A REMARK ON FUNCTIONS CONTINUOUS ON ALL LINES

LUDĚK ZAJÍČEK

ABSTRACT. We prove that each linearly continuous function f on \mathbb{R}^n (i.e., each function continuous on all lines) belongs to the first Baire class, which answers a problem formulated by K.C. Ciesielski and D. Miller (2016). The same result holds also for f on an arbitrary Banach space X, if f has moreover the Baire property. We also prove (extending a known finite-dimensional result) that such f on a separable X is continuous at all points outside a first category set which is also null in any usual sense.

1. Introduction

Separately continuous functions on \mathbb{R}^n (i.e., functions continuous on all lines parallel to an coordinate axis) and also linearly continuous functions (i.e., functions continuous on all lines) were investigated in a number of articles, see the survey [1].

Recall here Lebesgue result of [4] which asserts that

\begin{equation}
\text{(1.1)} \quad \text{each separately continuous function on } \mathbb{R}^n \text{ belongs to the } (n-1)\text{-th Baire class.}
\end{equation}

We prove (see Theorem 3.5 below) that each linearly continuous function f with the Baire property on a Banach space X belongs to the first Baire class. Of course, if X is infinite-dimensional, then there exists an (everywhere) discontinuous linear functional f on X (which is linearly continuous), which shows that, in Theorem 3.5, it is not possible to omit the assumption that f has the Baire property. However, using Lebesgue result (1.1), we obtain that each linearly continuous function f on \mathbb{R}^n belongs to the first Baire class, which answers [1, Problem 2, p. 12].

The natural question how big can be the set $D(f)$ of all discontinuity points of a separately (resp. linearly) continuous function were considered in several works, see [1].

A complete characterization of sets $D(f)$ for separately continuous functions in \mathbb{R}^n was given in [2] (and independently in [8]), cf. [1]. This characterization, in particular, shows that $D(f)$ is a first category set, but it can have positive Lebesgue measure (even its complement can be Lebesgue null).

Slobodnik proved in [8] that, for each linearly continuous f on \mathbb{R}^n,

\begin{equation}
\text{(1.2)} \quad D(f) \text{ is contained in a countable union of Lipschitz hypersurfaces},
\end{equation}

in particular, the Hausdorff dimension of $D(f)$ is at most $(n-1)$ (and so $D(f)$ is Lebesgue null). We show that (1.2) holds also in each separable Banach space X under the additional assumption that f has the Baire property. Consequently $D(f)$ is null in any usual sense, in particular it is Aronszajn null and Γ-null.

1991 Mathematics Subject Classification. Primary: 26B05; Secondary: 46B99.
Key words and phrases. linear continuity, Baire class one, discontinuity sets, Banach space.
The research was supported by the grant GAČR P201/15-08218S.
2. Preliminaries

In the following, by a Banach space we mean a real Banach space. If X is a Banach space, we set $S_X := \{ x \in X : \|x\| = 1 \}$. The symbol $B(x, r)$ will denote the open ball with center x and radius r. The oscillation of a function f at a point x will be denoted by $\text{osc}(f, x)$.

Let X be a Banach space, $\emptyset \neq G \subset X$ an open set and $f : G \to \mathbb{R}$ a function. Then we say that f is linearly continuous, if the restriction $f \upharpoonright_{L \cap G}$ is continuous for each line $L \subset X$ intersecting G.

We will essentially use the following well-known characterization of Baire class one functions (see e.g. [5, Theorem 2.12]).

Lemma 2.1. Let X be a strong Baire metric space and $f : X \to \mathbb{R}$ a function. Then the following conditions are equivalent. h

i) f is a Baire class one function.

ii) For every nonempty closed set $F \subset X$ and for every real numbers $\alpha < \beta$, the sets $\{ z \in F : f(z) \leq \alpha \}$ and $\{ z \in F : f(z) \geq \beta \}$ cannot be dense in F simultaneously.

Recall that X is called strong Baire if every closed subspace of X is a Baire space. Thus each topologically complete metric space (and so each G_δ subspace of a complete space) is strong Baire.

We will use the classical Baire terminology concerning his category theory. So complements of first category sets (= meager sets) are called residual (= comeager) sets and sets of the second category are those which are not of the first category. We will need the following well-known fact which follows e.g. from [3, §10, (7) and (11)] (cf. the text below (11)).

Lemma 2.2. If M is a second category subset of a metric space X, then there exists an open set $\emptyset \neq U \subset X$ such that $M \cap V$ is of the second category for each open $\emptyset \neq V \subset U$.

In a metric space (X, ρ), the system of all sets with the Baire property is the smallest σ-algebra containing all open sets and all first category sets. We will say that a mapping $f : (X, \rho_1) \to (Y, \rho_2)$ has the Baire property if f is measurable with respect to the σ-algebra of all sets with the Baire property. In other words, f has the Baire property, if and only if $f^{-1}(B)$ has the Baire property for all Borel sets $B \subset Y$ (see [3, §32]). We will need the following fact (see e.g. [3, §32, II]).

Lemma 2.3. If Y is separable, then f has the Baire property, if and only there exists a residual set R in X such that the restriction $f \upharpoonright_R$ is continuous.

Let X be a Banach space, $x \in X$, $v \in S_X$ and $\delta > 0$. Then we define the open cone $C(x, v, \delta)$ as the set of all $y \neq x$ for which $\|v - \frac{y-x}{\|y-x\|}\| < \delta$.

The following easy inequality is well known (see e.g. [6, Lemma 5.1]):

\[
(2.1) \quad \text{if } v, w \in X \setminus \{0\}, \text{ then } \left\| \frac{v}{\|v\|} - \frac{w}{\|w\|} \right\| \leq \frac{2}{\|v\|} \|v - w\|.
\]

We will need the following special case of [7, Lemma 2.4]. It can be proved by the Kuratowski-Ulam theorem (as is noted in [7]), but the proof given in [7] is more direct.

Lemma 2.4. Let U be an open subset of a Banach space X. Let $M \subset U$ be a set residual in U and $z \in U$. Then there exists a line $L \subset X$ such that z is a point of accumulation of $M \cap L$.

3. Baire class one

Lemma 3.1. Let X be a Banach space, $\emptyset \neq G \subset X$ an open set and let $f : G \to \mathbb{R}$ be a linearly continuous function having the Baire property. Then for each $\eta > 0$ there exist $u \in S_X$, $\delta > 0$ and $p \in \mathbb{N}$ such that

$$|f(y) - f(x)| \leq \eta \text{ whenever } y \in C(x,u,\delta) \cap B(x,1/p).$$

Proof. Let $x \in X$ and $\eta > 0$ be given; we can and will suppose that $x = 0$. For each $k \in \mathbb{N}$, set

$$S_k := \{v \in S_X : |f(x + tv) - f(x)| \leq \eta \text{ for each } 0 < t < 1/k\}.$$

Since S_X is clearly covered by all sets S_k, by the Baire theorem (in S_X) we can choose $p \in \mathbb{N}$ such that S_p is a second category set (in S_X). So Lemma 2.2 implies that we can find $u \in S_X$ and $\delta > 0$ such that $S_p \cap V$ is of the second category in S_X whenever $\emptyset \neq V \subset S_X \cap B(u,\delta)$ is an open subset in S_X. Set

$$U := C(0,u,\delta) \cap B(0,1/p) \text{ and } M := \{y \in U : |f(y) - f(x)| \leq \eta\}.$$

Then (3.1) is equivalent to the equality $M = U$.

We will first prove that M is residual in U. To this end consider the product metric space

$$U^* := (S_X \cap B(u,\delta)) \times (0,1/p)$$

and the mapping

$$\varphi : U^* \to U, \quad \varphi((v,t)) := tv.$$

Then φ is clearly a homeomorphism (with $\varphi^{-1}(z) = (z/\|z\|,\|z\|)$ for $z \in U$). Since f has the Baire property, we obtain that M has the Baire property in G (and consequently also in U). Therefore $M^* := \varphi^{-1}(M)$ has the Baire property in U^*. Consequently (cf. e.g. [3, § 11, IV, Corollary 2]), to prove that M^* is residual in U^*, it is sufficient to prove that $M^* \cap (V \times G)$ is of the second category in U^* whenever $\emptyset \neq V \subset S_X \cap B(u,\delta)$ is an open subset of S_X and $\emptyset \neq G \subset (0,1/p)$ is open. To prove this last statement, observe that the definition of S_p implies that

$$(S_p \cap V) \times G \subset M^* \cap (V \times G).$$

Further, since $S_p \cap V$ is of the second category in $S_X \cap B(u,\delta)$ and G is of the second category in $(0,1/p)$, we obtain (see e.g. [3, § 22, V, Corollary 1b]) that $M^* \cap (V \times G)$ is of the second category in U^*.

Thus we have proved that M^* is residual in U^* and consequently M is residual in U. Now consider an arbitrary $z \in U$. By Lemma 2.4 there exists a line $L \subset X$ and points $z_n \in M \cap L \cap U$ with $z_n \to z$. Since the restriction of f to $L \cap U$ is continuous, we obtain $f(z_n) \to f(z)$, and consequently $z \in M$. So $M = U$, which implies (3.1). \qed

Lemma 3.2. Let X be a Banach space, $u \in S_X$, $0 < \delta \leq 1$ and $0 < \xi < \delta/2$. Then, for each $x,y \in X$ with $\|x - y\| < \delta\xi/4$, we have

(i) $z := y + (\xi/2)u \in C(x,u,\delta) \cap B(x,\delta)$ and

(ii) $C(x,u,\delta) \cap B(x,\delta) \cap C(y,u,\delta) \cap B(y,\delta) \neq \emptyset$.

Proof. Since

$$\|z - x\| \leq \|z - y\| + \|y - x\| \leq \frac{\xi}{2} + \frac{\delta\xi}{4} \leq \frac{\delta}{4} + \frac{\delta}{4} < \delta,$$
we have \(z \in B(x, \delta) \). Since
\[
\|z - x\| \geq \|z - y\| - \|y - x\| \geq \frac{\xi}{2} - \frac{\xi}{4} > 0,
\]
we can apply (2.1) to \(u := (\xi/2)u = z - y \) and \(w := z - x \neq 0 \). Because \(\|w - v\| = \|y - x\| < \delta/4 \), the inequality (2.1) gives
\[
\left\| \frac{u - w}{\|w\|} \right\| = \left\| \frac{v}{\|v\|} - \frac{w}{\|w\|} \right\| < \frac{2}{\xi/2} \cdot \frac{\delta/4}{\xi/2} = \delta.
\]
Consequently \(z \in C(x, u, \delta) \) and so (i) follows. Since \(z \in C(y, u, \delta) \cap B(y, \delta) \), (i) implies (ii).

The following result is not labeled as a theorem, since it will be generalized to all Banach spaces.

Proposition 3.3. Let \(X \) be a separable Banach space, \(\emptyset \neq G \subset X \) an open set and let \(f : G \to \mathbb{R} \) be a linearly continuous function having the Baire property. Then \(f \) belongs to the first Baire class.

Proof. We can suppose \(\dim X > 1 \). Suppose to the contrary that \(f \) is not in the first Baire class. Then by Lemma 2.1 there exists a set \(\emptyset \neq F \subset G \) closed in \(G \) and reals \(\alpha < \beta \) such that the both sets
\[
A := \{ z \in F : f(z) \leq \alpha \} \quad \text{and} \quad B := \{ z \in F : f(z) \geq \beta \}
\]
are dense in \(F \). Set \(\eta := (1/7)(\beta - \alpha) \). Now choose a dense sequence \((u_n)_n \in S_X \) and, for each \(n \in \mathbb{N} \), set
\[
P_n := \{ x \in F : |f(y) - f(x)| \leq \eta \quad \text{whenever} \quad y \in C(x, u_n, 1/n) \cap B(x, 1/n) \}.
\]
Lemma 3.1 implies that \(F = \bigcup_{n=1}^{\infty} P_n \). Indeed, for each \(x \in F \) we can choose \(u \in S_X \), \(\delta > 0 \) and \(p \in \mathbb{N} \) for which (3.1) holds. Further choose \(n > p \) such that \(1/n < \delta/2 \) and \(\|u_n - u\| < \delta/2 \). Then clearly
\[
C(x, u_n, 1/n) \cap B(x, 1/n) \subset C(x, u, \delta) \cap B(x, 1/p)
\]
and consequently \(x \in P_n \) by (3.1).

Since \(F \) is closed in \(G \), the Baire theorem in \(F \) holds and thus there exists \(k \in \mathbb{N} \) such that \(P_k \) is not nowhere dense in \(F \). Therefore there exist \(c \in F \) and \(0 < r < 1/(32k^2) \) such that \(P_k \) is dense in \(B(c, r) \cap F \).

Now choose \(y \in A \cap B(c, r) \) and \(y^* \in B \cap B(c, r) \). Since \(f \) is linearly continuous, we can choose \(0 < \xi < 1/(2k) \) such that
\[
(3.2) \quad f(z) \leq \alpha + \eta \quad \text{for} \quad z := y + (\xi/2)u_k.
\]
Further choose \(x \in P_k \cap B(c, r) \) with \(\|y - x\| < \xi/(4k) \). Applying Lemma 3.2 (i) with \(u := u_k \) and \(\delta := 1/k \) we obtain that \(z \in C(x, u_k, 1/k) \cap B(x, 1/k) \), and consequently \(|f(z) - f(x)| \leq \eta \) since \(x \in P_k \). So (3.2) gives \(f(x) \leq \alpha + 2\eta \).

Proceeding quite analogously as above (working now with \(y^* \) and \(B \) instead of \(y \) and \(A \) we find \(x^* \in P_k \cap B(c, r) \) with \(f(x^*) \geq \beta - 2\eta \). Since \(0 < r < 1/(32k^2) \), we have \(\|x - x^*\| < 1/(16k^2) \). So we can apply Lemma 3.2 (ii) with \(u := u_k \), \(\delta := 1/k \), \(\xi := 1/(4k) \), \(x \) and \(y := x^* \) to find a point
\[
b \in C(x, u_k, 1/k) \cap B(x, 1/k) \cap C(x^*, u_k, 1/k) \cap B(x^*, 1/k).
\]
Since \(x, x^* \in P_k \), we have \(|f(b) - f(x)| \leq \eta \), \(|f(b) - f(x^*)| \leq \eta \), and therefore \(\beta - 3\eta \leq f(b) \leq \alpha + 3\eta \). Consequently \(\beta - \alpha \leq 6\eta \) which contradicts the choice of \(\eta \). \(\square \)
Since each function from \((n - 1)\)-th Baire class has the Baire property, Lebesgue result (1.1) and Proposition 3.3 give the following main result of the present note which answers [1, Problem 2].

Theorem 3.4. Each linearly continuous function on \(\mathbb{R}^n\) belongs to the first Baire class.

Using easy “separable reduction” arguments, we obtain that the assumption of separability of \(X\) in Proposition 3.3 can be deleted.

Theorem 3.5. Let \(X\) be an arbitrary Banach space, \(\emptyset \neq G \subset X\) an open set and let \(f : G \to \mathbb{R}\) be a linearly continuous function having the Baire property. Then \(f\) belongs to the first Baire class.

Proof. Suppose to the contrary that \(f\) is not in the first Baire class. Then by Lemma 2.1 there exist a set \(\emptyset \neq F \subset G\) closed in \(G\) and reals \(\alpha < \beta\) such that the both sets

\[
A := \{ z \in F : f(z) \leq \alpha \} \quad \text{and} \quad B := \{ z \in F : f(z) \geq \beta \}
\]

are dense in \(F\).

Now we will define inductively a nondecreasing sequence \((M_n)_{n=1}^\infty\) of countable subsets of \(F\). We set \(M_1 := \{a\}\), where \(a \in F\) is an arbitrarily chosen point. If \(n > 1\) and a countable set \(M_{n-1}\) is defined, we choose for each point \(\mu \in M_{n-1}\) sequences \((a_k^\mu)_{k=1}^\infty\), \((b_k^\mu)_{k=1}^\infty\) converging to \(\mu\) with \(a_k^\mu \in A\) and \(b_k^\mu \in B\), \(k \in \mathbb{N}\). Then we set

\[
M_n := M_{n-1} \cup \bigcup_{\mu \in M_{n-1}} \bigcup_{k \in \mathbb{N}} \{a_k^\mu, b_k^\mu\}.
\]

Setting

\[
\tilde{F} := \bigcup_{n \in \mathbb{N}} M_n \cap G,
\]

we easily see that \(\tilde{F}\) is a separable subset of \(F\) which is closed in \(F\) and

\[
A \cap \tilde{F} \quad \text{and} \quad B \cap \tilde{F} \quad \text{are dense in} \quad \tilde{F}.
\]

Denote by \(X_1\) the closure of the linear span of \(\tilde{F}\). Then \(X_1\) is a closed separable subspace of \(X\). By Lemma 2.3 there exists a residual set \(R\) in \(G\) such that the restriction \(f \restriction_R\) is continuous. [11, Lemma 4.6] implies that there exists a separable closed subspace \(X_2\) of \(X\) such that \(X_2 \supset X_1\) and \(R \cap X_2\) is residual in \(X_2\). Consequently the function \(g := f \restriction_{X_2\cap G}\) has the Baire property. Since \(g\) is linearly continuous on \(X_2 \cap G\), Proposition 3.3 implies that \(g\) is in the first Baire class. But this contradicts Lemma 2.1, since \(X_2 \cap G\) is a strong Baire space (even a topologically complete space), \(\tilde{F}\) is closed in \(X_2 \cap G\) and (3.3) holds.

\[\square\]

4. SET OF DISCONTINUITY POINTS

In this short section we will show that Lemma 3.1 easily implies a Slobodnik’s result of [8] (Corollary 4.3 below) and its analogues in infinite-dimensional Banach spaces. First we recall some definitions and facts.

Let \(X\) be a Banach space. We say that \(A \subset X\) is a Lipschitz hypersurface if there exists a 1-dimensional linear space \(F \subset X\), its topological complement \(E\) and a Lipschitz mapping \(\varphi : E \to F\) such that \(A = \{ x + \varphi(x) : x \in E\}\).

Recall (see [10, 4C]) that if \(X\) is separable, then each \(M \subset X\) which can be covered by countably many Lipschitz hypersurfaces (note that such sets are sometimes called
“sparse”, see [10]) is not only a first category set but is also Aronszajn (≡ Gauss) null and \(\Gamma \)-null (in Lindenstrauss-Preiss sense).

A natural generalization of “sparse sets” to arbitrary (nonseparable) spaces are \(\sigma \)-cone supported sets. Their definition (see e.g. [10, Definition 4.4]) works with cones defined by a slightly different way than the cones \(C(x, v, \delta) \) in Preliminaries; namely with cones \(A(v, c) := \bigcup_{\lambda > 0} \lambda \cdot B(v, c) \), where \(||v|| = 1 \) and \(0 < c < 1 \). However, for such \(v \) and \(c \), obviously \(C(0, v, c) \subset A(v, c) \) and (2.1) easily implies \(A(v, c/2) \subset C(0, v, c) \). Consequently [10, Definition 4.4] can be equivalently rewritten as follows:

We say that a subset \(M \) of a Banach space \(X \) is cone supported if for each \(x \in M \) there exist \(v \in S_X \), \(\delta > 0 \) and \(r > 0 \) such that \(M \cap C(x, v, \delta) \cap B(x, r) = \emptyset \). A set is called \(\sigma \)-cone supported if it is a countable union of cone supported sets.

Recall that [9, Lemma 1] easily implies that if \(X \) is separable, then

\[
(4.1) \quad M \subset X \text{ is } \sigma \text{-cone supported if and only if it can be covered by countably many Lipschitz hypersurfaces.}
\]

Theorem 4.1. Let \(X \) be an arbitrary Banach space, \(\emptyset \neq G \subset X \) an open set and let \(f : G \to \mathbb{R} \) be a linearly continuous function having the Baire property. Then the set \(D(f) \) of all discontinuity points of \(f \) is \(\sigma \)-cone supported.

Proof. Denote \(D_n := \{ x \in G : \text{osc}(f, x) \geq 1/n \}, n \in \mathbb{N} \). Since \(D(f) = \bigcup_{n=1}^{\infty} D_n \), it is sufficient to prove that each \(D_n \) is a cone supported set. To this end fix an arbitrary \(n \in \mathbb{N} \) and consider an arbitrary point \(x \in D_n \). By Lemma 3.1 there exist \(v \in S_X \), \(\delta > 0 \) and \(r > 0 \) such that

\[
|f(y) - f(x)| \leq \frac{1}{3n} \quad \text{whenever } y \in C(x, v, \delta) \cap B(x, r).
\]

Consequently the oscillation of \(f \) on the open set \(C(x, v, \delta) \cap B(x, r) \) is at most \(2/(3n) \) and therefore \(D_n \cap C(x, v, \delta) \cap B(x, r) = \emptyset \). So we have proved that \(D_n \) is cone supported. \(\square \)

Using (4.1), we obtain the following corollary.

Corollary 4.2. Let \(X \) be a separable Banach space, \(\emptyset \neq G \subset X \) an open set and let \(f : G \to \mathbb{R} \) be a linearly continuous function having the Baire property. Then the set \(D(f) \) of all discontinuity points of \(f \) can be covered by countably many Lipschitz hypersurfaces. In particular, \(D(f) \) is a first category set which is Aronszajn null and also \(\Gamma \)-null.

We obtain also the following result which was proved by S.G. Slobodnik in [8] by an essentially different way.

Corollary 4.3. Let \(\emptyset \neq G \subset \mathbb{R}^n \) be an open set and let \(f : G \to \mathbb{R} \) be a linearly continuous function. Then the set \(D(f) \) of all discontinuity points of \(f \) can be covered by countably many Lipschitz hypersurfaces.

Proof. If \(G = \mathbb{R}^n \), it is sufficient to use Theorem 4.1 together with (1.1). If \(G \) is an open interval we can use instead of (1.1) its generalization [3, \S 31, V, Theorem 2]. Using this special case, we easily obtain the general one, if we write \(G = \bigcup_{n \in \mathbb{N}} I_n \), where \(I_n \) are open intervals. \(\square \)

References

E-mail address: zajicek@karlin.mff.cuni.cz

Charles University, Faculty of Mathematics and Physics, Sokolovská 83, 186 75 Praha 8-Karlín, Czech Republic