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Abstract. We strengthen and generalize results of J.M. Borwein (1986)
and of A. Ioffe and R.E. Lucchetti (2005) on Fréchet and Gâteaux differ-
entiability of saddle and biconvex functions (and operators). For example,
we prove that in many cases (also in some cases which were not considered
before) these functions (and operators) are Fréchet differentiable except for
a Γ-null, σ-lower porous set. Moreover, we prove these results for more
general “partially convex (up or down)” functions and operators defined on
the product of n Banach spaces.

1. Introduction

There exist many results concerning differentiability of continuous convex
functions on Banach spaces (see e.g. the monographs [22] and [1]), and a
number of results on differentiability of convex operators from Banach spaces
to ordered normed linear spaces (see e.g. [2], [3], [14], [15], [29]).

Some of these results can be (partly) extended to results on differentiability
of saddle (that is, convex-concave) and biconvex functions and operators.

Results which say that, in some situations, saddle or biconvex functions
(and operators) are Fréchet or Gâteaux differentiable at all points outside a
small set can be found in [13], [4] and [11].

Besides saddle and biconvex functions, J.M. Borwein [4] considered also
more general functions f on X1 × · · · × Xn which are “partially convex (up
or down)” (in the sense that, for each i, either all partial functions of the
form f(x1, . . . , xi−1, ·, xi+1, . . . , xn) are convex or all are concave). However,
the main results of [4] are proved (using properties of partially monotone
operators) only for saddle and biconvex functions (and operators). Rougly
speaking, [4, Corollary 2,(a)] states the following:

(Bo1) If X1×X2 is an Asplund space and f : X1×X2 → R is a continuous
saddle or biconvex function, then f is generically (i.e., on a dense Gδ set)
Fréchet differentiable.

The following generalization of (Bo1) is contained in [4, Theorem 2.3].

(Bo2) The assertion of (Bo1) remains valid also in the case when f : X1×
X2 → Y is a continuous saddle or biconvex operator and Y is an ordered
Banach space whose positive cone Y+ is well-based (see Definition 2.5 below).
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Further, [11, Theorem 3.1] (together with [4, Proposition 2.1]) gives the
following “supergeneric” (i.e., strictly stronger than generic) result:

(IL) If X1 ×X2 is a separable Asplund space and f is a real continuous
saddle function on X1 × X2, then f is Fréchet differentiable except for a σ-
upper porous set.

Note also that [37, Corollary 8.1] implies a generalization of (Bo1) in which
f : X1 × · · · ×Xn → R is (e.g.) partially DC.

We strengten and generalize both (Bo1) and (Bo2) in the following directions
(see Theorems 4.3, 4.4 and 4.5 below).

(i) (Bo1) and (Bo2) remain valid also for partially convex (up or down)
functions and operators, respectively, of n variables,

(ii) and moreover the exceptional sets are even σ-lower porous.
(iii) Furthermore, our results cover also some cases on Fréchet differentia-

bility of continuous saddle or biconvex operators f : X = X1 ×X2 →
Y , in which (Bo2) cannot be applied, namely when Y is a countably
Daniell ordered Banach space and the space L(X, Y ) of bounded linear
operators is separable.

Note that (ii) gives also an improvement of (IL). Moreover, for saddle func-
tions and operators we obtain even stronger results on Fréchet differentiability
except for a cone small set (see our Theorems 5.4 and 5.7, respectively).

Further, [4, Corollary 2.2(b) and Theorem 2.3] contain also results on generic
Gâteaux differentiability of saddle and biconvex functions (and operators). We
generalize and strenghten most of these results.

We prove also results on Γ-almost everywhere Fréchet differentiability of par-
tially convex (up or down) functions and operators. They are consequences
of a deep result of [18] (see Theorem 2.20 below) and of the fact (see Theo-
rem 3.6) that if a continuous partially convex (up or down) operator is Gâteaux
differentiable at a point x, then it is strictly Gâteaux differentiable at x. The-
orem 3.6 implies also an analogous result on strict (Fréchet) differentiability
which can be of some independent interest.

2. Preliminaries

2.1. Basic notation. By a Banach space we mean a real Banach space, which
can be also trivial (but ordered Banach spaces are assumed to be non-trivial).
The open ball with center a and radius r in a metric space X will be de-
noted by B(x, r) (or BX(x, r)). By a K-Lipschitz mapping we mean a Lips-
chitz mapping with a (not necessary minimal) Lipschitz constant K. If X,
Y are Banach spaces, we denote by L(X, Y ) the space of bounded linear
operators from X to Y . If X1, . . . , Xn are Banach spaces, we consider on
X := X1×· · ·×Xn the usual maximum norm. As usual, we frequently canon-
ically identify Xi with a subset of X and, if Z is a Banach space, the operator
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space L(X,Z) will be canonically isomorphically identified with the Cartesian
product

∏n
i=1 L(Xi, Z).

The directional and the one-sided directional derivative of a mapping f
(between normed spaces) at x in the direction v are defined respectively by

f ′(x, v) := lim
t→0

f(x+ tv)− f(x)

t
and f ′+(x, v) := lim

t→0+

f(x+ tv)− f(x)

t
.

2.2. Ordered Banach spaces. By an ordered Banach space we mean a real
Banach space Z with a given closed convex cone Z+ which is pointed, i.e.,
Z+ ∩ (−Z+) = {0}. In this case, Z is partially ordered by the relation

z1 ≤ z2 ⇔ z2 − z1 ∈ Z+ .

The dual Z∗ of an ordered Banach space Z is an ordered Banach space with
the dual positive cone

Z∗+ = {z∗ ∈ Z∗ : z∗(z) ≥ 0 for each z ∈ Z+} .
Throughout the paper, all ordered Banach spaces are always assumed to be
nontrivial.

Definition 2.1. Let Z be an ordered Banach space. We say that:

(a) Z is normal if there exists a constant C > 0 such that ‖x‖ ≤ C‖y‖
whenever x, y ∈ Z and 0 ≤ x ≤ y;

(b) Z is countably Daniell if every decreasing sequence in Z+ converges.

Notice that every Banach lattice is clearly normal. Moreover, it is known
(see [20, Proposition 1.a.8]) that: a Banach lattice is countably Daniell if
and only if it is order continuous if and only if it is σ-complete and σ-order
continuous.

In what follows, we collect some useful properties of ordered Banach spaces
which are normal or countably Daniell. Most of these facts have been already
used in our previous paper [29], where one can find references for the proofs.

Fact 2.2 (normal ordered Banach spaces). For every ordered Banach space Z
which is normal, there exist real constants MZ , KZ , PZ > 0 with the following
properties.

(a) For each z∗ ∈ Z∗ there exist z∗1 , z
∗
2 ∈ Z∗+ such that z∗ = z∗1 − z∗2 and

‖z∗i ‖ ≤MY ‖z∗‖ (i = 1, 2) (see [29, Fact 1.2]).
(b) For each z ∈ Z there exists z∗ ∈ Z∗+ such that |z∗(z)| = ‖z‖ and ‖z∗‖ ≤ KZ

(see [29, Lemma 1.3]).
(c) If z, u, v ∈ Z are such that u ≤ z ≤ v then ‖z‖ ≤ PZ(‖u‖+ ‖v‖) (see [29,

Observation 1.4 and Fact 1.2]).

Fact 2.3 (countably Daniell ordered Banach spaces). Let Z be an ordered
Banach space.
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(a) If Z is countably Daniell then Z is normal (see [29, Fact 1.5]).
(b) For reflexive Z, also the vice-versa in (a) holds true (see [29, Fact 1.5]).

Fact 2.4. Every separable ordered Banach space admits a strictly positive func-
tional, that is, a functional z∗ ∈ Z∗+ such that z∗(z) > 0 for each z ∈ Z+ \ {0}
(see [2, Propositions 2.7 and 2.8]).

Definition 2.5. We say that a convex subset B of an ordered Banach space
Z is a base for Z+ if, for each z ∈ Z+ \ {0}, there exists a unique λ > 0 such
that λz ∈ B. Following [12, p. 120], we say that Z+ is well-based if it has a
bounded base B such that 0 /∈ B.

Fact 2.6 (well-based positive cones). Let Z be an ordered Banach space such
that Z+ is well-based. Then:

(a) Z is countably Daniell, and hence normal (see [2, Proposition 3.6(c)]);
(b) there exists z∗ ∈ Z∗+ such that z∗(z) ≥ ‖z‖ for each z ∈ Z+ (see [12,

3.8.12]). (Such functional z∗ is clearly strictly positive; it is sometimes
called a strongly positive functional.)

2.3. Convex, saddle, partially convex operators, and generalized mo-
notone mappings.

Definition 2.7. Let X be a normed space, A ⊂ X an open convex set and Z
an ordered Banach space. A mapping f : A→ Z is called a convex operator if

f(λ1x1 + λ2x2) ≤ λ1f(x1) + λ2f(x2)

whenever x1, x2 ∈ A, and λ1, λ2 are positive reals with λ1 + λ2 = 1.
Moreover, we say that f is a concave operator if (−f) is a convex operator.

If z∗ ∈ Z∗+ and f is a Z-valued convex operator on A, then z∗ ◦ f is clearly
a convex function on A. Moreover, in the same way as for real-valued convex
functions it is easy to see that, for each x ∈ A and each v ∈ X,

(1) the function t 7→ f(x+ tv)− f(x)

t
is nondecreasing

on the set {t ∈ R \ {0} : x + tv ∈ A}. This easily implies the following fact
(cf. [2, Proposition 3.7]).

Fact 2.8. Let X,Z, A, f be as in Definition 2.7. Let a ∈ A and v ∈ X.

(a) If f ′+(a, v) exists then f ′+(a, v) ≤ (f(a + tv)− f(a))/t for each t > 0 with
a+ tv ∈ A.

(b) If Z is countably Daniell then f ′+(a, v) always exists.

Definition 2.9. Let X, Y be normed spaces, A ⊂ X and B ⊂ Y open convex
sets and Z an ordered Banach space. A mapping f : A × B → Z is called a
convex-concave (or saddle) operator if
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• f(·, b) is a convex operator (on A) for each b ∈ B, and
• f(a, ·) is a concave operator (on B) for each a ∈ A.

In an analogous way as in Definition 2.9, one can define a convex-convex
(or biconvex) operator. The next notion, introduced by J.M. Borwein [4], is a
natural common generalization of both saddle and biconvex operators.

Definition 2.10. Let X1, . . . , Xn be normed spaces, Ai ⊂ Xi (i = 1, . . . , n)
open convex sets, and Z an ordered Banach space. A mapping

f : A1 × · · · × An → Z

is called a partially convex (up or down) operator if for each i ∈ {1, . . . , n} the
corresponding partial mapping

f(a1, . . . , ai−1, · , ai+1, . . . , an) : Ai → Z

either is a convex operator whenever aj ∈ Aj (j ∈ {1, . . . , n} \ {i}) are fixed,
or is a concave operator whenever aj ∈ Aj (j ∈ {1, . . . , n} \ {i}) are fixed.

Notice that Fact 2.8 immediately gives the following

Observation 2.11. Let Xi, Ai (i = 1, . . . , n), Z be as in Definition 2.10. Let
Z be countably Daniell and f :

∏n
i=1Ai → Z a partially convex (up or down)

operator. Then for each a ∈
∏n

i=1Ai and for each k ∈ {1, . . . , n}, f admits all
one-sided “partial directional derivatives”

f ′+(a, v) where v = (0, . . . , 0, vk, 0 . . . , 0), vk ∈ Xk.

Definition 2.12 (Kirov [14]). Let X be a normed space, Z an ordered Banach
space and T : X ⇒ L(X,Z) a multivalued mapping. We will say that T is a
generalized monotone mapping if

(A1 − A2)(x1 − x2) ≥ 0 whenever xi ∈ X, Ai ∈ T (xi), i = 1, 2.

We set D(T ) := {x ∈ X : T (x) 6= ∅}.

The following definition of the subdifferential of a continuous convex opera-
tor is a direct generalization of the classical notion of subdifferential in Convex
Analysis.

Definition 2.13 ([27]). Let X be a normed space, A ⊂ X an open convex
set, Z an ordered Banach space and f : A→ Z a continuous convex operator.
For every x ∈ A we define the subdifferential of f at x as the (possibly empty)
set

∂f(x) = {M ∈ L(X,Z) : f(y) ≥ f(x) +M(y − x) for each y ∈ A}.

From formal reasons, we also define ∂f(x) = ∅ whenever x ∈ X \ A.
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Fact 2.14 ([14, p. 264]). Let X,A,Z, f be as in Definition 2.13. Then the
subdifferential mapping ∂f : X ⇒ L(X,Z) is a generalized monotone mapping.
(This is well known for Z = R; the general case is proved in the same way.)

The following lemma is essentially well known, at least in some special cases
(see [14, pp. 266–267]). For the sake of completeness, we give a simple proof.

Lemma 2.15. Let X,A,Z, f be as in Definition 2.13. Let Z be countably
Daniell and let f be Gâteaux differentiable at a point a ∈ A with derivative
f ′G(a) (∈ L(X,Z)). Then ∂f(a) = {f ′G(a)}.
Proof. By Fact 2.8, if x ∈ A then f(x) − f(a) = f(a + 1(x − a)) − f(a) ≥
f ′+(a, x− a) = f ′G(a)(x− a). It follows that f ′G(a) ∈ ∂f(a). Now assume that
∂f(a) contains also some L 6= f ′G(a). Fix u ∈ X such that Lu 6= f ′G(a)u.
By Facts 2.2(b) and 2.3, there exists z∗ ∈ Z∗+ such that (z∗ ◦ L)u 6= (z∗ ◦
f ′G(a))u. The continuous convex real-valued function z∗ ◦ f is clearly Gâteaux
differentiable at a, and hence its subdifferential at a reduces to the singleton
{z∗ ◦ f ′G(a)} (see e.g. [22, Proposition 1.8]). On the other hand, the fact that
L ∈ ∂f(a) easily implies that z∗◦L ∈ ∂(z∗◦f)(a), which is a contradiction. �

Corollary 2.16. Let X,A,Z, f be as in Definition 2.13, and a ∈ A. Then
∂f(a) is nonempty in any of the following two cases:

(a) Z = R;
(b) Z is countably Daniell and f is Gâteaux differentiable at a.

Proof. The real case is well known (see e.g. [22, p. 6]). The second case follows
immediately from Lemma 2.15. �

2.4. Some known results we will need.
We will recall several known results on differentiability of Lipschitz functions

(and singlevaluedness and continuity of monotone opeartors) which we will
apply. In these theorems, and in our new results on differentiability of partially
convex operators, several systems of “small sets” are used. Since we will not
work in our proofs with definitions of these systems (with the only exception
of σ-lower porous sets), we will recall only some of them.

Definition 2.17. Let M ⊂ X, x ∈ X and R > 0. Then we define γ(x,R,M)
as the supremum of all r ≥ 0 for which there exists z ∈ X such that B(z, r) ⊂
B(x,R) \M (where B(z, 0) := ∅).

We will say that M is upper porous at x (resp. lower porous at x), if

(2) lim supR→0+
γ(x,R,M)

R
> 0 (resp. lim infR→0+

γ(x,R,M)
R

> 0).

We say that M is upper porous (resp. lower porous) if M is upper porous (resp.
lower porous) at each point y ∈ M . We say that M is σ-upper porous (resp.
σ-lower porous) if it is a countable union of upper porous (resp. lower porous)
sets.
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It is easy to see that each σ-lower porous set is σ-upper porous and each
σ-upper porous set is a first category (=meager) set.

In results on Fréchet differentiability of saddle operators, we will use also
the following notion of an angle small set (introduced in [24]). Obviously, each
angle small set is σ-lower porous.

Definition 2.18. A set M in a Banach space X is called:

(a) α-angle porous (where α > 0) if for every x ∈M and ε > 0 there exist
z ∈ X and f ∈ X∗ such that ‖z − x‖ < ε and

M ∩ {w ∈ X : f(w − z) > α ‖f‖‖w − z‖} = ∅ ;

(b) angle-small if for each α > 0 it can be expressed as a countable union
of α-angle porous sets.

We will use also the following notion of σ-directional porosity which is more
restrictive than that of σ-upper porosity (but is, in infinite-dimensional spaces,
incomparable with σ-lower porosity).

Definition 2.19. Let X be a Banach space. We say that A ⊂ X is direction-
ally porous at a point x ∈ X if there exists c > 0, u ∈ X with ‖u‖ = 1 and a
sequence λn → 0 of positive real numbers such that B(x+ λnu, cλn) ∩A = ∅.
The notions of directionally porous sets and of σ-directionally porous sets are
defined in the standard way (cf. Definition 2.17).

In several results, we use the notion of a Γ-null set. This interesting and im-
portant notion which in a sophisticated way “combines category and measure”
was defined in [18, Definition 2.1]. We will not use the definition of Γ-null sets,
but only the following deep result [18, Theorem 3.10].

Theorem 2.20 ([18]). Suppose that Y is a Banach space, G an open subset
of a separable Banach space X, S a norm separable subspace of L(X, Y ),
and f : G → Y a Lipschitz mapping. Then f is Fréchet differentiable at Γ-
almost every point x ∈ G at which it is both regular (see below) and Gâteaux
differentiable with f ′G(x) ∈ S.

Here “f is regular at x” means (see [18, Definition 3.1]) that, for every v ∈ X
for which f ′(x, v) exists,

(3) lim
t→0

f(x+ tu+ tv)− f(x+ tu)

t
= f ′(x, v) uniformly for ‖u‖ ≤ 1.

Obviously,

(4) if f is strictly Gâteaux differentiable at x, then f is regular at x

(for the definition of strict Gâteaux differentiability see Definition 2.32).
Note that Γ-null sets need not be of the first category and vice versa (and

that Γ-null sets in Rn coincide with Lebesgue null sets).
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Note (see, e.g., [36, p. 515, 3.1]) that if X is a separable Banach space, then

(5) each σ-directionally porous set in X is Aronszajn null and also Γ-null.

For definitions of the following types of small sets (which will be used in the
sequel) we refer the reader to [36].

• The cone-small sets ([36, Definition 4.1]) are a natural generalization
of angle-small sets (considered in separable spaces) to non-separable
Banach spaces. In separable spaces, these two notions coincide.
• The notion of a Lipschitz hypersurface and a more restrictive notion

of a DC (or d.c.) hypersurface ([36, Definition 4.3]) were used in a
number of results in separable Banach spaces. Roughly speaking, a
Lipschitz hypersurface M in X is a “graph of a Lipschitz function
f defined on a closed hyperplane of X” and, if f is a difference of
two convex Lipschitz functions, M is called a DC hypersurface. A
set which can be covered by countably many Lipschitz (resp. DC)
hypersurfaces is called a sparse set (resp. DC sparse set). It is easy
to see that every sparse set is σ-directionally porous.
• A natural generalization of sparse sets (considered in a separable X)

to non-separable Banach spaces are σ-cone-supported sets ([36, Defini-
tion 4.4]). In separable spaces, sparse sets and σ-cone-supported sets
coincide.

Note that both cone-small sets and σ-cone-supported sets are σ-lower porous
and thus they are first category sets.

In our proofs concerning Gâteaux differentiability we will use the following
three theorems.

The following theorem is an easy consequence of [25, Theorem 5].

Theorem 2.21 ([25]). If f is a locally Lipschitz mapping from an open subset
G of a separable Banach space X to a Banach space Y , then the following
implication holds at each point x ∈ G except for a σ-directionally porous set:

if the one-sided directional derivative f ′+(x, u) exists for all vectors u from a
set Ux ⊂ X whose linear span is dense in X, then f is Gâteaux differentiable
at x.

We will use also the following results on single-valuedness of monotone op-
erators.

Theorem 2.22 ([32], [28]). Let X be a separable Banach space and let T : X ⇒
X∗ be a (multivalued) monotone operator with an arbitrary domain D(T ) =
{x ∈ X : T (x) 6= ∅}. Then there exists a sparse set A ⊂ D(T ) such that T is
single-valued at each point of D(T ) \ A.

If X = R2, then A can be chosen to be a DC sparse set.
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Proof. The first part is contained in [32]. The second part follows from [28] via
the simple fact that, in R2, every “CFC-fragment” of dimension 1 is contained
in a DC hypersurface. (To see this, it suffices to observe that if ∅ 6= M ⊂ R
then every Lipschitz real function of finite convexity on M admits a Lipschitz
extension of finite convexity, and hence DC, to the whole R.) �

Theorem 2.23 ([10], [9]). Let X be either a Gâteaux smooth Banach space or
a subspace of an Asplund generated (i.e., a GSG) space. Let T : X ⇒ X∗ be
a locally bounded (multivalued) monotone operator with an arbitrary domain
D(T ) = {x ∈ X : T (x) 6= ∅}. Then there exists a σ-cone supported set
A ⊂ D(T ) such that T is single-valued at each point of D(T ) \ A.

Remark 2.24. (i) Let us recall (see [8]) that an Asplund generated space
(or a GSG space [10]) is a Banach space which contains a dense contin-
uous linear image of an Asplund space. Note that all Asplund spaces
and all weakly compactly generated (WCG) spaces are Asplund gen-
erated.

(ii) Note that σ-cone supported sets are called “σ-cone porous” in [9].
(iii) The cases when X is Asplund or X∗ is strictly convex are contained

already in [33].

The following theorem is a special case of [29, Theorem 3.3].

Theorem 2.25. Let X be a Banach space, let Y be a normal ordered Banach
space, and let L(X, Y ) be separable. Suppose that T : X ⇒ L(X, Y ) is a
(multivalued) generalized monotone mapping with an arbitrary domain D(T ) =
{x ∈ X : T (x) 6= ∅}. Then there exists an angle small set M ⊂ D(T ) such
that T is single-valued and upper-semicontinuous at every x ∈ D(T ) \M .

2.5. Rich families and separable reduction. Some our results in non-
separable Banach spaces will be proved by the method of separable reduction.
Namely, we will first prove the result in separable spaces and from it we will
obtain the non-separable result using some known deep results which say that
some notions are “separably determined in the sense of rich families”. The
following notion of a “rich family” was defined and used in [5] (see also [19, p.
37] and [6]).

Definition 2.26. Let X be a normed linear space. A family F of closed
separable subspaces of X is called a rich family if:

(R1) If Yi ∈ F (i ∈ N) and Y1 ⊂ Y2 ⊂ . . . , then
⋃
{Yn : n ∈ N} ∈ F .

(R2) For each closed separable subspace Y0 of X there exists Y ∈ F such
that Y0 ⊂ Y .

A basic (easy) fact (see [5, Proposition 1.1] or [19, Proposition 3.6.2]) con-
cerning rich families is the following.
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Lemma 2.27. Let X be a normed linear space and let {Fn : n ∈ N} be rich
families of closed separable subspaces of X. Then F :=

⋂
{Fn : n ∈ N} is also

a rich family of closed separable subspaces of X.

We will need also the following simple fact which is a reformulation of [37,
Lemma 4.4].

Lemma 2.28. Let X1, . . . , Xn be normed linear spaces and X := X1×· · ·×Xn.
Let Fk be a rich family of closed separable subspaces of Xk, 1 ≤ k ≤ n. Then

F := {Y1 × · · · × Yn : Yk ∈ Fk, 1 ≤ k ≤ n}

is a rich family in X.

Much more difficult is the following result which says that Fréchet differen-
tiability at a point is “separably determined in the sense of rich families”.

Theorem 2.29 ([19, Theorem 3.6.10]). Let X, Y be Banach spaces, A ⊂ X
an open set and f : A → Y a mapping. Then there exists a rich family F
of closed separable subspaces of X such that for every Y ∈ F , f is Fréchet
differentiable (with respect to X) at every x ∈ Y ∩ A, at which its restriction
to Y ∩ A is Fréchet differentiable (with respect to Y ).

(In fact, [19, Theorem 3.6.10] is formulated for A = X, but if we apply this

formally weaker theorem to any extension f̃ of f to X, we obtain the assertion
of Theorem 2.29.)

Even more deeper is the result on “separable determination of σ-lower poros-
ity and cone smallness” which was first proved in [7] “in the sense of suitable
models” and then transferred to the following result in [6].

Theorem 2.30 ([6, Corollary 5]). Let X be an Asplund space and A ⊂ X a
Souslin set. Then there exists a rich family F of closed separable subspaces of
X such that for every Y ∈ F we have

A is σ-lower porous in X ⇐⇒ A ∩ Y is σ-lower porous in Y ,

A is cone small in X ⇐⇒ A ∩ Y is cone small in Y .

Recall that every Borel set in X is Souslin.
We will use also the following similar result on “separable determination of

Γ-nullness”.

Theorem 2.31 ([19, Corollary 5.6.2]). Let X be a Banach space and A ⊂ X
a Borel set. Then A is Γ-null in X if and only if there is a rich family F of
closed separable subspaces of X such that for every Y ∈ F , the set A ∩ Y is
Γ-null in Y .
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2.6. Directional strict differentiability. We will use some facts concerning
strict differentiability of a mapping with respect to a subspace. They are (at
least essentially) well-known (see, e.g. [21, p. 143, Exercise 5]) but we were not
able to find a suitable reference; so we present short proofs in this subsection.

Definition 2.32. (a) Let X, Y be Banach spaces, V ⊂ X a closed linear
space, G ⊂ X an open set, a ∈ G and f : G → Y a mapping. We say that f
is strictly differentiable at a with respect to V if there exists L ∈ L(V, Y ) such
that

(6) lim
(x,y)→(a,a)
06=y−x∈V

f(y)− f(x)− L(y − x)

‖y − x‖
= 0.

In such a case, we shall write L =: f ′str,V (a).
(b) If this holds for V = X (for V = span{v} where v ∈ X), we say that

f is strictly differentiable at a (strictly differentiable at a in the direction v,
respectively). We also say that f is strictly Gâteaux differentiable at a if it is
both Gâteaux differentiable at a and strictly differentiable at a in all directions
v ∈ X.

Remark 2.33. (a) It is easy to show that (6) holds if and only if

(7)
f(zn + tnun)− f(zn)− tnL(un)

tn
→ 0 whenever

{tn} ⊂ (0,∞), tn → 0, {zn} ⊂ X, zn → a, and {un} ⊂ V is bounded.

(b) It is easy to see that f is strictly differentiable at x in a direction v if and
only if

lim
z→x, t→0+

f(z + tv)− f(z)

t
= f ′(x, v).

The following easy fact is (at least essentially) well known, see [21, p. 143,
Exercise 5]).

Proposition 2.34. Let X, Y be Banach spaces, V ⊂ X a closed linear space,
G ⊂ X an open set, a ∈ G and f : G→ Y a mapping. Suppose that V is the
topological direct sum of closed subspaces V1, . . . , Vn and f is strictly differen-
tiable at a with respect to Vi, i = 1, . . . , n. Then f is strictly differentiable at
a with respect to V .

Proof. Proceeding by induction, we see that it is sufficient to prove the asser-
tion for n = 2.

So let L1 := f ′str,V1
(a), L2 := f ′str,V2

(a) and let L ∈ L(V, Y ) be the unique
common extension of L1 and L2. To prove (7), suppose that {tn} ⊂ (0,∞),
tn → 0, {zn} ⊂ X, zn → a and {un} ⊂ V is bounded. Write un = vn + wn,
where vn ∈ V1, wn ∈ V2; then {vn} and {wn} are bounded. Now, observing
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that z∗n := zn + tnvn → a, using the definition of L1, L2 and two times (7), we
obtain

f(zn + tnun)− f(zn)− tnL(un)

tn

=
f(z∗n + tnwn)− f(z∗n)− tnL2(wn)

tn
+
f(zn + tnvn)− f(zn)− tnL1(vn)

tn
→ 0.

�

Aplying the above proposition in the special case when Vi = span{vi}, we
easily obtain

Corollary 2.35. Let X, Y , G, a, f be as in Proposition 2.34. Let v1, . . . , vn ∈
X be linearly independent vectors and let f be strictly differentiable at a in the
direction vi for every i = 1, . . . , n. Then f is strictly differentiable at a in the
direction v := v1 + · · ·+ vn with f ′(a, v) =

∑n
i=1 f

′(a, vi).

Consequently, we obtain the following (surely well-known) fact:

Corollary 2.36. Let X, Y , G, a, f be as in Proposition 2.34. Suppose that
f is locally Lipschitz on G and strictly differentiable at a in each direction
v ∈ X. Then f is strictly Gâteaux differentiable at a.

Proof. Corollary 2.35 implies that the mapping g := v 7→ f ′(a, v) is linear on
X. Since f is locally Lipschitz, g is continuous and so f is Gâteaux differen-
tiable at a. �

3. Local Lipschitz continuity and differentiability properties
at a point

We shall need the following more or less standard fact.

Fact 3.1. Let X be a normed space and g a real-valued convex function on a
ball B(a, 2δ) ⊂ X. If C > 0 is such that |g| ≤ C on B(a, 2δ), then g is Lips-
chitz on B(a, δ) with Lipschitz constant 2C/δ. (See e.g. [22, Proposition 1.6]
and its proof.)

The following corollary is a quantitative version (for ordered Banach spaces)
of J.M. Borwein’s [2, Corollary 2.4].

Corollary 3.2. Let B(a, 2δ) be an open ball in a normed space X. Let Z be an
ordered Banach space which is normal, c > 0 a constant. If f : B(a, 2δ) → Z
is a convex operator such that ‖f‖ ≤ c, then f is Lipschitz on the ball B(a, δ)
with Lipschitz constant 2KZc/δ, where KZ is a fixed constant from Fact 2.2(b).
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Proof. Fix arbitrary x, x′ ∈ BX(a, δ). By the choice ofKZ , there exists z∗ ∈ Z∗+
such that ‖z∗‖ ≤ KZ and ‖f(x) − f(x′)‖ =

∣∣z∗(f(x) − f(x′))
∣∣. The real-

valued function g := z∗ ◦ f is clearly convex and |g| ≤ KZc on BX(a, 2δ). By
Fact 3.1, g is L-Lipschitz with L := 2KZc/δ. Consequently, ‖f(x)− f(x′)‖ =
|g(x)− g(x′)| ≤ L‖x− x′‖, and we are done. �

Theorem 3.3. Let X1, . . . , Xn be normed linear spaces, Ai ⊂ Xi (i = 1, . . . , n)
open convex sets, Z an ordered Banach space which is normal and

f : A1 × · · · × An → Z

a partially convex (up or down) operator. The following assertions are equiv-
alent:

(i) f is locally (norm) bounded;
(ii) f is continuous;

(iii) f is locally Lipschitz.

Proof. Since the implications (iii) ⇒ (ii) ⇒ (i) are obvious, it remains to
prove that (i) ⇒ (iii). Let (a1, . . . , an) ∈

∏n
i=1Ai. There exist δ > 0 and

c > 0 such that ‖f‖ ≤ c on
∏n

i=1BXi
(ai, 2δ) ⊂

∏n
i=1Ai. Now, Corollary 3.2

easily implies that there exists a constant L = L(c, δ, Z) > 0 such that for
each 1 ≤ i ≤ n all the partial mappings

f(x1, . . . , xi−1, · , xi+1, . . . , xn) ,

with xj ∈ BXj
(aj, 2δ), 1 ≤ j ≤ n, j 6= i,

are L-Lipschitz on BXi
(ai, δ). It is an easy exercise to show that then f is

Lipschitz on
∏n

i=1BXi
(ai, δ) (with Lipschitz constant nL). �

Remark 3.4. Note that if all Xi in Theorem 3.3 are finite-dimensional then
(i) (and hence also (ii) and (iii)) holds. The proof can be easily deduced from
[2, Corollary 2.4] or [27, Proposition 9] in a standard way.

As we have already observed in Observation 2.11, every partially convex
operator with values in a countably Daniell ordered Banach space admits all
“one-sided partial directional derivatives” at each point. It is however known
that one-sided directional derivative may not exist for some “non-partial” di-
rections even if the operator is continuous; indeed, [17, Example 9.1] provides
a (continuous) biconvex real-valued function on R2 for which the one-sided
directional derivative f ′+((0, 0), (1, 1)) does not exist.

Lemma 3.5. Let X, Y be normed spaces, G ⊂ X and H ⊂ Y open convex
sets, Z an ordered Banach space which is normal, f : G×H → Z a mapping,
(a, b) ∈ G×H. Suppose that:

(a) f is Lipschitz on G×H;
(b) for each y ∈ H, f(·, y) is a convex operator on G;
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(c) f(·, b) is Fréchet differentiable at a (with derivative D1f(a, b) ∈ L(X,Z)).

Then f is strictly differentiable at (a, b) with respect to X (≡ X × {0}) in the
sense of Definition 2.32.

Proof. We can (and do) assume that D1f(a, b) = 0 (by considering the opera-

tor f̃(x, y) = f(x, y)−D1f(a, b)x). Let us show that f ′str,X(a, b) = 0. We will
use Remark 2.33(a). So fix sequences {tn} ⊂ (0,+∞), {(xn, yn)} ⊂ G × H
and a bounded sequence {un} ⊂ X, such that tn → 0, xn → a and yn → b.
Our aim is to show that

∆n :=
f(xn + tnun, yn)− f(xn, yn)

tn
→ 0.

Define sn := tn +
√
‖xn − a‖ +

√
‖yn − b‖. For each sufficiently large n, ∆n

is well-defined and we can use convexity to obtain

∆n ≤
f(xn + snun, yn)− f(xn, yn)

sn
=
f(a+ snun, b)− f(a, b)

sn

+
f(xn + snun, yn)− f(a+ snun, b)

sn
+
f(a, b)− f(xn, yn)

sn
=: an + bn + cn ,

and also

∆n ≥
f(xn, yn)− f(xn − snun, yn)

sn
=
f(a, b)− f(a− snun, b)

sn

+
f(a− snun, b)− f(xn − snun, yn)

sn
+
f(xn, yn)− f(a, b)

sn

=: ãn + b̃n + c̃n .

By our assumption (c), ‖an‖ → 0 and ‖ãn‖ → 0. Moreover, (a) and definition

of sn easily imply that also the sequences {bn}, {cn}, {b̃n}, {c̃n} tend to zero.
Then ‖∆n‖ → 0 by Fact 2.2(c). �

Theorem 3.6. Let Xi, Ai (i = 1, . . . , n) and Z be as in Theorem 3.3, and
a = (a1, . . . , an) ∈ A :=

∏n
i=1Ai . Let f : A → Z be a continuous partially

convex (up or down) operator. For each i ∈ {1, . . . , n} set

gi := f(a1, . . . , ai−1, · , ai+1, . . . , an).

(a) If gi is Fréchet differentiable at ai, i ∈ {1, . . . , n}, then f is strictly differ-
entiable at a.

(b) If gi is Gâteaux differentiable at ai, i ∈ {1, . . . , n}, then f is strictly
Gâteaux differentiable at a.
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Proof. (a) The case n = 1 holds by Lemma 3.5 for Y = H = {0}. Let n > 1.
By Theorem 3.3 we can (and do) assume that f is Lipschitz on A. For every
1 ≤ j ≤ n we set

G := Aj , and H :=
n∏
i=1
i 6=j

Ai ,

and identify in the canonical way A with G × H. Now, considering f as a
mapping on G×H and applying Lemma 3.5 (to f or −f), we conclude that f
is strictly differentiable at a with respect to Xj, where Xj is considered canon-
ically immersed in X. Since, after such immersion, X becomes the topological
direct sum of Xj, 1 ≤ j ≤ n, we can apply Proposition 2.34 to conclude that
f is strictly differentiable at a.

(b) By Theorem 3.3 and Corollary 2.36 it is sufficient to prove that f is
strictly differentiable at a in each direction v = (v1, . . . , vn) ∈ X. By Corollary
2.35, it suffices to show that f is strictly differentiable at a in the direction
v̂i := (0, . . . , 0, vi, 0, . . . , 0), 1 ≤ i ≤ n. For simplicity, let us prove this for
i = 1; the other cases are completely analogous. By Theorem 3.3, we can
clearly assume that f is Lipschitz on A. Let Y1 be a closed subspace of X1

such that X1 is the topological direct sum X1 = span{v1} ⊕ Y1. Without any
loss of generality, we can suppose that A1 = G+C, where G is an open convex
set in span{v1} and C is an open convex set in Y1. Identify in the canonical
way A with G×H, where H := C×A2×· · ·×An ⊂ Y1×X2×· · ·×Xn. Now,
considering f as a mapping on G×H and applying Lemma 3.5 (to f or −f),
we conclude that f is strictly differentiable at a with respect to span{v̂1}. �

Proposition 3.7 (reduction to the scalar case). Let Xi, Ai (i = 1, . . . , n) and
Z be as in Theorem 3.3, let f :

∏n
i=1Ai → Z be a continuous partially convex

(up or down) operator. Let a = (a1, . . . , an) ∈
∏n

i=1Ai and z∗ ∈ Z∗+.

(a) If z∗ is strictly positive and z∗ ◦ f is Gâteaux differentiable at a, then f is
Gâteaux differentiable at a.

(b) If z∗ ∈ Z∗+ is as in Fact 2.6 (that is, “strongly positive”) and if z∗ ◦ f is
Fréchet differentiable at a, then f is Fréchet differentiable at a.

Proof. First, let us consider the case n = 1; thus we can assume that f is a
continuous convex operator. Then (a) holds by [29, Lemma 2.1]. To show (b)
for n = 1, let z∗ be a “strongly positive functional”. By [31, Proposition 4.1]
and its proof, f is a DC mapping with control function z∗ ◦ f . Then (b)
follows by the fact (see [30, Proposition 3.9]) that a DC mapping is Fréchet
differentiable at a whenever its control function is.

Now, let n > 1. The previous case then implies, in both cases (a) and (b),
that f is “partially Gâteaux or Fréchet (respectively) differentiable” at a. The
rest follows by Theorem 3.6. �
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We shall also need the sufficient condition for Fréchet differentiability at a
point from Corollary 3.9.

Lemma 3.8. Let X, Y be normed spaces, A ⊂ X and B ⊂ Y open convex sets,
Z an ordered Banach space which is normal, and f : A × B → Z a Lipschitz
mapping such that:

(a) f(·, y) is convex on A for every y ∈ B;
(b) there exists a dense set D ⊂ A × B such that for each (x, y) ∈ D, f(·, y)

is Gâteaux differentiable at x with derivative D1f(x, y).

If the mapping D 3 (x, y) 7→ D1f(x, y) is continuous at a point (a, b) ∈ D,
then f(·, b) is Fréchet differentiable at a.

Proof. By translation if necessary, we can (and do) suppose that (a, b) = (0, 0).
Assume that f is L-Lipschitz. Let ε > 0. There exists δ > 0 such that

(8) ‖D1f(x, y)−D1f(0, 0)‖ < ε whenever (x, y) ∈ D, ‖x‖+ ‖y‖ < δ.

Now, let x ∈ A be such that 0 < ‖x‖ < δ/2. Since (x, 0) ∈ A×B, there exists
(u, v) ∈ X × Y such that (x + u, v) ∈ D and ‖u‖ + ‖v‖ < min{δ/2, ε‖x‖/L}.
By Fact 2.8(a) (applied to f(·, 0)), we have

∆(x) := f(x, 0)− f(0, 0)−D1f(0, 0)x ≥ 0.

On the other hand,

∆(x) =
[
f(x+ u, v)− f(u, v)−D1f(0, 0)x

]
+
[
f(x, 0)− f(x+ u, v)

]
+
[
f(u, v)− f(0, 0)

]
=: a(x) + b(x) + c(x).

Notice that D1f(x + u, v) ∈ ∂[f(·, v)](x + u) by Lemma 2.15; hence we have
f(x + u, v) − f(u, v) − D1f(x + u, v)x ≤ 0 and so a(x) ≤

[
D1f(x + u, v) −

D1f(0, 0)
]
x =: ã(x). Since ‖x + u‖ + ‖v‖ ≤ ‖x‖ + ‖u‖ + ‖v‖ < δ, we ob-

tain ‖ã(x)‖ < ε‖x‖ by (8). Moreover, ‖b(x)‖ ≤ L(‖u‖ + ‖v‖) < ε‖x‖, and
similarly ‖c(x)‖ < ε‖x‖. Since 0 ≤ ∆(x) ≤ ã(x) + b(x) + c(x), we conclude
that ‖∆(x)‖ ≤ 3Cε‖x‖ where C is a fixed “normality constant” of Z from
Definition 2.1. This concludes the proof. �

Corollary 3.9. For each i ∈ {1, . . . , n}, let Xi be a normed space and Ai ⊂ Xi

an open convex set. Denote A :=
∏n

i=1Ai. Let Z be an ordered Banach space
which is normal and f : A → Z a continuous partially convex (up or down)
operator. If f is Gâteaux differentiable at the points of a dense set D ⊂ A
and this Gâteaux derivative is continuous at a point a ∈ D, then f is Fréchet
differentiable at a.

Proof. By Theorem 3.3, we can (and do) assume that f is Lipschitz on A. An
easy application of Lemma 3.8 shows that f is partially Fréchet differentiable
at a with respect to every Xi, that is, for each 1 ≤ i ≤ n, the partial operator
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f(a1, . . . , ai−1, · , ai+1, . . . , an) is Fréchet differentiable at ai. By Theorem 3.6,
f is Fréchet differentiable at a. �

4. Differentiability of general partially convex operators
except for a small set

Theorem 4.1. Let X = X1×· · ·×Xn where X1, . . . , Xn are separable Banach
spaces, and A = A1 × · · · × An where Ai ⊂ Xi (i = 1, . . . , n) are nonempty
open convex sets. Let (Z,≤) be a countably Daniell ordered Banach space. Let
f : A → Z be a continuous partially convex (up or down) operator. Then f
is Gâteaux differentiable at all points of A except for a σ-directionally porous
set. In particular, f is Gâteaux differentiable at all points of A except for a
set which is Γ-null and Aronszajn null (and so Haar null).

Proof. Let U := {(0, . . . , 0, vk, 0, . . . , 0) : 1 ≤ k ≤ n, vk ∈ Xk}. Then f ′+(x, u)
exists for all x ∈ A and u ∈ U by Fact 2.8, and the linear span of U equals to
X. Further, f is locally Lipschitz by Theorem 3.3.

Therefore f is Gâteaux differentiable at all points of A except for a σ-
directionally porous set by Theorem 2.21. Using (5), we complete the proof.

�

In what follows, we shall sometimes write briefly “F-differentiable” instead
of “Fréchet differentiable”.

Lemma 4.2. Let Y1, Y2 be Banach spaces, G ⊂ Y1 and H ⊂ Y2 nonempty open
convex sets, and let Z be a countably Daniell ordered Banach space. Suppose
that the space L(Y2, Z) is separable. Let f : G×H → Z be a Lipschitz operator
such that f(x, .) is a convex operator on H for each x ∈ G. Then the set

Q := {(x, y) ∈ G×H : f(x, .) is not Fréchet differentiable at y}
is σ-lower porous.

Proof. Let S := {(x, y) ∈ G×H : ∂f(x, .)(y) 6= ∅}.
(a) In the first step we will prove that Q ∩ S is σ-lower porous.
Let f be Lipschitz with constant L > 1 and let K := KZ ≥ 1 be a fixed

constant from Fact 2.2(b). For any (x, y) ∈ Q∩S we choose a pxy ∈ ∂f(x, .)(y)
and find a natural number nxy such that

(9) lim sup
h→0

‖f(x, y + h)− f(x, y)− pxy(h)‖
‖h‖

>
1

nxy
.

Put Qn := {(x, y) ∈ Q ∩ S : nxy = n}. Since L(Y2, Z) is separable, we can
choose for each n a sequence (Qn,k)

∞
k=1 such that Qn =

⋃∞
k=1Qn,k and

(10) ‖pxy − puv‖ < 1
6nLK

whenever (x, y) ∈ Qn,k, (u, v) ∈ Qn,k.
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Obviously Q ∩ S =
⋃∞
n,k=1Qn,k and therefore it is sufficient to show that

each of the sets Qn,k is lower porous. To this end, choose arbitrary n, k and
(x, y) ∈ Qn,k. Now it is sufficient to prove (see Definition 2.17) that

(11) γ((x, y), Qn,k, R) ≥ R
6nLK

for all sufficiently small R > 0.

Without any loss of generality we can suppose that (x, y) = (0, 0). Considering

the operator f̃(u, v) := f(u, v) − pxy(v) instead of f , we see that we can also
suppose that pxy = p00 = 0. Now consider an arbitrary R > 0 such that
B((x, y), R) ⊂ G×H, find h ∈ Y2 with ‖h‖ < R/2 such that

(12)
‖f(0, h)− f(0, 0)− p00(h)‖

‖h‖
=
‖f(0, h)− f(0, 0)‖

‖h‖
>

1

n

and put e := h
‖h‖ . To prove (11), it is sufficient to prove that

(13) B((0, R
2
e), R

6nLK
) ∩Qn,k = ∅.

So suppose to the contrary that some (u, v) ∈ B((0, R
2
e), R

6nLK
)∩Qn,k is given.

By (10), we have

(14) ‖puv‖ ≤
1

6nLK
.

By the choice of K we can choose z∗ ∈ Z∗+ such that ‖z∗‖ ≤ K and

(15) z∗
(
f(0, h)− f(0, 0)

)
= ‖f(0, h)− f(0, 0)‖.

Now consider the real function g := z∗ ◦ f . Then g(x, .) is convex on H for
each x ∈ G, and (12) with (15) imply

(16)
g(0, h)− g(0, 0)

‖h‖
>

1

n
.

Obviously,

(17) g is Lipschitz with constant KL

and using the definition of z∗ and (14), we easily obtain

(18) p̃uv := z∗ ◦ puv ∈ ∂g(u, .)(v) and ‖p̃uv‖ ≤ K · 1
6nLK

= 1
6nL

.

Since g(0, .) is convex and ‖h‖ < R/2, we obtain (using also (16))

g(0, R
2
e)− g(0, 0)

R/2
≥ g(0, h)− g(0, 0)

‖h‖
>

1

n

and consequently

(19) g(0, R
2
e)− g(0, 0) > R

2n
.

Using (18), we obtain

(20) g(u, v − R
2
e)− g(u, v) ≥ p̃uv(−R

2
e) ≥ − 1

6nL
· R

2
≥ − R

12n
.



On differentiability of saddle and biconvex functions 19

By (17) and the choice of (u, v) we obtain

(21) |g(u, v)− g(0, R
2
e)| ≤ KL · R

6nLK
= R

6n

and

(22) |g(0, 0)− g(u, v − R
2
e)| ≤ KL · R

6nLK
= R

6n
.

Using (20), (21) and (22), we obtain

g(0, 0)− g(0, R
2
e) ≥ − R

12n
− R

6n
− R

6n
= − 5

12
R
n
,

which contradicts (19); so (13) and (11) follow.

(b) To finish the proof, it is sufficient to show that (G ×H) \ S is σ-lower
porous. First notice that our assumptions imply that both Y ∗2 and Z are
separable. Using Fact 2.4, choose a strictly positive functional z∗ ∈ Z∗+, and

set f̃ := z∗ ◦ f . Then S̃ := {(x, y) ∈ G × H : ∂f̃(x, .)(y) 6= ∅} = G × H by
Corollary 2.16(a). So, by the first step (a) of the present proof,

Q̃ := {(x, y) ∈ G×H : f̃(x, .) is not Fréchet differentiable at y}
is σ-lower porous. Consequently Proposition 3.7(a) (with n = 1) implies that

T := {(x, y) ∈ G×H : f(x, .) is not Gâteaux differentiable at y}
is σ-lower porous. Since (G×H)\S ⊂ T by Corollary 2.16(b), we are done. �

Theorem 4.3. Let X = X1× · · · ×Xn, where X1, . . . , Xn are Banach spaces,
and A = A1 × · · · × An, where Ai ⊂ Xi (i = 1, . . . , n) are nonempty open
convex sets. Let Z be a countably Daniell ordered Banach space and suppose
that the space L(X,Z) is separable. Let f : A → Z be a continuous partially
convex (up or down) operator. Then f is Fréchet differentiable except for a
σ-lower porous Γ-null set.

Proof. Since Z 6= {0}, we easily obtain that X∗ and consequently also all X∗i
are separable. We can suppose that f is Lipschitz, since f is locally Lipschitz
(by Theorem 3.3), X is separable and both σ-lower porous sets and Γ-null sets
form a σ-ideal.

Now denote Y1 := X1 × · · · × Xn−1, Y2 := Xn, G := A1 × · · · × An−1 and
H := An. Then either f (if f is convex in the n-th coordinate) or −f (if f is
concave in the n-th coordinate) considered as a mapping Y1 × Y2 → Z fulfills
the assumptions of Lemma 4.2 and consequently this lemma implies that the
set

Qn :=
{

(x1, . . . , xn) ∈ A : f(x1, . . . , xn−1, ·) is not F-differentiable at xn
}

is σ-lower porous. Quite analogously we obtain that, for each 1 ≤ i ≤ n,

Qi :=
{

(x1, . . . ,xn) ∈ A :

f(x1, . . . , xi−1, ·, xi+1, . . . , xn) is not F-differentiable at xi
}
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is σ-lower porous. Now, Theorem 3.6 implies that f is Fréchet differentiable
on A outside the σ-lower porous set Q1 ∪ · · · ∪Qn.

Now let D ⊂ A be the set of all Gâteaux differentiability points of f . By
Theorem 4.1, A \ D is a Γ-null set. Further, f is strictly Gâteaux differen-
tiable at all points of D by Theorem 3.6. Consequently (4) and Theorem 2.20
(applied with S := L(X, Y )) imply that f is Fréchet differentiable at Γ-almost
every point of D. So f is Fréchet differentiable at all points of A except for a
Γ-null set. �

In the real-valued case we obtain the following “nonseparable” result.

Theorem 4.4. Let X = X1×· · ·×Xn where X1, . . . , Xn are Asplund Banach
spaces, and A = A1 × · · · × An where Ai ⊂ Xi (i = 1, . . . , n) are nonempty
open convex sets. Let f : A→ R be a continuous partially convex (up or down)
function. Then f is Fréchet differentiable on A except for a σ-lower porous
Γ-null set.

Proof. If all Xi are separable Asplund spaces (i.e., all X∗i are separable), then
X∗ is separable and thus the statement of the theorem follows from Theorem
4.3 (applied with Z := R).

Now we will prove the general case using the method of separable reduction.
Our aim is to show that the set

NF := {x ∈ A : f is not Fréchet differentiable at x}
is σ-lower porous and Γ-null. Notice that [34, Theorem 2] (or [19, Corollary
3.5.5]) gives that NF is a Gδσ set (and hence a Souslin set) in X. Thus
Theorem 2.30 implies that there exists a rich family F1 of closed separable
subspaces of X such that for every Y ∈ F1 we have that NF is σ-lower porous
in X whenever NF ∩ Y is σ-lower porous in Y .

By Lemma 2.28, the family

F2 := {Y1 × · · · × Yn : Yk is a closed separable subspace of Xk, 1 ≤ k ≤ n}
is a rich family of closed separable subspaces in X.

By Theorem 2.29 there exists a rich family F3 of closed separable subspaces
of X such that for every Y ∈ F3, f is Fréchet differentiable (with respect to
X) at every x ∈ Y ∩A at which its restriction to Y ∩A is Fréchet differentiable
(with respect to Y ).

Now, by Lemma 2.27, F := F1 ∩ F2 ∩ F3 is a rich family and F ⊂ F1.
Consequently, by the choice of F1 and Theorem 2.31, it is sufficient to show
that

(23) NF ∩ Y is σ-lower porous and Γ-null in Y for each Y ∈ F .

So consider an arbitrary Y ∈ F ; since Y ∈ F2, we have Y = Y1 × · · · × Yn
where Yk is a closed separable subspace of Xk, 1 ≤ k ≤ n. If NF ∩ Y 6= ∅, set
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g := f |(Y ∩A) :
∏n

k=1(Ak ∩Yk)→ R and denote by M the set of points of Y ∩A
at which g is not Fréchet differentiable (with respect to Y ). Since all Yi are
Asplund and g is continuous and partially convex (up or down), by the first
part of the proof we have that M is σ-lower porous and Γ-null in Y . Since
Y ∈ F3, we have NF ∩ Y ⊂M , and thus (23) holds. �

Theorem 4.5. Let X = X1×· · ·×Xn where X1, . . . , Xn are Asplund Banach
spaces, and A = A1×· · ·×An where Ai ⊂ Xi (i = 1, . . . , n) are nonempty open
convex sets. Let Z be an ordered Banach space such that Z+ is well-based. Let
f : A→ Z be a continuous partially convex (up or down) operator. Then f is
Fréchet differentiable except for a σ-lower porous Γ-null set.

Proof. By Fact 2.6(a), Z is countably Daniell. Let z∗ ∈ Z∗+ be as in Fact 2.6(b).
Since z∗ ◦f is clearly a continuous partially convex (up or down) real function,
the assertion follows by Theorem 4.4 and Proposition 3.7. �

Theorem 4.6. Let X = X1×· · ·×Xn where X1, . . . , Xn are Asplund Banach
spaces, and A = A1 × · · · × An where Ai ⊂ Xi (i = 1, . . . , n) are nonempty
open convex sets. Let Z be a countably Daniell ordered Banach space. Let
f : A → Z be a continuous partially convex (up or down) operator and let at
least one of the following two conditions is satisfied.

(a) Z is separable.
(b) All Xi are separable.

Then f is Gâteaux differentiable except for a σ-lower porous Γ-null set.

Proof. (a) By Fact 2.4, Z∗+ contains a strictly positive functional z∗. Then
z∗ ◦ f is a continuous partially convex (up or down) function. So Theorem 4.4
implies that z∗ ◦ f is Fréchet differentiable except for a σ-lower porous Γ-null
set and our assertion follows by Proposition 3.7.

(b) Since the range of f is contained in a closed separable subspace of Z,
the assertion follows from (a). �

5. Differentiability of saddle operators except for a small set

Saddle functions and operators have some stronger properties than general
partially convex functions and operators. The aim of the present section is to
show that the results of the previous section can be strengthened in this case.

Throughout the present section, X1, X2 are Banach spaces, A ⊂ X1 and
B ⊂ X2 are nonempty open convex sets.

Let us start with a result which is well known in the scalar case (Rockafel-
lar [26]) and whose vector-valued version was proved in [13]. (Recall that anal-
ogous property is false for biconvex functions: see the text before Lemma 3.5.)
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Proposition 5.1 ([13, Proposition 3.1]). Let f : A × B → Z be a convex-
concave operator, where Z is a normal ordered Banach space. Let (a, b) ∈
A × B and (u, v) ∈ X1 × X2 be such that both derivatives f ′+((a, b), (u, 0))
and f ′+((a, b), (0, v)) exist. Then also f ′+((a, b), (u, v)) exists and satisfies the
formula

f ′+((a, b), (u, v)) = f ′+((a, b), (u, 0)) + f ′+((a, b), (0, v)).

In particular (see Observation 2.11), if Z is moreover countably Daniell then
f admits all one-sided directional derivatives at (a, b).

Definition 5.2. Let Z be an ordered Banach space, and f : A × B → Z a
continuous convex-concave operator. We define its “subdifferential” as the
multivalued mapping

Tf : X1 ×X2 ⇒ L(X1, Z)× L(X2, Z) (= L(X1 ×X2, Z)),

given by

Tf (x, y) = ∂
[
f(·, y)

]
(x)× ∂

[
−f(x, ·)

]
(y) for (x, y) ∈ A×B,

Tf (x, y) = ∅ otherwise. (The subdifferentials are intended as in Definition 2.13.)

Lemma 5.3. Let Tf be as in Definition 5.2, where Z is a countably Daniell
ordered Banach space.

(a) If Z = R then Tf (x, y) 6= ∅ for each (x, y) ∈ A×B.
(b) If f is Gâteaux differentiable at some (x, y) ∈ A×B then Tf (x, y) contains

exactly one element, namely the couple (D1f(x, y),−D2f(x, y)), where
D1f(x, y) and D2f(x, y) denote the “partial Gâteaux derivatives” with re-
spect to X1 and X2, respectively. Moreover, for Z = R also the vice-versa
holds: if Tf is single-valued at (x, y) then f is Gâteaux differentiable at
(x, y).

(c) Tf is a generalized monotone mapping.

Proof. (a) follows from Corollary 2.16, and the first part of (b) follows from
Lemma 2.15.

To show the second part of (b), assume that Z = R and Tf (x, y) is a
singleton. Then, by well-known results for convex functions (see [22]), the
partial functions f(·, y) and f(x, ·) are Gâteaux differentiable at x and y,
respectively. Theorem 3.6 now implies that f is Gâteaux differentiable at
(x, y).

(c) is well known for Z = R (see e.g. [22, Proposition 3.29]); the proof of the
general case is done in the same way, as follows. Given (x1, y1), (x2, y2) ∈ A×B
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and (Li,Mi) ∈ Tf (xi, yi) (i = 1, 2), we have:

f(x2, y2)− f(x2, y1) ≥M2(y1 − y2),

f(x2, y1)− f(x1, y1) ≥ L1(x2 − x1),

f(x1, y1)− f(x1, y2) ≥M1(y2 − y1),

f(x1, y2)− f(x2, y2) ≥ L2(x1 − x2).

Summing up these inequalities, one easily obtains that

(L1 − L2)(x1 − x2) + (M1 −M2)(y1 − y2) ≥ 0,

which is what was needed. �

Theorem 5.4 (scalar case). Let f : A×B → R be a continuous convex-concave
function. Then:

(a) if the spaces X1, X2 are separable, then f is Gâteaux differentiable except
for a sparse (and hence Γ-null) set;

(b) if X1 = X2 = R, then f is Gâteaux differentiable except for a DC sparse
set;

(c) if X1, X2 either both are Gâteaux smooth or both are subspaces of Asplund
generated spaces, then f is Gâteaux differentiable except for a σ-cone sup-
ported set;

(d) if X1, X2 are Asplund spaces, then f is Fréchet differentiable except for a
set which is angle-small and Γ-null.

Proof. Let Tf : X1×X2 ⇒ X∗1 ×X∗2 = (X1×X2)
∗ be the corresponding “sub-

differential” mapping from Definition 5.2. By Lemma 5.3, Tf is a monotone
operator with domain D(Tf ) = A × B. Let NG (resp. NF ) be the set of
points of A × B at which f is not Gâteaux (resp. Fréchet) differentiable. By
Lemma 5.3, NG coincides with the set of points of A × B at which Tf is not
single-valued. By Theorem 2.22, the set NG is sparse in the case (a), and even
DC sparse in the case (b). By (5), NG is Γ-null as well.

If X1, X2 are Gâteaux smooth then X1 × X2, when equipped with the `2
product norm, is Gâteaux smooth as well (this is standard). If X1, X2 are sub-
spaces of Asplund generated spaces then X1×X2 is isomorphic to a subspace
of an Asplund generated space (see [8, Theorem 1.3.6(iii)]). Since Tf is locally
bounded at the points of the open set A×B (see e.g. [22, Theorem 2.28]), we
can apply Theorem 2.23 to obtain (c).

To prove (d), first assume that X1, X2 are separable Asplund spaces (i.e.,
X∗1 , X

∗
2 are separable). By Theorem 4.3, NF is Γ-null. We claim that NF is

contained in the set of points of A× B at which Tf is not both single-valued
and u.s.c. To show this, let (x, y) ∈ NF . By Theorem 3.6, f cannot be
“partially Fréchet differentiable” at (x, y). Assume that, for example, f(·, y)
is not Fréchet differentiable at x. It is well known (see e.g. [22]) that then the
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subdifferential ∂[f(·, y)] is not both single-valued and u.s.c. at x, and hence
neither Tf is both single-valued and u.s.c. at (x, y). Thus our claim holds. By
Theorem 2.25, such points form an angle-small set.

To show (d) for general Asplund spaces, we proceed by the method of sepa-
rable reduction by repeating the second part of the proof of Theorem 4.4 with
n = 2 and with “angle-small” instead of “σ-lower porous”. �

Theorem 5.5 (Gâteaux differentiability). Let f : A×B → Z be a continuous
convex-concave operator, where Z is a countably Daniell ordered Banach space.
Let NG be the set of points in A×B at which f is not Gâteaux differentiable.
Then:

(a) if the spaces X1, X2 are separable, then NG is sparse (and hence Γ-null);
(b) if X1 = X2 = R, then NG is DC sparse;
(c) if the duals X∗1 , X

∗
2 are separable, then NG is angle-small.

Proof. Let X1, X2 be separable. Since Z1 := span f(A × B), considered in
the ordering inherited from Z, is a separable ordered Banach space which is
clearly countably Daniell, we can (and do) assume that Z is separable. Then,
by Fact 2.4, Z∗+ contains a strictly positive functional z∗. Then z∗ ◦f is clearly
a continuous convex-concave function and, by Proposition 3.7, NG coincides
with the set of points at which z∗ ◦ f is not Gâteaux differentiable. The rest
now follows from Theorem 5.4(a,b,d). �

Remark 5.6. In the same way as in the proof of Theorem 5.5, we can obtain
the following vector-valued versions of the “nonseparable” Theorem 5.4(c).

Let X1, X2 either both be Gâteaux smooth or both be subspaces of Asplund
generated spaces, and let f : A × B → Z be a continuous convex-concave op-
erator, where Z is a countably Daniell ordered Banach space. If there exists a
strictly positive functional z∗ ∈ Z∗+, then f is Gâteaux differentiable except for
a σ-cone supported set.

Notice that existence of z∗ is assured in any of the following cases: (a) if
Z is separable (see Fact 2.4); (b) if Z+ is well-based (see Fact 2.6(b)); (c) if
Z is an order continuous Banach lattice with a weak (order) unit (see [20,
Proposition 1.b.15], for the definition of a weak unit see [20, p. 9]).

Theorem 5.7 (Fréchet differentiability). Let f : A× B → Z be a continuous
convex-concave operator, where Z is a countably Daniell ordered Banach space.
Let at least one of the following two conditions be satisfied.

(a) L(X1, Z) and L(X2, Z) are separable.
(b) X1, X2 are Asplund spaces and Z+ is well-based.

Then f is Fréchet differentiable on A×B except for a set which is angle-small
and Γ-null.
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Proof. (a) Since Z is always assumed to be nontrivial, the duals X∗1 , X
∗
2 are

separable. By Theorem 5.5(c), f is Gâteaux differentiable except for an angle-
small set NG. Let Tf : X1 × X2 ⇒ L(X1 × X2, Z) be the generalized mono-
tone mapping from Lemma 5.3. Consider the geralized monotone mapping
T (x, y) := Tf (x, y) if (x, y) ∈ (A × B) \ NG, T (x, y) := ∅ otherwise. By
Lemma 5.3(b), the domain of T is D(T ) = (A×B)\NG and T is single-valued
at each point of D(T ). Moreover, D(T ) is clearly dense in A×B since NG is a
first category set. By Theorem 2.25, there exists an angle-small set M ⊂ D(T )
such that T is upper semicontinuous at each point of D(T ) \M . This implies,
via Lemma 5.3, that the Gâteaux derivative of f , defined on the dense set
D(T ), is continuous at each point of D(T )\M . By Corollary 3.9, f is Fréchet-
differentiable at each such point. It follows that f is Fréchet differentiable at
each point that does not belong to the angle-small set NG ∪M . Moreover, f
is Fréchet differentiable except for a Γ-null set by Theorem 4.3.

(b) Let z∗ ∈ Z∗+ be as in Fact 2.6(b). Since z∗ ◦ f is clearly a convex-
concave real function, this case immediately follows by Theorem 5.4(d) and
Proposition 3.7. �

6. Examples and applications

In this last section, we present some applications of our general results. In
particular, we present (following [29, Section 5]) several consequences of our
“supergeneric” results (and “Γ-null” results) which are formulated in standard
terms and do not follow from generic results – Examples 6.2 and 6.3 are of this
type. Other applications are “joint differentiability results” in Example 6.1.

Example 6.1. Let p, q ∈ (1,∞) and assume that either

Z = `q and X = {`p : q < p <∞} ∪ {c0} ∪ {Lp[0, 1] : q < min(p, 2)}

or

Z = Lq[0, 1] and X = {`p : max(q, 2) < p <∞} ∪ {c0}.
Then the following assertions follow from Theorem 4.3 and Theorem 5.7.

(a) If f : X = X1 × · · · × Xn → Z is a continuous partially convex
(up or down) operator and Xi ∈ X , i = 1, . . . , n, then f is Fréchet
differentiable except for a σ-lower porous, Γ-null set.

(b) If f : X = X1×X2 → Z is a continuous convex-concave operator and
X1 ∈ X , X2 ∈ X , then f is Fréchet differentiable except for an angle
small, Γ-null set.

Indeed, in all above cases, L(X,Z) is separable (see [29, Example 5.5]).

Moreover, from (a), we obtain two “joint differentiability results”.
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Namely, under the assumptions of (a), suppose that g : X → T , where T
is a Banach space with the Radon-Nikodým property, is a Lipschitz mapping,
then at some points of X (in fact, at all points of X except for a Γ-null set),
both f is Fréchet differentiable and g is Gâteaux differentiable. Indeed, by [18,
Theorem 2.5] g is Gâteaux differentiable except for a Γ-null set.

Furthermore, if h is a Lipschitz real function on X, then at some points
of X both f and h are Fréchet differentiable. This clearly follows from [19,
Theorem 12.1.1] which implies that h is Fréchet differentiable at all points of
a set which is not σ-upper porous, and from the fact that each σ-lower porous
set is σ-upper porous.

The following examples are easy extensions of Examples 5.6 and 5.7 of [29],
and so we present the proof for the first one only.

Example 6.2. Let Γ1,Γ2 be infinite (countable or uncountable) sets, p, q ∈
(1,∞), Z a separable ordered Banach space which is countably Daniell, and
f : `p(Γ1)× `q(Γ2)→ Z a continuous convex-concave operator.

Then the set of all (x, y) ∈ `1(Γ1) × `1(Γ2) ⊂ `p(Γ1) × `q(Γ2) at which f is
Gâteaux differentiable is uncountable and dense in `p(Γ1)× `q(Γ2).

Proof. Since `p(Γ1)× `q(Γ2) is an Asplund space, Remark 5.6 implies that the
set NG(f) of all (x, y) ∈ `p(Γ1)×`q(Γ2) at which f is not Gâteaux differentiable
is σ-cone supported. Let ∅ 6= H ⊂ `p(Γ1) × `q(Γ2) be an open set. Then [35,
Lemma 4] (used with Y = `1(Γ1)×`1(Γ2), D = G = H∩ (`1(Γ1)×`1(Γ2)), and
g = id : `1(Γ1) × `1(Γ2) → X := `p(Γ1) × `q(Γ2)) implies that H ∩ (`1(Γ1) ×
`1(Γ2)) is not σ-cone supported (in X). So the set

[
(`1(Γ1)×`1(Γ2))\NG(f)

]
∩

H is not σ-cone supported, and so it is uncountable. �

Example 6.3. Let Z be an ordered Banach space which is countably Daniell,
f : X = C[0, 1] × C[0, 1] → Z a continuous convex-concave operator. Then
there exist increasing real analytic functions x ∈ C[0, 1], y ∈ C[0, 1] such that
f is Gâteaux differentiable at (x, y).
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28 L. Veselý and L. Zaj́ıček
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[31] L. Veselý, L. Zaj́ıček, On connections between delta-convex mappings and convex
operators, Proc. Edinb. Math. Soc. (2) 49 (2006), 739–751.
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