.

Let us check that \mathcal{W} has the further proclaimed properties. So, fix any $V \times Y$ in \mathcal{W}. Find $C \subset V, E \subset Y$ satisfying $\overline{C} = V$, $\overline{E} = Y$, $\Phi(E) \subset C$, and $\psi(C) \subset E$. For every $x \in C$ we have

$$\|x\| \leq r \cdot \sup \{\|v(x)\| : v \in \psi(x)\} \leq r \cdot \sup \{\|v(x)\| : v \in Y \cap B_X\ast\}.$$

Further we have

$$V^\perp \cap \overline{Y}^{\ast\ast} = C^\perp \cap \overline{E}^{\ast\ast} \subset \Phi(E)^\perp \cap \overline{E}^{\ast\ast} = \{0\},$$

the last equality being true since Φ was a projectional generator. Hence, the assumptions of Lemma 8 are satisfied. Consequently, for each $V \times Y \in \mathcal{W}$, we have the projection $Q_{V \times Y}$. The rest of the conclusion follows from Lemma 9.
It remains to show the “moreover” part. We were inspired by the proof of [11, Proposition 21]. Assume there is a linearly dense set \(M \subset X \) such that, for every \(d \in D \), the set \(\text{supp}_M(d) \) is countable. Let \(\mathcal{R} \) be the rich family provided by Lemma 10 for our \(D \) and \(M \). Put \(\mathcal{W}_1 := \mathcal{W} \cap \mathcal{R} \); this is again a rich family. Clearly, \((Q_\gamma : \gamma \in \mathcal{W}_1) \) is still an \(r \)-projectional skeleton and \(\bigcup_{\gamma \in \mathcal{W}_1} Q_\gamma^* X^* = \bigcup_{\gamma \in \mathcal{W}} Q_\gamma^* X^* (\supset D) \). Now, we observe that for every \(\gamma := V \times Y \in \mathcal{W}_1 \) and every \(m \in M \) we have
\[
Q_{V \times Y}(m) = \begin{cases} m, & \text{if } m \in V \\ 0, & \text{if } m \in X \setminus V \end{cases}
\]
Therefore, \(Q_\gamma \circ Q_{\gamma'}(m) = Q_{\gamma'} \circ Q_\gamma(m) \) for every \(m \in M \) and every \(\gamma, \gamma' \in \mathcal{W}_1 \). And since \(M \) was linearly dense in \(X \), we get that \(Q_\gamma \circ Q_{\gamma'} = Q_{\gamma'} \circ Q_\gamma \) for every \(\gamma, \gamma' \in \mathcal{W}_1 \). \(\square \)

Corollary 12. Let \((X, \| \cdot \|) \) be a (real or complex) \(r \)-Plichko space, which means that there are an \(r \)-norming closed subspace \(D \subset X^* \) and a linearly dense set \(M \subset X \) such that \(\text{supp}_M(d) \) is countable for every \(d \in D \). Then there exists a commutative \(r \)-projectional skeleton in \(X \).

Proof. Define the mapping \(\Phi : D \longrightarrow [X]^\leq \omega \) by \(\Phi(d) := \text{supp}_M(d), d \in D \). Then \((D, \Phi) \) is a projectional generator. Indeed, fix any \(E \in [D]^\leq \omega \), with \(\overline{E} \) linear, and then fix any \(x^* \in \Phi(E)^\perp \cap \overline{E}^{w^*} \). If \(x^* \neq 0 \), there is \(m \in M \) with \(x^*(m) \neq 0 \) and since \(x^* \in \overline{E}^{w^*} \), there is \(\varepsilon \in E \) with \(m \in \text{supp}_M(\varepsilon) = \Phi(\varepsilon) \subset \Phi(E) \), which is a contradiction with \(x^* \in \Phi(E)^\perp \). Now, Proposition 11 finishes the proof. \(\square \)

Remark. The Corollary above can be converted to an equivalence: Given an \(r \geq 1 \), a real or complex Banach space is \(r \)-Plichko if and only if it admits a commutative \(r \)-projectional skeleton, see [11, Theorem 27]. It should be just noted that the necessity was there proved via “suitable models” from set theory; while the sufficiency was proved by “elementary” instruments.

Further, we show that it is possible to find a quite nice description of projectional skeletons in duals to Asplund spaces. This is a strengthening of Theorem 3.

Theorem 13. Let \((X, \| \cdot \|) \) be a (real or complex) Asplund space. Then there exists a rich family \(\mathcal{A} \subset \mathcal{S}(X \times X^*) \) such that:
(i) \(\forall V \times Y, V' \times Y' \in \mathcal{A} \) \(V \subset V' \iff Y \subset Y' \) (\(\iff V \times Y \subset V' \times Y' \)).
(ii) The family \(\mathcal{A}_X := \{ V \in \mathcal{S}(X) : V \times Y \in \mathcal{A} \text{ for some } Y \in \mathcal{S}(X^*) \} \) is rich in \(\mathcal{S}(X) \).
(iii) The family \(\mathcal{A}^{X^*} := \{ Y \in \mathcal{S}(X^*) : V \times Y \in \mathcal{A} \text{ for some } V \in \mathcal{S}(X) \} \) is rich in \(\mathcal{S}(X^*) \).
(iv) There are one-to-one inclusion preserving mappings between \(\mathcal{A}, \mathcal{A}_X \), and \(\mathcal{A}^{X^*} \).
(v) For every \(\gamma := V \times Y \in \mathcal{A} \) there is a projection \(P_\gamma : X^* \rightarrow X^* \) such that \(\|P_\gamma\| = 1 \), \(P_\gamma X^* = Y \), \(P_\gamma^{-1}(0) = V^\perp \), and \(P_\gamma^* X^{**} = \overline{V}^{w^*} \).
(vi) \((P_\gamma : \gamma \in \mathcal{A}) \) is a 1-projectional skeleton on \((X^*, \| \cdot \|) \) with \(\bigcup \{ P_\gamma^* X^{**} : \gamma \in \mathcal{A} \} \supset X \).
(vii) The skeleton from (vi) can be indexed also by the rich families \(\mathcal{A}_X \) or \(\mathcal{A}^{X^*} \).

Proof. Since \(X \) is Asplund, the density of \(X \) is equal to the density of \(X^* \). For a hint how to prove this we refer a reader to, say [5, pp. 488–489] (note that, by Proposition 1, it is enough to prove the statement for real Banach spaces). Another, less elementary way to check this equality is via [3, Proposition 1]. Further, by Theorem 6, \(X^* \) admits a Markushevich basis. Let \(I \) denote the “bottom” part of such a basis. We recall that the cardinality of \(I \) is not smaller than the density of \(X^* \), that \(\text{sp} I = X^* \), and that \(i \notin \text{sp}(I \setminus \{i\}) \) for every \(i \in I \).
Pick a set \(\{ x_i : i \in I \} \) dense in \(X \). Define then the family \(\mathcal{W} \) as that consisting of all rectangles \(\mathsf{sp} \{ x_i : i \in C \} \times \mathsf{sp} C \) where \(C \)'s run through all countable subsets of \(I \). Clearly, the family \(\mathcal{W} \) is cofinal in \(\mathcal{S}_c(X \times X^*) \). As regards the \(\sigma \)-closeness of it, consider a sequence
\[
V_1 \times Y_1 \subset V_2 \times Y_2 \subset \cdots \text{ in } \mathcal{W}
\]
and put \(V := V_1 \cup V_2 \cup \cdots \), \(Y := Y_1 \cup Y_2 \cup \cdots \). Clearly, \(V \times Y = V_1 \times Y_1 \cup V_2 \times Y_2 \cup \cdots \). Now for \(j \in \mathbb{N} \) find a countable set \(C_j \subset I \) such that \(V_j = \mathsf{sp} \{ x_i : i \in C_j \} \) and \(Y_j = \mathsf{sp} C_j \). Put \(C := C_1 \cup C_2 \cup \cdots \); this is a countable set. It is routine to check that \(V = \mathsf{sp} \{ x_i : i \in C \} \) and \(Y = \mathsf{sp} C \). Hence \(V \times Y \in \mathcal{W} \) and the \(\sigma \)-closeness of \(\mathcal{W} \) is verified. Therefore \(\mathcal{W} \) is a rich family.

We further observe that
\[
\forall V \times Y, V' \times Y' \in \mathcal{W} \quad Y \subset Y' \Rightarrow V \subset V'.
\]
Indeed, fix any \(V \times Y, V' \times Y' \in \mathcal{W} \) such that \(Y \subset Y' \). Find countable sets \(C,C' \subset I \) such that \(Y = \mathsf{sp} C \) and \(Y' = \mathsf{sp} C' \). It is enough to show that \(C \subset C' \). So, fix any \(i \in C \). Then \(i \in Y \subset Y' = \mathsf{sp} C' \). It remains to show that \(i \in C' \). Assume that \(i \notin C' \). Then \(\forall j \in \mathbb{N} \) \(i \notin \mathsf{sp} \{ x_i : i \in C' \} \), a contradiction.

Now, let \(\mathcal{A}_1 \) be the rich family in \(\mathcal{S}_c(X \times X^*) \) found in Theorem 3 (iii). Note that
\[
\forall V \times Y, V' \times Y' \in \mathcal{A}_1 \quad V \subset V' \Rightarrow Y \subset Y'.
\]
Put \(\mathcal{A} := \mathcal{W} \cap \mathcal{A}_1 \); this is a rich family. It is routine to verify that \(\mathcal{A} \) satisfies (i) – (iv).

As regards (v), by Theorem 3, for every \(\gamma := V \times Y \in \mathcal{A} \) the assignment \(Y \ni x^* \mapsto x^*|_V := R_{\gamma} x^* \) is a linear surjective isometry, and hence \(P_\gamma : X^* \to X^* \) defined by \(P_\gamma x^* := R_{\gamma}^{-1}(x^*|_V) \), \(x^* \in X^* \), is a linear norm-1 projection satisfying all the proclaimed properties.

Concerning (vi), it remains to profit from (v) and use Lemma 9. (vii) follows immediately from (vi), (i), (ii), and (iii).

Remark. A main novelty of Theorem 13, when comparing with Theorem 3 or [4, Theorem 2.3], is that \(V \subset V' \) whenever \(V \times Y, V' \times Y' \in \mathcal{A} \) and \(Y \subset Y' \). This enables to find a 1-projectional skeleton on \((X^*, \| \cdot \|) \) indexed by the (rich) family of the ranges of projections, that is, by \(\mathcal{A} X^* \). This was reached via the instrument of Markushevich bases.

Finally we show what happens when putting together Asplund spaces with WCG spaces.

Theorem 14. Let \((X, \| \cdot \|) \) be a (real or complex) Asplund space which is weakly compactly generated.

Then there exists a rich family \(\Gamma \) in \(\mathcal{S}_c(X \times X^*) \) such that for every \(\gamma := V \times Y \) in \(\Gamma \) there is a norm 1-linear projection \(Q_\gamma : X \to X \) such that \((Q_\gamma : \gamma \in \Gamma) \) is a commutative 1-projectional skeleton on \((X, \| \cdot \|) \) and \((Q_\gamma^* : \gamma \in \Gamma) \) is a commutative 1-projectional skeleton on \((X^*, \| \cdot \|) \). The both skeletons can be indexed also by the rich family \((Q_\gamma X : \gamma \in \Gamma) \subset \mathcal{S}(X) \) or by the rich family \((Q_\gamma X^* : \gamma \in \Gamma) \subset \mathcal{S}(X^*) \). In particular, \((X, \| \cdot \|) \) admits a projectional resolution of the identity such that the adjoint projections form a projectional resolution of the identity on \((X^*, \| \cdot \|) \).

Proof. First, we recall a well known fact that, \(X \) being WCG, there exists a linearly dense set \(M \subset X \) such that \(\text{supp}_M(x^*) \) is countable for every \(x^* \in X^* \); see e.g. [6, Theorem 1.2.5] or [7, Theorem 1] for the case if \(X \) is real. (Note that the tool of PRI is used in the proofs.) If \(X \) is a complex WCG space, then \(X_R \) is WCG and so, by the already proved real case, there exists a linearly dense set \(M \subset X \) such that \(\text{supp}_M(\text{Re}_X(x^*)) \) is countable for every \(x^* \in X^* \). Hence, by Proposition 1, \(\text{supp}_M(x^*) \) is countable for every \(x^* \in X^* \).
Since every WCG space admits a projectional generator with domain X^* (which is 1-norming), by Proposition 11, there is a rich family \mathcal{W}_1 in $\mathcal{S}_\square(X \times X^*)$ such that for each $V \times Y \in \mathcal{W}_1$ there exists a projection $Q_{V \times Y} : X \to X$ with $\|Q_{V \times Y}\| = 1$, $Q_{V \times Y}X = V$, $Q_{V \times Y}^{-1}(0) = Y_\perp$, and $Q_{V \times Y}^*X^* = Y^*$; moreover $(Q_\gamma : \gamma \in \mathcal{W}_1)$ is a commutative 1-projectional skeleton on $(X, \|\cdot\|)$.

Further, let \mathcal{A} be the rich family in $\mathcal{S}_\square(X \times X^*)$ (coming from the Asplund property of X) found in Theorem 13. Put finally $\Gamma := \mathcal{W}_1 \cap \mathcal{A}$.

Now, fix any $\gamma := V \times Y \in \Gamma$. By the properties of \mathcal{A}, there exists a projection P_γ on X^* with $P_\gamma X^* = Y$ and $P_\gamma^{-1}(0) = V_\perp$. Now, for every $x \in X$ and every $x^* \in X^*$ we have

$$\langle P_\gamma x^*, x \rangle = \langle P_\gamma x^*, Q_\gamma x + (x - Q_\gamma x) \rangle = \langle P_\gamma x^*, Q_\gamma x \rangle = \langle x^* + (P_\gamma x^* - x^*), Q_\gamma x \rangle = \langle x^*, Q_\gamma x \rangle = \langle Q_\gamma x^*, x \rangle.$$

Therefore $P_\gamma = Q_\gamma^*$.

Summarizing, $(Q_\gamma : \gamma \in \Gamma)$ is a commutative 1-projectional skeleton on $(X, \|\cdot\|)$ and $(Q_\gamma^* : \gamma \in \Gamma)$ is a commutative 1-projectional skeleton on $(X^*, \|\cdot\|)$. Moreover, by the properties of the family \mathcal{A} from Theorem 13, the skeletons may be equivalently indexed by the rich families of the ranges of Q_γ’s or Q_γ^*’s.

A way how to produce projectional resolutions of the identity from 1-projectional skeletons can be found in the proof of Theorem 6 or in that of [11, Theorem 12].

Remark. By Valdivia’s result, [6, Theorem 8.3.3] every Asplund WLD space is WCG and therefore, in the theorem above, we can replace WCG by WLD. It is not true that every Asplund Plichko space is WCG. An example is the space C_0 and therefore, in the theorem above, we can replace WCG by WLD. It is not true that every Asplund Plichko space is WCG.

Acknowledgments. The authors thank Ondřej Kalenda for discussions related to the topic of this note.

References

(M. Čuň) Charles University, Faculty of Mathematics and Physics, Sokolovská 83, 186 75 Praha 8 Karlín, Czech Republic

(M. Fabian) Mathematical Institute of Czech Academy of Sciences, Žitná 25, 115 67 Praha 1, Czech Republic

E-mail address: cuth@karlin.mff.cuni.cz
E-mail address: fabian@math.cas.cz