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Abstract. We prove exact rate of decay for solutions to a class of second
order ordinary differential equations with degenerate potentials, in par-
ticular, for potential functions that grow as different powers in different
directions in a neigborhood of zero. As a tool we derive some decay esti-
mates for scalar second order equations with non-autonomous damping.

1. Introduction

In this paper we study rate of convergence to equilibrium of solutions to
second order ordinary differential equations of the type

(DP) ü + g(u̇)u̇ + ∇E(u) = 0,

which describe damped oscilations of a system. We assume that the potential
energy E : Rn

→ R+ has its only local minimum in the origin and g : Rn
→ R

is positive (except in the origin), so the term g(u̇)u̇ has a damping effect.
The scalar case with E(u) = a|u|p, g(s) = b|s|α was studied by Haraux

[9] and the vector valued case with E(u) = ‖A
1
2 u‖p, g(s) ∈ (c1|s|α, c2|s|α), A

being a symmetric positive linear operator on a Hilbert space H was studied
by Abdelli, Anguiano and Haraux [1]. For these cases exact decay rates
were derived. Let us mention, that in both cases E satisfies E(u) ∼ ‖u‖p,
〈∇E(u),u〉 ∼ ‖u‖p on a neighborhood of zero (where f ∼ g means c f ≤ g ≤ C f
for some positive constants c, C and 〈·, ·〉 is the scalar product on H).

In [5] similar decay estimates as in [9], [1] were derived with the assump-
tions formulated in terms of the Łojasiewicz gradient inequality, namely for
E satisfying

(1) c‖∇E(u)‖ ≤ E(u)1−θ
≤ C‖∇E(u)‖

and ‖∇2E(u)‖ ≤ ‖∇E(u)‖
1−2θ
1−θ on a neighborhood of zero. The right inequality

in (1) is called the Łojasiewicz gradient inequality. Let us mention that the
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potential functions E from [9], [1] satisfy (1) and also the condition on ∇2E
with θ = 1

p .
The goal of this paper is to study degenerate cases, where the above

assumptions do not hold, e.g. the behavior of E is not power-like or E does
not satisfy the left inequality in (1) with the same θ as the right inequality1.
A prototype of such E is

(2) E(u) = ‖u1‖
p1 + · · · + ‖un‖

pn

with u = (u1, . . . ,un) (ui ∈ Rni are not neccessarily scalars) and p1 ≥ p2 ≥ · · · ≥

pn ≥ 2 are not all equal. We show that in such cases we obtain the same
estimates (from above and from below) as for E(u) = ‖u‖p1 .

Further, we study the exact decay for the case where ui in (2) are scalars.
In the case studied in [9] and [1] the authors have shown that if α > 1− 2

p (i.e.
the damping function is smaller than a treshold), then the solutions oscilate
and all solutions converge to the origin with the same speed. On the other
hand, if α < 1 − 2

p (the damping function is larger than the treshold), then
the solutions do not oscilate and there appear solutions with exactly two
rates of convergence called fast solutions and slow solutions (see also [2]
for existence of slow solutions). We show similar results for the degenerate
case, in particular we show that for E given by (2) with ui being scalars, at
most n + 1 speeds of convergence occur (depending on pi’s).

While studying the exact decay for solutions to (DP) we look at the equa-
tions for single coordinates of u

(3) üi + g(u̇)u̇i + p‖ui‖
p−2ui = 0, i = 1, 2, . . . ,n.

Since we assume E to be in the special form (2) (a slightly more general case
is considered below), these equations are coupled only by the term g(u̇)ui.
So, we consider these coordinate equations as non-autonomous problems

(4) ü j + g j(u̇ j, t)u̇ j + E(u j) = 0,

where the dependence of g on other coordinates u̇i, i , j is hidden in the
dependence on t, in particular, g j is defined by

g j(s, t) = g((u̇1(t), . . . , u̇ j−1(t), s, u̇ j+1(t), . . . , u̇n(t))).

Therefore, we also give results on decay and oscilations for non-autonomous
equations of the type (4) that may be of interest on their own. The results for
α < 1 − 2

p are again similar to those in [9], [1]. Decay estimates for another
type of non-autonomous damping were derived in [3], [7], [10].

1Some decay estimates for even more general E satisfying only the Łojasiewicz inequality
were obtained in [8], [6] and [4] but these estimates are in many cases not optimal and it is
an open question, whether they are optimal at least for some problems.
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The paper is organized as follows. In Section 2 we present basic definitions
and assumptions valid throughout the rest of the paper. Section 3 is devoted
to the scalar autonomous problems and Section 4 to scalar non-autonomous
problems. The results in this section are based on comparison with the
autonomous case. The degenerate vector-valued problem (DP) is studied in
Section 5.

2. Basic definitions and preliminaries

In this paper we study three types of equations: the scalar autonomous
problem

(AP) ü + g(u̇)u̇ + E′(u) = 0,

the scalar non-autonomous problem

(NP) ü + g(u̇, t)u̇ + E′(u) = 0,

and the degenerate vector valued problem (DP). The assumption on g ∈
C(R) for (AP), resp. g ∈ C(Rn) for (DP) is

(G) cg|s|α ≤ g(s) ≤ Cg|s|α,

in the non-autonomous case we assume only g ∈ C(R ×R+),

(Gn) cg|s|α ≤ g(s, t)

for some α ∈ (0, 1), cg, Cg > 0 and all s in any bounded set (with cg, Cg
depending on the set), and all t ≥ 0 in case of (Gn). The potential function
E ∈ C2(R) in (AP), (NP) is assumed to satisfy

(E) cE|s|p ≤ E(s) ≤ CE|s|p, cE|s|p ≤ E′(s)s ≤ CE|s|p

for some p ≥ 2, cE, CE > 0 and all s in a bounded set. In case of (DP) we
assume E ∈ C2(Rn) is in the form

E(u) = E1(u1) + · · · + En(un),

where u = (u1,u2, . . . ,un), Ei ∈ C2(R) satisfy (E) with exponents pi respec-
tively, and p1 ≥ p2 ≥ · · · ≥ pn ≥ 2.

By a solution to (AP), (NP), (DP) we always mean a classical solution
defined on R+. If u (resp. ui) is a solution to one these equations, then v
(resp. vi) always denotes its velocity, i.e. v = u̇ (resp. vi = u̇i). We denote

E(u, v) =
1
2
‖v‖ + E(u).

This function is non-increasing along solutions since

d
dt
E(u(t), v(t)) = 〈v(t), v̇(t)〉 + 〈∇E(u(t)), v(t)〉 = −g(v(t))‖v(t)‖2 ≤ 0,
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whenever u is a solution to any of the studied equations. Sometimes, we
write E(t) instead of E(u(t), v(t)).

If α ≥ 1 − 2
p (p, α from (E), (Gn), (G)), we speak about the oscilatory

case, otherwise we speak about the non-oscilatory case. In the non-oscilatory
case, we say that the solution u is a fast solution if it converges to zero and
limt→+∞

‖v(t)‖
E(u(t)) = +∞ (i.e. the kinetic energy is much bigger than the potential

energy of u as t tends to infinity). On the other hand, u si called a slow
solution if it converges to zero and limt→+∞

‖v(t)‖
E(u(t)) = 0.

Let us now present two easy lemmas that show that the fast solutions con-
verge to zero faster than slow solutions and how the speed of convergence
depend on the trajectory in the uv plane, i.e. on the ratio of ‖u(t)‖ and ‖v(t)‖.
Let X(a, b) = {u ∈ C2((a, b)) : u̇ > 0 on (a, b)}. By trajectory of u we mean the
function Vu : u(t) 7→ v(t), i.e. Vu(x) = v(u−1(x)), x ∈ (u(a),u(b)), where v = u̇.

Lemma 1. Let a < x < y < b and let u1, u2 ∈ X(a, b) with Vu1 ≥ Vu2 on [x, y].
Then u2 needs more time than u1 to get from x to y, i.e. if u1(t1) = x = u2(t2) and
u1(s1) = y = u2(s2), then s1 − t1 ≤ s2 − t2. Moreover, it holds that u2 ≤ u1 on
(t1, s1). If, moreover, Vu1(x) > Vu2(x), then s1 − t1 < s2 − t2 and u2 < u1 on (t1, s1).

Proof. We have for i = 1, 2

si − ti =

∫ si

ti

1 dt =

∫ si

ti

u̇i(t)
vi(t)

dt =

∫ si

ti

u̇i(t)
Vui(u(t))

dt =

∫ y

x

1
Vui(u)

du.

The assertion now follows easily from Vu1 ≥ Vu2 (resp. Vu1 > Vu2 on a
neighborhood of x). �

Lemma 2. Let u ∈ X(0,+∞) with limt→+∞(u(t), v(t)) = 0. If Vu(x) ≥ cxa on
(−ε, 0) for some a > 1, ε > 0, then u(t) ≤ c̃t−

1
a−1 for some c̃ and all t large enough.

If Vu(x) ≤ cxa on (−ε, 0) for some a > 1, ε > 0, then u(t) ≥ c̃t−
1

a−1 for some c̃ and all
t large enough.

Proof. Vu(x) ≥ c|x|a means v(t) = u̇(t) ≥ c|u(t)|a. Dividing by |u(t)|a and
integrating from t0 to t we get

1
1 − a

(
|u(t0)|1−a

− |u(t)|1−a
)
≥ c(t − t0),

i.e.

|u(t)| ≤
(
(a − 1)c(t − t0) + |u(t0)|1−a

) 1
1−a
≤ c̃t−

1
a−1 .

The opposite estimate follows similarly. �

Finally, f (t) ∼ h(t) means that there exist T, c, C > 0 such that c f (t) ≤ h(t) ≤
Cg(t) for all t ≥ T. By

|u(t)| ≤ C f (t), |u(t)| ≥ C f (t), |v(t)| ≤ C f (t), |v(t)| ≥ C f (t)
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in the Theorems and Lemmas below we mean that there exist C > 0, T > 0
such that the inequality holds for all t ≥ T.

3. Scalar autonomous problem

In this section we study the autonomous problem (AP). We assume that
g satisfies (G) and E satisfies (E) with α < 1 − 2

p , i.e. the non-oscilatory
case. We first formulate the main result, Theorem 3. In fact, it is a minor
generalization of results proved by Haraux in [9]. However, important are
the lemmas below leading to the proof of the Theorem, they are needed in
the next section for investigation of the non-autonomous problem.

Theorem 3. Let α < 1− 2
p . Then all solutions converge to zero and do not oscilate

(e.g. u, v change sign only finitely many times). Further, any solution to (AP) is
either fast or slow. Moreover, every fast solution satisfies

(5) u(t) ∼ t−
1−α
α , v(t) ∼ t−

1
α

and every slow solution satisfies

(6) u(t) ∼ t−
α+1

p−2−α , v(t) ∼ t−
α+1

p−2−α−1 = t−
p−1

p−2−α .

We first show that some sets are positively invariant for solutions of (AP),
namely sets Oε,K, Nε,K, Pδ,η defined below.

Lemma 4. Denote κ0 = cE
Cg

and κ =
cg

CE
. Let K ∈ (0, κ) and ε > 0 satisfy

(7) εp−2−αp
≤

(
CE(α + 1)

p − 1

)1+α

(κ − K)1+αK1−α.

Then the sets

(8)
Nε,K =

{
(u, v) ∈ R2 : −ε ≤ u ≤ 0, κ

1
α+1
0 |u|

p−1
α+1 ≤ v ≤ K−

1
α+1 |u|

p−1
α+1

}
Oε,K =

{
(u, v) ∈ R2 : −ε ≤ u ≤ 0, 0 ≤ v ≤ K−

1
α+1 |u|

p−1
α+1

}
are positively invariant for solutions (u, u̇) of (AP). Moreover, any solution in Oε,K
is a slow solution, it enters the set Nε,K, and satisfies (6).

Proof. We show that the vectors (u̇, v̇) point into N resp. O (we omit the
subscripts) if (u, v) ∈ ∂N resp. ∂O. For u = −ε, v ≥ 0 and v = 0, u < 0 it is

obvious. For v = κ
1
α+1
0 |u|

p−1
α+1 , u < 0 it follows from

v̇ = −g(v)v − E′(u) ≥ −Cgvα+1 + cE|u|p−1 = 0 >
d

du
κ
−

1
α+1

0 |u|
p−1
α+1 .
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It remains to investigate the upper part of the boundary, i.e. v(t) = K−
1
α+1 |u|

p−1
α+1 ,

u < 0. Here we have

v̇
u̇
≤
−cg|v|α+1 + CE|u|p−1

v
= CE

(
K −

cg

CE

)
vα = CE

(
K −

cg

CE

)
K−

α
α+1 |u|

α(p−1)
α+1

and
d

du
K−

1
α+1 |u|

p−1
α+1 = −K−

1
α+1

p − 1
α + 1

|u|
p−2−α
α+1 .

Therefore, v̇
u̇ <

d
duK−

1
α+1 |u|

p−1
α+1 < 0 if and only if K ∈ (0, κ) and

|u|
p−2−αp
α+1 ≤

α + 1
p − 1

K
1−α
1+αCE

( cg

CE
− K

)
and the positive invariance is proved.

Since p−1
1+α >

p
2 we have |u|

p−1
1+α < C|u|

p
2 (for all u in a bounded set), and

therefore any solution in O is slow. Moreover, if a solution (u, v) belongs
to O \ N, then functions u and v are increasing, and therefore the solution

enters N. By Lemma 2, u(t) ∼ t−
α+1

p−2−α and due to κ−
1
α+1

0 |u|
p−1
α+1 ≤ v ≤ K−

1
α+1 |u|

p−1
α+1

we have v(t) ∼ t−
α+1

p−2−α
p−1
1+α = t−

p−1
p−2−α . �

Lemma 5. There exist δ, η > 0 such that the set

Pδ,η =
{
(u, v) ∈ R2 : −δ ≤ u < 0, 0 ≤ v ≤ η|u|

1
1−α

}
is positively invariant for (AP) and any solution to (AP) with (u(t0), v(t0)) ∈ Pδ,η
for some t0 > 0 is a slow solution and satisfies (6).

Proof. Let us define K(u) = C−
1

1−α |u|
p−2−αp

1−α , where C =
( cg(1+α)

2(p−1)

)1+α
. Let δ > 0 be

such that K(u) ≤ cg

2CE
for all u ∈ [−δ, 0]. Then for any u ∈ [−δ, 0], inequality

(7) holds with (ε,K) = (u,K(u)) and therefore (by Lemma 4) the set O−u,K(u) is
positively invariant. We have

K(u)−
1

1+α |u|
p−1
α+1 = C

1
1−α2 |u|−

p−2−αp
1−α2 |u|

p−1
α+1 = C

1
1−α2 |u|

1
1−α .

Set η = C
1

1−α2 . If 0 ≤ v(t0) ≤ η|u(t0)|
1

1−α , then 0 ≤ v(t0) ≤ K(u(t0))−
1

1+α |u(t0)|
p−1
α+1 ,

i.e. (u(t0), v(t0)) ∈ O−u(t0),K(u(t0)). Then (u(t), v(t)) ∈ O−u(t0),K(u(t0)) for all t ≥ t0 and
by Lemma 4 it is a slow solution and satisfies (6). �

Lemma 6. Let us consider two sequences (un), (vn) satisfying lim un = 0 and
un < 0, 0 < vn < M|un|

p
2 for all n. Then, for all n large enough, (un, vn) ∈ Pδ,η, with

δ, η from Lemma 5.
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Proof. Let δ, η be the constants form Lemma 5, then obviously u(tn) ≥ −δ for
all n large enough and

v(tn) ≤M|u(tn)|
p
2 = η|u(tn)|

1
1−α

M
η
|u(tn)|

p−2−αp
2(1−α) ≤ η|u(tn)|

1
1−α

for large n since p−2−αp
2(1−α) > 0. �

Proposition 7. Let u be a solution to (AP) satisfying u < 0, v = u̇ > 0 on (T0,+∞)
and (u(t), v(t)) → (0, 0). Then u is either fast solution or slow solution. In the
latter case, u satisfies (6).

Proof. If u is not a fast solution, then there exists M > 0 such that v(tn)

|u(tn)|
p
2
≤ M

for a sequence tn ↗ +∞. By Lemma 6 we have (u(tn), v(tn)) ∈ Pδ,η for large n.
Hence u is a slow solution by Lemma 5 and (6) holds. �

Lemma 8. Any fast solution u of (AP) with u < 0, v > 0 on (T,+∞) satisfies (5).

Proof. By Lemma 5, any fast solution satisfies v(t) > η|u(t)|
1

1−α for all t suffi-
ciently large. By Lemma 2, u(t) ≤ ct−

1−α
α . It follows that

v̇ ≤ −cgvα+1 + CE|u|p−1
≤ −κvα+1 + C|v|(p−1)(1−α)

≤ (−κ + ε)|v|1+α

since (p− 1)(1−α) = p−αp− 1 +α = p− 2−αp + (1 +α) > 1 +α. By Lemma 2
we have v(t) ≤ Ct−

1
α . Since u is a fast solution, we have E(t) ∼ v(t)2 and due

to E(t) ≥ ct−
2
α we have v(t) ≥ ct−

1
α . Now v(t) ∼ t−

1
α and by integration we

have u(t) ∼ t−
1−α
α . �

Proof of Theorem 3. Convergence to zero follows from Theorem 9 below and
absence of oscilations follows from Proposition 11 below. Then any solution
satisfies u < 0, v > 0 on (T,+∞) or symmetrically u > 0, v < 0. By Proposition
7, any solution is slow or fast and slow solutions satisfy (6). By Lemma 8,
fast solutions satisfy (5). �

4. Nonautonomous damping

In this section we study the non-autonomous problem (NP). We keep the
assumption (E) and assume that g satisfies (Gn). We show that for g bounded
all solutions converge to zero and that they do not oscilate if α < 1− 2

p . Then
we study decay of the non-oscilatory solutions.

Theorem 9. Let g satisfy (Gn) for some α ≥ 0 and g(s, t) ≤ M for all s from a
bounded set and all t ≥ 0. Then any solution to (NP) converges to zero as t→ +∞.

Proof. Let u be a solution to (NP). Since d
dtE(u(t), v(t)) = −g(v(t), t)v2(t) ≤ 0, it

follows that (u(t), v(t)) is bounded and the omega-limit set

ω(u, v) =
{
(ϕ,ψ) ∈ R2 : ∃tn ↗ +∞, u(tn)→ ϕ, v(tn)→ ψ

}



8 TOMÁŠ BÁRTA

is nonempty. Let (ϕ,ψ) ∈ ω(u, v). If ψ , 0, then d
dtE(u(t), v(t)) < −cg|v(t)|α+2

≤

−ε < 0 for all t such that (u(t), v(t)) belongs to a small neighborhood N of
(ϕ,ψ). Due to boundedness of u̇, v̇ the solution (u, v) spends infinite time
in N, which is a contradiction with boundedness of E(u(t), v(t)) from below.
So, ψ = 0. Since ω is connected, it is an interval [a, b] × {0}. However, E is
constant on ω, hence ω is a singleton, i.e. lim u(t) = ϕ.

Since g(v(t), t) is bounded we have for t → +∞ g(v(t), t)v(t) → 0. Since
E′(u(t)) → E′(ϕ) we get from (NP) v̇(t) → −E′(ϕ). Therefore, E′(ϕ) = 0
(otherwise, we have a contradiction with v(t) → 0). It follow by (E) that
ϕ = 0. �

Remark 1. It can be seen from the proof of Theorem 9 that if we omit the assumtion
on boundedness of g, then we would still have (u(t), v(t)) → (ϕ, 0). However, ϕ
is not neccessarilly zero. In fact, we show that u(t) = 1 + t−1 solves (for t large
enough) (NP) with

g(s, t) = |s|α + max
{
0, 2t−1 + t2E(1 + t−1) − t−2α

}
.

Since v(t) = −t−2 we have for large t (such that 2t−1 + t2E(1 + t−1) − t−2α > 0)

g(v(t), t)v(t) =
(
t−2α + 2t−1 + t2E(1 + t−1) − t−2α

)
(−t−2) = −2t−3

− E(1 + t−1),

which is exactly −v̇(t) − E(u(t)).

Let us prove the following comparison Lemma.

Lemma 10. Let 0 ≤ g1(s, t) < g2(s, t̃) for any s ∈ R, t, t̃ ≥ 0 and let E′(s)s > 0 for
all s , 0. Let ui, i = 1, 2 be, respectively, solutions to

(9) üi + gi(u̇i, t)u̇i + E′(ui) = 0, i = 1, 2

with u1(t0) = u2(t0) < 0, v1(t0) = v2(t0) > 0 for some t0 ≥ 0. Let t1 > t0 be
such that u1 < 0, v1 > 0 on (t0, t1). Then u̇2 > 0 and u2 < u1 on (t0, t1) and the
trajectories Vi(x) = u̇i(u−1

i (x)) satisfy V2(x) < V1(x) on (u1(t0),u1(t1)).

Proof. Obviously, the solution (u2, v2) cannot cross the halfline {u < 0, v = 0}
since v̇2(t) = −E(u2(t)) > 0 on this halfline. So, v2 = u̇2 stays positive as long
as u2 < 0. Let t2 = sup{t ∈ [t0, t1] : u2 < 0 on [t0, t]}. Then either t2 = t1 or
u(t2) = 0. Then trajectories V1, resp. V2 are well defined on (u1(t0),u1(t1)),
resp. (u2(t0),u2(t2)). For t ∈ [t0, ti] it holds that

(10) V′i (ui(t)) =
v̇i(t)
u̇i(t)

=
−gi(vi(t), t)vi(t) − E′(ui(t))

vi(t)
.

So, if for any s, t ∈ (t0, t2) we have u1(t) = u2(s), v1(t) = v2(s), then V′2(u2(s)) <
V′1(u2(s)) (since g1 < g2 and other terms in (10) are equal for i = 1 and i = 2).
This leads to contradiction (take infimum of such s), and therefore V2 < V1
on (u1(t0),min{u1(t1),u2(t2)}). It follows from Lemma 1 that u2 < u1 on (t0, t2)
and t2 = t1. �
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Proposition 11. Let g satisfy (Gn) for some α < 1 − 2
p and let u be a solution to

(NP) such that limt→+∞ = 0. Then u does not oscilate, i.e. u, u̇ do not change sign
on (t0,+∞) for some t0 ≥ 0.

Proof. Let us assume for contradiction that a solution u to (NP) oscilates, i.e.
there exists a sequence tn ↗ +∞ such that u(tn) = 0 or v(tn) = 0. We show
that for every ε > 0 there exists Tε such that v(Tε) = 0 and |u(Tε)| ≤ ε. In
fact, if v(t) , 0 on some (T,+∞), then u would be monotone on (T,+∞) and
it would be a contradiction with existence of tn. So, there exists a sequence
sn ↗ +∞with v(sn) = 0 and since any solution converges to zero, for large n
we have |u(sn)| ≤ ε.

Let us without loss of generality assume that u(sn) < 0. Then v̇(sn) =
−E′(u(sn)) > 0, so the solution enters the set Pδ,η defined in Lemma 5. We
show that Pδ,η is positively invariant for solutions of (NP). Obviously, for
u = −δ, v > 0 we have u̇ > 0, for v = 0, u < 0 we have v̇ = −E(u) > 0 and for
the remaining part of the boundary v = η|u|

1
1−α we have u̇ = u̇1, v̇ ≤ v̇1, where

u1 is the solution to (AP) with g(s) = cg|s|α going through the same point of
the boundary. �

In the following we consider only solutions satisfying u < 0, v = u̇ >
0 on (T,+∞). We now formulate and prove two main theorems of this
section. Theorem 12 is applied in the next section. In fact, it says that any
fast solution converges faster than any slow solution, even for solutions to
different problems with the same α (and possibly different p’s). Theorem
13 says that if the non-autonomous part of the damping is smaller than the
natural damping given by the velocity of slow solutions to the corresponding
autonomous problem, then the non-autonomous part does not influence the
decay.

Theorem 12. Let g satisfy (Gn) with α < 1 − 2
p . Then any solution to (NP)

which converges to zero is either fast or slow. Further, slow solutions satisfy |u(t)| ≥
ct−

α+1
p−2−α , v(t) ≤ C|u(t)|

p−1
1+α and fast solutions satisfy |u(t)| ≤ ct−

1−α
α , c|u(t)|

1
1−α ≤ v(t) ≤

Ct−
1
α .

Proof. Let u be a solution that is not fast. Then there exists M > 0 such that
v(tn)

|u(tn)|
p
2
≤ M for a sequence tn ↗ +∞. By Lemma 6, there exists n ∈ N such

that (u(tn), v(tn)) ∈ Pδ,η. Let us consider the solution u1 of the autonomous
problem (AP) with u1(tn) = u(tn), v1(tn) = v(tn). By Lemma 5, u1 is a slow
solution to (AP) and it satisfies (6) by Theorem 3. By the comparison Lemma
10 and (Gn), the trajectories satisfy V(x) < V1(x) and u(x) ≥ u1(x) ∼ t−

α+1
p−2−α

(and (u(t), v(t)) belongs to Oε,K for some ε, K, what we use in the next
Theorem).
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Let u be a fast solution. Then v(t) > η|u(t)|
1

1−α on some interval (T,+∞)
(otherwise, we would proceed as in the first paragraph of this proof and
obtain that u is a slow solution). By Lemma 2 we have u(t) ≤ Ct−

1−α
α . Further,

we have

v̇ = −g(v, t)v + E′(u) ≤ −cgv1+α + CEη
1−pv(p−1)(1−α)

≤ (−c + ε)v1+α

since 1 + α > (p − 1)(1 − α). Therefore, (again by Lemma (2)) we obtain
v(t) ≤ Ct−

1
α . �

Theorem 13. Let g satisfy (Gn) with α < 1 − 2
p and

(11) g(s, t) ≤ Dg(|s| + t−
p−1

p−2−α )α.

Then any slow solution satisfies (6).

Proof. In the proof of Theorem 12 we have shown that any slow solution
(u(t), v(t)) belongs to Oε,K for some ε, K and all t ≥ tn. Let us set T = tn and

take ε > 0 such that v(T) > εT−
p−1

p−2−α . We show that that v(t) > εt−
p−1

p−2−α for all

t > T. In fact, let t0 = inf{t > T : v(t) ≤ εt−
p−1

p−2−α }. Then v(t0) = εt
−

p−1
p−2−α

0 and by

Theorem 12 we have |u(t0)| ≥ ct
−

α+1
p−2−α

0 , and therefore

v̇(t0) = −g(v, t0)v + E′(u) ≥ −Dg(1 + ε)αt
−

p−1
p−2−αα

0 εt
−

p−1
p−2−α

0 + cEcp−1t
−

(α+1)(p−1)
p−2−α

0

= (cp−1cE −Dg(1 + ε)αε)t
−

α+1
p−2−α (p−1)

0 > 0

if ε is small enough. It follows that for t ∈ (t0 − δ, t0) we have

v(t) < v(t0) = εt
−

p−1
p−2−α

0 < εt−
p−1

p−2−α ,

contradiction with definition of t0. Hence, v(t) > εt−
p−1

p−2−α holds on (T,+∞),
and therefore

g(v, t)v < C(ε)vα+1 on (T,+∞).
Now, if we compare the solution u with the solution u2 of ü + C(ε)u̇α+1

−

p|u|p−1 = 0, u2(T) = u(T), v2(T) = v(T), the comparison Lemma 10 yields
|u(t)| ≤ |u2(t)| ∼ Ct−

α+1
p−2−α . Now we have u(t) ∼ t−

α+1
p−2−α and due to v ≤ cu

p−1
α+1

(since (u(t), v(t)) ∈ Oε,K) we have v(t) ∼ t−
α+1

p−2−α−1. �

5. Degenerate potential

In this section we investigate the problem (DP). We assume that g satisfies
(G) and E ∈ C2(Rn) is in the form

E(u) = E1(u1) + · · · + En(un),
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where u = (u1,u2, . . . ,un), Ei ∈ C2(R) satisfy (E) with exponents pi respec-
tively, and p1 ≥ p2 ≥ · · · ≥ pn ≥ 2. Then (DP) can be written as the following
system of equations for u = (u1, . . . ,un)

(12) üi + g(u̇)u̇i + E′i(ui) = 0, i = 1, 2, . . . ,n.

The equations are coupled only by the term g(u̇). Let us start with the decay
estimates for solutions of (DP).

Theorem 14. If α ≥ 1 − 2
p1

, then

(13) E(t) ∼ C2t−
2
α .

If α < 1 − 2
p1

, then for any solution u of (DP) it holds that

(14) C1t−
(1+α)p1
p1−2−α ≥ E(t) ≥ C2t−

2
α .

Remark 2. Let us remark that Theorem 14 remains valid (with the same proof) if
ui are vector valued functions with values inRni , g : R

∑
ni → R and Ei : Rni → R.

We can also assume that Ei satisfy (1) and ‖∇2E(u)‖ ≤ ‖∇E(u)‖
1−2θ
1−θ with θ = 1

pi

instead of (E). Then Theorem (14) remains valid with a similar proof where we
define H j(t) = E j(t) + ε‖∇E j(u j(t))‖β j〈∇E j(u j), v j〉 with appropriate β j’s, cf. [5].

Proof of Theorem 14. Let u = (u1, . . . ,un) be a solution to (DP). Let us define

E j(t) =
1

2n
‖v(t)‖2 + E j(u j(t))

and
H j(t) = E j(t) + ε|u j(t)|β ju jv j

with β j =
αp j

2 if α ≥ 1 − 2
p j

and β j =
p j−2−α
α+1 otherwise.

The last term in the definition of H j is estimated by (we write u j instead
of u j(t))

ε
(
|u j|

2(β j+1) + |v j|
2
)
≤ Cε

(
E j(u j)

2
pj

(β j+1)
+ ‖v‖2

)
≤ Cε

(
E j(u j) + ‖v‖2

)
,

where we applied the Young inequality, then E j(u) ∼ up j and finally 2(β j+1) ≥
p j and boundedness of E j(u j(t)). It follows that H j(t) ∼ E j(t). Further, we
have (we write v, u j instead of v(t), u j(t)) for every t ≥ 0

(15)

H′j(t) = −〈g(v)v j, v j〉 − ε|u j|
β ju jE′j(u j)

+ εβ j|u j|
β jv2

j

+ ε|u j|
β jv2

j

− ε|u j|
β ju jg(v)v j.
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Here the first line satisfies (due to (G), (E))

−〈g(v)v j, v j〉 − ε|u j|
β ju jE′j(u j) ∼ −|v j|

α+2
− |v j|

2
∑
k, j

|vk|
α
− ε|u j|

β j+p j .

The second and third lines in (15) are by the Young inequality estimated by

Cε|v j|
α+2 +

ε
4
|u j|

q
≤ Cε|v j|

α+2 +
ε
4
|u j|

β j+p j

since q = α+2
α β j ≥ β j + p j. The last line in (15) is estimated by

ε|u j|
β j+1
|v j|

n∑
k=1

|vk|
α
≤
ε
4
|u j|

β j+p j + Cε|v j|

β j+pj
pj−1

 n∑
k=1

|vk|
α


β j+pj
pj−1

.

Since
β j+p j

p j−1 ≥
α+2
α+1 , the last expression is estimated by

ε
4
|u j|

β j+p j + Cε|v j|
α+2 + Cε|v j|

α+2
α+1

∑
k, j

|vk|
α α+2
α+1

and by the Young inequality this is less than
ε
4
|u j|

β j+p j + Cε|v j|
α+2 + Cε

∑
|vk|

α+2.

This term cannot be absorbed into the first line of (15) but after summing
over j it can be absorbed and we obtain

H′ =
∑

H′j ∼ −
∑
|v j|

α+2
− ε

∑
|u j|

β j+p j ,

i.e.,
H′ ∼ −

(
‖v‖α+2 +

∑
|u j|

β j+p j
)
.

It follows that

(16) −
d
dt

H′

HB ∼
‖v‖α+2 +

∑
|u j|

β j+p j(
‖v‖2 +

∑
|u j|

p j
)B .

The right-hand side is bounded from below by a positive constant if 2B ≥
α + 2, Bp j ≥ β j + p j for all j. For oscilatory coodrinates, i.e. if α ≥ 1 − 2

p j
these

inequalities hold if B ≥ α+2
2 . So, if α ≥ 1 − 2

p1
(all coordinates are oscilatory),

we have
E(t) ∼ H(t) ≤ Ct−

1
B−1 = Ct−

2
α .

For the non-ocsilatory coordinates α < 1 − 2
p j

we need to take a larger B, in

particular B ≥ (1 − 1
p j

)α+2
α+1 . Since p1 is the largest among the non-oscilatory
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coordinates, number B = (1 − 1
p1

)α+2
α+1 is the least suitable and we obtain

E(t) ∼ H(t) ≤ Ct−
1

B−1 = Ct−
(1+α)p1
p1−2−α .

On the other hand, the right-hand side of (16) is bounded from above if
2B ≤ α + 2, Bp j ≤ β j + p j for all j. Here, the best choice (largest possible B) is
always B = α+2

2 (for both oscilatory and non-oscilatory coordinates) and we
obtain

E ∼ H(t) ≥ Ct−
2
α ,

which completes the proof. �

From now on, let us assume that ui are scalar valued. For a solution u =
(u1, . . . ,un) and any fixed i ∈ {1, 2, . . . ,n} let us denote f j(t) =

∑
i, j u̇2

i (t) ≥ 0.
Then u j solves the nonautonomous problem (4) with

g j(u̇i, t) = g
(√

u̇2
j + f j(t)

)
≥ cg

(
u̇2

j + f j(t)
) α

2
≥ cg|u̇ j|

α,

so (Gn) is satisfied. Moreover, by Theorem 14 we know that every solution
converges to zero. Now, we can apply the results from the previous section
to obtain more gentle properties of solutions. In particular, we show that
each solution to (DP) has one of (at most) n + 1 speeds of convergence to the
origin that are given by fast and slow solutions of the equations (12). First
of all, by Theorem 12 we have the following.

Corollary 15. Let u = (u1, . . . ,un) be a solution to (DP). If i ∈ {1, . . . ,n} is such
that α < 1 − 2

pi
, then ui does not oscilate. Moreover, for such i, function ui (as a

solution of (4)) is either fast and satisfies

|u(t)| ≤ Ct−
1−α
α , |v(t)| ≤ Ct−

1
α

or slow and satisfies

|u(t)| ≥ Ct−
1+α

p−2−α .

So, we speak about a non-oscilatory coordinate if α < 1 − 2
pi

and about
oscilatory coordinate if α ≥ 1 − 2

pi
(we do not know whether the oscilatory

coordinates really oscilate) and a non-oscilatory coordinate of a particular
solution can be called slow coordinate or fast coordinate. We now show that
there appear at most n+1 different rates of convergence of solutions to (DP),
in particular, if there are k non-oscilatory coordinates, then each solution has
one of the k + 1 possible decay rates.

Theorem 16. Let m be such that 1 − 2
pm+1
≤ α < 1 − 2

pm
(set m = 0 if 1 − 2

p j
≤ α

for all j and m = n if α < 1 − 2
p j

for all j). Then for any solution to (DP) its energy
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satisfies

(17) E(t) ∼ t−
2
α or E(t) ∼ t

−
(1+α)pj
pj−2−α

for some j ∈ {1, . . . ,m}. Moreover, to each of the m + 1 decay rates there exists a
solution with this decay.

Proof. The moreover part is easy, if all coordinates except u j are zero, then u j

satisfies (AP). Hence, by [9], it decays as t−
α
2 if it is an oscilatory coordinate

and if it is a non-oscilatory coordinate, then it is a slow solution with E j(t) ∼

t
−

(1+α)pj
pj−2−α or a fast solution with E j(t) ∼ t−

2
α . Existence of slow solutions follows

from Lemma 4, existence of fast solutions was proved in [9, Theorem 3.4]
for g(s) = c|s|α, E(u) = |u|p and the general case can be proved by modifying
that proof. It remains to show that no other speeds of convergence appear.

If m = 0, i.e. all coordinates are oscilatory, the statement follows from
Theorem 14. Let m ≥ 1. By Corollary 15, any non-oscilatory coodrinate
behaves like fast or slow solution. Let u = (u1, . . . ,un) be a solution to
(DP). Let us first assume, that u has a slow coordinate and let j be the first

coordinate, which is slow, i.e.
v j(t)2

|u j(t)|p
→ 0 and vi(t)2

|ui(t)|p
→ +∞ for i = 1, . . . , j − 1.

We show that u satisfies E(t) ∼ t
−

(1+α)pj
pj−2−α .

For i = 1, . . . , j − 1 we have by Theorem 12 |ui(t)| ≤ Ct−
1−α
α , vi(t) ≤ Ct−

1
α .

On the other hand, u j satisfies |u j(t)| ≥ Ct
−

α+1
pj−2−α . Since βi + pi = (pi − 1)2+α

1+α ,
β j + p j = (p j − 1)2+α

1+α , and pi ≥ p j, we have

|ui|
βi+pi ≤ |u j|

βi+pi ≤ C|u j|
β j+p j

and
Ei(ui) ∼ |ui|

pi ≤ |u j|
pi ≤ C|u j|

p j ∼ E j(u j)
Now, as in the proof of Theorem 14 we obtain (16) and due to

n∑
i=1

Ei(ui) ∼
n∑

i= j

Ei(ui) and
n∑

i=1

|ui|
βi+pi ∼

n∑
i= j

|ui|
βi+pi

we can sum over i ≥ j only and obtain

−
d
dt

H′

HB ∼
‖v‖α+2 +

∑n
i= j |ui|

βi+pi(
‖v‖2 +

∑n
i= j |ui|

pi

)B .

We can proceed as in the proof of Theorem 14, take B = (1−θ j)α+2
α+1 and obtain

ct−
2
α ≤ E(t) ∼ H(t) ≤ Ct

−
(1+α)pj
pj−2−α .
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By Theorem 12 we have |u j(t)| ≥ ct
−

1+α
pj−2−α . Hence, |E j(t)| ≥ ct

−
(1+α)pj
pj−2−α and

therefore E(t) ∼ t
−

(1+α)pj
pj−2−α .

It remains to discuss the case when all non-oscilatory coordinates are fast.
We show that in this caseE(t) ∼ t−

2
α . If there are no oscilatory coordinates, we

are done, since fast coordinates satisfy Ei(t) ∼ vi(t)2
≤ Ct−

2
α by Theorem 12.

Let us now assume that coordinates 1, . . . , j − 1 are fast non-oscilatory
and coordinates j, . . . , n are oscilatory. We show that the fast coordinates
i = 1, . . . , j − 1 satisfy

(18) Ei(ui(t)) ≤ Cv2
i (t) and |ui(t)|βi+pi ≤ Cvi(t)2+α,

and therefore we can sum over i ≥ j again, i.e.

(19) −
d
dt

H′

HB ∼
‖v‖α+2 +

∑n
i=1 |ui|

βi+pi(
‖v‖2 +

∑n
i=1 Ei(ui)

)B ∼
‖v‖α+2 +

∑n
i= j |ui|

βi+pi(
‖v‖2 +

∑n
i= j |ui|

pi

)B .

In fact, the first inequality in (18) follows immediately from the definition of
fast solutions and the second inequality in (18) follows from

|ui|
βi+pi = |ui(t)|

2+α
1+α (pi−1)

≤ Cvi(t)
2+α
1+α (pi−1)(1−α)

≤ Cvi(t)2+α

since 1−α
1+α (pi−1) ≥ 1. Now, we can again proceed as in the proof of Theorem 14,

take B = 2+α
2 and obtain that the right-hand side in (19) is larger than a

positive constant, which yields E(t) ∼ H(t) ≤ Ct−
2
α . Hence, E(t) ∼ t−

2
α . �
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