Bernard DACOROGNA (EPFL)

"Symplectic decomposition, Darboux theorem and ellipticity"

Our first result concerns the classical Darboux theorem. We prove that if ω_m is the standard symplectic form and f is a symplectic form, then we can find a diffeomorphism φ , with optimal regularity, satisfying

$$\varphi^*(\omega_m) = f \text{ and } \delta[\varphi \,\lrcorner\, \omega_m] = 0$$

provided that f is a small perturbation of ω_m . Moreover we show that the above system is elliptic and that we have uniqueness, when coupled with a Dirichlet datum.

We then apply the above result to the so-called symplectic decomposition. We show that any map φ , satisfying appropriate assumptions, can be written as

 $\varphi = \psi \circ \chi$

where

$$\psi^*(\omega_m) = \omega_m \text{ and } \delta[\chi \lrcorner \omega_m] = d\chi \lrcorner \omega_m = 0.$$

The analogy with mass transportation and the Monge-Ampère equation, as well as with the polar decomposition, will be emphasized.

This is a joint work with Wifrid GANGBO and Olivier KNEUSS.