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Abstract. We introduce a new class of planar mappings that allows for cavitations
and fractures. The class is the set of strict limits of planar BV homeomorphisms.
Each mapping from this class has a proper pointwise representative which is a
multifunction, we show that it maps disjoint sets to essentially disjoint sets and
that they have an inverse as a proper multifunction. We also characterize and
study cavities and fractures of these mappings.

1. Introduction

Let Ω ⊂ Rn be a domain and let f : Ω→ Rn be a mapping. In his pioneering works
J. M. Ball [2], [3] studied mappings that can serve as a class of deformations in non-
linear elasticity. He studied the existence of energy minimizers, their continuity and
invertibility. The study of mappings f in this spirit was later extended e.g. by Šverák
[26] and Müller, Tang and Yan [23]. Furthermore, in the following works Müller and
Spector [22] (see also [25, 7]) extended this class of mappings to include also cavita-
tions (see Example 7.1 below) that appear naturally in some physical deformations
(see e.g. [4] and references given therein). In these papers the authors were studying
properties of elastic deformations allowing or forbidding cavitation using the (INV)
condition. Informally speaking this condition tells us that the image f(B(x, r)) lies
inside f(∂B(x, r)) and image of f(R2 \B(x, r)) lies outside of f(∂B(x, r)).

Moreover, in his survey papers Ball ([4] and [5]) asks for the extension of these mod-
els to also include the model of fractures; as in many physically relevant deformations
the material may break. This was done in a series of papers by Henao and Mora-
Corral [12, 13, 14, 15] where they added some energy term that corresponds to the
surface energy of the fracture. Also in these models the corresponding deformation
is one-to-one a.e.

We propose a different approach for the study of deformations, although we study
only the planar mappings. For simplicity we assume that f : [0, 1]2 → [0, 1]2 and
moreover we assume that f is the identity on the boundary. This prescription of the
boundary values corresponds to the fact that we hold our map on the boundary (thus
prescribing the Dirichlet boundary data) and we minimize the elastic energy inside.
Analogously it would be possible to study mappings fk : Ω → ∆ where Ω and ∆
are simply connected Lipschitz planar domains with prescribed boundary values that
are the same for all k. For simplicity we restrict to the case Ω = ∆ = (0, 1)2 and
fk(x) = x on the boundary but this is not essential for the theory.

2000 Mathematics Subject Classification. 30C65, 26B30, 16E35.
The first author was supported by the grant DFG PR 1687/1-1, the second author was supported
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The basic function space for us is the class of mappings of bounded variation BV
(see e.g. [1]) as it naturally contains fractures and cavities. To keep some notion
of invertibility we assume that our f is a strict limit of BV -homeomorphisms fk :
[0, 1]2 → [0, 1]2 (with fk(x) = x for every x ∈ ∂[0, 1]2), i.e.

fk → f in L1 and |Dfk|([0, 1]2)→ |Df |([0, 1]2).

It is easy to see that this class of mappings can model both cavitations and fractures
(see Examples 7.1 and 7.2 below). Up to a subsequence we may (and we will) also
assume that fk → f pointwise a.e. The key advantage of our planar approach comes
from the fact that the inverse of a BV homeomorphism g is also a BV homeomorphism
(see [16]) and the total variations are equal (see [9])

(1.1) |Dg|((0, 1)2) = |Dg−1|((0, 1)2).

Hence f−1
k form a bounded sequence in BV and we can select a weakly converging

subsequence f−1
kl

converging to a BV mapping h. We can study properties of f using
h and we can show that these mappings are in some sense inverses to each other.

The similar class of weak limits of planar mappings was previously studied by
Iwaniec and Onninen in [19] and [18]. In these papers the authors characterized the
class of weak limits of Sobolev homeomorphisms (for p ≥ 2) and they showed that
the class of weak and strong closures are the same. This research was extended to
cover also the case 1 < p < 2 by a recent results of De Philippis and Pratelli [8], see
also Campbell, Onninen, Räbinä and Tengvall [6]. We study the more general class
of limits of BV homeomorphisms to be able to incorporate fractures but we do not
obtain the full characterization of this class.

Let us comment on our assumption that fk → f strictly in BV . In variational
models we study minimizers of the energy functional like

E(f) :=

∫
(0,1)2

W (Df(x)) dx

where W satisfies some natural assumptions including the growth condition W (A) ≥
C1|A| − C2. It follows that any sequence fk such that E(fk) →

k→∞
inff E(f) is a

bounded sequence in BV and hence it contains a weakly converging subsequence.
Moreover, with the help of lower sequential semicontinuity we obtain limk→∞E(fk) =
E(f) and this may imply that |Dfk|((0, 1)2)→ |Df |((0, 1)2) for some special energy
functionals. We have in mind the models of nonlinear elasticity and hence it is natural
to study our functional only in the class of invertible mappings and thus we can restrict
our situation to homeomorphisms fk and their weak limits. However, even in the class
of homeomorphisms the natural infimum of the energy is not necessarily attained by a
homeomorphism because of the collapse of matter near the boundary (see e.g. [20]).
This naturally leads us to the study of weak limits of homeomorphisms. For the
limit mapping we would like to have some key properties that correspond to “non-
interpenetration of matter” like the fact that disjoint sets are mapped to essentially
disjoint sets. This may drastically fail for weak limits (see Example 7.3 below) but it
is true once we restrict our attention to strict limits only.
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We study a class of mappings
(1.2)

S :=
{
f : (0, 1)2 → (0, 1)2 : there are homeomorphisms fk : [0, 1]2 → [0, 1]2 with

fk(x) = x for every x ∈ ∂[0, 1]2, fk → f strictly in BV,

strongly in L1 and pointwise a.e.
}
.

Thanks to the result [24], any planar homeomorphism of bounded variation can be
approximated strictly, together with its inverse, by a sequence of diffeomorphisms.
Thus, it would be possible to assume that the mappings fk of the approximating
sequence are all diffeomorphisms.

Let us briefly comment the content of this paper. In Section 2 we recall some
preliminaries about BV mappings. In Section 3 we define our f pointwise as a mul-
tifunction

(1.3) f̃(x) =
{
y ∈ [0, 1]2 : there is xn → x and kn →∞ such that fkn(xn)→ y

}
.

In this way the image of a cavitation is a whole ball and the image of each point on
the fracture corresponds to a segment in the image (see Section 7 below). In previous
works (see [22] or [12]) an analogous multifunction was defined using the topological
degree. Unfortunately this is not available for us as our function is essentially discon-
tinuous around the fractures. Therefore we have decided to use a different definition,
(1.3) and in Section 3 we show also other equivalent definitions. We show some basic

properties of f̃ and f like differentiability a.e. and the fact that the weak limit of f−1
k

is the inverse multifunction to f . Further we show there that f̃(x) is connected for
each x and that it equals to {f(x)} for a.e. x.

In Section 4 we show that f̃(x) is well-defined as this set does not depend on the

sequence fk and further we show that images of disjoint balls by f̃ are essentially
disjoint but as pointed out before it is necessary to have strict convergence (and not
only weak convergence) here.

In Section 5 we study cavitations in detail. We show that we have at most countably
many points x ∈ (0, 1)2 such that |f̃(x)| > 0. We prove that for these points we have

lim
r→0+

lim
k→∞
|fk(B(x, r))| = |f̃(x)|

and we also show that this corresponds to the singularities of the so called distri-
butional Jacobian (see Section 5 for its definition). Further in Section 6 we study
fractures of f defined as

Frac := {x : H1(f̃({x})) > 0}.
We show that the set of fractures has σ−finite H1-measure and that for H1 -a.e.
point in Frac we know that f̃(x) is a line segment. Moreover, we estimate the size
of fractures with |Df |.

Finally in the last section we give some examples to show which mappings belong
to our class (models of cavitation, models of fracture). Further we explain there why
we need to have strict limits and not only weak limits and we give an example to
show that the strict convergence fk → f gives only weak convergence of f−1

k → h but
not strict convergence in general.
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2. Preliminaries

Given a point x ∈ Rn and r > 0 we denote the open ball centered at x with radius
r by B(x, r) and S(x, r) := ∂B(x, r). We also denote the square centered at x with
sidelength 2r by Q(x, r). For simplicity we use notation Q := [0, 1]2 sometimes.

For future reference we recall Stepanov’s theorem.

Theorem 2.1 (Stepanov). Let Ω ⊂ Rn be a measurable set and g : Ω → Rm be a
map such that

lim sup
y→x

|g(x)− g(y)|
|x− y|

<∞ for a.e. x ∈ Ω.

Then g is differentiable almost everywhere in Ω.

2.1. Strict convergence on subsets.

Proposition 2.2. Let Ω ⊂ Rn and fk ∈ BV (Ω,R2) be a sequence of BV mappings
converging strictly to f in BV . Let A ⊂ Ω with |Df |(∂A) = 0. Then the restriction
of fk to A converges strictly and the restriction of fk to Ω \ A converges strictly.
Moreover, for almost every t ∈ [0, 1] we have that the restriction of fk to Ω∩ {y > t}
converges strictly and the restriction of fk to Ω ∩ {y < t} converges strictly.

Proof. The second claim follows from the first easily after noticing that |Df |({y =
t}) = 0 for almost every t (see [1, Theorem 3.103]).

Denote the set Ω \ A by B. First, we notice that fk → f in L1 on A and B. To
prove the strict convergence it is enough to prove the convergence of total variation
measures on sets A and B.

Consider the sequences |Dfk|(A) and |Dfk|(B). It is clear that both sequences are
bounded and have converging subsequences. Choose any subsequence j(k) so that

|Dfj(k)|(A)→ a and |Dfj(k)|(B)→ b

for some numbers a and b.
By the definition of the strict convergence we have

lim
j→∞
|Dfj(k)|(A) + lim

j→∞
|Dfj(k)|(B)) ≤ lim

j→∞
|Dfj(k)|(Ω) = |Df |(Ω).

By the lower semi-continuity of the total variation (see [11, 5.2.1., Theorem 1]) we
see that

(2.1) a ≥ |Df |(A) and b ≥ |Df |(B).

If we had a > |Df |(A) then we have

(2.2) |Df |(B) =|Df |(Ω)− |Df |(A) > a+ b− a = b.

Notice that here we used the assumption |Df |(∂A) = 0. Equation (2.2) contradicts
(2.1). Thus the only possibility is

|Dfk|(A)→ |Df |(A) and |Dfk|(B)→ |Df |(B).

That is, the total variations converge as required and this concludes the proof. �
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Proposition 2.3. Let fk ∈ BV (Q,R2) be a sequence of BV mappings of Q converging
strictly to f in BV . Then there exists a fkm a subsequence of fk and an L1-zero-
measure set N ⊂ [0, 1] such that for any t ∈ [0, 1] \ N mappings fkm and f are one
dimensional mappings of bounded variation on Q ∩ {y = t} and the restriction of
fkm converges strictly to the restriction of f on Q ∩ {y = t} as one dimensional BV
functions.

Proof. We take a subsequence, which we refer to again as fk such that fk converge
pointwise almost everywhere to f . From L1-convergence we know that, for almost
every t, that the restriction of fk to Q ∩ {y = t} converges to f in L1(Q ∩ {y = t}).
Since fk converge to f strictly then for almost every t ∈ [0, 1] the restriction of fk
and f are one dimensional mappings of bounded variation on Q ∩ {y = t}. Further
we know that (the total variation converges which in conjunction with the lower
semi-continuity of |Dif | gives

(2.3)

∫ 1

0

|D1f |({y = t})dt = lim
k→∞

∫ 1

0

|D1fk|({y = t})dt.

For those t such that fk → f in L1(Q ∩ {y = t}) we have

(2.4) |D1f |({y = t}) ≤ lim inf |D1fk|({y = t})
simply because for ϕ ∈ D(0, 1), ‖ϕ‖∞ ≤ 1 we have

lim inf
k→∞

|D1fk|({y = t}) ≥ lim inf
k→∞

∫
{y=t}

fkD1ϕdL1 =

∫
{y=t}

fD1ϕdL1

and taking the supremum over ϕ.
Now we use the Fatou Lemma together with (2.3) and (2.4) to see that for almost

every t we have |D1f |({y = t}) = lim inf |D1fk|({y = t}). For every m there exists a
k0 such that for all k ≥ k0 we have by (2.3)

(2.5)
∣∣∣ ∫ 1

0

|D1fk|({y = t})− |D1f |({y = t})dt
∣∣∣ < |D1f |(Q)

m
.

Call ηm > 0 the number such that
∫
A
|D1f |({y = t})dt < |D1f |(Q)/m whenever

L1(A) < ηm. Assuming k0 is large enough, we have that

|D1fk|({y = t}) ≥ (1−m−1)|D1f |({y = t})
for all k ≥ k0 and all t ∈ [0, 1]\S where L1(S) ≤ ηm. The proof of this simply mirrors
the proof that a point-wise limit is a uniform limit up to a set of arbitrarily small
measure. Also using |D1fk|({y = t}) ≥ 0 and so

(2.6)

∫ 1

0

(
|D1f |({y = t})− |D1fk|({y = t})

)+

dt < 2
|D1f |(Q)

m
.

But then (2.5) and (2.6) together give∫ 1

0

(
|D1f |({y = t})− |D1fk|({y = t})

)−
dt < 3

|D1f |(Q)

m

and so ∫ 1

0

∣∣∣|D1f |({y = t})− |D1fk|({y = t})
∣∣∣ < 5

|D1f |(Q)

m
.
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Therefore since |D1fk|({y = t}) converges to |D1f |({y = t}) in L1 (as a function of
t) we can find a subsequence that converges point-wise almost everywhere. For this
subsequence the restriction of fk to (0, 1)×{t} converges strictly to the restriction of
f for a.e. t. �

2.2. Fine properties of BV functions.

Definition 2.4. Let u ∈ L1(Ω,Rm) and x ∈ Ω. The point x is said to be an approx-
imate jump point of u if there exist distinct points a+, a− ∈ Rm and ξ ∈ Sn−1 such
that

lim
r→0
−
∫
B+(x,r,ξ)

|u(x)− a+|dx = 0 and lim
r→0
−
∫
B−(x,r,ξ)

|u(x)− a−|dx = 0,

where B+(x, r, ξ) = B(x, r)∩{x : x · ξ > 0} is the half ball and similarly B−(x, r, ξ) =
B(x, r) ∩ {x : x · ξ < 0}. The set of all approximate jump points of u is denoted by
Jumpu.

Remark 2.5. Let f ∈ BV (Ω,R2). Then

(1) The jump set Jumpf is a subset of NLf , the set of non-Lebesgue points of f .
([1, Prop. 3.69])

(2) By the Theorem of Federer and Vol’pert ([1, Thm. 3.78]) the set NLf is
(countably) 1-rectifiable and H1(NLf \ Jumpf ) = 0.

(3) Let us define

Θf = {x ∈ Ω : lim inf
r→0

r−1|Df |(B(x, r)) > 0}.

Then by [1, Prop. 3.92] we have H1(Θf \ Jumpf ) = 0.

It follows that for every BV (Ω,R2) we have

(2.7) lim
δ→0+

|Df |(B(x, δ))

δ
= 0 for a. e. x ∈ [0, 1]2.

2.3. Properties of BV homeomorphisms. For planar BV homeomorphisms, we
also need the following estimate of the distortion of the preimage of a ball.

Lemma 2.6 (Lemma 1 [16]). Let Ω ⊂ R2 be a domain, g ∈ BVloc(Ω,R2) be a
homeomorphism and let B(y, 2r) ⊂ g(Ω) be a ball. Then

diam g−1(B(y, r)) ≤ C

r
|Dg|

(
g−1(B(y, 2r))

)
.

Recalling that the inverse of a planar homeomorphism of bounded variation has
bounded variation (see [16], [9] and (1.1)), we obtain the following corollary.

Corollary 2.7. Let Ω ⊂ R2 be a domain and suppose that g ∈ BVloc(Ω,R2) is a
homeomorphism and B(x, 2r) ⊂ Ω. Then

(2.8) oscB(x,r) g ≤ C
|Dg−1|(g(B(x, 2r)))

r
= C
|Dg|(B(x, 2r))

r
.
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3. Definition of f̃(x) and basic properties

In this section we prove some basic properties of our class of strict limits of BV
homeomorphisms S (see (1.2)). We present some geometric properties of the limiting
mappings f and h. Recall that h is the weak* limit of sequence of inverse mappings
f−1
k . In order to investigate the geometry of the limit function, it is convenient to

introduce a complete description of the pointwise limits of fk and f−1
k via multifunc-

tions. In detail, we define for every x ∈ [0, 1]2 the multifunction f̃ as

(3.1) f̃(x) :=
{
y ∈ [0, 1]2 : there is xn → x and kn →∞ such that fkn(xn)→ y

}
.

Let us note that in principle this definition depends on the approximating sequence
fk. In Section 4 below we show that this is not the case and that f̃(x) is the same if
we define it using different gk that converges to f strictly.

The aim of this section is to study some basic properties of f̃(x). Let us start with
the following equivalent characterization.

Lemma 3.1. Let f ∈ S and let fk be the corresponding sequence of BV homeomor-
phisms. For every x ∈ [0, 1]2 one has

(3.2)

f̃(x) =
⋂
δ>0

∞⋂
k=1

∞⋃
m=k

[
fm(B(x, δ)) +B(0, δ)

]
(I)

=
⋂
δ>0

∞⋂
k=1

∞⋃
m=k

fm(B(x, δ)) (II)

=
{
y ∈ [0, 1]2 : there is xn → x such that fkn(xn)→ y

}
. (III)

Proof. We analyze the inclusions independently.

II ⊆ I. This follows immediately from the inclusion

fm(B(x, δ)) ⊆ fm(B(x, δ)) +B(0, δ).

I ⊆ III. Consider first y ∈
⋂
δ>0

⋂∞
k=1

⋃∞
m=k

[
fm(B(x, δ)) +B(0, δ)

]
. For every fixed

value of δ > 0 and k ≥ 1, we have that

y ∈ Ak =
∞⋃
m=k

[
fm(B(x, δ)) +B(0, δ)

]
which is a closed set in [0, 1]2 not containing isolated points. Indeed, ev-
ery set fm(B(x, δ)) has to be connected since fm is continuous, thus also
fm(B(x, δ)) + B(0, δ) is connected and it cannot be a singleton because fm
are homeomorphisms. As a consequence every point of Ak is an accumulation
point for Ak and hence for every ε > 0 there is a number m ≥ k and a point
zm ∈ fm(B(x, δ)) such that |y−zm| < ε+δ. Moreover, being zm ∈ fm(B(x, δ)),
it clearly exists tm ∈ B(x, δ) for which zm = fm(tm). Recalling that we can al-
ways choose ε = δ = 1/k, we obtain that for every k ≥ 1 there exists mk ≥ k
and tmk

∈ B(x, 1/k) such that |y − fmk
(tmk

)| < 2/k. Clearly, as k → ∞,

tmk
→ x and fmk

(tmk
)→ y thus implying that y ∈ f̃(x).
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III ⊆ II. Let y ∈ f̃(x), then for every δ > 0 there is N̄ = N̄(δ) ∈ N and a subsequence
kn = kn(δ) such that for every n ≥ N̄ and kn ≥ N̄ one has |xn − x| < δ and
|fkn(xn) − y| < δ. In particular, xn ∈ B(x, δ) and fkn(xn) ∈ fkn(B(x, δ)) ∩
B(y, δ). Now, let us fix for a moment two values δ > 0 and k ≥ 1. Then we
can find N ≥ max{N̄ ; k} and a subsequence kn so that

fkn(xn) ∈
∞⋃
n=N

(
B(y, δ) ∩ fkn(B(x, δ))

)
for every n, kn ≥ N .

Clearly, being N ≥ k, one has

∞⋃
n=N

(
B(y, δ) ∩ fkn(B(x, δ))

)
⊆
∞⋃
n=k

fkn(B(x, δ))

thus for every n, kn ≥ N the element fkn(xn) is contained in the set

∞⋃
n=k

fkn(B(x, δ)).

Finally, since fkn(xn)→ y, we deduce that

y ∈
∞⋃
n=k

fkn(B(x, δ))

and from the arbitrary choice of δ and k we conclude that

y ∈
⋂
δ>0

∞⋂
k=1

∞⋃
n=k

fkn(B(x, δ)).

�

Lemma 3.2. Let f ∈ S. Then for every x ∈ [0, 1]2 the set f̃(x) is nonempty, compact
and connected.

Proof. For every point x ∈ [0, 1]2 it is always possible to construct a sequence xn → x,
then (fn(xn))n is bounded in [0, 1]2 and hence it admits a converging subsequence. In
particular, being [0, 1]2 closed, there exists y ∈ [0, 1]2 and a subsequence kn such that

fkn(xn)→ y, so y is an element of f̃(x) and it is thus nonempty.
The compactness follows straightforward from the characterization (3.2). Indeed,

f̃(x) ⊂ [0, 1]2 so it is clearly bounded, and, on the other hand, it is closed because
the intersection of closed sets is still closed.

We would like to show that a set of the form Dδ =
⋂
k A

δ
k is connected for every

choice of δ, where Aδk =
⋃∞
m=k fm(B(x, δ)) + B(0, δ). Let us assume for a moment

that this is true, then Dδ1 ⊆ Dδ2 whenever δ1 > δ2. Then the connectedness of f̃(x)
follows immediately thanks to Lemma 3.1 and the fact that the intersection of nested
connected compact sets is a connected compact set (see [10, Theorem 6.1.18]).

Therefore, it remains to show that Dδ is always connected. As we already noticed
in Lemma 3.1, the sets fm(B(x, δ)) +B(0, δ) are connected. Moreover, for almost all
z ∈ B(x, δ) we know that fm(z) is converging to an element y = f(z) ∈ [0, 1]2. Then



STRICT LIMITS OF PLANAR BV HOMEOMORPHISMS 9

for every δ > 0 fixed, we can find m̄ = m̄(δ) such that for every m ≥ m̄ we have
|fm(z)− y| < δ. This implies that y ∈ fm(B(x, δ)) +B(0, δ) for every m ≥ m̄, thus

y ∈
∞⋂

m=m̄

fm(B(x, δ)) +B(0, δ).

It follows that
⋃∞
m=k fm(B(x, δ)) + B(0, δ) is a connected set for every k ≥ m̄ as a

union of connected sets with nonempty intersection.
Clearly, for k2 > k1 one has

∞⋃
m=k2

fm(B(x, δ)) +B(0, δ) ⊆
∞⋃

m=k1

fm(B(x, δ)) +B(0, δ)

and hence Theorem [10, Theorem 6.1.18] ensures that also
∞⋂
k=m̄

∞⋃
m=k

fm(B(x, δ)) +B(0, δ)

is connected. On the other hand, from Lemma 3.1 it is easy to check that
∞⋂
k=m̄

∞⋃
m=k

fm(B(x, δ)) +B(0, δ) =
∞⋂
k=1

∞⋃
m=k

fm(B(x, δ)) +B(0, δ)

thus the proof is concluded. �

Lemma 3.3. Let f ∈ S. Then f̃(x) = f(x) for a.e. x ∈ [0, 1]2.

Proof. This property is a direct consequence of the fact that for almost all x ∈ [0, 1]2

one has fk(x)→ f(x) and (2.7). Let x ∈ [0, 1]2 be one of such points, then for every
δ > 0 there exists k̄ = k̄(δ) such that for all k ≥ k̄ one has |fk(x)− f(x)| < δ and, in

particular, f(x) ∈ f̃(x). Suppose now, for sake of contradiction, that f̃(x) contains
another element a 6= f(x), then |f(x) − a| ≥ t > 0 for some t. Then, by definition

of f̃ , there has to be a sequence xn → x and subsequence kn such that fkn(xn)→ a.
Fix now δ < t/100, then there exist n̄ and kn̄ big enough so that

|xn̄ − x| < δ, |fkn̄(x)− f(x)| < δ, |fkn̄(xn̄)− a| < δ,

which imply, in turn,

|fkn̄(xn̄)− fkn̄(x)| > t

2
.

In other words, fkn̄(xn̄), fkn̄(x) ∈ fkn̄(B(x, δ)) and |fkn̄(xn̄)−fkn̄(x)| > t
2
. By Corollary

2.7 we obtain
t

2
≤ C

δ
|Dfkn̄|

(
B(x, 2δ)

)
.

By Proposition 2.2 we obtain that for a.e. δ > 0 (where |Df |(∂B(x, 2δ)) = 0) we can
take kn̄ →∞ to get

t

2
≤ C

δ
|Df |

(
B(x, 2δ)

)
.

Finally, taking the limit as δ → 0+ we obtain a contradiction with (2.7). �

Lemma 3.4. Let f ∈ S. Then f̃(x) = h̃−1(x), where h̃−1(x) = {y ∈ [0, 1]2 : h̃(y) 3 x}
is meant as the preimage of a point by multifunction and not as the usual preimage
set.
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Proof. ”⊃” Let y ∈ h̃−1(x), then x ∈ h̃(y) and by (3.2) we can find yn → y such that
f−1
kn

(yn)→ x. We set xn = f−1
kn

(yn) and we obtain xn → x such that fkn(xn) = yn → y.

It follows that y ∈ f̃(x).

”⊂” Let y ∈ f̃(x), then we can find xn → x such that fkn(xn)→ y. It follows that for

yn = fkn(xn) we have yn → y and f−1
kn

(yn)→ x. Thus x ∈ h̃(y) and y ∈ h̃−1(x). �

Lemma 3.5. Let f ∈ S. Then f is differentiable a.e. in [0, 1]2.

Proof. We claim that

(3.3) oscB(x,r) f ≤ lim inf
k

oscB(x,r) fk

holds for every x and r < dist(x, ∂(0, 1)2). For every ε > 0 we can find aε, bε ∈ B(x, r)
for which fk(aε)→ f(aε) and fk(bε)→ f(bε) in the image and

(3.4) oscB(x,r) f < |f(aε)− f(bε)|+ ε.

Then, for a fixed ε > 0, it follows that

|f(aε)− fk(aε)| < ε, and |f(bε)− fk(bε)| < ε

if k is big enough. As a consequence, from (3.4) we obtain

oscB(x,r) f < lim inf
k
|fk(aε)− fk(bε)|+ 3ε ≤ lim inf

k
oscB(x,r) fk + 3ε

and (3.3) follows by sending ε to 0.
For x ∈ (0, 1)2 we choose 0 < r < 1

2
dist(x, ∂(0, 1)2) so that |Df |(∂B(x, 2r)) = 0.

By (3.3) and (2.8) we obtain

oscB(x,r) f

r
≤

lim infk oscB(x,r) fk
r

≤ C
lim infk |Dfk|(B(x, 2r))

r2
.

By Proposition 2.2 we obtain

oscB(x,r) f

r
≤ C
|Df |(B(x, 2r))

r2

and by Radon-Nikodym theorem we know that limr→0+ of the right-hand side is finite
a.e. The a.e. differentiability of f follows by Stepanov Theorem 2.1. �

4. Images of disjoint sets by f̃ are essentially disjoint

The aim of this section is to show that the multifunction representative of our
f ∈ S defined in (3.1) does not depend on the approximating sequence fk. Further

we show that images of disjoint balls by f̃ intersect in a set of zero measure.
For almost every t ∈ (0, 1) we know that the restriction of a BV mapping is a one-

dimensional BV on the line {y = t} (see e.g. [1, Section 3.11]). As such the restriction

to the line has a left and a right-continuous representative which we will call f̂ and
f̌ respectively. Since |D1f |({y = t}) < ∞, f has at most countably many jumps on
{y = t}, and the sum of the size of these jumps is finite. We denote the jump points

as xj and we define the line segment Aj(t) = [f̂(xj)f̌(xj)] and call A(t) =
⋃
j Aj(t).

We use this notation in the following formulation.
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Lemma 4.1. Let fm ∈ BV (Q,R2) be a sequence of homeomorphisms of the unit
square Q with fm(x) = x for x ∈ ∂Q converging strictly to f in BV such that for
almost every t the restriction of fm on to the line (0, 1)×{t} converges strictly to the
restriction of f onto (0, 1)×{t}. Then for every ε > 0 there exists an M(ε) such that
for all m ≥M we have

(4.1) fm({y = t}) ⊂
(
f̂({y = t}) ∪ A(t)

)
+B(0, ε).

and

(4.2)
(
f̂({y = t}) ∪ A(t)

)
⊂ fm({y = t}) +B(0, ε).

Proof. We start by separating the jumps into two categories, small and big. A big
jump is a jump of size ε/100 or larger, the other jumps are small. Obviously there are
only a finite number J of large jumps, call them {x1, x2, . . . , xJ}. Now for the jump
at xj, 1 ≤ j ≤ J we find a left I−j = (x−j , xj) and right I+

j = (xj, x
+
j ) neighborhood.

These intervals are chosen such that |D1f |(I±j ) < ε
100

and that |D1f |({x±j }) = 0.

From Proposition 2.2 we thus get that fm converge strictly on (x−j , x
+
j ). We cover the

rest of {y = t} with finitely many intervals Ij, j = J + 1, . . . , K so that fm converge
strictly in BV on each Ij and |D1f |(Ij) < ε/50. We have in total K intervals, so there
must be some positive minimum length of the intervals, which we call d > 0.

We have that ‖fm − f‖L1(Ij) → 0 and so we have an m0 such that if m ≥ m0 the
set {x : |f(x)− fm(x)| ≤ ε/100} ∩ Ij has positive measure for all 1 ≤ j ≤ K. This is
because L1(Ij) ≥ d and we may assume that ‖fm− f‖L1(Ij) < dε/100. Also, by strict
convergence, we may assume that the variation of fm on Ij, J < j ≤ K, is less than
ε/25 as soon as m ≥ m0. So for an interval Ij, J < j ≤ K, that does not contain a
large jump we have an sm ∈ Ij such that |f(sm)− fm(sm)| ≤ ε/100 and

(4.3) fm(Ij) ⊂ B(fm(sm), ε/25) ⊂ B(f(sm), 5ε/100) ⊂ f(Ij) +B(0, ε)

and by similar arguments and the lower semicontinuity of total variation

(4.4) f(Ij) ⊂ B(f(sm), ε/25) ⊂ B(fm(sm), 5ε/100) ⊂ fm(Ij) +B(0, ε)

which will be helpful to show (4.1) and (4.2) for these intervals.
Now we consider 1 ≤ j ≤ J . Notice that since |D1f |(I±j ) < ε/100 we have

(4.5)
|f̂(x)− f̂(xj)| < ε/100 for x ∈ I−j and

|f̌(x)− f̌(xj)| < ε/100 for x ∈ I+
j .

There exists a m0 such that for each 1 ≤ j ≤ J and for each m ≥ m0 there is a
pair of points s+

m ∈ I+
j and s−m ∈ I−j such that |fm(s±m) − f(s±m)| < ε/100. By strict

convergence we can also assume for all m ≥ m0 that

(4.6) |D1fm|(Ij) < |f̂(xj)− f̌(xj)|+ ε/25.

Using (4.5) we have that |f(s±m)− f(x±j )| < ε/100 and so

|fm(s−m)− f̂(xj)| < |fm(s−m)− f(s−m)|+ |f(s−m)− f(x−j )|+ |f(x−j )− f̂(xj)|
< ε/100 + ε/100 + ε/100 < ε/25

and similarly for f̌(xj) and s+
m. Thus (see Figure 1) we are able to connect any point

in fm(Ij) with a single curve with endpoints f̂(xj) and f̌(xj) and of length at most
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f̂(xj)

f̌(xj)

fm(x−j )
fm(x+

j )

Figure 1. An ellipse with foci at the ends of a jump and a path from
fm(x−j ) to fm(x+

j ) that must stay inside the ellipse.

|f̂(xj)− f̌(xj)|+ 3ε/25. Thus fm(Ij) lies in the ellipse whose foci are the points f̂(xj)

and f̌(xj) and the sum of the distances to the foci is |f̂(xj) − f̌(xj)| + 3ε/25. Now

it is not hard to check that this ellipse lies inside the set [f̂(xj), f̌(xj)] + B(0,
√
ε).

Together with (4.3) we obtain (4.1). To finish the proof of (4.2) we notice that the

curve constructed above joining the foci and having length |f̂(xj) − f̌(xj)| + 3ε/25
cannot go too far from the major semiaxis of the ellipse. In fact, distance is at most
the length of the minor semiaxis, whose length is bounded from above by

√
ε. Thus

f(Ij) ⊂ fm(Ij) +B(0,
√
ε). To get ε instead of

√
ε one replaces the ε in the proof by

ε2. �

Remark 4.2. Lemma 4.1 holds also for more general situations. Since the proof splits
the line to small segments it is evident that it holds for rectangles K ⊂ Q for which
we have strict convergence on each side and the limit function is not discontinuous
at the corners.

We define

f̃(A) :=
⋃
x∈A

f̃(x).

The following (4.7) says that the ‘limsup’ of the definition (3.2) is in fact just a limit.

It follows that the definition of f̃ (see (3.1)) does not depend on the approximating
sequence.
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Proposition 4.3. Let fk ∈ BV (Q,R2) be a sequence of homeomorphisms of the unit
square Q with fk(x) = x for x ∈ ∂Q converging strictly to f in BV . For every x ∈ Q
we have

(4.7) f̃(x) =
⋂
δ>0

∞⋃
k=1

∞⋂
m=k

[
fm(B(x, δ)) +B(0, δ)

]
.

Moreover, let gk ∈ BV (Q,R2) be a sequence of homeomorphisms of the unit square
Q with gk(x) = x for x ∈ ∂Q converging strictly to f in BV and define

f̂(x) :=
{
y ∈ [0, 1]2 : there is xn → x and kn →∞ such that gkn(xn)→ y

}
.

Then f̂(x) = f̃(x) for every x.

Proof. From (3.2) and elementary inclusion we have

f̃(x) =
⋂
δ>0

∞⋂
k=1

∞⋃
m=k

[
fm(B(x, δ)) +B(0, δ)

]
⊃
⋂
δ>0

∞⋃
k=1

∞⋂
m=k

[
fm(B(x, δ)) +B(0, δ)

]
.

It remains is to show the other inclusion. Take any sequence (xl) which is converging
to x and any subsequence fkl

of fk such that fkl
(xl) converges to some point, call it

a. We want to show that for every δ there exists a Kδ such that for all k ≥ Kδ we
have

a ∈ fk(B(x, δ)) +B(0, δ).

For contradiction assume that we have a δ > 0 and kn ↗∞ such that a /∈ fkn

(
B(x, δ)

)
+

B(0, δ). Since we are taking a subsequence anyway, we may as well assume that it
converges strictly on almost every line in BV (by Proposition 2.3) and similarly for
fkl

.
By Lemma 2.3 we can easily find an δ/4 < η < δ/2 such that fkl

and fkn both
converge strictly on {(y1, y2) : y2 = x2 ± η} and {(y1, y2) : y1 = x1 ± η} and hence
also on ∂Q(x, η). Now by Lemma 4.1 we obtain

fkl
(∂Q(x, η)) ⊂

[
f̂(∂Q(x, η)) ∪ A(∂Q(x, η))

]
+B(0, δ/4)

and [
f̂(∂Q(x, η)) ∪ A(∂Q(x, η))

]
⊂ fkn(∂Q(x, η)) +B(0, δ/4)

where A(∂Q(x, η)) denotes the corresponding parts of A on four sides of Q(x, η). As
fkl

and fkn are homeomorphisms it follows that

fkl
(Q(x, η)) ⊂ fkn(Q(x, η)) +B(0, δ/2)

⊂ fkn(B(x, δ)) +B(0, δ/2).

For sufficiently large l we have |fkl
(xl) − a| < δ/2 but this is in contradiction with

a /∈ fkn(B(x, δ)) +B(0, δ).

To prove f̂(x) = f̃(x) assume for contrary that there is a ∈ f̂(x) \ f̃(x). We can

find a sequence xl → x and subsequence gkl
such that gkl

(xl) → a. By a /∈ f̃(x) we
can find δ > 0 and kn →∞ such that

a /∈ fkn(B(x, δ)) +B(0, δ).
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Since we are taking a subsequence anyway, we may as well assume that it converges
strictly on almost every line in BV and similarly for gkl

. Now similarly to the argument
above we obtain a contradiction. �

As a corollary we obtain that for homeomorphisms f our definition of f̃(x) is the
correct one.

Corollary 4.4. Let f be a homeomorphism. Then f̃(x) = {f(x)} for every x ∈ Q.
Indeed, it is enough to apply Proposition 4.3 to gk = f .

Conclusion (4.7) also holds for more general sets. By the proof of Proposition 4.3
and Remark 4.2 we have the same conclusion for rectangles where we have strict
convergence on every side.

Corollary 4.5. With the assumptions of Proposition 4.3 and Remark 4.2 we have

f̃([0, 1]× [0, t]) =
⋂
δ>0

∞⋃
k=1

∞⋂
m=k

[
fm([0, 1]× [0, t+ δ]) +B(0, δ)

]
and

f̃(Q(x, r)) =
⋂
δ>0

∞⋃
k=1

∞⋂
m=k

[
fm(Q(x, r + δ)) +B(0, δ)

]
It follows easily that f̃(A) is measurable for each open and each closed set A ⊂ [0, 1]2.

Finally we can show that images of disjoint open sets are essentially disjoint.

Proposition 4.6. Let fk ∈ BV (Q,R2) be a sequence of homeomorphisms of the unit
square Q with fk(x) = x for x ∈ ∂Q converging strictly to f in BV . Then the image
of disjoint open strips are essentially disjoint, i.e. let 0 < a < b ≤ c < d < 1 then

L2
(
f̃({a < x2 < b}) ∩ f̃({c < x2 < d})

)
= 0.

Proof. Firstly assume that b < c. By Proposition 2.3 we find a subsequence of fk, call
it fm, which converges strictly on almost every line and therefore on the line {x2 = e}
with b < e < c. By Proposition 4.3 and Remark 4.5 we know that we can define f̃(x)
using only fm.

Let us denote E := f({x2 = e}) ∪ A(e) and note that clearly L2(E) = 0. By
Lemma 4.1 we see that for every δ there exists an M(δ) such that for all m ≥M we
have

(4.8) fm({x2 = e}) ⊂
(
f̂({x2 = e}) ∪ A(e)

)
+B(0, δ) = E +B(0, δ).

Let us fix δ0 such that e − b > δ0 and c − e > δ0. Using Lemma 4.3 and (4.8) we
obtain

f̃({a < x2 < b}) =
⋂

0<δ<δ0

∞⋃
k=1

∞⋂
m=k

[
fm([0, 1]× [a− δ, b+ δ]) +B(0, δ)

]
⊂

⋂
0<δ<δ0

∞⋃
k=1

∞⋂
m=k

[
fm([0, 1]× [0, e]) +B(0, δ)

]
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and similarly

f̃({c < x2 < d}) ⊂
⋂

0<δ<δ0

∞⋃
k=1

∞⋂
m=k

[
fm([0, 1]× [e, 1]) +B(0, δ)

]
.

Using these facts, (4.8) and the fact that fm converge strictly to f on {x2 = e} we
obtain

f̃({a < x2 < b}) ∩ f̃({c < x2 < d}) ⊂
⋂

0<δ<δ0

E +B(0, 2δ) = E = E.

As L2(E) = 0 we obtain our conclusion.
Now if b = c then apply the above to the strips a < y < b− δn and c+ δn < y < d

for δn ↘ 0 and the intersection of the image of a < y < b and b < y < d is the
countable union of null sets. �

Corollary 4.7. Let fk ∈ BV (Q,R2) be a sequence of homeomorphisms of the unit
square Q with fk(x) = x for x ∈ ∂Q converging strictly to f in BV . Then there is at

most a countable number of t ∈ [0, 1] such that f̃({x2 = t}) has positive measure.

Proof. The image f̃({x2 = t}) is a subset of Q for all t. Now for a pair of distinct
numbers 0 ≤ s < t ≤ 1 we know that their images (by Lemma 4.3) have null
intersection (by Proposition 4.6). �

Remark 4.8. Similarly one can prove that the image of two disjoint balls must have
null intersection and therefore also that the image of any two distinct points has null
intersection.

5. The Jacobians and their equality

In [22] the authors proved that the distributional Jacobian of a mapping u ∈
W 1,p(Ω,Rn), p > n − 1, satisfying the (INV) condition and Per(im(u,Ω)) < ∞ is a
non-negative Radon measure. As mentioned in the introduction the (INV) condition
means that interior (resp. exterior) of a disk is mapped inside (outside) the image of
the boundary of the ball. For a precise definition see [22]. Moreover, the singular part
of this measure is a countable set of points and the restriction of the distributional
Jacobian to any point in the countable set is a multiple of the Dirac measure. The
map forms a cavity there whose Lebesgue measure in the image equals the Jacobian
measure of the point.

We would like to recover a similar result for our setting. In our setting one cannot
necessarily define the distributional Jacobian (see e.g. [17] or [22]), i.e. the distribu-
tion

Jf (ϕ) := −
∫

Ω

f1(x)J(ϕ(x), f2(x)) dx for ϕ ∈ C∞0 (R2).

The natural analogy for BV mapping is

(5.1) Jf (ϕ) := −
∫

Ω

f1(x)
∂ϕ(x)

∂x1

d
∂f 2(x)

∂x2

+

∫
Ω

f1(x)
∂ϕ(x)

∂x2

d
∂f 2(x)

∂x1

which is well-defined for f ∈ BV ∩C but this need not be defined for us as essentially
f 1 ∈ L1 ∩ L∞ may be undefined on a set of positive |Df 2|-measure.
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Instead we define the non-negative Borel measure such that

Jf (A) := L2(f̃(A)) for open sets A,

where f̃ is the multivalued representative of f defined in (3.2).
Further we define the distributional Jacobian of f as

Jf (ϕ) := lim
k→∞
Jfk

(ϕ),

i.e. we show that this limit exists for every ϕ. It is clearly a nonnegative distribution
(ϕ ≥ 0 → Jf (ϕ) ≥ 0) and hence can be represented by a Radon measure (see [21,
Theorem 1.16]). We show that these two notions of Jacobians coincide Jf = Jf . As a
corollary we get that we have at most countably many cavities of f , they correspond
to a Dirac measure of Jf and Jf (x) = Jf (x) is the measure of the cavity opened at x.

Theorem 5.1. Let fk ∈ BV (Q,R2) be a sequence of homeomorphisms of the unit
square Q with fk(x) = x for x ∈ ∂Q converging strictly to f in BV . Then Jf ,Jf , Jfk

and Jfk
are Radon measures and

Jf = Jf .
Moreover, Jfk

= Jfk
, this sequence converges weak* to Jf in measures and there exists

a countable set Nx such that

(5.2) lim
k→∞

Jfk
(B(x, r)) = Jf (B(x, r))

for every x ∈ Q and every r ∈ [0, 1] \Nx with r < dist(x, ∂(0, 1)2).

Lemma 5.2. Let fk ∈ BV (Q,R2) be a sequence of homeomorphisms of the unit
square Q with fk(x) = x for x ∈ ∂Q converging strictly to f in BV . Then there is a

countable set N such that for every t ∈ [0, 1] \N we have for f̃ , defined in (3.2), the
following

(5.3) Jf
(
[0, 1]× [0, t]

)
:= L2

(
f̃([0, 1]× [0, t]

)
= lim

k→∞
L2
(
fk([0, 1]× [0, t])

)
.

Remark 5.3. An immediate result of Lemma 5.2 is that for any a ∈ Q and for almost
every r > 0 such that B(a, r) ⊂⊂ Q we have for f̃ defined in (3.2) the following

Jf
(
B(a, r)

)
:= L2

(
f̃(B(a, r))

)
= lim

k→∞
L2
(
fk(B(a, r))

)
.

To prove this it suffices to notice that the polar-coordinates mapping, Ψa, centered at
a is locally bi-Lipschitz on R2\{a}, thus there exists a representative of f ◦Ψ−1

a , whose
restriction to almost all lines is a function of bounded variation and then continue
with the proof below.

Proof of Lemma 5.2. We prove that for every subsequence of limk→∞ L2
(
fk([0, 1] ×

[0, t))
)

we find a converging subsequence and that the value of this limit is in fact
the same as in the claim. So assume that fkl

is an arbitrary subsequence of fk from
which we choose a further subsequence fm = fklm

which converges strictly on almost
every line (see Proposition 2.3).

Let us fix t ∈ (0, 1) such that fm converge to f strictly on {x2 = t} and

L2
(
f̃([0, 1]× {t})

)
= 0.
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By Proposition 4.3 and Remark 4.5 we know that we can define f̃(x) using only fm.
Let ε > 0. As

lim
s→t−

L2
(
f̃([0, 1]× [0, s]

)
= L2

(
f̃([0, 1]× [0, t]

)
we can fix s < t such that

(5.4) 0 ≤ L2
(
f̃([0, 1]× [0, t]

)
− L2

(
f̃([0, 1]× [0, s]

)
< ε.

Let us denote E := f̂({x2 = t}) ∪ A(t) and note that clearly L2(E) = 0. By
Lemma 4.1 we see that for every δ there exists an M(δ) such that for all m ≥M we
have

(5.5) fm({x2 = t}) ⊂
(
f̂({x2 = t}) ∪ A(t)

)
+B(0, δ) = E +B(0, δ).

Using Lemma 4.3 and (5.5) we obtain

f̃({x2 ≤ s}) =
⋂

0<δ<t−s

∞⋃
k=1

∞⋂
m=k

[
fm([0, 1]× [0, s+ δ]) +B(0, δ)

]
⊂

⋂
0<δ<t−s

∞⋃
k=1

∞⋂
m=k

[
fm([0, 1]× [0, t]) +B(0, δ)

]
⊂

⋂
0<δ<t−s

∞⋃
k=1

∞⋂
m=k

[
fm([0, 1]× [0, t]) ∪

[
E +B(0, 2δ)

]]
=
∞⋃
k=1

∞⋂
m=k

[
fm([0, 1]× [0, t]) ∪ E

]
.

Since L2(E) = 0 and fm converge to f strictly on {x2 = t} we obtain with the help
of (5.4) and choice of a nice subsequence

L2(f̃({x2 ≤ t})) ≤ ε+ L2(
∞⋃
k=1

∞⋂
m=k

fm([0, 1]× [0, t]))

= ε+ lim
m→∞

L2(fm({x2 ≤ t})).

By passing ε→ 0 we obtain one inequality and analogously

L2(f̃({y ≥ t})) ≤ lim
m→∞

L2(fm({y ≥ t})).

Since we have chosen t so that L2(fm({y = t})) = 0 = L2(f̃({y = t})), we obtain

L2(f̃({y ≤ t})) = 1− L2(f̃({y ≥ t}))
≥ lim

m

(
1− L2(fm({y ≥ t}))

)
= lim

m
L2(fm({y ≤ t})).

Thus for every fkl
we find a subsequence whose limit is as in the claim and our proof

is finished. �

Now we are in a position to prove the main result of this section.
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Proof of Theorem 5.1. Firstly let us consider the distributional Jacobians Jfk
and the

corresponding measure-theoretic Jacobians Jfk
. We show firstly that Jfk

is a non-
negative Radon measure and then prove the same for the former and that both are
the limit of the same smooth approximations and therefore must be equal.

By [24, Theorem 1.4] we can approximate any homeomorphism fk ∈ BV by dif-
feomorphisms gk,l such that gk,l→fk uniformly and weak* in BV as l → ∞. For
the smooth maps gk,l the equality between Jgk,l

, Jgk,l
and Jgk,l

, when understood as
measures, is standard (see e.g. [17, Section 2.2]) and hence Jgk,l

= Jgk,l
as measures.

Since gk,l → fk uniformly and weak* in BV there is no obstacle in passing to the limit
in the definition of the distributional Jacobian (5.1) and we obtain

lim
l→∞
Jgk,l

(ϕ) = Jfk
(ϕ) for every ϕ ∈ C∞0 (Q).

The non-negativity of the limit comes from the non-negativity of the sequence and a
non-negative distribution is a Radon measure (see [21, Theorem 1.16]).

We claim that Jgk,l
→ Jfk

weak* in Radon measures. We already know that the
sequence converges but have to prove that the limit can be represented by Jfk

. Let

us fix a rectangle R ⊂ Q such that L2(f̃k(∂R)) = 0; since fk are in BV it is clear that
almost every rectangle satisfies this condition. As gk,l and fk are homeomorphisms
and gk,l → fk uniformly we obtain that

(5.6) lim
l→∞

Jgk,l
(R) = lim

l→∞
L2(gk,l(R)) = L2(fk(R)) = Jfk

(R).

The proof of the weak* convergence is as follows. We take a ϕ ∈ C(Q), ε > 0 and
find δ such that

|ϕ(a)− ϕ(b)| < ε for every |a− b| < 2δ.

Almost every line parallel to the x or y-axis has the property that its image in fk has
zero two-dimensional measure. We divide the square Q by lines parallel to the x and
y-axis each of which is a Jfk

-zero-measure set and each at a distance of less than δ
from his neighbor. Thus we have divided Q into rectangles {R}R∈R and so

(5.7)

∫
Q

ϕ dJfk
=
∑
R∈R

∫
R

ϕ dJfk
.

By our choice of δ we can find a constant kR for every rectangle R in our grid such
that |ϕ(x)− kR| < ε for all x ∈ R. Now we calculate

〈Jgk,l
, ϕ〉 =

∫
Q

ϕ dJgk,l
=
∑
R∈R

∫
R

ϕ dJgk,l

and because |ϕ(x)− kR| < ε we have∣∣∣ ∫
R

ϕ dJgk,l
− kRJgk,l

(R)
∣∣∣ < εJgk,l

(R).

Since
∑

R Jgk,l
(R) = L2(Q) we have∣∣∣〈Jgk,l

, ϕ〉 −
∑
R∈R

kRJgk,l
(R)
∣∣∣ < εL2(Q).
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Similarly we obtain for Jfk
the corresponding estimate by using (5.7)∣∣∣ ∫

Q

ϕ dJfk
−
∑
R∈R

kRJfk
(R)
∣∣∣ < εL2(Q).

Thus we have∣∣∣〈Jgk,l
, ϕ〉 −

∫
Q

ϕ dJfk

∣∣∣ ≤ ∣∣∣ ∫
Q

ϕ dJgk,l
−
∑
R

kRJgk,l
(R)
∣∣∣+

+
∣∣∣∑

R

kRJgk,l
(R)−

∑
R

kRJfk
(R)
∣∣∣+

+
∣∣∣ ∫

Q

ϕ dJfk
−
∑
R∈R

kRJfk
(R)
∣∣∣

< 2ε+
∣∣∣∑

R

kRJgk,l
(R)−

∑
R∈R

kRJfk
(R)
∣∣∣

and ∑
R∈R

kRJgk,l
(R)−

∑
R∈R

kRJfk
(R) ≤ ‖ϕ‖∞

∑
R∈R

|Jgk,l
(R)− Jfk

(R)|

but the sum above is finite and, by (5.6), Jgk,l
(R) each converge to Jfk

(R) and so one
easily sees that in the limit this tends to 0. Thus we have proven that, for every ε > 0
there is an L(ε) such that if l > L then∣∣∣〈Jgk,l

, ϕ〉 −
∫
Q

ϕ dJfk

∣∣∣ < 3ε.

Thus Jgk,l
converges weak* in Radon measures to Jfk

. But this limit must also be Jfk

and so the two are equal.
Clearly Jfk

is a bounded sequence and therefore has a converging subsequence. We
now show that in fact that, Jf is a Radon measure and is the limit of Jfk

, i.e. we
want to show that the left hand side of (5.8) makes sense and the limit holds

(5.8)

∫
Q

ϕ dJf = lim
k→∞

∫
Q

ϕ dJfk
for every ϕ ∈ C(Q).

As before we take a ϕ ∈ C(Q), ε > 0 and find δ such that

|ϕ(a)− ϕ(b)| < ε for every |a− b| < 2δ.

By Proposition 5.2 there is a bad countable set N ⊂ [0, 1]. We divide the square Q
by lines parallel to the x and y-axis with their corresponding coordinates not in the
set N and each at a distance of less than δ from his neighbor. Thus we have divided
Q into rectangles {R}R∈R on each of which we have (5.3). We have chosen these lines
so that their image has two dimensional measure zero (see Corollary 4.7) and so we
may assume that the lines are Jf and Jfk

-zero-measure sets. Thus in the following
we can use the fact that ∫

Q

ϕ dJfk
=
∑
R∈R

∫
R

ϕ dJfk
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and again as Jf is an outer Borel measure, the sides of R are not in the set N from
Lemma 5.2 and by Proposition 4.6 we have∫

Q

ϕ dJf =
∑
R∈R

∫
R

ϕ dJf .

From here our calculations are identical to the smooth-to-homeomorphic case and so
we get Jf = limk Jfk

weak* in measures. It follows that the distributional Jacobian
equals to Jf as

Jf (ϕ) := lim
k→∞
Jfk

(ϕ) = lim
k→∞

Jfk
(ϕ) = Jf (ϕ).

The claim that
lim
k→∞

Jfk
(B(x, r)) = Jf (B(x, r))

for every x ∈ Q and every r ∈ [0, 1] \Nx is straight forward application of the polar
coordinates (as in Remark 5.3) and Proposition 5.2. �

6. Characterization of fractures

We define the set of fractures of f to be

(6.1) Frac := {x : H1(f̃(x)) > 0}.
The aim of this section is to estimate the total size of fractures with the total variation
of the derivative of f.

Proposition 6.1. Let f ∈ BV (Q,R2) be a strict limit of BV homeomorphisms
fk : Q→ Q, with fk|∂Q = id. Given x ∈ Q then

(6.2) C|Df |(B(x, 4r)) ≥ r diam(f̃(B(x, r))) ≥ r diam(f̃(x))

is satisfied by all r ∈ (0, 1
4

dist(x, ∂Q)).

Proof. As the second inequality is trivial, it is enough to prove only the first one.
By Lemma 4.3 and Remark 4.5 we know that

f̃(B(x, r)) =
⋂
δ>0

∞⋃
k=1

∞⋂
m=k

[
fm(B(x, r + δ)) +B(0, δ)

]
.

It follows that we find zm, wm ∈ B(x, 3
2
r) and a subsequence km such that

|fkm(zm)− fkm(wm)| ≥ 1

4
diam(f̃(B(x, r))).

By Corollary 2.7 we obtain

C|Dfkm|(B(x, 3r)) ≥ Cr osc
B(x,

3
2
r)
fkm ≥ r diam(f̃(B(x, r))).

This is true for every r such that B(x, 3r) ⊂ Q. If we consider an r > 0 such that
|Df |(S(x, 3r)) = 0 we obtain

C|Df |(B(x, 3r)) ≥ r diam(f̃(B(x, r)))

by the strict convergence of the total variation (see Proposition 2.2).
The condition |Df |(S(x, 3r)) = 0 is true for all but countably many radii. Thus this

estimate holds for almost every radius ρ, 3r ≤ ρ ≤ 4r and we obtain our claim. �
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The following Corollary, on Frac from (6.1), follows immediately from Remark 2.5
and Proposition 6.1.

Corollary 6.2. (1) If x ∈ Frac then x ∈ Θf . Moreover, H1(Frac \ Jumpf ) = 0.
(2) Frac is 1-rectifiable and thus has σ-finite H1–measure.

Now, we show that at H1-a.e. point of Frac the f̃(x) is actually a line segment.

Proposition 6.3. Let f ∈ BV (Q,R2) be a strict limit of BV homeomorphisms
fk : Q→ Q, with fk|∂Q = id. We have

(6.3) H1
∞(f̃(X)) = H1(f̃(X))

at H1-a.e. X ∈ Frac.

Proof. Recall that Frac is rectifiable and, therefore, contained (up to zeroH1-measure
set) in a countable union of (possibly rotated and translated) Lipschitz graphs. Take
any such graph. Without loss of generality we may assume that the graph is given
by ϕ : (0, 1)→ R.

Since Frac has σ-finite H1-measure, there exists a set E ⊂ (0, 1) with full H1-
measure such that for every x ∈ E we have H1(Jumpf ∩ ({x} × R)) = 0.

On almost every line parallel to the coordinate axis f is a one dimensional BV
function. We denote the restriction of f to the line parallel to x-axis with y-coordinate
y0 by fx(·, y0). Analogously we define f y(x0, ·). Also, on almost every line the set of
discontinuities of fx and f y is the intersection of the jump set and the line in question.
For proofs of these facts see [1, Section 3.11] for example. Notice that to use these
properties we must choose the so called precise representative of f, but the choice of
representative does not affect the sets f̃(X) and we will assume that f is given by
the precise representative.

In the following we will use notation

(x, [a, b]) := {(x, y) : y ∈ [a, b]}
for vertical intervals and analogous notation for horizontal intervals.

Let us consider a point X = (x, ϕ(x)) ∈ Frac such that all the above properties
hold on vertical line through X. By Lemma 3.3 and Fubini’s theorem we may choose
X so that f̃(X) = {f(X)} H1-almost everywhere on almost every line parallel to
y-axis. Moreover, we need x, the first coordinate of X, to satisfy following Lebesgue
point property. Let 0 ≤ q− < q+ ≤ 1 be two rational numbers, then the function

(6.4) t 7→ |Df y|(t, [q−, q+])

is integrable and, thus, almost every t satisfies

(6.5)
1

2r

∫
[x−r,x+r]

∣∣|Df y|(t, [q−, q+])− |Df y|(x, [q−, q+])
∣∣dt = o(r).

Since there is only countable number of rational intervals [q−, q+] we infer that for
almost every t the function (6.4) satisfies (6.5) for every interval [q−, q+]. We consider
only x that satisfy this condition.

As f is BV on the line, we know that following limits exists

(6.6) lim
t→0+

f(x, ϕ(x) + t) = A
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and

(6.7) lim
t→0+

f(x, ϕ(x)− t) = B.

We will show that f̃(X) = 〈A,B〉, where 〈A,B〉 is the line segment between A and

B. From the choice of x (see (6.6) and (6.7)) it is easy to see that A,B ∈ f̃(x, ϕ(x)).

Especially, A,B ∈ f̃(K), for any rectangle K containing (x, ϕ(x)). By Lemma 3.2

f̃(x, ϕ(x)) is connected. To show that actually f̃(x, ϕ(x)) = 〈A,B〉 we show that for
any ε > 0 there exists a rectangle K, containing (x, ϕ(x)), such that fk converges
strictly on ∂K and the curve fk(∂K) has length smaller than 2|A − B| + ε. This

implies that no point outside 〈A,B〉 is in f̃(x, ϕ(x)).
We start by selecting a subsequence, which is also denoted with fk, which converges

strictly on almost every line parallel to the coordinate axes (see Proposition 2.3).
Now choose a rational interval [q−, q+], depending on our choice of X, such that
ϕ(x) ∈ [q−, q+] and

(6.8) |Df y|(x, (ϕ(x), q+)) + |Df y|(x, (q−, ϕ(x))) < ε.

Now for almost every 0 < t′ such that

(6.9) [ϕ(x)− t′, ϕ(x) + t′] ⊂ [q−, q+]

there exists η(t′) > 0, also depending on X, such that

(6.10) |Dfx|([x− η, x+ η], ϕ(x) + t′) + |Dfx|([x− η, x+ η], ϕ(x)− t′) < ε,

This is true since we assumed in the beginning that H1(Jumpf ∩ ({x} × R)) = 0.
We know that for almost every t′ with (6.9) and η′ < η(t′) the subsequence fk

converges strictly on the boundary of

K = [x− η′, x+ η′]× [ϕ(x)− t′, ϕ(x) + t′].

Let us assume for a moment that Moreover, by (6.5) we may take η′ such that

(6.11)

∣∣|Df y|(x− η′, [q−, q+])− |Df y|(x, [q−, q+])
∣∣ < ε∣∣|Df y|(x+ η′, [q−, q+])− |Df y|(x, [q−, q+])
∣∣ < ε.

Due to the strict convergence on ∂K we have for large enough k

(6.12)
∣∣|Df y|(s, [ϕ(x)− t′, ϕ(x) + t′])− |Df yk |([(s, [ϕ(x)− t′, ϕ(x) + t′]))

∣∣ < ε

for s = x− η′, x+ η′ and

(6.13)
∣∣|Df y|([x− η′, x+ η′], ϕ(x) + r)− |Df yk |([x− η

′, x+ η′], ϕ(x) + r)
∣∣ < ε

for r = −t′, t′.
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We may now estimate the length of the curve fk(∂K) for large k as follows
(6.14)

H1(fk(∂K)) =
∑

s∈{−η′, η}

∫
{x+s}×[ϕ(x)−t′,ϕ(x)+t′]

|Df yk |+
∑

r∈{−t′, t′}

∫
[x−η′,x+η′]×{r}

|Dfxk |

≤︸︷︷︸
(6.12),(6.13)

∑
s∈{−η′, η}

∫
{x+s}×[ϕ(x)−t′,ϕ(x)+t′]

|Df y|

+
∑

r∈{−t′, t′}

∫
[x−η′,x+η′]×{r}

|Dfx|+ 4ε

≤︸︷︷︸
(6.10),(6.11)

2

∫
{x}×[q−,q+]

|Df y|+ 6ε ≤︸︷︷︸
(6.8)

2|A−B|+ 10ε.

By Lemma 4.3 we see that for any given δ > 0

(6.15) f̃(x, ϕ(x)) ⊂ fk(K) +B(0, δ)

for k ≥ C(δ). Notice that here fk is actually a subsequence of the original fk, but

Lemma 4.3 also implies that f̃(K) does not change when we take the subsequence.

As we mentioned earlier A,B ∈ f̃(x, ϕ(x)) and by (6.15) we find points A′ and
B′ in fk(K) with distance δ to points A and B respectively. Thus the line segment
〈A′, B′〉 is contained in the δ-neighborhood of 〈A,B〉 since |A−B| − 2δ ≤ |A′ −B′|.
By (6.14) fk(∂K) is a curve of length at most 2|A − B| + 10ε going around points
A′ and B′. Similarly to the ellipse arguments of Lemma 4.1 we see that all points
in fk(K) are in

√
10ε|A′ −B′|-neighborhood of 〈A′, B′〉. Thus, fk(K) is contained in

the (
√

10ε|A′ −B′|+ δ)-neighborhood of 〈A,B〉 and, finally by (6.15), f̃(x, ϕ(x)) is

in (
√

10ε|A′ −B′|+ 2δ)-neighborhood of 〈A,B〉. This does not depend on k anymore

and δ and ε are arbitrary. Thus f̃(x, ϕ(x)) = 〈A,B〉.
Finally we have H1

∞(f̃(x, ϕ(x))) = H1(f̃(x, ϕ(x))) for H1-almost every point in the
set Frac. �

Our next result gives an estimate for the size of the fractures.

Theorem 6.4. Let f ∈ BV (Q,R2) be a strict limit of BV homeomorphisms

fk : Q→ Q,

with fk|∂Q = id. Then we have

(6.16)

∫
Frac

H1(f̃(x)) dH1(x) ≤ C|Df |(Q).

Proof. As Frac is a (countably) 1-rectifiable set, it is contained in a countable union
of rotated graphs of Lipschitz functions. That is, we have Lipschitz functions ϕi :
(0, 1)→ R and denote by Gi a certain rotation of graph of ϕi. Then

Frac ⊂
⋃

Gi.
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We define sequences of sets used to estimate the integral over Frac. Let E1 =
Frac ∩G1. Inductively, we set

Ei = Frac ∩ (Gi \
i−1⋃
j=1

Gj)

and for each Ei we define

Ek
i = Ei \

(i−1⋃
j=1

Ej +B
(
0, 1

k

))
.

That is, Ek
i to be the subset of Ei which is at distance 1

k
from all Gj for j < i.

From these definitions we have that
⋃i
j=1Ej are closed sets and following inclusions

are true

(6.17) Frac ⊂
⋃

Ei,

for all i

(6.18) Ei \ (
i−1⋃
j=1

Ej) =
∞⋃
k=1

Ek
i =

∞⋃
k=1

Ek
i ,

and

(6.19)

j⋃
i=1

∞⋃
k=1

Ek
i =

j⋃
i=1

Ei.

The first two follow directly from the definitions. The third one follows from (6.18).
Consider the set Ek

i , for some k and i. We claim that for every η > 0 we have

(6.20)

∫
Ek

i

H1(f̃(x)) dH1(x) ≤ C|Df |(Ek
i +B(0, η)).

Before the proof of (6.20) we show how our claim follows.
By taking η to zero we get from (6.20)∫

Ek
i

H1(f̃(x)) dH1(x) ≤ C|Df |(Ek
i ).

Now taking k to infinity gives (recall (6.18))∫
Ei\∪i−1

j=1Ej

H1(f̃(x)) dH1(x) ≤ C|Df |(Ei \
i−1⋃
j=1

Ej).

Finally summing over all i we obtain∫
Frac

H1(f̃(x)) dH1(x) ≤
∑
i

∫
Ei

H1(f̃(x)) dH1(x)

≤ C
∑
i

|Df |(Ei \
i−1⋃
j=1

Ej) ≤ |Df |(Frac).
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Now we prove (6.20). Our set Ek
i lies on a graph of a Lipschitz function ϕ : (0, 1)→

R, thus Ek
i is a 1-rectifiable set with finite one dimensional measure. This implies

(see for example [21, Theorem 16.2]) that H1-a.e. point in Ek
i has density 1, i.e.

(6.21) lim
r→0

H1(B(x, r) ∩ Ek
i )

2r
= 1.

In Frac we have the following doubling property. For any x ∈ Frac there exists
arbitrarily small r with

(6.22) diam(f̃(B(x, r))) ≤ 2 diam(f̃(B(x,
r

20
))).

If this were not true then we would have for all small r

diam(f̃(B(x, r))) > 2 diam(f̃(B(x,
r

20
))).

and by iteration for all k

2−k diam(f̃(B(x, r))) > diam(f̃(B(x,
r

20k
))) ≥ diam(f̃(x)) > 0.

which is impossible.
We use a covering argument to estimate the integral over Ek

i . Choose for each
x ∈ Ek

i rx < η such that (6.22) is satisfied and we have for all r ≤ rx

H1(B(x, r) ∩ Ek
i ) ≤ 3r.

The latter is made possible by (6.21). Then the collection {B(x, rx
5

) : x ∈ Ek
i } is

covering and using Vitali 5r-covering theorem we obtain a sequence of disjoint balls
{B(xi,

ri
5

)}∞i=1 such that {B(xi, ri)}∞i=1 covers Ek
i .

Then, using Proposition 6.1 and Proposition 6.3 we may compute∫
Frac

H1
∞(f̃(x)) dH1(x) ≤

∞∑
i=1

∫
B(xi,ri)

H1
∞(f̃(x)) dH1(x) ≤ C

∞∑
i=1

diam(f̃(B(xi, ri)))ri

≤ C
∞∑
i=1

diam
(
f̃(B(xi,

ri
20

))
) ri

20
≤ C

∞∑
i=1

|Df |(B(xi,
ri
5

)) ≤ C|Df |(Ek
i +B(0, η)).

This finishes the proof of (6.20) and thus also of our claim. �

7. Examples

Example 7.1. Let us denote for k ∈ N

fk(x) =

x
(

1+k
1+k|x|2

) 1
2

for |x| ≤ 1,

x for |x| ≥ 1.

These functions are homeomorphisms, they map circles around 0 onto circles and rays
from the origin into the same ray. It is not difficult (see e.g. [17, Lemma 2.1]) to
show that

fk(x)→ fc(x) :=
x

|x|
strongly in W 1,p(B(0, 1),R2) for every 1 ≤ p < 2

and hence also strictly in BV .
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Figure 2. A cavitation.

The limit fc(x) maps circles centered at the origin onto similar circles and it
squeezes B(0, 1) onto ∂B(0, 1). This is the example of so called cavitation as f is dis-
continuous at 0 and maps the origin in some sense to the whole created cavity B(0, 1).

The multivalued representative of this function f̃c (see 3.1) satisfies f̃c(0) = B(0, 1).

Example 7.2. Let k ∈ N and [x, y] ∈ [−2, 2]2. We consider a piecewise linear
function lk,x(y) such that

lk,x(±2) = ±2 and lk,x(± 1
k
) = ±((1− |x|)+ + 1

k
),

i.e.

lk,x(y) =


(

1− (1−|x|)+

2− 1
k

)
y − 2 (1−|x|)+

2− 1
k

for y ∈ [−2,− 1
k
],(

1 + k(1− |x|)+

)
y for y ∈ [− 1

k
, 1
k
],(

1− (1−|x|)+

2− 1
k

)
y + 2 (1−|x|)+

2− 1
k

for y ∈ [ 1
k
, 2].

It is easy to see that lk,x : [−2, 2]→ [−2, 2] is a homeomorphism and that

lk,x →
k→∞

lx(y) :=
(

1− (1− |x|)+

2

)
y + sgnx(1− |x|)+

strictly in BV , i.e. the limit function is increasing and has a jump of size 2(1− |x|)+

at 0.
It is not difficult to see that the following mappings are homeomorphisms

fk([x, y]) := [x, lk,x(y)] and that fk →
k→∞

fF := [x, lx(y)]

strictly in BV. Indeed, clearly fk → fF strongly in W 1,1
loc on [−2, 2]2 \ ([−1, 1]× {0}),

around the segment [−1, 1] × {0} the derivative DxfF is bounded (as k|y| ≤ 1 for
y ∈ [− 1

k
, 1
k
]) and the jump of fF in y-direction corresponds to changes of Dyfk around

the segment. The limiting map fF gives us an example of the so called fracture
around the segment [−1, 1]×{0} - see Figure 3. Multifunction images of points [x, 0],
x ∈ [−1, 1] are segments

f̃F ([x, 0]) = {x} × [|x| − 1, 1− |x|].

Example 7.3. Here we show that there is a sequence of homeomorphisms fk such that
fk(x, y)→ [x, y] weakly in BV but f̃(0, 0) = [0, 1]×{0} (or even f̃({0, 0}) = B(0, 1)).
This shows that it is reasonable to assume strict convergence to get a meaningful
theory.
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Figure 3. Fracture opens segment onto square. Images of points a, b
on the segment are straight lines f̃F (a) and f̃F (b).

For k ∈ N let us define piecewise linear function

ck(x) =


x for x ≤ 0,

kx for x ∈ [0, 1
k+1

],
1
k
x+ k−1

k
for x ∈ [ 1

k+1
, 1],

x for x ≥ 1.

We set

fk(x, y) =
[
(1− k|y|)+ck(x) +

(
1− (1− k|y|)+

)
x, y
]
.

The first coordinate function is increasing as a function of x as it is convex combination
of two increasing functions. Hence our fk are homeomorphisms and it is easy to check
that

(7.1) fk(x, y) = [x, y] for [x, y] /∈ [0, 1]× [− 1
k
, 1
k
].

An elementary computation shows us that all partial derivatives are bounded by k
on [0, 1]× [− 1

k
, 1
k
] and hence ∫

(−2,2)2

|Dfk| < C for all k.

It follows that there is weak* convergent subsequence in BV and in view of fk → id
a.e. we have fk → id weakly in BV (possible for a subsequence). On the other hand
we know that

fk
(
[0, 1

k+1
]× {0}

)
= [0, k

k+1
]× {0}

and hence it is easy to see by (3.2) that f̃(0, 0) = [0, 1]× {0}.
Let us now show in detail that the whole sequence fk converges weakly and we do

not need to select a subsequence. Let us first pick ϕ ∈ C1
c (R2). As fk are Lipschitz

we can use integration by parts to obtain∫
R2

Dfk(x)ϕ(x) dx = −
∫

R2

fk(x)Dϕ(x) dx and

∫
R2

Iϕ(x) dx = −
∫

R2

xDϕ(x) dx,

where I is the identity matrix. By (7.1) we thus obtain∣∣∣∫
R2

(fk(x)− x)Dϕ(x) dx
∣∣∣ ≤ 2

k
‖fk(x)− x‖∞‖Dϕ‖∞ ≤

4

k
‖Dϕ‖∞

k→∞→ 0
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and hence

(7.2) lim
k→∞

∫
R2

Dfk(x)ϕ(x) dx =

∫
R2

Iϕ(x) dx for every ϕ ∈ C1
c (R2).

Given ε > 0 and ϕ0 ∈ Cc(R2) we find ϕ0 ∈ C1
c (R2) such that ‖ϕ − ϕ0‖∞ < ε. Since

supk
∫

[−2,2]2
|Dfk| < C and f = fk outside [−2, 2]2 we obtain∣∣∣∫

R2

Dfk(x)ϕ0(x) dx−
∫

R2

Dfk(x)ϕ(x) dx
∣∣∣ ≤ Cε

and hence it is easy to conclude that (7.2) actually holds for every Cc(R2) test function.
Let us consider the mapping Rk : R2 → R2 which rotates the plane around the

origin by angle k. Let us define f̂k := Rk ◦ fk ◦ R−k. As before it is easy to see that

f̂k converges weakly in BV and since

|{[x, y] : f̂k(x, y) 6= [x, y]}| → 0 and |fk(x, y)− [x, y]| ≤ 2

we obtain that fk → id in L1 and thus also weakly in BV . As in the previous
paragraph we obtain that the whole sequence is weakly converging and we do not
need to select a subsequence. Since (k mod 2π) is dense in [0, 2π] we obtain that the

limit multifunction mapping satisfies f̃(0, 0) = B(0, 1). It follows that we cannot build
a reasonable theory as e.g. the image of disjoint sets {0} and B([1

2
, 0], 1

3
) intersects

in set of positive measure and thus it is not essentially disjoint. Let us note that we
can even have fk(x, y) → [x, y] a.e. (for a well-chosen subsequence). Indeed, choose
kl such that

∑
l

1
kl
<∞ and such that (kl mod 2π) is dense in [0, 2π]. Then we still

have f̃(0, 0) = B(0, 1) and moreover fkl
(x, y)→ [x, y] a.e. outside of the set

∞∑
l=l0

|{fkl
(x, y) 6= [x, y]}| ≤

∞∑
l=l0

2

kl

l0→∞→ 0.

Example 7.4. Let us point out that not all fractures can be realized as strict limits
of BV homeomorphisms. On Fig. 3 we can see a fracture of a segment onto some
nonconvex hole. Imagine that the two “images” of a point a on the fracture cannot
be connected by a segment inside the nonconvex hole - see points f(a)+ and f(a)− on
Figure 4. Then this cannot be realized as a strict limit on BV homeomorphisms as
f̃(a) has to lie inside the nonconvex hole and hence we lose some energy in the limiting
process as the energy of the jump of the limit f is strictly smaller (see Proposition
6.3).

Example 7.5. There exists a sequence of finitely piecewise affine homeomorphisms fk
converging strongly in W 1,∞(Q,R2) with fk(x) = x on ∂Q but f−1

k does not converge
strictly in BV. Thus the formula∫

Q

|Df | =
∫
f(Q)

|Df−1|

does not hold for f , limits of strictly converging homeomorphisms in BV.
We now show existence of such mapping. We create a mesh of triangles and rectan-

gles in the preimage which will be the same for all fk (see the left picture in Fig. 5).
Each fk is affine on each of the triangles and each of the rectangles. Since the mesh
in the preimage is the same for all fk and fk converge uniformly to a nice piecewise
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Figure 4. Not all fractures can be created by strict limits.

Figure 5. Corresponding regions of the preimage and the image.

affine mapping f we will obtain that fk converge to f even in W 1,∞. In Figure 5 we
denote the regions of the preimage on which f1 is affine and we show where f1 maps
them to. Figure 6 demonstrates how the sequence continues. We move the image
of C4 closer and closer to the midpoint of the bottom side of the square and the
image of C1 and C7 grow to fill the entire middle region of the square (their image
in the limit is portrayed in Figure 7). In each of the regions B2, B3, B4, C2, C3, C4,
C5, C6, D3, D4 and D5 the map converges to a degenerate (or constant) affine map
with vertices being mapped onto the midpoint of the bottom side of the square. It is
elementary to notice that for sequence of affine maps An from a fixed triangle BCD
such that each of the sequences An(B) An(C) An(D), converge, that the sequence
An converges strongly in W 1,∞(BCD◦). Therefore, since our map is affine on each
region and converges uniformly over k on each region, we have Lipschitz convergence
and thus also strict convergence in BV .

Thus we have a sequence of homeomorphisms converging strongly in W 1,∞. The in-
verse f−1

k is in BV and
∫
Q
|Df−1

k | =
∫
Q
|Dfk| for every k and thus sequence

∫
Q
|Df−1

k |
is bounded. Since f−1

k converges in L1 the sequence f−1
k converges weakly in BV, call

the limit g. We have the lower semi-continuity not just for the variation but also for
the horizontal and vertical variation. We show that the horizontal variation of g is
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(a) preimage (b) f1

(c) f2 (d) f3

Figure 6. The sequence converging uniformly.

strictly less than that of the sequence and so f−1
k has strictly more energy than g and

f−1
k does not converge strictly. The map g is depicted in Figure 7.
The horizontal variation is easily calculated as horizontal segments are sent onto

horizontal segments, except for the center point, where there is a jump between two
points with the same y-coordinate. Thus the horizontal variation of g is 1. As we
approach the limit however fk maps B2 and B4 within an ε neighbourhood of the
bottom of the square (see Figure 6). Therefore the image in f−1

k of any horizontal
line in the bottom quarter of the image which is ε or more above the bottom of the
square must intersect the sets B2 and B4 in the preimage. Thus each such line must
have horizontal variation of at least 1 + δ for some fixed δ. Thus f−1

k do not converge
strictly.
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