
ON FRAGMENTED CONVEX FUNCTIONS
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Abstract. Let X be a compact convex set and let extX stand for the set

of extreme points of X. Let f : X → R be a bounded convex function with

the point of continuity property. The first main result shows that f ≤ 0 on X
provided f ≤ 0 on extX. As a byproduct of our method we generalize a result

of Raja. Next we show that a resolvable convex semi-extremal nonempty set in

X intersects extX. Finally we prove a Phelps maximum principle for abstract
affine functions defined on a locally compact topological space.

1. Introduction

Let F stand for R or C. Given a locally compact (Hausdorff) topological space
X and f : X → F, the function f is said to have the point of continuity property if
f |F has a point of continuity for any F ⊂ X nonempty closed.

The function f is called fragmented if for any ε > 0 and nonempty closed set
F ⊂ X there exists a relatively open nonempty set U ⊂ F such that diam f(U) < ε.

A set A ⊂ X is resolvable if the characteristic function χA is fragmented. By
[7, Theorem 2.3], the following assertions for a function f : X → F on a locally
compact space X are equivalent:

(i) f is fragmented;
(ii) f has the point of continuity property;

(iii) for each U ⊂ F open the set f−1(U) is expressible as a countable union of
resolvable sets.

(We remark that a locally compact space is hereditarily Baire, see [4, p. 196 and
Theorem 3.9.6].)

It easily follows from this characterization that fragmented functions form a
Banach lattice and algebra, see [9, Theorem 5.10].

It also readily follows that any semicontinuous function f : X → R is fragmented.
Also, if X is a metrizable compact space, a set F ⊂ X is resolvable if and only if
F is both Fσ and Gδ, i.e., if χF is a classical Baire-one function.

Now we turn our attention to the case when X is a compact convex subset of a
locally convex (Hausdorff) space. We recall that if H is a subset of X and x ∈ H,
then x is an extreme point of H if whenever x = λy + (1 − λ)z for some y, z ∈ H
and λ ∈ (0, 1), then x = y = z. We write extH for the set of extreme points of H.
It is well known that any semicontinuous convex function f : X → R satisfies the
maximum principle, i.e., f ≤ 0 on X provided f ≤ 0 on extX (see e.g. [9, Section
3.9]). It is proved in [3] that a fragmented affine function satisfies the maximum
principle. The first main result of this note is a proof of an analogous result for
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bounded convex fragmented functions (see Corollary 2.6). As a byproduct of our
techniques we obtain an improvement of a theorem by Raja in [13] and also recover
the Rainwater theorem.

As a subsequent result we verify that fragmented convex functions respect the
Choquet ordering.

A set F ⊂ X is called extremal if λx + (1 − λ)y ∈ F for some x, y ∈ X and
λ ∈ (0, 1) implies x, y ∈ F . If F ⊂ X is nonempty, resolvable and extremal, the
function χF is convex and fragmented. Thus it follows from Corollary 2.6 that
F ∩ extX 6= ∅. In [12], it was showed that nonempty closed semi-extremal subsets
of X intersect extX. (We recall that F ⊂ X is semi-extremal if X \ F is convex.)
We prove a similar result by showing that any nonempty semi-extremal convex
resolvable set intersects extX.

Finally we consider an abstract function space H on a locally compact space
K with the Choquet boundary ChK (see Section 5). We show that a completely
H-affine fragmented function f on K satisfies supx∈K |f(x)| = supx∈ChK |f(x)|,
generalizing thus a theorem of Phelps, see [5, Theorem 2.3.8].

2. Maximum principle

First we recall several notions. Let K be a compact topological (Hausdorff)
space. We writeM(K,F) for the set of all (complete) Radon F-valued measures on
K, M+(K) for the set of nonnegative Radon measures and M1(K) for the set of
probability Radon measures on K. We endow these sets with the weak∗ topology
given by the duality C(K,F)∗ = M(K,F), where C(K,F) stands for the space
of F-valued continuous functions on K endowed with the sup-norm. A function
f : K → F is called universally measurable if f is measurable with respect to every
measure µ ∈M(K,F).

Let X be a compact convex set in a locally convex (Hausdorff) space.We write
A(X,F) for the space of affine F-valued continuous functions on X. For any µ ∈
M1(X) there exists a unique point r(µ) ∈ X such that µ(a) = a(r(µ)), a ∈ A(X,F),
see [1, Proposition I.2.1]. We call r(µ) the barycenter of µ. Alternatively we say
that the measure µ represents r(µ) and we write Mx for the set of all probability
measures representing a point x ∈ X.

By the Choquet–Bishop–de-Leeuw representation theorem (see [1, Theorem I.4.8
and Proposition 1.4.6.]), for each x ∈ X there exists a measure µ ∈M1(X) carried
by extX with r(µ) = x.

For x, y ∈ X we write [x, y] for the segment {λx+ (1−λ)y; λ ∈ [0, 1]} and (x, y)
for the set {λx+ (1− λ)y; λ ∈ (0, 1)}. Further, we write L(x, y) for the line given
by x and y intersected with X, i.e.,

L(x, y) = {x+ t(y − x); t ∈ R} ∩X.

The following geometric lemma is a key ingredient for several results of this paper.
In the proof we several times use the following simple geometric observation. Let
a1, a2, b1, b2, x ∈ X be distinct points satisfying x ∈ (a1, b1)∩(a2, b2). If c ∈ [a1, a2],
then the line segment L(c, x) intersects [b1, b2]. If c ∈ (a1, a2), then the line segment
L(c, x) intersects (b1, b2).

Lemma 2.1. Let H be a semi-extremal subset of X. Then extX ∩H = ∅ if and
only if extH ∩H = ∅.
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Proof. It is obvious that if H contains an extreme point of X, then this point is
extreme for H.

We suppose that H contains no extreme point of X and we denote F = X \H.
We assume that there exists a point x ∈ extH ∩H and seek a contradiction. Since
x ∈ H, it is not an extreme point of X, so there are distinct points a, b ∈ X such
that x ∈ (a, b). Since x ∈ extH, at least one of the points a and b does not belong
to H, and since F is convex, a and b are not both in F . Thus we may assume that
a ∈ F and b ∈ H.

Now we denote
t = max{s ≥ 0; b+ s(b− a) ∈ X},

and
c = b+ t(b− a).

Then by the convexity of F , c belongs to H. We show that c is an extreme point of
X which then yields the desired contradiction. Assuming the contrary, there exist
distinct points c1, c2 ∈ X such that c ∈ (c1, c2). Then by the choice of c, the points
c1 and c2 do not lie on the line segment L(a, c), and thus the convex hull of the
points a, c1 and c2 forms a non-degenerated triangle. Using the convexity of F , c1
and c2 are not both in F , thus we assume that c1 ∈ H. Now we distinguish two
cases.

Case 1.
If c2 /∈ F , then let

u = sup{s ≥ 0; a+ s(c2 − a) ∈ F},
and

(2.1) d2 = a+ u(c2 − a).

Then such a defined point d2 belongs to the line segment [a, c2]. We show that d2

is in the closure of H. If d2 = c2 ∈ H, then we are done. Assuming that d2 6= c2, it
follows from the definition of the point d2 that the line segment (d2, c2) is a subset
of H, see (2.1). This proves that d2 belongs to the closure of H.

Using the extremality of the point x, the point of intersection of L(c1, x) and
(a, c2), which we denote by e2, belongs to F , from which it follows that d2 6= a. We
denote L = (a, d2) and we claim that L ⊂ F . Indeed, consider an arbitrary point
y ∈ L. Then by the choice of d2, there exists a point z ∈ F ∩ (y, d2). Now, since
a ∈ F , the convexity of F concludes that y ∈ F .

Now we claim that the line segment L(d2, x) intersects the line segment [a, c1].
But this follows from the observation mentioned before the statement of the Lemma
and the facts that the sets L(c2, x) and L(e2, x) = L(e2, c1) intersect the segment
[a, c1], contain x in their interior and d2 is contained in [e2, c2]. We denote this
intersection point as d1.

To finish the proof of this case it is enough to show that d1 ∈ H, which then
yields a contradiction to the extremality of the point x. If d1 = c1, then we are
done. Otherwise d1 6= c1, from which it follows that d2 6= e2. We claim that (d1, c1)
is a subset of H. If not, then we pick a point e1 ∈ (d1, c1) ∩ F .

We know that the sets L(c1, e2) and L(d1, d2) are distinct and contain x in their
interior. So we can use our observation to conclude that L(e1, x) intersects the set
(d2, e2) ⊂ L. But L is a subset of F and x /∈ F , which contradicts the convexity of
F . Thus (d1, c1) ⊂ H, so d1 belongs to the closure of H. This finishes the proof of
the first case.



4 JAKUB RONDOŠ AND JIŘÍ SPURNÝ

Case 2.
Now we assume that c2 ∈ F . By the convexity of F , the whole line segment

[a, c2] lies in F , and we define

u = sup{s ≥ 0; c2 + s(c1 − c2) ∈ F},

and

(2.2) d2 = c2 + u(c1 − c2).

Then, since c ∈ H, d2 belongs to the line segment [c2, c]. We denote L = [a, c2] ∪
(c2, d2). Now the arguments are almost the same as in the previous case.

It holds that d2 ∈ H. Indeed, either d2 = c ∈ H, and the other case is treated
similarly as above. Moreover, we know that [a, c2] ⊂ F and using the same argu-
ments as in the previous case it is easy to show that (c2, d2) ⊂ F , and so L ⊂ F .

Now, since the sets L(c, x) = L(c, a) and L(c2, x) intersect the segment [a, c1],
contain x in their interior and d2 belongs to the closed line segment given by c2 and
c, using the observation it follows that L(d2, x) intersects [a, c1]. We again denote
this intersection point as d1. As in the previous case we would show that this point
d1 belongs to the closure of H. This gives a contradiction to the extremality of the
point x and finishes the proof.

�

For the proof of the maximum principle we need the following several lemmas.

Lemma 2.2. Let x ∈ extX. Then for every neighbourhood U of x and ε > 0 there
exists a neighbourhood V of x such that for every y ∈ V and µ ∈ My it holds that
µ(U) > 1− ε.

Proof. Assuming the contrary, there is an open neighbourhood U of x and ε > 0
such that for each neighbourhood V of x there exists yV ∈ V and µV ∈ MyV

satisfying µV (U) ≤ 1− ε.
We denote the system of all neighbourhoods of x by Vx and we consider the

family of measures

{µV ; V ∈ Vx}
as a net in M1(X) with the ordering given by µV ≤ µW if W ⊂ V . Since M1(X)
is weak∗ compact, we may assume that the net weak∗ converges to some measure
ν ∈ M1(X). Then it is clear that the net {yV ; V ∈ Vx} with the natural ordering
converges to x. Thus for every a ∈ A(X,F) it holds that

lim
V ∈Vx

µV (a) = lim
V ∈Vx

a(yV ) = a(x).

By the uniqueness of the limit of a net it follows that

ν(a) = a(x), a ∈ A(X,F),

in other words, ν is a representing measure for x. Since x ∈ extX, ν = εx, the
Dirac measure centered at the point x.

Now we find a function g ∈ C(X,R) satisfying 0 ≤ g ≤ 1, g(x) = 1 and g = 0 on
X \ U . Then we have that

lim
V ∈Vx

µV (g) = εx(g) = g(x) = 1.
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On the other hand, for each V ∈ Vx it holds that

|µV (g)| =

∣∣∣∣∣
∫
X\U

gdµV +

∫
U

gdµV

∣∣∣∣∣ ≤ 0 +

∫
U

|g|dµV ≤ µV (U) ≤ 1− ε,

which gives the desired contradiction.
�

Lemma 2.3. Let f : X → R be a function with the point of continuity property.
Then the set of points of continuity of f with respect to extX is a dense Gδ set in
extX.

Proof. We consider the restriction of f to the set extX, which we denote again by
f . Let Cf stand for the set of points of continuity of f . Then Cf is a Gδ set, which
is moreover dense, see [7, Theorem 2.3]. We write Cf =

⋂∞
n=1Gn, where Gn are

open sets in extX. Then

Cf ∩ extX =

∞⋂
n=1

(Gn ∩ extX)

is a Gδ set in extX. It remains to show that it is dense in extX. To see this, it
is enough to realize that since extX is dense in extX and each Gn is open and
dense, Gn ∩ extX is an open dense set in extX. Since extX is a Baire space (see
[1, Theorem I.5.13.]), the assertion follows.

�

Lemma 2.4. Let x ∈ extX and f be a bounded fragmented convex function on
X which is upper semicontinuous with respect to extX at the point x. Then f is
upper semicontinuous at the point x with respect to X.

Proof. Let L ≥ 0 be a constant satisfying |f | ≤ L.
By [9, Theorem 10.75.], it holds that

µ(f) ≥ f(r(µ)), µ ∈M1(X).

Let ε > 0 be given.
Using the upper semicontinuity of f with respect to extX we find a neighbour-

hood U ⊂ X of x such that

f(y) < f(x) + ε, y ∈ U ∩ extX.

By Lemma 2.2 there exists a neighbourhood V of x such that for each y ∈ V and
µ ∈My it holds that µ(U) > 1− ε.

We choose arbitrary y ∈ V and pick a measure µy ∈My carried by extX. Now
we have

f(y) ≤ µy(f) =

∫
extX

fdµy =

∫
extX∩U

fdµy +

∫
extX\U

fdµy ≤

≤ f(x) + ε+ εL = f(x) + ε(1 + L).

This finishes the proof.
�
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In [13], Raja proved that for a bounded lower semicontinuous convex function f
on a compact convex set X the set of points of continuity of f is dense in extX.
This can be reformulated in the way that the set of points of upper semicontinuity
is dense in extX for bounded lower semicontinuous convex functions. Since every
semicontinuous function is fragmented, Lemmas 2.3 and 2.4 generalize this result.

Now we are ready to prove the main theorem of this section.

Theorem 2.5. Let {fn}∞n=1 be a bounded sequence of convex functions on X with
the point of continuity property.
a) If {fn}∞n=1 is monotone and lim

n→∞
fn ≤ 0 on extX, then lim

n→∞
fn ≤ 0 on X.

b) If {fn}∞n=1 is nonincreasing and lim
n→∞

fn < 0 on extX, then lim
n→∞

fn < 0 on X.

Proof. We denote f = limn→∞ fn. Then f is a convex function onX. We first prove
the assertion a) under the assumption that {fn}∞n=1 is a nonincreasing sequence.

Assuming the contrary, there exists η > 0 such that the set

H = {x ∈ X; f(x) ≥ η}

is nonempty. Then H is a semi-extremal subset of X which does not intersect
extreme points of X. By the monotonicity, for each n it holds that fn(x) ≥ η on
H. We denote E = co(H). By the Milman theorem it holds that extE ⊂ H. Since
E is a compact convex set, by Lemma 2.3, for each n, the set of points of continuity
of fn with respect to extE is a dense Gδ set in extE. Using the fact that extE
is a Baire space, there exists a point x ∈ extE ⊂ H such that all functions fn are
continuous at x with respect to extE. Moreover, the functions fn are at the point
x upper semicontinuous with respect to E by Lemma 2.4. Since x ∈ H, it follows
that fn(x) ≥ η for each n, hence f(x) ≥ η. Thus x ∈ H, and hence x ∈ H ∩ extE.
In particular, x ∈ H ∩ extH. But this contradicts Lemma 2.1.

Now we assume that the sequence {fn}∞n=1 is nondecreasing. Let n ∈ N be
arbitrary. Then fn ≤ f ≤ 0 on extX. Applying the already proved result on a
constant sequence we obtain that fn ≤ 0 on X. Thus f = limn→∞ fn ≤ 0 on X
also. This finishes the proof of a).

For the proof of b) we proceed similarly as in a). We assume that the set

H = {x ∈ X; f(x) ≥ 0}

is nonempty and seek a contradiction. We denote E = co(H) and as above, we find
a point x ∈ extE which is a point of upper semicontinuity of all the functions fn
with respect to E. Since fn ≥ 0 on H for each n and x ∈ extE ⊂ H, we obtain
that fn(x) ≥ 0 for each n, and so f(x) ≥ 0. Thus x ∈ H ∩ extE ⊂ H ∩ extH. But
the set H ∩ extH is empty by Lemma 2.1, which is a contradiction. This finishes
the proof.

�

As an immediate corollary of the preceding theorem we obtain the following
maximum principles for convex functions having the point of continuity property.

Corollary 2.6. Let f : X → R be a bounded convex function with the point of
continuity property.
a) If f ≤ 0 on extX, then f ≤ 0 on X.
b) If f < 0 on extX, then f < 0 on X.
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The classical Rainwater theorem (see [11, Section 5]) states that if {fn}∞n=1 is a
sequence of affine continuous functions on X which converges to 0 on extX, then
it actually converges to 0 on X. Our Theorem 2.5 is in a sense not optimal since
we need the monotonicity of the sequence of convex functions. Nevertheless, the
Rainwater theorem follows from Theorem 2.5.

Corollary 2.7 (Rainwater). Let {fn}∞n=1 be a bounded sequence of functions in
A(X,R). If lim

n→∞
fn = 0 on extX, then lim

n→∞
fn = 0 on X.

Proof. For n ∈ N we denote

gn(x) = sup{fk(x); k ≥ n}, x ∈ X.
Then {gn}∞n=1 is a bounded monotone sequence of convex lower semicontinuous
functions, in particular, all the functions are fragmented. Moreover,

lim
n→∞

gn(x) = lim sup
n→∞

fn(x) ≤ 0, x ∈ extX,

and so by Theorem 2.5 we obtain that

lim sup
n→∞

fn = lim
n→∞

gn ≤ 0 on X.

By an application of the argument above to the sequence {−fn}∞n=1 we get that

− lim inf
n→∞

fn(x) = lim sup
n→∞

(−fn(x)) ≤ 0, x ∈ X,

hence

lim
n→∞

fn(x) = 0, x ∈ X.

This finishes the proof.
�

It would be interesting to know whether we can omit the assumption of the
monotonicity in Theorem 2.5. In particular, the following generalization of the
Rainwater theorem seems to be unknown.

Question 2.8. Let X be a compact convex set and {fn}∞n=1 be a bounded sequence
of fragmented real affine functions converging to 0 on extX. Does it follow that
fn → 0 on X?

Also we do not know whether the strict maximum principle (Theorem 2.5(b))
holds for nondecreasing sequences. Thus we pose the following question.

Question 2.9. Let X be a compact convex set and {fn}∞n=1 be a bounded nonde-
creasing sequence of fragmented convex functions. Assume that lim

n→∞
fn(x) < 0 for

x ∈ extX. Does it follow that lim
n→∞

fn(x) < 0 for x ∈ X?

There is a general class of functions for which it is known that the maximum
principle holds. A function f : X → R is called strongly universally measurable
if for each x ∈ X and ε > 0 there exist lower semicontinuous affine function
g and upper semicontinuous affine function h such that h ≤ f ≤ g on X and
g(x)−h(x) < ε, see [16, p. 519], [10, p. 435], [15, p. 102] or [9, Definition 9.30 and
Proposition 9.32]. We plan to investigate potential applicability of Theorem 2.6
to extending results on strongly universally measurable functions to the context of
fragmented functions.
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3. Fragmented convex functions and the Choquet ordering

We recall that for a pair µ, ν ∈ M+(X), the Choquet ordering µ ≺ ν means
that µ(k) ≤ ν(k) for each convex continuous function k on X. It is known that
µ(k) ≤ ν(k) provided µ ≺ ν and k is either lower or upper semicontinuous convex
function, see [9, Proposition 3.56].

The aim of this section is to further extend this inequality to fragmented convex
functions.

Theorem 3.1. Let X be a compact convex set and µ, ν ∈M1(X) satisfy µ ≺ ν. If
f is a fragmented convex function on X, then f is lower bounded and µ(f) ≤ ν(f).

Proof. Let f be a convex fragmented function on X. By [9, Theorem 10.75], f is
lower bounded. For each n ∈ N we consider the function fn(x) = min{f(x), n}.
Then fn ↗ f , and by the Monotone convergence theorem, µ(fn) ↗ µ(f). We fix
n ∈ N.

Let

M = {(εx, λ) ∈M1(X)×M1(X); εx ≺ λ}.

Then M is a compact subset of M1(X) ×M1(X). By [9, Proposition 3.89] there
exists a measure Λ ∈M1(M) such that the point (µ, ν) is the barycenter of Λ.

By [9, Proposition 3.90], for any pair (f1, f2) of bounded universally measurable
functions on X we have the equality

µ(f1) + ν(f2) =

∫
M

(λ1(f1) + λ2(f2)) dΛ(λ1, λ2).

Since it follows from [9, Proposition A.118] that fragmented functions are univer-
sally measurable, we may apply this identity to the pairs (fn, 0) and (0, fn). Since
for any (εx, λ) ∈ M we have λ ∈ Mx (see e.g. [9, Proposition 3.20]), we obtain
f(x) ≤ λ(f) (see [9, Theorem 10.75]). Thus we get

µ(fn) =µ(fn) + ν(0) =

∫
M

λ1(fn) dΛ(λ1, λ2) =

∫
M

εx(fn) dΛ(εx, λ)

=

∫
{(εx,λ)∈M ; f(x)<n}

εx(f) dΛ(εx, λ) +

∫
{(εx,λ)∈M ; f(x)≥n}

εx(n) dΛ(εx, λ)

≤
∫
{(εx,λ)∈M ; f(x)<n}

λ(f) dΛ(εx, λ) +

∫
{(εx,λ)∈M ; f(x)≥n}

λ(n) dΛ(εx, λ)

=

∫
M

λ(fn) dΛ(εx, λ) = µ(0) + ν(fn) = ν(fn) ≤ ν(f).

By letting n goes to infinity we obtain µ(f) ≤ ν(f).
This concludes the proof.

�

We mention that it follows from the proof of the previous theorem that it is
not particularly important that the considered function f is fragmented. All we
need to know is that f is lower bounded, universally measurable and satisfies the
subbarycentric formula.
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4. The intersection of convex semi-extremal sets with extreme
points

Let X be a compact convex set and H be a nonempty resolvable extremal set.
Then its characteristic function is convex. Thus we know from Corollary 2.6 that
H satisfies H ∩ extX 6= ∅. It is clear that every extremal set is semi-extremal, so
it is natural to ask whether it is also true that nonempty resolvable semi-extremal
subset H of X intersects extreme points of X. The answer is positive provided that
H is moreover convex as Theorem 4.2 shows.

Lemma 4.1. Let H ⊂ X be a nonempty resolvable set. Then the relative interior
of H in H is nonempty.

Proof. Assuming that the statement does not hold, the set H \ H is a resolvable
dense set in H. It is known (see [9, Propositon A.117.(e)]) that dense resolvable
sets are residual. Thus H and H \H are two disjoint residual subsets of H, which
is a Baire space. This gives a contradiction and finishes the proof.

�

Theorem 4.2. Let H ⊂ X be a nonempty resolvable convex semi-extremal set.
Then H contains an extreme point of X.

Proof. We denote F = X \ H. We claim that the intersection of extH and H is
nonempty. Otherwise it holds that extH ⊂ H \H ⊂ F . From the Krein-Milman
theorem we have

co(extH) ∩H = co(extH) = co(extH) = H,

and so we obtain that
F = co(F ) ⊃ co(extH)

is relatively dense in H. On the other hand, Lemma 4.1 claims that the relative
interior of H in H is nonempty. But this contradicts the density of its complement
in H.

Thus extH ∩ H 6= ∅. Now we use Lemma 2.1 to conclude that extX ∩ H is
nonempty.

�

Our method of proof of Theorem 4.2 only works if H is convex. On the other
hand, Pryce proved in [12] that a nonempty closed semi-extremal subset H of X
intersect extreme points of X, without the assumption on convexity of the set
H. Thus it seems reasonable to hope that the answer to the following question is
positive.

Question 4.3. Let H ⊂ X be a nonempty resolvable semi-extremal set. Does H
necessarily contain an extreme point of X?

One might ask to what extent it is possible to generalize Theorem 4.2. The
following example shows that there are faces of low Borel complexity which does
not intersect the set of extreme points.

Example 4.4. There exists a metrizable compact convex set X and nonempty faces
F,G ⊂ X (i.e., convex extremal sets) such that F is of type Fσ, G is of type Gδ
and

F ∩ extX = G ∩ extX = ∅.
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Proof. Let X = M1([0, 1]). Further, let F be the face generated by the Lebesgue
measure λ ∈ X (i.e., F is the smallest face containing λ) and let G consist of all
measures in X that are continuous on [0, 1] (we recall that a measure µ ∈ X is
continuous if µ({x}) = 0 for each x ∈ [0, 1]). By [9, Proposition 2.58] and [9,
Proposition 2.94], F is an Fσ set, G is a Gδ set, both these sets are faces and their
intersection with extX = {εx; x ∈ [0, 1]} is empty.

�

5. Phelps theorem for abstract fragmented functions

Let K be a locally compact space and C0(K,F) stand for the space of all F-valued
continuous functions on K vanishing at infinity.

Let H be a subspace of C0(K,F). Let φ : K → BH∗ be the evaluation mapping
from K to the dual unit ball BH∗ . By the Choquet boundary ChK of H we mean
the set of those points x ∈ K, for which φ(x) lies in extBH∗ . The classical result
states that ChK is a boundary for H, which means that for any h ∈ H we have
maxx∈K |f(x)| = maxx∈ChK |f(x)|, see [5, Theorem 2.3.8]. The aim of this section
is to generalize this result for fragmented “H-affine” functions on K.

To explain this notion, assume for a while that K is even compact and H ⊂
C(K,F) is a subspace. Let f : K → F be a bounded universally measurable function.
Then we may regard f as an element ofM(K,F)∗ via the formula f(µ) =

∫
K
f dµ,

µ ∈M(K,F). Let

H⊥ = {µ ∈M(K,F); µ(h) = 0, h ∈ H}
be the annihilator of H inM(K,F). Then a bounded universally measurable func-
tion f belongs to H⊥⊥ provided µ(f) = 0 for each µ ∈ H⊥. Such functions are
called completely H-affine in [9].

Assume now that K is only locally compact. Let J = K ∪ {α} be the one-point
compactification of K, where α is the point at infinity. If f is an F-valued function
on K, then let f0 be its extension to J satisfying f(α) = 0. If H is a subspace of
C0(K,F), then we define the corresponding subspace of C(J,F) by

H0 = {g0; g ∈ H}.
If we now consider the Choquet boundary Ch J of J with respect to the space H0,
then by [14, Lemma 2.8] it holds that ChK = Ch J . Now we define

H⊥⊥ = {f bounded universally measurable on K; f0 ∈ H⊥⊥0 }.
For these functions we obtain the following maximum principle.

Theorem 5.1. Let K be a locally compact space and H ⊂ C0(K,F) be a subspace.
Let f : K → F be a bounded fragmented function in H⊥⊥. Then

sup
x∈ChK

|f(x)| = sup
x∈K
|f(x)| .

Before embarking on the proof of Theorem 5.1 we need a couple of lemmas
allowing us to consider a function f ∈ H⊥⊥ as a function on BH∗ . It turns out that
we can use methods from [14].

The key ingredient of the proof is a characterization of fragmented functions
mentioned in the introduction via resolvable sets. So let us mention again that a
function f : K → F on a compact space K is fragmented if and only if it is Σ1(Hs)-
measurable, i.e., the inverse image f−1(U) belongs to Σ1(Hs(K)) for any open set
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U ⊂ F (here Σ1(Hs(K)) denotes the family of all countable unions of resolvable
sets in K). For the proof of this result see [7, Theorem 2.3] or [9, Theorem A.121].

Lemma 5.2. Let L1, . . . , Ln be compact convex sets in a locally convex space and
L = co (L1 ∪ · · · ∪ Ln). Let f : L → F be an affine function such that f |Li is
fragmented for each i = 1, . . . , n. Then f is fragmented on L.

Proof. Let

∆ =

{
λ ∈ [0,∞)n;

n∑
i=1

λi = 1

}
and

H = L1 × · · · × Ln ×∆.

Let further g : H → F be defined as

g(x1, . . . , xn, λ) =

n∑
i=1

λif(xi), (x1, . . . , xn, λ) ∈ H.

By the proof of [9, Theorem 5.10], g is Σ1(Hs)-measurable on H. We consider a
continuous surjection ϕ : H → L defined as

ϕ(x1, . . . , xn, λ) =

n∑
i=1

λixi, (x1, . . . , xn, λ) ∈ H.

Since f is affine on L, we obtain f ◦ ϕ = g. By [6, Theorem 4], f is Σ1(Hs)-
measurable on L, and thus fragmented on L.

�

Lemma 5.3. Let K be a compact space and f : K → F be a bounded fragmented

function. Then f̂ : M(K,F)→ F defined as

f̂(µ) = µ(f), µ ∈M(K,F),

is fragmented on any ball rBM(K,F), r > 0.

Proof. We provide a proof for the case of complex measures, the easier case of real
measures would be done similarly.

Assume first that f is real. By [8, Lemma 3.3(a)], f̂ is fragmented on M1(K).
Let L1 = 2M1(K), L2 = −2M1(K), L3 = 2iM1(K) and L4 = −2iM1(K). Since

Li is affinely homeomorphic toM1(K) and f̂ is linear, f̂ is fragmented on each Li,
i = 1, . . . , 4. By the decomposition of a complex measure we obtain

BM(K,F) ⊂ L = co (L1 ∪ L2 ∪ L3 ∪ L4) .

By linearity it is enough to prove that f̂ is fragmented on L. But this follows from
Lemma 5.2.

If f : K → C, we have f = f1 + if2, where f1, f2 are real bounded fragmented
functions. Then the function

f̂(µ) = µ(f) = µ(f1) + iµ(f2) = f̂1(µ) + if̂2(µ), µ ∈ BM(K,F),

is fragmented as well. (Indeed, since the functions µ 7→ f̂1 and µ 7→ if̂2(µ) are
fragmented, their sum is easily seen to be fragmented as well, see e.g. the proof of
[9, Theorem 5.10].)

�
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We write SF for the set {λ ∈ F; |λ| = 1}.

Lemma 5.4. Let H be a subspace of C(K,F) for some compact space K. Then

extBH∗ ⊂ SF · φ(ChK).

Proof. See [14, Lemma 2.1].
�

Now we can prove Theorem 5.1.

Proof of Theorem 5.1. First we assume that K is compact. Let π : BM(K,F) → BH∗

be the restriction mapping. We denote

f̂ : BM(K,F) → F,
µ 7→ µ(f).

By Lemma 5.3, f̂ is a fragmented function on BM(K,F). Since f ∈ H⊥⊥, there

exists a unique function a : BH∗ → F satisfying a ◦ π = f̂ . By [6, Theorem 4], the
function a is fragmented on BH∗ . Since a is obviously affine, the function |a| is
convex and fragmented. By Corollary 2.6,

sup
s∈extBH∗

|a(s)| = sup
s∈BH∗

|a(s)| = sup
µ∈BM(K,F)

|a(π(µ))|

= sup
µ∈BM(K,F)

|µ(f)| ≥ sup
x∈K
|f(x)| .

By Lemma 5.4 we have
extBH∗ ⊂ SF · φ(ChK),

and hence we obtain

sup
x∈K
|f(x)| ≤ sup

s∈extBH∗
|a(s)| ≤ sup

x∈ChK
|a(φ(x))| = sup

x∈ChK
|f(x)| .

This concludes the proof in the case when K is compact.
If K is locally compact, then we consider its one-point compactification J =

K ∪ {α} and the subspace H0 ⊂ C(J,F) corresponding to H. If f is a fragmented
function in H⊥⊥, then it easily follows that its extension f0 is a fragmented function
in H⊥⊥0 . Thus we have

sup
x∈ChK

|f(x)| = sup
x∈Ch J

|f(x)| = sup
x∈Ch J

|f0(x)| = sup
x∈J
|f0(x)| = sup

x∈K
|f(x)|,

which finishes the proof.
�

Assume now thatH ⊂ C(K,R) is a subspace containing constants and separating
points of a compact space K. (Such a space is called a function space in [9].) For
each x ∈ K let Mx(H) denote the set

Mx(H) = {µ ∈M1(K); µ(h) = h(x), h ∈ H}.
Then ChK defined above coincides with the set {x ∈ K; Mx(H) = {εx}}, see [9,
Definition 3.4 and Proposition 4.26(d)].

Further, a bounded function f : K → R is termed H-convex if f(x) ≤ µ(f),
x ∈ K, µ ∈Mx(H).

The function f is called H-affine if both f and −f are H-convex.
Let

Ac(H) = {f ∈ C(K,R); f is H-affine}.
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Then H ⊂ Ac(H), Ac(H) is a function space and the Choquet boundary of H
coincides with the Choquet boundary of Ac(H).

We mention that in the case when K is a compact convex set X and H = A(X,R)
the space Ac(H) coincides with H and the points of the Choquet boundary of X
are exactly the extreme points of X.

The function space H is called simplicial if the set

S(Ac(H)) = {s ∈ (Ac(H))∗; s(1) = ‖s‖ = 1}
endowed with the weak∗ topology is a Choquet simplex, see [9, Theorem 6.54] or
[2].

For a simplicial space H we have the following improvement of Theorem 5.1.

Corollary 5.5. Let K be a compact space and H ⊂ C(K,R) be a simplicial subspace
containing constants and separating points of K.

Let f : K → R be a bounded H-affine fragmented function on K. Then

sup
x∈ChK

|f(x)| = sup
x∈K
|f(x)| .

Proof. The assertion follows from Theorem 5.1 once we verify that any H-affine
function is in (Ac(H))⊥⊥. SinceH is simplicial, this follows from [9, Corollary 6.12].

�

The theory of function spaces very often imitates results from the convexity
theory, nevertheless, not always is the transfer straightforward. As an example of
this phenomenon we offer a problem on fragmented H-convex functions. Of course,
by Corollary 2.6 we know its positive answer for the case H = A(X,R) on some
compact convex set X.

Question 5.6. Let H ⊂ C(K,R) be a function space and f : K → R be a bounded
fragmented H-convex function. Assume that f ≤ 0 on ChK. Does it follow that
f ≤ 0 on K?
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