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Abstract. We present and thoroughly study natural Polish spaces of sep-
arable Banach spaces. These spaces are defined as spaces of norms, resp.

pseudonorms on the countable infinite-dimensional rational vector space. We
provide an exhaustive comparison of these spaces with the admissible topolo-

gies recently introduced by Godefroy and Saint-Raymond and show that Borel

complexities differ little with respect to these two different topological ap-
proaches.

We then focus mainly on the Borel complexities of isometry classes of

the most classical Banach spaces. We prove that the infinite-dimensional
Hilbert space is characterized as the unique separable infinite-dimensional

Banach space whose isometry class is closed, and also as the unique sepa-

rable infinite-dimensional Banach space whose isomorphism class is Fσ . For
p ∈ [1, 2) ∪ (2,∞), we show that the isometry classes of Lp[0, 1] and `p are

Gδ-complete and Fσδ-complete, respectively. Then we show that the isometry

class of the Gurarĭı space is Gδ-complete and the isometry class of c0 is Fσδ-
complete. The isometry class of the former space is moreover proved to be

dense Gδ. Additionally, we compute the complexities of many other natural

classes of Banach spaces; for instance, Lp,λ+-spaces, for p, λ ≥ 1, are shown
to be Gδ, superreflexive spaces are shown to be Fσδ, and spaces with local

Π-basis structure are shown to be Σ0
6. The paper is concluded with many

open problems and suggestions for a future research.
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Introduction

Banach spaces and descriptive set theory have a long history of mutual inter-
actions. An explicit use of descriptive set theory to Banach space theory can be
traced back at least to the seminal papers of Bourgain ([6], [5]), where it has be-
come apparent that descriptive set theory is an indispensable tool for universality
problems. That is a theme that has been investigated by researchers working with
Banach spaces ever since (see e.g. [2] and [12] and references therein).

As it eventually turned out, ‘Descriptive set theory of Banach spaces’ is an inter-
esting and rich subject of its own and it has received some considerable attention
in the recent years. One of the starting points was the idea of Bossard of coding
separable Banach spaces in [3], [4]. His approach was, which can be considered
standard, to choose some universal separable Banach space X, e.g. C(2N), and
consider the Effros-Borel space F (X). Recall that this is the set of closed subsets
of X equipped with a certain σ-algebra which makes F (X) a standard Borel space,
i.e. a measurable space which is isomorphic, as a measurable space, to a Polish
space equipped with the σ-algebra of Borel sets. It is then not too difficult to show
that a subset SB(X) ⊆ F (X) consisting of all closed linear subspaces is a Borel
subset, and therefore a standard Borel space itself.

A drawback of this idea is that there is no canonical or natural (Polish) topology
on SB(X). So although one can ask whether a given class of Banach spaces is
Borel or not, the question about the exact complexity of that particular class is
meaningless. A recent work [23] of Godefroy and Saint-Raymond addresses this
issue. They still work with the space SB(X), but among the many Polish topologies
on SB(X) giving the Effros-Borel structure, they select some particular subclass
which is called admissible topologies. Although no particular admissible topology is
canonical, the set of requirements put on this class guarantees that the exact Borel
complexities vary little.

One of the aims of this paper is to present a concrete and natural Polish space
(and some variants of it) of separable Banach spaces, which is convenient to work
with and in which the computations of Borel complexities are usually as straightfor-
ward as they could be. Informally, it is the space of all norms, resp. pseudonorms,
on the space of all finitely supported sequences of rational numbers - the unique
infinite-dimensional vector space over Q with a countable Hamel basis. We note
that this is, in spirit, similar to how (for instance) Vershik topologized the space
of all Polish metric spaces ([48]), or how Grigorchuk topologized the space of all
n-generated, resp. finitely generated, groups ([25]).

This space has already appeared in the previous work of the authors in [10] as
a useful coding of Banach spaces. Here we investigate it further. Our goals are
twofold:

(a) to show that the spaces of norms, resp. pseudonorms, have all the advan-
tages of admissible topologies on SB(X),

(b) to demonstrate the strength of this new approach by computing (in many
cases, these computations are sharp) complexities of various classes of Ba-
nach spaces; this includes improving some estimates of Godefroy and Saint-
Raymond and addressing some of their problems, as well as initiating the
research of computing the complexities of isometry classes of Banach spaces.

The goal (a) is achieved mainly by the following theorem.

Theorem A. There is a Σ0
2-measurable mapping from the space of norms to any

admissible topology of Godefroy and Saint-Raymond that associates to each norm a
space isometric to the space which the norm defines, and vice versa.
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Additionally, while the exact Borel complexities are more or less independent of
the choice of the admissible topology, some finer topological properties such as being
meager or comeager (this is mentioned below), or the description of the topological
closures are not. We obtain a neat characterization of topological closures in the
spaces of norms and pseudonorms in terms of finite representability, we refer the
reader to Proposition 1.9

The rest of the paper focuses on goal (b). Let us describe some of the main
results here.

First we focus on computing complexities of isometry classes of Banach spaces,
i.e. how easy/difficult it is to define a concrete Banach space uniquely up to isom-
etry. There is an active ongoing research whether for a particular Banach space its
isomorphism class is Borel or not (see e.g. [21], [33], [17], [22]) while it is known
that isometry classes of separable Banach spaces are always Borel (note that the
linear isometry relation is Borel bi-reducible with an orbit equivalence relation [41]
and orbit equivalence relations have Borel equivalence classes [29, Theorem 15.14]).
Having a topology at our disposal we compute complexities of isometry classes of
several classical Banach spaces.

Theorem B. (1) The infinite-dimensional separable Hilbert space is charac-
terized as the unique infinite-dimensional separable Banach space whose
isometry class is closed (see Theorem 3.4).

(2) For p ∈ [1, 2) ∪ (2,∞), the isometry class of Lp([0, 1], λ) is Gδ-complete.
Moreover, for every λ ≥ 1, the class of separable Lp,λ+-spaces is Gδ and
the class of separable Lp-spaces is Gδσ, improving the estimate from [23]
(see Theorems 4.4 and 4.6, and Corollary 4.7).

(3) For p ∈ [1, 2) ∪ (2,∞), the isometry class of `p is Fσδ-complete (see Theo-
rem 5.1).

(4) The isometry class of c0 is Fσδ-complete (see Theorem 5.1).
(5) The isometry class of the Gurarĭı space is Gδ-complete (see Corollary 4.2).

Regarding the Hilbert space, we also uniquely characterize it by the complexity
of its isomorphism class.

Theorem C. The infinite-dimensional separable Hilbert space is characterized as
the unique, up to isomorphism, infinite-dimensional separable Banach space whose
isomorphism class is Fσ (see Theorem 6.1).

Let us also present here few sample results which involve complexities of more
general classes of Banach spaces.

Theorem D. (1) The class of all superreflexive spaces is Fσδ (see Theorem 7.3).
(2) The class of all spaces with local Π-basis structure is Σ0

6 (see Theorem 7.13).
(3) The class of spaces whose Szlenk index is bounded by ωα is Π0

ωα+1 (see
Theorem 7.7).

Next we consider various ‘genericity’ or ‘Baire category’ problems. For the space
of norms and pseudonorms we have a definitive solution.

Theorem E. The isometry class of the Gurarĭı space is dense Gδ in the space of
norms and pseudonorms, i.e. the Gurarĭı space is the generic separable Banach
space (see Theorem 2.1).

We then consider Baire category problems also for admissible topologies, thus
addressing Problem 5.5 of Godefroy and Saint-Raymond from [23]. In particular,
we confirm their suspicion that being meager is not independent of the choice of
the admissible topology.
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Theorem F. For any universal Banach space X, any admissible topology τ on
SB(X) and infinite-dimensional Banach spaces Y and Z such that Y ↪→ Z and
Z 6↪→ Y ⊕ F for every finite-dimensional space F , there exists a finer admissible
topology τ ′ ⊇ τ such that the class of Banach spaces isomorphic to Z is nowhere
dense in (SB(X), τ ′). In particular, there exists an admissible topology in which
the Gurarĭı space is meager (see Theorem 2.12).

On the other hand, the Gurarĭı space is dense Gδ in the Wijsman topology (see
Theorem 2.10).

The paper is organized as follows. Section 1 first introduces the Polish spaces
of norms and pseudonorms and investigates their basic topological properties. The
rest of the section is then devoted to the proof of Theorem A. This is a very technical
part that is independent on the rest of the paper, so readers who are satisfied with
our definitions of Polish spaces of norms/pseudonorms without objections can safely
skip it and proceed immediately to Section 2. There we prove Theorems E and F.
That part can be also read independently, so readers interested only in descriptive
complexities can focus on Sections 3, 4, 5, 6, and 7, where Theorems B, C, and D
are proved.

Final Section 8 presents several open problems and directions for a further re-
search.

Let us conclude the introduction by setting up some notation that will be used
throughout the paper.

Notation: Throughout the paper we usually denote the Borel classes of low com-
plexity by the traditional notation such as Fσ and Gδ, or even Fσδ (countable
intersection of Fσ sets) and Gδσ (countable union of Gδ sets). However whenever
it is more convenient or necessary we use the notation Σ0

α, resp. Π0
α, where α < ω1

(we refer to [29, Section 11] for this notation). We emphasize that open sets, resp.
closed sets, are Σ0

1, resp. Π0
1, by this notation.

In a few occassions, for a Borel class Γ we will use the notion of Γ-hard and
Γ-complete sets. We refer the reader to [29, Definition 22.9] for this notion. For a
reader not familiar with this notion, let us emphasize that a set A being Γ-hard,
for a Borel class Γ, in particular implies that A is not of lower complexity than Γ.
Thus results stating that some set is Σ0

α-complete mean that the set is Σ0
α and not

simpler.

Moreover, given a class Γ of sets in metrizable spaces, we say that f : X → Y is
Γ-measurable if f−1(U) ∈ Γ for every open set U ⊆ Y .

Given Banach spaces X and Y , we denote by X ≡ Y (resp. X ' Y ) the fact
that those two spaces are linearly isometric (resp. isomorphic). We denote by
X ↪→ Y the fact that Y contains a subspace isomorphic to X. For K ≥ 1, a K-
isomorphism T : X → Y is a linear map with K−1‖x‖ ≤ ‖Tx‖ ≤ K‖x‖, x ∈ X.
If {x1, . . . , xn} are linearly independent elements of X and y1, . . . , yn ∈ Y , we

write (Y, y1, . . . , yn)
K∼ (X,x1, . . . , xn) if the linear operator T : span{x1, . . . , xn} →

span{y1, . . . , yn} sending xi to yi satisfies max{‖T‖, ‖T−1‖} < K. If X has a canon-

ical basis (x1, . . . , xn) which is clear from the context, we just write (Y, y1, . . . , yn)
K∼

X instead of (Y, y1, . . . , yn)
K∼ (X,x1, . . . , xn). Morevoer, if Y is clear from the con-

text we write (y1, . . . , yn)
K∼ X instead of (Y, y1, . . . , yn)

K∼ X.
Finally, in order to avoid any confusion, we emphasize that throughout the text

`np denotes the n-dimensional `p-space, i.e. the upper index denotes dimension.
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1. The Polish spaces of separable Banach spaces

We begin with formalizing the class of all separable (infinite-dimensional) Banach
spaces as a Polish space. The main outcomes of this section are the following.

(1) In the first subsection, we introduce the main notions of this paper: the
Polish spaces of pseudonorms P (and P∞) representing separable (infinite-
dimensional) Banach spaces, and we recall the space of norms B that has
appeared in our previous work [10]. We show some interesting features
of these space, e.g. the neat relation between finite representability and
topological closures in these space; see Proposition 1.9 and its corollaries.

(2) In the second subsection, we recall the coding SB(X) (and SB∞(X)) of
separable (infinite-dimensional) Banach spaces. We recall the notion of an
admissible topology introduced in [23], which is a Polish topology corre-
sponding to the Effros-Borel structure of SB(X). We explore some basic
relations between codings P, P∞, B, SB(X) and SB∞(X). We show there
is a continuous reduction from SB(X) to P, a Σ0

2-measurable reduction
from P∞ to B, and a Σ0

4-measurable reduction from P to SB(X), see The-
orem 1.17, Proposition 1.20 and Theorem 1.24. Here by a ‘reduction’, we
mean a Borel map Φ such that the code and its image are both codes of
the same (up to isometry) Banach space.

(3) The third subsection is devoted to the proof of Theorem 1.25, by which
there is a Σ0

2-measurable reduction from B to SB∞(X). Further, we note
that the developed techniques also lead to a Σ0

3-measurable reduction from
P to SB(X), which is an improvement of the result mentioned above.

The meaning of the reductions above is that there is not a big difference between
Borel ranks when considered in any of the Polish spaces mentioned above. However,
it seems that considering P∞ and B has some pleasant additional features, see e.g.
Proposition 1.9 and its corollaries.

Let us emphasize that the existence of a Borel reduction from B to SB∞(X) has
been essentially proved in [32, Lemma 2.4]. Going through the proof of [32, Lemma
2.4], one may obtain a reduction which is Σ0

3-measurable; however, the proof does
not seem to give a Σ0

2-measurable reduction (which is the optimal result). In
order to obtain this improvement, see Theorem 1.25, we have to develop a whole
machinery of new ideas in combination with very technical results, and this is the
reason why we devote a whole subsection to the proof.

Since our reductions from SB∞(X) to P∞ and from B to SB∞(X) are optimal,
it seems to be a very interesting open problem of whether there exists a continuous
reduction from P∞ to B or at least a Σ0

2-measurable reduction from P∞ to SB∞(X),
see Question 1 and Question 2.

1.1. Introduction of the spaces P, P∞ and B, and their topological fea-
tures. Let us start with the following idea of coding the class of separable (infinite-
dimensional) Banach spaces. It is based on the idea presented already in our pre-
vious paper [10], where the space B was defined.

By V , we shall denote the vector space over Q of all finitely supported sequences
of rational numbers; that is, the unique infinite-dimensional vector space over Q
with a countable Hamel basis (en)n∈N.

Definition 1.1. Let us denote by P the space of all pseudonorms on the vector
space V . Since P is a closed subset of RV , this gives P the Polish topology inherited
from RV . The subbasis of this topology is given by sets of the form U [v, I] := {µ ∈
P : µ(v) ∈ I}, where v ∈ V and I an open interval.
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We often identify µ ∈ P with its extension to the pseudonorm on the space c00,
that is, the vector space over R of all finitely supported sequences of real numbers.

For every µ ∈ P we denote by Xµ the Banach space given as the completion of
the quotient space X/N , where X = (c00, µ) and N = {x ∈ c00 : µ(x) = 0}. In
what follows we often consider V as a subspace of Xµ, that is, we identify every
v ∈ V with its equivalence class [v]N ∈ Xµ.

By P∞ we denote the set of those µ ∈ P for which Xµ is infinite-dimensional
Banach space. As we did in [10], by B we denote the set of those µ ∈ P∞ for
which the extension of µ to c00 is an actual norm, that is, the vectors e1, e2, . . . are
linearly independent in Xµ.

We endow P∞ and B with topologies inherited from P.

Our first aim is to show that the topologies on P∞ and B are Polish (see Corol-
lary 1.5). This can be easily verified directly, here we obtain it as a corollary of

the fact that the relation
K∼ defined before is open in P, a very useful fact that will

prove important many times in the paper.
We need the following background first. Given a metric space (M,d), ε > 0 and

N,S ⊆ M we say that N is ε-dense for S if for every x ∈ S there is y ∈ N with
d(x, y) < ε (let us emphasize that we do not assume N ⊆ S). For further references,
we recall the following well-known approximation lemma, for a proof see e.g. [1,
Lemma 12.1.11].

Lemma 1.2. There is a function φ1 : [0, 1)→ [0, 1) continuous at zero with φ1(0) =
0 such that whenever T : E → X is a linear operator between Banach spaces,
ε ∈ (0, 1), M ⊆ E is ε-dense for SE and

∀m ∈M : |‖Tm‖ − 1| < ε,

then T is (1 + φ1(ε))-isomorphism between E and T (E).

The following definition precises the notation
K∼ defined in the introduction.

Definition 1.3. If v1, . . . , vn ∈ V are given, for µ ∈ P, instead of (Xµ, v1, . . . , vn)
K∼

X, we shall write (µ, v1, . . . , vn)
K∼ X.

Lemma 1.4. Let X be a Banach space with {x1, . . . , xn} ⊆ X linearly independent
and let v1, . . . , vn ∈ V . Then for any K > 1 the set

N ((xi)i,K, (vi)i) = {µ ∈ P : (µ, v1, . . . , vn)
K∼ (X,x1, . . . , xn)}

is open in P.
In particular, the set of those µ ∈ P for which the set {v1, . . . , vn} is linearly

independent in Xµ is open in P.

Proof. Pick some µ ∈ N ((xi)i,K, (vi)i). By definition, the linear map T sending
vi to xi ∈ X, i ≤ n, is a linear isomorphism satisfying max{‖T‖, ‖T−1‖} < L
for some L < K. Let φ1 be the function provided by Lemma 1.2 and pick ε > 0
such that L(1 + φ1(2ε)) < K. Let N ⊆ V be a finite ε-dense set for the sphere of
span{v1, . . . , vn} ⊆ Xµ such that µ(v) ∈ (1− ε, 1 + ε) for every v ∈ N . Then

U := {ν ∈ P : ∀v ∈ N : |ν(v)− µ(v)| < ε}
is an open neighborhood of µ and U ⊆ N ((xi)i,K, (vi)i). Indeed, for any ν ∈ U
we have that id : (span{v1, . . . , vn}, µ) → (span{v1, . . . , vn}, ν) is (1 + φ1(2ε))-
isomorphism; hence, the linear map T considered as a map betweeen (span{v1, . . . , vn}, ν)
and span{x1, . . . , xn} satisfies ‖T‖ < L(1+φ1(2ε)) < K, and similarly ‖T−1‖ < K;
hence, ν ∈ N ((xi)i,K, (vi)i).

The “In particular” part easily follows, because v1, . . . , vn ∈ V are linearly inde-

pendent if and only if there exists K > 1 with (µ, v1, . . . , vn)
K∼ `n1 . �
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Corollary 1.5. Both P∞ and B are Gδ sets in P.

Since we are interested mainly in subsets of P closed under isometries, we intro-
duce the following notation.

Notation 1.6. Let Z be a separable Banach space and let I be a subset of P. We
put

〈Z〉I≡ := {µ ∈ I : Xµ ≡ Z} and 〈Z〉I' := {µ ∈ I : Xµ ' Z}.
If I is clear from the context we write 〈Z〉≡ and 〈Z〉' instead of 〈Z〉I≡ and 〈Z〉I'
respectively.

The important feature of the topology of the spaces P, P∞ and B is that basic
open neighborhoods are defined using finite data, i.e. finitely many vectors. That
suggests that topological properties of the aforementioned spaces should be closely
related to the local theory of Banach spaces. This is certainly a point that could
be investigated further in a future research. Here we just observe how topologi-
cal closures are related to finite representability, see Proposition 1.9. In order to
formulate our results, let us consider the following generalization of the classical
notion of finite representability.

Definition 1.7. Let F be a family of Banach spaces. We say that a Banach space
X is finitely representable in F if given any finite-dimensional subspace E of X
and ε > 0 there exists a finite-dimensional subspace F of some Y ∈ F which is
(1 + ε)-isomorphic to E.

If the family F consists of one Banach space Y only, we say rather that X is
finitely representable in Y than in {Y }.

If F ⊆ P, by saying that X is finitely representable in F we mean it is finitely
representable in {Xµ : µ ∈ F}.

The following is an easy observation which we will use further, the proof follows
e.g. immediately from [1, Lemma 12.1.7] in the case that F contains one Banach
space only. For the more general situation the proof is analogous.

Lemma 1.8. Let F be a family of infinite-dimensional Banach spaces and µ ∈ P∞.
Let {k(n)}∞n=1 be a sequence such that {ek(n) : n ∈ N} is a linearly independent
set in Xµ and span{ek(n) : n ∈ N} = Xµ. Then Xµ is finitely representable in F
if and only if for every n ∈ N and ε > 0 there exists a finite dimensional subspace
F of some Y ∈ F which is (1 + ε)-isomorphic to (span{ek(1), . . . , ek(n)}, µ).

Proposition 1.9. Let F ⊆ B be such that 〈Xµ〉B≡ ⊆ F for every µ ∈ F . Then

{ν ∈ B : Xν is finitely representable in F} = F ∩ B.

The same holds if we replace B with P∞ or with P.
In particular, if X is a separable infinite-dimensional Banach space, then

{ν ∈ B : Xν is finitely representable in X} = 〈X〉B≡ ∩ B

and similarly also if we replace B with P∞ or with P.

Proof. “⊆”: Fix ν ∈ B such that Xν is finitely-representable in F . Pick v1, . . . , vn ∈
V and ε > 0. We shall show there is µ0 ∈ F with |µ0(vi) − ν(vi)| < ε, i ≤ n. Let
m ∈ N be such that {v1, . . . , vn} ⊆ spanQ{ej : j ≤ m}. Put C := max{ν(vi) : i =
1, . . . , n} and Z := span{e1, . . . , em} ⊆ Xν . Since Xν is finitely representable in F ,
there is µ ∈ F and an (1 + ε

2C )-isomorphism T : Z → Xµ. Set xi := T (ei), i ≤ m,
and extend x1, . . . , xm to a linearly independent sequence (xi)

∞
i=1 whose span is

dense in Xµ. Consider µ0 ∈ P given by setting µ0(
∑
i∈I αiei) = µ(

∑
i∈I αixi),

where I ⊆ N is finite and (αi)i∈I ⊆ Q. Clearly, Xµ0
≡ Xµ and µ0 ∈ B, so µ0 ∈ F .
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Finally, for every i ≤ n we have vi =
∑m
j=1 αjej for some (αj) ∈ Rm and so we

have

µ0(vi) = µ(

m∑
j=1

αjxj) ≤ (1 + ε
2C )ν(

m∑
j=1

αjej) = (1 + ε
2C )ν(vi)

and similarly µ0(vi) ≥ (1 + ε
2C )−1ν(vi) ≥ (1 − ε

2C )ν(vi). Thus, |µ0(vi) − ν(vi)| ≤
ε
2 < ε for every i ≤ n.

The case when we replace B with P∞ or P is analogous, this time we only do
not require (xi)

∞
i=1 to be linearly independent.

“⊇”: Fix ν ∈ F ∩ B. In order to see that Xν is finitely representable in F , we will
use Lemma 1.8. Pick n ∈ N and ε > 0. Let φ1 be the function from Lemma 1.2,
let δ > 0 be such that φ1(2δ) < ε and let N ⊆ V be a finite set which is δ-dense
for the sphere of (span{e1, . . . , en}, ν) and ν(v) ∈ (1 − δ, 1 + δ) for every v ∈ N .
Pick µ ∈ F such that |µ(v) − ν(v)| < δ, v ∈ N . Then id : (span{e1, . . . , en}, ν) →
(span{e1, . . . , en}, µ) is (1+φ1(2δ))-isomorphism. Thus, Xν is finitely representable
in F . The case when we replace B with P∞ or P is similar. �

This result will have many interesting consequences. Let us state one of them,
of a general nature, here. Other will appear in appropriate sections when needed.

Corollary 1.10. Let X be a separable infinite-dimensional Banach space. Then

{µ ∈ B : Xµ is finitely representable in X}
is a closed set in B. The same holds if we replace B with P∞ or with P.

We also consider a kind of an opposite notion where instead of finitely repre-
senting one fixed Banach space in a class of Banach spaces, we represent a class of
Banach spaces in one fixed Banach space.

Definition 1.11. Let F be a class of finite dimensional Banach spaces and let X
be a Banach space. We say that F is representable in X if for every F ∈ F and
ε > 0 there exists a subspace of X that is (1 + ε)-isomorphic to F .

Analogously, we say that F is crudely representable in X if there is λ ≥ 1 such
that for every F ∈ F and ε > 0 there exists a subspace of X that is (λ + ε)-
isomorphic to F . If the family F consists of all finite-dimensional subspaces of a
(possibly infinite-dimensional) Banach space Y , we say that Y is crudely finitely
representable in X.

Proposition 1.12. Let F be an arbitrary class of finite dimensional Banach spaces.
Then the set of those µ ∈ P such that F is representable in Xµ is Gδ. Analogously,
the set of those µ ∈ P such that F is crudely representable in Xµ is Gδσ.

In particular, for a fixed Banach space Y , the set of those µ ∈ P such that Y is
finitely representable, resp. crudely finitely representable, in Xµ is Gδ, resp. Gδσ.

Proof. For an arbitrary finite dimensional Banach space F (with a fixed basis bF )
and K > 1, we set

R(F,K) := {µ ∈ P : ∃v1, . . . , vn ∈ V (µ, v1, . . . , vn)
K∼ F}.

By Lemma 1.4, R(F,K) is open.
Now since for each n the space of all isometry classes of n-dimensional Banach

spaces with the Banach-Mazur distance is compact, in particular it is separable,
we can without loss of generality assume that the class F is countable. As a
consequence, we get that the set of those µ ∈ P such that F is representable in Xµ

is equal to ⋂
F∈F

⋂
n∈N

R(F, 1 + 1/n),
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which is Gδ.
Analogously, we get that the set of those µ ∈ P such that F is crudely repre-

sentable in Xµ is equal to ⋃
λ

⋂
F∈F

⋂
n∈N

R(F, λ+ 1/n),

which is Gδσ.
The ‘In particular’ part follows immediately. �

We conclude this subsection by showing another nice features of the above topolo-
gies on examples. We can show that the natural maps K 7→ C(K) and λ 7→ Lp(λ),
where K is a compact metrizable space and λ is a Borel probability measure on a
fixed compact metric space, are continuous.

Example 1.13. (a) Let K([0, 1]N) denote the space of all compact subsets of
the Hilbert cube [0, 1]N endowed with the Vietoris topology. Then there
exists a continuous mapping ρ : K([0, 1]N) → P such that Xρ(K) ≡ C(K)

for every K ∈ K([0, 1]N).
(b) Let L be a compact metric space, let p ∈ [1,∞) be fixed and let Prob(L)

denote the space of all Borel probability measures on L endowed with the
weak* topology (generated by elements of the Banach space C(L)). Then
there exists a continuous mapping σ : Prob(L) → P such that Xσ(λ) ≡
Lp(λ) for every λ ∈ Prob(L).

Proof. (a) Let {fi : i ∈ N} be a linearly dense subset of C([0, 1]N). For every
compact subset K of [0, 1]N, we define ρ(K) ∈ P by

ρ(K)

(
n∑
i=1

riei

)
= sup
x∈K

∣∣∣∣∣
n∑
i=1

rifi(x)

∣∣∣∣∣ ,
n∑
i=1

riei ∈ V.

It is clear that Xρ(K) ≡ C(K), so we only need to check the continuity of

ρ. It is enough to show that ρ−1(U [v, I]) is an open subset of K([0, 1]N) for
every v ∈ V and every open interval I (recall that U [v, I] = {µ ∈ P : µ(v) ∈
I}). So let us fix K̃ ∈ ρ−1(U [v, I]), and assume that v =

∑n
i=1 riei. Fix

x0 ∈ K̃ such that∣∣∣∣∣
n∑
i=1

rifi(x0)

∣∣∣∣∣ = sup
x∈K̃

∣∣∣∣∣
n∑
i=1

rifi(x)

∣∣∣∣∣ .
Fix also ε > 0 such that both numbers |

∑n
i=1 rifi(x0)|±ε belong to I. Now

find open subsets U, V of [0, 1]N such that x0 ∈ U and K̃ ⊆ V , and such
that

inf
x∈U

∣∣∣∣∣
n∑
i=1

rifi(x)

∣∣∣∣∣ >
∣∣∣∣∣
n∑
i=1

rifi(x0)

∣∣∣∣∣− ε
and

sup
x∈V

∣∣∣∣∣
n∑
i=1

rifi(x)

∣∣∣∣∣ < sup
x∈K̃

∣∣∣∣∣
n∑
i=1

rifi(x)

∣∣∣∣∣+ ε.

Then

U := {K ∈ K([0, 1]N) : K ∩ U 6= ∅ and K ⊆ V }

is an open neighborhood of K̃ such that ρ(U) ⊆ U [v, I].
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(b) This is similar to (a) but even easier. Let {gi : i ∈ N} be a linearly dense
subset of C(L). For every Borel probability measure λ on L, we define
σ(λ) ∈ P by

σ(λ)

(
n∑
i=1

riei

)
=

∫
L

∣∣∣∣∣
n∑
i=1

rigi

∣∣∣∣∣
p

dλ

 1
p

,

n∑
i=1

riei ∈ V.

It is clear that Xσ(λ) ≡ Lp(λ), so we only need to check the continuity of σ.

It is enough to show that σ−1(U [v, I]) is an open subset of Prob(L) for every
v ∈ V and every open interval I. But this is clear as, for v =

∑n
i=1 riei, we

have

σ−1(U [v, I]) =

λ ∈ Prob(L) :

∫
L

∣∣∣∣∣
n∑
i=1

rigi

∣∣∣∣∣
p

dλ

 1
p

∈ I

 .

�

Remark 1.14. After the introduction of the spaces P, P∞, and B, one faces the
question which of them is ‘the right one’, with which to work. For now, we leave the
question undecided. Since we are mainly interested in infinite-dimensional Banach
spaces, we prefer to work mainly with P∞ and B, and indeed the space P has a
certain pathological property when computing the closed isometry classes (we refer
to Remark 3.2). On the other hand, it turns out that at least as far as one wants
to transfer some computations performed in the space of pseudonorms directly to
the admissible topologies, the space P is useful: Theorem 1.17 below shows that
whatever we compute in the space P holds true also in any admissible topology.

Regarding P∞ and B, in most of the arguments there is no difference whether
we work with the former or the latter space. However, there are few exceptions
when it seems to be convenient to work with the assumption that the sequence of
vectors 〈en : n ∈ N〉 ⊆ V is linearly independent, and then we work with B.

1.2. Relations between codings P, P∞, B, SB(X) and SB∞(X). Here we
recall the approach to topologizing the class of all separable (infinite-dimensional)
Banach spaces by Godefroy and Saint-Raymond from [23] which was a partial
motivation for our research.

Definition 1.15. Let X be a Polish space and let us denote by F(X) the set of
all the closed subsets of X. For an open set U ⊆ X we put E+(U) = {F ∈ F(X) :
U ∩ F 6= ∅}. Following [23], we say that a Polish topology τ on the set F(X) is
admissible if it satisfies the following two conditions:

(i) For every open subset U of X, the set E+(U) is τ -open.
(ii) There exists a subbasis of τ such that every set from this subbasis is a

countable union of sets of the form E+(U) \ E+(V ), where U and V are
open in X.1

We note that Godefroy and Saint-Raymond also suggest the following optional
condition that is satisfied by many natural admissible topologies.

(iii) The set {(x, F ) ∈ X ×F(X) : x ∈ F} is closed in X ×F(X).

If X is a separable Banach space, we denote by SB(X) ⊆ F(X) the set of closed
vector subspaces of X. We denote by SB∞(X) the subset of SB(X) consisting
of infinite-dimensional spaces. We say that a topology on SB(X) or SB∞(X) is

1note that the condition (ii) is different from what is mentioned in [23]; however, as the authors
have confirmed, there is a typo in the condition from [23] which makes it wrong (otherwise no
single one of the topologies mentioned in [23] would be admissible)
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admissible if it induced by an admissible topology on F(X). Both SB(X) and
SB∞(X) are Polish spaces when endowed with an admissible topology, see Re-
mark 1.16.

If Z is a separable Banach space, we put, similarly as in Notation 1.6,

〈Z〉≡ := {F ∈ SB(X) : F ≡ Z} and 〈Z〉' := {F ∈ SB(X) : F ' Z}.
It will be always clear from the context whether we work with subsets of P, or
SB(X).

Remark 1.16. If τ is an admissible topology on a separable Banach space X then
SB(X) is a Gδ-subset of (F(X), τ)(see [23, Section 3]). Moreover, by [23, Corollary
4.2], SB∞(X) is Gδ-subset of (SB(X), τ). (In fact, the paper [23] deals only with
the case X = C(2ω) but the generalization to any separable Banach space is easy.)

Certain connection between codings SB(X) and P of separable Banach spaces
might be deduced already from [23].

Theorem 1.17. Let X be isometrically universal separable Banach space and let
τ be an admissible topology on SB(X). Then there is a continuous mapping Φ :
(SB(X), τ)→ P such that for every F ∈ SB(X) we have F ≡ XΦ(F ).

Proof. By [23, Theorem 4.1], there are continuous functions (fn)n∈N on SB(X)

with values in X such that for each F ∈ SB(X) we have {fn(F ) : n ∈ N} = F .

Consider the mapping Φ given by Φ(F )(
∑k
n=1 anen) := ‖

∑k
n=1 anfn(F )‖X for

every F ∈ SB(X) and a1, . . . , ak ∈ Q. Then it is easy to see that Φ is the mapping
we need. �

The following relation between various codings of Banach spaces as SB(X) is
easy.

Observation 1.18. Let X,Y be isometrically universal separable Banach spaces
and let τ1 and τ2 be admissible topologies on SB(X) and SB(Y ), respectively.
Then there is a Σ0

2-measurable mapping f : (SB(X), τ1) → (SB(Y ), τ2) such that
for every F ∈ SB(X) we have F ≡ f(F ). Moreover, f can be chosen such that for
every open set U ⊆ Y there is an open set V ⊆ X such that f−1(E+(U)) = E+(V ).

Proof. Let j : X → Y be an isometry (not necessarily surjective). Then the map-
ping f given by f(F ) := j(F ), F ∈ SB(X), does the job, because f−1(E+(U)) =
E+(j−1(U)) for every open set U ⊆ Y . �

Let us note the following easy fact which we record here for a later reference.
The proof is easy and so it is omitted.

Lemma 1.19. Let X be isometrically universal separable Banach space, τ be an
admissible topology on SB(X), Y be a Polish space, f : Y → SB(X) be a mapping
and n ∈ N, n ≥ 2, be such that f−1(E+(U)) is a ∆0

n set in Y for every open set
U ⊆ X. Then f is Σ0

n-measurable.

A straightforward idea leads to the following relation between P∞ and B.

Proposition 1.20. There is a Σ0
2-measurable mapping Φ : P∞ → B such that for

every µ ∈ P∞ we have Xµ ≡ XΦ(µ).

Moreover, Φ can be chosen such that Φ−1(U [v, I]) ∈ ∆0
2(P∞) for each v ∈ V and

open interval I.

Proof. For each µ ∈ P∞ let us inductively define natural numbers (nk(µ))k∈N by

n1(µ) := min{n ∈ N : µ(en) 6= 0},
nk+1(µ) := min{n ∈ N : en1(µ), . . . , enk(µ), en are linearly independent}.
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Consider the mapping Φ given by Φ(µ)(
∑k
i=1 anen) := µ(

∑k
i=1 aieni(µ)) for every

µ ∈ P∞ and a1, . . . , ak ∈ Q. It is easy to see that Φ(µ) ∈ B and that Xµ is isometric
to XΦ(µ) for each µ ∈ P∞.

For all natural numbersN1 < . . . < Nk the set {µ ∈ P∞ : n1(µ) = N1, . . . , nk(µ) =
Nk} is a ∆0

2 set in P∞. Indeed, we may prove it by induction on k because for each
k ∈ N and each µ ∈ P∞ we have that n1(µ) = N1, . . . , nk+1(µ) = Nk+1 iff

n1(µ) = N1, . . . , nk(µ) = Nk &

∀n = Nk + 1, . . . , Nk+1 − 1 : eN1
, . . . , eNk , en are linearly dependent

& eN1 , . . . , eNk+1
are linearly independent,

which is an intersection of a ∆0
2-condition (by the inductive assumption) with a

closed and an open condition (by Lemma 1.4).

Let us pick v =
∑k
i=1 anen ∈ V and an open interval I. Then

Φ−1(U [v, I]) = {µ ∈ P∞ : µ(

k∑
i=1

aieni(µ)) ∈ I},

which is a ∆0
2 set in P∞. Indeed, on one hand we have µ ∈ Φ−1(U [v, I]) iff there are

natural numbers N1 < N2 < . . . < Nk such that n1(µ) = N1, . . . , nk(µ) = Nk and

µ(
∑k
i=1 aieNi) ∈ I, which witnesses that Φ−1(U [v, I]) ∈ Σ0

2(P∞) as it is a countable
union of ∆0

2 sets. On the other hand, we have that µ ∈ Φ−1(U [v, I]) iff for each l ∈ N
we have that either nk(µ) > l or there are natural numbers N1 < N2 < . . . < Nk ≤ l
such that n1(µ) = N1, . . . , nk(µ) = Nk and µ(

∑k
i=1 aieNi) ∈ I, which witnesses that

Φ−1(U [v, I]) ∈ Π0
2(P∞) as it is a countable intersection of ∆0

2 sets.
This proves the “Moreover” part from which it easily follows that Φ is Σ0

2-
measurable. �

Remark 1.21. For d ∈ N, let us consider the sets Pd := {µ ∈ P : dimXµ = d}
and

Bd := {µ ∈ P : e1, . . . , ed is a basis of Xµ and µ(ei) = 0 for every i > d}.

A similar argument as in Proposition 1.20 shows that for every d ∈ N there is a Σ0
2-

measurable mapping Φ : Pd → Bd such that for every µ ∈ Pd we have Xµ ≡ XΦ(µ).

Finally let us consider the reduction from P to SB(X). An optimal result would
be to have a Σ0

2-reduction. This is because, as was already observed in [23], the
identity map between two admissible topologies is only Σ0

2-measurable in general.
Using the ideas of the proof of [32, Lemma 2.4] we obtain Theorem 1.24. This
result is improved in the next subsection, see Theorem 1.28, but since some steps
remain the same, let us give a sketch of the argument (we will be a bit sketchy at
the places which will be modified later).

Lemma 1.22. Let n ∈ N, X be isometrically universal separable Banach space and
let τ be an admissible topology on SB(X). Let there exist Σ0

n-measurable mappings
χk : B → X, k ∈ N, such that Xµ ≡ span{χk(µ) : k ∈ N} for every µ ∈ B.

Then there exists a Σ0
n+1-measurable mapping Φ : B → (SB(X), τ) such that for

every µ ∈ B we have Xµ ≡ Φ(µ).

Proof. Consider the mapping Φ : B → (SB(X), τ) defined as

Φ(ν) := span{χk(ν) : k ∈ N}, ν ∈ B.

We have Xν ≡ Φ(ν). For every open set U ⊆ X, using the Σ0
n-measurability of

χk’s, it is easy to see that Φ−1(E+(U)) is Σ0
n in B. Thus, by Lemma 1.19, the

mapping Φ is Σ0
n+1-measurable. �
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Remark 1.23. Similarly as in Remark 1.21, an analogous approach leads to a
similar statement valid for any Bd, d ∈ N, instead of B.

Theorem 1.24. Let X be isometrically universal separable Banach space and let
τ be an admissible topology on SB(X). Then there is a Σ0

4-measurable mapping
Φ : P → (SB(X), τ) such that for every µ ∈ P we have Xµ ≡ Φ(µ).

Sketch of the proof. By Remark 1.21, it suffices to find, for every d ∈ N ∪ {∞},
a Σ0

3-measurable reduction from Bd to SB(X), where B∞ = B. This is done
for every d ∈ N ∪ {∞} in a similar way. Let us concentrate further only on the
case of d = ∞, the other cases are similar. From the proof of [32, Lemma 2.4],
it follows that there are Borel measurable mappings χk : B → X, k ∈ N, such
that Xµ ≡ span{χk(µ) : k ∈ N} for every µ ∈ B. A careful inspection of the

proof actually shows that the mappings χk are Σ0
2-measurable (since this part is

improved in the next subsection, see Proposition 1.26, we do not give any more
details here). Thus, an application of Lemma 1.22 finishes the proof. �

1.3. An optimal reduction from B to SB(X). This subsection is devoted
mainly to the proof of the following result.

Theorem 1.25. Let X be isometrically universal separable Banach space and let
τ be an admissible topology on SB(X). Then there is a Σ0

2-measurable mapping
Φ : B → (SB(X), τ) such that for every µ ∈ B we have Xµ ≡ Φ(µ).

The main ingredient of the proof is the following.

Proposition 1.26. For any isometrically universal separable Banach space X,
there exist continuous mappings χk : B → X, k ∈ N, such that∥∥∥ n∑

k=1

akχk(ν)
∥∥∥ = ν

( n∑
k=1

akek

)
for every

∑n
k=1 akek ∈ c00 and every ν ∈ B.

Remark 1.27. Similarly as in Remark 1.21, we may easily obtain a variant of
Proposition 1.26 for Bd, d ∈ N. Indeed, let d ∈ N be given. For ν ∈ Bd, let us
define ν̃ ∈ B by

ν̃
( ∞∑
i=1

aiei

)
:= ν

( d∑
i=1

aiei

)
+

∞∑
i=d+1

|ai|,
∞∑
i=1

aiei ∈ c00.

If χk, k ∈ N, are as in Proposition 1.26, then we may consider mappings χ̃k : Bd →
X, k ≤ d, defined by χ̃k(ν) = χk(ν̃), ν ∈ Bd.

We postpone the proof of Proposition 1.26 to the very end of this subsection.

Proof of Theorem 1.25. Follows immediately from Lemma 1.22 and Proposition 1.26.
�

Similarly as above, we obtain also the following.

Theorem 1.28. Let X be isometrically universal separable Banach space and let
τ be an admissible topology on SB(X). Then there is a Σ0

3-measurable mapping
Φ : P → (SB(X), τ) such that for every µ ∈ P we have Xµ ≡ Φ(µ).

Proof. This is similar to the proof of Theorem 1.24, the only modification is that
we use Proposition 1.26 and Remark 1.27 instead of the reference to the proof of
[32, Lemma 2.4]. �

The aim of the remainder of this subsection is now to prove Proposition 1.26.
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Proposition 1.29. For each A ⊆ P, the following conditions are equivalent:
(1) There are a separable Banach space U and continuous mappings χk : A →

U, k ∈ N, such that ∥∥∥ n∑
k=1

akχk(ν)
∥∥∥ = ν

( n∑
k=1

akek

)
for every

∑n
k=1 akek ∈ c00 and every ν ∈ A.

(2) There are continuous functions αk : A2 → [0,∞), k ∈ N, such that

αk(ν, ν) = 0

for every ν and k and the following property is satisfied: If ν ∈ A and z∗ ∈ (c00)#

satisfy |z∗(x)| ≤ ν(x) for every x ∈ c00, then there is a mapping Γ : A → (c00)#

such that Γ(ν) = z∗, |Γ(µ)(x)| ≤ µ(x) for every µ ∈ A and x ∈ c00, and

|Γ(µ)(ek)− Γ(λ)(ek)| ≤ αk(µ, λ)

for every µ, λ ∈ A and every k.
Moreover, if A consists only of pseudonorms ν with ν(ek) ≤ 1 for every k, then

these conditions are equivalent with:
(2’) For every η ∈ [0, 1), there are continuous functions βk : A2 → [0,∞), k ∈ N,

such that

βk(ν, ν) = 0

for every ν and k and the following property is satisfied: If ν ∈ A and z∗ ∈ (c00)#

satisfy |z∗(x)| ≤ ν(x) for every x ∈ c00, then there is a mapping Γ : A → (c00)#

such that Γ(ν) = η · z∗, |Γ(µ)(x)| ≤ µ(x) for every µ ∈ A and x ∈ c00, and

|Γ(µ)(ek)− Γ(λ)(ek)| ≤ βk(µ, λ)

for every µ, λ ∈ A and every k.

Remark 1.30. The conditions (1) and (2) from Proposition 1.29 are equivalent
also with the following one:

(3) There are continuous functions αk : A2 → [0,∞), k ∈ N, such that

αk(ν, ν) = 0

for every ν and k and∑
µ,λ,k

|aµ,λ,k|αk(µ, λ) ≥ ν
(∑
λ,k

(aν,λ,k − aλ,ν,k)ek

)
−
∑
µ6=ν

µ
(∑
λ,k

(aµ,λ,k − aλ,µ,k)ek

)
for every ν ∈ A and every system (aµ,λ,k)µ,λ∈A,k∈N of real numbers with finite
support.

The proof is similar to the proof of (1)⇔ (2) below (for (1)⇒ (3) the choice of
αk’s is the same as in the proof of (1)⇒ (2), for (3)⇒ (1) the construction of the
space U is the same as in (2) ⇒ (1)). We omit the full proof, because the details
are technical and we do not use the condition (3) any further. Let us note that
even though we tried to find an application of the condition (3), we did not find it
and this is basically the reason why we had to develop conditions (2) and (2′).

Proof of Proposition 1.29. (1) ⇒ (2): Given such U and χk : A → U, k ∈ N, we
put

αk(ν, µ) = ‖χk(ν)− χk(µ)‖, ν, µ ∈ A, k ∈ N.
Denote by Iµ : (c00, µ) → U the isometry given by ek 7→ χk(µ). Let ν ∈ A and
z∗ ∈ (c00)# satisfying |z∗(x)| ≤ ν(x) be given. For x, y ∈ c00 with Iνx = Iνy, we
have |z∗(y − x)| ≤ ν(y − x) = ‖Iν(y − x)‖ = 0, and so z∗(x) = z∗(y). Thus, the
formula

u∗(Iνx) = z∗(x), x ∈ c00,
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defines a functional on Iν(c00) such that |u∗(Iνx)| = |z∗(x)| ≤ ν(x) = ‖Iνx‖. By
the Hahn-Banach theorem, we can extend u∗ to the whole U in the way that

|u∗(u)| ≤ ‖u‖, u ∈ U.
For every µ ∈ A, let us put

Γ(µ)(x) = u∗(Iµx), x ∈ c00.

We obtain |Γ(µ)(x)| = |u∗(Iµx)| ≤ ‖Iµx‖ = µ(x) and |Γ(µ)(ek) − Γ(λ)(ek)| =
|u∗(Iµek) − u∗(Iλek)| = |u∗(χk(µ) − χk(λ))| ≤ ‖χk(µ) − χk(λ)‖ = αk(µ, λ) for
µ, λ ∈ A and k ∈ N.

(2) ⇒ (1): Given such αk : A2 → [0,∞), k ∈ N, we define a subset of c00(A×N)
by

Ω = co

(⋃
µ

{∑
k

akeµ,k : µ
(∑

k

akek

)
≤ 1
}
∪
⋃
µ,λ,k

{
c·(eµ,k−eλ,k) : |c|·αk(µ, λ) ≤ 1

})
,

and denote the corresponding Minkowski functional by %. Let U be the completion
of the quotient space X/N , where X = (c00(A×N), %) and N = {x ∈ c00(A×N) :
ρ(x) = 0}. In what follows, we identify every x ∈ c00(A × N) with its equivalence
class [x]N ∈ U . Let us define

χk : A → U, ν 7→ eν,k.

As c·(eµ,k−eλ,k) ∈ Ω whenever |c|·αk(µ, λ) ≤ 1, we obtain %(eµ,k−eλ,k) ≤ αk(µ, λ),
that is, %(χk(µ)−χk(λ)) ≤ αk(µ, λ). For a fixed µ, we have αk(µ, λ)→ αk(µ, µ) = 0
as λ → µ, and consequently %(χk(µ) − χk(λ)) → 0 as λ → µ. Therefore, χk is
continuous on A. It follows that the image of χk is separable. As these images
contain all basic vectors eν,k, the space U is separable.

We need to show that
ν(x) = %(x)

for fixed ν ∈ A, x =
∑
k∈N akek ∈ c00 and its image x =

∑
k∈N akeν,k. The

inequality ν(x) ≥ %(x) follows immediately from the definition of Ω (for any c ≥
ν(x) with c > 0, we have ν( 1

cx) ≤ 1, and so 1
cx ∈ Ω, hence %( 1

cx) ≤ 1 and %(x) ≤ c).
Let us show the opposite inequality ν(x) ≤ %(x). Using the Hahn-Banach theorem,
we can pick z∗ ∈ (c00)# satisfying z∗(x) = ν(x) and |z∗(y)| ≤ ν(y) for every
y ∈ c00. Let Γ : A → (c00)# be the mapping provided for ν and z∗, and let
u∗ ∈ (c00(A× N))# be given by

u∗(eµ,k) = Γ(µ)(ek), µ ∈ A, k ∈ N.
Then u∗(x) = u∗(

∑
k akeν,k) =

∑
k aku

∗(eν,k) =
∑
k akΓ(ν)(ek) = Γ(ν)(

∑
k akek) =

z∗(x) = ν(x). It is sufficient to show that u∗ ≤ 1 on Ω (equivalently |u∗(y)| ≤ %(y)
for every y ∈ c00(A× N)), since it follows that ν(x) = u∗(x) ≤ %(x).

To show that u∗ ≤ 1 on Ω, we need to check that

µ
(∑

k

bkek

)
≤ 1 ⇒ u∗

(∑
k

bkeµ,k

)
≤ 1

and
|c| · αk(µ, λ) ≤ 1 ⇒ u∗

(
c · (eµ,k − eλ,k)

)
≤ 1.

Concerning the first implication, we compute u∗(
∑
k bkeµ,k) =

∑
k bku

∗(eµ,k) =∑
k bkΓ(µ)(ek) = Γ(µ)(

∑
k bkek) ≤ µ(

∑
k bkek) ≤ 1. Concerning the second im-

plication, we compute u∗(c · (eµ,k − eλ,k)) = cu∗(eµ,k) − cu∗(eλ,k) = cΓ(µ)(ek) −
cΓ(λ)(ek) ≤ |c|αk(µ, λ) ≤ 1.

(2) ⇒ (2’): The choice βk = αk works. Indeed, if Γ is provided by (2), we can
take η · Γ.

(2’) ⇒ (2): For every n ∈ N, let βnk : A2 → [0,∞), k ∈ N, be provided by (2’)
for η = (1− 2−n). We can assume that each βnk is a pseudometric. Indeed, instead
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of βnk , we can take the maximal minorizing pseudometric β̃nk (in such a case, β̃nk is
continuous and, since the function (µ, λ) 7→ |Γ(µ)(ek)−Γ(λ)(ek)| is a pseudometric,

if it minorizes βnk , then it minorizes β̃nk as well). Moreover, we can assume that β1
1

is a metric (it is possible to add a compatible metric on A to β1
1).

Let us define

α(µ, λ) = max
n,k

min{βnk (µ, λ), 2−max{n,k}}, µ, λ ∈ A.

It is easy to check that α is continuous. Due to our additional assumptions, α is
a metric on A. We want to show that there are some constants ck such that the
choice αk = ck · α works.

Let ν ∈ A and z∗ ∈ (c00)# satisfy |z∗(x)| ≤ ν(x) for every x ∈ c00. For every
n ∈ N, there is a mapping Γn : A → (c00)# such that

Γn(ν) = (1− 2−n) · z∗,

|Γn(µ)(x)| ≤ µ(x), µ ∈ A, x ∈ c00,

and, if we denote

γnk (µ) = Γn(µ)(ek),

then

|γnk (µ)− γnk (λ)| ≤ βnk (µ, λ)

for every µ, λ ∈ A and every k. Let us note that

|γnk (µ)| ≤ 1,

as |γnk (µ)| = |Γn(µ)(ek)| ≤ µ(ek) ≤ 1 by the assumption on A.
Now, we define the desired mapping Γ. For practical purposes, we first define

γnk (µ) = 0 for n ∈ Z, n ≤ 0.

For every n ∈ Z, let fn denote the piecewise linear function supported by [2−n−3, 2−n−1]
which is linear on [2−n−3, 2−n−2] and [2−n−2, 2−n−1], and for which fn(2−n−2) = 1.
In this way, we have

∑
n∈Z fn = 1 on (0,∞). We define

γk(ν) = z∗(ek)

and

γk(µ) =
∑
n∈Z

fn(α(µ, ν))γnk (µ), µ 6= ν.

Finally, we put Γ(µ)(ek) = γk(µ), so Γ(ν) = z∗ and Γ(µ) =
∑
n∈N fn(α(µ, ν))Γn(µ)

for µ 6= ν. In both cases µ = ν and µ 6= ν, it follows that |Γ(µ)(x)| ≤ µ(x) for every
x ∈ c00. It remains to prove the inequality

|γk(µ)− γk(λ)| ≤ ck · α(µ, λ)

for some suitable constants ck.
Let us show that the implication

(1) α(µ, λ) < 2−n ⇒ |γnk (µ)− γnk (λ)| ≤ 2k+1α(µ, λ)

holds. Clearly, we can suppose that n ≥ 1. If α(µ, λ) ≥ 2−k, then 2k+1α(µ, λ) ≥ 2 ≥
|γnk (µ)−γnk (λ)|. So, let us assume that α(µ, λ) < 2−k. Since min{βnk (µ, λ), 2−max{n,k}} ≤
α(µ, λ) < 2−max{n,k}, we have min{βnk (µ, λ), 2−max{n,k}} = βnk (µ, λ), and so |γnk (µ)−
γnk (λ)| ≤ βnk (µ, λ) = min{βnk (µ, λ), 2−max{n,k}} ≤ α(µ, λ) ≤ 2k+1α(µ, λ).

Next, we show that

(2) 2−n−4 ≤ α(µ, ν) < 2−n ⇒ |γnk (µ)− γk(ν)| ≤ (2k+1 + 16)α(µ, ν).
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If n ≥ 1, then γk(ν)−γnk (ν) = z∗(ek)−(1−2−n)z∗(ek) = 2−nz∗(ek). If n ≤ 0, then
γk(ν)− γnk (ν) = z∗(ek). In both cases, |γk(ν)− γnk (ν)| ≤ 2−n|z∗(ek)| ≤ 2−nν(ek) ≤
2−n ≤ 24α(µ, ν). Using (1), we can compute

|γnk (µ)− γk(ν)| ≤ |γnk (µ)− γnk (ν)|+ |γnk (ν)− γk(ν)| ≤ (2k+1 + 24)α(µ, ν).

Further, it follows from (2) that

(3) |γk(µ)− γk(ν)| ≤ (2k+1 + 16)α(µ, ν).

Indeed, since fn is supported by [2−n−3, 2−n−1], we have always

fn(α(µ, ν))|γnk (µ)− γk(ν)| ≤ fn(α(µ, ν))(2k+1 + 16)α(µ, ν),

and it is sufficient to use that γk(µ)−γk(ν) =
∑
n∈Z fn(α(µ, ν))(γnk (µ)−γk(ν)) for

µ 6= ν.
Now, we are going to investigate the value |γk(µ)− γk(λ)|. First, we have

(4) α(λ, ν) ≥ 2α(µ, ν) ⇒ |γk(µ)− γk(λ)| ≤ 3 · (2k+1 + 16)α(µ, λ).

Indeed, as α(µ, λ) ≥ α(λ, ν)−α(µ, ν) ≥ 2α(µ, ν)−α(µ, ν) = α(µ, ν), we can apply
(3) and write

|γk(µ)− γk(λ)| ≤ |γk(µ)− γk(ν)|+ |γk(λ)− γk(ν)|

≤ (2k+1 + 16)(α(µ, ν) + α(λ, ν))

= (2k+1 + 16)(α(λ, ν)− α(µ, ν) + 2α(µ, ν))

≤ (2k+1 + 16)(1 + 2)α(µ, λ).

Now, we prove the last but the most challenging implication
(5)
α(µ, ν) ≤ α(λ, ν) < 2α(µ, ν) ⇒ |γk(µ)−γk(λ)| ≤ [12(2k+1 +16)+2k+1]α(µ, λ).

Let us compute

γk(µ)− γk(λ) =
∑
n∈Z

[
fn(α(µ, ν))γnk (µ)− fn(α(λ, ν))γnk (λ)

]
=
∑
n∈Z

[
fn(α(µ, ν))γnk (µ)− fn(α(λ, ν))γnk (µ) + fn(α(λ, ν))γnk (µ)− fn(α(λ, ν))γnk (λ)

]
=
∑
n∈Z

[fn(α(µ, ν))− fn(α(λ, ν))]γnk (µ) +
∑
n∈Z

fn(α(λ, ν))[γnk (µ)− γnk (λ)]

=
∑
n∈Z

[fn(α(µ, ν))− fn(α(λ, ν))](γnk (µ)− γk(ν)) +
∑
n∈Z

fn(α(λ, ν))[γnk (µ)− γnk (λ)].

Hence, |γk(µ)− γk(λ)| is less than or equal to∑
n∈Z
|fn(α(µ, ν))− fn(α(λ, ν))||γnk (µ)− γk(ν)|+

∑
n∈Z

fn(α(λ, ν))|γnk (µ)− γnk (λ)|.

Let us notice that

• fn(α(µ, ν)) 6= 0 iff 2−n−3 < α(µ, ν) < 2−n−1,
• fn(α(λ, ν)) 6= 0 iff 2−n−3 < α(λ, ν) < 2−n−1, and 2−n−4 < α(µ, ν) < 2−n−1

in this case,
• the function fn is Lipschitz with the constant 2n+3.
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So, if fn(α(µ, ν)) 6= 0 or fn(α(λ, ν)) 6= 0, then 2−n−4 < α(µ, ν) < 2−n−1, and (2)
can be applied. We obtain for the first sum that∑
n∈Z
|fn(α(µ, ν))− fn(α(λ, ν))||γnk (µ)− γk(ν)|

≤
∑

2−n−4<α(µ,ν)<2−n−1

2n+3|α(µ, ν)− α(λ, ν)|(2k+1 + 16)α(µ, ν)

≤
∑

2−n−4<α(µ,ν)<2−n−1

2n+3α(µ, λ)(2k+1 + 16)2−n−1

≤ 3 · 22(2k+1 + 16)α(µ, λ).

Concerning the second sum, we notice that if fn(α(λ, ν)) 6= 0, then α(λ, ν) <
2−n−1, and so α(µ, λ) ≤ α(µ, ν) + α(λ, ν) ≤ 2α(λ, ν) < 2−n. Applying (1), we
obtain∑

n∈Z
fn(α(λ, ν))|γnk (µ)− γnk (λ)| ≤

∑
n∈Z

fn(α(λ, ν))2k+1α(µ, λ) = 2k+1α(µ, λ),

and (5) follows.
Finally, we finish the proof with the observation that (4) and (5) provide

|γk(µ)− γk(λ)| ≤ [12(2k+1 + 16) + 2k+1]α(µ, λ).

We can suppose that α(µ, ν) ≤ α(λ, ν). If α(λ, ν) ≥ 2α(µ, ν), we use (4), and if
α(λ, ν) < 2α(µ, ν), we use (5). �

Definition 1.31. Let B(1) denote the set of all norms ν ∈ B such that ν(ek) = 1
for each k ∈ N.

Lemma 1.32. The condition (2’) from Proposition 1.29 is valid for A = B(1).

Proof. Let η ∈ [0, 1) be given. We fix numbers κk < 1 such that η ≤ κ1 < κ2 <
κ3 < . . . . For every µ, λ ∈ B(1), we define recursively

β1(µ, λ) = 0

and

βk+1(µ, λ) = sup

{∣∣∣µ(ek+1 +

k∑
i=1

aiei

)
− λ
(
ek+1 +

k∑
i=1

aiei

)∣∣∣+

k∑
i=1

|ai|βi(µ, λ) :

a1, . . . , ak ∈ R, min
{
µ
( k∑
i=1

aiei

)
, λ
( k∑
i=1

aiei

)}
<

2κk+1

κk+1 − κk

}
.

Clearly, βk(ν, ν) = 0 for every ν ∈ B(1). Let us sketch a proof of continuity of the
functions βk. The function β1 = 0 is obviously continuous. Assuming that βi is
continuous for every i ≤ k, we consider for δ > 0 the set

Uk+1
δ (µ) =

{
µ′ ∈ B(1) :

(
∀x ∈ span{e1, . . . , ek+1}\{0} : (1+δ)−1 <

µ′(x)

µ(x)
< 1+δ

)}
.

Using Lemma 1.2, it is easy to see that Uk+1
δ (µ) is an open neighborhood of µ in

B(1). Given ε > 0, we can find δ > 0 such that |βk+1(µ′, λ′) − βk+1(µ, λ)| < ε for

every (µ′, λ′) ∈ Uk+1
δ (µ)× Uk+1

δ (λ). The details are left to the reader.

Let us prove that the functions βk work. Given ν ∈ B(1) and z∗ ∈ (c00)#

satisfying |z∗(x)| ≤ ν(x) for every x ∈ c00, we define first

γ1(µ) = η · z∗(e1), µ ∈ B(1).
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Recursively, we define for every k ∈ N functions

uk+1(µ) = sup
a1,...,ak

[
− κk+1µ

(
− ek+1 +

k∑
i=1

aiei

)
+

k∑
i=1

aiγi(µ)
]
,

vk+1(µ) = inf
a1,...,ak

[
κk+1µ

(
ek+1 +

k∑
i=1

aiei

)
−

k∑
i=1

aiγi(µ)
]

and

γk+1(µ) = pk+1uk+1(µ) + qk+1vk+1(µ),

where numbers pk+1 ≥ 0, qk+1 ≥ 0 with pk+1 + qk+1 = 1 are chosen in the way that

(6) γk+1(ν) = η · z∗(ek+1).

Let us check that it is possible to choose such numbers. Note first that γ1(ν) =
η · z∗(e1). Assuming that the functions γi are already defined and satisfy γi(ν) =
η · z∗(ei) for i ≤ k, we notice that, for every a1, . . . , ak ∈ R,

±η ·z∗(ek+1)+
k∑
i=1

aiγi(ν) = η ·z∗
(
±ek+1 +

k∑
i=1

aiei

)
≤ κk+1ν

(
±ek+1 +

k∑
i=1

aiei

)
,

and consequently

η · z∗(ek+1) ≥ −κk+1ν
(
− ek+1 +

k∑
i=1

aiei

)
+

k∑
i=1

aiγi(ν),

η · z∗(ek+1) ≤ κk+1ν
(
ek+1 +

k∑
i=1

aiei

)
−

k∑
i=1

aiγi(ν).

This gives

uk+1(ν) ≤ η · z∗(ek+1) ≤ vk+1(ν),

and it follows that suitable pk+1 and qk+1 do exist.
Let us prove that

(7)
k∑
i=1

aiγi(µ) ≤ κkµ
( k∑
i=1

aiei

)
for every µ ∈ B(1), k ∈ N and a1, . . . , ak ∈ R. For k = 1, we just write a1γ1(µ) =
a1η · z∗(e1) ≤ |a1|κ1ν(e1) = |a1|κ1 = |a1|κ1µ(e1) = κ1µ(a1e1). Assume that (7) is
valid for k. We show first that

uk+1(µ) ≤ γk+1(µ) ≤ vk+1(µ).

Clearly, it is sufficient to show just that uk+1(µ) ≤ vk+1(µ). Given b1, . . . , bk and
c1, . . . , ck, we need to check that

−κk+1µ
(
− ek+1 +

k∑
i=1

biei

)
+

k∑
i=1

biγi(µ) ≤ κk+1µ
(
ek+1 +

k∑
i=1

ciei

)
−

k∑
i=1

ciγi(µ).

But this is easy, as

k∑
i=1

biγi(µ) +

k∑
i=1

ciγi(µ) =

k∑
i=1

(bi + ci)γi(µ) ≤ κkµ
( k∑
i=1

(bi + ci)ei

)
≤ κk+1

[
µ
(
− ek+1 +

k∑
i=1

biei

)
+ µ

(
ek+1 +

k∑
i=1

ciei

)]
.
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Now, let us verify (7) for k + 1. We can suppose that ak+1 = ±1. For ak+1 = 1, it
is enough to use

γk+1(µ) ≤ vk+1(µ) ≤ κk+1µ
(
ek+1 +

k∑
i=1

aiei

)
−

k∑
i=1

aiγi(µ),

and for ak+1 = −1, it is enough to use

γk+1(µ) ≥ uk+1(µ) ≥ −κk+1µ
(
− ek+1 +

k∑
i=1

aiei

)
+

k∑
i=1

aiγi(µ).

Next, let us prove that

(8) |γk(µ)− γk(λ)| ≤ βk(µ, λ)

for every µ, λ ∈ B(1) and k ∈ N. This is clear for k = 1, as γ1 is constant. Assume
that (8) is valid for i ≤ k. To prove it for k+1, it is sufficient to show the inequalities

|uk+1(µ)− uk+1(λ)| ≤ βk+1(µ, λ) and |vk+1(µ)− vk+1(λ)| ≤ βk+1(µ, λ).

We consider the function vk+1 only, since the inequality for uk+1 can be shown in
the same way. Let us note first that, in the definition of vk+1(µ), it is possible to
take the infimum only over k-tuples with

µ
( k∑
i=1

aiei

)
<

2κk+1

κk+1 − κk
.

Indeed, for a1, . . . , ak which do not satisfy this condition, using (7), we obtain

κk+1µ
(
ek+1+

k∑
i=1

aiei

)
−

k∑
i=1

aiγi(µ)

≥ κk+1µ
( k∑
i=1

aiei

)
− κk+1µ(ek+1)− κkµ

( k∑
i=1

aiei

)
= (κk+1 − κk)µ

( k∑
i=1

aiei

)
− κk+1

≥ 2κk+1 − κk+1 = κk+1 = κk+1µ
(
ek+1 +

k∑
i=1

0 · ei
)
−

k∑
i=1

0 · γi(µ).
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Now, (8) is provided by the following computation, in which every sup/inf is meant

over k-tuples with µ
(∑k

i=1 aiei

)
< 2κk+1

κk+1−κk or λ
(∑k

i=1 aiei

)
< 2κk+1

κk+1−κk :

|vk+1(µ)− vk+1(λ)|

=

∣∣∣∣ inf
[
κk+1µ

(
ek+1 +

k∑
i=1

aiei

)
−

k∑
i=1

aiγi(µ)
]

− inf
[
κk+1λ

(
ek+1 +

k∑
i=1

aiei

)
−

k∑
i=1

aiγi(λ)
]∣∣∣∣

≤ sup

∣∣∣∣[κk+1µ
(
ek+1 +

k∑
i=1

aiei

)
−

k∑
i=1

aiγi(µ)
]

−
[
κk+1λ

(
ek+1 +

k∑
i=1

aiei

)
−

k∑
i=1

aiγi(λ)
]∣∣∣∣

= sup

∣∣∣∣κk+1

[
µ
(
ek+1 +

k∑
i=1

aiei

)
− λ
(
ek+1 +

k∑
i=1

aiei

)]
−

k∑
i=1

ai
(
γi(µ)− γi(λ)

)∣∣∣∣
≤ sup

[∣∣∣µ(ek+1 +

k∑
i=1

aiei

)
− λ
(
ek+1 +

k∑
i=1

aiei

)∣∣∣+

k∑
i=1

|ai|βi(µ, λ)

]
= βk+1(µ, λ).

Finally, as usual, we put Γ(µ)(ek) = γk(µ). The required properties of Γ follow
now from (6), (7) and (8). Thus, the functions βk work, and the proof of the lemma
is completed. �

Proof of Proposition 1.26. Let X be an isometrically universal separable Banach
space. By Lemma 1.32, the condition (2’) from Proposition 1.29 is valid for A =
B(1). Hence, the condition (1) from this proposition is valid for A = B(1) as well.
There are a separable Banach space U and continuous mappings χk : B(1) → U, k ∈
N, such that ∥∥∥ n∑

k=1

akχk(ν)
∥∥∥ = ν

( n∑
k=1

akek

)
for every

∑n
k=1 akek ∈ c00 and every ν ∈ B(1). Since X contains an isometric copy

of U , we can suppose that U ⊆ X.
Let us consider the continuous mapping Ψ : B→B(1) given by

Ψ(µ)
( n∑
k=1

akek

)
= µ

( n∑
k=1

ak
µ(ek)

ek

)
.

If we define
χ̃k(µ) = µ(ek) · χk(Ψ(µ)), µ ∈ B,

for each k ∈ N, then we get∥∥∥ n∑
k=1

bkχ̃k(µ)
∥∥∥ =

∥∥∥ n∑
k=1

bkµ(ek)χk(Ψ(µ))
∥∥∥ = Ψ(µ)

( n∑
k=1

bkµ(ek)ek

)
= µ

( n∑
k=1

bkek

)
for every

∑n
k=1 bkek ∈ c00 and every µ ∈ B. �

2. Generic properties

As soon as one has a Polish space, or more generally a Baire space, of some
objects it is natural and often useful to find properties (of these objects) that are
generic; that is, the corresponding subset of the space is comeager. In the case of
the spaces P, P∞ and B we resolve this problem completely, see Theorem 2.1.
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In the case of the spaces SB(X) with the admissible topology, this is the content
of Problem 5.5 from [23]. We show that in that case the situation is more com-
plicated. In particular, we confirm the suspicion of Godefroy and Saint-Raymond
that being meager in SB(X) is not independent of the chosen admissible topology.

2.1. Generic objects in P. The main result of this subsection is the following.

Theorem 2.1. Let G be the Gurarĭı space. The set 〈G〉I≡ is dense Gδ in I for any
I ∈ {P,P∞,B}.

Let us recall what the Gurarĭı space is. One of the characterizations of the
Gurarĭı space is the following, for more details we refer the interested reader e.g.
to [8] (the characterization below is provided by [8, Lemma 2.2]).

Definition 2.2. The Gurarĭı space is the unique (up to isometry) separable Banach
space such that for every ε > 0 and every isometric embedding g : A → B, where
B is a finite-dimensional Banach space and A is a subspace of G, there is a (1 + ε)-
isomorphism f : B → G such that ‖f ◦ g − idA‖ ≤ ε.

In the remainder of this subsection we prove Theorem 2.1. Let us start with the
most technical part, namely that 〈G〉P∞≡ is Gδ in P∞.

We need two technical lemmas first.

Lemma 2.3. For every µ ∈ P, finite set A ⊆ V and ε > 0 there exists ν ∈ B with
|µ(x)− ν(x)| < ε and ν(x) ∈ Q for every x ∈ A.

Proof. It suffices to define such norm ν on spanA since then we can easily find
some extension to the whole V . We assume that 0 /∈ A and moreover we can
assume that no two elements of A lie in the same one-dimensional subspace, i.e.
are scalar multiples of each other. Indeed, otherwise we would find a subset A′ ⊆ A
where no elements are scalar multiples of each other and every element of A is a
scalar multiple, necessarily rational scalar multiple, of some element from A′. Then
proving the fact for A′ for sufficiently small δ automatically proves it for A and ε.

We enumerate A as {a1, . . . , an} and so that the first k elements a1, . . . , ak, for
some k ≤ n, are linearly independent and form a basis of spanA.
Claim. By perturbing µ on A by an arbitrarily small δ > 0 we can without loss of
generality assume that for every i ≤ n, µ(ai) < Ki := inf{

∑
j∈J µ(αjaj) : i /∈ J ⊆

{1, . . . , n}, ai =
∑
j∈J αjaj}.

Suppose the claim is proved. Then for every i ≤ n we set ν′(ai) to be an
arbitrary positive rational number in the interval [µ(ai),min{Ki, µ(ai) + ε}). From
the assumption it is now clear that for all i ≤ n, we have

ν′(ai) ≤ inf{
n∑
j=1

|αj |ν′(aj) : ai =

n∑
j=1

αjaj}.

We extend ν′ to a norm ν on spanA by the formula

ν(v) := inf{
n∑
i=1

|αi|ν′(ai) : v =

n∑
i=1

αiai},

for v ∈ spanA. From the previous assumption, it follows that ν(ai) = ν′(ai), for all
i ≤ n. Moreover, ν is indeed a norm since ν(ai) > 0 for all i ≤ n, and the infimum
in the definition of ν is, by compactness, always attained.

It remains to prove the claim. Let ‖·‖2 be the `2 norm on spanA with a1, . . . , ak
the orthonormal basis. For each m ∈ N set µm := µ+ ‖·‖2

m . Clearly µm → µ, so it
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suffices to show that each µm satisfies the condition from the claim. Suppose that
for some m ∈ N and i ≤ n we have

µm(ai) = inf{
∑
j∈J

µm(αjaj) : i /∈ J ⊆ {1, . . . , n}, ai =
∑
j∈J

αjaj}.

By compactness, the infimum is attained, i.e. there exists (αj)j≤n, with αi = 0, ai =∑
j≤n αjaj and µm(ai) =

∑
j≤n µm(αjaj). Indeed, if the infimum is approximated

by a sequence (αl1, . . . , α
l
n)l∈N ⊆ Rn, then since each coordinate is bounded (because

up to finitely many l’s we have
∑n
j=1 µm(αljaj) ≤ 2µm(ai)), we may pass to a

converging subsequence and attain the infimum at the limit. The `2 norm ‖ · ‖2 is
strictly convex, so ‖ai‖2 <

∑
j≤n ‖αjaj‖2, while µ by triangle inequality satisfies

µ(ai) ≤
∑
j≤n µ(αjaj). Since µm is the sum of µ and a positive multiple of the `2

norm, we must have µm(ai) <
∑
j≤n µm(αjaj), a contradiction. �

Let us emphasize that if we write that a mapping is an “isometry” or an “iso-
morphism”, we do not mean it is surjective if this is not explicitly mentioned.

Lemma 2.4. (i) Given a basis bE = {e1, . . . , en} of a finite-dimensional Ba-

nach space E, there is C > 0 and a function φbE2 : [0, C) → [0,∞) con-

tinuous at zero with φbE2 (0) = 0 such that whenever X is a Banach space
with E ⊆ X and {xi : i ≤ n} ⊆ X are such that ‖xi − ei‖ < ε, i ≤ n, for
some ε < C, then the linear operator T : E → X given by T (ei) := xi is

(1 + φbE2 (ε))-isomorphism and ‖T − IdE‖ ≤ φbE2 (ε).
(ii) Let ε ∈ (0, 1), T : X → Y be a surjective (1 + ε)-isomorphism between

Banach spaces X and Y , N be ε-dense for SX . Then T (N) is 3ε-dense for
SY .

Proof. (i): Pick C > 0 such that C
∑n
i=1 |λi| ≤ ‖

∑n
i=1 λiei‖ for every (λi)

n
i=1 ∈ Rn.

Then for any x =
∑n
i=1 λiei we have

‖Tx− x‖ ≤
n∑
i=1

|λi|‖xi − ei‖ <
ε

C
‖x‖.

Thus, ‖T − IdE‖ < ε
C , ‖T‖ ≤ 1 + ε

C and ‖Tx‖ ≥ (1 − ε
C )‖x‖ = (1 + ε

C−ε )−1‖x‖.
Thus, we may put φbE2 (ε) := ε

C−ε for ε ∈ [0, C).

(ii): Let ε > 0, T : X → Y and N be as in the assumptions. Then for every y ∈ SY
there is x ∈ N with ‖x− T−1(y)

‖T−1(y)‖‖ < ε. Thus, we have

‖y − Tx‖ ≤
∥∥∥y − y

‖T−1(y)‖

∥∥∥+ ‖T‖ ·
∥∥∥x− T−1(y)

‖T−1(y)‖

∥∥∥
<
∣∣∣1− 1

‖T−1y‖

∣∣∣+ (1 + ε)ε ≤ ε+ 2ε = 3ε.

�

Notation 2.5. For a finite set A ⊆ V and P, P ′ partial functions on V (i.e.
functions whose domains are subsets of V ) with A ⊆ dom(P ),dom(P ′), we put
dA(P, P ′) := maxa∈A |P (a)− P ′(a)|.

Let T be the countable set of tuples (n, n′, P, P ′, g) such that:

(a) n, n′ ∈ N;

(b) P ∈ Qdom(P ), P ′ ∈ Qdom(P ′) where dom(P ) and dom(P ′) are finite subsets
of V ;

(c) there exists ν ∈ B such that P ′ = ν|dom(P ′);
(d) g : dom(P )→ dom(P ′) is a one-to-one mapping;
(e) P = P ′ ◦ g;
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(f) Whenever µ′ ∈ P, ν′ ∈ B are such that P ′ ⊆ ν′, ddom(P )(P, µ
′) < 1

n
and µ′ restricted to span(dom(P )) ⊆ c00 is a norm then there exists Tg :
(span(dom(P )), µ′) → (span(dom(P ′)), ν′) which is (1 + 1

n′ )-isomorphism
and Tg ⊇ g.

For (n, n′, P, P ′, g) ∈ T , we let G(n, n′, P, P ′, g) be the set of µ ∈ P∞ such that

• whenever ddom(P )(P, µ) < 1
n and µ restricted to span(dom(P )) ⊆ c00 is a

norm, there is a Q-linear mapping Φ : V ∩ span(dom(P ′)) → V such that
µ(Φ(gx) − x) < 2

n′µ(x) for every x ∈ dom(P ) and |P ′(x) − µ(Φ(x))| <
1
n′P

′(x) for every x ∈ dom(P ′).

Proposition 2.6. Let µ ∈ P∞. Then Xµ is isometric to the Gurarĭı space if and
only if µ ∈ G(n, n′, P, P ′, g) for every (n, n′, P, P ′, g) ∈ T .

Proof. In order to prove the first implication, let µ ∈ P∞ be such that Xµ is isomet-
ric to the Gurarĭı space and let (n, n′, P, P ′, g) ∈ T be such that ddom(P )(P, µ) < 1

n
and µ restricted to span(dom(P )) ⊆ c00 is a norm. Consider the finite dimensional
space A := (span(dom(P )), µ). Let ν ∈ B be as in (c). Put B = (span(domP ′), ν)
and pick a basis b ⊆ V of B. By (f) there exists Tg : A → B, which is (1 + 1

n′ )-

isomorphism and Tg ⊇ g. By [31, Lemma 2.2], there is a (1 + 1
3n′ )-isomorphism

S : B → Xµ such that ‖STg − IdA‖ < 1
n′ . By Lemma 2.4(i), we may for ev-

ery b ∈ b find xb ∈ V such that the linear mapping Q : S(B) → Xµ given by
Q(S(b)) = xb, b ∈ b, is (1 + 1

3n′ )-isomorphism with ‖Q − Id‖ < 1
3n′ . Consider

Φ = QS|V ∩span(domP ′). This is indeed a Q-linear map and since QS is (1 + 1
3n′ )

2-

isomorphism and (1 + 1
3n′ )

2 < 1 + 1
n′ , we have |µ(Φ(x)) − ν(x)| < 1

n′ ν(x) for
x ∈ dom(P ′). Moreover, for every x ∈ dom(P ) we have

µ(Φ(gx)− x) = µ(QSTgx− x) ≤ µ(QSTgx− STgx) + µ(STgx− x)

< 1
3n′ ‖STg‖µ(x) + 1

n′µ(x) ≤ 2
n′µ(x).

This shows that µ ∈ G(n, n′, P, P ′, g).
In order to prove the second implication, let µ ∈ P∞ be such that µ ∈ G(n, n′, P, P ′, g)

whenever (n, n′, P, P ′, g) ∈ T . In what follows for x ∈ c00 we denote by [x] ∈ Xµ

the equivalence class corresponding to x. Pick a finite dimensional space A ⊆ Xµ,
and an isometry G : A→ B, where B is a finite dimensional Banach space, we may
without loss of generality assume B ⊆ XµB for some µB ∈ B. Let bA := {a1, . . . , aj}
be a normalized basis of A and extend G(bA) = {G(a1), . . . , G(aj)} to a normalized
basis bB = {b1, . . . , bk} of B. Fix η > 0. It suffices to find (1 + η)-isomorphism

Ψ : B → Xµ with ‖ΨG − IA‖ ≤ η. Consider the functions φ1 and φbA2 from

Lemma 1.2 and Lemma 2.4(i). Pick δ ∈ (0, 1) such that max{φ1(t), φbA2 (t)} < η
whenever t < δ and ε ∈ (0, 1

20 ) such that φ1(5ε) < 1
20 and ε+72 max{ε, φ1(5ε)} < δ.

Claim 1. There are M,N ⊂ V finite sets such that µ restricted to spanN ⊂ c00

is a norm and surjective (1 + ε)-isomorphisms TA : A → (spanN,µ), TB : B →
(spanM,µB) such that:

• N and M are ε-dense sets for STA(A) and STB(B) respectively.

• We have ‖[TAai]−ai‖Xµ < ε for every ai ∈ bA and ‖(TA)−1x− [x]‖Xµ < ε,
|µ(x)− 1| < ε for every x ∈ N .
• (TB)−1(M) is ε

3 -dense for SB and max{|µB((TB)−1x)−1|, |µB(x)−1|} < ε
2

for every x ∈M .
•
(
TBG(TA)−1

)
(N) ⊆M .

Proof of Claim 1. By Lemma 2.4(i), we may pick {f1, . . . , fn} ⊆ V such that
the linear operator TA : A → Xµ given by TA(ai) = [fi], i ≤ j, is (1 + ε

6 )-
isomorphism and ‖[TAx] − x‖Xµ < ε

6‖x‖Xµ , x ∈ A. This implies that µ restricted



POLISH SPACES OF BANACH SPACES 25

to span{f1, . . . , fj} is a norm and since TA(A) is isometric to (span{f1, . . . , fn}, µ)
we consider TA as a (1+ ε

6 )-isomorphism between A and (span{f1, . . . , fn}, µ). Now,
pick N ′ ⊆ A a finite ε

6 -dense set for SA consisting of rational linear combinations
of points from bA with bA ⊆ N ′ such that |‖x‖Xµ − 1| < ε

6 for every x ∈ N ′. Then
‖[TAx]−x‖Xµ < ε

6‖x‖Xµ <
ε
6 (1 + ε

6 ) < ε
5 for every x ∈ N ′. Put N := TA(N ′) ⊆ V .

Then we easily obtain |µ(x) − 1| < ε
2 for every x ∈ N and, by Lemma 2.4(ii),

N is ε
2 -dense in STA(A). Similarly as above, we may pick {g1, . . . , gk} ⊆ V such

that the linear operator TB : B → XµB given by TB(bi) = gi, i ≤ k, is (1 + ε
6 )-

isomorphism and we find M ′ ⊆ B a finite ε
6 -dense set for SB consisting of ra-

tional linear combinations of points from bB with M ′ ⊇ {G(x) : x ∈ N ′} ∪ bB
and |µB(x) − 1| < ε

6 for x ∈ M ′. Put M := TB(M ′), then similarly as above
|µB(x)−1| < ε

2 for every x ∈M and M is ε
2 -dense in STB(B). Finally, we obviously

have
(
TBG(TA)−1

)
(N) = TB(G(N ′)) ⊆ TB(M ′) = M . �

By Lemma 2.3, there is ν ∈ B having rational values on M with dM (ν, µB ◦
(TB)−1) < ε

2 . Put P ′ = ν|M , consider the one-to-one map g : N → M given by

g := TBG(TA)−1|N and put P = P ′ ◦ g. Let n ∈ N be the integer part of 2
3ε

and n′ ∈ N be the integer part of 1
9 max{ε,φ1(5ε)} . Easy computations show that

3
2ε ≤

1
n < 2ε and 9 max{ε, φ1(5ε)} ≤ 1

n′ < 18 max{ε, φ1(5ε)} (in the last inequality

we are using that max{ε, φ1(5ε)} < 1
20 ).

Note that for every x ∈M we have

(9) max{|ν(TBx)−1|, |ν(x)−1|} ≤ ε
2 +max{|µB(x)−1|, |µB((TB)−1x)−1|} < ε.

Claim 2. We have (n, n′, P, P ′, g) ∈ T and dN (P, µ) < 1
n .

Proof of Claim 2. In order to see that dN (P, µ) < 1
n , pick x ∈ N . Then

|P (x)− µ(x)| ≤ ε
2 + |µB(G(TA)−1(x))− µ(x)| = ε

2 + |‖(TA)−1(x)‖Xµ − ‖[x]‖Xµ | < 3
2ε.

In order to see that (n, n′, P, P ′, g) ∈ T , let us verify the condition (f). Let µ′ ∈ P,
ν′ ∈ B be such that P ′ ⊆ ν′, dN (P, µ′) < 1

n < 2ε and µ′ restricted to spanN ⊆ c00

is a norm. Note that |µ′(x) − 1| < 5ε for every x ∈ N and so, since N is ε-dense
for the sphere of TA(A) = (spanN,µ), the mapping id : (spanN,µ)→ (spanN,µ′)
is (1 + φ1(5ε))-isomorphism. Further, |ν′(x)− 1| = |ν(x)− 1| < ε for every x ∈M
and so the mapping id : (spanM,µB) → (spanM,ν′) is (1 + φ1(5ε))-isomorphism
as well. Finally, since TBG(TA)−1 is (1 + ε)2-isomorphism between (spanN,µ) and
(span g(N), µB) and

(1 + φ1(5ε))2(1 + ε)2 ≤ (1 + 3φ1(5ε))(1 + 3ε) ≤ 1 + 9 max{ε, φ1(5ε)} ≤ 1 + 1
n′ ,

we have that Tg := id ◦ TB ◦ G ◦ (TA)−1 ◦ id : (spanN,µ′) → (spanM,ν′) is
(1 + 1

n′ )-isomorphism. �

Since µ ∈ G(n, n′, P, P ′, g), there is a Q-linear mapping Φ : V ∩ (spanM,ν)→ V
such that µ(Φ(gx) − x) < 2

n′µ(x) for every x ∈ N and |ν(x) − µ(Φ(x))| < 1
n′ ν(x)

for every x ∈ M . It is easy to see that Φ extends to a bounded linear operator
Φ′ : (spanM,ν)→ Xµ. Finally, consider Ψ := Φ′ ◦ TB : B → Xµ.

For every x ∈M we have

|µ(Φ(x))− 1| ≤ |µ(Φ(x))− ν(x)|+ |ν(x)− 1|
(9)

≤ 1
n′ ν(x) + ε

(9)

≤ 1
n′ (1 + ε) + ε < δ;

thus, |‖Ψ(x)‖Xµ−1| < δ for every x ∈ (TB)−1(M) and so Ψ is (1+η)-isomorphism.
Further, we have

‖ΨG(ai)− ai‖Xµ ≤ ‖Φ(g(TAai))− [TAai]‖Xµ + ‖[TAai]− ai‖Xµ
< 2

n′ (1 + ε) + ε ≤ 4
n′ + ε < δ;
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hence, by Lemma 2.4(i), we have ‖Φ′TBG− IA‖ ≤ φbA2 ( 2
n′ (1 + ε) + ε) < η. �

Theorem 2.7. Let G be the Gurarĭı space. The set 〈G〉P∞≡ is Gδ in P∞.

Proof. By Proposition 2.6, we have for the countable set T defined before Proposi-
tion 2.6 that

〈G〉P∞≡ =
⋂

(n,n′,P,P ′,g)∈T

G(n, n′, P, P ′, g),

where G(n, n′, P, P ′, g) is a union of a closed and an open set in P∞ (here we use the
observation that the set {µ ∈ P∞ : µ restricted to span(domP ) ⊆ c00 is a norm} is
open due to Lemma 1.4); thus it is a countable intersection of Gδ sets. �

Proof of Theorem 2.1. Let us recall that P∞ and B are Gδ in P, see Corollary 1.5.
Thus, since we have 〈G〉B≡ = 〈G〉P∞≡ ∩ B, it follows from Proposition 2.6 that 〈G〉I≡
is Gδ in any I ∈ {P,P∞,B}.

By Proposition 1.9 we also have that 〈G〉I≡ is dense in I for every I ∈ {P,P∞,B}.
�

2.2. Generic objects in SB(X). In this subsection, we address Problem 5.5 from
[23] which suggests to investigate generic properties of admissible topologies. We
have both positive and negative results. The positive result is Theorem 2.10 which
shows that the Gurarĭı space is dense Gδ in the Wijsman topology. The negative
results are Propositions 2.11 and 2.13, and Theorem 2.12 .

Definition 2.8. Given a closed set H in X we denote by E−(H) the set SB(X) \
E+(X \H), that is, E−(H) = {F ∈ SB(X) : F ⊆ H}. Obviously, this is a closed
set in any admissible topology on SB(X).

Definition 2.9. Let X be isometrically universal separable Banach space. By τW
we denote the Wijsman topology on SB(X), that is, the minimal topology such
that the mappings SB(X) 3 F 7→ distX(x, F ) are continuous for every x ∈ X.
Note that τW is admissible, see [23, Section 2].

Theorem 2.10. 〈G〉≡ is dense Gδ in (SB(G), τW ).

Proof. The class is Gδ since it is Gδ in P by Theorem 2.1 and there is a continuous
reduction from (SB(G), τW ) to P by Theorem 1.17. So we must show that it is
dense.

Choose a basic open set N in τW which is given by some closed subspace X ⊆ G,
finitely many points x1, . . . , xn ∈ G and ε > 0 so that

N = {Z ∈ SB(G) : ∀i ≤ n (|distG(xi, X)− distG(xi, Z)| < ε)}.
Let us find a space G isometric to G such that G ∈ N . Let Y be span{X ∪{xi : i ≤
n}}. Since X embeds into both Y and G we can consider the push-out of that
diagram, i.e. the amalgamated sum of Y and G along the common subspace X.
Recall this is nothing but the quotient (G ⊕1 Y )/Z, where Z = {(z,−z) : z ∈ X}.
Denote this space by G′ and notice that G is naturally embedded into G′. It is
straightforward to verify that for each i ≤ n, distG′(xi,G) = distG(xi, X). Since G
is universal, there is a linear isometric embedding ι : G′ ↪→ G. As there is a linear
isometry φ : ι[span{xi : i ≤ n}]→ span{xi : i ≤ n}, by [31, Theorem 1.1] there is a
bijective linear isometry Φ : G→ G such that ‖Φ ◦ ι(xi)− xi‖ < ε, for each i ≤ n.
By triangle inequality, it follows that G := Φ ◦ ι[G ⊆ G′] satisfies for each i ≤ n,
|distG(xi, G) − distG(xi, X)| < ε, so it is the desired space isometric to G lying in
the open set N . �

The rest of the section is devoted to negative results. They show that the defini-
tion of admissible topology allows a lot of flexibility by which one can alter which
properties should be meager or not.
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Proposition 2.11. Let X be an isometrically universal separable Banach space and
let τ be an admissible topology on SB(X). Then there exists an admissible topology
τ ′ ⊇ τ on SB(X) such that the set 〈G〉' is nowhere dense in (SB∞(X), τ ′).

Proof. By the definition of an admissible topology, we may pick (Un)n∈N, a basis
of the topology τ , such that for every n ∈ N there are nonempty open sets V nk ,
k = 1, . . . , Nn and Wn in X such that the set U ′n defined by

U ′n =

Nn⋂
k=1

E+(V nk ) \ E+(Wn)

is a nonempty subset of Un.
We claim that for every n ∈ N there is Fn ∈ U ′n such that G 6↪→ Fn. Indeed,

pick an arbitrary Z ∈ U ′n. We may without loss of generality assume there is
H0 ⊆ Z with H0 ' G and since G is isometrically universal, there is H1 ⊆ H0

with H1 ' `2. Now, pick points vk ∈ Z ∩ V nk , k = 1, . . . , Nn. Then we put Fn :=
span{v1, . . . , vNn , u : u ∈ H1}. Since Fn is a subset of Z, we have Fn /∈ E+(Wn)
and since it contains the points v1, . . . , vNn , we have Fn ∈ U ′n. Moreover, it is a
space isomorphic to `2 and so G 6↪→ Fn.

Thus, for every n ∈ N there is a closed subspace Fn of X such that Un∩E−(Fn)
is a nonempty set disjoint from 〈G〉'.

It is a classical fact, see e.g., [29, Lemma 13.2 and Lemma 13.3], that the topology
τ ′ generated by τ ∪{E−(Fn) : n ∈ N} is Polish. It is easy to check it is admissible.
Moreover, for every n ∈ N we have that Un∩E−(Fn) is a nonempty τ ′-open set in Un
disjoint from 〈G〉'. It follows that nonempty sets of the form Un ∩

⋂
m∈I E

−(Fm),
for finite I ⊆ N, give us a π-basis of τ ′. Since obviously each element of the form
Un ∩

⋂
m∈I E

−(Fm) is disjoint from 〈G〉', the set 〈G〉' is τ ′-nowhere dense.
�

Actually, one may observe that the same proof gives the following more general
result, where the pair (G, `2) is replaced by a more general pair of Banach spaces.

Theorem 2.12. Let X be an isometrically universal separable Banach space and
let τ be an admissible topology on SB(X). Let Y and Z be infinite-dimensional
Banach spaces such that Y ↪→ Z and Z 6↪→ Y ⊕F for every finite-dimensional space
F .

Then there exists an admissible topology τ ′ ⊇ τ on SB(X) such that the set 〈Z〉'
is nowhere dense in (SB∞(X), τ ′).

It is even possible to find an admissible topology τ such that 〈`2〉≡ is not a
meager set in (SB∞(X), τ) which is an immediate consequence of the following
more general observation (the property (P ) bellow would be “X is isometric to
`2”).

Proposition 2.13. Let X be isometrically universal separable Banach space and
τ be an admissible topology on SB∞(X). Let (P ) be a non-void property (i,e.
there are spaces with such a property) of infinite-dimensional Banach spaces closed
under taking subspaces. Then there is an admissible topology τ ′ ⊇ τ such that the
set {Y ∈ SB∞(X) : Y has (P )} has non-empty interior in (SB∞(X), τ ′).

Proof. Pick F ∈ SB∞(X) with (P ). Using again the classical fact, see e.g. [29,
Lemma 13.2], that the topology τ ′ generated by τ ∪ {E−(F )} is Polish, it is
easy to check it is admissible. Then the τ ′-open set E−(F ) is a subset of {Y ∈
SB∞(X) : Y has (P )}. �
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3. Spaces with closed isometry classes

From this section on, we start our investigation of descriptive complexity of
isometry classes. Let us first observe that no isometry class can be open as every
isometry class actually has an empty interior. Indeed, it follows from Proposition 1.9
that the isometry class of every isometrically universal separable Banach space is
dense. Since there are obviously many pairwise non-isometric universal Banach
spaces we get that every open set (in all P, P∞ and B) contains norms, resp.
pseudonorms, defining different Banach spaces. The same argument can be also
used to show that every isomorphism class has an empty interior.

Lemma 3.1. 〈`2〉≡ is closed in B and P∞.

Proof. Hilbert spaces are characterized among Banach spaces as those Banach
spaces whose norm satisfies the parallelogram law, i.e. ‖x + y‖2 + ‖x − y‖2 =
2(‖x‖2 + ‖y‖2) for any pair of elements x, y. It is clear that a norm satisfies the
parallelogram law if and only if it satisfies it on a dense set of vectors, therefore
every norm, resp. pseudonorm, from B, resp. P∞, satisfying the parallelogram law
on V defines a Hilbert space. Since norms, resp. pseudonorms, from B, resp. P∞,
define only infinite-dimensional spaces, they define spaces isometric to `2(N). Since
the parallelogram law is clearly a closed condition, we are done. �

Remark 3.2. We note that here we need to work with the spaces B or P∞,
since in P the only space with closed isometry class is the trivial space. To show
it, first notice that the trivial space is indeed closed. Next we show that any
open neighborhood of a pseudonorm defining trivial space contains a pseudonorm
defining arbitrary Banach space, which will finish our claim. Let such an open
neighborhood be fixed. We may assume that it is of the form {µ ∈ P : µ(vi) <
ε, i ≤ n}, where v1, . . . , vn ∈ V and ε > 0. Let m be such that all vi, i ≤ n,
are in spanQ{ej : j ≤ m}. Let X be an arbitrary separable Banach space and
let (fi)i∈N ⊆ X be a sequence whose span is dense in X. We define µ ∈ P by
µ(ej) = 0, for j ≤ m, and µ(

∑
i∈I αiem+i) = ‖

∑
i∈I αifi‖X , where I ⊆ N is finite

and (αi)i∈I ⊆ Q. This defines µ separately on spanQ{ei : i ≤ m} and spanQ{ei : i >
m}, however the extension to the whole V is unique. It is clear that µ is in the
fixed open neighborhood and that Xµ ≡ X.

One may be interested whether there are other Banach spaces whose isometry
class is closed. The answer is negative. First, let us state another corollary of
Proposition 1.9.

Lemma 3.3. Let X be a separable infinite-dimensional Banach space. Then 〈`2〉B≡ ⊆
〈X〉B≡ ∩ B. The same holds if we replace B with P∞ or P.

Proof. By the Dvoretzky’s theorem, `2 is finitely representable in every separable
infinite-dimensional Banach space (see e.g. [1, Theorem 13.3.7]). So we are done
by applying Proposition 1.9. �

The following theorem is now an immediate consequence of Lemmas 3.1 and 3.3.

Theorem 3.4. `2 is the only separable infinite-dimensional Banach space whose
isometry class is closed in B. The same holds if we replace B by P∞.

On the other hand, no isomorphism class can be closed. We show something
stronger. Let us first start with the following simple lemma from descriptive set
theory. Although it should be well known, we could not find a proper reference, so
we provide a sketch of the proof.

Lemma 3.5. Suppose that X is a Polish space and B ⊆ X is a Borel set which is
not Gδ. Then B is Fσ-hard. The same with the roles of Gδ and Fσ interchanged.
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Proof. By Hurewicz theorem (see e.g. [29, Theorem 21.18]), there is a set C ⊆ X
homeomorphic to the Cantor space such that C ∩B is countable dense in C. Then
C ∩ B is Fσ but not Gδ in the zero-dimensional Polish space C, and so it is Fσ-
complete in C by Wadge’s theorem (see e.g. [29, Theorem 22.10]). So for any zero-
dimensional Polish space Y and any Fσ-subset A of Y , there is a Wadge reduction
of A ⊆ Y to C ∩ B ⊆ C. But any such reduction is also a reduction of A ⊆ Y to
B ⊆ X, and so B is Fσ-hard.

The argument with the roles of Fσ and Gδ interchanged is similar. �

Proposition 3.6. No isomorphism class can be closed in P∞, B and P, and with
the possible exception of spaces isomorphic to G for which we do not know the
answer, no isomorphism class can even be Gδ.

Moreover, 〈`2〉' is Fσ-complete in both P∞ and B.

Proof. Let X be a separable infinite-dimensional Banach space. We show that 〈X〉'
is dense (we show the argument only for P∞, the other cases are analogous). Let F
be a finite-dimensional Banach space. It is well known that every finite-dimensional
space is complemented in any infinite-dimensional Banach space, so we have X '
F ⊕1 Y for some Banach space Y . Since F was arbitrary, it follows that every
separable Banach space is finitely representable in 〈X〉', so by Proposition 1.9,

〈X〉' = P∞, hence 〈X〉' is dense.
It follows that 〈X〉' cannot be closed for any X because it is dense and there

are obviously two non-isomorphic spaces. Moreover, if X is not isomorphic to the
Gurarĭı space then 〈X〉' cannot be Gδ since by Theorem 2.1, the isometry class of
the Gurarĭı space is dense Gδ, so it would have non-empty intersection with 〈X〉'
otherwise.

Finally suppose that X = `2. The isomorphism class of `2 is proved to be Fσ
in an admissible topology on SB∞ in [23, Theorem 4.3]. The same proof, which
we briefly sketch, works also for P∞ and B. By Kwapień’s theorem (see e.g. [1,
Theorem 7.4.1]) a separable infinite-dimensional Banach space is isomorphic to `2
if and only if it is of type 2 and of cotype 2. It is clear from the definition of type
and cotype (see e.g. [1, Definition 6.2.10]) that these properties are Fσ. So to show
that 〈`2〉' is Fσ-complete, by Lemma 3.5 it suffices to show that 〈`2〉' is not Gδ,
which we have already proved. �

Later, in Theorem 6.1, we prove that `2 is actually the unique, up to isomor-
phism, separable infinite-dimensional Banach space whose isomorphism class is Fσ.

Remark 3.7. An alternative proof showing that the isomorphism class 〈`2〉' is Fσ
follows from [34, Theorem 2’] (see also Remark 4 therein) which provides a formula
defining spaces isomorphic to `2 and which obviously defines an Fσ set (in P∞ and
B).

3.1. QSLp-spaces. We finish the section by considering some natural closed sub-
spaces of P, P∞ and B.

In [34], Kwapień denotes by Sp, resp. SQp, for 1 ≤ p <∞, the class of all Banach
spaces isometric to a subspace of Lp(µ), resp. to a subspace of some quotient of
Lp(µ), for some measure µ.

Let us address the class Sp first. We have the following simple lemma.

Lemma 3.8. Let 1 ≤ p <∞. Put

M := {µ ∈ B : Xµ is isometric to a subspace of Lp[0, 1]}.
Then M is a closed set in B and we have

M = 〈`p〉B≡ ∩ B = {µ ∈ B : Xµ is Lp,1+ space} ∩ B.
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The same holds if we replace B with P∞.

Proof. We recall the fact that a separable infinite-dimensional Banach space is
isometric to a subspace of Lp[0, 1] if and only if it is finitely representable in `p,
see e.g. [1, Theorem 12.1.9]. The rest follows from Proposition 1.9. We refer the
reader to Section 4 for a definition of the class Lp,1+. �

In the rest, we focus on the class SQp. Notice that for p = 1, this class coincides
with the class of all Banach spaces, and for p = 2, this class consists of Hilbert
spaces.

These Banach spaces are also called QSLp-spaces in literature and since it seems
this is the more recent terminology, this is what we will use further. It seems to be
well known, see e.g. [46], that this class of spaces is characterized by Proposition 3.9
below. This result was probably essentially proved by Kwapien [34] (however, in his
paper he considered the isomorphic variant only), for a more detailed explanation
of the proof (and even for a generalization) one may consult e.g. the proof in
[37, Theorem 3.2] which uses the ideas from [45] and [26]. Let us note that, by
Proposition 3.9 and [27, Proposition 0], the class of QSLp spaces coincides with
the class of p-spaces considered already in 1971 by Herz [27].

Proposition 3.9. A Banach space X is a QSLp-space, if and only if for every real
valued (m,n)-matrix M satisfying

n∑
i=1

∣∣∣∣∣∣
m∑
j=1

M(i, j)rj

∣∣∣∣∣∣
p

≤
m∑
k=1

|rk|p,

for all m-tuples r1, . . . , rm ∈ R, we have

n∑
i=1

∥∥∥∥∥∥
m∑
j=1

M(i, j)xj

∥∥∥∥∥∥
p

X

≤
m∑
k=1

‖xk‖pX ,

for all m-tuples x1, . . . , xm ∈ X.

Since it is clear that it suffices to verify the condition from Proposition 3.9 only
on dense tuples of vectors, and that this condition is closed, we immediately obtain
the following.

Proposition 3.10. For every 1 < p <∞, the set

{µ ∈ P∞ : Xµ is QSLp}

is closed in P∞.
The same is true if P∞ is replaced by B.

Denote now the set {µ ∈ P∞ : Xµ is QSLp} by QSLp. By Lemma 3.8, for
1 ≤ p < ∞, the set Mp := {µ ∈ P∞ : Xµ is isometric to a subspace of Lp[0, 1]} is
closed. Clearly, Mp ⊆ QSLp (and for p = 2 there is an equality).

If p 6= 2 then Mp 6= QSLp because there exists an infinite-dimensional separable
Banach space which is isomorphic to a quotient of Lp[0, 1] but not to its subspace.
Indeed, if p = 1 this is easy since every separable Banach space is isomorphic to a
quotient of `1, see e.g. [1, Theorem 2.3.1]. If 2 < q < p <∞ then `q is isometric to
a quotient of Lp[0, 1] (because its dual `q′ embeds isometrically into Lp′ [0, 1]) but
is not isomorphic to a subspace of Lp[0, 1], see e.g. [1, Theorem 6.4.18]. Finally, if
1 < p < 2 then by [15, Corollary 2] there exists a subspace X of `p′ ⊆ Lp′ which
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is not isomorphic to a quotient of Lp′
1 and so X∗ is isometric to a quotient of Lp

which is not isomorphic to a subspace of Lp. We would like to thank Bill Johnson
for providing us those examples.

Moreover, we have the following.

Proposition 3.11. For p ∈ [1, 2) ∪ (2,∞), the set Mp has an empty interior in
QSLp.

Proof. Fix p ∈ [1, 2) ∪ (2,∞). Pick µ ∈ QSLp such that Xµ does not isometrically
embed as a subspace into Lp[0, 1] (such a space exists, see the examples above).
Let U be now a basic open neighborhood of some ν ∈ QSLp. Since the class of
QSLp-spaces is clearly closed under taking `p-sums (see e.g. [46]), Xν ⊕pXµ is still
a QSLp-space. It is easy to define ν′ ∈ U so that Xν′ is isometric to Xν ⊕p Xµ.
Now since Xµ does not isometrically embed as a subspace into Lp[0, 1], neither Xν′

does. By [1, Theorem 12.1.9], Xν′ is not finitely representable in `p, so also not
in Lp[0, 1] (by [1, Proposition 12.1.8]). It follows from Proposition 1.9 that there
exists a basic open neighborhood U ′ of ν′ avoiding Mp. Now U ∩U ′ is a non-empty
open subsets of U avoiding Mp and we are done. �

Corollary 3.12. For p ∈ [1, 2) ∪ (2,∞), Lp[0, 1] is not a generic QSLp-space.

4. Spaces with Gδ isometry classes

In this section, we investigate Banach spaces whose isometry classes are Gδ, or
even Gδ-complete. Besides `2, whose isometry class is actually closed, we have
already proved in Theorem 2.1 that the isometry class of the Gurarĭı space is Gδ
in P∞ and B. We start the section with some basic corollaries of that result; in
particular, that the isometry class of G is even Gδ-complete. The main results of
the section however concern the Lebesgue spaces Lp([0, 1], λ), for 1 ≤ p <∞.

Since for any separable infinite-dimensional Banach space X we obviously have
〈X〉B≡ = 〈X〉P∞≡ ∩B, it is sufficient to formulate our positive result in the coding of
P∞ and negative results in the coding of B.

Lemma 4.1. Let X, Y be separable infinite-dimensional Banach spaces such that
X is finitely representable in Y and Y is finitely representable in X. If 〈X〉≡ is Gδ
in B and X 6≡ Y , then

(i) 〈Y 〉≡ is not Gδ in B.
(ii) 〈X〉≡ is Gδ-complete in B.

Proof. Recall that by Proposition 1.9 we have that both 〈X〉≡ and 〈Y 〉≡ are dense
in

N := {ν ∈ B : Xν is finitely representable in X}.
(i): If both 〈X〉≡ and 〈Y 〉≡ are Gδ, by the Baire theorem we have that 〈X〉≡∩〈Y 〉≡
is comeager in N . Thus, the intersection cannot be an empty set and we obtain
X ≡ Y .
(ii): Since X 6≡ Y , we have that 〈X〉≡ has empty interior in N . But it is also

1More precisely, by [15, Theorem 1] (see also e.g. [14, Corollary 3.2]) for every n ∈ N there

exists a subspace En of `2n∞ such that gl(En) ≥ K
√
n where K > 0 is a constant independent of n

and gl(En) is a quantity related to the notion of a “GL-space” (or space with the “Gordon-Lewis

property”). This implies that if we denote by Ep
′
n the space En endowed with the `p′ -norm,

we obtain gl(Ep
′
n ) ≥ K

√
ndBM (`2n∞ , `2n

p′ )−1 = K2−1/p′n1/2−1/p′ → ∞; hence, X := (
⊕
Ep
′
n )p′ ,

the `p′ -sum of spaces Ep
′
n , is isometric to a subspace of `p′ but it is not a GL-space. If X was

isomorphic to a quotient of Lp′ then X∗ would be isomorphic to a subspace of Lp which would

imply that X∗ and X are GL-spaces (see e.g. [11, Proposition 17.9 and Proposition 17.10]), a
contradiction.
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comeager in N , and so it cannot be Fσ. Therefore it is Gδ-complete by Lemma 3.5.
�

Corollary 4.2. G is the only isometrically universal separable Banach space whose
isometry class is Gδ in B. The same holds if we replace B by P∞.

Moreover, 〈G〉≡ is Gδ-complete in both P∞ and B.

Proof. By Theorem 2.1, the isometry class of G is Gδ. Let X be an isometrically
universal separable Banach space. By Lemma 4.1, if X 6≡ G then 〈X〉B≡ is not Gδ
in B (and so not in P∞ either).

For the “moreover” part we use Lemma 4.1 and any Banach space X not isomet-
ric to G that is finitely representable in G and vice versa (e.g. any other universal
separable Banach space or c0). �

The same proof gives us actually the following strengthening. Let us recall that
by Maurey–Pisier theorem, see [40] or [1, Theorem 12.3.14], a Banach space X
has no nontrivial cotype if and only if `∞ is finitely-representable in X (and yet
equivalently, c0 is finitely-representable in X).

Theorem 4.3. G is the only separable Banach space with no nontrivial cotype
whose isometry class is Gδ in B. The same holds if we replace B by P∞.

Proof. Any separable Banach space is finitely representable in c0, so by Lemma 4.1
there is at most one Banach space X such that c0 is finitely representable in X and
〈X〉≡ is Gδ. By Theorem 2.1, 〈G〉≡ is Gδ. �

4.1. Lp-spaces. Let us recall that a Banach space X is said to be an Lp,λ-space
(with 1 ≤ p ≤ ∞ and λ ≥ 1) if every finite-dimensional subspace of X is contained
in another finite-dimensional subspace of X whose Banach-Mazur distance dBM
to the corresponding `np is at most λ. A space X is said to be an Lp-space, resp.
Lp,λ+-space, if it is an Lp,λ′-space for some for some λ′ ≥ 1, resp. for every λ′ > λ.

The main result of this subsection is the following.

Theorem 4.4. For every 1 ≤ p < ∞, p 6= 2, the isometry class of Lp[0, 1] is
Gδ-complete in B and P∞.

Moreover, Lp[0, 1] is the only separable Lp,1+ space whose isometry class is Gδ
in B, and the same holds if we replace B by P∞.

The next theorem is a crucial step in proving Theorem 4.4. However, it is also
of independent interest and its corollary improves the related result from [23].

Remark 4.5. It is easy to see (e.g. using [35, Section 17, Theorem 6]) that for
every p ∈ [1,∞] and λ ≥ 1 we have that a separable infinite-dimensional Banach
space Y is a Lp,λ+ space if and only if for every ε > 0 there is an increasing
sequence {Fk}∞k=1 of finite-dimensional subspaces whose union is dense in Y such
that dBM (`dimFk

p , Fk) ≤ λ+ ε for every k ∈ N.

Let us note that the following result admits a generalization (see Proposition 6.3).
This is the reason why we use in the proof the characterization of Lp,λ+ spaces
mentioned in Remark 4.5.

Theorem 4.6. Let 1 ≤ p ≤ ∞ and λ ≥ 1. The class of separable Lp,λ+ spaces is
Gδ in P. In particular, the class of separable infinite-dimensional Lp,λ+ spaces is
Gδ in P∞.

Proof. For each finite tuple ~v of elements from V we set S~v to be the set of all finite
tuples ~w, Q-linearly independent in V , such that each element of ~v (considered as
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an element of c00) lies in span ~w. For m ∈ N and a finite tuple ~v of elements from
V we set

P (~v,m) :=
{
µ ∈ P : if µ restricted to span{v1, . . . , v|~v|} ⊆ c00 is a norm, then

there exist ~w ∈ S~v and n ∈ N such that

µ restricted to span{w1, . . . , w|~w|} ⊆ c00 is a norm and

(((span{w1, . . . , w|~w|}, µ), ~w)

√
λ+ 1

m∼ `|~w|p )
}
.

Then, using the observation that {µ ∈ P : µ restricted to span{v1, . . . , v|~v|} ⊆
c00 is a norm} is open due to Lemma 1.4, P (~v,m) is a union of a closed and an
open set, so it is Gδ.

Denote by LI the set of all finite tuples ~v = (v1, . . . , v|~v|) of elements from V
which are linearly independent in c00. We now set

G :=
⋂
m∈N

⋂
~v∈LI

P (~v,m),

which is clearly Gδ. We shall prove that it defines the class of separable Lp,λ+

spaces.
If µ ∈ G, it is clear that for every m, we can recursively build an increasing

sequence {Fk}∞k=1 of finite-dimensional subspaces whose union is dense in Xµ such
that we have dBM (Fk, `

dimFk
p ) ≤ λ+ 1

m for every k ∈ N. It follows that Xµ is Lp,λ+

space.
On the other hand, let µ ∈ P be such that Xµ is Lp,λ+ space. In what

follows for x ∈ c00 we denote by [x] ∈ Xµ the equivalence class correspond-
ing to x. Pick some m ∈ N and an n-tuple ~v ∈ LI such that µ restricted to
span{v1, . . . , vn} ⊆ c00 is a norm, so {v1, . . . , vn} is a basis of span{v1, . . . , vn}.
Pick λ′ ∈ (λ, λ + 1

m ) and δ > 1 with δλ′ < λ + 1
m . Since Xµ is Lp,λ+ space,

there is an increasing sequence {Fk}∞k=1 of finite-dimensional subspaces whose
union is dense in Xµ such that supk∈N dBM (Fk, `

dimFk
p ) ≤ λ′. By [35, Section

17, Theorem 6], we can find a finite dimensional subspace span{[v1], . . . , [vn]} ⊆
Y ⊆ Xµ and k ∈ N such that dBM (Y, Fk) ≤ δ so dBM (Y, `dimY

p ) ≤ δλ′. Se-
lect yn+1, . . . , ydimY ∈ Y such that b = {[v1], . . . , [vn], yn+1, . . . , ydimY } is a basis
of Y . Let φb2 be the function from Lemma 2.4(i) and let η > 0 be such that
δλ′(1 + φb2(η))2 < λ + 1

m . Further, for every n + 1 ≤ i ≤ dimY pick vi ∈ V

with ‖[vi] − yi‖Xµ < η. Then (µ, [v1], . . . , [vdimY ])
1+φb

2 (η)∼ Y so µ restricted to
span{v1, . . . , vdimY } ⊆ c00 is a norm and span{[v1], . . . , [vdimY ]} ⊆ Xµ is iso-
metric to (span{v1, . . . , vdimY }, µ). Since dBM ((span{v1, . . . , vdimY }, µ), `dimY

p ) <

δλ′ · (1 + φb2(η))2 < λ + 1
m , there exists a surjective isomorphism T : `dimY

p →

(span{v1, . . . , vdimY }, µ) with max{‖T‖, ‖T−1‖} <
√
λ+ 1

m . By Lemma 2.4(i),

we may without loss of generality assume that wi := T (ei) ∈ V for every i ≤
dimY . Then µ restricted to span{w1, . . . , wdimY } ⊆ c00 is a norm, ~w ∈ S~v and

((µ, ~w)

√
λ+ 1

m∼ `dimY
p ). �

Note that for 1 ≤ p ≤ ∞ the class of Lp spaces is obtained as the union⋃
λ≥1 Lp,λ+. It is shown in [23, Proposition 4.5] that Lp is Σ0

4 in an admissible

topology. It is immediate from Theorem 4.6 (and using Theorem 1.17) that we
have a better estimate.

Corollary 4.7. For every 1 ≤ p ≤ ∞ the class of separable Lp spaces is Gδσ in P
and any admissible topology.

Let us recall the following classical result.
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Theorem 4.8 (Lindenstrauss, Pe lczyński). For every 1 ≤ p < ∞ and a separable
infinite-dimensional Banach space X the following assertions are equivalent.

• X is Lp,1+ space.
• X is isometric to a separable Lp(µ) space for some σ-additive measure µ.
• X is isometric to one of the following spaces

Lp[0, 1], Lp[0, 1]⊕p `p, `p, Lp[0, 1]⊕p `np (for some n ∈ N).

Proof. By [38, Section 7, Corollaries 4 and 5], a separable Banach space is Lp,1+

space if and only if it is isometric to an Lp(µ) space for some measure µ. Finally,
note that every separable infinite-dimensional Lp(µ) space is isometric to one of the
spaces mentioned above, see e.g. [1, p. 137-138]. �

Recall that given a finite sequence (zn)n∈N in a Banach space Z, the symbol

(zn)
K∼ `Np means that K−1

(∑
i∈N |ai|p

)1/p
< ‖

∑
i∈N aizi‖ < K

(∑
i∈N |ai|p

)1/p
for every a ∈ cN00. If (zn) is isometrically equivalent to the `Np basis (that is,

(zn)
1+ε∼ `Np for every ε > 0), we write (zn) ≡ `Np .

Theorem 4.9. Let 1 ≤ p <∞, p 6= 2, and let X be a separable infinite-dimensional
Lp,1+ space. Then the following assertions are equivalent.

(i) X is isometric to Lp[0, 1].
(ii) For every x ∈ SX the following condition is satisfied

∀N ∈ N ∃x1, . . . , xN ∈ X : (xi)
N
i=1 ≡ `Np and N1/p · x =

N∑
i=1

xi.

(iii) For every x ∈ SX the following condition is satisfied

∀ε > 0 ∃x1, x2 ∈ X : (x1, x2)
1+ε∼ `2p and 21/p · x = x1 + x2.

(iv) For every x ∈ SX the following condition is satisfied

∀ε > 0 ∀δ > 0 ∃x1, x2 ∈ X : (x1, x2)
1+ε∼ `2p and ‖21/p · x− x1 − x2‖ < δ.

Proof. (i) =⇒ (ii): Pick f ∈ SLp[0,1] and N ∈ N. Then, using the continuity

of the mapping [0, 1] 3 x 7→
∫ x

0
|f |, we find 0 = x0 < x1 < . . . < xN = 1 such

that
∫ xi
xi−1
|f |p = 1

N

∫ 1

0
|f |p for every i = 1, . . . , N . We put fi := N1/p · f ·χ[xi−1,xi],

i = 1, . . . , N . Then, since the supports of fi are disjoint and since fi are normalized,

we have (fi)
N
i=1 ≡ `Np . Further, we obviously have N1/p · f =

∑N
i=1 fi.

Obviously, we have (ii) =⇒ (iii) and (iii) =⇒ (iv).
(iii) =⇒ (i): In order to get a contradiction, let us assume that X is not

isometric to Lp[0, 1] which, by Theorem 4.8, implies that X is isometric to Lp(µ),
where (Ω, S, µ) is a measure space for which there is ω ∈ Ω with µ({ω}) = 1. Fix
ε > 0 small enough (to be specified later). Suppose to the contrary that there

are f, g ∈ Lp(µ) such that (f, g)
1+ε∼ `2p and 2

1
p · δω = f + g, where δω is the Dirac

function supported by the point ω. For µ-a.e. x ∈ Ω\{ω}, we have f(x)+g(x) = 0,
so we assume this holds for all x ∈ Ω \ {ω}. We without loss of generality assume
that f(ω) ≥ g(ω).

We claim that both f(ω) and g(ω) are positive and |f(ω)− g(ω)|p < 1
2 if ε > 0

is chosen sufficiently small. Indeed, we have

(1 + ε)p − 1

(1 + ε)p
≥
∣∣∣‖f‖pp − ‖g‖pp∣∣∣ =

∣∣∣|f(ω)|p − |g(ω)|p
∣∣∣,

which implies ||f(ω)| − |g(ω)|| < 2−1/p for sufficiently small ε > 0. The claim
follows since if both f(ω) and g(ω) were not positive we would have 21/p > 2−1/p >
||f(ω)| − |g(ω)|| = |(f + g)(ω)| = 21/p, a contradiction.
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First, let us handle the case when 1 ≤ p < 2. We have

‖2f‖pp =

∫
Ω\{ω}

|2f |p dµ+ (2f(ω))p =

∫
Ω\{ω}

|f − g|p dµ+ (2f(ω))p

= ‖f − g‖pp + (2f(ω))p − ((f − g)(ω))p

≥ ‖f − g‖pp + ((f + g)(ω))p = ‖f − g‖pp + ‖f + g‖pp,

where in the inequality we used superadditivity of the function [0,∞) 3 t 7→ tp.

Thus, (f, g)
1+ε∼ `p2 implies

(1 + ε)p ≥ ‖f‖pp ≥
‖f − g‖pp + ‖f + g‖pp

2p
≥ 4

2p(1 + ε)p
;

hence, if 1 ≤ p < 2 we get a contradiction for sufficiently small ε > 0.
Finally, let us handle the case when p > 2. Note that since f(ω) ≥ g(ω) ≥ 0 and

f(ω) + g(ω) = 21/p, we have g(ω) ≤ 21/p−1. Further, we have

‖2g‖pp =

∫
Ω\{ω}

|f − g|p dµ+ (2g(ω))p ≤ ‖f − g‖pp + 2.

Thus, (f, g)
1+ε∼ `p2 implies

1

(1 + ε)p
≤ ‖g‖pp ≤

‖f − g‖pp + 2

2p
≤ 2(1 + ε)p + 2

2p
;

hence, if p > 2 we get a contradiction for sufficiently small ε > 0.
(iv) =⇒ (iii): Fix x ∈ SX and ε > 0. Pick δ > 0 small enough (to be specified

later). Applying the condition (iv) we obtain x′1, x
′
2 ∈ X such that (x′1, x

′
2)

1+
ε
2∼ `2p

and ‖21/p · x − x′1 − x′2‖ < δ. Now set x1 = x′1 + (21/p · x − (x′1 + x′2))/2 and
x2 = x′2 + (21/p · x − (x′1 + x′2))/2. If δ was chosen sufficiently small, we have

(x1, x2)
1+ε∼ `2p and clearly 21/p · x = x1 + x2. �

Let us note the following easy observation. The proof is easy and so omitted.

Fact 4.10. Let v, w ∈ V , v 6= 0 and a, b ∈ R. Then the set{
µ ∈ P : µ(v) 6= 0 and µ(a · v

µ(v)
− w) < b

}
is open in P.

Proof of Theorem 4.4. Let F be the set of those ν ∈ P∞ for which Xν is a Lp,1+

space. By Theorem 4.6, F ⊆ P∞ is a Gδ set. By Theorem 4.9, using the obvious
observation that condition (iv) may be verified on a dense subset, we have

〈Lp[0, 1]〉P∞≡ = F ∩
⋂
v∈V

⋂
n,k∈N

Uv,n,k,

where Uv,n,k are open sets (using Fact 4.10 and Lemma 1.4) defined as

Uv,n,k :=
{
µ ∈ P∞ : ∃v1, v2 ∈ V : (v1, v2)

1+
1
n∼ `2p and µ

(
21/p· v

µ(v)
−v1−v2

)
<

1

k

}
.

Thus, 〈Lp[0, 1]〉P∞≡ is a Gδ set.
On the other hand, since any Lp(µ) is finitely representable in `p and vice versa

(see e.g. [1, Proposition 12.1.8]), from Lemma 4.1 and Theorem 4.8 we obtain that
there is at most one (up to isometry) Lp,1+ space X such that 〈X〉≡ is Gδ in B and
that 〈Lp[0, 1]〉≡ is Gδ-complete. �
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5. Spaces with Fσδ isometry classes

In this section we focus on another classical Banach spaces, namely `p spaces,
for p ∈ [1, 2) ∪ (2,∞), and c0. The main result of this section is the following.

Theorem 5.1. The sets 〈c0〉≡ and 〈`p〉≡ (for p ∈ [1, 2)∪ (2,∞)) are Fσδ-complete
in both P∞ and B.

Note that in order to obtain that result we prove Proposition 5.6 and Theo-
rem 5.13, which are of independent interest and where the “easiest possible” iso-
metric characterizations of the Banach spaces `p, resp. c0, among Lp,1+ spaces,
resp. L∞,1+ spaces are given. The proof of Theorem 5.1 follows immediately from
Proposition 5.3, Proposition 5.4 and Proposition 5.11.

Let us emphasize that in subsection 5.2 we compute the Borel complexity of the
operation assigning to a given Banach space a Szlenk derivative of its dual unit
ball, which could be of an independent interest as well. See e.g. subsection 7.2 for
some consequences. The reason why we need to do it here is obviously that our
isometric characterization of the space c0 involves Szlenk derivatives.

We start with the part which is common for both cases – that is, for 〈c0〉≡ and
〈`p〉≡.

Lemma 5.2. Let p ∈ [1,∞) and let X = (
⊕

n∈NXn)p be the `p-sum of the family
(Xn)n∈N of separable infinite-dimensional Banach spaces. Then X ≡ `p if and only
if Xn ≡ `p for every n ∈ N.

Similarly, let X = (
⊕

n∈NXn)0 be the c0-sum of the family (Xn)n∈N of separable
infinite-dimensional Banach spaces. Then X ≡ c0 if and only if Xn ≡ c0 for every
n ∈ N.

Proof. It is easy and well-known that the `p-sum of countably many `p spaces is
isometric to `p, and that the c0-sum of countably many c0 spaces is isometric to c0.
The opposite implications follow from the facts that every 1-complemented infinite-
dimensional subspace of `p is isometric to `p, and that every 1-complemented
infinite-dimensional subspace of c0 is isometric to c0, see [39, page 54]. �

Proposition 5.3. Let X be one of the spaces `p, p ∈ [1, 2) ∪ (2,∞), or c0. Then
the set 〈X〉≡ is Fσδ-hard in B.

Proof. Our plan is to find a Wadge reduction of a known Fσδ-hard set to 〈X〉B≡.
For this purpose we will use the set

P3 = {x ∈ 2N×N : ∀m there are only finitely many n’s with x(m,n) = 1}
(see e.g. [29, Section 23.A] for the fact that P3 is Fσδ-hard in 2N×N). But before
we start to construct the reduction of P3 to 〈X〉B≡ we need to do some preparation.

By Theorem 4.4 (in case X = `p) and Theorem 4.3 (in case X = c0) we know
that 〈X〉B≡ is not Gδ in B. Therefore it is Fσ-hard in B by Lemma 3.5. Now as the
set

N2 = {x ∈ 2N : there are only finitely many n’s with x(n) = 1}
is Fσ in 2N, it is Wadge reducible to 〈X〉B≡, so there is a continuous function % : 2N →
B such that

x ∈ N2 ⇔ %(x) ∈ 〈X〉B≡.
We fix a bijection b : N2 → N. For every x ∈ 2N and every m ∈ N we define

%m(x) ∈ P∞ as follows. Suppose that v =
∑
n∈N αnen is an element of V (i.e., αn

is a rational number for every n, and αn 6= 0 only for finitely many n’s), then we
put

%m(x)(v) = %(x)

(∑
n∈N

αb(m,n)en

)
.
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Note that the set {eb(m,n) : n ∈ N} is both linearly independent and linearly dense in
X%m(x), and that %m(x)(ek) = 0 if k /∈ {b(m,n) : n ∈ N}. Also, X%m(x) is isometric
to X%(x), where the isometry is induced by the operator

ek 7→

{
en k = b(m,n),

0 k /∈ {b(m,n) : n ∈ N}.

Now we are ready to construct the required reduction f : 2N×N → B. For every
x ∈ 2N×N and every m ∈ N we write x(m) for the sequence (x(m,n))n∈N. If X = `p,
we define

f(x)(v) = p

√∑
m∈N

(
%m(x(m))(v)

)p
, v ∈ V,

and if X = c0 we put

f(x)(v) = sup{(%m(x(m)))(v) : m ∈ N}, v ∈ V.
This formula, together with the preceding considerations, easily imply that f(x) ∈ B
and that Xf(x) is isometric to the `p-sum, or to the c0-sum (depending on whether
X = `p or X = c0), of the spaces X%(x(m)), m ∈ N. Continuity of the functions

%m and x 7→ x(m), m ∈ N, immediately implies continuity of f . By Lemma 5.2,
f(x) ∈ 〈X〉B≡ if and only if %(x(m)) ∈ 〈X〉B≡ for every m ∈ N. Hence,

x ∈ P3 ⇔ ∀m ∈ N : x(m) ∈ N2 ⇔ f(x) ∈ 〈X〉B≡. �

5.1. The spaces `p. The purpose of this subsection is to prove the following result.

Proposition 5.4. For every p ∈ [1, 2) ∪ (2,∞) we have that 〈`p〉≡ is Fσδ in P∞.

We start with the following classical result, which is sometimes named the Clark-
son’s inequality. The proof may be found on various places, the original one is in
the paper by Clarkson, see [9]. In fact, we use only a very special case of the Clark-
son’s inequality where z, w are required to be elements of the real line instead of
an Lp space (and this case is rather straightforward to prove).

Lemma 5.5 (Clarkson’s inequality). Let 1 ≤ p < ∞, p 6= 2. If p > 2, then for
every z, w ∈ R we have

|z + w|p + |z − w|p − 2|z|p − 2|w|p ≥ 0.

If p < 2 then reverse inequality holds. Moreover, the equality holds if and only if
zw = 0.

Proposition 5.6. Let 1 ≤ p < ∞, p 6= 2, and let X be a separable infinite-
dimensional Lp,1+ space. Let D be a dense subset of X. Then the following asser-
tions are equivalent.

(i) X is isometric to `p.
(ii) For every x ∈ SX and every δ ∈ (0, 1) the following condition is satisfied:

∃N ∈ N ∃ε > 0 ∀x1, . . . , xN ∈ X : (N1/p · xi)Ni=1
1+ε∼ `Np ⇒ ‖x−

N∑
i=1

xi‖ > δ.

(iii) For every x ∈ SX the following condition is satisfied:

∃N ∈ N ∀x1, . . . , xN ∈ X : (N1/p · xi)Ni=1 ≡ `Np ⇒ x 6=
N∑
i=1

xi.

(iv) For every x ∈ D\{0} and every δ ∈ (0, 1) the following condition is satisfied:

∃N ∈ N ∃ε > 0 ∀x1, . . . , xN ∈ D : (N1/p · xi)Ni=1
1+ε∼ `Np ⇒

∥∥∥ x

‖x‖
−

N∑
i=1

xi

∥∥∥ ≥ δ.
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Proof. (i) =⇒ (ii): Fix x ∈ S`p and δ ∈ (0, 1). Pick l ∈ N with
∑l
k=1 |x(k)|p > δp

and N ∈ N such that
∑l
k=1(|x(k)|− 3

p√
N

)p > δp. Fix a sequence (εm)m∈N ∈ (0, 1)N

with εm → 0. In order to get a contradiction, for every m ∈ N, pick xεm1 , . . . , xεmN ∈
`p such that (N1/p · xεmi )Ni=1

1+εm∼ `Np and ‖x−
∑N
i=1 x

εm
i ‖ ≤ δ for every m ∈ N.

We claim that there is m ∈ N such that |xεmi (k)xεmj (k)| < η := N−(2+2/p) for

every i, j ∈ {1, . . . , N}, i 6= j, and k ∈ {1, . . . , l}. Indeed, otherwise there are i, j, k
such that |xεmi (k)xεmj (k)| ≥ η for infinitely many m’s. By passing to a subsequence,

we may assume that this holds for every m ∈ N. Since the sequences (|xεmi (k)|)m
and (|xεmj (k)|)m are bounded, by passing to a subsequence we may assume there

are numbers a, b ∈ R with xεmi (k) → a, xεmj (k) → b and |ab| ≥ η > 0. Since

(N1/p · xεmi , N1/p · xεmj )
1+εm∼ `2p, using Lemma 5.5, for p > 2 we obtain

0 ≤ |a+ b|p + |a− b|p − 2|a|p − 2|b|p

= lim
m

(
|xεmi (k) + xεmj (k)|p + |xεmi (k)− xεmj (k)|p − 2|xεmi (k)|p − 2|xεmj (k)|p

)
≤ lim

m

(
‖xεmi + xεmj ‖

p + ‖xεmi − x
εm
j ‖

p − 2‖xεmi ‖
p − 2‖xεmj ‖

p
)

= 0;

hence, |a+b|p+ |a−b|p = 2|a|p+2|b|p = 0 which, by Lemma 5.5, is in contradiction
with |ab| > 0. The case when p < 2 is similar.

From now on, we write xi instead of xεmi , where m ∈ N is chosen to satisfy
the claim above. Fix k ≤ l. By the claim above, there is at most one i0 ∈
{1, . . . , N} with |xi0(k)| ≥ √η and for this i0 we have |xi0(k)| ≤ ‖xi0‖ ≤ 2N−1/p.
Consequently, we have

N∑
i=1

|xi(k)| ≤ 2

N1/p
+

∑
i∈{1,...,N}&|xi(k)|<√η

|xi(k)| ≤ 2

N1/p
+N · √η =

3

N1/p
.

Thus, we have

‖x−
N∑
i=1

xi‖p ≥
l∑

k=1

(
|x(k)| −

N∑
i=1

|xi(k)|
)p
≥

l∑
k=1

(
|x(k)| − 3

N1/p

)p
> δp,

which is in contradiction with ‖x−
∑N
i=1 xi‖ = ‖x−

∑N
i=1 x

εm
i ‖ ≤ δ.

(ii) =⇒ (iii) is obvious.
(iii) =⇒ (i): suppose that X is not isometric to `p. By Theorem 4.8, X is

isometric to Lp[0, 1]⊕pY for some (possibly trivial) Banach space Y . By abusing the
notation, we may assume that X = Lp[0, 1]⊕pY . Let 1 ∈ Lp[0, 1] be the constant 1
function, and define x ∈ X = Lp[0, 1]⊕pY by x = (1, 0). Now fix N ∈ N arbitrarily.

Define x1, . . . , xN ∈ X by xi = (χ[ i−1
n , in ], 0). Clearly (N1/p · xi)Ni=1 ≡ `np and we

have x =
∑N
i=1 xi.

(ii) =⇒ (iv) is obvious, so it only remains to show that (iv) =⇒ (ii). For
every x ∈ X \ {0}, δ ∈ (0, 1), N ∈ N, ε > 0 and x1, . . . , xN ∈ X we denote

by V (x, δ,N, ε, (xi)
N
i=1) the assertion that if (N1/p · xi)Ni=1

1+ε∼ `Np then ‖ x
‖x‖ −∑N

i=1 xi‖ ≥ δ. The desired implication straightforwardly follows by the following
two easy observations. First, if x ∈ D \ {0}, δ, N and ε are given such that
V (x, δ,N, ε, (xi)

N
i=1) holds for every x1, . . . , xN ∈ D then V (x, δ,N, ε, (xi)

N
i=1) holds

for every x1, . . . , xN ∈ X. Second, if for every x ∈ D \ {0} and δ there are N and
ε such that V (x, 1+δ

2 , N, ε, (xi)
N
i=1) holds for every x1, . . . , xN ∈ X, then for every

x ∈ X \ {0} and δ there are N and ε such that V (x, δ,N, ε, (xi)
N
i=1) holds for every

x1, . . . , xN ∈ X. �

Proof of Proposition 5.4. Let F be the set of those ν ∈ P∞ for which Xν is an
Lp,1+ space. By Theorem 4.6, F ⊆ P∞ is a Gδ set. By Proposition 5.6 (i)⇔ (iv),
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we have
〈`p〉P∞≡ = F ∩

⋂
v∈V \{0}

⋂
m∈N

⋃
n,k∈N

Vv,m,n,k,

where the closed (see Fact 4.10 and Lemma 1.4) sets Vv,m,n,k are given by

Vv,m,n,k :=
{
µ ∈ P∞ : µ(v) = 0 or for every (vi)

n
i=1 ∈ V n we have

¬
(

( p
√
nvi)

n
i=1

1+ 1
k∼ `np

)
or µ

( v

µ(v)
−

n∑
i=1

vi
)
≥ 1

m

}
.

Thus, 〈`p〉P∞≡ is an Fσδ set. �

5.2. Dual unit balls and the Szlenk derivative. The purpose here is to show
that mappings which assign a dual unit ball and its Szlenk derivative to a separable
Banach space may be realized as a Borel map, see Lemma 5.10 and Lemma 5.9.
This will be later used in order to estimate the Borel complexity of the isometry
class of the space c0 because the isometric characterization of the space c0 we use
involves Szlenk derivatives, see Theorem 5.13. Note that the issue of handling
Szlenk derivations as Borel maps was previously considered also by Bossard in [4,
page 141], but our approach is slightly different as we prefer to work with coding
P and we also need to obtain an estimate on the Borel class of the mapping.

Let us recall that given a real Banach space X, w∗-compact set F ⊆ X∗ and
ε > 0, the Szlenk derivative is given as

F ′ε =
{
x∗ ∈ F : U 3 x∗ is w∗-open⇒ diam(U ∩ F ) ≥ ε

}
.

We start by coding dual unit balls as closed subsets of B`∞ equipped with the
weak* topology, i.e., the topology generated by elements of the unique predual `1.

Lemma 5.7. Let X be a separable Banach space and let {xn : n ∈ N} be a dense
set in BX . Then the mapping BX∗ 3 x∗ 7→ (x∗(xn))∞n=1 ∈ B`∞ is ‖ ·‖-‖ ·‖ isometry
and w∗-w∗ homeomorphism onto the set

Ω(X) :=
{

(an)∞n=1 ∈ B`∞ : M ⊆ N finite⇒
∣∣∣ ∑
n∈M

an

∣∣∣ ≤ ∥∥∥ ∑
n∈M

xn

∥∥∥}.
Proof. That the mapping is w∗-w∗ homeomorphism onto its image follows from
the fact that BX∗ is w∗-compact and the mapping is one-to-one (because (xn)
separate the points of BX∗) and w∗-w∗ continuous (because on B`∞ the w∗-topology
coincides with the topology of pointwise convergence). It is also straightforward to
see that the mapping is isometry. Thus, it suffices to proof that

{(x∗(xn))∞n=1 : x∗ ∈ BX∗} = Ω(X).

The inclusion ⊆ is easy, let us prove ⊇. Given numbers a1, a2, . . . satisfying
|
∑
n∈M an| ≤ ‖

∑
n∈M xn‖ for any finite M ⊆ N, we need to find x∗ ∈ BX∗

such that x∗(xn) = an for each n.
Let us realize first that

• |an − am| ≤ ‖xn − xm‖ for every n,m,
• |an + am − al| ≤ ‖xn + xm − xl‖ for every n,m, l.

We check the first inequality only, the second inequality can be checked in the same
way. Given ε > 0, let n′ different from n and m be such that ‖xn + xn′‖ < ε.
We obtain |an − am| = |(an + an′) − (am + an′)| ≤ |an + an′ | + |am + an′ | ≤
‖xn +xn′‖+ ‖xm +xn′‖ ≤ 2‖xn +xn′‖+ ‖xm−xn‖ < 2ε+ ‖xm−xn‖. Since ε > 0
was chosen arbitrarily, we arrive at |an − am| ≤ ‖xm − xn‖.

It follows that there is a function f : BX → R with the Lipschitz constant 1
such that f(xn) = an for each n. We claim that f(u + v) = f(u) + f(v) and
f(αu) = αf(u), whenever u, αu, v, u + v ∈ BX . Given ε > 0, we pick n,m, l such
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that ‖xn−u‖ < ε, ‖xm−v‖ < ε and ‖xl−(u+v)‖ < ε. Then |f(u)+f(v)−f(u+v)| <
|an + am− al|+ 3ε ≤ ‖xn +xm−xl‖+ 3ε ≤ ‖u+ v− (u+ v)‖+ 3ε+ 3ε = 6ε. Since
ε > 0 was chosen arbitrarily, we arrive at |f(u) + f(v) − f(u + v)| = 0. This also
shows that f(u/2) = f(u)/2, therefore f(αu) = αf(u), provided that α is a dyadic
rational number. For general α, we use density of dyadic rationals and continuity
of f .

Now, it is easy to see that f uniquely extends to a linear functional on X. �

By the above, every dual unit ball of a separable Banach space may be realized
as a subset of the unit ball of `∞. Thus, in what follows we use the following
convention.

Convention. Whenever we talk about open (closed, Fσ, etc.) subsets of Bl∞
we always mean open (closed, Fσ, etc.) subsets in the weak* topology. On the
other hand, whenever we talk about the diameter of a subset of Bl∞ , or about the
distance of two subsets of Bl∞ , we always mean the diameter, or the distance, with
respect to the metric given by the norm of `∞. Also, we write only K(Bl∞) instead
of K(Bl∞ , w

∗).

Let us note the following easy observation for further references.

Lemma 5.8. Let P be a Polish space, X a metrizable compact, α ∈ [1, ω1) and
f : P → K(X) a mapping such that {p ∈ P : f(p) ⊆ U} ∈ Σ0

α(P ) ∪ Π0
α(P ) for

every open U ⊆ X. Then f is Σ0
α+1-measurable.

Proof. The sets of the form

{F ∈ K(X) : F ⊆W} and {F ∈ K(X) : F ∩W 6= ∅},
where W ranges over all open subsets of X, form a subbasis of the topology of K(X).
So we only need to check that f−1(U) is an Σ0

α+1 set for every open set U of one of
these forms. For the first case this follows immediately from the assumptions and
for the second case, if {Un : n ∈ N} is an open basis for the topology of X, we have

f−1({F ∈ K(X) : F ∩W 6= ∅}) =
⋃

n∈N such that Un ⊆ W

P \ {p ∈ P : f(p) ⊆ X \ Un},

which, by the assumptions, is countable union of sets from Σ0
α(P ) ∪Π0

α(P ). �

Lemma 5.9. For every ν ∈ P we can choose a countable dense subset {xνn : n ∈ N}
of BXν in such a way that the mapping Ω: P → K(Bl∞ , w

∗) given by

Ω(ν) =

{
(an)∞n=1 ∈ Bl∞ : M ⊆ N finite⇒

∣∣∣∣∣∑
n∈M

an

∣∣∣∣∣ ≤ ν
(∑
n∈M

xνn

)}
is continuous.

Proof. First of all, we describe the choice of the sets {xνn : n ∈ N}, ν ∈ P. Let
g : [0,∞) → [1,∞) be given by g(t) = 1 for t ≤ 1 and g(t) = t for t > 1. Let
{vn : n ∈ N} be an enumeration of all elements of the vector space V (which is
naturally embedded into all Banach spaces Xν , ν ∈ P). Now for every ν ∈ P and
every n ∈ N we define xνn ∈ BXν by xνn = vn

g(ν(vn)) . Then for every ν ∈ P we have

that {xνn : n ∈ N} is a dense subset of BXν . Note also that the set{
(ν, (an)∞n=1) ∈ P ×Bl∞ :

∣∣∣∣∣∑
n∈M

an

∣∣∣∣∣ > ν

(∑
n∈M

xνn

)}
is open in P × (Bl∞ , w

∗) for every M ⊆ N finite (the proof is easy and, similarly as
the proof of Fact 4.10, it is omitted).
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Pick an open subset U of B`∞ . We have

Ω−1 ({F ∈ K(Bl∞) : F ⊆ U})

=

ν ∈ P : ∀
(an)∞n=1∈Bl∞

 ∃
M⊆N
finite

∣∣∣∣∣∑
n∈M

an

∣∣∣∣∣ > ν

(∑
n∈M

xνn

) or ((an)∞n=1 ∈ U)

 .

The complement of the last set is the projection of a closed subset of P× (Bl∞ , w
∗)

onto the first coordinate. As the space (Bl∞ , w
∗) is compact, the complement is a

closed subset of P.
It remains to show that the set {ν ∈ P : Ω(ν) ∩ U 6= ∅} is open. Pick ν ∈ P

with Ω(ν) ∩ U 6= ∅. By Lemma 5.7, there exists x∗ ∈ BX∗ν such that the sequence
(an)∞n=1 given by an = x∗(xνn), n ∈ N, satisfies (an)∞n=1 ∈ Ω(ν) ∩ U . Let ε > 0 and
N ∈ N be such that (bn)∞n=1 ∈ `∞ is an element of U whenever |bn − an| < ε for
every 1 ≤ n ≤ N . Let us consider subspaces of c00 given as E = span{v1, . . . , vN}
and F = {x ∈ E : ν(x) = 0}. Let G be such that F ⊕ G = E and G ∩ V = G
(it is enough to pick a basis of E consisting of vectors from V , and using the
Gauss elimination to determine which vectors from the basis generate the algebraic
complement to F ). Let PF : E → F and PG : E → G be linear projections onto
F and G, respectively. Pick δ < min{1, ε3} such that δ · |x∗(PGvn)| < ε/3 for every
1 ≤ n ≤ N . Finally, put

O :={ν′ ∈ P :
1

1− δ
ν(x) > ν′(x) > (1− δ)ν(x) for every x ∈ G \ {0}}∩

N⋂
n=1

{ν′ ∈ P : ν′(PF vn) < δ, |ν′(vn)− ν(vn)| < δ}.

Then O is an open neighborhood of ν, which easily follows from Lemma 1.4 and
the fact that G ∩ V is dense in G.

We will show that O ⊆ {ν′ ∈ P : Ω(ν′) ∩ U 6= ∅}. Pick ν′ ∈ O. If we put
y∗(x) := (1− δ)x∗(x) for x ∈ G, then |y∗(x)| = (1− δ)|x∗(x)| ≤ (1− δ)ν(x) ≤ ν′(x)
for every x ∈ G and so by the Hahn-Banach theorem we may extend y∗ to a
functional (denoted again by y∗) from the dual unit ball of Xν′ . By Lemma 5.7,

the sequence (bn)∞n=1 given by bn := y∗(xν
′

n ), n ∈ N, is in Ω(ν′). Moreover, for
every 1 ≤ n ≤ N we have

|bn − an| =
∣∣ 1
g(ν′(vn))y

∗(vn)− 1
g(ν(vn))x

∗(vn)
∣∣

=
∣∣ 1
g(ν′(vn))y

∗(PF vn) + 1
g(ν′(vn))y

∗(PGvn)− 1
g(ν(vn))x

∗(PF vn + PGvn)
∣∣

=
∣∣ 1
g(ν′(vn))y

∗(PF vn) + 1
g(ν′(vn)) (1− δ)x∗(PGvn)− 1

g(ν(vn))x
∗(PGvn)

∣∣
≤ 1

g(ν′(vn)) |y
∗(PF vn)|+

∣∣ 1
g(ν′(vn)) (1− δ)− 1

g(ν(vn))

∣∣|x∗(PGvn)|

≤ δ +
(
|g(ν(vn))− g(ν′(vn))|+ δ

)
|x∗(PGvn)|

≤ δ + 2δ|x∗(PGvn)| < ε,

and so (bn)∞n=1 ∈ Ω(ν′) ∩ U . Hence, O ⊆ {ν′ ∈ P : Ω(ν′) ∩ U 6= ∅}, so {ν ∈
P : Ω(ν) ∩ U 6= ∅} is open set and Ω is a continuous mapping. �

We close the first part of the subsection by realizing that the mapping which
assigns to every compact subset of B`∞ its Szlenk derivative is Borel. Let us
note that the result is almost optimal as the mapping from Lemma 5.10 is not
Fσ-measurable, see Corollary 5.14.

Lemma 5.10. For every ε > 0, the function sε : K(Bl∞ , w
∗) → K(Bl∞ , w

∗) given
by sε(F ) = F ′ε is Σ0

3-measurable.
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Proof. First, we claim that the set

{F ∈ K(Bl∞) : diam(U ∩ F ) < ε}

is an Fσ set for every open subset U of Bl∞ . Indeed, the set above equals

∞⋃
k=1

{F ∈ K(Bl∞) : diam(U ∩ F ) ≤ ε− 1
k}

=

∞⋃
k=1

⋂
O1,O2 open subsets of U

dist(O1,O2)≥ε− 1
k

{F ∈ K(Bl∞) : F ∩O1 = ∅ or F ∩O2 = ∅},

and our claim immediately follows.
Now let W be an open subset of Bl∞ . Let {Un : n ∈ N} be an open basis for the

weak* topology of Bl∞ . Then we have (using a compactness argument in the last
equality) that

s−1
ε ({F ∈ K(Bl∞) : F ⊆W})

={F ∈ K(Bl∞) : ∃
M⊆N

((
∀

n∈M
diam(Un ∩ F ) < ε

)
and

(
F ⊆W ∪

⋃
n∈M

Un
))
}

={F ∈ K(Bl∞) : ∃
M⊆N
finite

((
∀

n∈M
diam(Un ∩ F ) < ε

)
and

(
F ⊆W ∪

⋃
n∈M

Un
))
},

and our previous claim implies that the last set is Fσ.
Thus, by Lemma 5.8, the mapping sε is Σ0

3-measurable. �

5.3. The space c0. The main goal of this subsection is to prove the following.

Proposition 5.11. 〈c0〉≡ is an Fσδ set in P∞.

Our estimate on the Borel complexity of the isometry class of c0 is based on
an isometric characterization of c0 among L∞,1+ spaces. Let us recall that L∞,1+

spaces are often called the Lindenstrauss spaces or L1 predual spaces. There are
many different characterizations of this class of spaces. Let us recall one which we
will use further, see e.g. [35, p. 232] (the “in particular” part follows from the easy
part of Theorem 4.8 applied to X∗ and the fact that L1[0, 1] is not isomorphic to
a subspace of a separable dual Banach space, see e.g. [1, Theorem 6.3.7]).

Theorem 5.12. Let X be a Banach space. Then the following conditions are
equivalent.

(i) X is L∞,1+ space.
(ii) X∗ is isometric to L1(µ) for some measure µ.

In particular, if X is a L∞,1+ space with X∗ separable then X∗ is isometric to `1.

The isometric characterization of c0 which we use for our upper estimate follows.

Theorem 5.13. Let X be a separable L∞,1+-space and let 0 < ε < 1. Then X is
isometric to c0 if and only if

(BX∗)
′
2ε = (1− ε)BX∗ .

Proof. First, we show that (Bc∗0 )′2ε = (1− ε)Bc∗0 (this must be known but we were
unable to find any reference). By a standard argument, (1− ε)BX∗ ⊆ (BX∗)

′
2ε for

any infinite-dimensional X. (Let x∗ ∈ (1−ε)BX∗ . Any w∗-open set U containing 0
contains also both y∗ and −y∗ for some y∗ ∈ SX∗ , and so diam(U ∩BX∗) = 2. For
this reason, any w∗-open set V containing x∗ fulfills diam(V ∩ (x∗ + εBX∗)) = 2ε,
in particular, diam(V ∩BX∗) ≥ 2ε. This proves that x∗ ∈ (BX∗)

′
2ε.)
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Let us show that the opposite inclusion takes place for X = c0. Assuming
1 − ε < ‖x∗‖ ≤ 1, we need to check that x∗ /∈ (Bc∗0 )′2ε. Let e1, e2, . . . be the

canonical basis of c0. Let n be large enough that
∑n
i=1 |x∗(ei)| > 1 − ε and let

δ > 0 satisfy 2δn < [
∑n
i=1 |x∗(ei)|]− (1− ε). Let

U = {y∗ ∈ c∗0 : 1 ≤ i ≤ n⇒ |y∗(ei)− x∗(ei)| < δ}.

For y∗, z∗ ∈ U ∩Bc∗0 , we have

∞∑
i=n+1

|y∗(ei)| = ‖y∗‖ −
n∑
i=1

|y∗(ei)| ≤ 1−
n∑
i=1

|x∗(ei)|+ δn,

and the same for z∗, thus

‖y∗ − z∗‖ ≤
n∑
i=1

|y∗(ei)− z∗(ei)|+
∞∑

i=n+1

|y∗(ei)|+
∞∑

i=n+1

|z∗(ei)|

≤ 2δn+ 2
[
1−

n∑
i=1

|x∗(ei)|
]

+ 2δn.

We get diam(U ∩Bc∗0 ) ≤ 4δn+ 2[1−
∑n
i=1 |x∗(ei)|] < 2ε.

Now, let us assume that X satisfies (BX∗)
′
2ε = (1−ε)BX∗ . Clearly, X is infinite-

dimensional, as (BX∗)
′
2ε is non-empty. Moreover, X∗ is separable because the

Szlenk index of X is ω, see e.g. [36, Proposition 3 and Theorem 1]. Thus, by
Theorem 5.12, the dual X∗ is isometric to `1. Let e∗1, e

∗
2, . . . be a basis of X∗ that

is 1-equivalent to the canonical basis of `1, and let e∗∗1 , e
∗∗
2 , . . . be the dual basic

sequence in X∗∗. We claim that the functionals e∗∗n are w∗-continuous.
Suppose that e∗∗n is not w∗-continuous for some n. It means that {x∗ ∈ X∗ :

e∗∗n (x∗) = 0} is not w∗-closed. By the Banach-Dieudonné theorem, the set {x∗ ∈
BX∗ : e∗∗n (x∗) = 0} is not w∗-closed, too. The space (BX∗ , w

∗) is metrizable, so
there is a sequence x∗k in BX∗ with e∗∗n (x∗k) = 0 which w∗-converges to some x∗

with e∗∗n (x∗) 6= 0. Without loss of generality, let us assume that e∗∗n (x∗) > 0 and
that e∗∗i (x∗k) converges to some ai for every i. Then clearly an = 0. Note that∑∞
i=1 |ai| ≤ 1, which follows from the fact that

∑∞
i=1 |e∗∗i (x∗k)| = ‖x∗k‖ ≤ 1 for

every k. Let us put a∗ =
∑∞
i=1 aie

∗
i , y

∗
k = x∗k − a∗ and y∗ = x∗ − a∗. Then

e∗∗n (y∗k) = 0, e∗∗n (y∗) > 0, the sequence y∗k is w∗-convergent to y∗ and, moreover,
e∗∗i (y∗k) converges to 0 for every i. Choosing a subsequence and making a small
perturbation, we can find a sequence z∗l which is a block sequence with respect
to the basis e∗i and which still w∗-converges to y∗. Without loss of generality, let
us assume that ‖z∗l ‖ converges to some λ, clearly with λ ≥ ‖y∗‖ > 0, and let us
consider u∗l = 1

‖z∗l ‖
z∗l and u∗ = 1

λy
∗.

So, we have seen that there is a normalized block sequence u∗l in X∗ which
w∗-converges to some u∗ with e∗∗n (u∗) > 0. We put

v∗l = (1− ε)e∗n + εu∗l , v∗ = (1− ε)e∗n + εu∗.

Then v∗l is a sequence in BX∗ that w∗-converges to v∗. Since ‖v∗l − v∗l′‖ = 2ε for
l 6= l′, any w∗-open set U containing v∗ fulfills diam(U ∩BX∗) ≥ 2ε. It follows that
v∗ ∈ (BX∗)

′
2ε and, by our assumption, v∗ ∈ (1− ε)BX∗ . At the same time,

‖v∗‖ ≥ e∗∗n (v∗) = (1− ε) + εe∗∗n (u∗) > 1− ε,

which is not possible.
Hence, the functionals e∗∗n are w∗-continuous indeed. Every e∗∗n is therefore the

evaluation of some en ∈ X. Finally, it is easy to check that e1, e2, . . . is a basis of
X that is 1-equivalent to the canonical basis of c0. �
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Proof of Proposition 5.11. Let F be the set of those µ ∈ P∞ for which Xµ is L∞,1+-
space. By Theorem 4.6, F is Gδ in P∞. Let Ω be the mapping from Lemma 5.9
and let us denote by 4 the closed set {(x, x) : x ∈ K(`∞)} in K(`∞)× K(`∞). By
Lemma 5.7 and Theorem 5.13, we have that

〈c0〉≡ = F ∩ {ν ∈ P : ( 1
2Ω(ν),Ω′1(ν)) ∈ 4}.

By Lemma 5.9 and Lemma 5.10, the mapping P 3 ν 7→ ( 1
2Ω(ν),Ω′1(ν)) ∈ K(`∞)×

K(`∞) is Σ0
3-measurable, so we obtain that 〈c0〉≡ is Fσδ in P∞. �

Corollary 5.14. Let ε > 0. Then the mapping sε from Lemma 5.10 is not Σ0
2-

measurable.

Proof. Otherwise, similarly as in the proof of Proposition 5.11 we would prove that
〈c0〉≡ is Gδ in P∞, which is not possible due to Theorem 4.3. �

6. Spaces with descriptively simple isomorphism classes

While there are several Banach spaces whose isometry classes have low complex-
ity, there are reasons to suspect that isomorphism classes are rather complicated in
general. The main result of this section is the following.

Theorem 6.1. The Hilbert space `2 is characterized as the unique, up to isomor-
phism, infinite-dimensional separable Banach space X such that 〈X〉' is Fσ in B.
The same holds if we replace B with P∞.

Recall that the isomorphism class of `2 is Fσ, see Proposition 3.6. Besides this
space, it is proved in [23, Theorem 4.12] that separable Banach spaces determined
by their pavings have Σ0

4 isomorphism classes in any admissible topology. We refer
the interested reader to the text below for a definition of spaces determined by
their pavings. Here we just briefly note that this class of spaces was introduced by
Johnson, Lindenstrauss and Schechtman in [28] and that there are known examples
of separable Banach spaces determined by their pavings not isomorphic to `2 (e.g.
certain `2-sums of finite-dimensional spaces are such). The second main result of
this section is the following improvement of the estimate mentioned above.

Theorem 6.2. Let X be a separable infinite-dimensional Banach space that is
determined by its pavings. Then 〈X〉' is Gδσ in P∞. In particular, it is Gδσ in P
and in any admissible topology.

Let us start with the proof of Theorem 6.1.

Proof of Theorem 6.1. We only need to show that if a separable infinite-dimensional
Banach space X is not isomorphic to `2, then 〈X〉' is not Fσ in B. In what follows,
we denote by T the set of finite tuples (including empty) of natural numbers without
repetition. The length of γ ∈ T is denoted by |γ| and its range by rng(γ). Moreover,
for every γ ∈ T and every µ ∈ B we put

Mγ
µ :=

{
ν ∈ B : for every (ai)

|γ|
i=1 ∈ Q|γ| we have ν

( |γ|∑
i=1

aiei

)
= µ

( |γ|∑
i=1

aieγ(i)

)}
.

In order to get a contradiction assume that (Fn)∞n=1 are closed sets in B such
that 〈X〉' =

⋃∞
n=1 Fn.

Claim. For every µ ∈ B with 〈Xµ〉≡ ⊆
⋃∞
n=1 Fn there exist γ ∈ T and m ∈ N such

that we have Mγ′

µ ∩ Fm 6= ∅ for every γ′ ∈ T with γ′ ⊇ γ.
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Proof of the claim. Suppose the statement is not true. In particular, it does not

hold for γ = ∅ and m = 1. That is, there is some γ′1 ∈ T so that Mγ′1
µ ∩ F1 = ∅. If

1 ∈ rng(γ′1), we set γ1 = γ′1. Otherwise, we set γ1 = γ′1
_

(1).
In the next step, we use that the statement is not true for γ1 and m = 2 to

obtain γ′2 ∈ T , γ′2 ⊇ γ1 so that Mγ′2
µ ∩ F2 = ∅. If 2 ∈ rng(γ′2), we set γ2 = γ′2.

Otherwise, we set γ2 = γ′2
_

(2).
We continue analogously. At the end of the recursion, we a obtain a bijection

π : N → N such that π ⊇ γn for every n ∈ N and Mγn
µ ∩ Fn = ∅ for every n ∈ N.

Consider µ0 ∈ B given as

µ0

( k∑
i=1

aiei

)
:= µ

( k∑
i=1

aieπ(i)

)
, k ∈ N, (ai)

k
i=1 ∈ Qk.

Then the linear mapping given by ei 7→ eπ(i), i ∈ N, witnesses that Xµ0
≡ Xµ and

µ0 ∈ Mγn
µ for every n ∈ N. Thus, µ0 /∈

⋃∞
n=1 Fn which is in contradiction with

µ0 ∈ 〈Xµ〉≡ ⊆
⋃∞
n=1 Fn. �

Since X 6' `2, by the celebrated solution to the homogeneous subspace problem
following from the results of Komorowski and Tomczak-Jaegermann ([30]) and of
Gowers ([24]), it must contain an infinite-dimensional closed subspace Y ⊆ X that
is not isomorphic to X. Let I ⊆ N be an infinite subset and {xn}n∈N a sequence
of linearly independent vectors in X so that span{xn}n∈N = X and span{xn : n ∈
I} = Y . We define µ ∈ B as

µ
( k∑
i=1

aiei

)
:=
∥∥∥ k∑
i=1

aixi

∥∥∥
X
, k ∈ N, (ai)

k
i=1 ∈ Qk.

Then 〈Xµ〉≡ = 〈X〉≡ ⊆
⋃∞
n=1 Fn and so, by the claim above, there exist γ ∈ T and

m ∈ N with Mγ′

µ ∩ Fm 6= ∅ for every γ′ ∈ T with γ′ ⊇ γ. Consider now the space
Z := (span{ei : i ∈ I ∪ rng(γ)}, µ) ⊆ Xµ which is isomorphic to Y ⊕ F for some

finite-dimensional Banach space F . Fix some Ĩ ⊆ I such that |I \ Ĩ| = dimF and

such that (I \ Ĩ) ∩ rng(γ) = ∅. Denote by Y ′ the subspace span{ei : i ∈ Ĩ} and by

E the finite dimensional subspace span{ei : i ∈ I \ Ĩ} isomorphic to F . It is easy to

check that we have Y ' Y ′ ⊕ E. Define Z̃ := (span{ei : i ∈ Ĩ ∪ rng(γ)}, µ). Then
we have

Z̃ ' Y ′ ⊕ F ' Y ′ ⊕ E ' Y,
and so Z̃ 6' X. Let ϕ : N→ rng(γ) ∪ Ĩ be a bijection with ϕ ⊇ γ. We define ν ∈ B
by

ν
( k∑
i=1

aiei

)
:= µ

( k∑
i=1

aieϕ(i)

)
, k ∈ N, (ai)

k
i=1 ∈ Qk.

Clearly, Xν ≡ Z̃ 6' X.
We claim that ν ∈ Fm. This will be in contradiction with the fact that Fm ⊆

〈X〉'. Since Fm is closed, it suffices to check that each basic open neighborhood of
ν intersects Fm. Pick v1, . . . , vl ∈ V and ε > 0. We need to find µ′ ∈ Fm so that
|µ′(vj)− ν(vj)| < ε for every j ≤ l.

Let L ∈ N, L ≥ |γ|, be such that v1, . . . , vl ∈ span{ei : i ≤ L}. Since ϕ|{1,...,L} ⊇
γ, we may pick µ′ ∈Mϕ|{1,...,L}

µ ∩ Fm. Then

µ′
( L∑
i=1

aiei

)
= µ

( L∑
i=1

aieϕ(i)

)
= ν

( L∑
i=1

aiei

)
, (ai)

L
i=1 ∈ QL.

In particular, µ′(vj) = ν(vj), j ≤ l, as desired. �
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In the remainder of this section we head towards the proof of Theorem 6.2. Fol-
lowing [28], we say that an increasing sequence E1 ⊆ E2 ⊆ . . . of finite-dimensional
subspaces of a separable Banach space X whose union is dense is a paving of X.
A separable Banach space X is determined by its pavings if whenever Y is a Ba-
nach space for which there are pavings {En}∞n=1 of X and {Fn}∞n=1 of Y with
supn∈N dBM (En, Fn) <∞, then Y is isomorphic to X. We refer the reader to [28]
for details and examples.

We start with a straightforward generalization of Theorem 4.6.

Proposition 6.3. Let X be a separable infinite-dimensional Banach space, {En}∞n=1

paving of X and λ ≥ 1. Then the set{
µ ∈ P∞ : for every ε > 0 there is a paving {Fk}∞k=1 of Xµ and an increasing

sequence (nk)∞k=1 ∈ NN with sup
k∈N

dBM (Fk, Enk) ≤ λ+ ε
}

is Gδ in P∞.

Proof. The proof is verbatim the same as the proof of Theorem 4.6 with the only
exception that instead of `np we write En and we suppose we have some fixed basis
of each En. �

Proof of Theorem 6.2. Pick a paving {En}∞n=1 of X. It is easy to see that for every
µ ∈ P∞ the Banach space Xµ is isomorphic to X if and only if µ belongs to the
set from Proposition 6.3 for some λ ≥ 1. The “In particular” part follows since
P∞ is Gδ in P, see Corollary 1.5. For admissible topologies, the result follows by
applying Theorem 1.17. �

7. Miscellaneous

7.1. Superreflexive spaces. Recall that a map f : M → N between metric spaces
is called a C-bilipschitz embedding if

∀x 6= y ∈M : C−1dM (x, y) < dN (f(x), f(y)) < CdM (x, y).

Lemma 7.1. Let M be a finite metric space and C > 0. The set E(M,C) consisting
of those µ ∈ P such that M admits a C-bilipschitz embedding into Xµ is open in
P.

Proof. Let µ ∈ E(M,C). Thus, there is a C-bilipschitz embedding f : M → Xµ.
By perturbing the image of f if necessary, we may without loss of generality assume
that f(M) ⊆ V .

Consider ε > 0 and the open neighborhood Uε consisting of those µ′ ∈ P for
which |µ(f(x)−f(y))−µ′(f(x)−f(y))| < ε for every x, y ∈M . Then Uε ⊆ E(M,C)
for ε > 0 small enough. Indeed, it suffices to choose ε smaller than

min{ min
x 6=y∈M

CdM (x, y)− µ(f(x)− f(y)), min
x 6=y∈M

µ(f(x)− f(y))− C−1dM (x, y)}.

The easy verification is left to the reader. �

Proposition 7.2. Let (Mn)n∈N be a sequence of finite metric spaces and let X be
the class of those Banach spaces X for which there exists a constant C such that
for every n ∈ N, Mn admits a C-bilipschitz embedding into X.

Then F := {µ ∈ P∞ : Xµ is in X} is Gδσ in P∞.

Proof. Follows immediately from Lemma 7.1, because we have

F = P∞ ∩
⋃
C>0

⋂
n∈N

E(Mn, C).

�
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Bourgain in his seminal paper [7] found a sequence of finite metric spaces (Mn)n∈N
such that a separable Banach space is not superreflexive if and only if there exists
a constant C such that for every n ∈ N, Mn admits C-bilipschitz embedding into
X. We refer the interested reader to [44, Section 9] for some more related facts and
results. Thus, combining this result with Proposition 7.2 we obtain immediately
the following.

Theorem 7.3. The class of all superreflexive spaces is Fσδ in P∞.

A metric space M is called locally finite if it is uniformly discrete and all balls in
M are finite sets (in particular, every such M is at most countable). Let us mention
a result by Ostrovskii by which a locally finite metric space bilipschitz embeds into
a Banach space X if and only if all of its finite subsets admit uniformly bilipschitz
embeddings into X, see [43] or [44, Theorem 2.6]. Thus, from Proposition 7.2 we
obtain also the following.

Corollary 7.4. Let M be a locally finite metric space. Then the set of those
µ ∈ P∞ for which M admits a bilipschitz embeddings into Xµ is Gδσ in P∞.

It is well-known that many important classes of separable Banach spaces are not
Borel. This concerns e.g. reflexive spaces, spaces with separable dual, spaces con-
taining `1, spaces with the Radon-Nikodým property, spaces isomorphic to Lp[0, 1]
for p ∈ (1, 2) ∪ (2,∞), or spaces isomorphic to c0. We refer to [4, page 130 and
Corollary 3.3] and [33, Theorem 1.1] for papers which contain the corresponding
results and to the monograph [12] and the survey [21] for some more information.
Thus, e.g. in combination with Corollary 7.4, we see that none of those classes
might be characterized as a class into which a given locally finite metric space
bilipchitz embeds. Let us give an example of such a result which is related to [42,
Problem 12.5(b)]. This is an elementary, but interesting application of the whole
theory.

Corollary 7.5. There does not exist a locally finite metric space M such that any
separable Banach space X is not reflexive if and only if M admits a bilipschitz
embeddings into X.

Remark 7.6. Let us draw attention of the reader once more to the remarkable
paper [42], where the authors found a metric characterization of reflexivity even
though such a condition is necessarily non Borel (as mentioned above).

7.2. Szlenk indices. In this subsection we give estimates on the Borel classes of
spaces with Szlenk index less than or equal to a given ordinal number. Note that
it is a result by Bossard, see [4, Section 4], that those sets are Borel and their
Borel classes are unbounded. So our contribution here is that we provide certain
quantitative estimates from above. Similarly, we give an estimate on the Borel class
of spaces with summable Szlenk index, which is a quantitative improvement of the
result mentioned in [20, page 367]. Let us start with the corresponding definitions.
Let X be a real Banach space and K ⊆ X∗ a w∗-compact set. Following [36], for
ε > 0 we define sε(K) as the Szlenk derivative of the set K (see Subsection 5.2) and
then we inductively define sαε (K) for an ordinal α by sα+1

ε (K) := sε(s
α
ε (K)) and

sαε (K) :=
⋂
β<α s

β
ε (K) if α is a limit ordinal. Given a real Banach space X, Sz(X, ε)

is the least ordinal α such that sαε (BX∗) = ∅, if such an ordinal exists (otherwise
we write Sz(X, ε) =∞). The Szlenk index is defined by Sz(X) = supε>0 Sz(X, ε).

Recall that for a separable infinite-dimensional Banach space X the Szlenk index
is either ∞ or ωα for some α ∈ [1, ω1), see [36, Section 3].

Theorem 7.7. Let α ∈ [1,∞) be an ordinal. Then

{µ ∈ P∞ : Sz(Xµ) ≤ ωα}
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is a Π0
ωα+1 set in P∞.

Proof. Using Lemma 5.10, it is easy to prove by induction on n that the mapping
K(B`∞) 3 F 7→ snε (F ) ∈ K(B`∞) is Σ0

2n+1-measurable for every n ∈ N. Further,

the mapping K(B`∞) 3 F 7→ sωε (F ) ∈ K(B`∞) is Σ0
ω+1-measurable. Indeed, for

every open V ⊆ B`∞ , by compactness argument, we have

{F : sωε (F ) ⊆ V } =

∞⋃
n=1

{F : snε (F ) ⊆ V }

which is a Σ0
ω set, so by Lemma 5.8 the mapping sωε is Σ0

ω+1-measurable. Similarly,

we prove by transfinite induction that sβε is Σ0
β+1-measurable whenever β ∈ [ω, ω1)

is a limit ordinal.
Let Ω be the mapping from Lemma 5.9. Then by Lemma 5.7 we have

{µ ∈ P∞ : Sz(Xµ) ≤ ωα} =
⋂
k∈N
{µ ∈ P∞ : Sz(Xµ,

1
k ) ≤ ωα}

=
⋂
k∈N
{µ ∈ P∞ : sω

α

1/k(Ω(µ)) = ∅},

which, by the above and Lemma 5.9, is a countable intersection of preimages of
closed sets under Σ0

ωα+1-measurable mapping, so it is a Π0
ωα+1 set in P∞. �

Let us recall that a Banach space X has summable Szlenk index if there is a
constant M such that for all positive ε1, . . . , εn with sε1 . . . sεnBX∗ 6= ∅ we have∑n
i=1 εi ≤M .

Proposition 7.8. The set {µ ∈ P∞ : Xµ has a summable Szlenk index} is a Σ0
ω+2

set in P∞.

Proof. Let Ω be the mapping from Lemma 5.9. It is easy to see that the set
{µ ∈ P∞ : Xµ has a summable Szlenk index} is equal to⋃

M∈N

⋂
ε1,...,εn∈Q+∑n
i=1 εi>M

{µ ∈ P∞ : sε1 . . . sεnΩ(µ) = ∅},

which by Lemma 5.9 and Lemma 5.10 is a Σ0
ω+2 set in P∞. �

Finally, let us note that similarly one can of course estimate Borel complexity of
various other classes of spaces related to Szlenk derivations, e.g. spaces with Szlenk
power type at most p etc.

7.3. Spaces having Schauder basis-like structures. It is an open problem
whether the class of spaces with Schauder basis is a Borel set in B (see e.g. [12,
Problem 8]) and note that by the results from Section 1 it does not matter whether
we use the coding SB(C([0, 1])) or B. However, it was proved by Ghawadrah that
the class of spaces with π-property is Borel (actually, it is Σ0

6 in P∞ which follows
immediately from [16, Lemma 2.1], see also [19]) and that the class of spaces with
the bounded approximation property (BAP) is Borel (actually, it is Σ0

7 in P∞
which follows immediately from [18, Lemma 2.1] and this estimate has recently
been improved to Σ0

6 in any admissible topology, see [19]).
One is therefore led to the question of finding examples of Banach spaces having

BAP but not the Schauder basis. Such an example was constructed by Szarek [47].
Actually, Szarek considered classes of separable spaces with local basis structure
(LBS) and local Π-basis structure (LΠBS) for which we have

basis =⇒ (LΠBS) =⇒
(

(LBS) and (BAP)
)

=⇒ (BAP)
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and he proved that the converse to the second and the third implication does not
hold in general. The problem of whether the converse to the first implication holds
seems to be open, see [47, Problem 1.8]. In this subsection we prove that both
(LBS) and (LΠBS) give rise to a Borel class of separable Banach spaces (we even
compute an upper bound on their Borel complexities, see Theorem 7.13). Note that
this result somehow builds a bridge between both open problems mentioned above,
that is, between the problem of whether 〈spaces with Schauder basis〉 is a Borel set
in B and the problem of whether every separable Banach space with (LΠBS) has a
basis.

Let us start with the definitions as they are given in [47].

Definition 7.9. By the basis constant of a basis (xi)
d
i=1 of a Banach space X of

dimension d ∈ [0,∞] we mean the least number C ≥ 1 such that ‖
∑n
i=1 aixi‖ ≤

C‖
∑m
i=1 aixi‖ whenever n,m ∈ N, n ≤ m ≤ d and a1, . . . , am ∈ R. The basis

constant of (xi)
d
i=1 is denoted by bc((xi)

d
i=1). We further denote

bc(X) = inf
{

bc((xi)
d
i=1) : (xi)

d
i=1 is a basis of X

}
.

Definition 7.10. A Banach space X is said to have the local basis structure (LBS)

if X =
⋃∞
n=1En, where E1 ⊆ E2 ⊆ . . . are finite-dimensional subspaces satisfying

supn∈N bc(En) <∞.

Further, X is said to have the local Π-basis structure (LΠBS) if X =
⋃∞
n=1En,

where E1 ⊆ E2 ⊆ . . . are finite-dimensional subspaces satisfying supn∈N bc(En) <
∞ for which there are projections Pn : X → En such that Pn(X) = En and
supn∈N ‖Pn‖ <∞.

Lemma 7.11. Whenever E is a finite-dimensional subspace of a Banach space X,
δ ∈ (0, 1), K > 0, T : E → X is a (1 + δ)-isomorphism (not necessarily surjective)
with ‖T − I‖ < δ and P : X → E is a projection with P (X) = E and ‖P‖ ≤ K,
then for every subspace F of E we have ‖TP |T (F ) − IT (F )‖ ≤ 4δK.

Moreover, whenever ‖TP |T (E)−IT (E)‖ ≤ q < 1 then T (E) is (1+δ)K
1−q -complemented

in X.

Proof. Let f1, . . . , fn be a basis of F . Then for every x =
∑n
i=1 aiT (fi) ∈ T (F ) we

have

‖TPx−x‖ = ‖TP (

n∑
i=1

ai(T (fi)−fi))‖ ≤ (1+δ)K‖(T −I)T−1x‖ ≤ (1+δ)2δK‖x‖.

Moreover, if ‖TP |T (E) − IT (E)‖ < 1 then the mapping TP |T (E) is an isomorphism

with ‖(TP |T (E))
−1‖ ≤

∑∞
i=0 q

i = 1
1−q . It is now straightforward to prove that P ′ :=

(TP |T (E))
−1TP : X → T (E) is a projection onto T (E) with ‖P ′‖ ≤ (1+δ)K

1−q . �

Lemma 7.12. For every µ ∈ B, K, l ∈ N and v1, . . . , vm ∈ V , let us denote by
Φ(µ,K, v1, . . . , vm) and Ψ(µ,K, l, v1, . . . , vm) the formulae

Φ(µ,K, v1, . . . , vm) = ∀a1, . . . , am ∈ R : max
1≤k≤m

µ
( k∑
i=1

aivi

)
≤ Kµ

( m∑
i=1

aivi

)
and

Ψ(µ,K, l, v1, . . . , vm) = ∃u1, . . . , ul ∈ Q-span{v1, . . . , vm} ∀a1, . . . , am, b1, . . . , bl ∈ R :

µ
( m∑
i=1

aivi +

l∑
i=1

biui

)
≤ Kµ

( m∑
i=1

aivi +

l∑
i=1

biei

)
.

Then for every ν ∈ B the following holds.
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(a) The space Xν has LBS if and only if

∃K ∈ N ∀n ∈ N ∃m ∈ N ∃v1, . . . , vm ∈ V, {e1, . . . , en} ⊆ span{v1, . . . , vm}

Φ(ν,K, v1, . . . , vm).

(b) The space Xν has LΠBS if and only if

∃K ∈ N ∀n ∈ N ∃m ∈ N ∃v1, . . . , vm ∈ V, {e1, . . . , en} ⊆ span{v1, . . . , vm}

Φ(ν,K, v1, . . . , vm) ∧ ∀l ∈ NΨ(ν,K, l, v1, . . . , vm).

Proof. We prove only the more difficult part (b). Since ν ∈ B, the space Xν is
just the completion of (c00, ν) (it is not necessary to consider a quotient). So, the
notions of linear span and of linear independence have the same meaning in c00 and
in Xν , if performed on subsets of c00.

Let us suppose that ν ∈ B satisfies the formula in (b) for some K ∈ N. We
put E0 = {0} and choose recursively subspaces E1 ⊆ E2 ⊆ . . . of Xν , each of
which is generated by a finite number of elements of V , in the following way.
Assuming that Ej has been already chosen, we pick first nj+1 ≥ j + 1 such that

Ej ⊆ span{e1, . . . , enj+1
}. Then we can pick mj+1 ∈ N and vj+1

1 , . . . , vj+1
mj+1

∈ V
with {e1, . . . , enj+1} ⊆ span{vj+1

1 , . . . , vj+1
mj+1
} such that Φ(ν,K, vj+1

1 , . . . , vj+1
mj+1

)

and for every l ∈ N, Ψ(ν,K, l, vj+1
1 , . . . , vj+1

mj+1
) hold.

We put Ej+1 = span
{
vj+1

1 , . . . , vj+1
mj+1

}
. In this way, we obtain Ej ⊆ Ej+1. Also,

Xν =
⋃∞
n=1En (we have ej+1 ∈ Ej+1, as nj+1 ≥ j + 1). If we take all non-zero

vectors vj+1
i , 1 ≤ i ≤ mj+1, we obtain a basis of Ej+1 with the basis constant at

most K.
To show that the sequence E1 ⊆ E2 ⊆ . . . witnesses that Xν has LΠBS,

it remains to find a projection Pj+1 of Xν onto Ej+1 such that ‖Pj+1‖ ≤ K.

Let us pick some l ∈ N and put E(l) = span{vj+1
1 , . . . , vj+1

mj+1
, e1, . . . , el}. By

Ψ(ν,K, l, vj+1
1 , . . . , vj+1

mj+1
), there exists a projection P (l) of E(l) onto Ej+1 with

‖P (l)‖ ≤ K. Since the norms of P (l), for l ∈ N, are uniformly bounded and have a
fixed finite-dimensional range, there exists their accumulation point in SOT which
is a projection Pj+1 : Xν → Ej+1 of norm bounded by K as desired.

Conversely, suppose that Xν has LΠBS as witnessed by some C > 1 and
a sequence (En)n∈N of finite-dimensional subspaces satisfying Xν =

⋃
nEn and

supn∈N bc(En) < C, for which there are projections Pn : Xν → En such that
Pn(Xν) = En and supn∈N ‖Pn‖ < C. PickD > 0 such thatHn := (span{e1, . . . , en}, ν)
is D-complemented in Xν and let φ1 := φe1,...,en be the function from Lemma 2.4(i).
Fix ε > 0 such that φ1(t) is small enough (to be specified later) whenever t < ε.
Find k ∈ N such that there are h1, . . . , hn ∈ Ek with ν(ei − hi) < ε. If φ1(ε) is

small enough we have (1+φ1(ε))D
1−4φ1(ε)D ≤ 2D (this value refers to the “Moreover” part

in Lemma 7.11). By Lemma 7.11, span{hi : i ≤ n} is 2D-complemented in Xν ,
so let Q : Xν → span{hi : i ≤ n} be the corresponding projection. Pick a basis
hn+1, . . . , hdimEk of the space Ek ∩ Q−1(0) which is (2D + 1)-complemented in
Ek. Let φ2 := φhn+1,...,hdimEk be the function from Lemma 2.4(i). Fix δ > 0 such
that φ2(t) is small enough (to be specified later) whenever t < δ. Finally, find
fn+1, . . . , fdimEk ∈ V with ν(fj − hj) < δ for j = n+ 1, . . . ,dimEk.

We claim that the space Fn := (span{e1, . . . , en, fn+1, . . . , fdimEk}, ν) is 2C-
complemented in Xν and dBM (Fn, Ek) < 2. If we denote by T : Ek → Fn the
linear mapping given by hi 7→ ei, i ≤ n, and hj 7→ fj , n+ 1 ≤ j ≤ dimEk, then for
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every y ∈ span{hi : i ≤ n} and z ∈ span{hj : j = n+ 1, . . . ,dimEk} we have

ν(T (y + z)− y − z) ≤ ν(Ty − y) + ν(Tz − z) ≤ φ1(ε)ν(y) + φ2(δ)ν(z)

≤
(
φ1(ε)2D + φ2(δ)(2D + 1)

)
ν(y + z);

hence, if η :=
(
φ1(ε)2D+φ2(δ)(2D+1)

)
< 1, we obtain ‖T‖ ≤ 1+‖I−T‖ ≤ 1+η

and ‖Tx‖ ≥ ‖x‖−‖(I−T )x‖ ≥ (1−η)‖x‖ for every x ∈ Ek so T is an isomorphism
with ‖T‖−1 ≤ (1−η)−1. Thus, by Lemma 7.11, if φ1(ε) and φ2(δ) are small enough
(and so η is small enough), we obtain ‖T‖‖T−1‖ < 2 and Fn is 2C-complemented
in Xν .

Thus, bc(Fn) ≤ bc(Ek)dBM (Ek, Fn) < 2C which is witnessed by some basis
v1, . . . , vm ∈ V of Fn. This shows that Φ(ν, 2C, v1, . . . , vm) holds. Let P : Xν → Fn
be a projection with P [Xν ] = Fn and ‖P‖ ≤ 2C. Given l ∈ N, let T ⊆ {1, . . . , l}
be a set such that (ei)i∈T together with (vi)

m
i=1 form a basis of span({v1, . . . , vm}∪

{e1, . . . , el}). Pick A > 0 such that (vi)
m
i=1 ∪ (ei)i∈T

A∼ `
m+|T |
1 . For i ∈ T pick

ui ∈ spanQ{v1, . . . , vm} such that ν(ui−P (ei)) <
C
A . Then for every a1, . . . , am ∈ R

and every (bi)i∈T ∈ RT we have

ν
( m∑
i=1

aivi +
∑
i∈T

biui

)
≤ 2Cν

( m∑
i=1

aivi +
∑
i∈T

biei

)
+ ν(

∑
i∈T

bi(ui − P (ei)))

≤ 3Cν
( m∑
i=1

aivi +
∑
i∈T

biei

)
.

Thus, the linear mapping O : span({v1, . . . , vm}∪ {e1, . . . , el})→ span{v1, . . . , vm}
given by vi 7→ vi, i ≤ m, and ei 7→ ui, i ∈ T , is a linear projection, and if we put
ui := O(ei) ∈ V for every i ∈ {1, . . . , l}, we see that Ψ(ν, 3C, l, v1, . . . , vm) holds
and the formula in (b) is satisfied with K = 3C. �

Theorem 7.13. (a) The class of spaces which have LBS is Σ0
4 in B.

(b) The class of spaces which have LΠBS is Σ0
6 in B.

Proof. This follows from Lemma 7.12 because the conditions given by formulas Φ
and Ψ are obviously closed and Fσ, respectively. �

8. Open questions and remarks

In Section 1 we investigated three ways of formalizing the class of all separable
infinite-dimensional Banach spaces as a Polish space. Those were denoted by P∞,
B and SB∞(X). We obtained an optimal reduction from B to SB∞(X) and from
SB∞(X) to P∞. However, our reduction from P∞ to B seems not to be optimal,
so one is tempted to ask the following.

Question 1. Does there exist a continuous mapping Φ : P∞ → B such that for
every µ ∈ P∞ we have Xµ ≡ XΦ(µ)?

Note that a positive answer to Question 1 would imply a positive answer to
Question 2 and that a sufficient condition for a positive solution of Question 2 is
provided by Proposition 1.29.

Question 2. Let X be an isometrically universal separable Banach space and let τ
be an admissible topology on SB(X). Does there exist a Σ0

2-measurable mapping
Φ : P∞ → (SB(X), τ) such that for every µ ∈ P∞ we have Xµ ≡ Φ(µ)?

In Theorem 6.1 we proved that `2 is the unique separable infinite-dimensional
Banach space (up to isomorphism) whose isomorphism class is Fσ. Following [28],
we say that a separable infinite-dimensional Banach space X is determined by its
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finite dimensional subspaces if it is isomorphic to every separable Banach space
Y which is finitely crudely representable in X and for which X is finitely crudely
representable in Y . Note that `2 is determined by its finite dimensional subspaces
and that if a separable infinite-dimensional Banach space is determined by its finite
dimensional subspaces then it is obviously determined by its pavings and so, by
Theorem 6.2, its isomorphism class is Gδσ. Johnson, Lindenstrauss, and Schecht-
man conjectured (see [28, Conjecture 7.3]) that `2 is the unique, up to isomorphism,
separable infinite-dimensional Banach space which is determined by its finite dimen-
sional subspaces. We believe that Theorem 6.1 could be instrumental for proving
this conjecture, since it follows from this theorem that the conjecture is equivalent
to the positive answer to the following question. We thank Gilles Godefroy who
suggested to us that there might be a relation between having Fσ isomorphism class
and being determined by finite dimensional subspaces.

Question 3. Let X be a separable infinite-dimensional Banach space determined
by its finite dimensional subspaces. Is 〈X〉' Fσ in B?

It would be interesting to know whether there is a separable infinite-dimensional
Banach space X such that 〈X〉' is Gδ in B or in P∞. Note that the only one
possible candidate is the Gurarĭı space, see Section 3 for more details. One of
the possible strategies to answer Question 4 in negative for P∞ would be to find
an admissible topology τ on SB(X) such that 〈G〉' is a dense and meager set in
(SB(X), τ). However, we do not even know whether 〈G〉' is Borel.

Question 4. Is 〈G〉' a Gδ set in P∞ or in B? Is it at least Borel?

Solving the homogeneous Banach space problem, Komorowski and Tomczak-
Jaegermann ([30]), and Gowers ([24]) proved that if a separable infinite-dimensional
Banach space is isomorphic to all of its closed infinite-dimensional subspaces, then
it is isomorphic to `2. It seems that the isometric variant of this result is open;
that is, whether `2 is the only separable infinite-dimensional Banach space that
is isometric to all of its infinite-dimensional closed subspaces. We note that any
Banach space satisfying this criterion must be, by the Gowers’ result, isomorphic
to `2. Our initial interest in this problem was that we observed that a positive
answer implies that whenever 〈X〉≡ is closed in P∞ then X ≡ `2. Eventually we
found another argument (see Section 3), but the question is clearly of independent
interest.

Question 5. Let X be a separable infinite-dimensional Banach space which is
isometric to all of its closed infinite-dimensional subspaces. Is then X isometric to
`2?

In Sections 2, 3 and 4 we proved that 〈G〉≡, resp. 〈Lp[0, 1]〉≡, for p ∈ [1,∞),
are Gδ; we even proved that they are dense Gδ in P∞, resp. in Lp,1+ ∩ P∞.
Coincidentally, all these spaces are Fräıssé limits (we refer to [13, Proposition 3.7]
for this statement about Lp[0, 1]. According to [13], no other examples of separable
Banach spaces which are Fräıssé limits seem to be known. This motivates us to ask
the following.

Question 6. Does there exist a separable infinite-dimensional Banach space X
which is not isometric to Lp[0, 1], for p ∈ [1,∞), and to the Gurarĭı space, and
〈X〉≡ is Gδ in P∞ or in B?

It also follows that for 1 ≤ p <∞, Lp[0, 1] is a generic Lp,1+-space. On the other
hand, by Corollary 3.12, for p ∈ [1, 2)∪(2,∞), Lp[0, 1] is not a generic QSLp-space.
For p = 2, `2 is obviously the generic QSL2-space, and since QSL1-spaces coincide
with the class of all Banach spaces, for p = 1, G is the generic QSL1-space. This
leaves open the next question.
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Question 7. For p ∈ (1, 2) ∪ (2,∞), does there exist a generic QSLp-space in B
or P∞?

In Theorem 7.3, we have computed that the class of superreflexive spaces is Fσδ.
It is easy to check that the class of superreflexive spaces is dense in P∞ and B,
so it cannot be Gδ as then this class would have a non-empty intersection with
the isometry class of G which is not superreflexive. However, the following is not
known to us.

Question 8. Is the class of all superreflexive spaces Fσδ-complete in P∞ or B?

Taking into account that spaces with summable Szlenk index form a class of
spaces which is Σ0

ω+2, see Proposition 7.8, the following seems to be an interesting
problem.

Question 9. Is the set {µ ∈ P∞ : Xµ has a summable Szlenk index} of a finite
Borel class?

Even though we do not formulate it as a numbered question, a natural project
to consider is to determine at least upper bounds for isometry classes of other
(classical or less classical) separable infinite-dimensional Banach spaces, such as
C[0, 1], C([0, α]) with α countable ordinal, Orlicz sequence spaces, Orlicz function
spaces, spaces of absolutely continuous functions, Tsirelson’s space, etc.

Kechris in [29, page 189] mentions that there are not known any natural examples
of Borel sets from topology or analysis that are Π0

ξ or Σ0
ξ , for ξ ≥ 5, and not of

lower complexity. We think that the area of research investigated in this paper is
a good one to find such examples.
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