Numerical solution of partial differential equations

Vít Dolejší

Charles University Prague Faculty of Mathematics and Physics

Course "Discontinuous Galerkin Method" https://www2.karlin.mff.cuni.cz/~dolejsi/Vyuka/DGM.html

Why partial differential equations?

- many processes can be described (approximately) by PDEs
 - fluid dynamics, hydrology, heat and mass transfer, medicine, environmental protection, financial mathematics, etc.
 - these PDEs represent a mathematical description of physical, chemical, biological, etc. rules and/or laws
- some simplification usually necessary ⇒ model error
- these PDEs are usually too complicated for an exact solution

- we solve PDEs approximately (numerically)
- we define new simplified (finite dimensional, solvable) problem

 discretization error

Why partial differential equations?

- many processes can be described (approximately) by PDEs
 - fluid dynamics, hydrology, heat and mass transfer, medicine, environmental protection, financial mathematics, etc.
 - these PDEs represent a mathematical description of physical chemical, biological, etc. rules and/or laws
- some simplification usually necessary some model error
- these PDEs are usually too complicated for an exact solution

- we solve PDEs approximately (numerically)
- we define new simplified (finite dimensional, solvable) problem ⇒ discretization error

Why partial differential equations?

- many processes can be described (approximately) by PDEs
 - fluid dynamics, hydrology, heat and mass transfer, medicine, environmental protection, financial mathematics, etc.
 - these PDEs represent a mathematical description of physical chemical, biological, etc. rules and/or laws
- some simplification usually necessary some model error
- these PDEs are usually too complicated for an exact solution

- we solve PDEs approximately (numerically)
- we define new simplified (finite dimensional, solvable) problem ⇒ discretization error

Why partial differential equations?

- many processes can be described (approximately) by PDEs
 - fluid dynamics, hydrology, heat and mass transfer, medicine, environmental protection, financial mathematics, etc.
 - these PDEs represent a mathematical description of physical chemical, biological, etc. rules and/or laws
- some simplification usually necessary

 model error
- these PDEs are usually too complicated for an exact solution

- we solve PDEs approximately (numerically)
- we define new simplified (finite dimensional, solvable) problem ⇒ discretization error

Why partial differential equations?

- many processes can be described (approximately) by PDEs
 - fluid dynamics, hydrology, heat and mass transfer, medicine, environmental protection, financial mathematics, etc.
 - these PDEs represent a mathematical description of physical, chemical, biological, etc. rules and/or laws
- some simplification usually necessary

 model error
- these PDEs are usually too complicated for an exact solution

- we solve PDEs approximately (numerically)
- we define new simplified (finite dimensional, solvable) problem \implies discretization error

Why partial differential equations?

- many processes can be described (approximately) by PDEs
 - fluid dynamics, hydrology, heat and mass transfer, medicine, environmental protection, financial mathematics, etc.
 - these PDEs represent a mathematical description of physical, chemical, biological, etc. rules and/or laws
- some simplification usually necessary ⇒ model error
- these PDEs are usually too complicated for an exact solution

- we solve PDEs approximately (numerically)
- we define new simplified (finite dimensional, solvable) problem \implies discretization error

Why partial differential equations?

- many processes can be described (approximately) by PDEs
 - fluid dynamics, hydrology, heat and mass transfer, medicine, environmental protection, financial mathematics, etc.
 - these PDEs represent a mathematical description of physical, chemical, biological, etc. rules and/or laws
- some simplification usually necessary ⇒ model error
- these PDEs are usually too complicated for an exact solution

- we solve PDEs approximately (numerically)
- we define new simplified (finite dimensional, solvable) problem
 discretization error

Why partial differential equations?

- many processes can be described (approximately) by PDEs
 - fluid dynamics, hydrology, heat and mass transfer, medicine, environmental protection, financial mathematics, etc.
 - these PDEs represent a mathematical description of physical, chemical, biological, etc. rules and/or laws
- some simplification usually necessary ⇒ model error
- these PDEs are usually too complicated for an exact solution

- we solve PDEs approximately (numerically)
- we define new simplified (finite dimensional, solvable) problem
 discretization error

Why partial differential equations?

- many processes can be described (approximately) by PDEs
 - fluid dynamics, hydrology, heat and mass transfer, medicine, environmental protection, financial mathematics, etc.
 - these PDEs represent a mathematical description of physical, chemical, biological, etc. rules and/or laws
- some simplification usually necessary ⇒ model error
- these PDEs are usually too complicated for an exact solution

- we solve PDEs approximately (numerically)
- we define new simplified (finite dimensional, solvable) problem
 discretization error

Why partial differential equations?

- many processes can be described (approximately) by PDEs
 - fluid dynamics, hydrology, heat and mass transfer, medicine, environmental protection, financial mathematics, etc.
 - these PDEs represent a mathematical description of physical, chemical, biological, etc. rules and/or laws
- some simplification usually necessary ⇒ model error
- these PDEs are usually too complicated for an exact solution

Numerical solution of PDEs

- we solve PDEs approximately (numerically)
- we define new simplified (finite dimensional, solvable) problem

⇒ discretization error

Why partial differential equations?

- many processes can be described (approximately) by PDEs
 - fluid dynamics, hydrology, heat and mass transfer, medicine, environmental protection, financial mathematics, etc.
 - these PDEs represent a mathematical description of physical, chemical, biological, etc. rules and/or laws
- some simplification usually necessary ⇒ model error
- these PDEs are usually too complicated for an exact solution

- we solve PDEs approximately (numerically)
- we define new simplified (finite dimensional, solvable) problem
 - ⇒ discretization error

Abstract problem described by PDEs

- let V be a functional space, we seek $u \in V$ such that (EP) $\mathcal{L}u = f$
- \mathcal{L} is a differential operator, f is a right-hand side,
- let solution of (EP) exists and is unique

- let V_h be a space, $\dim(V_h) < \infty$, $V_h \subset V$ or $V_h \not\subset V$,
- we seek $u_h \in V_h$ such that (AP) $\mathcal{L}_h u_h = f_h$,
- \mathcal{L}_h is a discrete operator, f_h is an approximation of f.
- problem (AP) has to be quickly solvable

Abstract problem described by PDEs

- let V be a functional space, we seek $u \in V$ such that (EP) $\mathcal{L}u = f$
- \mathcal{L} is a differential operator, f is a right-hand side,
- let solution of (EP) exists and is unique

- let V_h be a space, $\dim(V_h) < \infty$, $V_h \subset V$ or $V_h \not\subset V$,
- we seek $u_h \in V_h$ such that (AP) $\mathcal{L}_h u_h = f_h$,
- \mathcal{L}_h is a discrete operator, f_h is an approximation of f.
- problem (AP) has to be quickly solvable

Abstract problem described by PDEs

- let V be a functional space, we seek $u \in V$ such that (EP) $\mathcal{L}u = f$
- \mathcal{L} is a differential operator, f is a right-hand side,
- let solution of (EP) exists and is unique

- let V_h be a space, $\dim(V_h) < \infty$, $V_h \subset V$ or $V_h \not\subset V$,
- we seek $u_h \in V_h$ such that (AP) $\mathcal{L}_h u_h = f_h$,
- \mathcal{L}_h is a discrete operator, f_h is an approximation of f.
- problem (AP) has to be quickly solvable

Abstract problem described by PDEs

• let V be a functional space, we seek $u \in V$ such that

(EP)
$$\mathcal{L}u = f$$

- \mathcal{L} is a differential operator, f is a right-hand side,
- let solution of (EP) exists and is unique

- let V_h be a space, $\dim(V_h) < \infty$, $V_h \subset V$ or $V_h \not\subset V$,
- we seek $u_h \in V_h$ such that (AP)

$$\mathcal{L}_h u_h = f_h$$

- \mathcal{L}_h is a discrete operator, f_h is an approximation of f.
- problem (AP) has to be quickly solvable

Abstract problem described by PDEs

- let V be a functional space, we seek $u \in V$ such that (EP) $\mathcal{L}u = f$
- \mathcal{L} is a differential operator, f is a right-hand side,
- let solution of (EP) exists and is unique

- let V_h be a space, $\dim(V_h) < \infty$, $V_h \subset V$ or $V_h \not\subset V$,
- we seek $u_h \in V_h$ such that (AP) $\mathcal{L}_h u_h = f_h$,
- \mathcal{L}_h is a discrete operator, f_h is an approximation of f.
- problem (AP) has to be quickly solvable

Abstract problem described by PDEs

- let V be a functional space, we seek $u \in V$ such that (EP) $\mathcal{L}u = f$
- \mathcal{L} is a differential operator, f is a right-hand side,
- let solution of (EP) exists and is unique

- let V_h be a space, $\dim(V_h) < \infty$, $V_h \subset V$ or $V_h \not\subset V$,
- we seek $u_h \in V_h$ such that (AP) $\mathcal{L}_h u_h = f_h$,
- \mathcal{L}_h is a discrete operator, f_h is an approximation of f.
- problem (AP) has to be quickly solvable

Abstract problem described by PDEs

- let V be a functional space, we seek $u \in V$ such that (EP) $\mathcal{L}u = \mathbf{f}$
- \mathcal{L} is a differential operator, f is a right-hand side,
- let solution of (EP) exists and is unique

- let V_h be a space, $\dim(V_h) < \infty$, $V_h \subset V$ or $V_h \not\subset V$,
- we seek $u_h \in V_h$ such that (AP) $\mathcal{L}_h u_h = f_h$,
- \mathcal{L}_h is a discrete operator, f_h is an approximation of f.
- problem (AP) has to be quickly solvable

Abstract problem described by PDEs

- let V be a functional space, we seek $u \in V$ such that (EP) $\mathcal{L}u = f$
- \mathcal{L} is a differential operator, f is a right-hand side,
- let solution of (EP) exists and is unique

- let V_h be a space, $\dim(V_h) < \infty$, $V_h \subset V$ or $V_h \not\subset V$,
- we seek $u_h \in V_h$ such that (AP) $\mathcal{L}_h u_h = f_h$,
- \mathcal{L}_h is a discrete operator, f_h is an approximation of f.
- problem (AP) has to be quickly solvable

Abstract problem described by PDEs

- let V be a functional space, we seek $u \in V$ such that (EP) $\mathcal{L}u = f$
- \mathcal{L} is a differential operator, f is a right-hand side,
- let solution of (EP) exists and is unique

- let V_h be a space, $\dim(V_h) < \infty$, $V_h \subset V$ or $V_h \not\subset V$,
- we seek $u_h \in V_h$ such that (ΔP)

$$\mathcal{L}_h u_h = f_h$$

- \mathcal{L}_h is a discrete operator, f_h is an approximation of f.
- problem (AP) has to be quickly solvable

Abstract problem described by PDEs

- let V be a functional space, we seek $u \in V$ such that (EP) $\mathcal{L}u = f$
- \mathcal{L} is a differential operator, f is a right-hand side,
- let solution of (EP) exists and is unique

- let V_h be a space, $\dim(V_h) < \infty$, $V_h \subset V$ or $V_h \not\subset V$,
- we seek $u_h \in V_h$ such that (AP) $\mathcal{L}_h u_h = f_h$
- \mathcal{L}_h is a discrete operator, f_h is an approximation of f.
- problem (AP) has to be quickly solvable

Abstract problem described by PDEs

- let V be a functional space, we seek $u \in V$ such that (EP) $\mathcal{L}u = f$
- \mathcal{L} is a differential operator, f is a right-hand side,
- let solution of (EP) exists and is unique

- let V_h be a space, $\dim(V_h) < \infty$, $V_h \subset V$ or $V_h \not\subset V$,
- we seek $u_h \in V_h$ such that

$$(AP) \mathcal{L}_h u_h = f_h$$

- \mathcal{L}_h is a discrete operator, f_h is an approximation of f.
- problem (AP) has to be quickly solvable

Abstract problem described by PDEs

- let V be a functional space, we seek $u \in V$ such that (EP) $\mathcal{L}u = f$
- \mathcal{L} is a differential operator, f is a right-hand side,
- let solution of (EP) exists and is unique

- let V_h be a space, $\dim(V_h) < \infty$, $V_h \subset V$ or $V_h \not\subset V$,
- we seek $u_h \in V_h$ such that (AP) $\mathcal{L}_h u_h = f_h$,
- \mathcal{L}_h is a discrete operator, f_h is an approximation of f.
- problem (AP) has to be quickly solvable

Abstract problem described by PDEs

- let V be a functional space, we seek $u \in V$ such that (EP) $\mathcal{L}u = f$
- \mathcal{L} is a differential operator, f is a right-hand side,
- let solution of (EP) exists and is unique

- let V_h be a space, $\dim(V_h) < \infty$, $V_h \subset V$ or $V_h \not\subset V$,
- we seek $u_h \in V_h$ such that (AP) $\mathcal{L}_h u_h = f_h$,
- \mathcal{L}_h is a discrete operator, f_h is an approximation of f.
- problem (AP) has to be quickly solvable

Abstract problem described by PDEs

- let V be a functional space, we seek $u \in V$ such that (EP) $\mathcal{L}u = f$
- \mathcal{L} is a differential operator, f is a right-hand side,
- let solution of (EP) exists and is unique

Abstract numerical method

- let V_h be a space, $\dim(V_h) < \infty$, $V_h \subset V$ or $V_h \not\subset V$,
- we seek $u_h \in V_h$ such that (AP) $\mathcal{L}_h u_h = f_h,$
- \mathcal{L}_h is a discrete operator, f_h is an approximation of f.
- problem (AP) has to be quickly solvable

3 / 24

Abstract problem described by PDEs

- let V be a functional space, we seek $u \in V$ such that (EP) $\mathcal{L}u = f$
- \mathcal{L} is a differential operator, f is a right-hand side,
- let solution of (EP) exists and is unique

Abstract numerical method

- let V_h be a space, $\dim(V_h) < \infty$, $V_h \subset V$ or $V_h \not\subset V$,
- we seek $u_h \in V_h$ such that (AP) $\mathcal{L}_h u_h = f_h$,
- \mathcal{L}_h is a discrete operator, f_h is an approximation of f.
- problem (AP) has to be quickly solvable

DGM

Numerical analysis

- existence and uniqueness of u_h
- stability $||u_h|| < \infty$
- convergence: $u_h \to u$ if dof = dim $(V_h) \to \infty$
- estimate $||u u_h||$ in terms of dof (a priori estimate)
- estimate $||u u_h||$ based on u_h (a posteriori estimate)
- robustness: validity of previous items for large range of data

- algorithm for fast evaluation of u_h (efficiency)
- stability of the method in the finite precision arithmetic
- adaptive strategies = adaptive changes of V_h

Numerical analysis

- existence and uniqueness of u_h
- stability $||u_h|| < \infty$
- convergence: $u_h \to u$ if dof = dim $(V_h) \to \infty$
- estimate $||u u_h||$ in terms of dof (a priori estimate)
- estimate $||u u_h||$ based on u_h (a posteriori estimate)
- robustness: validity of previous items for large range of data

- algorithm for fast evaluation of u_h (efficiency)
- stability of the method in the finite precision arithmetic
- adaptive strategies = adaptive changes of V_h



Numerical analysis

- existence and uniqueness of u_h
- stability $||u_h|| < \infty$
- convergence: $u_h \to u$ if dof = dim $(V_h) \to \infty$
- estimate $||u u_h||$ in terms of dof (a priori estimate)
- estimate $||u u_h||$ based on u_h (a posteriori estimate)
- robustness: validity of previous items for large range of data

- algorithm for fast evaluation of u_h (efficiency)
- stability of the method in the finite precision arithmetic
- adaptive strategies = adaptive changes of V_h

Numerical analysis

- existence and uniqueness of u_h
- stability $\|u_h\| < \infty$
- convergence: $u_h \to u$ if dof = dim $(V_h) \to \infty$
- estimate $||u u_h||$ in terms of dof (a priori estimate)
- estimate $||u u_h||$ based on u_h (a posteriori estimate)
- robustness: validity of previous items for large range of data

- algorithm for fast evaluation of u_h (efficiency)
- stability of the method in the finite precision arithmetic
- adaptive strategies = adaptive changes of V_h

Numerical analysis

- existence and uniqueness of u_h
- stability $||u_h|| < \infty$
- convergence: $u_h \rightarrow u$ if dof = dim $(V_h) \rightarrow \infty$
- estimate $||u u_h||$ in terms of dof (a priori estimate)
- estimate $||u u_h||$ based on u_h (a posteriori estimate)
- robustness: validity of previous items for large range of data

Numerical realization

- algorithm for fast evaluation of u_h (efficiency)
- stability of the method in the finite precision arithmetic
- adaptive strategies = adaptive changes of V_h

DGM

Numerical analysis

- existence and uniqueness of u_h
- stability $||u_h|| < \infty$
- convergence: $u_h \to u$ if dof = dim $(V_h) \to \infty$
- estimate $\|u u_h\|$ in terms of dof (a priori estimate)
- estimate $||u u_h||$ based on u_h (a posteriori estimate)
- robustness: validity of previous items for large range of data

- algorithm for fast evaluation of u_h (efficiency)
- stability of the method in the finite precision arithmetic
- adaptive strategies = adaptive changes of V_h

Numerical analysis

- existence and uniqueness of u_h
- stability $||u_h|| < \infty$
- convergence: $u_h \to u$ if dof = dim $(V_h) \to \infty$
- estimate $||u u_h||$ in terms of dof (a priori estimate)
- estimate $\|u u_h\|$ based on u_h (a posteriori estimate)
- robustness: validity of previous items for large range of data

- algorithm for fast evaluation of u_h (efficiency)
- stability of the method in the finite precision arithmetic
- adaptive strategies = adaptive changes of V_h

Numerical analysis

- existence and uniqueness of u_h
- stability $||u_h|| < \infty$
- convergence: $u_h \to u$ if dof = dim $(V_h) \to \infty$
- estimate $||u u_h||$ in terms of dof (a priori estimate)
- estimate $||u u_h||$ based on u_h (a posteriori estimate)
- robustness: validity of previous items for large range of data

- algorithm for fast evaluation of u_h (efficiency)
- stability of the method in the finite precision arithmetic
- adaptive strategies = adaptive changes of V_h

Numerical analysis

- existence and uniqueness of u_h
- stability $||u_h|| < \infty$
- convergence: $u_h \to u$ if dof = dim $(V_h) \to \infty$
- estimate $||u u_h||$ in terms of dof (a priori estimate)
- estimate $||u u_h||$ based on u_h (a posteriori estimate)
- robustness: validity of previous items for large range of data

- algorithm for fast evaluation of u_h (efficiency)
- stability of the method in the finite precision arithmetic
- ullet adaptive strategies = adaptive changes of V_h

Goals of the numerical solution of PDEs

Numerical analysis

- existence and uniqueness of u_h
- stability $||u_h|| < \infty$
- convergence: $u_h \to u$ if dof = dim $(V_h) \to \infty$
- estimate $||u u_h||$ in terms of dof (a priori estimate)
- estimate $||u u_h||$ based on u_h (a posteriori estimate)
- robustness: validity of previous items for large range of data

Numerical realization

- algorithm for fast evaluation of u_h (efficiency)
- stability of the method in the finite precision arithmetic
- ullet adaptive strategies = adaptive changes of V_h

Goals of the numerical solution of PDEs

Numerical analysis

- existence and uniqueness of u_h
- stability $||u_h|| < \infty$
- convergence: $u_h \to u$ if dof = dim $(V_h) \to \infty$
- estimate $||u u_h||$ in terms of dof (a priori estimate)
- estimate $||u u_h||$ based on u_h (a posteriori estimate)
- robustness: validity of previous items for large range of data

Numerical realization

- algorithm for fast evaluation of u_h (efficiency)
- stability of the method in the finite precision arithmetic
- adaptive strategies = adaptive changes of V_h

Goals of the numerical solution of PDEs

Numerical analysis

- existence and uniqueness of u_h
- stability $||u_h|| < \infty$
- convergence: $u_h \to u$ if dof = dim $(V_h) \to \infty$
- estimate $||u u_h||$ in terms of dof (a priori estimate)
- estimate $||u u_h||$ based on u_h (a posteriori estimate)
- robustness: validity of previous items for large range of data

Numerical realization

- algorithm for fast evaluation of u_h (efficiency)
- stability of the method in the finite precision arithmetic
- adaptive strategies = adaptive changes of V_h

Numerical method in practise

- finite sequence of mathematical operations
- output is the approximate solution u_h

Construction of a numerical method for the given PDE

- discretization (space, time)
- setting of arising algebraic systems (numerical quadratures)
- (iterative) solution of nonlinear algebraic systems
- solution of linear algebraic systems

Type of discretizations

finite difference method, finite element method, finite volume method, spectral method, wavelets method, etc.

Numerical method in practise

- finite sequence of mathematical operations
- output is the approximate solution u_h

Construction of a numerical method for the given PDE

- discretization (space, time)
- setting of arising algebraic systems (numerical quadratures)
- (iterative) solution of nonlinear algebraic systems
- solution of linear algebraic systems

Type of discretizations

finite difference method, finite element method, finite volume method, spectral method, wavelets method, etc.

Numerical method in practise

- finite sequence of mathematical operations
- output is the approximate solution u_h

Construction of a numerical method for the given PDE

- discretization (space, time)
- setting of arising algebraic systems (numerical quadratures)
- (iterative) solution of nonlinear algebraic systems
- solution of linear algebraic systems

Type of discretizations

finite difference method, finite element method, finite volume method, spectral method, wavelets method, etc.

Numerical method in practise

- finite sequence of mathematical operations
- output is the approximate solution u_h

Construction of a numerical method for the given PDE

- discretization (space, time)
- setting of arising algebraic systems (numerical quadratures)
- (iterative) solution of nonlinear algebraic systems
- solution of linear algebraic systems

Type of discretizations

finite difference method, finite element method, finite volume method, spectral method, wavelets method, etc.

Numerical method in practise

- finite sequence of mathematical operations
- output is the approximate solution u_h

Construction of a numerical method for the given PDE

- discretization (space, time)
- setting of arising algebraic systems (numerical quadratures)
- (iterative) solution of nonlinear algebraic systems
- solution of linear algebraic systems

Type of discretizations

finite difference method, finite element method, finite volume method, spectral method, wavelets method, etc.

Numerical method in practise

- finite sequence of mathematical operations
- output is the approximate solution u_h

Construction of a numerical method for the given PDE

- discretization (space, time)
- setting of arising algebraic systems (numerical quadratures)
- (iterative) solution of nonlinear algebraic systems
- solution of linear algebraic systems

Type of discretizations

finite difference method, finite element method, finite volume method, spectral method, wavelets method, etc.

Numerical method in practise

- finite sequence of mathematical operations
- output is the approximate solution u_h

Construction of a numerical method for the given PDE

- discretization (space, time)
- setting of arising algebraic systems (numerical quadratures)
- (iterative) solution of nonlinear algebraic systems
- solution of linear algebraic systems

Type of discretizations

finite difference method, finite element method, finite volume method, spectral method, wavelets method, etc.

Numerical method in practise

- finite sequence of mathematical operations
- output is the approximate solution u_h

Construction of a numerical method for the given PDE

- discretization (space, time)
- setting of arising algebraic systems (numerical quadratures)
- (iterative) solution of nonlinear algebraic systems
- solution of linear algebraic systems

Type of discretizations

finite difference method, finite element method, finite volume method, spectral method, wavelets method, etc.

Numerical method in practise

- finite sequence of mathematical operations
- output is the approximate solution u_h

Construction of a numerical method for the given PDE

- discretization (space, time)
- setting of arising algebraic systems (numerical quadratures)
- (iterative) solution of nonlinear algebraic systems
- solution of linear algebraic systems

Type of discretizations

finite difference method, finite element method, finite volume method, spectral method, wavelets method, etc.

Numerical method in practise

- finite sequence of mathematical operations
- output is the approximate solution u_h

Construction of a numerical method for the given PDE

- discretization (space, time)
- setting of arising algebraic systems (numerical quadratures)
- (iterative) solution of nonlinear algebraic systems
- solution of linear algebraic systems

Type of discretizations

Numerical method in practise

- finite sequence of mathematical operations
- output is the approximate solution u_h

Construction of a numerical method for the given PDE

- discretization (space, time)
- setting of arising algebraic systems (numerical quadratures)
- (iterative) solution of nonlinear algebraic systems
- solution of linear algebraic systems

Type of discretizations

finite difference method, finite element method, finite volume method, spectral method, wavelets method, etc.

Which numerical method is the best one?

Depends on many aspects of the PDE considered

- physical background of the PDE
- expected regularity of the unknown exact solution
- presence of local phenomena
- outputs of interest
 - usual condition $||u u_h|| \le TOL$ is not always practical
 - goal is the quantity of interest $J(u_h)$,

$$\Rightarrow$$
 error: $|J(u) - J(u_h)| \leq TOL$

Example

Which numerical method is the best one?

Depends on many aspects of the PDE considered

- physical background of the PDE
- expected regularity of the unknown exact solution
- presence of local phenomena
- outputs of interest
 - usual condition $||u u_h|| \le TOL$ is not always practical
 - goal is the quantity of interest $J(u_h)$,

$$\Rightarrow$$
 error: $|J(u) - J(u_h)| \leq TOL$

Example

Which numerical method is the best one?

Depends on many aspects of the PDE considered

- physical background of the PDE
- expected regularity of the unknown exact solution
- presence of local phenomena
- outputs of interest
 - usual condition $||u u_h|| \le TOL$ is not always practical
 - goal is the quantity of interest $J(u_h)$,

$$\Rightarrow$$
 error: $|J(u) - J(u_h)| \leq TOL$

Example

 conservation laws should be discretized by a conservative numerical method

Which numerical method is the best one?

Depends on many aspects of the PDE considered

- physical background of the PDE
- expected regularity of the unknown exact solution
- presence of local phenomena
- outputs of interest
 - usual condition $||u u_h|| \le TOL$ is not always practical
 - goal is the quantity of interest $J(u_h)$,

$$\Rightarrow$$
 error: $|J(u) - J(u_h)| \leq TOL$

Example

 conservation laws should be discretized by a conservative numerical method

Which numerical method is the best one?

Depends on many aspects of the PDE considered

- physical background of the PDE
- expected regularity of the unknown exact solution
- presence of local phenomena
- outputs of interest
 - usual condition $||u u_h|| \le TOL$ is not always practical
 - goal is the quantity of interest $J(u_h)$,

$$\Rightarrow$$
 error: $|J(u) - J(u_h)| \leq TOL$

Example

Which numerical method is the best one?

Depends on many aspects of the PDE considered

- physical background of the PDE
- expected regularity of the unknown exact solution
- presence of local phenomena
- outputs of interest
 - usual condition $||u u_h|| \le TOL$ is not always practical
 - goal is the quantity of interest $J(u_h)$,

$$\Rightarrow$$
 error: $|J(u) - J(u_h)| \leq TOL$

Example

Which numerical method is the best one?

Depends on many aspects of the PDE considered

- physical background of the PDE
- expected regularity of the unknown exact solution
- presence of local phenomena
- outputs of interest
 - usual condition $||u u_h|| \le TOL$ is not always practical
 - goal is the quantity of interest $J(u_h)$,

$$\Rightarrow$$
 error: $|J(u) - J(u_h)| \leq TOL$

Example

Which numerical method is the best one?

Depends on many aspects of the PDE considered

- physical background of the PDE
- expected regularity of the unknown exact solution
- presence of local phenomena
- outputs of interest
 - usual condition $||u u_h|| \le TOL$ is not always practical
 - goal is the quantity of interest $J(u_h)$

$$\Rightarrow$$
 error: $|J(u) - J(u_h)| \leq TOL$

Example

Which numerical method is the best one?

Depends on many aspects of the PDE considered

- physical background of the PDE
- expected regularity of the unknown exact solution
- presence of local phenomena
- outputs of interest
 - usual condition $||u u_h|| \leq TOL$ is not always practical
 - goal is the quantity of interest $J(u_h)$,

$$\Rightarrow$$
 error: $|J(u) - J(u_h)| \leq TOL$

Example

Which numerical method is the best one?

Depends on many aspects of the PDE considered

- physical background of the PDE
- expected regularity of the unknown exact solution
- presence of local phenomena
- outputs of interest
 - usual condition $||u u_h|| \leq TOL$ is not always practical
 - goal is the quantity of interest $J(u_h)$,

$$\Rightarrow$$
 error: $|J(u) - J(u_h)| \leq TOL$

Example

Which numerical method is the best one?

Depends on many aspects of the PDE considered

- physical background of the PDE
- expected regularity of the unknown exact solution
- presence of local phenomena
- outputs of interest
 - usual condition $||u u_h|| \leq TOL$ is not always practical
 - goal is the quantity of interest $J(u_h)$,

$$\Rightarrow$$
 error: $|J(u) - J(u_h)| \leq TOL$

Example

Which numerical method is the best one?

Depends on many aspects of the PDE considered

- physical background of the PDE
- expected regularity of the unknown exact solution
- presence of local phenomena
- outputs of interest
 - usual condition $||u u_h|| \leq TOL$ is not always practical
 - goal is the quantity of interest $J(u_h)$,

$$\Rightarrow$$
 error: $|J(u) - J(u_h)| \leq TOL$

Example

Which numerical method is the best one?

Depends on many aspects of the PDE considered

- physical background of the PDE
- expected regularity of the unknown exact solution
- presence of local phenomena
- outputs of interest
 - usual condition $||u u_h|| \leq TOL$ is not always practical
 - goal is the quantity of interest $J(u_h)$,

$$\Rightarrow$$
 error: $|J(u) - J(u_h)| \leq TOL$

Example

Diffusion

- $\bullet \ \frac{\partial u}{\partial t} \nabla \cdot (a(u)\nabla u) = g$
- parabolic (elliptic) equation
- quantity is spread in all directions
- influence is decreasing for increasing distance of the source

- $\bullet \ \frac{\partial u}{\partial t} \nabla \cdot \vec{f}(u) = g$
- hyperbolic equation
- quantity is spread only in the direction of convection $\vec{f}(u)$
- influence is (almost) independent w.r.t. the distance of the source

Diffusion

- $\bullet \ \frac{\partial u}{\partial t} \nabla \cdot (a(u)\nabla u) = g$
- parabolic (elliptic) equation
- quantity is spread in all directions
- influence is decreasing for increasing distance of the source

Convection

- $\frac{\partial u}{\partial t} \nabla \cdot \vec{f}(u) = g$
- hyperbolic equation
- ullet quantity is spread only in the direction of convection $\vec{f}(u)$
- influence is (almost) independent w.r.t. the distance of the source

7 / 24

Diffusion

- $\bullet \ \frac{\partial u}{\partial t} \nabla \cdot (a(u)\nabla u) = g$
- parabolic (elliptic) equation
- quantity is spread in all directions
- influence is decreasing for increasing distance of the source

Convection

- $\frac{\partial u}{\partial t} \nabla \cdot \vec{f}(u) = g$
- hyperbolic equation
- ullet quantity is spread only in the direction of convection $\vec{f}(u)$
- influence is (almost) independent w.r.t. the distance of the source

7 / 24

Diffusion

- $\bullet \ \frac{\partial u}{\partial t} \nabla \cdot (a(u)\nabla u) = g$
- parabolic (elliptic) equation
- quantity is spread in all directions
- influence is decreasing for increasing distance of the source

- $\frac{\partial u}{\partial t} \nabla \cdot \vec{f}(u) = g$
- hyperbolic equation
- ullet quantity is spread only in the direction of convection $\vec{f}(u)$
- influence is (almost) independent w.r.t. the distance of the source

Diffusion

- $\bullet \ \frac{\partial u}{\partial t} \nabla \cdot (a(u)\nabla u) = g$
- parabolic (elliptic) equation
- quantity is spread in all directions
- influence is decreasing for increasing distance of the source

- $\bullet \ \frac{\partial u}{\partial t} \nabla \cdot \vec{f}(u) = g$
- hyperbolic equation
- ullet quantity is spread only in the direction of convection $\vec{f}(u)$
- influence is (almost) independent w.r.t. the distance of the source

Diffusion

- $\bullet \ \frac{\partial u}{\partial t} \nabla \cdot (a(u)\nabla u) = g$
- parabolic (elliptic) equation
- quantity is spread in all directions
- influence is decreasing for increasing distance of the source

- $\frac{\partial u}{\partial t} \nabla \cdot \vec{f}(u) = g$
- hyperbolic equation
- ullet quantity is spread only in the direction of convection $\vec{f}(u)$
- influence is (almost) independent w.r.t. the distance of the source

Diffusion

- $\bullet \ \frac{\partial u}{\partial t} \nabla \cdot (a(u)\nabla u) = g$
- parabolic (elliptic) equation
- quantity is spread in all directions
- influence is decreasing for increasing distance of the source

- $\bullet \ \frac{\partial u}{\partial t} \nabla \cdot \vec{f}(u) = g$
- hyperbolic equation
- ullet quantity is spread only in the direction of convection $\vec{f}(u)$
- influence is (almost) independent w.r.t. the distance of the source

Diffusion

- $\bullet \ \frac{\partial u}{\partial t} \nabla \cdot (a(u)\nabla u) = g$
- parabolic (elliptic) equation
- quantity is spread in all directions
- influence is decreasing for increasing distance of the source

- $\frac{\partial u}{\partial t} \nabla \cdot \vec{f}(u) = g$
- hyperbolic equation
- quantity is spread only in the direction of convection $\vec{f}(u)$
- influence is (almost) independent w.r.t. the distance of the source

Diffusion

- $\bullet \ \frac{\partial u}{\partial t} \nabla \cdot (a(u)\nabla u) = g$
- parabolic (elliptic) equation
- quantity is spread in all directions
- influence is decreasing for increasing distance of the source

- $\bullet \ \frac{\partial u}{\partial t} \nabla \cdot \vec{f}(u) = g$
- hyperbolic equation
- quantity is spread only in the direction of convection $\vec{f}(u)$
- influence is (almost) independent w.r.t. the distance of the source

Two basic physical processes

Diffusion

- $\bullet \ \frac{\partial u}{\partial t} \nabla \cdot (a(u)\nabla u) = g$
- parabolic (elliptic) equation
- quantity is spread in all directions
- influence is decreasing for increasing distance of the source

Convection

- $\frac{\partial u}{\partial t} \nabla \cdot \vec{f}(u) = g$
- hyperbolic equation
- quantity is spread only in the direction of convection $\vec{f}(u)$
- influence is (almost) independent w.r.t. the distance of the source

Two basic physical processes

Diffusion

- $\bullet \ \frac{\partial u}{\partial t} \nabla \cdot (a(u)\nabla u) = g$
- parabolic (elliptic) equation
- quantity is spread in all directions
- influence is decreasing for increasing distance of the source

Convection

- $\frac{\partial u}{\partial t} \nabla \cdot \vec{f}(u) = g$
- hyperbolic equation
- ullet quantity is spread only in the direction of convection $ec{f}(u)$
- influence is (almost) independent w.r.t. the distance of the source

Two basic physical processes

Diffusion

- $\bullet \ \frac{\partial u}{\partial t} \nabla \cdot (a(u)\nabla u) = g$
- parabolic (elliptic) equation
- quantity is spread in all directions
- influence is decreasing for increasing distance of the source

Convection

- $\frac{\partial u}{\partial t} \nabla \cdot \vec{f}(u) = g$
- hyperbolic equation
- ullet quantity is spread only in the direction of convection $ec{f}(u)$
- influence is (almost) independent w.r.t. the distance of the source

Examples of physical features (1)

Only diffusion

$$\frac{\partial u}{\partial t} - \varepsilon \Delta u = 0$$

Examples of physical features (1)

Only diffusion

$$\frac{\partial u}{\partial t} - \varepsilon \Delta u = 0$$

Examples of physical features (2)

Only convection:

$$\frac{\partial u}{\partial t} + \nabla \cdot (\vec{f} u) = 0, \quad \vec{f}(u) = (1,0)^T$$

Examples of physical features (2)

Only convection:

$$\frac{\partial u}{\partial t} + \nabla \cdot (\vec{f} u) = 0, \quad \vec{f}(u) = (1,0)^T$$

Examples of physical features (3)

Convection + small diffusion

$$\frac{\partial u}{\partial t} + \nabla \cdot (\vec{f} u) - \epsilon \Delta u = 0, \quad \vec{f}(u) = (1,0)^T$$

Examples of physical features (3)

Convection + small diffusion

$$\frac{\partial u}{\partial t} + \nabla \cdot (\vec{f} u) - \epsilon \Delta u = 0, \quad \vec{f}(u) = (1,0)^T$$

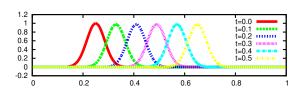
vs. hyperbolic PDE

Cauchy problem

$$u(x,t): \mathbb{R} \times (0,T) \to \mathbb{R}: \qquad \frac{\partial u}{\partial t} + \frac{\partial u}{\partial x} = \varepsilon \frac{\partial^2 u}{\partial x^2}$$

$$u(x,0) = \exp[(x-1/4)^2]$$

$$\varepsilon = 0$$
 \Longrightarrow $u(x,t) = \exp[(x-1/4-t)^2]$
 $\varepsilon > 0$ \Longrightarrow solution is smeared



VS.

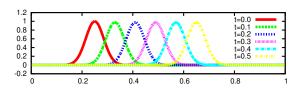
hyperbolic PDE

Cauchy problem

$$u(x,t): \mathbb{R} \times (0,T) \to \mathbb{R}:$$

$$\frac{\partial u}{\partial t} + \frac{\partial u}{\partial x} = \varepsilon \frac{\partial^2 u}{\partial x^2}$$
$$u(x,0) = \exp[(x - 1/4)^2]$$

$$\varepsilon = 0$$
 \Longrightarrow $u(x,t) = \exp[(x-1/4-t)^2]$
 $\varepsilon > 0$ \Longrightarrow solution is smeared



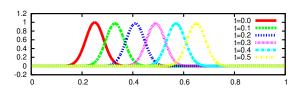
hyperbolic PDE VS.

Cauchy problem

$$u(x,t): \mathbb{R} \times (0,T) \to \mathbb{R}: \qquad \frac{\partial L}{\partial t}$$

$$\frac{\partial u}{\partial t} + \frac{\partial u}{\partial x} = \varepsilon \frac{\partial^2 u}{\partial x^2}$$
$$u(x, 0) = \exp[(x - 1/4)^2]$$

$$\varepsilon = 0$$
 \Longrightarrow $u(x,t) = \exp[(x-1/4-t)^2]$
 $\varepsilon > 0$ \Longrightarrow solution is smeared



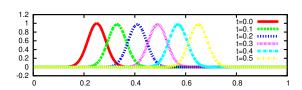
vs. hyperbolic PDE

Cauchy problem

$$u(x,t): \mathbb{R} \times (0,T) \to \mathbb{R}: \qquad \frac{\partial u}{\partial t} + \frac{\partial u}{\partial x} = \varepsilon \frac{\partial^2 u}{\partial x^2}$$

$$u(x,0) = \exp[(x-1/4)^2]$$

$$\varepsilon = 0$$
 \Longrightarrow $u(x, t) = \exp[(x - 1/4 - t)^2]$
 $\varepsilon > 0$ \Longrightarrow solution is smeared



VS.

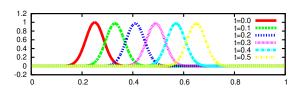
hyperbolic PDE

Cauchy problem

$$u(x,t): \mathbb{R} \times (0,T) \to \mathbb{R}: \qquad \frac{\partial u}{\partial t} + \frac{\partial u}{\partial x} = \varepsilon \frac{\partial^2 u}{\partial x^2}$$

$$u(x,0) = \exp[(x-1/4)^2]$$

$$\varepsilon = 0$$
 \Longrightarrow $u(x,t) = \exp[(x-1/4-t)^2]$
 $\varepsilon > 0$ \Longrightarrow solution is smeared



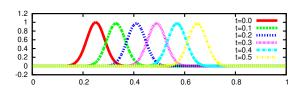
vs. hyperbolic PDE

Cauchy problem

$$u(x,t): \mathbb{R} \times (0,T) \to \mathbb{R}: \qquad \frac{\partial u}{\partial t} + \frac{\partial u}{\partial x} = \varepsilon \frac{\partial^2 u}{\partial x^2}$$

$$u(x,0) = \exp[(x-1/4)^2]$$

$$\varepsilon = 0$$
 \Longrightarrow $u(x,t) = \exp[(x-1/4-t)^2]$
 $\varepsilon > 0$ \Longrightarrow solution is smeared



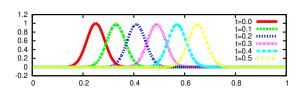
vs. hyperbolic PDE

Cauchy problem

$$u(x,t): \mathbb{R} \times (0,T) \to \mathbb{R}: \qquad \frac{\partial u}{\partial t} + \frac{\partial u}{\partial x} = \varepsilon \frac{\partial^2 u}{\partial x^2}$$

 $u(x,0) = \exp[(x-1/4)^2]$

$$\varepsilon = 0$$
 \Longrightarrow $u(x,t) = \exp[(x-1/4-t)^2]$
 $\varepsilon > 0$ \Longrightarrow solution is smeared



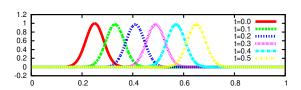
vs. hyperbolic PDE

Cauchy problem

$$u(x,t): \mathbb{R} \times (0,T) \to \mathbb{R}: \qquad \frac{\partial u}{\partial t} + \frac{\partial u}{\partial x} = \varepsilon \frac{\partial^2 u}{\partial x^2}$$

$$u(x,0) = \exp[(x-1/4)^2]$$

$$\varepsilon = 0$$
 \Longrightarrow $u(x,t) = \exp[(x-1/4-t)^2]$
 $\varepsilon > 0$ \Longrightarrow solution is smeared



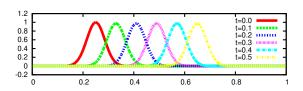
vs. hyperbolic PDE

Cauchy problem

$$u(x,t): \mathbb{R} \times (0,T) \to \mathbb{R}: \qquad \frac{\partial u}{\partial t} + \frac{\partial u}{\partial x} = \varepsilon \frac{\partial^2 u}{\partial x^2}$$

$$u(x,0) = \exp[(x-1/4)^2]$$

$$\varepsilon = 0$$
 \Longrightarrow $u(x, t) = \exp[(x - 1/4 - t)^2]$
 $\varepsilon > 0$ \Longrightarrow solution is smeared



exact solutions for
$$\varepsilon=0$$
, $\varepsilon=10^{-4}$, $\varepsilon=10^{-3}$, $\varepsilon=10^{-2}$

Why is important to know the previous properties?

- numerical solution is a kind of approximation
- many sources of inaccuracies:
 - discretization errors (finite dimensional approximation)
 - iterative errors (approximate solution of algebraic systems)
 - rounding errors (finite precision arithmetic)
- these inaccuracies are propagated by PDEs

Linear convection problem (no diffusion)

- exact solution: a simple propagation of the initial solution
- numerical solution: initial solution is propagated but <u>smeared</u>
- numerical solution corresponds to convection+diffusion
- this effect is called numerical diffusion

Why is important to know the previous properties?

- numerical solution is a kind of approximation
- many sources of inaccuracies:
 - discretization errors (finite dimensional approximation)
 - iterative errors (approximate solution of algebraic systems)
 - rounding errors (finite precision arithmetic)
- these inaccuracies are propagated by PDEs

Linear convection problem (no diffusion)

- exact solution: a simple propagation of the initial solution
- numerical solution: initial solution is propagated but smeared
- numerical solution corresponds to convection+diffusion
- this effect is called numerical diffusion

Why is important to know the previous properties?

- numerical solution is a kind of approximation
- many sources of inaccuracies:
 - discretization errors (finite dimensional approximation)
 - iterative errors (approximate solution of algebraic systems)
 - rounding errors (finite precision arithmetic)
- these inaccuracies are propagated by PDEs

Linear convection problem (no diffusion)

- exact solution: a simple propagation of the initial solution
- numerical solution: initial solution is propagated but <u>smeared</u>
- numerical solution corresponds to convection+diffusion
- this effect is called numerical diffusion

Why is important to know the previous properties?

- numerical solution is a kind of approximation
- many sources of inaccuracies:
 - discretization errors (finite dimensional approximation)
 - iterative errors (approximate solution of algebraic systems)
 - rounding errors (finite precision arithmetic)
- these inaccuracies are propagated by PDEs

Linear convection problem (no diffusion)

- exact solution: a simple propagation of the initial solution
- numerical solution: initial solution is propagated but smeared
- numerical solution corresponds to convection+diffusion
- this effect is called numerical diffusion

Why is important to know the previous properties?

- numerical solution is a kind of approximation
- many sources of inaccuracies:
 - discretization errors (finite dimensional approximation)
 - iterative errors (approximate solution of algebraic systems)
 - rounding errors (finite precision arithmetic)
- these inaccuracies are propagated by PDEs

Linear convection problem (no diffusion)

- exact solution: a simple propagation of the initial solution
- numerical solution: initial solution is propagated but <u>smeared</u>
- numerical solution corresponds to <u>convection+diffusion</u>
- this effect is called numerical diffusion

Why is important to know the previous properties?

- numerical solution is a kind of approximation
- many sources of inaccuracies:
 - discretization errors (finite dimensional approximation)
 - iterative errors (approximate solution of algebraic systems)
 - rounding errors (finite precision arithmetic)
- these inaccuracies are propagated by PDEs

- exact solution: a simple propagation of the initial solution
- numerical solution: initial solution is propagated but smeared
- this effect is called numerical diffusion

Why is important to know the previous properties?

- numerical solution is a kind of approximation
- many sources of inaccuracies:
 - discretization errors (finite dimensional approximation)
 - iterative errors (approximate solution of algebraic systems)
 - rounding errors (finite precision arithmetic)
- these inaccuracies are propagated by PDEs

Linear convection problem (no diffusion)

- exact solution: a simple propagation of the initial solution
- numerical solution: initial solution is propagated but <u>smeared</u>
- numerical solution corresponds to <u>convection+diffusion</u>
- this effect is called numerical diffusion

Why is important to know the previous properties?

- numerical solution is a kind of approximation
- many sources of inaccuracies:
 - discretization errors (finite dimensional approximation)
 - iterative errors (approximate solution of algebraic systems)
 - rounding errors (finite precision arithmetic)
- these inaccuracies are propagated by PDEs

Linear convection problem (no diffusion)

- exact solution: a simple propagation of the initial solution
- numerical solution: initial solution is propagated but <u>smeared</u>
- numerical solution corresponds to <u>convection+diffusion</u>
- this effect is called numerical diffusion

Why is important to know the previous properties?

- numerical solution is a kind of approximation
- many sources of inaccuracies:
 - discretization errors (finite dimensional approximation)
 - iterative errors (approximate solution of algebraic systems)
 - rounding errors (finite precision arithmetic)
- these inaccuracies are propagated by PDEs

Linear convection problem (no diffusion)

- exact solution: a simple propagation of the initial solution
- numerical solution: initial solution is propagated but <u>smeared</u>
- numerical solution corresponds to <u>convection+diffusion</u>
- this effect is called numerical diffusion

Why is important to know the previous properties?

- numerical solution is a kind of approximation
- many sources of inaccuracies:
 - discretization errors (finite dimensional approximation)
 - iterative errors (approximate solution of algebraic systems)
 - rounding errors (finite precision arithmetic)
- these inaccuracies are propagated by PDEs

Linear convection problem (no diffusion)

- exact solution: a simple propagation of the initial solution
- numerical solution: initial solution is propagated but smeared
- numerical solution corresponds to convection+diffusion
- this effect is called numerical diffusion

Why is important to know the previous properties?

- numerical solution is a kind of approximation
- many sources of inaccuracies:
 - discretization errors (finite dimensional approximation)
 - iterative errors (approximate solution of algebraic systems)
 - rounding errors (finite precision arithmetic)
- these inaccuracies are propagated by PDEs

Linear convection problem (no diffusion)

- exact solution: a simple propagation of the initial solution
- numerical solution: initial solution is propagated but <u>smeared</u>
- numerical solution corresponds to convection+diffusion
- this effect is called numerical diffusion

Why is important to know the previous properties?

- numerical solution is a kind of approximation
- many sources of inaccuracies:
 - discretization errors (finite dimensional approximation)
 - iterative errors (approximate solution of algebraic systems)
 - rounding errors (finite precision arithmetic)
- these inaccuracies are propagated by PDEs

Linear convection problem (no diffusion)

- exact solution: a simple propagation of the initial solution
- numerical solution: initial solution is propagated but <u>smeared</u>
- numerical solution corresponds to <u>convection+diffusion</u>
- this effect is called numerical diffusion

Why is important to know the previous properties?

- numerical solution is a kind of approximation
- many sources of inaccuracies:
 - discretization errors (finite dimensional approximation)
 - iterative errors (approximate solution of algebraic systems)
 - rounding errors (finite precision arithmetic)
- these inaccuracies are propagated by PDEs

Linear convection problem (no diffusion)

- exact solution: a simple propagation of the initial solution
- numerical solution: initial solution is propagated but <u>smeared</u>
- numerical solution corresponds to <u>convection+diffusion</u>
- this effect is called numerical diffusion

Effect of numerical diffusion

- zero diffusion does not exist in reality
- if numerical diffusion larger than physical one
 numerical solution can be completely wrong
- e.g., numerical solution is steady whereas reality is unsteady

- we can prove that the proposed method is convergent
- approximate solution contains unphysical effects, e.g., spurious oscillations, negative temperature, etc.
- analysis is wrong?
- No, it converges for $h \to 0$, the solution is bad for finite h

Effect of numerical diffusion

- zero diffusion does not exist in reality
- if numerical diffusion larger than physical one
 numerical solution can be completely wrong
- e.g., numerical solution is steady whereas reality is unsteady

- we can prove that the proposed method is convergent
- approximate solution contains unphysical effects, e.g., spurious oscillations, negative temperature, etc.
- analysis is wrong?
- No, it converges for $h \to 0$, the solution is bad for finite h

Effect of numerical diffusion

- zero diffusion does not exist in reality
- if numerical diffusion larger than physical one
 mumerical solution can be completely wrong
- e.g., numerical solution is steady whereas reality is unsteady

- we can prove that the proposed method is convergent
- approximate solution contains unphysical effects, e.g., spurious oscillations, negative temperature, etc.
- analysis is wrong?
- No, it converges for $h \to 0$, the solution is bad for finite h

Effect of numerical diffusion

- zero diffusion does not exist in reality
- if numerical diffusion larger than physical one
 - ⇒ numerical solution can be completely wrong
- e.g., numerical solution is steady whereas reality is unsteady

- we can prove that the proposed method is convergent
- approximate solution contains unphysical effects, e.g., spurious oscillations, negative temperature, etc.
- analysis is wrong?
- No, it converges for $h \to 0$, the solution is bad for finite h

Effect of numerical diffusion

- zero diffusion does not exist in reality
- if numerical diffusion larger than physical one
 ⇒ numerical solution can be completely wrong
- e.g., numerical solution is steady whereas reality is unsteady

- we can prove that the proposed method is convergent
- approximate solution contains unphysical effects, e.g., spurious oscillations, negative temperature, etc.
- analysis is wrong?
- No, it converges for $h \to 0$, the solution is bad for finite h

Effect of numerical diffusion

- zero diffusion does not exist in reality
- if numerical diffusion larger than physical one
 numerical solution can be completely wrong
- e.g., numerical solution is steady whereas reality is unsteady

- we can prove that the proposed method is convergent
- approximate solution contains unphysical effects, e.g., spurious oscillations, negative temperature, etc.
- analysis is wrong?
- No, it converges for $h \to 0$, the solution is bad for finite h

Effect of numerical diffusion

- zero diffusion does not exist in reality
- if numerical diffusion larger than physical one
 - ⇒ numerical solution can be completely wrong
- e.g., numerical solution is steady whereas reality is unsteady

- we can prove that the proposed method is convergent
- approximate solution contains unphysical effects, e.g., spurious oscillations, negative temperature, etc.
- analysis is wrong?
- No, it converges for $h \to 0$, the solution is bad for finite h

Effect of numerical diffusion

- zero diffusion does not exist in reality
- if numerical diffusion larger than physical one
 - ⇒ numerical solution can be completely wrong
- e.g., numerical solution is steady whereas reality is unsteady

- we can prove that the proposed method is convergent
- approximate solution contains unphysical effects, e.g. spurious oscillations, negative temperature, etc.
- analysis is wrong?
- No, it converges for $h \to 0$, the solution is bad for finite h

Effect of numerical diffusion

- zero diffusion does not exist in reality
- if numerical diffusion larger than physical one
 - ⇒ numerical solution can be completely wrong
- e.g., numerical solution is steady whereas reality is unsteady

- we can prove that the proposed method is convergent
- approximate solution contains unphysical effects, e.g., spurious oscillations, negative temperature, etc.
- analysis is wrong?
- No, it converges for $h \to 0$, the solution is bad for finite h

Effect of numerical diffusion

- zero diffusion does not exist in reality
- if numerical diffusion larger than physical one
 numerical solution can be completely wrong
- e.g., numerical solution is steady whereas reality is unsteady

- we can prove that the proposed method is convergent
- approximate solution contains unphysical effects, e.g., spurious oscillations, negative temperature, etc.
- analysis is wrong?
- No, it converges for $h \to 0$, the solution is bad for finite h

Effect of numerical diffusion

- zero diffusion does not exist in reality
- if numerical diffusion larger than physical one
 numerical solution can be completely wrong
- . e.g., numerical solution is steady whereas reality is unsteady

Effect of "finite h"

- we can prove that the proposed method is convergent
- approximate solution contains unphysical effects, e.g., spurious oscillations, negative temperature, etc.
- analysis is wrong?
- No, it converges for $h \to 0$, the solution is bad for finite h

13 / 24

Effect of numerical diffusion

- zero diffusion does not exist in reality
- if numerical diffusion larger than physical one
 numerical solution can be completely wrong
- e.g., numerical solution is steady whereas reality is unsteady

- we can prove that the proposed method is convergent
- approximate solution contains unphysical effects, e.g., spurious oscillations, negative temperature, etc.
- analysis is wrong?
- No, it converges for $h \to 0$, the solution is bad for finite h

$$u:(0,1)\to\mathbb{R}:\quad -\varepsilon u''+u'=f,\quad u(0)=u(1)=0,\ \varepsilon>0.$$

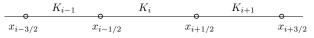
solution has a steep gradient near x=1 (boundary layer)

Weak formulation

$$u \in H_0^1((0,1))$$
: $\int_0^1 (\varepsilon u'v' + u'v) dx = \int_0^1 f v dx \quad \forall v \in H_0^1((0,1))$

Partition of domain

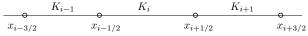
$$0 = x_{\frac{1}{2}} < x_{\frac{3}{2}} < \dots x_{N + \frac{1}{2}} = 1, \quad K_i := [x_{i - \frac{1}{2}}, x_{i + \frac{1}{2}}], \ i = 1, \dots, N$$



$$u:(0,1)\to\mathbb{R}:\quad -\varepsilon u''+u'=f,\quad u(0)=u(1)=0,\ \varepsilon>0.$$

$$u \in H_0^1((0,1))$$
: $\int_0^1 (\varepsilon u'v' + u'v) dx = \int_0^1 f v dx \quad \forall v \in H_0^1((0,1))$

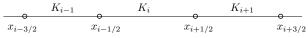
$$0 = x_{\frac{1}{2}} < x_{\frac{3}{2}} < \dots x_{N + \frac{1}{2}} = 1, \quad K_i := [x_{i - \frac{1}{2}}, x_{i + \frac{1}{2}}], \ i = 1, \dots, N$$



$$u:(0,1)\to\mathbb{R}:\quad -\varepsilon u''+u'=f,\quad u(0)=u(1)=0,\ \varepsilon>0.$$

$$u \in H_0^1((0,1))$$
: $\int_0^1 (\varepsilon u'v' + u'v) dx = \int_0^1 f v dx \quad \forall v \in H_0^1((0,1))$

$$0 = x_{\frac{1}{2}} < x_{\frac{3}{2}} < \dots x_{N + \frac{1}{2}} = 1, \quad K_i := [x_{i - \frac{1}{2}}, x_{i + \frac{1}{2}}], \ i = 1, \dots, N$$



$$u:(0,1)\to\mathbb{R}:\quad -\varepsilon u''+u'=f,\quad u(0)=u(1)=0,\ \varepsilon>0.$$

solution has a steep gradient near x = 1 (boundary layer)

Weak formulation

$$u \in H_0^1((0,1))$$
: $\int_0^1 (\varepsilon u'v' + u'v) dx = \int_0^1 f v dx \quad \forall v \in H_0^1((0,1))$

Partition of domain

$$0 = x_{\frac{1}{2}} < x_{\frac{3}{2}} < \dots x_{N + \frac{1}{2}} = 1, \quad K_i := [x_{i - \frac{1}{2}}, x_{i + \frac{1}{2}}], \ i = 1, \dots, N$$

$$u:(0,1)\to\mathbb{R}:\quad -\varepsilon u''+u'=f,\quad u(0)=u(1)=0,\ \varepsilon>0.$$

solution has a steep gradient near x = 1 (boundary layer)

$$u \in H_0^1((0,1))$$
: $\int_0^1 (\varepsilon u'v' + u'v) dx = \int_0^1 f v dx \quad \forall v \in H_0^1((0,1))$

$$0 = x_{\frac{1}{2}} < x_{\frac{3}{2}} < \dots x_{N + \frac{1}{2}} = 1, \quad K_i := [x_{i - \frac{1}{2}}, x_{i + \frac{1}{2}}], \ i = 1, \dots, N$$

$$u:(0,1)\to\mathbb{R}:\quad -\varepsilon u''+u'=f,\quad u(0)=u(1)=0,\ \varepsilon>0.$$

solution has a steep gradient near x = 1 (boundary layer)

Weak formulation

$$u \in H_0^1((0,1))$$
: $\int_0^1 (\varepsilon u'v' + u'v) dx = \int_0^1 f v dx \quad \forall v \in H_0^1((0,1))$

$$0 = x_{\frac{1}{2}} < x_{\frac{3}{2}} < \dots x_{N + \frac{1}{2}} = 1, \quad K_i := [x_{i - \frac{1}{2}}, x_{i + \frac{1}{2}}], \ i = 1, \dots, N$$

$$u:(0,1)\to\mathbb{R}:\quad -\varepsilon u''+u'=f,\quad u(0)=u(1)=0,\ \varepsilon>0.$$

solution has a steep gradient near x = 1 (boundary layer)

Weak formulation

$$u \in H_0^1((0,1))$$
: $\int_0^1 (\varepsilon u' v' + u' v) dx = \int_0^1 f v dx \quad \forall v \in H_0^1((0,1))$

Partition of domain

$$0 = x_{\frac{1}{2}} < x_{\frac{3}{2}} < \dots x_{N + \frac{1}{2}} = 1, \quad K_i := [x_{i - \frac{1}{2}}, x_{i + \frac{1}{2}}], \ i = 1, \dots, N$$

$$u:(0,1)\to\mathbb{R}:\quad -\varepsilon u''+u'=f,\quad u(0)=u(1)=0,\ \varepsilon>0.$$

solution has a steep gradient near x = 1 (boundary layer)

Weak formulation

$$u \in H_0^1((0,1))$$
: $\int_0^1 (\varepsilon u'v' + \underline{u'v}) dx = \int_0^1 f v dx \quad \forall v \in H_0^1((0,1))$

$$0 = x_{\frac{1}{2}} < x_{\frac{3}{2}} < \dots x_{N + \frac{1}{2}} = 1, \quad K_i := [x_{i - \frac{1}{2}}, x_{i + \frac{1}{2}}], \ i = 1, \dots, N$$

$$u:(0,1)\to\mathbb{R}:\quad -\varepsilon u''+u'=f,\quad u(0)=u(1)=0,\ \varepsilon>0.$$

solution has a steep gradient near x = 1 (boundary layer)

Weak formulation

$$u \in H^1_0((0,1))$$
: $\int_0^1 (\varepsilon u'v' + u'v) dx = \int_0^1 f v dx \quad \forall v \in H^1_0((0,1))$

Partition of domain

$$0 = x_{\frac{1}{2}} < x_{\frac{3}{2}} < \dots x_{N+\frac{1}{2}} = 1$$
, $K_i := [x_{i-\frac{1}{2}}, x_{i+\frac{1}{2}}], i = 1, \dots, N$

$$u:(0,1)\to\mathbb{R}:\quad -\varepsilon u''+u'=f,\quad u(0)=u(1)=0,\ \varepsilon>0.$$

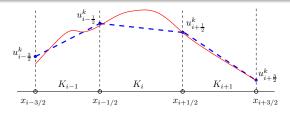
solution has a steep gradient near x = 1 (boundary layer)

Weak formulation

$$u \in H_0^1((0,1))$$
: $\int_0^1 (\varepsilon u'v' + u'v) dx = \int_0^1 f v dx \quad \forall v \in H_0^1((0,1))$

Partition of domain

$$0 = x_{\frac{1}{2}} < x_{\frac{3}{2}} < \dots x_{N + \frac{1}{2}} = 1, \quad K_i := [x_{i - \frac{1}{2}}, x_{i + \frac{1}{2}}], \ i = 1, \dots, N$$



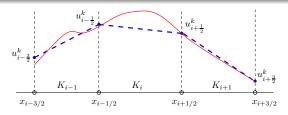
FEM solution

•
$$V_h = \{v_h \in C_0([0,1]); v_h|_{K_i} = P^1(K_i), i = 1,..., N\}$$

• $u_h \in V_h$:

$$\int_0^1 (\varepsilon u_h' v_h' + u_h' v_h) \, \mathrm{d}x = \int_0^1 f \, v_h \, \mathrm{d}x \quad \forall v_h \in V_h$$

- reasonable discretization of diffusion ⇒ we prove convergence
- discretization of convective term "does not respect physics"



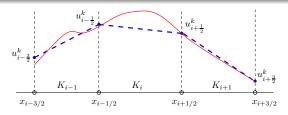
FEM solution

•
$$V_h = \{v_h \in C_0([0,1]); v_h|_{K_i} = P^1(K_i), i = 1,..., N\}$$

• $u_h \in V_h$:

$$\int_0^1 (\varepsilon u_h' v_h' + u_h' v_h) \, \mathrm{d}x = \int_0^1 f \, v_h \, \mathrm{d}x \quad \forall v_h \in V_h$$

- discretization of convective term "does not respect physics"



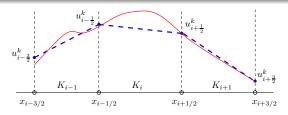
FEM solution

•
$$V_h = \{v_h \in C_0([0,1]); v_h|_{K_i} = P^1(K_i), i = 1,..., N\}$$

• $u_h \in V_h$:

$$\int_0^1 (\varepsilon u_h' v_h' + u_h' v_h) \, \mathrm{d}x = \int_0^1 f \, v_h \, \mathrm{d}x \quad \forall v_h \in V_h$$

- reasonable discretization of diffusion ⇒ we prove convergence
- discretization of convective term "does not respect physics"

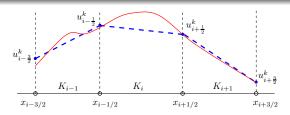


FEM solution

- $V_h = \{v_h \in C_0([0,1]); v_h|_{K_i} = P^1(K_i), i = 1,..., N\}$
- $u_h \in V_h$:

$$\int_0^1 (\varepsilon u_h' v_h' + u_h' v_h) \, \mathrm{d}x = \int_0^1 f \, v_h \, \mathrm{d}x \quad \forall v_h \in V_h$$

- reasonable discretization of diffusion ⇒ we prove convergence

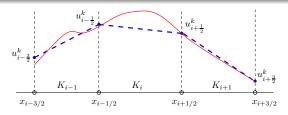


FEM solution

- $V_h = \{v_h \in C_0([0,1]); v_h|_{K_i} = P^1(K_i), i = 1,..., N\}$
- $u_h \in V_h$:

$$\int_0^1 (\varepsilon u_h' v_h' + u_h' v_h) \, \mathrm{d}x = \int_0^1 f \, v_h \, \mathrm{d}x \quad \forall v_h \in V_h$$

- reasonable discretization of diffusion ⇒ we prove convergence

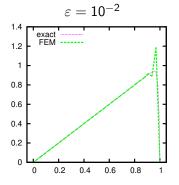


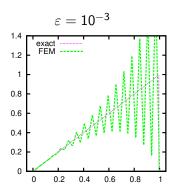
FEM solution

- $V_h = \{v_h \in C_0([0,1]); v_h|_{K_i} = P^1(K_i), i = 1,..., N\}$
- $u_h \in V_h$:

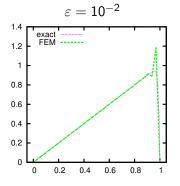
$$\int_0^1 (\varepsilon u_h' v_h' + u_h' v_h) \, \mathrm{d}x = \int_0^1 f \, v_h \, \mathrm{d}x \quad \forall v_h \in V_h$$

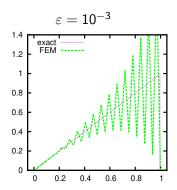
- reasonable discretization of diffusion ⇒ we prove convergence
- discretization of convective term "does not respect physics"



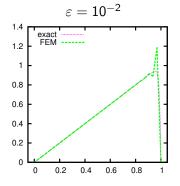


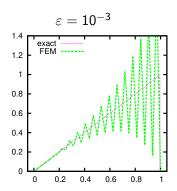
- ullet Solution suffers from spurious oscillations for small arepsilon
- A stabilization is a possible remedy



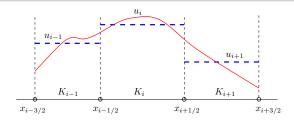


- ullet Solution suffers from spurious oscillations for small arepsilon
- A stabilization is a possible remedy





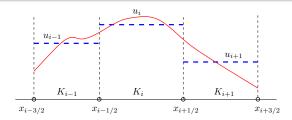
- \bullet Solution suffers from spurious oscillations for small ε
- A stabilization is a possible remedy



- $V_h = \{v_h \in L^2([0,1]); v_h|_{K_i} = P^0(K_i), i = 1,..., N\}$
- we integrate $-\varepsilon u'' + au' = 1$ over K_i and use Gauss theorem

$$-\varepsilon[u'(\cdot)]_{x_{i-1/2}}^{x_{i+1/2}} + a[u(\cdot)]_{x_{i-1/2}}^{x_{i+1/2}} = |K_i|$$

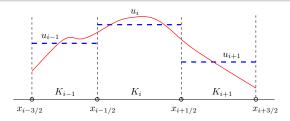
•
$$u|_{X_{i+\frac{1}{2}}} = ??$$
 upwinding: $a > 0 \Rightarrow u|_{X_{i+\frac{1}{2}}} := u_i$



- $V_h = \{v_h \in L^2([0,1]); v_h|_{K_i} = P^0(K_i), i = 1,..., N\}$
- we integrate $-\varepsilon u'' + au' = 1$ over K_i and use Gauss theorem

$$-\varepsilon[u'(\cdot)]_{x_{i-1/2}}^{x_{i+1/2}} + a[u(\cdot)]_{x_{i-1/2}}^{x_{i+1/2}} = |K_i|$$

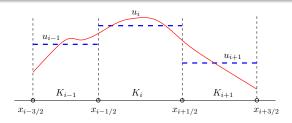
•
$$u|_{X_{i+\frac{1}{2}}} = ??$$
 upwinding: $a > 0 \Rightarrow u|_{X_{i+\frac{1}{2}}} := u_i$



- $V_h = \{v_h \in L^2([0,1]); v_h|_{K_i} = P^0(K_i), i = 1,..., N\}$
- we integrate $-\varepsilon u'' + au' = 1$ over K_i and use Gauss theorem

$$-\varepsilon[u'(\cdot)]_{x_{i-1/2}}^{x_{i+1/2}} + a[u(\cdot)]_{x_{i-1/2}}^{x_{i+1/2}} = |K_i|$$

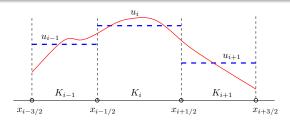
•
$$u|_{X_{i+\frac{1}{2}}} = ??$$
 upwinding: $a > 0 \Rightarrow u|_{X_{i+\frac{1}{2}}} := u_i$



- $V_h = \{v_h \in L^2([0,1]); v_h|_{K_i} = P^0(K_i), i = 1,..., N\}$
- we integrate $-\varepsilon u'' + a u' = 1$ over K_i and use Gauss theorem

$$-\varepsilon[u'(\cdot)]_{x_{i-1/2}}^{x_{i+1/2}} + a[u(\cdot)]_{x_{i-1/2}}^{x_{i+1/2}} = |K_i|$$

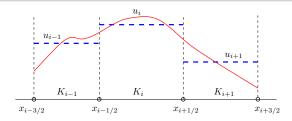
•
$$u|_{X_{i+\frac{1}{2}}} = ??$$
 upwinding: $a > 0 \Rightarrow u|_{X_{i+\frac{1}{2}}} := u_i$



- $V_h = \{v_h \in L^2([0,1]); v_h|_{K_i} = P^0(K_i), i = 1,..., N\}$
- we integrate $-\varepsilon u'' + a u' = 1$ over K_i and use Gauss theorem

$$-\varepsilon[u'(\cdot)]_{x_{i-1/2}}^{x_{i+1/2}} + a[u(\cdot)]_{x_{i-1/2}}^{x_{i+1/2}} = |K_i|$$

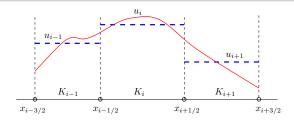
•
$$u|_{X_{i+\frac{1}{2}}} = ??$$
 upwinding: $a > 0 \Rightarrow u|_{X_{i+\frac{1}{2}}} := u_i$



- $V_h = \{v_h \in L^2([0,1]); v_h|_{K_i} = P^0(K_i), i = 1,..., N\}$
- we integrate $-\varepsilon u'' + a u' = 1$ over K_i and use Gauss theorem

$$-\varepsilon[u'(\cdot)]_{x_{i-1/2}}^{x_{i+1/2}} + a[u(\cdot)]_{x_{i-1/2}}^{x_{i+1/2}} = |K_i|$$

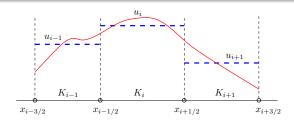
•
$$u|_{X_{i+\frac{1}{2}}} = ??$$
 upwinding: $a > 0 \Rightarrow u|_{X_{i+\frac{1}{2}}} := u_i$



- $V_h = \{v_h \in L^2([0,1]); v_h|_{K_i} = P^0(K_i), i = 1,..., N\}$
- we integrate $-\varepsilon u'' + a u' = 1$ over K_i and use Gauss theorem

$$-\varepsilon[u'(\cdot)]_{x_{i-1/2}}^{x_{i+1/2}} + a[u(\cdot)]_{x_{i-1/2}}^{x_{i+1/2}} = |K_i|$$

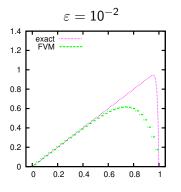
•
$$u|_{X_{i+\frac{1}{2}}} = ??$$
 upwinding: $a > 0 \Rightarrow u|_{X_{i+\frac{1}{2}}} := u_i$

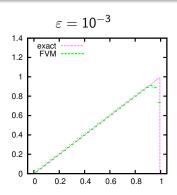


- $V_h = \{v_h \in L^2([0,1]); v_h|_{K_i} = P^0(K_i), i = 1,..., N\}$
- we integrate $-\varepsilon u'' + a u' = 1$ over K_i and use Gauss theorem

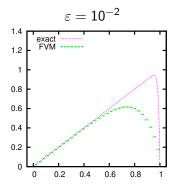
$$-\varepsilon[u'(\cdot)]_{x_{i-1/2}}^{x_{i+1/2}} + {}_{a}[u(\cdot)]_{x_{i-1/2}}^{x_{i+1/2}} = |K_i|$$

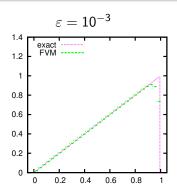
•
$$u|_{X_{i+\frac{1}{2}}} = ??$$
 upwinding: $a > 0 \Rightarrow u|_{X_{i+\frac{1}{2}}} := u_i$



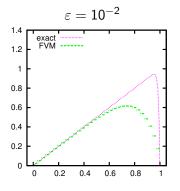


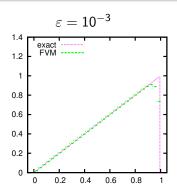
- Oscillations free approximation
- ullet Low accuracy for larger arepsilon
- A higher order reconstruction is a possible remedy



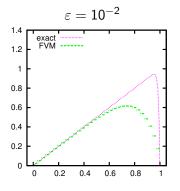


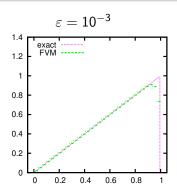
- Oscillations free approximation
- ullet Low accuracy for larger arepsilon
- A higher order reconstruction is a possible remedy





- Oscillations free approximation
- Low accuracy for larger ε
- A higher order reconstruction is a possible remedy





- Oscillations free approximation
- ullet Low accuracy for larger arepsilon
- A higher order reconstruction is a possible remedy

comparison of FEM and FVM for time-independent convective problem

Finite element method

- continuous approximation
- high order of accuracy
- many theoretical results
- fine for diffusive problems

Finite volume method

- discontinuous approximation
- low order of accuracy
- lack of theory
- fine for convective problems

Discontinuous Galerkin method

- piecewise polynomial discontinuous approximation
- theoretical justification
- higher freedom (adaptation, parallelization, etc.)

comparison of FEM and FVM for time-independent convective problem

Finite element method

- continuous approximation
- high order of accuracy
- many theoretical results
- fine for diffusive problems

Finite volume method

- discontinuous approximation
- low order of accuracy
- lack of theory
- fine for convective problems

Discontinuous Galerkin method

- piecewise polynomial discontinuous approximation
- theoretical justification
- higher freedom (adaptation, parallelization, etc.)

2000

DGM

comparison of FEM and FVM for time-independent convective problem

Finite element method

- continuous approximation
- high order of accuracy
- many theoretical results
- fine for diffusive problems

Finite volume method

- discontinuous approximation
- low order of accuracy
- lack of theory
- fine for convective problems

Discontinuous Galerkin method

- piecewise polynomial discontinuous approximation
- theoretical justification
- higher freedom (adaptation, parallelization, etc.)

comparison of FEM and FVM for time-independent convective problem

Finite element method

- continuous approximation
- high order of accuracy
- many theoretical results
- fine for diffusive problems

Finite volume method

- discontinuous approximation
- low order of accuracy
- lack of theory
- fine for convective problems

Discontinuous Galerkin method

- piecewise polynomial discontinuous approximation
- theoretical justification
- higher freedom (adaptation, parallelization, etc.)

comparison of FEM and FVM for time-independent convective problem

Finite element method

- continuous approximation
- high order of accuracy
- many theoretical results
- fine for diffusive problems

Finite volume method

- discontinuous approximation
- low order of accuracy
- lack of theory
- fine for convective problems

Discontinuous Galerkin method

- piecewise polynomial discontinuous approximation
- theoretical justification
- higher freedom (adaptation, parallelization, etc.)

comparison of FEM and FVM for time-independent convective problem

Finite element method

- continuous approximation
- high order of accuracy
- many theoretical results
- fine for diffusive problems

Finite volume method

- discontinuous approximation
- low order of accuracy
- lack of theory
- fine for convective problems

Discontinuous Galerkin method

- piecewise polynomial discontinuous approximation
- theoretical justification
- higher freedom (adaptation, parallelization, etc.)

DGM

comparison of FEM and FVM for time-independent convective problem

Finite element method

- continuous approximation
- high order of accuracy
- many theoretical results
- fine for diffusive problems

Finite volume method

- discontinuous approximation
- low order of accuracy
- lack of theory
- fine for convective problems

Discontinuous Galerkin method

- piecewise polynomial discontinuous approximation
- theoretical justification
- higher freedom (adaptation, parallelization, etc.)

comparison of FEM and FVM for time-independent convective problem

Finite element method

- continuous approximation
- high order of accuracy
- many theoretical results
- fine for diffusive problems

Finite volume method

- discontinuous approximation
- low order of accuracy
- lack of theory
- fine for convective problems

Discontinuous Galerkin method

- piecewise polynomial discontinuous approximation
- theoretical justification
- higher freedom (adaptation, parallelization, etc.)

DGM

comparison of FEM and FVM for time-independent convective problem

Finite element method

- continuous approximation
- high order of accuracy
- many theoretical results
- fine for diffusive problems

Finite volume method

- discontinuous approximation
- low order of accuracy
- lack of theory
- fine for convective problems

Discontinuous Galerkin method

- piecewise polynomial discontinuous approximation
- theoretical justification
- higher freedom (adaptation, parallelization, etc.)

comparison of FEM and FVM for time-independent convective problem

Finite element method

- continuous approximation
- high order of accuracy
- many theoretical results
- fine for diffusive problems

Finite volume method

- discontinuous approximation
- low order of accuracy
- lack of theory
- fine for convective problems

Discontinuous Galerkin method

- piecewise polynomial discontinuous approximation
- theoretical justification
- higher freedom (adaptation, parallelization, etc.)

comparison of FEM and FVM for time-independent convective problem

Finite element method

- continuous approximation
- high order of accuracy
- many theoretical results
- fine for diffusive problems

Finite volume method

- discontinuous approximation
- low order of accuracy
- lack of theory
- fine for convective problems

Discontinuous Galerkin method

- piecewise polynomial discontinuous approximation
- theoretical justification
- higher freedom (adaptation, parallelization, etc.)

comparison of FEM and FVM for time-independent convective problem

Finite element method

- continuous approximation
- high order of accuracy
- many theoretical results
- fine for diffusive problems

Finite volume method

- discontinuous approximation
- low order of accuracy
- lack of theory
- fine for convective problems

Discontinuous Galerkin method

- piecewise polynomial discontinuous approximation
- theoretical justification
- higher freedom (adaptation, parallelization, etc.)

comparison of FEM and FVM for time-independent convective problem

Finite element method

- continuous approximation
- high order of accuracy
- many theoretical results
- fine for diffusive problems

- discontinuous approximation
- low order of accuracy
- lack of theory
- fine for convective problems

- piecewise polynomial discontinuous approximation
- theoretical justification
- higher freedom (adaptation, parallelization, etc.)

comparison of FEM and FVM for time-independent convective problem

Finite element method

- continuous approximation
- high order of accuracy
- many theoretical results
- fine for diffusive problems

- discontinuous approximation
- low order of accuracy
- lack of theory
- fine for convective problems

- piecewise polynomial discontinuous approximation
- theoretical justification
- higher freedom (adaptation, parallelization, etc.)

comparison of FEM and FVM for time-independent convective problem

Finite element method

- continuous approximation
- high order of accuracy
- many theoretical results
- fine for diffusive problems

- discontinuous approximation
- low order of accuracy
- lack of theory
- fine for convective problems

- piecewise polynomial discontinuous approximation
- theoretical justification
- higher freedom (adaptation, parallelization, etc.)

comparison of FEM and FVM for time-independent convective problem

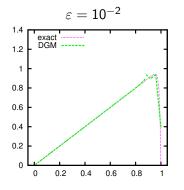
Finite element method

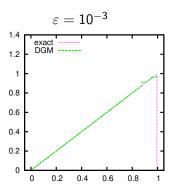
- continuous approximation
- high order of accuracy
- many theoretical results
- fine for diffusive problems

- discontinuous approximation
- low order of accuracy
- lack of theory
- fine for convective problems

- piecewise polynomial discontinuous approximation
- theoretical justification
- higher freedom (adaptation, parallelization, etc.)

Discontinuous Galerkin method

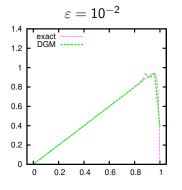


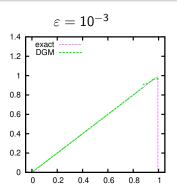


$(P_4$ -approximation, same number of DoF)

- \bullet not ideal but works very well for both ε
- additional techniques (remedies) are possible

Discontinuous Galerkin method

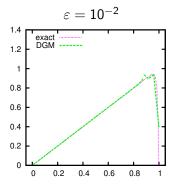


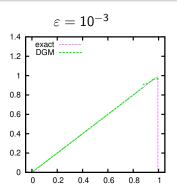


(P_4 -approximation, same number of DoF)

- \bullet not ideal but works very well for both ε
- additional techniques (remedies) are possible

Discontinuous Galerkin method





 $(P_4$ -approximation, same number of DoF)

- ullet not ideal but works very well for both arepsilon
- additional techniques (remedies) are possible

- efficient method for the numerical solution of various PDEs
- piecewise polynomial BUT discontinuous approximation
- suitable for very large range of problems
 - elliptic, parabolic, hyperbolic
 - linear, nonlinear, degenerate
- space-time DGMs are available
- flexibility in the mesh design
 - non-matching and non-uniform grids
 - anisotropic grids
 - varying polynomial approximation degrees
- (nice) block structure of arising algebraic systems
- easy paralelization

- efficient method for the numerical solution of various PDEs
- piecewise polynomial BUT discontinuous approximation
- suitable for very large range of problems
 - elliptic, parabolic, hyperbolic
 - linear, nonlinear, degenerate
- space-time DGMs are available
- flexibility in the mesh design
 - non-matching and non-uniform grids
 - anisotropic grids
 - varying polynomial approximation degrees
- (nice) block structure of arising algebraic systems
- easy paralelization

- efficient method for the numerical solution of various PDEs
- piecewise polynomial BUT discontinuous approximation
- suitable for very large range of problems
 - elliptic, parabolic, hyperbolic
 - linear, nonlinear, degenerate
- space-time DGMs are available
- flexibility in the mesh design
 - non-matching and non-uniform grids
 - anisotropic grids
 - varying polynomial approximation degrees
- (nice) block structure of arising algebraic systems
- easy paralelization

- efficient method for the numerical solution of various PDEs
- piecewise polynomial BUT discontinuous approximation
- suitable for very large range of problems
 - elliptic, parabolic, hyperbolic
 - linear, nonlinear, degenerate
- space-time DGMs are available
- flexibility in the mesh design
 - non-matching and non-uniform grids
 - anisotropic grids
 - varying polynomial approximation degrees
- (nice) block structure of arising algebraic systems
- easy paralelization

- efficient method for the numerical solution of various PDEs
- piecewise polynomial BUT discontinuous approximation
- suitable for very large range of problems
 - elliptic, parabolic, hyperbolic
 - linear, nonlinear, degenerate
- space-time DGMs are available
- flexibility in the mesh design
 - non-matching and non-uniform grids
 - anisotropic grids
 - varying polynomial approximation degrees
- (nice) block structure of arising algebraic systems
- easy paralelization

Basic properties – positive

- efficient method for the numerical solution of various PDEs
- piecewise polynomial BUT discontinuous approximation
- suitable for very large range of problems
 - elliptic, parabolic, hyperbolic
 - linear, nonlinear, degenerate
- space-time DGMs are available
- flexibility in the mesh design
 - non-matching and non-uniform grids
 - anisotropic grids
 - varying polynomial approximation degrees
- (nice) block structure of arising algebraic systems
- easy paralelization

21 / 24

- efficient method for the numerical solution of various PDEs
- piecewise polynomial BUT discontinuous approximation
- suitable for very large range of problems
 - elliptic, parabolic, hyperbolic
 - linear, nonlinear, degenerate
- space-time DGMs are available
- flexibility in the mesh design
 - non-matching and non-uniform grids
 - anisotropic grids
 - varying polynomial approximation degrees
- (nice) block structure of arising algebraic systems
- easy paralelization

- efficient method for the numerical solution of various PDEs
- piecewise polynomial BUT discontinuous approximation
- suitable for very large range of problems
 - elliptic, parabolic, hyperbolic
 - linear, nonlinear, degenerate
- space-time DGMs are available
- flexibility in the mesh design
 - non-matching and non-uniform grids
 - anisotropic grids
 - varying polynomial approximation degrees
- (nice) block structure of arising algebraic systems
- easy paralelization

- efficient method for the numerical solution of various PDEs
- piecewise polynomial BUT discontinuous approximation
- suitable for very large range of problems
 - elliptic, parabolic, hyperbolic
 - linear, nonlinear, degenerate
- space-time DGMs are available
- flexibility in the mesh design
 - non-matching and non-uniform grids
 - anisotropic grids
 - varying polynomial approximation degrees
- (nice) block structure of arising algebraic systems
- easy paralelization

- efficient method for the numerical solution of various PDEs
- piecewise polynomial BUT discontinuous approximation
- suitable for very large range of problems
 - elliptic, parabolic, hyperbolic
 - linear, nonlinear, degenerate
- space-time DGMs are available
- flexibility in the mesh design
 - non-matching and non-uniform grids
 - anisotropic grids
 - varying polynomial approximation degrees
- (nice) block structure of arising algebraic systems
- easy paralelization

- efficient method for the numerical solution of various PDEs
- piecewise polynomial BUT discontinuous approximation
- suitable for very large range of problems
 - elliptic, parabolic, hyperbolic
 - linear, nonlinear, degenerate
- space-time DGMs are available
- flexibility in the mesh design
 - non-matching and non-uniform grids
 - anisotropic grids
 - varying polynomial approximation degrees
- (nice) block structure of arising algebraic systems
- easy paralelization

Basic properties – positive

- efficient method for the numerical solution of various PDEs
- piecewise polynomial BUT discontinuous approximation
- suitable for very large range of problems
 - elliptic, parabolic, hyperbolic
 - linear, nonlinear, degenerate
- space-time DGMs are available
- flexibility in the mesh design
 - non-matching and non-uniform grids
 - anisotropic grids
 - varying polynomial approximation degrees
- (nice) block structure of arising algebraic systems
- easy paralelization

DGM

- efficient method for the numerical solution of various PDEs
- piecewise polynomial BUT discontinuous approximation
- suitable for very large range of problems
 - elliptic, parabolic, hyperbolic
 - linear, nonlinear, degenerate
- space-time DGMs are available
- flexibility in the mesh design
 - non-matching and non-uniform grids
 - anisotropic grids
 - varying polynomial approximation degrees
- (nice) block structure of arising algebraic systems
- easy paralelization

- efficient method for the numerical solution of various PDEs
- piecewise polynomial BUT discontinuous approximation
- suitable for very large range of problems
 - elliptic, parabolic, hyperbolic
 - linear, nonlinear, degenerate
- space-time DGMs are available
- flexibility in the mesh design
 - non-matching and non-uniform grids
 - anisotropic grids
 - varying polynomial approximation degrees
- (nice) block structure of arising algebraic systems
- easy paralelization

Basic properties – theoretical

- formulation of the method is more complicated
- numerical analysis of the method is more complicated

Basic properties – practical

- more degrees of freedom ⇒ larger algebraic systems
 - it can be compensated by mesh adaptation
- less of available "standard" libraries,
 - multi-level preconditioners
 - domain decomposition preconditioners

A lot of work to do!

Basic properties – theoretical

- formulation of the method is more complicated
- numerical analysis of the method is more complicated

Basic properties – practical

- more degrees of freedom ⇒ larger algebraic systems
 - it can be compensated by mesh adaptation
- less of available "standard" libraries,
 - multi-level preconditioners
 - domain decomposition preconditioners

Basic properties – theoretical

- formulation of the method is more complicated
- numerical analysis of the method is more complicated

Basic properties – practical

- more degrees of freedom ⇒ larger algebraic systems
 - it can be compensated by mesh adaptation
- less of available "standard" libraries,
 - multi-level preconditioners
 - domain decomposition preconditioners

Basic properties – theoretical

- formulation of the method is more complicated
- numerical analysis of the method is more complicated

Basic properties – practical

- more degrees of freedom ⇒ larger algebraic systems
 - it can be compensated by mesh adaptation
- less of available "standard" libraries,
 - multi-level preconditioners
 - domain decomposition preconditioners

Basic properties - theoretical

- formulation of the method is more complicated
- numerical analysis of the method is more complicated

Basic properties - practical

- more degrees of freedom ⇒ larger algebraic systems
 - it can be compensated by mesh adaptation
- less of available "standard" libraries,
 - multi-level preconditioners
 - domain decomposition preconditioners

Basic properties - theoretical

- formulation of the method is more complicated
- numerical analysis of the method is more complicated

Basic properties – practical

- more degrees of freedom ⇒ larger algebraic systems
 - it can be compensated by mesh adaptation
- less of available "standard" libraries,
 - multi-level preconditioners
 - domain decomposition preconditioners

Basic properties - theoretical

- formulation of the method is more complicated
- numerical analysis of the method is more complicated

Basic properties – practical

- more degrees of freedom ⇒ larger algebraic systems
 - it can be compensated by mesh adaptation
- less of available "standard" libraries,
 - multi-level preconditioners
 - domain decomposition preconditioners

Basic properties - theoretical

- formulation of the method is more complicated
- numerical analysis of the method is more complicated

Basic properties – practical

- more degrees of freedom ⇒ larger algebraic systems
 - it can be compensated by mesh adaptation
- less of available "standard" libraries,
 - multi-level preconditioners
 - domain decomposition preconditioners

Basic properties – theoretical

- formulation of the method is more complicated
- numerical analysis of the method is more complicated

Basic properties - practical

- more degrees of freedom ⇒ larger algebraic systems
 - it can be compensated by mesh adaptation
- less of available "standard" libraries,
 - multi-level preconditioners
 - domain decomposition preconditioners

Basic properties – theoretical

- formulation of the method is more complicated
- numerical analysis of the method is more complicated

Basic properties - practical

- more degrees of freedom ⇒ larger algebraic systems
 - it can be compensated by mesh adaptation
- less of available "standard" libraries,
 - multi-level preconditioners
 - domain decomposition preconditioners

Basic properties – theoretical

- formulation of the method is more complicated
- numerical analysis of the method is more complicated

Basic properties - practical

- more degrees of freedom ⇒ larger algebraic systems
 - it can be compensated by mesh adaptation
- less of available "standard" libraries,
 - multi-level preconditioners
 - domain decomposition preconditioners

Basic properties – theoretical

- formulation of the method is more complicated
- numerical analysis of the method is more complicated

Basic properties - practical

- more degrees of freedom ⇒ larger algebraic systems
 - it can be compensated by mesh adaptation
- less of available "standard" libraries,
 - multi-level preconditioners
 - domain decomposition preconditioners

Outline

- Abstract error analysis
- DGM for the Laplace problem: complete error analysis
- numerical approximation based on upwinding
- DGM for the nonlinear convection-diffusion equation
- DGM for time dependent problems
- DGM for compressible flow problems and other applications

- standard lectures (lecture notes are available)
- 3 quizes during the semestr
- oral exam

Outline

- Abstract error analysis
- DGM for the Laplace problem: complete error analysis
- numerical approximation based on upwinding
- DGM for the nonlinear convection-diffusion equation
- DGM for time dependent problems
- DGM for compressible flow problems and other applications

- standard lectures (lecture notes are available)
- 3 quizes during the semestr
- oral exam

Outline

- Abstract error analysis
- DGM for the Laplace problem: complete error analysis
- numerical approximation based on upwinding
- DGM for the nonlinear convection-diffusion equation
- DGM for time dependent problems
- DGM for compressible flow problems and other applications

- standard lectures (lecture notes are available)
- 3 quizes during the semestr
- oral exam

Outline

- Abstract error analysis
- DGM for the Laplace problem: complete error analysis
- numerical approximation based on upwinding
- DGM for the nonlinear convection-diffusion equation
- DGM for time dependent problems
- DGM for compressible flow problems and other applications

- standard lectures (lecture notes are available)
- 3 quizes during the semestr
- oral exam

Outline

- Abstract error analysis
- DGM for the Laplace problem: complete error analysis
- numerical approximation based on upwinding
- DGM for the nonlinear convection-diffusion equation
- DGM for time dependent problems
- DGM for compressible flow problems and other applications

- standard lectures (lecture notes are available)
- 3 quizes during the semestr
- oral exam

Outline

- Abstract error analysis
- DGM for the Laplace problem: complete error analysis
- numerical approximation based on upwinding
- DGM for the nonlinear convection-diffusion equation
- DGM for time dependent problems
- DGM for compressible flow problems and other applications

- standard lectures (lecture notes are available)
- 3 guizes during the semestr
- oral exam

Outline

- Abstract error analysis
- DGM for the Laplace problem: complete error analysis
- numerical approximation based on upwinding
- DGM for the nonlinear convection-diffusion equation
- DGM for time dependent problems
- DGM for compressible flow problems and other applications

- standard lectures (lecture notes are available)
- 3 quizes during the semestr
- oral exam

Outline

- Abstract error analysis
- DGM for the Laplace problem: complete error analysis
- numerical approximation based on upwinding
- DGM for the nonlinear convection-diffusion equation
- DGM for time dependent problems
- DGM for compressible flow problems and other applications

- standard lectures (lecture notes are available)
- 3 quizes during the semestr
- oral exam

Outline

- Abstract error analysis
- DGM for the Laplace problem: complete error analysis
- numerical approximation based on upwinding
- DGM for the nonlinear convection-diffusion equation
- DGM for time dependent problems
- DGM for compressible flow problems and other applications

- standard lectures (lecture notes are available)
- 3 quizes during the semestr
- oral exam

Outline

- Abstract error analysis
- DGM for the Laplace problem: complete error analysis
- numerical approximation based on upwinding
- DGM for the nonlinear convection-diffusion equation
- DGM for time dependent problems
- DGM for compressible flow problems and other applications

- standard lectures (lecture notes are available)
- 3 quizes during the semestr
- oral exam

Outline

- Abstract error analysis
- DGM for the Laplace problem: complete error analysis
- numerical approximation based on upwinding
- DGM for the nonlinear convection-diffusion equation
- DGM for time dependent problems
- DGM for compressible flow problems and other applications

- standard lectures (lecture notes are available)
- 3 quizes during the semestr
- oral exam

Modelling of mesoscale atmosphere by DGM

compressible Navier-Stokes equations with the gravity term

Modelling of mesoscale atmosphere by DGM

compressible Navier-Stokes equations with the gravity term

DGM