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Preface

These lecture notes more or less cover the lecture Numerical software given by the author
at the master program at the Charles University, Prague, the Faculty of Mathematics and
Physics. They should serve as a survey of the lecture without a mathematically rigorous
derivation and without explaining all details. Most ideas are explained by some examples.
The important part of the lecture notes are Exercises included at the end of each section.

The aim of the lecture:

� this lecture fill a gap in lectures given at our faculty

� implementation of numerical methods is also a non-trivial task

� we need efficiency, accuracy and robustness

� important aspect is an adaptation

� it is advantageous to use software libraries (subroutines written in Fortran, C++,
etc.)

� we learn

– to understand the basic principles of numerical software

– to use public software for basic tasks

– to employ public software for your own project

� a practical introduction to more advanced numerical methods

� role of exercises: students have to solve several Exercises and main tasks
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Chapter 1

Introduction

1.1 Numerical simulation of real-world problems

Process of numerical simulation of real-world problems can be split into several steps:

� physical problem – a real problem which we want to simulate numerically,

� mathematical model – a mathematical description of the physical problem with the
set of (differential) equations including boundary (and initial) conditions,

� approximate problem – finite dimensional approximation of the mathematical prob-
lem with the aid of a suitable numerical method,

� computer implementation – practical computer realization of the numerical method.

1.1.1 Physical problem

Let Pphys formally denote the considered physical (chemical, biological, etc.) problem, we
seek its solution uphys formally given formally by

Pphys(dphys;uphys) = 0, (1.1)

where dphys is the set of data of the problem. Let us note that (1.1) described a real
problem only formally, Pphys is not any standard mapping.

In some situation, we know uphys approximately due to physical experiments. The
experimental results suffer from errors of measures. Moreover, experimental measurement
are expensive and in some cases impossible (e.g., in medicine).

1.1.2 Mathematical model

The problem (1.1) can be mathematically described by a (mathematical or also abstract)
model in the form

P(d;u) = 0, (1.2)
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where u ∈ X is the unknown exact solution of problem (1.2), d ∈ Z represents the data
of the problem (boundary and initial conditions, source terms, etc.), P : Z × X → Y is
a given mapping and X, Y and Z are normed vector spaces. Usually, space X, Y and Z
have an infinite dimension. The difference u−uphys is called the model error. The problem
P is, e.g., a system of differential equation, an integral equation, a system of algebraic
equations, etc.

In order to set the model, we have to balance to aspects

(A1) the model P should approximate Pphys accurately, i.e., the model error have to be
small,

(A2) the model P should be simple such that we are able to analyse and solve it.

1.1.3 Approximate problem

Usually, the requirement (A1) leads to a model, whose exact solution is impossible, hence
we have to solve it approximately. Therefore, we define the approximate (or discrete)
problem by

Ph(dh;uh) = 0, (1.3)

where uh ∈ Xh is the approximate solution, dh ∈ Zh is the discrete analogue of d, Ph :
Zh × Xh → Yh is a given mapping representing a numerical method and Xh, Yh and
Zh are normed vector spaces having finite dimension. The symbol h formally denotes all
parameters of the discretization and if h→ 0 than the number of degrees of freedom (DOF)
(= dimXh) goes to the infinity.

Remark 1.1. In the finite volume/element method, the symbol h denotes the maximal
size of the mesh elements. Generally, h corresponds to all possible parameters of the ap-
proximation of the model problem (1.2), e.g., size of the elements of partitions, degrees of
polynomial approximation, etc.

The relation (1.3) represents a numerical method for the approximate solution of the
mathematical model (1.2). Let us note that Ph means a finite sequence of mathematical
operations resulting the approximate solution uh ∈ Xh. The difference u − uh is called
the discretization error, for complicated problems, the discretization error can have several
contributions, e.g., an quadrature error, an algebraic error, etc.

Example 1.2. Let P be a nonlinear differential equation considered in Ω := (0, 1)

− d

dx

(
a(u)

du

dx

)
= f, u(0) = u(1) = 0 (1.4)

where a(u) > 0, u ∈ R and f : Ω→ R are given. In order to introduce the discrete problem
(1.3), we can proceed for example, in the following way:
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1. The equation (1.4) is discretized by the finite element method, where Ω is split onto
finite mutually disjoint elements K ∈ Th,

1 then the space Xh is the space of piecewise
polynomial functions over K ∈ Th. Then the approximate solution uh is sought in
the form uh =

∑Nh

i=1 u
iϕi, where ui, i = 1, . . . , Nh are the unknown coefficients,

ϕi, i = 1, . . . , Nh are basis functions of Xh and Nh = dimXh.

2. The unknown coefficients ui, i = 1, . . . , Nh are given by the system of the nonlinear
algebraic equations, whose entries are evaluated be the numerical quadrature.

3. The system of the nonlinear algebraic equations is solved by the Newton method.

4. The linear algebraic system arising in the Newton method are solved by the iterative
GMRES solver.

5. Rounding errors caused by the inexact arithmetic, see Chapter 3.

Hence, Ph represents all steps 1. – 4. In many papers the term discretization error means
only the error followed from step 1, the error followed from step 2. is called the quadrature
error and the errors followed from steps 3. and 4. are called the algebraic errors.

We expect that readers are familiar with basic numerical methods, e.g.,

type of model problem numerical method
integrals of a real function numerical quadrature (Newton-Cotes, Gauss)
linear algebraic systems direct methods, iterative methods

(Jacobi, CG, GMRES)
nonlinear algebraic systems iterative Newton method
ordinary differential equations Runge-Kutta, multi-step methods
partial differential equations finite difference method

finite element method
finite volume method

Obviously, it is reasonable to expect that uh → u as h→ 0, i.e., the numerical method
(1.3) converges (for more precise definition of the convergence see Definition 1.18). In
order to ensure the convergence of the numerical method (1.3), we require that the family
of spaces {Xh}h∈(0,h0) has approximation properties of X, i.e.,

∀v ∈ X ∃{vh}h∈(0,h0), vh ∈ Xh : ∥vh − v∥ → 0 for h→ 0, (1.5)

where the symbol h0 formally denotes some maximal parameter of the discretization. Sim-
ilarly, we require that the family of spaces {Yh}h∈(0,h0) and {Zh}h∈(0,h0) have approximation
properties of Y and Z, respectively.

1We call the partition Th the mesh and K ∈ Th the mesh elements.
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1.1.4 Computer implementation

The discrete problem (1.3) is finite-dimensional which means that the approximate solution
uh is sought in Xh, dimXh < ∞. In practice, problem (1.3) is solved by a computer.
Computation in the range of the real numbers R on any computer using any software
(fortran, C, C++, . . . , Matlab, Maple, Mathematica, . . . , Excel, . . . ) suffer from the
rounding errors since each software has to use a finite precision arithmetic, see Section
3. E.g., the number π has an infinite series and the memory of any computer is limited.
In some cases, the rounding errors are negligible but we have to take them into account
generally.

Therefore, the solution of (1.3) in a finite precision arithmetic gives the solution u∗
h ∈

Xh, given formally by

P∗
h(d

∗
h;u

∗
h) = 0, (1.6)

where P∗
h and d∗h are the analogous of Ph and dh in the finite precision arithmetic, re-

spectively. The difference uh − u∗
h is called the rounding error.

The solution u∗
h is the only one solution which is available in practice. Sometimes, we

can compare u∗
h with experimental data.

1.1.5 Types of errors

The difference between the desired (unknown) solution uphys and the only available solution
u∗
h is called the total error. Using the terms introduced in previous Sections, we have

uphys − u∗
h︸ ︷︷ ︸

total error

= uphys − u︸ ︷︷ ︸
model error

+ u− uh︸ ︷︷ ︸
discretization error

+ uh − u∗
h︸ ︷︷ ︸

rounding error︸ ︷︷ ︸
computational error

.

Within this lecture notes we deal mostly with the computational error.
Usually, the errors are considered as the norms of the appropriate difference, moreover,

we distinguish the absolute and relative errors. Hence, the absolute computational error
is given by

Ecomp
abs = ∥u− u∗

h∥

and the relative computational error is given (for u ̸= 0) by

Ecomp
rel =

∥u− u∗
h∥

∥u∥
,

etc. for other types of errors.

1.2 Basic terms

In this section, we introduce general terms of the model problem (1.2) and the approximate
problem (1.3).
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1.2.1 Model problem

Definition 1.3. Let us assume that problem (1.2) has a unique solution for all admissible
data d. We say that solution u of (1.2) depends continuously on the data d if a “small”
perturbation of the data d gives a “small” perturbation of the solution δu. Particularly,
let δd denote an admissible perturbation of d and δu the corresponding perturbation of the
solution, i.e.,

P(d+ δd;u+ δu) = 0. (1.7)

Then

∀η > 0 ∃K(η, d) : ∥δd∥ ≤ η ⇒ ∥δu∥ ≤ K(η, d)∥δd∥.

The norms used for the data and for the solution may be different.

Definition 1.4. We say that problem (1.2) is well-posed (or stable) if it admits a unique
solution u which depends continuously on the data d.

Remark 1.5. If the problem is not well-posed then we say that the problem is ill-posed (or
unstable). Sometimes, instead of the stability of the problem we speak about the sensitivity
of the problem.

Remark 1.6. If the problem is well-posed, then it stands a good chance of solution on a
computer using a stable numerical method, see Definition 1.13. If the model problem is
not well-posed, it needs to be re-formulated for numerical treatment. Typically this involves
including additional assumptions, such as smoothness of solution. This process is known
as regularization.

Example 1.7. A typical example of an ill-posed problem is finding the number of real roots
of polynomial, e.g.,

p(x) = x4 − x2(2a− a) + a(a− 1), a ∈ R is a parameter. (1.8)

For a ≥ 1 we have 4 real roots, for a ∈ ([0, 1) we have two real roots and for a < 0 no real
root. Therefore, an inaccuracy in the parameter a (caused, e.g., by a physical measurement)
can lead to a qualitatively different solution.

In order to measure qualitatively the dependence of the solution on the data we define
the following.

Definition 1.8. Let us consider problem (1.2). We define the relative condition number
by

K(d) = sup
δd∈D

∥δu∥
∥u∥
∥δd∥
∥d∥

, (1.9)

13



where D is a neighbourhood of the origin and denotes the set of admissible perturbations
of data d for which the perturbed problem (1.7) makes sense. If u = 0 or d = 0 then we
have to use the absolute condition number

Kabs(d) = sup
δd∈D

∥δu∥
∥δd∥

. (1.10)

If K(d) is “small” we say that problem (1.2) is well-conditioned otherwise we say that
problem (1.2) is ill-conditioned. The meaning of “big” and “small” depends on the consid-
ered problem.

Remark 1.9. The condition number is independent of a numerical method.

Example 1.10. Let us consider a linear algebraic system Ax = b, where A ∈ Rn×n is a
square regular matrix, b ∈ Rn is the given vector and x ∈ Rn is unknown. Let δb be a
perturbation of b and δx the corresponding perturbation of the solution. Then

Ax = b, A(x+ δx) = b+ δb ⇒ Aδx = δb ⇒ δx = A−1δb. (1.11)

Let ∥A∥ be an induced norm of A (see [Wat02]) then ∥Ay∥ ≤ ∥A∥∥y∥ and we obtain

K(d) = sup
δb∈D

∥δx∥
∥x∥

∥b∥
∥δb∥

= sup
δb∈D

∥A−1δb∥
∥x∥

∥Ax∥
∥δb∥

≤ sup
δb∈D

∥A−1∥∥δb∥
∥x∥

∥A∥∥x∥
∥δb∥

= ∥A∥∥A−1∥.

Example 1.11. Let us consider

A =

(
1000 999
999 998

)
, b =

(
1
1

)
, b̃ =

(
1.001
0.999

)
.

We can verify that the solutions x and x̃ of the problems Ax = b and Ax̃ = b̃ are

x =

(
1
−1

)
, x̃ =

(
−0.997
0.999

)
,

respectively. Therefore, the perturbation of the right-hand side δb = b− b̃ ≈ 10−3 (e.g., by
a physical measurement) causes the perturbation of the solution δx = x− x̃ ≈ 2 (= 200%).
We can verify that the condition number is approximately 106.

1.2.2 Approximate problem

Obviously, we expect that uh → u as h → 0. For that, it is necessary that dh → d and
that Ph “approximates” P, as h→ 0 in the following manner.

Definition 1.12. Let d ∈ Z be an admissible datum of Ph, h ∈ (0, h0), we say that the
approximate problem (or the numerical method) (1.3) is consistent if

Ph(d;u) = Ph(d;u)−P(d;u)→ 0 for h→ 0,

where u is the exact solution of problem (1.2) corresponding to the datum d.

14



Definition 1.4 defines the stability of the model problem (1.2). Similarly, we can intro-
duce the stability of the approximate problem.

Definition 1.13. We say that the approximate problem (1.3) (or the numerical method)
is well-posed (or stable) if it has a unique solution uh for the given datum dh and that uh

depends continuously on the data, i.e.,

∀η > 0 ∃Kh(η, dh) : ∥δdh∥ ≤ η ⇒ ∥δuh∥ ≤ Kh(η, dh)∥δdh∥.

Otherwise, we say that the approximate problem is ill-posed (or unstable).

Remark 1.14. The property “stability of the numerical method” is fundamental for a
practical use the numerical method. The stability ensures that the rounding errors (caused
by the finite precision arithmetic) do not cause a failure of the algorithm, see Example 1.15.

Example 1.15. Let us consider the following initial value problem: we seek a function
y(t) : R+ → R such that

y′ = −100y + 100t+ 101, y(0) = 1. (1.12)

We can easily verify that y(t) = 1+ t. We solve (1.12) by the Euler method, i.e., let h > 0
be the time step, tk = k h, k = 0, 1, . . . the nodes of the partition, then the Euler method
gives the approximations yk ≈ y(tk), k = 0, 1, . . . by the formula

y0 = 1, (1.13)

yk+1 = yk + h (−100yk + 100tk + 101) , k = 0, 1, . . . .

Let us put h = 0.1, we can derive that

y1 = 1.0 + 0.1 · (−100 · 1.0 + 100 · 0.0 + 101) = 1.1

y2 = 1.1 + 0.1 · (−100 · 1.1 + 100 · 0.1 + 101) = 1.2

y3 = 1.2 + 0.1 · (−100 · 1.2 + 100 · 0.2 + 101) = 1.3

y4 = 1.3 + 0.1 · (−100 · 1.3 + 100 · 0.3 + 101) = 1.4

...

We conclude that yk = y(tk), k = 0, 1, . . . , i.e. the discretization error is equal to zero.
However, the simple fortran subroutine

y0 = 1.D+00

h = 0.1

k = 0

write(*, ’(i5, 3es14.6)’ ) 0, h, 0., y0

10 continue

y1 = y0 + h*(-100* y0 + 100 * h*k + 101)
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k = k + 1

write(*, ’(i5, 3es14.6)’ ) k, h, h*k, y1

y0 = y1

if(h*k < 2.) goto 10

gives the output

0 1.000000E-01 0.000000E+00 1.000000E+00

1 1.000000E-01 1.000000E-01 1.100000E+00

2 1.000000E-01 2.000000E-01 1.200000E+00

3 1.000000E-01 3.000000E-01 1.299999E+00

4 1.000000E-01 4.000000E-01 1.400007E+00

5 1.000000E-01 5.000000E-01 1.499938E+00

6 1.000000E-01 6.000000E-01 1.600556E+00

7 1.000000E-01 7.000000E-01 1.694994E+00

8 1.000000E-01 8.000000E-01 1.845049E+00

9 1.000000E-01 9.000000E-01 1.494555E+00

10 1.000000E-01 1.000000E+00 5.649004E+00

11 1.000000E-01 1.100000E+00 -3.074104E+01

12 1.000000E-01 1.200000E+00 2.977694E+02

13 1.000000E-01 1.300000E+00 -2.657824E+03

14 1.000000E-01 1.400000E+00 2.394352E+04

15 1.000000E-01 1.500000E+00 -2.154676E+05

16 1.000000E-01 1.600000E+00 1.939234E+06

17 1.000000E-01 1.700000E+00 -1.745308E+07

18 1.000000E-01 1.800000E+00 1.570777E+08

19 1.000000E-01 1.900000E+00 -1.413700E+09

20 1.000000E-01 2.000000E+00 1.272330E+10

i.e., the Euler method is unstable since the approximate solution {yk}k∈N (last column) (as
well as the computational error) diverges. It is caused by the instability of the Euler method
(for the time step h = 0.1) and the rounding errors. More details is given in Chapter 10.

Example 1.16. Let us consider the initial value problem from Example 1.15 as well as the
Euler method with h = 0.1. Let us perturb the initial condition, namely y(0) = 1.01. We
can found (by the exact arithmetic) that

y1 = 1.01, y2 = 2.01, y3 = −5.99, y4 = 67.0, y5 = 589.0, y6 = 5316, . . .

Therefore, a small perturbation of the data leads a big change of the approximate solution,
we speak about the propagation of the data error.

Similarly as in Definition 1.8 we define the condition number of the numerical method,
namely
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Definition 1.17. For each problem (1.3), h ∈ (0, h), we define the quantities

Kh(dh) = sup
δdh∈Dh

∥δuh∥
∥uh∥
∥δdh∥
∥dh∥

, Kabs,h(dh) = sup
δdh∈Dh

∥δuh∥
∥δdh∥

. (1.14)

where Dh is a neighbourhood of the origin and denotes the set of admissible perturbations
of data dh for which the perturbed approximate. Moreover, define the relative asymptotic
condition number and absolute asymptotic condition number of the numerical method (1.3)
by

Knum(d) = lim
h→0

sup
h′∈(0,h)

Kh′(dh′) and Knum
abs (d) = lim

h→0
sup

h′∈(0,h)
Kabs,h′(dh′). (1.15)

If K(d) is “small” we say that numerical method (1.3) is well-conditioned of stable
otherwise we say that problem (1.2) is ill-conditioned or unstable. The meaning of “big”
and “small” depends on the considered problem.

A necessary requirement for a practical use of any numerical method is its convergence,
i.e,

Definition 1.18. The numerical method (1.3) is convergent if

∀ε > 0 ∃δ(h0, ε) > 0 : ∀h ∈ (0, h0)∀∥δdh∥ ≤ δ(h0, ε) ⇒ ∥u(d)− uh(d+ δd)∥ ≤ ε,

where d is the admissible datum for the model problem (1.2), u(d) is the corresponding
solution, δd is the admissible perturbation of the datum and uh(d + δd) is the solution of
the problem (1.3) with the datum d+ δd.

Theorem 1.19 (Equivalence theorem (Lax-Richtmyer)). For a consistent numerical method,
stability is equivalent to convergence.

Proof. See [QSS00, Section 2.2.1]. □

Finally, we define several qualitative terms of the numerical method (1.3) which quantify
only in comparison to another method.

Definition 1.20.

� accuracy – how large is the computational error,

� efficiency – how many mathematical operations (or how long computational time) are
necessary for obtaining the approximate solution uh,

� robustness – the independence of the previous properties for the data.

Therefore, if we say that “numerical method No. 1 is more accurate but less efficient
than method No. 2” it means that the method No. 1 gives lower computational error
than method No. 2 but it requires longer computational time. Usually, the accuracy and
efficiency are opposite, it is necessary to balance them carefully.
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1.2.3 Implementation of numerical method and mathematical
software

Implementing a numerical method on a computer we should take into account:

� the output of the computer u∗
h should be an approximation of uphys, the process of

the modelling is a “chain”

Pphys =⇒ P =⇒ Ph =⇒ P∗
h.

A chain is only as strong as its weakest link

� However, each “link” influence the neighbouring one

� accuracy, efficiency, robustness: always a compromise, we can not have anything
ideal

� numerical software deals mostly with Ph and P∗
h

1.3 Glossary of Verification and Validation Terms

We present several (more advancing terms) dealing with a mathematical solution of real-
world problems.

� Model is a representation of a physical system or process intended to enhance our
ability to understand, predict, or control its behaviour.

– Abstract model is our mathematical model, e.g., partial differential equations
including initial and boundary condition.

– Computational model is an numerical approximation together with an algorit-
mization and a computer implementation of the mathematical model.

� Modelling is the process of construction or modification of a model.

� Simulation is the exercise or use of a model. (That is, a model is used in a simulation).

� Calibration is the process of adjusting numerical or physical modelling parameters in
the computational model for the purpose of improving agreement with experimental
data.

� Prediction is the use of a model to foretell the state of a physical system under
conditions for which the model has not been validated.

� Robustness defines the ability of the numerical method to provide a solution despite
variabilities in the initial solution and control parameters.
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� Verification is the process of determining that a model implementation accurately
represents the developer’s conceptual description of the model and the solution to
the model.

– Verification of a code – looking for bugs, incorrect implementations

* checking of basic relationships expected, i.e. mass conservation

* simulation of “highly accurate” verification cases, i.e., case with (quasi-)
analytical solutions

* study of mesh adaptations,

* all the options of the code should be examined.

Verification should not performed with experimental data.

– Verification of a calculation – involves error estimation, consistency with theo-
retical results, experimental order of convergence, etc.

� Validation is the process of determining the degree to which a model is an accurate
representation of the real world from the perspective of the intended uses of the
model. Several levels:

– Unit Problems involve simple geometry and one relevant physical feature. An
example is the measurement of a turbulent boundary layer over a flat plate. The
experiment data set contains detailed data collected with high accuracy. The
boundary conditions and initial conditions are accurately measured.

– Benchmark Cases involve fairly simple hardware representing a key feature of
the system, contain two separate physical features. An example is a shock
/ boundary layer interaction. The experiment data set is extensive in scope
and uncertainties are low; however, some measurements, such as, initial and
boundary conditions, may not have been collected.

– Subsystem Cases involve geometry of a component of the complete system which
may have been simplified. The physics of the complete system may be well
represented; but the level of coupling between physical phenomena is typically
reduced. An example is a test of a subsonic diffuser for a supersonic inlet. The
exact inflow conditions may not be matched. The quality and quantity of the
experiment data set may not be as extensive as the benchmark cases.

– Complete System Cases involve actual hardware and the complete physics. All
of the relevant flow features are present. An example is a flow around the whole
plane model. Less detailed data is collected since the emphasis is on system
evaluation. Uncertainties on initial and boundary conditions may be large.

More details can be found in [Ver].
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Homeworks

Exercise 1. Decide, if the following assertions are true or not.

1. The model problem is ill-conditioned, if its solution is very sensitive to the perturba-
tion of the data.

2. A use of a more accurate finite precision arithmetic improve the condition number of
the model problem.

3. The condition number of the model problem depends on the choice of the algorithm
for its approximate solution.

4. The choice of the numerical method has an influence on the propagation of the data
error during the computation.

Exercise 2. Write a simple code to verify Example 1.15. Find experimentally the limit
value h such that the Euler method is stable for the problem (1.12) from Example 1.15.
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Chapter 2

Software for computational
mathematics

2.1 Types of numerical software

� mathematical software as Matlab, suitable for the study of the behaviour and verifica-
tion of numerical method, not suitable for practical computations of large problems,
simple work but it is inefficient

� advanced software platforms for numerical solution of various problems (e.g., FEniCS),
simplify the work, efficiency is high but it is difficult to see the “core of the compu-
tation”, therefore it is difficult to distinguish different aspects of numerical methods
(due to black box). Generally, it is possible to gain the corresponding information
(source files are often available) but not simple task and the efficiency is significantly
decreased.
Cf. list of codes, e.g., https://www.cfd-online.com/Links/soft.html and many
others

� software libraries for “standard” numerical methods (e.g., LAPACK), source codes in
the forms of subroutines which can be link to your own code, mostly freely available,
e.g., Netlib – www.netlib.org Strongly advantageous to use it, see Chapter 7.

2.2 General requirements for numerical software

� accuracy – the error of the result is under the prescribed tolerance (or on the level
of the machine accuracy ϵmach)

� efficiency – fast computation and possibly a low amount of the used computer mem-
ory. Both requirements are frequently opposite since the storing of pre-computed or
temporal variables and arrays can decrease significantly the computational time but
requires more memory.
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Example 2.1. We have the functions

fk(x), k = 1, . . . , n, φi(x), i = 1, . . . , dof.

The aim is to compute∫
Ω

fk(x)φi(x) dx ≈
M∑
j=1

wjfk(xj)φi(xj) k = 1, . . . , n, i = 1, . . . , dof.

We have

———————————————————————————

wj, j = 1, . . . ,M weights(1:M)

fk(xj), j = 1, . . . ,M, k = 1, . . . , n, func(1:M, 1:n)

φi(xj), j = 1, . . . ,M, i = 1, . . . , dof, phi(1:dof, 1:M)

———————————————————————————

The following part of the code

allocate(temp(1:M))

do k=1,n

temp(1:M) = func(1:M,k) * weights(1:M)

do i=1, dof

vector(k,i) = dot_product(temp(1:M), phi(i, 1:M) )

end do

end do

deallocate(temp)

is faster (but need more memory – array temp) than the following one

do k=1,n

do i=1, dof

vector(k,i) = dot_product(func(1:M,k) * weights(1:M), phi(i, 1:M) )

end do

end do

However, the amount of the additional memory is not essential in this case.

– the preference is to save the computational time than the computer memory

– suitable algoritmization, minimization of the number of mathematical opera-
tions

– the (de)allocation of arrays, if conditions, control of do cycles requires also a
non-negligible time
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� robustness – code works for a wide range of input data. Robustness depends on the
used method, but the code should avoid a failure of the computation, situation like√
−1. The user can make a mistake and run the code with wrong data. However,

too frequent verification of the data and results increase the computational time.

� transportability – codes are “computer independent”, codes have to give the same (or
at least very similar) results using different computers. The differences are usually
caused by

– different operating systems (Windows, Unix, Linux, . . . )

– different systems on computers “32bits”, “64bits”

– different translators, gfortran, ifort (Intel), . . . , there exists some norms but
not always unique and not always are kept.

– different versions of the translators gfortran-4.8, gfortran-5.1, etc.

Typical situation: your made a perfectly working code on your laptop and when the
files are moved to the computer of your costumer, the code does not work.
Advice: use standard structures, no special commands which could seem to be
favourable, avoid commands of the operator system (e.g., calling vizualization soft-
ware), test different computers, . . . . Let us note that 100% transportability is “an
illusion” (namely for the computation in float-point system).

� readability of the code – use easily understandable commands, split particular works
in a hierarchy of subroutines, frequent comments, sometimes can decrease the effi-
ciency. Avoid a non-stadard formulae, e.g., the part of the code

do i=1,10

do j=1,10

a(i,j) = (i/j) * (j/i)

end do

end do

defines a unit matrix but the construction is awful.

Graphical structure is important, e.g.,

do k=1,n

do i=1, dof

vector(k,i) = dot_product(func(1:M,k) * weights(1:M), phi(i, 1:M) )

end do

end do

is much better than
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do k=1,n

do i=1, dof

vector(k,i) = dot_product(func(1:M,k) * weights(1:M), phi(i, 1:M) )

end do

end do

or even

do k=1,n

do i=1, dof

vector(k,i) = dot_product(func(1:M,k) * weights(1:M), phi(i, 1:M) )

end do

end do

Editors usually highlights the commands, e.g., gedit editor

do k=1,n 
   do i=1, dof
      vector(k,i) = dot_product(func(1:M,k) * weights(1:M), phi(i, 1:M) )
   end do
end do 

� documentation of the code – important but very often omitted, software tools, e.g.,
doxygen which creates a documentation from the comments in the code, very useful
(the documentation is created simultaneously) but not always sufficient.

2.3 Procedure for the creation of a software

1. creation of the algorithm: proposal of a numerical methods and hierarchy of its
performance

2. structure of the implementation: data structures, main code, hierarchy of subroutines

3. coding and debugging

4. testing of the code

(a) test on problems with an exactly known solution

(b) test on problems with an expected solution

(c) test on problems without any knowledge of the solution

5. documentation

6. maintenance of the software

Few comments:
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� procedure can be split in several task

� testing of particular tasks is important, list of a testing examples has to be developed
simultaneously

� preliminary variants of the code, adding of verification of partial results, later could
be removed

� be prepare that the first variant is not suitable, flexibility for later modifications is
recommended

� program languages offers options for debugging a code, e.g., the range of arrays are
always checked, code runs longer, recommended to use

� program languages offers optimization, options -O2, -O3, -O4 . . . Accelerate the com-
putation but sometimes gives a different behaviour, the reason is usually a bug in
the code (e.g., a variable is not initialized, a default value is used, it can differ.
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Chapter 3

Machine arithmetic

3.1 Machine representation of numbers

3.1.1 Definition of the system of numbers

Any machine operation is affected by rounding error, since only a finite subset of real
numbers can be represented by a computer. By F we denote this subset, which we call
the floating-point number system. Obviously F ⊂ R. Each F can be characterized by four
integer parameters:

� β – the base,

� t – the length of the mantissa (the accuracy),

� L < U – the range of the exponent.

Hence, we write

F = F(β, t, L, U). (3.1)

If x ∈ F is a number from F then it can be express by

x = ±
(
d0 +

d1
β

+
d2
β2

+
d3
β3

+ · · ·+ dt−1

βt−1

)
βe, (3.2)

where 0 ≤ di ≤ β−1, i = 0, . . . , t−1 and L ≤ e ≤ U , e and di, i = 0, . . . , t−1 are integers.
The t-plet (d0d1 . . . dt−1) is called the mantissa (or also significant) and the number e is the
exponent. Hence, there is the representation

x ∈ F ←→ {d0, d1, . . . , dt−1; e}. (3.3)

Since the basic computer information is the bit having values 0 (=off) or 1 (=on), it is
suitable use β = 2. Then di = 0 or 1, i = 0, . . . , t − 1. The parameters (β, t, L, U) should
satisfy some standards, namely the standard of the Institute of Electrical and Electronics
Engineers (IEEE) and International Electrotechnical Commission (IEC) from 1985, see
Table 3.1.
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type β t L U #F ϵmach

single 2 24 -125 128 4.26E+09 5.96E-08
double 2 53 -1021 1024 1.84E+19 1.11E-16
extended 2 64 -16 382 16 383 6.04E+23 5.42E-20
quadrupole 2 113 -16 382 16 383 3.40E+38 9.6.E-35

Table 3.1: Standards of IEEE and IEC for floating point arithemtic

3.1.2 Normalized system F
The number representation is not unique since, e.g,

{1010; 0} ←→ 1.010× 100 = 0.101× 101 ←→ {0101; 1} (3.4)

Then, it is suitable to use the normalization of F.

Definition 3.1. We say that the system F is normalized if we prescribe the additional
requirement

d0 ̸= 0. (3.5)

We speak about the normal numbers and the normalization of F.

The normalization gives the following properties.

� the numbers in the system F are represented uniquely (except 0)

� the maximal possible accuracy is used

� for β = 2, we have always d0 = 1 and then it is not necessary to store it (the ”hidden”
or ”implicit” bit).

3.1.3 Renormalization of the system F
The numbers in F are not distributed equidistantly (only relatively equidistantly).

Example 3.2. Let β = 2, t = 3, L = −1 and U = 1. Then the numbers from the
normalized F = F(β, t, L, U) are plotted here:

-4 -3 -2 -1  0  1  2  3  4
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This example shows that there is a gap around zero due to the normalization assumption
(3.5). Therefore, we introduce the renormalization of the system F replacing (3.5) by other
requirement.

Definition 3.3. We say that the system F is renormalized if we prescribe the requirement

d0 ̸= 0 only if e ̸= L. (3.6)

We speak about renormalization of F and the numbers with d0 = 0 and e = L are called
sub-normal numbers.

The renormalization fill the gap around the zero:

-4 -3 -2 -1  0  1  2  3  4

On the other hand, we loose some accuracy.

3.1.4 Under- and over-flow levels

The system F is finite, the number of numbers in the normalized system F is equal to

#F = 2︸︷︷︸
sign±

( β − 1︸ ︷︷ ︸
first digit

)( β︸︷︷︸
other digits

)t−1(U − L+ 1︸ ︷︷ ︸
exponents

) + 1︸︷︷︸
zero

. (3.7)

See Table 3.1 for the concrete values.
We define the maximal and the minimal positive numbers of the normalized system F

by

OFL := max
x∈F
|x| = (1− β−t)βU+1, (3.8)

UFL := min
x∈F
|x| = βL, (3.9)

where OFL means the over-flow level and UFL means the under-flow level.
The renormalized system F has (instead of (3.9)) the value of UFL given by

UFL⋆ = βL−t+1. (3.10)

3.1.5 Rounding

Generally, x ̸∈ F for x ∈ R. Hence, we have to introduce a mapping

ˆ: R→ F. (3.11)

We require, e.g.,

28



� a ∈ F⇒ â = a

� a ≤ b⇒ â ≤ b̂

In practice, two main approaches are used:

� chopping: a number a ∈ R is expanded in the series with the base β, i.e.,

a =

(
d0 +

d1
β

+
d2
β2

+
d3
β3

+ · · ·+ dt−1

βt−1
+

dt
βt

+ . . .

)
βe,

and only first t digits of the mantissa are used, i.e.,

â :=

(
d0 +

d1
β

+
d2
β2

+
d3
β3

+ · · ·+ dt−1

βt−1

)
βe

� round to nearest, where we put

â = argmin
x∈F
|a− x|.

If there exists two numbers x ∈ F satisfying this definition, we use the number having
the last digit even. For example, for β = 10 and t = 2 we put

a â a â
1.649 → 1.6 1.749 → 1.7
1.650 → 1.6 1.750 → 1.8
1.651 → 1.7 1.751 → 1.8

This approach is more expensive but more accurate, standard of IEEE.

The difference x− x̂ is called the rounding error.

3.1.6 Machine accuracy

Definition 3.4. Let ˆ be the operator of the rounding (3.11). We define the positive real
number ϵmach by

ϵmach := max
x∈R∩[UFL,OFL]

∣∣∣∣ x̂− x

x

∣∣∣∣ . (3.12)

The number ϵmach is called the machine accuracy or simply the accuracy and it represents
the maximal possible relative rounding error

We can verify that for the normalized (but not renormalized) system F, we have

ϵmach =

{
β1−t for the chop,
1
2
β1−t for the round to nearest.

(3.13)

The number of correct (decimal) digits in x̂ is equal roughly to − log10 ϵmach, i.e. about
7 or 8 in the single and about 15 or 16 in the double precisions. In the other words, ϵmach

is the smallest possible number such that 1 + ϵmach > 1 in the finite precision arithmetic,
see Table 3.1.
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Remark 3.5. Definition 3.4 implies that if x ∈ R such that UFL ≤ |x| ≤ OFL then there
exists δ ∈ R, |δ| ≤ ϵmach such that x̂ = x(1 + δ).

Remark 3.6. Let us recall that UFL is given by the exponent (namely lower bound L) and
ϵmach be the length of the mantissa (the parameter t). Usually, we have

0 < UFL < ϵmach < OFL

3.1.7 Infs and NaNs

Usually, the system F is enriched by two special values:

� NaN – Not a Number, which is a result of certain ”invalid” operations, such as 0/0
or
√
−1. In general, NaN s will be propagated i.e. most operations involving a NaN

will result in a NaN , although functions that would give some defined result for any
given floating point value will do so for NaN as well, e.g. NaN 0 = 1.

� Inf – Infinity (usually with signs +Inf and −Inf ), which approximate the infinity in a
limits, e.g., 1./0 = (+Inf ), tan(π/2) = (+Inf ), etc. IEEE standard requires infinities
to be handled in a reasonable way, such as (+Inf )+(+7) = (+Inf ), (+Inf )× (−2) =
(−Inf ) and (+Inf )× 0 = NaN .

Moreover, let a = OFL then a+1 = (+Inf ) and −a− 1 = (−Inf ). On the other hand, let
a = UFL then a/2 = 0 usually.

Do Exercise 3

3.2 Storage requirements of the system F
The basic computer information is the bit. Each number from F requires several bits of
the computer memory for its storing based on the used type, namely

� single requires 32 bits: 1 sign bit, 23 bits for mantissa, 8 bits for exponent

� double requires 64 bits: 1 sign bit, 52 bits for mantissa, 11 bits for exponent

� extended requires 80 bits: 1 sign bit, 64 bits for mantissa, 15 bits for exponent 1

� quadrupole requires 128 bits: 1 sign bit, 112 bits for mantissa, 15 bits for exponent

Remark 3.7. The single precision uses 8 bits for the exponents, i.e, we have 28 = 256
possibilities. The number of possible exponents is equal to U−L+1 = 254, i.e., two possible
exponents are blank. The exponent 00000000 (in the binary representation) is used for the
subnormal numbers and the exponent 11111111 is used for the special values Inf and NaN .

1In contrast to the single and double-precision formats, this format does not utilize an implicit/hidden
bit
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3.3 Mathematical operations in the system F
The system F was introduce to approximate the real numbers R. Further, we need to deal
with the usual mathematical operations (e.g., adding, subtracting, multiplication, division)
within the system F. We speak about the finite precision arithmetic.

3.3.1 Basic aspects of the finite precision arithmetic

Let ∗ denote a mathematical operation on the real numbers R, i.e., x∗y ∈ R for any
x, y ∈ R. E.g., ∗ ∈ {+,−,×, :}. If x, y ∈ F then x∗y ̸∈ F generally. In order to work
within the system F, we have to introduce some embeddinĝ: R→ F, e.g., the chop or the
round to the nearest. Then, to the mathematical operation ∗ : R × R → R, we define its
analogue ∗̂ : F× F→ F by

x∗̂y = x̂∗y (3.14)

In virtue of Remark 3.5, we have x̂ = x(1 + ρ), where |ρ| ≤ ϵmach. Analogously,

x∗̂y = (x∗y)(1 + ρ), |ρ| ∈ ϵmach. (3.15)

Example 3.8. Let x, y, x ∈ R. We assume that |x + y + z| ≤ OFL, for simplicity. We
want to compute x+y+z. In the finite precision arithmetic, we can evaluate only x+̂y+̂z.
We investigate the corresponding rounding error. Then, using (3.15), we have

(x+̂y)+̂z = (x+ y)(1 + ρ1)+̂z = [(x+ y)(1 + ρ1) + z](1 + ρ2)

= x+ y + z + (x+ y)(ρ1 + ρ2 + ρ1ρ2) + zρ2,

where |ρ1| ≤ ϵmach and |ρ2| ≤ ϵmach. Using the different order of adding, we have

x+̂(y+̂z) = x+̂(y + z)(1 + ρ3) = [x+ (y + z)(1 + ρ3)](1 + ρ4)

= x+ y + z + zρ4 + (y + z)(ρ3 + ρ4 + ρ3ρ4),

where |ρ3| ≤ ϵmach and |ρ4| ≤ ϵmach. From the above relations we deduce that the adding in
the finite precision arithmetic is not associative Similarly, we obtain the same conclusion
for the multiplication.

Do Exercise 4

Remark 3.9. The adding (and similarly the multiplication) in the finite precision arith-
metic is usually commutative, we can write

x+̂y = x̂+ y = ŷ + x = y+̂x.
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3.3.2 Practical implementation of the adding and subtracting

Let x, y ∈ F be given in the form (see (3.3))

x = {a0a1 . . . at−1; e1}

(
⇔ x = (

t−1∑
i=0

ai
βi
)βe1

)
, (3.16)

y = {b0b1 . . . bt−1; e2}

(
⇔ y = (

t−1∑
i=0

bi
βi
)βe2

)

and we want to compute x+ y in the finite precision arithmetic.
The basic idea of the adding of two numbers in the exponential form is the following.

We rewrite the numbers into the form having the same exponent and adding the mantissas,
we obtain the final result. In practical implementations, both numbers are first transformed
to the higher precision (e.g., single to double, single to extended), then both mantissas are
added and the results is transformed back to the original precision.

For example, the numbers x, y in (3.16) are transformed to the higher precision, formally
written as

x = {a0a1 . . . at−1000 . . . 0; e1}, (3.17)

y = {b0b1 . . . bt−1000 . . . 0; e2}.

Example 3.10. Let, e.g., e1 = e2 + 2, we rewrite the numbers (3.17) to the form with the
same exponent

x = {a0a1a2 . . . at−1000 . . . 0; e1} (3.18)

y = {00b0b1 . . . bt−3bt−2bt−10 . . . 0; e2 + 2} = {00b0b1 . . . bt−3bt−2bt−10 . . . 0; e1}.

Then we add the mantissas and obtain formally

x+̂y = {a0a1(a2 + b0)(a3 + b1) . . . (at−1 + bt−3)bt−2bt−10 . . . 0; e1}. (3.19)

Of course, (3.19) is true only when ai+2 + bi < β, i = 0, . . . , t − 3. Finally, the transfor-
mation of the results to the original precision gives

x+̂y =: z = {a0a1(a2 + b0)(a3 + b1) . . . (at−1 + bt−3); e1}. (3.20)

The implementation of the adding in the finite precision arithmetic presented above
implies that there is the difference between the values x+̂y and z, where z := x+̂y. The
first one is more accurate generally.

Moreover, Example 3.10 gives that the result is in fact independent of bt−2 and bt−1.
Generally, if the exponents of both numbers differs very much than we lose the accuracy
of the mathematical operation. The loss of the accuracy is increasing for the increasing
difference between both exponents.
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Example 3.11. Let as consider the infinite row
∑∞

n=1
1
n
. Obviously, this row diverges (the

sum is infinity). However, the evaluation of this sum by a simple subroutine

real :: sum

integer :: n

sum = 0.

n = 0

10 n = n + 1

sum = sum + 1./n

print*, sum

goto 10

leads to a finite limit number (approximately 15.40 in the single precision and something
more in the double precision – these values may depends on the used computer and the
language translator).

This follows from the fact that

∃n0 ∈ N :
1

n0

≤ ϵmach

n0−1∑
n=1

1

n
.

Therefore, the terms 1/n0, 1/(n0 + 1), etc. does not bring any increase of the sum.

Do Exercise 5

3.3.3 Practical implementation of the multiplication and division

Practical implementation of the multiplication and division is similar to the implementation
of the adding and subtracting described in Example 3.10. The numbers are transformed
to the higher precision type, the operation is performed and the result is transformed back
to the original type.

Let x, y ∈ F be given in the form (3.16), then their product in the finite precision
arithmetic x×̂y has the mantissa with the length equal approximately to 2t. Therefore,
any operation leads to a loss of the accuracy.

3.3.4 Cancellation

The subtraction of two similar numbers leads to a large loss of the accuracy. This effect is
called the cancellation and it is illustrated in the following example.

Example 3.12. Let

x = 123.456478, y = 123.432191 =⇒ x− y = 0.0024267 = 2.4267× 10−2.
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We consider F with β = 10 and t = 6. The representation of the numbers x and y in F
reads

x = 1.23456× 102, y = 1.23432× 102

and their difference in F is

x−̂y = 2.40000× 10−2,

hence the result has only two decimal digits. Therefore, the relative rounding error of this
computation is

(x−̂y)− (x− y)

x− y
=

2.4× 10−2 − 2.4267× 10−2

2.4267× 10−2
= 0.011003

i.e., more than 10−2 (using t = 6).

The total loss of the accuracy is the following case, let ε < ϵmach then

(1 + ε)− (1− ε) = 2ε, but (1+̂ε)−̂(1−̂ε) = 1−̂1 = 0,

i.e., the error is 100%.

Example 3.13. Let us consider the quadratic equation

ax2 + bx+ c = 0. (3.21)

The roots are given either by

x1,2 =
−b±

√
b2 − 4ac

2a
(3.22)

or by

x1,2 =
2c

−b∓
√
b2 − 4ac

. (3.23)

Let a = 0.05010, b = −98.78 and c = 5.015. The exact roots of (3.21) are

x1 = 1971.605916, x2 = 0.05077068387.

Let us consider the system F with β = 10 and t = 4. Then the roots evaluated in the finite
precision arithmetic by formula (3.22) are

x1 = 1972, x2 = 0.0998

and by formula (3.23) are

x1 = 1003, x2 = 0.05077.

Therefore, x2 given by (3.22) and x1 given by (3.23) are completely wrong. The reason is
the cancellation since

√
b2 − 4ac = 98.77 ≈ b in the finite precision arithmetic.

Do Exercise 6-10
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3.3.5 Computer performance

In computing, floating point operations per second (FLOPS, flops) is a measure of com-
puter performance, useful in fields of scientific computations that require floating-point
calculations. For such cases it is a more accurate measure than measuring instructions per
second.

The use unit of the computer performance:
Name Unit Value
kiloFLOPS kFLOPS 103

megaFLOPS MFLOPS 106

gigaFLOPS GFLOPS 109

teraFLOPS TFLOPS 1012

petaFLOPS PFLOPS 1015

exaFLOPS EFLOPS 1018 actual limit of computers
zettaFLOPS ZFLOPS 1021

yottaFLOPS YFLOPS 1024

brontoFLOPS BFLOPS 1027

The term flop is sometimes used also for the mathematical operations in F.

Homeworks

Exercise 3. Find experimentally the approximate values of OFL, UFL and ϵmach. Use an
arbitrary compute, operating system and programming language and write a simple code
seeking these value. Compare the obtained value with the theoretical ones given by (3.8),
(3.9) and (3.13). Try different types (at least single and double).

Exercise 4. Show, similarly as in Example 3.8, that the adding in the finite precision
arithmetic is not distributive.

Exercise 5. Verify Example 3.11. Modify a code in such a way that it results a different
limit value (hint: modify the order of the summing).

Exercise 6. Try and explain the behaviour of the following codes

eps = 1.

10 eps = eps/2.

write(*,’(es18.10)’) eps

eps1 = eps + 1

if(eps1 > 1.) goto 10

and

eps = 1.

10 eps = eps/2.

write(*,’(es18.10)’) eps

if(eps > 0.) goto 10
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Explain the differences?

Exercise 7. The number e = 2.7182817459106445 . . . can be defined as e = limn→∞(1 +
1/n)n. This suggests an algorithm for calculating e: choose n large and evaluate e∗ =
(1 + 1/n)n. The results are:

n e∗ # correct digits
1.0000E+04 2.718145926825 3
1.0000E+05 2.718268237192 4
1.0000E+06 2.718280469096 5
1.0000E+07 2.718281694133 7
1.0000E+08 2.718281798339 7
1.0000E+09 2.718282051996 6
1.0000E+10 2.718282052691 6
1.0000E+11 2.718282052980 6
1.0000E+12 2.718523495870 3
1.0000E+13 2.716110033705 2
1.0000E+14 2.716110033666 2
1.0000E+15 3.035035206235 0
1.0000E+16 1.000000000000 0
1.0000E+17 1.000000000000 0
1.0000E+18 1.000000000000 0

Explain this effect, i.e, why the approximation e∗ of the Euler number e is first increasing
for increasing n and then it decrease until complete information is lost.

Exercise 8. Cf. Example 3.13. Write a code for the solution of the quadratic equation
(3.21) which is robust with respect the overflow, underflow and the cancellation. Test the
following data:

� a =6, b = 5, c = −4

� a =6E+30, b = 5E+30, c = −4E+30

� a = 1, b = −1E + 6, c = −1

Exercise 9. The Taylor series for the error function is

erf(x) =
2√
π

∞∑
k=0

(−1)kx2k+1

k!(2k + 1)
.

This series converges for all x ∈ R. Programme it and try x = 0.5, x = 1.0, x = 5 and
x = 10. Explain the results.

Exercise 10. Numerical differentiating of a function f is based on the formula:

f ′(x̄) ≈ f(x̄+ h)− f(x̄)

h
=: Df(x̄;h).
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� Determine the dependence of discretization and rounding errors on h.

� For which h the formula is the most accurate (in finite precision arithmetic).

� Write a simple code for f(x) = x2 at x̄ = 1.5 and test several values h.

� Try to find an algorithm, which gives the optimal size of h.
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Chapter 4

Linux

Linux is a family of free and open-source software operating systems built around the
Linux kernel. Typically, Linux is packaged in a form known as a Linux distribution (or
distro for short) for both desktop and server use. For more detailed description see, e.g.,
https://en.wikipedia.org/wiki/Linux.

It is Unix-base operating system, there are several distributions: SuSe, Ubuntu, etc.
Ubuntu is actually very good choice.

Linux perfectly suits for scientific computing, namely for the solution of large demand-
ing problems.

4.1 Installation of Linux

� a direct installation on the computed

� installation as a sub-system on Windows is also possible, many manuals and direc-
tions on web, see also the lecture web.

4.1.1 Instalation using Virtual Box Machine

The detailed description: link
https://msekce.karlin.mff.cuni.cz/~dolejsi/Vyuka/NS_source/Linux/index-install.html

4.2 Basic commands of Linux

Commands from the command lines

� name/codes/integrals/data/ – structures of directories /

� pwd – return actual directory
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� mkdir – create a (sub-)directory

� rmdir – remover a (sub-)directory

� cd – changes the directory

� ls – list the files, option ls -l

� rm – remove a file (or directory), option rm -r - DANGEROUS !

� cp file1 file2 – copy a file

� mv file1 file2 – rename a file

� mv file1 dir2 – move a file to directory

� ~/ – home directory

� touch – create a file

� less – list the file

� more – list the file

� man – list the help (manual) for the given word

4.3 Installation of libraries in Linux

For the purposes of this lecture, we need

� a Fortran 90 translater, the good choice is gfortran

� suitable text editor (e.g., gedit, emacs)

� software for visualization gnuplot

Installation of packages, e.g., of gedit, try

sudo apt-get install gedit

similarly for gnuplot

sudo apt-get install gnuplot

Your Linux password is required.

4.4 gfortran on Linux

Try

sudo apt-get install gfortran

or directly from https://gcc.gnu.org/wiki/GFortranBinaries#GNU.2BAC8-Linux
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Chapter 5

Fortran

For more detailed sources see the lecture webpage.

5.1 Why Fortran?

Title: “fortran” = formula translation. General Assessment1

� It is often perceived that Fortran is an outdated programming language, which is used
only by dinosaurs, who got stuck in the past and cannot learn much more efficient
languages such as C++.

� If you program like a dinosaur, your code will be outdated no matter what language
you use.

� Fortran is designed for number-crunching. It is not for problems with sophisticated
data structures or logic. If you follow rules, Fortran provides a very fast and easy to
write code.

� Do not use archaic features in Fortran. Fortran is about speed: fast codes is our goal.

See, e.g., https://www.ibiblio.org/pub/languages/fortran/ch1-2.html

1https://docplayer.net/59589138-Programming-with-fortran.html
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5.2 Special Fortran90 commands

� vectors & matrices operatins, component-wise

– A(1:N) = B(1:N) + C(1:N)

– A(1:N) = B(1:N) * C(1:N)

– A(1:M, 1:N) = B(1:M, 1:N) * C(1:M, 1:N)

– A(1:N) = B(3, 1:N)

– block operations: A(1:10, 1:10) = B(101:110, 201:210)

– B(1:M,1:N) = transpose( A(1:N, 1:M) )

– combinations: A(1:N) = B(1:N) * C(1:N) + M(1:N, 5)

– x = sum( A(1:M, 1:N)) , x = sum( abs( A(1:M, 1:N))) ,

– maximal value of an array max_x = maxval( B(1:M, 1:K) )

� dot_product, scalar product of two vectors, a = dot_product(x(1:N), y(1:N) )

� matmul, product of matrices, A(1:M, 1:N) = matmul( B(1:M, 1:K), C(1:K, 1:N) )

5.3 Example

Basic code for the multiplication of two matrices.

program multiplication

integer, parameter :: size= 2000

real, dimension(:,:), allocatable :: A,B,C

real :: t1, t2, tt, mflops

integer :: n, loops, i,j,l, case

allocate( A(size, size), B(size, size), C(size,size) )

n = size

do i = 1, n

do j = 1, n

A(i,j) = i+j

B(i,j) = i-j

end do

end do
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call cpu_time( t1 )

call BlockMulti(n, A, B, C)

call cpu_time( t2 )

tt = (t2 - t1 ) / loops

if(tt > 0) then

mflops = 2*real(n)**3/tt/1.e6

write(*,’(a10,i5, a10, i8, 2(a10, es14.6))’ ) &

"CASE:", case, " size = ", n, "time = ", tt, " mflops = ", mflops

else

print*,’TOO short time’

endif

deallocate(A, B, C)

end program Multiplication

subroutine BlockMulti(n, A, B, C )

integer, intent(in) :: n

!real :: A(lda,*), B(ldb,*), C(ldc,*)

real, dimension(1:n, 1:n), intent(inout) :: A, B, C

integer :: i, j

do i = 1, n

do j = 1, n

C(i,j) = 0

do k = 1, n

C(i,j) = C(i,j) + A(i,k)*B(k,j)

end do

end do

end do

end subroutine BlockMulti
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5.4 File Makefile

Makefile can be employed for the compilation and linking of bigger projects. An example:

TARGETS = fft.o dr_fft.o

TARGETS1 = fft1.o dr_fft1.o

TARGETS2 = fft2.o dr_fft2.o

## optimize for computations

FFLAGS= -fPIC -fdefault-real-8 -fopenmp -O2 -w -ffpe-trap=invalid,zero,overflow

# for debugging of the code

FFLAGS= -fPIC -fdefault-real-8 -g -fbacktrace -fbounds-check -w -Wall -finit-real=nan

-finit-integer=-999999 -fno-align-commons -ffpe-trap=invalid,zero,overflow,denormal

FXX=gfortran

all: dr_fft dr_fft1 dr_fft2

dr_fft: $(TARGETS)

$(FXX) $(FFLAGS) -o dr_fft $^

dr_fft1: $(TARGETS1)

$(FXX) $(FFLAGS) -o dr_fft1 $^

dr_fft2: $(TARGETS2)

$(FXX) $(FFLAGS) -o dr_fft2 $^

clean:

rm -f *.o

%.o:%.f90

$(FXX) $(FFLAGS) -c $?

%.o:%.f

$(FXX) $(FFLAGS) -c $?

The compilation is executed by the command make. It automatically compile all up-
dated source files.

Few options:

� -fPIC -fdefault-real-8 – all real variables are in double precisions, some transla-
tors of fortran use -r8

� -O2 – level of optimization
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� -W – turn on warnings

� -fPIC – generate position-independent code (PIC) suitable for use in a shared library,
reccomended for LAPCK

� -fbounds-check – check the ranges of arrays

� -fbacktrace – if error is met, the sequence of callings is written
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Chapter 6

Efficient programming

6.1 Some tips for programming

� avoid too “long relations”, if necessary split them into a few shorter ones

� minimize the number of mathematical operations, use temporary variables or arrays,
e.g.

ff = sin(a*sqrt(x) ) / a*sqrt(x)

is slower than

ax = a*sqrt(x)

ff = sin(ax ) / ax

� sqrt(x) is much slower than multiplication, avoid it in the loops, e.g.

do i=1, N

ss = dot_product(a(:), r(:))

if( sqrt (ss) <= tol ) exit loop

end do

is slower than

tol2 = tol*tol

do i=1, N

ss = dot_product(a(:), r(:))

if( ss <= tol2 ) exit loop

end do

� command sqrt(x) is much faster (and accurate) than x**(0.5), even sqrt(sqrt(x))
is usually faster than x**(0.25)
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� matrices are “column-ordered” (Fortran) or “row-ordered” (C), so there is the differ-
ence between

do i=1,N

do j=1,N

a(i,j) = ....

end do

end do

and

do j=1,N

do i=1,N

a(i,j) = ....

end do

end do

The number of operations is the same but different speed, see below.

� What is faster,

s = dot_product(a(:), b(:))

or

s = sum(a(:) * b(:) )

? (the first variant)

6.2 The use of the cache memory

In order to code efficiently the numerical methods, it is necessary to know (a little) about
the computers. A very simplified model of a computer is the following.

main memory ←→ cache memory ←→ registers ⇐= processor

� main (computer) memory (also operation memory) contains all data of the code

� cache memory stores data so future requests for that data can be served faster; the
data stored in a cache might be the result of an earlier computation, or the duplicate
of data stored elsewhere.

� registers are a part of memory which can be treated by processor
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� processor performs the mathematical operations with data in register.

It means that the data stored in the main memory must be moved first to cache and
then to register before it can be operated on. The transfer from the main memory to cache
is much slower than the transfer from cache to registers and it is also slower than the rate
at which the computer can perform arithmetic.

The amount of the cache memory and registers is limited (otherwise the price of the
computers would be very high). So during the computation, the data are transferred from
the computer memory to the cache memory and back many times. The transfer is faster
when more data are moved at once. So if we have a part of the code

real :: a, b, c

a = 10.

b = 15.

c = a * b

then the command c = a * b is performed in such a way that not only the number a and
b are transferred to the cache but also the parts of the memory near these variables. This
effect can be used in the programming of numerical methods.

6.2.1 Standard matrix-matrix multiplication

Let as consider an examples where we have two matrices A,B ∈ RN×N and we need to
compute its multiplication and the results stored in matrix C ∈ RN×N , i.e.,

A = {ai,j}Ni,j,=1, B = {bi,j}Ni,j,=1, C = {ci,j}Ni,j,=1, ci,j =
N∑
k=1

ai,kbk,j, i, j = 1, . . . , N.

(6.1)

The number of operations is

N2 times(N multiplications + (N − 1) summations ) ≈ 2N3. (6.2)

If N is high it is not possible to store all matrices elements in the cache memory. So they
have to be transferred to the cache memory in several steps.

A simple part of a code for the matrix multiplication is the following.

do i = 1, n

do j = 1, n

C(i,j) = 0

do k = 1, n

C(i,j) = C(i,j) + A(i,k)*B(k,j) ! multiplication line

end do

end do

end do
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The transfers to and from the cache memory is done in multiplication line. So also
other entries of A and B are moved to cache (and not used in this step). The number of
transfers is too high.

Let us assume that 2N values can be stored in the cache memory. In order to compute
ci,j we have to transfer 2N values (N row-entries of A and N column-entries of B) to cache
and then perform 2N flops (mathematical operations). For the evaluation of ci,j+1, N
values of the i-th row of matrix A can be kept in cache and next N values (N column-
entries of B) have to be transfer to cache. Then we perform 2N flops. Hence, we have the
ratio between memory manipulation and computing operations

#mathematical operations (flops)

# transfers to cache
=

2N

N
= 2.

6.2.2 Block matrix operations

Let N = Mn where M and n are integers. Then we have

A =



a1,1 . . . a1,n a1,n+1 . . . a1,2n . . . a1,N−n+1 . . . a1,N
...

...
...

...
...

...
...

...
...

...
an,1 . . . an,n an,n+1 . . . an,2n . . . an,N−n+1 . . . an,N
an+1,1 . . . an+1,n an+1,n+1 . . . an+1,2n . . . an+1,N−n+1 . . . an+1,N

...
...

...
...

...
...

...
...

...
...

a2n,1 . . . a2n,n a2n,n+1 . . . a2n,2n . . . a2n,N−n+1 . . . a2n,N
...

...
...

...
...

...
...

...
...

...


which can be re-written in the block structure

A =

A1,1 A1,2 . . . A1,M
...

...
...

...
AM,1 AM,2 . . . AM,M

 ,

where Akl are n× n matrices given by

Akl = {a(k−1)n+i,(l−1)n+j}ni,j=1, k, l = 1, . . . ,M.

Using similar notation for B and C we have

Cij =
M∑
k=1

AikBkj, i, j = 1, . . . ,M. (6.3)

When we modify the previous code for the block structure in such a way that the size of
matrix block corresponds to the amount of memory transferred at once to the cache, we
can save a lot of communications (and therefore the computational time).

In both cases, the number of mathematical operations is the same.
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However, if we can stores 3 blocks in cache then we transfer 3n2 entries (blocks Cij,
Aik and Bkj). In order to perform the computation (Cij = Cij +AikBkj) we carry out 2n3

operations (flops). Hence, we have the ratio between memory manipulation and computing
operations

#mathematical operations (flops)

# transfers to cache
=

2n3

3n2
=

2

3
n,

which is increasing for increasing n (increasing size of cache memory). The larger the block
are, the less significant the data transfers become.

Starting from Fortran90, there is a function matmul which employs the cache memory
in an optimal way. The previous part of the code reads

C(1:N, 1:N) = matmul(A(1:N, 1:N), B(1:N, 1:N) )

or simply

C(:, :) = matmul(A(:, :), B(:, :) )

or only

C = matmul(A, B )

However, in both latter cases there can not be any verification of the sizes of arrays, so it
is not too much recommended.

6.2.3 Programming of numerical methods

6.2.4 Verification of codes

6.2.5 Norms of programming languages, transportability

Homeworks

Exercise 11. Let us consider matrices A and B such that

ai,j = i+ j, bi,j = i− j, i, j = 1, . . . , N. (6.4)

This is a standard test case since the trace of the resulting matrix C = AB is vanishing.
Using the code multi.f90 test three variants of the matrix-matrix multiplications:

� simple multiplications (6.1),

� block multiplications (6.3) with different n, the default size is n = 40,

� multiplications using function matmul.

Use different sizes of N . This codes measures the used computational time in seconds and
gives the speed of computations in Mflops = 2N3/time/1E + 06.
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Chapter 7

LAPACK

LAPACK is a library of Fortran (Fortran 90) with subroutines for solving the most com-
monly occurring problems in numerical linear algebra. It is freely-available software, and
is copyrighted.

LAPACK is available on netlib and can be obtained via the World Wide Web and
anonymous ftp.

http://www.netlib.org/lapack/

The distribution tar file contains the Fortran source for LAPACK and the testing
programs. It also contains the Fortran77 reference implementation of the Basic Linear
Algebra Subprograms (the Level 1, 2, and 3 BLAS) needed by LAPACK. However this
code is intended for use only if there is no other implementation of the BLAS already
available on your machine; the efficiency of LAPACK depends very much on the efficiency
of the BLAS.

History of versions

VERSION 1.0 : February 29, 1992

VERSION 1.0a : June 30, 1992

VERSION 1.0b : October 31, 1992

VERSION 1.1 : March 31, 1993

VERSION 2.0 : September 30, 1994

VERSION 3.0 : June 30, 1999

VERSION 3.0 + update : October 31, 1999

VERSION 3.0 + update : May 31, 2000

VERSION 3.1 : November 2006

VERSION 3.1.1 : February 2007

VERSION 3.2 : November 2008

VERSION 3.2.1 : April 2009

VERSION 3.2.2 : June 2010

VERSION 3.3.0 : November 2010
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7.1 Instalation

Download the library, e.g., the file lapack-3.3.0.tgz and unpack it by

tar xfz lapack-3.3.0.tgz

the directiry with archive lapack-3.3.0 appears.
First you need to create file make.inc, the simplest way is

cd lapack-3.3.0

cp make.inc.example make.inc

and edit (if necessary) the resulting file.
The you create the BLAS library by

cd BLAS/SRC

make

cd ../../

the library blas_LINUX.a appears in the directory lapack-3.3.0. Then translate LA-
PACK library by

cd SRC

make

cd ../

the library lapack_LINUX.a appears in the directory lapack-3.3.0, i.e., command ls -l *.a

results, e.g.,

-rw-r--r-- 1 dolejsi dolejsi 1358568 kvě 5 07:54 blas_LINUX.a

-rw-r--r-- 1 dolejsi dolejsi 18074296 kvě 5 07:56 lapack_LINUX.a

Alternatively, you can use command make directly in the directory lapack-3.3.0 then
tests of LAPACK subroutines are carried out (this is more time consuming of course).

7.2 Naming Scheme of BLAS and LAPACK subrou-

tines

For detailed description see

http://www.netlib.org/blas

http://www.netlib.org/lapack

The name of each LAPACK routine is a coded specification of its function. All driver
and computational routines have names of the form XYYZZZ, where for some driver routines
the 6th character is blank.

The first letter, X, indicates the data type as follows:
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S REAL

D DOUBLE PRECISION

C COMPLEX

Z COMPLEX*16 or DOUBLE COMPLEX

The next two letters, YY, indicate the type of matrix (or of the most significant matrix).
Most of these two-letter codes apply to both real and complex matrices; a few apply
specifically to one or the other, as indicated in the following table:

BD bidiagonal

DI diagonal

GB general band

GE general (i.e., unsymmetric, in some cases rectangular)

GG general matrices, generalized problem (i.e., a pair of general matrices)

GT general tridiagonal

HB (complex) Hermitian band

HE (complex) Hermitian

HG upper Hessenberg matrix, generalized problem (i.e a Hessenberg and a

triangular matrix)

HP (complex) Hermitian, packed storage

HS upper Hessenberg

OP (real) orthogonal, packed storage

OR (real) orthogonal

PB symmetric or Hermitian positive definite band

PO symmetric or Hermitian positive definite

PP symmetric or Hermitian positive definite, packed storage

PT symmetric or Hermitian positive definite tridiagonal

SB (real) symmetric band

SP symmetric, packed storage

ST (real) symmetric tridiagonal

SY symmetric

TB triangular band

TG triangular matrices, generalized problem (i.e., a pair of triangular matrices)

TP triangular, packed storage

TR triangular (or in some cases quasi-triangular)

TZ trapezoidal

UN (complex) unitary

UP (complex) unitary, packed storage

The last three letters ZZZ indicate the computation performed, see,

http://www.netlib.org/lapack/lug/node26.html#tabdrivelineq
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For example, SGEBRD is a single precision routine that performs a bidiagonal reduction
(BRD) of a real general matrix.

Example 7.1. Subroutine daxpy from BLAS: y = y + ax, where x, y ∈ RN , a ∈ R:

SUBROUTINE DAXPY(N,DA,DX,INCX,DY,INCY)

* .. Scalar Arguments ..

DOUBLE PRECISION DA

INTEGER INCX,INCY,N

* ..

* .. Array Arguments ..

DOUBLE PRECISION DX(*),DY(*)

* ..

*

* Purpose

* =======

*

* DAXPY constant times a vector plus a vector.

* uses unrolled loops for increments equal to one.

*

* Further Details

* ===============

*

* jack dongarra, linpack, 3/11/78.

* modified 12/3/93, array(1) declarations changed to array(*)

*

* =====================================================================

*

* .. Local Scalars ..

INTEGER I,IX,IY,M,MP1

* ..

* .. Intrinsic Functions ..

INTRINSIC MOD

* ..

IF (N.LE.0) RETURN

IF (DA.EQ.0.0d0) RETURN

IF (INCX.EQ.1 .AND. INCY.EQ.1) GO TO 20

*

* code for unequal increments or equal increments

* not equal to 1

*

IX = 1

IY = 1

IF (INCX.LT.0) IX = (-N+1)*INCX + 1
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IF (INCY.LT.0) IY = (-N+1)*INCY + 1

DO 10 I = 1,N

DY(IY) = DY(IY) + DA*DX(IX)

IX = IX + INCX

IY = IY + INCY

10 CONTINUE

RETURN

*

* code for both increments equal to 1

*

*

* clean-up loop

*

20 M = MOD(N,4)

IF (M.EQ.0) GO TO 40

DO 30 I = 1,M

DY(I) = DY(I) + DA*DX(I)

30 CONTINUE

IF (N.LT.4) RETURN

40 MP1 = M + 1

DO 50 I = MP1,N,4

DY(I) = DY(I) + DA*DX(I)

DY(I+1) = DY(I+1) + DA*DX(I+1)

DY(I+2) = DY(I+2) + DA*DX(I+2)

DY(I+3) = DY(I+3) + DA*DX(I+3)

50 CONTINUE

RETURN

END

Let us note that the loop with label 50 is more efficient than

DO 50 I = MP1,N

DY(I) = DY(I) + DA*DX(I)

50 CONTINUE

7.3 Link of LAPACK with your own code

Example of my code (in file lap_sub.f90) using LAPACK subroutines dgetri, dgetrf:

subroutine MblockInverse(n, A)

integer, intent(in) :: n
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real, dimension(1:n,1:n), intent(inout) :: A

external:: dgetri, dgetrf ! subroutines from LAPACK

real, dimension(:), allocatable :: ident, work

integer :: info, iwork

iwork = 100 * 30

allocate(ident(1:n), work(1:iwork) )

ident(:) = 1.

call DGETRF(n, n, A, n, ident, info )

if(info /= 0 ) print*,’Problem 1 in MblockInverse in matrix.f90 ’, info

if(info /= 0 ) stop

call DGETRI(n, A, n, ident, work, iwork, info )

if(info /= 0 ) print*,’Problem 2 in MblockInverse in matrix.f90 ’, info

if(info /= 0 ) stop

deallocate(ident, work)

end subroutine MblockInverse

Example of my Makefile:

TARGETS= lap_sub.o geom.o integ.o f_mapping.o main.o

FFLAGS= -fPIC -fdefault-real-8 -O2 -w

LIBS= lapack-3.3.0/lapack_Linux.a lapack-3.3.0/blas_Linux.a

FXX=gfortran

all: Adgfem

Adgfem: $(TARGETS)

$(FXX) $(FFLAGS) -o Adgfem $^ $(LIBS)

clean:

-rm -f Adgfem *.o *.mod

%.o:%.f90

$(FXX) $(FFLAGS) -c $?
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For globally installed library

LIBS=-llapack

in this case translator seeks files

/usr/lib/libblas.a

/usr/lib/liblapack.a
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Chapter 8

Fundamentals of adaptations

We consider the model problem (1.2) and its numerical approximation (1.3):

u ∈ X : P(d;u) = 0, uh ∈ Xh : Ph(dh;uh) = 0.

Main goal: solve numerically the given problem such that

� the error (its estimate) is under the given tolerance (accuracy)

� the computational time is as short as possible (efficiency)

Since the requirements of the accuracy and the efficiency are opposite in some sense
they should be well balanced. The only way, how to fulfil both requirements, is a suitable
choice of the space Xh. In many applications, the optimal choice of Xh is not known a
priori. Thus we have to adapt the space Xh based on the previous computations. We
speak about about the local adaptation or enhancement of the space Xh.

Example 8.1. Adaptivity appears in many standard computations:

� numerical integration:
∫ b

a
f(x) dx ≈

∑N
i=1 wif(xi), how to choose nodes and weights?

� numerical solution of ODEs: y′(t) = f(t, y(t)), Euler method yk+1 = yk + τkf(tk, yk),
how to choose τk?

� numerical solution of PDEs: Du = f , FEM, adaptive choice of mesh Th and finite
element space Vh

In order to adapt the space Xh such that the accuracy as well as the efficiency are
achieved, we need

� a posteriori error estimates which are able the estimate the computational error
locally,

� adaptive strategy which adapt efficiently the space Xh based on a posteriori error
estimates.
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Remark 8.2. In this section, we deal with a posteriori error estimates depending of the
approximate solution uh. However, we remind that the approximate solution uh is not
available in practice, we have only u∗

h. Therefore, it would be also desirable to have a
posterior error estimates taking into account this aspect.

8.1 Error and its property

8.1.1 Types of measuring of the error

Our goal is to fulfil the condition

eh := ∥u− uh∥ ≤ TOL, (8.1)

where u and uh are the exact and the approximate solutions, ∥ · ∥ is a suitable norm on
∪h∈(0,h0)Xh ∪X and TOL > 0 is the given tolerance.

Or, in many physical application, the goal is to evaluate a functional J : ∪h∈(0,h0)Xh ∪
X → R of the (approximate) solution, e.g., lift coefficient. Then (8.1) has to be replaced
by

eh := |J(u)− J(uh)| ≤ TOL′, (8.2)

see Chapter 18.

8.1.2 Localisation of the error

We assume that the error eh is localisable. It means that for each elementK of the mesh Th

we can define the error eh,K over K which satisfies the following: there exists an invertible
function f : R+

0 → R+
0 such that

f (eh) =
∑
K∈Th

f (eh,K) (8.3)

⇐⇒ eh = f−1

(∑
K∈Th

f (eh,K)

)
. (8.4)

Example 8.3. The standard norms on the Lebesgue spaces Lq(Ω) and on the Sobolev
spaces W k,q(Ω) are localisable since

eqh = ∥u− uh∥q =
∑
K∈Th

∥u− uh∥qK =
∑
K∈Th

eqh,K . (8.5)

Then the value eh,K , K ∈ Th is called dicretization error on element K.
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8.2 A posteriori error estimates

Let us recall the discrete problem (1.3) written as

Ph(dh;uh) = 0, (8.6)

where uh ∈ Xh is the approximate solution, dh represents the discrete variants of the data,
Ph : Zh × Xh → Yh is a given mapping representing the numerical method and Xh, Yh

and Zh are finite dimensional normed vector spaces.
The numerical analysis usually provide a priori error estimates, i.e., an inequality

eh ≤ c(u)hα (8.7)

where h is the parameter of the discretization (= maximal size of the mesh elements
particularly), eh is the error given by (8.1) or (8.2), u is the exact solution of (1.2), and
c(u) is a function dependent on the (unknown) exact solution u but independent of h.

The estimate (8.7) gives us information of the rate of the convergence for h → 0.
However, it does not provide information about the real size of the error since u (a hence
c(u)) are unknown and moreover, even in case when u is known, the right-hand side of
(8.7) overestimate the error, i.e., eh ≪ c(u)hα.

For practical applications, it is advantageous to have a posteriori error estimate where
we derive the inequality

eh ≤ η(uh), (8.8)

where η is the total error estimator. Usually, the error estimator η can be express as

η(uh) = f−1

(∑
K∈Th

f (ηK(uh))

)
, (8.9)

where ηK is the estimator of the local error over the element K ∈ Th and f is the function
from (8.3). I.e., in case of Hilbertian norm we have

(η(uh))
2 =

∑
K∈Th

(ηK(uh))
2 . (8.10)

Two main aims of a posteriori error estimation are to enable

� error control – to achieve the user-specified precision of the computation,

� efficient computations – to avoid exploiting computational resources where it is not
reasonable.

In order to provide the previous aims, it is desirable that a posterior error estimates
satisfy
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(A1) guaranteed error estimate – the estimated (8.8) is valid without any unknown con-
stant, i.e., η(uh) depends only on the input data problem and the approximate solu-
tion itself. Therefore, we can check if the prescribed tolerance was achieved.

(A2) local efficiency – the lower bound on the error locally up to a generic constant., i.e.,

ηK(uh) ≤ C
∑

K′∈D(K)

eh,K′ ∀K ∈ Th, (8.11)

where ∥ · ∥D(K) is a norm over a (small) union of the mesh elements near K.

(A3) asymptotic exactness – the ratio of the actual error and its estimator should approach
to one as h→ 0,

(A4) robustness – the previous properties 1) - 3) are independent of parameters of the
problem. This feature is of great importance in order that the error estimates could
be applicable to a wide range of problems.

(A5) low evaluation cost – the evaluation of ηK , K ∈ Th should be fast in the comparison
to the solution of the problem itself.

Let us note that it is difficult to achieve all aspects mentioned above. Although, there
exist many works dealing with a posteriori error analysis of many numerical methods and
various model problem, the goals (A1) – (A5) are not achieved for general non-linear
problem generally.

Hence, in many situation we employ estimates such that

eh ≈ η(uh) & eh,K ≈ ηK(uh), K ∈ Th (8.12)

Thus we have no guaranty of the error (condition (A1) is violated) but we can achieve the
efficiency.

8.3 Adaptive strategies

Let us assume that we solve the problem (1.2) with the aid of a numerical method formally
written in the form (1.3). We assume that the numerical method as well as its computer
implementation are convergent. This means means that with the aid of sufficient adapta-
tion of the space Xh, the size of the computational error eh is under any tolerance TOL
where

TOL≫ ϵmach∥u∥. (8.13)

Let us assume that TOL be a given tolerance satisfying (8.13). The ultimate goal is to
adapt the space Xh such that
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� the computational error is under the given tolerance, i.e,

eh ≈ η(uh) ≤ TOL, (8.14)

� the number of degree of freedom (= dimXh) is minimal (or at least small).

A general idea, how to achieve these goals, is a performance of several adaptive cycles,
where the elements having too high error estimates are refined. There exists several basic
adaptation strategies. For simplicity we assume, that the norm ∥ · ∥ satisfies (8.5) for some
q ≥ 1.

� local strategy: Instead of (8.14), we consider a stronger requirement

eh,K ≈ ηK(uh) ≤ TOL

(
|K|
|Ω|

)1/q

∀K ∈ Th, (8.15)

where |K| and |Ω| denotes measures of K and Ω, respectively. Obviously, if (8.15)
is valid for all K ∈ Th then (8.14) is valid. Hence, all elements K for which the
inequality (8.15) is violated are refined. Let us note that relation (8.15) can be
modified, e.g.,

eh,K ≈ ηK(uh) ≤ TOL

(
1

#Th

)1/q

∀K ∈ Th, (8.16)

where #Th is the number of elements of Th.

� global strategy: If the condition (8.14) is not valid then then we select elements with
the higest ηK for refinement. There are several basic strategies for selecting elements
for refinement, e.g.,

i) we select all K ∈ Th such that

ηK ≥ C ′ max
K′∈Th

ηK′ ,

where C ′ ∈ (0, 1) is a suitably chosen constant, e.g., C ′ = 0.9.

ii) we select a fixed percent of elements (e.g., 10%) with the highest value ηK ,

Do Exercise 12
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8.4 Optimal solution strategy

The ultimate goal is to solve problem (1.2) by the numerical method (1.3) in such
a way that condition (8.1) is satisfied in the shortest possible computational
time. The solution strategy, which fulfils this goal is called the optimal solution strategy.
Often, the requirement “the shortest possible computational time” is replaced by “the
smallest possible number of degrees of freedom”. Obviously, these two requirements are
not precisely equivalent, but in some approximation, we can it assume.

An achievement of this goal is very complicated, in many situations almost impossible.
The problem of developing the optimal solution strategy is complex, it consists of several
(very ofter opposite) aspects. In order to demonstrate its complexity, we consider the
following example. In the space-time cylinder Ω × (0, T ), we consider a time-dependent
nonlinear partial differential equation, which is discretized by the finite element method
in space and the implicit multi-step method in time. Hence, at each time level, we solve
a nonlinear algebraic system by the Newton method and the linear system arising at each
Newton iteration by the GMRES method with ILU preconditioning.

Hence, the superscript k denotes the index of the time step, the superscript i denotes
the Newton iteration and the superscript l denotes the GMRES iteration.

Then, the solution strategy can be written in this form:

1. set k := 0, tk := 0,

2. propose the initial mesh T 0
h , time step τ0 and an approximation of the initial solution

u0
h,

3. if tk = T then stop the computation
else preform the time step tk → tk+1 using the time step τk and the mesh T k

h ,

(a) set i = 0, uk+1,0
h := uk

k,

(b) perform the ith Newton step uk+1,i
h → uk+1,i+1

h by

i. set l = 0, uk+1,i+1,0
h := uk+1,i

h

ii. perform lth GMRES step with ILU preconditioner starting from uk+1,i+1,l
h

iii. if linear algebraic criterion is satisfied
then put uk+1,i+1

h := uk+1,i+1,l
h and go to step (c)

else put uk+1,i+1,l+1
h := uk+1,i+1,l

h , l := l + 1 go to step ii.

(c) if non linear algebraic criterion is satisfied
then put uk+1

h := uk+1,i+1
h and go to step 4.

else put uk+1,i+1
h := uk+1,i

h , i := i+ 1 go to step (b)

4. estimate computational error

5. if the error estimate is under tolerance
then propose new time step τk+1, new mesh T k+1

h , put tk+1 := tk + τk, k := k + 1 go
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to step 2.
else propose better time step τk or better mesh T k

h go to step 2.

Homeworks

Exercise 12. Propose some examples where each of the adaptive strategy mentioned above
makes some troubles, i.e., either the strategy can not achieve the given stopping criterion
or many adaptive cycles is required until the stopping is achieved.
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Chapter 9

Numerical integration

The aim is numerically evaluate the (exact) value

I(f) =

∫ b

a

f(x) dx, (9.1)

where f ∈ L1(a, b) is given. The function f can be given at discrete nodes, then we have
to interpolate it (e.g., using a spline).

The value I(f) is evaluated by a quadrature formula (or numerical quadrature or
quadrature rule )

Qn(f) :=
n∑

i=1

wif(xi), Rn := I(f)−Qn(f), (9.2)

where xi ∈ [a, b], i = 1, . . . , n are the nodes, wi ∈ R, i = 1, . . . , n are the weights, Qn(f) is
the approximation of I(f) by the numerical quadrature and Rn ∈ R is the remainder (or
the discretization error).

The weights and the nodes have to be chosen such that the remainder Rn is sufficiently
small and the computation computational costs are low. The efficiency is measured by
the number of nodes (= n). Usually, we chose the nodes xi, i = 1, . . . , n, the function
f is approximated by a polynomial function (using values f(xi), i = 1, . . . , n) and the
resulting polynomial function is integrated analytically. Except the value Qn(f) we need
to approximate the remainder Rn.

Definition 9.1. We say that the quadrature formula has the order k if I(q) = Qn(q) for
any polynomial function q of degree at most k.

Remark 9.2. In practice, the composite formulae are employed. This means that the
interval [a, b] is split onto mutually disjoint closed sub-intervals

Ij = [yj−1, yj], j = 1, . . . , N such that a = y0 < y1 < y2 < · · · < yN = b.

Obviously, I(f) =
∑N

j=1

∫
Ij
f(x) dx. Then the quadrature formula is applied to each interval

Ij, j = 1, . . . , N separately. If f is sufficiently regular then Rn = O(hp+1) where h ≈
yj − yj−1 for j = 1, . . . , N .
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9.1 Newton-Cotes quadrature formulae

The well-known Newton-Cotes quadrature formulae are defined in the following way. The
nodes xi, i = 1, . . . , n are equidistantly distributed in [a, b], i.e.,

xi := a+ i
b− a

n− 1
, i = 1, . . . , n for n > 1,

x1 :=
a+ b

2
for n = 1.

Then the weights wi, i = 1, . . . , n are chosen such that the resulting quadrature formula
is exact (i.e., Rn = 0) for the polynomials of the highest possible degree.

This task leads to the system of linear algebraic equations which can be solved ana-
lytically. The weights are rational numbers. Obviously, the pairs (xi, f(xi)), i = 1, . . . , n
uniquely define the polynomial function of degree n − 1. Thus the Newton-Cotes formu-
lae has the order at least n − 1. Moreover, it is possible to show that the order of the
Newton-Cotes formula is equal to

n for n odd,
n− 1 for n even.

Finally, we present some properties of the Newton-Cotes formulae.

� The Newton-Cotes formulae are the so-called closed formulae since x1 = a and xn = b
(for n > 1). This is problematic in situation where f has a singularity at x = a or

x = b, e.g.,
∫ 1

0
x−1/2 dx.

� For large n (n>
∼10), the Newton-Cotes formulae do not work properly, since the

corresponding interpolation polynomial function oscillates.

� The efficiency of the Newton-Cotes formulae is not optimal, the order is not the
highest possible for the given n.

9.1.1 Error estimation

The remainder Rn is usually estimated by a comparing of the results Qn(f) and Qn′(f) of
two computations. It is possible to apply

� two different quadrature formulae on the same partition,

� one quadrature formulae on two different partitions.
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Error estimation using two different quadrature formulae

Let us consider the Newton-Cotes formulae for n = 1, 2, 3, namely

M(f) := (b− a) f

(
a+ b

2

)
midpoint formula,

T (f) :=
b− a

2
(f(a) + f(b)) trapezoid formula,

S(f) :=
b− a

6

(
f(a) + 4f

(
a+ b

2

)
+ f(b)

)
Simpson formula.

The midpoint and the trapezoid formulae have the order 1 and the Simpson formula has
the order 3.

Let m := a+b
2
. Let f ∈ C4([a, b]), the Taylor expansion at m reads

f(x) =f(m) + f ′(m)(x−m) +
1

2
f ′′(m)(x−m)2 +

1

6
f ′′′(m)(x−m)3 (9.3)

+
1

24
f ′′′′(m)(x−m)4 + . . . .

Integrating of (9.3) over (a, b) gives (the “even” terms disappears)

I(f) = f(m)(b− a) +
1

24
f ′′(m)(b− a)3 +

1

1920
f ′′′′(m)(b− a)5 + . . . (9.4)

=: M(f) + E + F + . . . .

= M(f) + E + F + . . . .

Moreover, we put x := a and x := b in (9.3) and then we sum both relations, which gives
(again the “even” terms disappears)

f(a) + f(b) = 2f(m) +
2

2
f ′′(m)

(b− a)2

4
+

2

24
f ′′′′(m)

(b− a)4

16
+ . . . . (9.5)

Multiplying (9.5) by (b− a)/2 implies

f(a) + f(b)

2
(b− a) = f(m)(b− a) +

1

8
f ′′(m)(b− a)3 +

1

384
f ′′′′(m)(b− a)5 + . . . . (9.6)

which can be rewritten (using the notation from (9.4)) as

T (f) = M(f) + 3E + 5F + . . . . (9.7)

Finally, applying (9.4) again we have

I(f) = T (f)− 2E − 4F + . . . . (9.8)
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From (9.4) and (9.8) we conclude that if F ≪ E then the error of the trapezoid formula
is two times higher then the error of the midpoint formula. Furthermore, if F ≪ E then
(9.7) gives

E ≈ T (f)−M(f)

3
. (9.9)

Therefore, the dominant part of the error E of the midpoint formula can be approximated
by one third of the difference of T (f) and M(f). Hence, we have estimated the error by a
difference of two quadrature formulae.

Do Exercise 13

Finally, adding of two thirds of (9.4) and one third of (9.8) gives

I(f) =
2

3
M(f) +

1

3
T (f)− 2

3
F + · · · = S(f)− 2

3
F + . . . . (9.10)

Hence, we derived the Simpson formula by an alternative way.

Remark 9.3. In (9.10), we combined two first order methods and obtained a third order
method. This is a general approach, where two results (employing for the error estimation)
are further used for obtaining of a more accurate results.

Error estimation using the half-size step method

Using the notation from (9.4), we have

I(f) = Mh(f) + Eh + Fh + . . . , (9.11)

where the subscript h denotes the size of the interval [a, b]. Now we split the interval [a, b]
on two sub-intervals having the same size, apply the previous procedure separately for each
sub-interval and sum the results. Then we have

I(f) = Mh/2(f) + Eh/2 + Fh/2 + . . . . (9.12)

Symbol Mh/2(f) denotes the approximate value of I(f) computed by composite mid-point
rule on both sub-intervals, similarly Eh/2 and Fh/2 represent the corresponding error. Since
Eh = O(h3) then Eh/2 ≈ 1

4
Eh ((1/2)3 = 1/8 but we have two sub-intervals and thus

2 · 1/8 = 1/4). Then we have from (9.11) and (9.12) the estimate

Eh/2 ≈
1

3
(Mh/2(f)−Mh(f)). (9.13)
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9.2 Gauss formulae

The well-known Gauss quadrature formulae are defined in the following way. The nodes
xi ∈ [a, b], i = 1, . . . , n and the weights wi, i = 1, . . . , n are chosen in such a way that
the resulting quadrature formula is exact (i.e., Rn = 0) for the polynomials of the highest
possible degree.

Since xi, wi, i = 1, . . . , n represent 2n degrees of freedom, we expect that the Gauss
formulae are exact for polynomials of degree 2n− 1 (=order of accuracy). The derivation
of the Gauss formulae leads to nonlinear algebraic systems. The weights and the nodes are
generally irrational numbers.

Example 9.4. The two-points Gauss formula is∫ 1

−1

f(x) dx ≈ f

(
− 1√

3

)
+ f

(
1√
3

)
. (9.14)

Do Exercise 14

Remark 9.5. The Gauss formulae are usually derived by the Legendre polynomials which
are orthogonal with respect L2((−1, 1))-scalar product. Thus, in many textbooks, the Gauss
formulae are derived for a = −1 and b = 1. For a general [a, b], the nodes and weights
have to be transformed.

Do Exercise 15

The basic properties of the Gauss formulae are the following.

� The Gauss formulae are the so-called open formulae since x1 ̸= a and xn ̸= b. This
is advantageous in situation where f has a singularity at x = a or x = b, e.g.,∫ 1

0
x−1/2 dx.

� The Gauss formulae have the highest possible order for the given n, hence their
efficiency is optimal. Hence a high order is achieved by a small number of nodes, we
avoid oscillations of a polynomial interpolation.

� The nodes are placed non-equidistantly which may be problematic for a use of the
error estimation techniques from Section 9.1.1.

9.2.1 Error estimation

The remainder Rn is usually estimated by a comparing of the results two different compu-
tations. However, since the nodes of the Gauss formulae are placed non-equidistantly, the
use of the error estimation techniques from Section 9.1.1 is not efficient.
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The following figure shows the Newton-Cotes nodes for n = 5 and a = −1, b = 1 (red
nodes) and the corresponding nodes used for the error estimation using the half-size step
method (blue nodes).

-1 -0.5  0  0.5  1

We see that all red nodes are used also as the blue ones, hence we can save some compu-
tational costs.

On the other hand, the following figure shows the same situation for the Gauss nodes.

-1 -0.5  0  0.5  1

Obviously, the red and the blue nodes do not coincide, hence any computation can not be
saved. Hence, we can conclude that the error estimation by the half-size step method is
inefficient for the Gauss formulae.

Remark 9.6. A similar observation can be achieved also for the error estimation based on
a comparison of two different quadrature formulae on the same partition.

Gauss-Kronrod quadrature formulae

One possibility, how to achieve the efficiency of the error estimation are the so-called
Kronrod quadrature formulae. Let n > 1 be given, and let Gn denote the Gauss quadrature
formula. Then we construct the Kronrod quadrature formulae K2n+1 having 2n+ 1 nodes
in the following way:

� all nodes from Gn are also the nodes of K2n+1,

� we add n+ 1 additional nodes and chose the weights wi, i = 1, . . . , 2n+ 1 such that
the resulting quadrature formula has the maximal possible order.

It is possible show that the formula K2n+1 has the order 3n + 1. (The order of G2n+1 is
4n + 1.) The following figure shows the nodes of both formulae G7 (red nodes) and K15

(blue nodes).

-1 -0.5  0  0.5  1
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Obviously, all red nodes are used also as the blue ones, hence we can save some computa-
tional costs.

The pair of formulae Gn K2n+1 is used for the error estimation of the Gauss formula
Gn is estimated (see [Pat69]) in the form

(200|Gn −K2n+1|)3/2 . (9.15)

The use of GnK2n+1 is very efficient, it is used in many software. Very popular is the
pair G7K15.

9.3 Subroutine QUANC8

9.3.1 Overview

Subroutine QUANC8 is a code computing numerically integral (9.1) with the aid of the
Newton-Cotes formula with n = 9 (eight panels) and the local adaptive strategy using the
criterion (8.15) with q = 1. Therefore, the interval is split several times by the bisection
of the interval until the following condition is fulfilled:

|RI(f)| ≤ TOL

r
, r =

b− a

|I|
, (9.16)

where I denotes formally a sub-interval arising from the bisection, RI(f) is the estimation
of the error and TOL is the given tolerance.

The following figure illustrates a possible splitting of interval [0, 1].

 0  0.25  0.5  0.75  1

In order to achieve the efficiency, all values f(xi), which may be used in a next refine-
ment, are stored.
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9.3.2 Input/output parameters

The subroutine QUANC8 is called by the command

call QUANC8(FUN,A,B,ABSERR,RELERR,RESULT,ERREST,NOFUN,FLAG)

where the input parameters are

FUN THE NAME OF THE INTEGRAND FUNCTION SUBPROGRAM FUN(X).

A THE LOWER LIMIT OF INTEGRATION.

B THE UPPER LIMIT OF INTEGRATION.(B MAY BE LESS THAN A.)

RELERR A RELATIVE ERROR TOLERANCE. (SHOULD BE NON-NEGATIVE)

ABSERR AN ABSOLUTE ERROR TOLERANCE. (SHOULD BE NON-NEGATIVE)

and the output parameters are

RESULT AN APPROXIMATION TO THE INTEGRAL HOPEFULLY SATISFYING THE

LEAST STRINGENT OF THE TWO ERROR TOLERANCES.

ERREST AN ESTIMATE OF THE MAGNITUDE OF THE ACTUAL ERROR.

NOFUN THE NUMBER OF FUNCTION VALUES USED IN CALCULATION OF RESULT.

FLAG A RELIABILITY INDICATOR. IF FLAG IS ZERO, THEN RESULT

PROBABLY SATISFIES THE ERROR TOLERANCE. IF FLAG IS

XXX.YYY , THEN XXX = THE NUMBER OF INTERVALS WHICH HAVE

NOT CONVERGED AND 0.YYY = THE FRACTION OF THE INTERVAL

LEFT TO DO WHEN THE LIMIT ON NOFUN WAS APPROACHED.

Each interval can be split be the bisection at most LEVMAX-times (default value is 30).
If the condition (9.16) is not achieve then FLAG = FLAG + 1. Moreover, QUANC8 tries to
use at most NOMAX nodes (default value is 5000). Hence, it predicts the used number of
nodes, namely it checks the condition NOFUN <= NOFIN, where the value NOFIN is given by

NOFIN = NOMAX - 8*(LEVMAX-LEVOUT+2**(LEVOUT+1))

If NOFUN > NOFIN then we put LEVMAX = LEVOUT (default value is 6) and

FLAG = FLAG + (B-X0)/(B-A)

(X0 is the node of the trouble where the condition NOFUN > NOFIN arises).
The nodes xi and the values f(xi) are stored in arrays XSAVE(1:8, 1:30) and

FSAVE(1:8, 1:30), respectively. Moreover,

� QPREV – the value of the integral over the given interval,

� QNOW – the value of the integral over the given interval using half-size step,

� QDIFF = QNOW - QPREV,

� ESTERR = ABS(QDIFF) / 1023.0D0 – error estimate,

� COR11 = COR11 + QDIFF / 1023.0D0 – correction to the order 11.
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9.3.3 Installation and use of the QUANC8 subroutine

� Archive can be downloaded from
http://msekce.karlin.mff.cuni.cz/~dolejsi/Vyuka/QUANC8.tar.gz

� after unpacking of the file (in Linux by tar xfz QUANC8.tar.gz), an archive with
the following files appears:

– makefile – makefile for translation

– QUANC8.FOR – the subroutine QUANC8

– SAMPLE.FOR – the main program calling QUANC8 and containing the definition
of the input parameters

� the code can be translated by the command make (if it is supported) which use the
file makefile

SAMPLE : SAMPLE.o QUANC8.o

f77 -o SAMPLE SAMPLE.o QUANC8.o

SAMPLE.o : SAMPLE.FOR

f77 -c SAMPLE.FOR

QUANC8.o : QUANC8.FOR

f77 -c QUANC8.FOR

or by a direct use of previous commands, namely

f77 -c SAMPLE.FOR

f77 -c QUANC8.FOR

f77 -o SAMPLE SAMPLE.o QUANC8.o

The symbol f77 denotes the name of the translator, it can be replaced by any available
fortran translator (g77, gfortran, . . . ). If the translation is successful, the executable
file SAMPLE arises.

� the setting of the input parameters has to be done by hand in the file SAMPLE.FOR

(the translation has to be repeated thereafter):

C SAMPLE PROGRAM FOR QUANC8

REAL FUNCTION FUN (X)

REAL X

FUN = SQRT (X)

RETURN

END
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EXTERNAL FUN

REAL A,B,ABSERR,RELERR,RESULT,ERREST,FLAG

INTEGER NOFUN

A = 0.0

B = 1.0

RELERR = 1.0E-07

ABSERR = 1.0E-07

CALL QUANC8(FUN,A,B,ABSERR,RELERR,RESULT,ERREST,NOFUN,FLAG)

WRITE(6,1) RESULT,ERREST

IF (FLAG.NE.0.0) WRITE(6,2)FLAG

1 FORMAT(8H RESULT=, F15.10, 10H ERREST=, E10.2)

2 FORMAT(44H WARNING! RESULT MAY BE UNRELIABLE. FLAG = ,F6.2)

STOP

END

� the code is run by ./SAMPLE, the output looks like

RESULT= 0.3303169310 ERREST= 0.20E-07

WARNING! RESULT MAY BE UNRELIABLE. FLAG = 4.00

9.4 Subroutine Q1DA

9.4.1 Overview

Subroutine Q1DA is a code computing numerically integral (9.1) with the aid of the Gauss-
Kronrod formula G7K15 and the global adaptive strategy using the criterion (8.14). The
computation starts with a random splitting of [a, b] and integrating over both sub-intervals.
If the criterion (8.14) is violated, the sub-intervals with the highest error is split onto two
halves and the procedure is repeated.

9.4.2 Input/output parameters

The subroutine Q1DA is called by the command

call Q1DA(A,B,EPS,R,E,KF,IFLAG)

where the input/output parameters are

C A

C B (INPUT) THE ENDPOINTS OF THE INTEGRATION INTERVAL

C EPS (INPUT) THE ACCURACY TO WHICH YOU WANT THE INTEGRAL

C COMPUTED. IF YOU WANT 2 DIGITS OF ACCURACY SET
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C EPS=.01, FOR 3 DIGITS SET EPS=.001, ETC.

C EPS MUST BE POSITIVE.

C R (OUTPUT) Q1DA’S BEST ESTIMATE OF YOUR INTEGRAL

C E (OUTPUT) AN ESTIMATE OF ABS(INTEGRAL-R)

C KF (OUTPUT) THE COST OF THE INTEGRATION, MEASURED IN

C NUMBER OF EVALUATIONS OF YOUR INTEGRAND.

C KF WILL ALWAYS BE AT LEAST 30.

C IFLAG (OUTPUT) TERMINATION FLAG...POSSIBLE VALUES ARE

C 0 NORMAL COMPLETION, E SATISFIES

C E<EPS AND E<EPS*ABS(R)

C 1 NORMAL COMPLETION, E SATISFIES

C E<EPS, BUT E>EPS*ABS(R)

C 2 NORMAL COMPLETION, E SATISFIES

C E<EPS*ABS(R), BUT E>EPS

C 3 NORMAL COMPLETION BUT EPS WAS TOO SMALL TO

C SATISFY ABSOLUTE OR RELATIVE ERROR REQUEST.

C

C 4 ABORTED CALCULATION BECAUSE OF SERIOUS ROUNDING

C ERROR. PROBABLY E AND R ARE CONSISTENT.

C 5 ABORTED CALCULATION BECAUSE OF INSUFFICIENT STORAGE.

C R AND E ARE CONSISTENT.

C 6 ABORTED CALCULATION BECAUSE OF SERIOUS DIFFICULTIES

C MEETING YOUR ERROR REQUEST.

C 7 ABORTED CALCULATION BECAUSE EPS WAS SET <= 0.0

C

C NOTE...IF IFLAG=3, 4, 5 OR 6 CONSIDER USING Q1DAX INSTEAD.

The integrand is given as an external function F, see file EXAMPLE.FOR:

C Typical problem setup for Q1DA

C

A = 0.0

B = 1.0

C Set interval endpoints to [0,1]

EPS = 0.001

C Set accuracy request for three digits

CALL Q1DA (A,B,EPS,R,E,KF,IFLAG)

WRITE(*,*)’Q1DA RESULTS: A, B, EPS, R, E, KF, IFLAG’

WRITE(*,’(3F7.4,2E16.8,2I4)’) A,B,EPS,R,E,KF,IFLAG

WRITE(*,*)

END

C
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FUNCTION F(X)

C Define integrand F

c F = SIN(2.*X)-SQRT(X)

F = SQRT (X)

RETURN

END

Finally, we mention several remarks concerning Q1DA code:

� in order to avoid some troubles caused by singularities at the endpoints, Q1DA use
a transformation of the integrand∫ b

a

f(x) dx =

∫ b

a

f(g(y))g′(y) dy, g(y) = b− (b− a)u2(2u+ 3), u =
y − b

b− a
.

Here g(a) = a, g(b) = b and g′(a) = g′(b) = 0.

� The maximal number of panels is set to NMAX = 50. If this number is achieved
and the given stopping criterion is not satisfied, the code allows to remove from the
memory the sub-interval with the smallest error and then employ this memory for a
next refinement.

9.4.3 Installation and use of the Q1DA subroutine

� Archive can be downloaded from
http://msekce.karlin.mff.cuni.cz/~dolejsi/Vyuka/Q1DA.tar.gz

� after unpacking of the file (in Linux by tar xfz Q1DA.tar.gz), and archive with the
following files appears:

– makefile – makefile for translation

– Q1DA.FOR – the subroutine Q1DA

– EXAMPLE.FOR – the main program calling Q1DA and containing the definition
of the input parameters

– BLAS.FOR – Basic Linear Algebra Subroutines, some subroutines from the BLAS
library

– MACHCON.FOR – evaluation of the machine dependent parameters (UFL, OFL,
ϵmach,. . . )

– UNI.FOR – generation of a random number for the first splitting

– XERROR.FOR – error messages

� the code can be translated by the command make (if it is supported) which use the
file makefile
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EXAMPLE : EXAMPLE.o Q1DA.o BLAS.o MACHCON.o UNI.o XERROR.o

f77 -o EXAMPLE EXAMPLE.o Q1DA.o BLAS.o MACHCON.o UNI.o XERROR.o

EXAMPLE.o : EXAMPLE.FOR

f77 -c EXAMPLE.FOR

Q1DA.o : Q1DA.FOR

f77 -c Q1DA.FOR

BLAS.o : BLAS.FOR

f77 -c BLAS.FOR

MACHCON.o : MACHCON.FOR

f77 -c MACHCON.FOR

UNI.o : UNI.FOR

f77 -c UNI.FOR

XERROR.o : XERROR.FOR

f77 -c XERROR.FOR

or by a direct use of previous commands, namely

f77 -c EXAMPLE.FOR

f77 -c Q1DA.FOR

f77 -c BLAS.FOR

f77 -c MACHCON.FOR

f77 -c UNI.FOR

f77 -c XERROR.FOR

f77 -o EXAMPLE EXAMPLE.o Q1DA.o BLAS.o MACHCON.o UNI.o XERROR.o

The symbol f77 denotes the name of the translator, it can be replaced by any available
fortran translator (g77, gfortran, . . . ). If the translation is successful, the executable
file EXAMPLE arises.

� the setting of the input parameters has to be done by hand in the file EXAMPLE.FOR
(the translation has to be repeated thereafter), see above.

� the code is run by ./EXAMPLE, the output looks like

Q1DA RESULTS: A, B, EPS, R, E, KF, IFLAG

0.0000 1.0000 0.0010 0.66666663E+00 0.39666666E-05 30 0

9.4.4 Several remarks

A numerical computation of integrals may fail, i.e., a code returns

� bad approximate value of the integral,

� bad estimate of the error,
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� correct values of the integral and the error estimators, but the indicator (FLAG)
indicates non-reliability of the result.

This is caused by several reasons, some of them are listed bellow.

Equidistantly distributed nodes and periodically oscillating integrands

Any code has information about the integrand only at nodes of the quadrature formula.
The following figure shows a periodically oscillating function (red line) Using equidistantly
distributed nodes (blue crosses), we see completely different function.
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It is obvious that for this case, the estimation of the error by the half-size step method
gives a vanishing estimate even for a coarse partition although the result is bad.

Integrand having a relative small support

Again, any code has information about the integrand only at nodes of the quadrature
formula. The following figure shows a function having a relative small support (= essential
information is localised for a small interval) (red line). Then coarse partitions (blue crosses)
are not able to capture this support.
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It is obvious that for this case, the estimation of the error by two different quadrature
(both having a coarse partition) gives (almost) zero although the result is bad.
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Local adaptation for integrands with a singularity

Let us consider an integrand f(x) with a singularity such that f ′(a)→∞. For simplicity,
we consider the trapezoid formulae and estimate the error by the half-size step method. The
following figure shows a sequence of refinement of the sub-intervals closes to the singularity.
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 1

 0  0.2  0.4  0.6  0.8  1

f(x)
4th ref
3rd ref
2nd ref
1st ref

The size of the error estimator corresponds to the areas of the obtuse triangles Kℓ having
two vertices on the graph of f(x) and the third vertex is the origin. In order to fulfil the
criterion (8.15) of the local adaptation, it is necessary that the areas of these triangles is
decreasing sufficiently fast, namely

|Kℓ+1|
|Kℓ|

< 2.

In some situation, this condition is not valid. Let us consider a hypothetical example
f(0) = 0 and f(x) = 1 ∀X ∈ (0, 1]. The corresponding situation is pictured bellow.
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Obviously, the areas of triangles (= values of the error estimators) satisfy |Kℓ+1| / |Kℓ| = 2
hence the local adaptive criterion (8.15) can not be achieved.

In practice the condition |Kℓ+1| / |Kℓ| < 2 is satisfied but if |Kℓ+1| / |Kℓ| ≈ 2 then
(8.15) is not achieve within the prescribed maximal number of adaptation. Therefore, the
indicator (FLAG) may indicate non-convergence but the error as well as its estimate may
by sufficiently small.
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Integrands with a singularity

Let f : (a, b)→ R have a singularity at x = a. Then the numerical integration∫ b

a

f(x) dx (9.17)

may cause troubles by closed quadratures. Possible solutions:

(i) there exists a finite limit limx→a+ f(x) = A. Then we define

f̄(x) :=

{
A for x = a,
f(x) for x ∈ (a, b],

(9.18)

and instead of (9.17) integrate
∫ b

a
f̄(x) dx. It make a good sense since the change

f̄ → f is on the set of measure equal to 0. In principle, we can replace the value at
x = a by any real number but if the integrand is not smooth then the used quadrature
rule has only the lowest order of accuracy.

(ii) We can replace (9.17) by ∫ b

ϵ

f(x) dx, ϵ > 0 (9.19)

which makes good sense. Then we should (numerically) investigate if the limit

lim
ϵ→a+

∫ b

ϵ

f(x) dx (9.20)

is finite. Particularly, we have to carry out several experiments for decreasing ϵ and
try to set the limit value.

Do Main task 1

Homeworks

Exercise 13. Find an example, where the estimate (9.9) fails, i.e., when the right-hand
side of (9.9) is zero whereas the error I(f)−M(f) is non-zero.

Exercise 14. Verify the order of the two-point Gauss quadrature formula (9.14).

Exercise 15. Transform the two-point Gauss quadrature formula (9.14) to interval [0, 1].

Exercise 16. Write a simple code which computes the given integral using
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� composite midpoint rule,

� trapezoid rule,

� Simpson rule.

Show by numerical examples the following items:

1. the order of the corresponding quadrature is p, i.e., Q(f) is exact for polynomials f
of degree p,

2. the order of the corresponding composite quadrature is p, i.e., Q(f) = O(hp+1),

3. test and explain, why Q(f) = O(hp+1) is not true for
∫ 1

0

√
x dx?

4. estimate the errors of the midpoint formula by the relation

E ≈ 1

3
(M(f)− T (f))

for smooth and non-smooth functions.

Main task 1. With the aid of codes QUANC8 and Q1DA, compute the following integrals:

(I1)

∫ 1

0

ex
2

dx

(I2)

∫ 1

0

e−x−2

dx

(I3)

∫ 2

0

sin(10x) dx

(I4)

∫ 2

0

sin(100x) dx

(I5)

∫ 100

1

lnx dx

(I6)

∫ 1

0

√
x lnx dx

(I7)

∫ 5

1

(x− 1)1/5

x2 + 1
dx

(I8)

∫ 2

0

sinx

x
dx
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(I9)

∫ 2

0

tanx

x
dx

(I10)

∫ 1

−1

1

1 + 100x2
dx

(I11)

∫ 1

0

1√
x
dx

(I12)

∫ 200 000

−200 000

x2 exp(−1

2
x2) dx

(I13)

∫ 1

0

f(x) dx, where f(x) =

{
1

x+2
0 ≤ x < e− 2

0 e− 2 ≤ x ≤ 1

The main task is not to obtain the correct value of the integral and the error
but to understand the behaviour of the codes. Some integrals are simple and some
of them cause troubles, i.e., the results or the error estimates are bad. For each integral
(I1) – (I13), carry out the following steps:

� predict the possible troubles from the analytical form of the integrals,

� test both codes with several (at least two) tolerances,

� based on the resulting value of the integral, error estimate and the indicator (FLAG)
decide, if the result is reliable,

� in case of some troubles (mentioned at the beginning of Section 9.4.4), give an expla-
nation,

� perform also a reference computation using a software package as Matlab, Maple,
Mathematica, etc.
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Chapter 10

Ordinary differential equations

10.1 Problem definition

The aim is to solve numerically the following first order initial value problem represented
by an ordinary differential equation: we seek a function y : [a, b]→ Rm, m ∈ N such that

y′ = f(x, y), (10.1a)

y(a) = η, (10.1b)

where

f = (f1, . . . , fm) : [a, b]× Rm → Rm, η ∈ Rm

are the given data. The relation (10.1b) is called the initial condition.
We assume that f is such that there exists a unique global solution y : [a, b]→ Rm. 1

Remark 10.1. The problem (10.1) covers also the case of ODE of mth order (m > 1):

u(m) = g(x, u, u′, u′′, . . . , u(m−1)) (10.2)

with initial conditions

u(a) = η1, u′(a) = η2, u′′(a) = η3, . . . u(m−1)(a) = ηm.

Using the substitution

y1 = u, y2 = u′, y3 = u′′, . . . , ym = u(m−1),

the mth order scalar equation (10.2) reduces to a system of m ODEs of the first order

y′ = f(x, y(x)) ⇔ d

dx


y1
y2
...

ym−1

ym

 =


y2
y3
...
ym

g(x, y1, y2, . . . , ym)

 .

1E.g., we can assume that f is Lipschitz continuous function. Then the proof of the existence follows
from the Picard theorem.
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Figure 10.1: Example of the unstable system y′ = y (left) and the stable system y′ = −y
(right).

Therefore, a software developed for system (10.1) can be used with a success for problems
(10.2).

10.1.1 Stability of the system (10.1)

Let f = f(x, y) = (f1, . . . , fm) ∈ Rm be the function from (10.1) depending on y =
(y1, . . . , ym). Moreover, let f ∈ C1([a, b]× Rm). We denote by

Jf :=

{
∂fi
∂yj

}m

i,j=1

(10.3)

the Jacobi matrix corresponding to f .

Definition 10.2. We say that system (10.1) is stable (well conditioned) if all eigenvalues
of the Jacobi matrix Jf have negative real part.
We say that system (10.1) is unstable (ill conditioned) if all eigenvalues of the Jacobi ma-
trix Jf have positive real part.

Example 10.3. The ODE y′ = y is unstable whereas the ODE y′ = −y is stable. Figure
10.1 shows the solutions of y′ = y and y′ = −y for different initial conditions. We observe
that in the former case the solutions are grow away each other for x → ∞. Other hand,
in the latter case the solutions are closer to each other for x → ∞. This indicate that
(discretization as well as rounding) errors will magnify (diminish) for unstable (stable)
systems.

Obviously, if some eigenvalues of Jf have negative real parts and the others have pos-
itive real parts, the system is neither stable nor unstable. Sometimes we say that some
components of system (10.1) are stable and the others unstable.

83



Example 10.4. Let us consider a linear system

y′(x) = Ay(x), y(0) = y0 ∈ Rm, (10.4)

where A is a matrix m×m. Then A is the Jacobi matrix of the right-hand side of (10.4). Let
λi, i = 1, . . . ,m and ui, i = 1, . . . ,m be the eigenvalues and eigenvectors of A, respectively
such that the eigenvectors create a basis of Rm. Then, there exists αi ∈ R, i = 1, . . . ,m
such that

y0 =
m∑
i=1

αiui.

Then the exact solution of (10.4) is

y(x) =
m∑
i=1

αiui exp(λix).

We observe that
if Reλi > 0 then the corresponding component αiui exp(λix) is unstable,
if Reλi < 0 then the corresponding component αiui exp(λix) is stable,
if Reλi = 0 then the corresponding component αiui exp(λix) is neutrally stable.

Moreover, the stability of system (10.1) can change for x ∈ [a, b]:

Example 10.5. Let us consider the problem

y′ = −2α(x− 1)y. (10.5)

The exact solution is y(x) = c exp[−α(x − 1)2]. Obviously, ODE (10.5) is unstable for
x < 1 but stable for x > 1. Figure 10.2 shows the exact solution of (10.5) for several
initial conditions.

10.1.2 Stiff systems

A special class of stable ODE systems are the so-called stiff systems. A definition of a
stiff system is usually vague. Hardly speaking, a numerical solution of stiff systems by a
numerical method with a restricted region of stability (e.g., explicit methods) requires very
small time step in comparison to unconditionally stable methods.

Another characterization of stiff system is the following:

Definition 10.6. We say that system (10.1) is stiff if the eigenvalues of Jf have negative
real parts (= system is stable) with very different magnitudes.

84



 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  0.5  1  1.5  2

0.8*exp(-2*(x-1)**2)
1.0*exp(-2*(x-1)**2)
1.2*exp(-2*(x-1)**2)

Figure 10.2: Exact solution of (10.5) for α = 2 for several initial conditions, the system
is unstable for x < 1 but stable for x > 1.

Example 10.7. Let us consider the system

u′ = 998u+ 1998v, (10.6)

v′ = −999u− 1999v. (10.7)

Then the Jacobi matrix reads

Jf =

(
998 1998
−999 −1999

)
,

the eigenvalues of Jf are −1 and −1000. Therefore, in virtue of Definition 10.6, system
(10.6) is stiff. Numerical solution of stiff ODE by an explicit method requires very small
time step although it is not necessary from the point of view of accuracy, see Section 10.3.3.

Example 10.8. Let us consider the ODE problem

y′ = −α(y − sinx) + cos x, y(0) = 1, α > 0.

The exact solution is

y(x) = e−αx + sinx.

If α≫ 1 then this example is stiff.

Do Exercise 17
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10.2 Numerical solution of ODE

The basic idea of a numerical solution of problem (10.1) is the following. Let

a = x0 < x1 < x2 < · · · < xN = b

be a partition of the interval [a, b], xi, i = 0, . . . , N are called the nodes. We approximate
the value of the solution y(x) at nodes xi by

y(xi) ≈ yi ∈ Rm, i = 0, . . . , N. (10.8)

Usually we put y0 = η, where η is given by the initial condition (10.1b).
The unknown values yi, i = 0, . . . , N are given usually either by a one-step formula

yk+1 = Fk(xk+1, xk; yk+1, yk), k = 0, . . . , N − 1 (10.9)

or by a multi-step formula

yk+1 = Fk(xk+1, xk, xk−1, . . . , xk−ℓ+1; yk+1, yk, yk−1, . . . , yk−ℓ+1), k = p− 1, . . . , N − 1,
(10.10)

where FK are suitable functions of their arguments. The formula (10.10) represents the
ℓ-step formula. If the functions Fk in (10.9) or (10.10) do not depend explicitly on yk+1,
we speak about an explicit method, otherwise the method is implicit.

We see that the approximate solution yk+1 at the time level xk+1 is computed using the
approximate solutions on the previous time levels xl, l = 0, . . . , k. This means that any
error (discretization as well as rounding errors) is propagated.

We distinguish two types of errors2:

� global error (= accumulated error) is given simply by

Gk := yk − y(xk), k = 0, . . . , N. (10.11)

Therefore, the global error Gk represents the difference between the exact and the
approximate solution at the node xk, i.e., the error after k steps.

� local error is given by

Lk := yk − uk−1(xk), k = 0, . . . , N, (10.12)

where uk−1 is the function satisfying (10.1a) with the condition uk−1(xk−1) = yk−1.
Therefore, the local error Lk represents the error arising within the kth-step.

2Let us note that the rounding errors are usually neglected
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Figure 10.3 illustrates the global and local errors. Moreover, it shows that for an
unstable system (10.1), we have

Gk >
k∑

l=1

Ll.

On the other hand, we can deduce that for a stable system (10.1), we have

Gk <

k∑
l=1

Ll.
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Figure 10.3: An illustration of global and local errors Gk and Lk, respectively.

Definition 10.9. We say that a numerical method has the order p if Lk = O(hp+1).

Let us note that if a method has the order p then
∑N

k=1 Lk ≈ b−a
h
O(hp+1) = O(hp).

A natural requirement for the numerical solution of ODEs is |Gk| ≤ TOL. However, in
practice, we are able estimate only the local error Lk. Therefore, the most of software for
the numerical solution of ODEs is based on the estimation of the local error.
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10.3 Explicit Euler method

The simplest method for the numerical solution of ODEs is the (explicit or forward) Euler
method. For simplicity, we consider a scalar equation (10.1) with m = 1. Let a = x0 <
x1 < x2 < · · · < xN = b be a partition of [a, b], we put

hk = xk+1 − xk, k = 0, . . . , N − 1.

Let y ∈ C2([a, b]) be the exact solution of (10.1) and k = 0, . . . , N − 1, then the Taylor
expansion gives

y(xk + hk) = y(xk) + y′(xk)hk +
1

2
y′′(xk + τkhk)h

2
k, τk ∈ [0, 1]. (10.13)

Using the equality y′(xk) = f(xk, y(xk)) (following from (10.1a)), the approximation
y(xi) ≈ yi, i = 0, . . . ,m and neglecting the higher order term y′′(·)h2

k, we get from (10.13)

yk+1 = yk + hkf(xk, yk), k = 0, . . . , N − 1, (10.14)

which is the explicit Euler method. Usually, we put

y0 = η, (10.15)

where η is given by the initial condition (10.1b). Relations (10.14) and (10.15) define the
sequence of approximations yk, k = 1, 2, . . . , N .

The local error of the Euler method corresponds to the neglected higher order term in
(10.13), i.e.,

Lk =
1

2
y′′(xk + τkhk)h

2
k. (10.16)

Therefore, the Euler method has the order 1.

10.3.1 Stability

We analyze the stability of the Euler method, see Definition 1.13. Subtracting (10.13) from
(10.14) and using the identity y′(xk) = f(xk, y(xk)), we get

yk+1 − y(xk+1)︸ ︷︷ ︸
Gk+1

= yk − y(xk)︸ ︷︷ ︸
Gk

+hk (f(xk, yk)− f(xk, y(xk)))︸ ︷︷ ︸
propagation of the error

− 1

2
y′′(xk + τkhk)h

2
k︸ ︷︷ ︸

local error

. (10.17)

Let f ∈ C1([a, b]× R), then there exists ξ ∈ R between yk and y(xk) such that

f(xk, yk)− f(xk, y(xk)) = Jf (xk, ξ)(yk − y(xk)), (10.18)
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where Jf is the Jacobi matrix given by (10.3). Inserting (10.18) into (10.17) and using
(10.11) and (10.16), we obtain

Gk+1 = (1 + hkJf (xk, ξ))Gk + Lk.

The term A := 1 + hkJf (xk, ξ) is called the amplification factor.
Let Lk ≈ L for any k = 0, 1, 2, . . . . Then we have

G1 = AG0 + L,

G2 = AG1 + L = A2G0 + L(1 + A),

G3 = AG2 + L = A3G0 + L(1 + A+ A2),

...

Gk+1 = Ak+1G0 + L(1 + A+ · · ·+ Ak)

= Ak+1G0 + L
Ak+1 − 1

A− 1
.

So, if |A| > 1 then Gk+1 will blow up.

Definition 10.10. A numerical method is stable if the magnitude of the amplification
factor is strictly less than 1.

This means that for a stable numerical method, the propagation of the errors from pre-
vious time step is limited. Therefore, the rounding errors do not destroy the approximate
solution. Example 1.15 showed a behaviour of an unstable numerical method. Demon-
strate by the computer

For the explicit Euler method, we have the stability condition

|1 + hkJf (xk, ξ)| < 1,

which means that hkJf ∈ (−2, 0) for a scalar equation and/or the spectral radius ρ(I +
hkJf ) < 1 for a system of ODEs. The so-called domain of stability is shown in the
following figure, which shows the value of hkλf in the complex plane (λf formally denotes
an eigenvalue of Jf ):

 I
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Therefore, if the ODE system (10.1) is unstable (Reλf > 0) then the explicit Euler
method is always unstable. On the other hand, if the ODE system (10.1) is stable (Reλf <
0) then the explicit Euler method is stable only if hk is sufficiently small (namely if hk <

2
|λf |

for the scalar equation). We say the the explicit Euler method is conditionally stable.
Let us note that generally the amplification factor A depends on

� ODE – size of Jf ,

� numerical methods (for the explicit Euler equation we have A = 1 + hkJf (xk, ξ)),

� the size of hk.

10.3.2 Error estimate and the choice of the time step

In order to efficiently solve ODEs, the steps hk, k = 1, . . . ,m have to be chosen such that

� it is sufficiently small in order to guarantee the stability and the accuracy,

� it is sufficiently large in order to achieve an efficiency.

In order to balance between the accuracy and the efficiency, we (usually) choose hk

such that

Lk = TOL, k = 1, . . . , N, (10.19)

where TOL > 0 is the given tolerance.
For the explicit Euler method the local discretization error is given by (10.16), hence

we have

1

2
y′′(xk + τkhk)h

2
k = TOL ⇔ hk =

√
2TOL

y′′(·)
. (10.20)

The second order derivative can be approximated by a difference

y′′ ≈
y′k − y′k−1

xk − xk−1

=
f(xk, yk)− f(xk−1, yk−1)

xk − xk−1

. (10.21)

In the most software for the numerical solution of ODEs, the time steps hk, k = 1, . . . , n
are chosen according condition (10.19), i.e., the accuracy and the efficiency are balanced.
On the other hand, the stability condition is not explicitly checked. In fact it is hidden in
the approximation of Lk.

Let us consider the ODE (10.5),

y′ = −2α(x− 1)y. (10.22)

The exact solution is
y(x) = c exp[−α(x− 1)2]
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and thus
y′′(x) ≈ x2 exp[−αx2] for x≫ 1.

Therefore,
y′′(x)→ 0 for x→∞,

and, using the explicit Euler method, we have Lk ≪ 1 for large x and thus relation (10.20)
gives hk ≫ 1. Then the stability condition may be violated

However, in a practical computation, when that stability of the method is violated,
the approximations yk oscillate and then the approximation of the second order derivative
(10.21) gives a large value and consequently hk will be chosen smaller. See Figure 10.4
showing the approximate solution of (10.22) by the explicit Euler method using the fixed
time step h = 0.02 and the adaptively chosen time step according (10.20) – (10.21) with
TOL = 10−4. Demonstrate by the computer

Let us note that the choice of hk directly according (10.20) – (10.21) is a little naive,
in practice more sophisticated techniques are required, see Section 10.7
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Figure 10.4: Approximate solution of (10.22) by the explicit Euler method using the fixed
time step h = 0.02 (top) and the adaptively chosen time step according (10.20) – (10.21)
with TOL = 10−4 (bottom).

Do Exercise 18
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10.3.3 Euler method for stiff problems

Numerical solution of stiff ODE systems (see Section 10.1.2) by conditionally stable meth-
ods is usually very inefficient. Let us consider problem (10.6) written in the form

u′ = 998u+ 1998v, (10.23)

v′ = −999u− 1999v

with the initial conditions u(0) = 1 and v(0) = 0. The eigenvalues of Jf corresponding to
(10.23) are −1 and −1000, thus the stability condition for the explicit Euler method gives

|1 + hkJf | < 1 ⇒ hk < 2 · 10−3. (10.24)

Moreover, the exact solution or (10.23) is

u(x) =2e−x − e−1000x,

v(x) =− e−x + e−1000x.

Then

u′′(x) =2e−x − 106e−1000x,

v′′(x) =− e−x + 106e−1000x.

Hence, from (10.20), we have hk ≈ K√
max(|u′′|, |v′′|)

, which gives

for x = 0 hk ≈ K10−3,

for x = 1 hk ≈ K100,

for x = 3 hk ≈ K101.

Therefore, from the point of view of the accuracy, the time step hk can be many times
larger than the stability condition (10.24) allows.

This is the characteristic property of stiff ODE systems: their numerical solution by a
conditionally stable method is inefficient.

10.4 Implicit methods

In order to efficiently solve stiff systems, numerical method with a large domain of stability
are required. The simplest are the implicit (backward) Euler method written in the form

yk+1 = yk + hkf(xk+1, yk+1), k = 0, 1, . . . , N − 1. (10.25)

Let us note that the right-hand side of (10.25) depends on the unknown approximate
solution yk+1 hence a nonlinear algebraic system on each time level has to be solved.
Usually, the Newton or a Newton-like method is employed. On the other hand, this
method is unconditionally stable (see bellow) hence the time step can be chosen large and
then the total computational time can be shorter.

92



10.4.1 Stability and accuracy of the implicit Euler method

We investigate the so-called linear stability of the implicit Euler method (10.25). We
consider the linear ODE

y′ = λy, λ ∈ R. (10.26)

Applying the implicit Euler method, we obtain

yk+1 = yk + λhkyk+1,

which gives

yk+1 = Ayk, A :=
1

1− λhk

,

where A is the amplification factor. Obviously, if λ < 0 (i.e. system (10.26) is stable) then
|A| < 1 for any hk > 0. We say that implicit Euler method is unconditionally stable.

Finally, we investigate the accuracy of the implicit Euler method. We consider again
the ODE (10.26). The implicit Euler method and an expand into a series give

yk+1 = yk
1

1− λhk

= yk
[
1 + λhk + (λhk)

2 + (λhk)
3 + . . .

]
. (10.27)

Moreover, the Taylor expansion of the exact solution gives

y(xk + hk) =y(xk) + hky
′(xk) +

1

2
h2
ky

′′(xk) +
1

6
h3
ky

′′′(xk) + . . . , (10.28)

=eλxk + λhke
λxk +

1

2
(λhk)

2eλxk +
1

6
(λhk)

3eλxk + . . .

=eλxk

[
1 + λhk +

1

2
(λhk)

2 +
1

6
(λhk)

3 + . . .

]
=y(xk)

[
1 + λhk +

1

2
(λhk)

2 +
1

6
(λhk)

3 + . . .

]
.

Let us assume that y(xk) = yk, then Lk = yk+1−y(xk+1). Subtracting (10.27) and (10.28),
we obtain

Lk = yk+1 − y(xk + hk) =
1

2
(λhk)

2 + · · · = O(h2
k),

which means the implicit Euler method has the order 1.

10.4.2 Crank-Nicolson method

The Crank-Nicolson method (trapezoid method) is formaly “an average” between the ex-
plicit and implicit Euler methods, namely

yk+1 = yk +
1

2
hk (f(xk, yk) + f(xk+1, yk+1)) , k = 0, 1, . . . , N − 1. (10.29)
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Obviously, the method is implicit.
We investigate the linear stability of the Crank-Nicolson method (10.29). We consider

the linear ODE

y′ = λy, λ ∈ R. (10.30)

Applying the Crank-Nicolson method, we obtain

yk+1 = yk +
λhk

2
(yk + yk+1),

which gives

yk+1 = Ayk, A :=
1 + λhk

2

1− λhk

2

,

where A is the amplification factor. Obviously, if λ < 0 (i.e. system (10.30) is stable) then
|A| < 1 for any hk > 0. Hence, the Crank-Nicolson method is unconditionally stable.

Finally, we investigate the accuracy of the Crank-Nicolson method. We consider again
the ODE (10.30). The Crank-Nicolson method and the expand into a series give

yk+1 = yk
1 + λhk

2

1− λhk

2

=yk

(
1 +

λhk

2

)[
1 + λhk/2 + (λhk/2)

2 + (λhk/2)
3 + . . .

]
(10.31)

=yk
[
1 + λhk + (λhk)

2/2 + (λhk)
3/4 + . . .

]
.

Moreover, from (10.28), we have

y(xk + hk) =y(xk)

[
1 + λhk +

1

2
(λhk)

2 +
1

6
(λhk)

3 + . . .

]
. (10.32)

Let us assume that y(xk) = yk, then Lk = yk+1 − y(xk+1) Subtracting (10.31) and(10.32),
we obtain

Lk = yk+1 − y(xk + hk) =
1

12
(λhk)

3 + · · · = O(h3
k),

which means the Crank-Nicolson method is the order 2.
We conclude that the Crank-Nicolson method is unconditionally stable as the implicit

Euler method and moreover, it is more accurate.

10.4.3 Implicit method for stiff problems

We consider again the problem (10.23) written as

u′ = 998u+ 1998v, u(0) = 1, (10.33)

v′ = −999u− 1999v, v(0) = 0.
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We are interested in the solution of u and v at x = 10. We solve (10.33) by the explicit as
well as implicit Euler method.

From (10.24), the stability of the explicit Euler method is guaranteed for h < 10−3. On
the other hand, the implicit Euler method is unconditionally stable but we need to solve a
(2× 2) linear algebraic problem.

For each method, we use several time step, the results are given in the following tables:
Demonstrate by the computer

explicit

h uh(10) vh(10)
10−3 9.04E-05 -4.52E-05
2 · 10−3 oscillates oscillates
10−2 ∞ ∞

implicit

h uh(10) vh(10)
10−3 9.13E-05 -4.56E-05
10−2 9.63E-05 -4.82E-05
10−1 1.60E-04 -7.98E-05
100 1.95E-04 -9.77E-04

Let us note that the exact solution is u(10) =9.08E-5 and v(10) =-4.04E-5.
We oberve that

� Explicit method works only for h = 10−3, i.e., only if the stability condition is
satisfied. However, when for h = 10−3, the approximate solution well corresponds to
the exact one.

� Implicit method works for all tested h. For h = 10−3, the approximate solution is
very similar to the approximate solution obtained with the aid of the implicit method.

� Increasing h for implicit method leads to an increase of the error. However, in
situation, when we do not care about the accuracy, a large h can be used.

Figures 10.5 and 10.6 show the approximate solution obtained with the aid of the
explicit and implicit Euler methods, respectively, for several time steps h.

Do Exercise 19

10.5 Numerical methods used in public software

In public numerical software, two types of numerical methods are mostly used:

� explicit Runge-Kutta methods for the solution of non-stiff problems,

� implicit multi-step formulae for the solution of stiff problems.

10.5.1 Runge-Kutta methods

Let s ∈ N, then the explicit Runge-Kutta methods can be written in the form

yk+1 = yk + hk

s∑
i=1

wiki, (10.34)
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Figure 10.5: Approximate solution of (10.33) by the explicit Euler method.

96



h = 10−3

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 0  1  2  3  4  5  6  7  8  9  10

uk
vk

h = 10−2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 0  1  2  3  4  5  6  7  8  9  10

uk
vk

h = 10−1

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 0  1  2  3  4  5  6  7  8  9  10

uk
vk

h = 100

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 0  2  4  6  8  10

uk
vk

Figure 10.6: Approximate solution of (10.33) by the implicit Euler method.
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where

k1 =f(xk, yk),

k2 =f(xk + α2hk, yk + β21k1),

...

ki =f(xk + αihk, yk + hk

i−1∑
j=1

βijkj), i = 1, . . . , s,

and wi, i = 1, . . . , s, αi, i = 2, . . . , s, and βij, j = 1, . . . , i − 1, i = 1, . . . , s are real
coefficients. Sometimes we speak about s-stage method. Obviously, method (10.34) is
explicit, we do not need to solve any algebraic system. On the other hand, at each time
step, the function f has to be evaluated s-times.

The Runga-Kutta methods are one step methods, hence they are the so-called self-
starting. Therefore, it is possible to adapt the time step in a simple way.

Example 10.11. a) For s = 1, the Runge-Kutta method is equivalent to the explicit Euler
method.
b) The simplest (non-trivial) method is Heun’s method

yk+1 =yk +
hk

2
(k1 + k2),

k1 =f(tk, yk),

k2 =f(tk + hk, yk + hkk1),

which has the order equal to 2, see Definition 10.9.
c) The standard Runge-Kutta method (s = 4) reads

yk+1 =yk +
hk

6
(k1 + 2k2 + 2k3 + k4),

k1 =f(tk, yk),

k2 =f(tk +
1

2
hk, yk +

1

2
hkk1),

k3 =f(tk +
1

2
hk, yk +

1

2
hkk2),

k4 =f(tk + hk, yk + hkk3),

it has the order equal to 4.

Lemma 10.12. If s ≤ 4 then there exists a Runge-Kutta method of the order p = s.
Moreover, if a Runge-Kutta method has the order p > 4 then s > p.

This lemma implies that the Runge-Kutta method with s = p = 4 is optimal from the
point of view of the accuracy as well as the efficiency.
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10.5.2 Multi-step methods

Let m ∈ N, then a m-step method can be written in the form

m∑
i=0

αiyk+i = h

m∑
i=0

βifk+i, fj = f(xj, yj), j = 0, 1, . . . (10.35)

where αi, βi, i = 0, . . . ,m are the real parameters. If βm = 0 then method (10.35) is
explicit, otherwise, it is implicit. Obviously, the implicit methods are much more stable
(but not always unconditionally stable), i.e., the time step h can be chosen much more
larger than for the explicit ones.

The values y0, . . . , ym−1 are not given by (10.35), they can be evaluated, e.g., by a
one-step method. We say that (10.35) is not self-starting.

Example 10.13. a) The explicit and implicit Euler methods are a special case of (10.35)
for m = 1.
b) The one-step implicit method (= Crank-Nicolson) reads

yk+1 = yk +
h

2
(fk+1 + fk) ,

its order is 2.
c) The two-steps explicit method reads

yk+1 = yk +
h

2
(3fk − fk−1) ,

its order is 1.
c) The two-steps implicit method reads

yk+1 = yk +
h

12
(5fk+1 + 8fk − fk−1) ,

its order is 2.
d) Further examples are the so-called Adams-Bashforth methods, which are explicit and
m-step method has the order m, e.g.,

yk+1 = yk +
h

24
(55fk − 59fk−1 + 37fk−2 − 9fk−3).

e) Moreover, the so-called Adams-Moulton methods are implicit and the m-step method has
the order m+ 1, e.g.,

yk+1 = yk +
h

24
(9fk+1 + 19fk − 5fk−1 + fk−2).
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Implicit multi-step methods

The implicit multi-step methods leads to a nonlinear algebraic system, which has to be
solved at each time step. It is possible to use:

� direct solution of the nonlinear algebraic system, e.g., by the Newton or a Newton-
like method. Then the Jacobi matrix of f (or its approximation) has to be evaluated.
Usually, either an explicit evaluation of the Jacobi matrix by user is required or the
Jacobi matrix can be evaluated numerically by differentiation (efficiency is usually
low).

� predictor-corrector technique, where a combination of an explicit and an implicit
method is used. The explicit method gives an approximation of yk+m denoted by
y⋆k+m, we put y0k+m := y⋆k+m and replace (10.35) by

αmy
ℓ+1
k+m +

m−1∑
i=0

αiyk+i = h

(
βmf(tk+m, y

ℓ
k+m) +

m−1∑
i=0

βifk+i

)
, ℓ = 0, 1, . . . . (10.36)

The formula (10.36) is explicit and the approximations y0k+m, y
1
k+m, y

2
k+m,. . . should

converge to yk−m given by (10.35). The convergence follows from the pix-point the-
orem based on some assumptions on f and h. Usually, it is sufficient to carry out 1
or 2 iterations in (10.36).

Let us note that the use of the predictor-corrector technique leads to a larger restriction
on the size of the time step than the use of the direct solution of the nonlinear algebraic
system.

Backward difference formulae

A special class of the multi-step methods are the backward difference formulae (BDF) given
by

m∑
i=0

αiyk+i = hfk+m, fk+m = f(tk+m, yk+m), (10.37)

where αi, i = 0, . . . ,m are the real parameters.

Example 10.14. Examples of BDF methods are:

yk+1 − yk =hfk+1,

3

2
yk+2 − 2yk+1 +

1

2
yk =hfk+2,

11

6
yk+3 − 3yk+2 +

3

2
yk+1 −

1

3
yk =hfk+3.

m-step BDF has the order m, for m > 6 the method is unstable.

It is possible to say that the BDF is the class of the most suitable methods for the
solution of stiff systems.
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10.5.3 Comparison of Runge-Kutta methods and multi-step meth-
ods

Runge-Kutta explicit implicit
multi-step multi-step

self-starting yes no no
time step adaptation simple complicated complicated
stability low low high
computational costs low the lowest high
suitable for stiff no no yes

10.5.4 Other numerical methods for ODE

� multivalue methods – some generalization of multi-step methods, which allows a
simple time step adaptation, an adaptive choice of the order of the method and a
“switcher” between explicit and implicit approach.

� numerical differentiation formulae – similar to BDF methods, suitable for stiff prob-
lems, used in Matlab (ode15s).

� time discontinuous Galerkin method – very accurate, flexible but expensive.

10.6 Estimates of the local error

The estimate of the local error arising in the numerical solution of ODEs is crucial for an
efficient and accurate solution, see Section 10.3.2. We have already mentioned that we
are unable to estimate the global error Gk but only the local error Lk. We present three
approaches of the estimate of the local error.

10.6.1 Error estimates based on the interpolation function

Let y0, y1, y2, . . . , yk be the known approximation of y at x0, x1, x2, . . . , xk. Let n ∈ N,
n ≤ k be given. We define a function z ∈ C1([yk−n, yk]) such that

z(xk−i) = yk−i, i = 0, . . . , n.

Then we define the function

r(x) := z′(x)− f(x, z(x)), x ∈ [yk−n, yk],

which represents a residuum of the approximate solutions y0, y1, y2, . . . , yk.
A natural requirement is |r(x)| ≤ TOL, where TOL is a given tolerance. This approach

is general, however a suitable tolerance TOL have to be chosen empirically.
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10.6.2 Technique of half-size step

Theorem 10.15 (W. B. Gragg (1963)). Let us consider ODEs (10.1) on [a, b] × Rm, let
f ∈ CN+2([a, b] × Rm), N ∈ N. Let y(x, h) denote the approximate solution at x ∈ [a, b]
obtained by a one-step method of order p (p ≤ N) with the time step h ∈ (0, h̄). Then there
exists functions ei : [a, b]→ Rm, i = p, . . . , N and EN+1 : [a, b]× (0, h̄)→ Rm such that

y(x) = y(x, h) + hpep(x) + hp+1ep+1(x) + · · ·+ hNeN(x) + hN+1EN+1(x, h). (10.38)

Moreover,

1) ek(a) = 0, k = p, p+ 1, . . . , N,

2) ek(x) is independent of h, k = p, p+ 1, . . . , N,

3) ∃C(x) : [a, b]→ R : |EN+1(x, h)| ≤ C(x) ∀x ∈ [a, b] ∀h ∈ (0, h̄).

Let us note the this theorem does not take into account the rounding errors.
This theorem implies that the global error satisfies

e(x, h) = y(x)− y(x, h) = hpep(x) +O(hp+1).

If h≪ 1 then the term O(hp+1) can be neglected.
The Gragg theorem can be used in the estimated of the error by the half-size step

technique. We have

y(x)− y(x, h) ≈ hpep(x)
y(x)− y(x, h/2) ≈ (h/2)pep(x)

}
=⇒ y(x)− y(x, h/2) ≈ y(x, h/2)− y(x, h)

2p − 1
.

Therefore, carrying out the computation two times with the step h and h/2, we estimate
the error by the difference of both approximate solutions multiplied by the factor (2p−1)−1.

10.6.3 Runge-Kutta-Fehlberg methods

Fehlberg proposed the error estimate based on the use of two Runge-Kutta formula

yk+1 = yk + hk

s∑
i=1

wiki, (10.39a)

ŷk+1 = yk + hk

s∑
i=1

ŵiki, (10.39b)

ki = f(xk + αihk, yk + hk

i−1∑
j=1

βijkj), i = 1, . . . , s,

where wi, ŵi, i = 1, . . . , s, αi, i = 2, . . . , s, and βij, j = 1, . . . , i − 1, i = 1, . . . , s are
suitable real coefficients. The menthod (10.39a) has the order equal to p and method
(10.39b) has the order equal to p+ 1.
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In order to estimate the error, we assume that

|ŷk+1 − uk(xk+1)| ≪ |yk+1 − uk(xk+1)|

where uk is the function satisfying (10.1a) with the condition uk(xk) = yk, see the definition
of the locall error (10.12).

Then we estimate the local error by the formula

Lk+1 ≈ yk+1 − ŷk+1 = hk

s∑
i=1

(wi − ŵi)ki.

10.7 Adaptive choice of the time step

In order to efficiently solve ODEs, the steps hk, k = 1, . . . ,m have to be chosen such that

� it is sufficiently small in order to guarantee the stability and the accuracy,

� it is sufficiently large in order to achieve an efficiency.

10.7.1 Basic idea

Now, we introduce some technique which propose an optimal time step hopt
k which should

fulfil both previous requirements. Let EST is an estimate the absolute value of the local
error Lk, see Section 10.6. In order to balance between the accuracy and the efficiency, we
(usually) choose hk such that

either EST ≈ TOL, k = 1, . . . , N, E.P.S. (error per step) (10.40)

or EST ≈ hkTOL, k = 1, . . . , N, E.P.U.S. (error per unit step)

where TOL > 0 is a suitably chosen tolerance. Let us underline that EST depends on hk.
Let us consider an numerical method of order p for the solution of (10.1). Then Lk =

O(hp+1), see Definition 10.9. We assume that

EST = EST(hk) = C hp+1
k ,

where C > 0 is a constant.
Then taking into the account (10.40) (for E.P.S.), the optimal time step hopt

k satisfies

TOL = C (hopt
k )p+1.

From two last relations we have

TOL

EST
=

(
hopt
k

hk

)p+1

⇒ hopt
k = hk

(
TOL

EST

) 1
p+1

. (10.41)

For E.P.U.S, the relation reads

hkTOL

EST
=

(
hopt
k

hk

)p+1

⇒ hopt
k = hk

(
hkTOL

EST

) 1
p+1

. (10.42)
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10.7.2 Practical implementations

The relation (10.41) gives us the optimal size of the time step hk. Based on numerical
experiments several “improving strategies” were proposed. We present and comment here
some of them:

� relation (10.41) is replaced by

hopt
k =

{
hk

(
TOL
EST

) 1
p+1 if TOL ≥ EST,

hk

(
TOL
EST

) 1
p if TOL < EST.

It means that if the estimate is bigger than the tolerance then the optimal step is
shorter than the step given by (10.41).

� The size of the optimal step is multiplied by an security factor FAC, i.e., (10.41) is
replaced by

hopt
k = FAChk

(
TOL

EST

) 1
p+1

,

where FAC ∈ (0, 1), e.g., FAC = 0.8 or FAC = 0.9 or FAC = (0.25)1/(p+1).

� we limit the variations of the time step, e.g., we require that

FACMIN ≤ hopt
k

hK

≤ FACMAX,

where, e.g., FACMIN ∈ (0.1, 0.5) and FACMAX ∈ (1.5, 10). Moreover, the values
FACMIN and FACMAX can be modified during the computation.

10.7.3 Choice of the first time step

In order to perform the first time step, we have to set h1.

� by the user of the software, if he can provide this information,

� automatically by a prescribed fixed value,

� choice proposed by [H. Watts (1983)]:

h1 =

(
TOL

A

)1/(p+1)

, A =

(
1

max(|a|, |b|)

)p+1

+ ∥f(a, y(a))∥p+1.

� a use of a simple (e.g. Euler) method in order to find optimal h0.
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10.7.4 Abstract algorithm for the solution of ODE

1. check of input data,

2. initialization of h0 and FLAG (indicator of a successfully performed time step),

3. for k = 1, 2, . . . ,

(a) preparation of the new time step hk (depends on FLAG), saving of data, etc.,

(b) computation of yk+1,

(c) estimation of the local error EST, setting of FLAG (if EST ≤ TOL then FLAG
is OK), setting hopt

k ,

(d) if EST ≤ TOL then
. successful time step:
. if xk + h ≥ b then end of computation
. else
. yk := yk+1, xk := xk + hk, k := k + 1,
. propose of hk (usually hk := hopt

k )
. endif
else
. unsuccessful time step: generally repeat step k with hk := hopt

k

endif
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10.8 Subroutine RKF45

10.8.1 Overview

Subroutine for the numerical solution of (10.1) with the aid of the Runge-Kutta-Fehlberg
method of order 4 and 5. It suits for non-stiff and middle-stiff systems.

It carried out the solution from T to TOUT and return the value y at TOUT. Therefore, if
a visualization of y is desired, RKF45 should be called several times, see file dr_rkf45.f.

10.8.2 Input/output parameters

The subroutine RKF45 is called by the command

call RKF45(F,NEQN,Y,T,TOUT,RELERR,ABSERR,IFLAG,WORK,IWORK)

where the input/output parameters are the following

FUNC -- SUBROUTINE FUNC(T,Y,YP) TO EVALUATE DERIVATIVES YP(I)=DY(I)/DT

NEQN -- NUMBER OF EQUATIONS TO BE INTEGRATED

Y(*) -- SOLUTION VECTOR AT T

T -- STARTING POINT OF INTEGRATION ON INPUT

LAST POINT REACHED IN INTEGRATION ON OUTPUT

TOUT -- OUTPUT POINT AT WHICH SOLUTION IS DESIRED

RELERR,ABSERR -- RELATIVE AND ABSOLUTE ERROR TOLERANCES FOR LOCAL

ERROR TEST. AT EACH STEP THE CODE REQUIRES THAT

ABS(LOCAL ERROR) .LE. RELERR*ABS(Y) + ABSERR

FOR EACH COMPONENT OF THE LOCAL ERROR AND SOLUTION VECTORS

IFLAG -- INDICATOR FOR STATUS OF INTEGRATION

+1, -1 ON INPUT (-1 ONLY ONE TIME STEP)

+2, -2 SUCCESSFUL COMPUTATION

3 - 8 SOME TROUBLES

WORK(*) -- ARRAY TO HOLD INFORMATION INTERNAL TO RKF45 WHICH IS

NECESSARY FOR SUBSEQUENT CALLS. MUST BE DIMENSIONED

AT LEAST 3+6*NEQN

IWORK(*) -- INTEGER ARRAY USED TO HOLD INFORMATION INTERNAL TO

RKF45 WHICH IS NECESSARY FOR SUBSEQUENT CALLS. MUST BE

DIMENSIONED AT LEAST 5

10.8.3 Installation and use of RKF45

� Archive can be downloaded from
http://msekce.karlin.mff.cuni.cz/~dolejsi/Vyuka/RKF45.tgz
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� after unpacking of the file (in Linux by tar xfz RKF45.tgz), an archive with the
following files appears:

– makefile – makefile for translation

– rkf45.f – the subroutine RKF45

– dr_rkf45.f – the main program calling RKF45 and containing the definition
of the input parameters

� the code can be translated by the command make (if it is supported) which use the
file makefile

dr_rkf45 : dr_rkf45.o rkf45.o

gfortran -o dr_rkf45 dr_rkf45.o rkf45.o

dr_rkf45.o : dr_rkf45.f

gfortran -c dr_rkf45.f

rkf45.o : rkf45.f

gfortran -c rkf45.f

or by a direct use of previous commands, namely

f77 -c dr_rkf45.f

f77 -c rkf45.f

f77 -o dr_rkf45 dr_rkf45.o RKF45.o

The symbol f77 denotes the name of the translator, it can be replaced by any available
fortran translator (g77, gfortran, . . . ). If the translation is successful, the executable
file dr_rkf45 arises.

� the setting of the input parameters has to be done by hand in the file dr_rkf45.f

(the translation has to be repeated thereafter):

PROGRAM DR_RKF45

PARAMETER (NEQN = 2)

INTEGER IFLAG,IWORK(5),NSTEP, I

DOUBLE PRECISION WORK(3+6*NEQN), Y(NEQN),T,TOUT,RELERR,ABSERR,

* A, B, STEP

C NUMBER OF EQUATIONS

c NEQN = 1

C INITIALIZATION

IFLAG = 1
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C DESIRED ACCURACY

RELERR = 1.D-08

ABSERR = 1.D-08

C INITIAL CONDITION

Y(1) = 1.0D+00

c Y(2) = 1.0D+00

C INTERVAL OF INVESTIGATION

A = 0.D+00

B = 5.D+00

C NUMBER OF STEP ON <A,B>

NSTEP = 200

STEP = (B-A) / NSTEP

c STARTING POINT OF INTEGRATION

T = A

if( NEQN == 2) then

WRITE(*,’(3e14.6,i5)’) T,Y(1),Y(2),IFLAG

else

WRITE(*,’(2e14.6,i5)’) T,Y(1),IFLAG

endif

DO I=1,NSTEP

TOUT = T + STEP

CALL RKF45(F,NEQN,Y,T,TOUT,RELERR,ABSERR,IFLAG,WORK,IWORK)

if( NEQN == 2) then

WRITE(*,’(3e14.6,i5)’) T,Y(1),Y(2),IFLAG

else

WRITE(*,’(2e14.6,i5)’) T,Y(1),IFLAG

endif

T = TOUT

ENDDO

END

SUBROUTINE FUNC(NEQN,T,Y,YP)
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DOUBLE PRECISION T,Y(NEQN),YP(NEQN)

DOUBLE PRECISION alpha

YP(1) = 998.0D+00 * Y(1) + 1998.D+00 * Y(2)

YP(2) = -999.0D+00 * Y(1) - 1999.D+00 * Y(2)

RETURN

END

� the code is run by ./dr_rkf45, the output looks like

0.000000E+00 0.100000E+01 0.691704-309 1

0.250000E-01 0.195062E+01 -0.975310E+00 2

0.500000E-01 0.190246E+01 -0.951229E+00 2

0.750000E-01 0.185549E+01 -0.927743E+00 2

0.100000E+00 0.180967E+01 -0.904837E+00 2

0.125000E+00 0.176499E+01 -0.882497E+00 2

0.150000E+00 0.172142E+01 -0.860708E+00 2

0.175000E+00 0.167891E+01 -0.839457E+00 2

0.200000E+00 0.163746E+01 -0.818731E+00 2

0.225000E+00 0.159703E+01 -0.798516E+00 2

0.250000E+00 0.155760E+01 -0.778801E+00 2

0.275000E+00 0.151914E+01 -0.759572E+00 2

0.300000E+00 0.148164E+01 -0.740818E+00 2

0.325000E+00 0.144505E+01 -0.722527E+00 2

.

.

.

.

The columns are: xk, y1,k, y2,k, IFLAG
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10.9 Subroutine DOPRI5

10.9.1 Overview

Subroutine for the numerical solution of (10.1) with the aid of the Runge-Kutta of order
4 and 5, the so-called Dormand and Prince method. It suits for non-stiff systems.

10.9.2 Input/output parameters

The subroutine DOPRI5 is called by the command

call DOPRI5(N,FCN,X,Y,XEND,

& RTOL,ATOL,ITOL,

& SOLOUT,IOUT,

& WORK,LWORK,IWORK,LIWORK,RPAR,IPAR,IDID)

where the selected input/output parameters are the following

INPUT PARAMETERS

----------------

N DIMENSION OF THE SYSTEM

FCN NAME (EXTERNAL) OF SUBROUTINE COMPUTING THE

VALUE OF F(X,Y):

SUBROUTINE FCN(N,X,Y,F,RPAR,IPAR)

DOUBLE PRECISION X,Y(N),F(N)

F(1)=... ETC.

X INITIAL X-VALUE

Y(N) INITIAL VALUES FOR Y

XEND FINAL X-VALUE (XEND-X MAY BE POSITIVE OR NEGATIVE)

RTOL,ATOL RELATIVE AND ABSOLUTE ERROR TOLERANCES. THEY

CAN BE BOTH SCALARS OR ELSE BOTH VECTORS OF LENGTH N.

ITOL SWITCH FOR RTOL AND ATOL:

ITOL=0: BOTH RTOL AND ATOL ARE SCALARS.

THE CODE KEEPS, ROUGHLY, THE LOCAL ERROR OF

Y(I) BELOW RTOL*ABS(Y(I))+ATOL

ITOL=1: BOTH RTOL AND ATOL ARE VECTORS.

THE CODE KEEPS THE LOCAL ERROR OF Y(I) BELOW

RTOL(I)*ABS(Y(I))+ATOL(I).

10.9.3 Installation and use of DOPRI5

� Archive can be downloaded from
http://msekce.karlin.mff.cuni.cz/~dolejsi/Vyuka/DOPRI5.tgz
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� after unpacking of the file (in Linux by tar xfz DOPRI5.tgz), an archive with the
following files appears:

– makefile – makefile for translation

– dopri5.f – the subroutine DOPRI5

– dr_dopri5.f – the main program calling DOPRI5 and containing the definition
of the input parameters

� the code can be translated by the command make (if it is supported) which use the
file makefile

dr_dopri5 : dr_dopri5.o dopri5.o

gfortran -o dr_dopri5 dr_dopri5.o dopri5.o

dr_dopri5.o : dr_dopri5.f

gfortran -c dr_dopri5.f

dopri5.o : dopri5.f

gfortran -c dopri5.f

or by a direct use of previous commands, namely

f77 -c dr_dopri5.f

f77 -c dopri5.f

f77 -o dr_dopri5 dr_dopri5.o DOPRI5.o

The symbol f77 denotes the name of the translator, it can be replaced by any available
fortran translator (g77, gfortran, . . . ). If the translation is successful, the executable
file dr_dopri5 arises.

� the setting of the input parameters has to be done by hand in the file dr_dopri5.f
(the translation has to be repeated thereafter):

C * * * * * * * * * * * * * * * * * * * * * * * * *

C --- DRIVER FOR DOPRI5 ON ARENSTORF ORBIT

C * * * * * * * * * * * * * * * * * * * * * * * * *

IMPLICIT REAL*8 (A-H,O-Z)

PARAMETER (NDGL=2,NRDENS=2)

PARAMETER (LWORK=8*NDGL+5*NRDENS+20,LIWORK=NRDENS+20)

DIMENSION Y(NDGL),WORK(LWORK),IWORK(LIWORK),RPAR(2)

EXTERNAL FAREN,SOLOUT

C --- DIMENSION OF THE SYSTEM

N=NDGL

C --- OUTPUT ROUTINE (AND DENSE OUTPUT) IS USED DURING INTEGRATION

IOUT=2
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C --- INITIAL VALUES AND ENDPOINT OF INTEGRATION

RPAR(1)=0.012277471D0

RPAR(2)=1.D0-RPAR(1)

X=-1.0D0

Y(1)=0.4D0

Y(2)=0.0D0

! Y(3)=0.0D0

! Y(4)=-2.00158510637908252240537862224D0

! XEND=17.0652165601579625588917206249D0

XEND = 2.

C --- REQUIRED (RELATIVE AND ABSOLUTE) TOLERANCE

ITOL=0

RTOL=1.0D-7

ATOL=RTOL

C --- DEFAULT VALUES FOR PARAMETERS

DO 10 I=1,20

IWORK(I)=0

10 WORK(I)=0.D0

C --- DENSE OUTPUT IS USED FOR THE TWO POSITION COORDINATES 1 AND 2

IWORK(5)=NRDENS

IWORK(21)=1

IWORK(22)=2

C --- CALL OF THE SUBROUTINE DOPRI5

CALL DOPRI5(N,FAREN,X,Y,XEND,

& RTOL,ATOL,ITOL,

& SOLOUT,IOUT,

& WORK,LWORK,IWORK,LIWORK,RPAR,IPAR,IDID)

C --- PRINT FINAL SOLUTION

! WRITE (6,99) Y(1),Y(2)

WRITE (6,*) Y(1)

99 FORMAT(1X,’X = XEND Y =’,2E18.10)

C --- PRINT STATISTICS

WRITE (6,91) RTOL,(IWORK(J),J=17,20)

91 FORMAT(’ tol=’,D8.2,’ fcn=’,I5,’ step=’,I4,

& ’ accpt=’,I4,’ rejct=’,I3)

STOP

END

C

C

SUBROUTINE SOLOUT (NR,XOLD,X,Y,N,CON,ICOMP,ND,RPAR,IPAR,IRTRN)

C --- PRINTS SOLUTION AT EQUIDISTANT OUTPUT-POINTS BY USING "CONTD5"

IMPLICIT REAL*8 (A-H,O-Z)

DIMENSION Y(N),CON(5*ND),ICOMP(ND),RPAR(2)
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COMMON /INTERN/XOUT

IF (NR.EQ.1) THEN

WRITE (6,99) X,Y(1),Y(2),NR-1

XOUT=X+2.0D0

ELSE

10 CONTINUE

IF (X.GE.XOUT) THEN

WRITE (6,99) XOUT,CONTD5(1,XOUT,CON,ICOMP,ND),

& CONTD5(2,XOUT,CON,ICOMP,ND),NR-1

XOUT=XOUT+2.0D0

GOTO 10

END IF

END IF

99 FORMAT(1X,’X =’,F6.2,’ Y =’,2E18.10,’ NSTEP =’,I4)

RETURN

END

C

SUBROUTINE FAREN(N,X,Y,F,RPAR,IPAR)

C --- ARENSTORF ORBIT

IMPLICIT REAL*8 (A-H,O-Z)

DIMENSION Y(N),F(N),RPAR(2)

AMU=RPAR(1)

AMUP=RPAR(2)

! F(1)=Y(3)

! F(2)=Y(4)

! R1=(Y(1)+AMU)**2+Y(2)**2

! R1=R1*SQRT(R1)

! R2=(Y(1)-AMUP)**2+Y(2)**2

! R2=R2*SQRT(R2)

! F(3)=Y(1)+2*Y(4)-AMUP*(Y(1)+AMU)/R1-AMU*(Y(1)-AMUP)/R2

! F(4)=Y(2)-2*Y(3)-AMUP*Y(2)/R1-AMU*Y(2)/R2

F(1) = 1./sin(sqrt(abs(x)))

F(2) = 0.

RETURN

END

� the code is run by ./dr_dopri5, the output looks like

X = -1.00 Y = 0.4000000000E+00 0.0000000000E+00 NSTEP = 0

X = 1.00 Y = 0.4638986379E+01 0.0000000000E+00 NSTEP = 83

5.7140503064330046
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tol=0.10D-06 fcn= 728 step= 121 accpt= 86 rejct= 35

Homeworks

Exercise 17. Let us consider two ODEs:{
y′ = y,
y(0) = 1,

{
y′ = expx,
y(0) = 1.

Both equations have the exact solution y(x) = exp(x). When we solved them numerically,
which of them gives larger problems? Decide about the stability of these ODEs.

Exercise 18. Write a simple code for the numerical solution of (10.22) by the explicit
Euler method with the adaptively chosen time step hk according (10.20) – (10.21). Demon-
strate that the choice (10.20) – (10.21) practically guarantees the stability condition. Hint:
use a code from Appendix. Code is available in
http: // msekce. karlin. mff. cuni. cz/ ~ dolejsi/ Vyuka/ NS_ source/ ODE/ index. html

file methods.tgz, code adapt_time.f90

Exercise 19. Write a simple code in order to demonstrate the example from Section 10.4.3.
Hint: use a code from Appendix. Code is available in the link above, file methods.tgz,
code stiff.f90

Main task 2. With the aid of codes RKF45 and DOPRI5, compute the following equations:

(ODE1) y′ =
1

sin
√
|x|

, y(−1) = 0, x ∈ [−1; 2]

(ODE2) y′ = −sign(x)|1− |x||y2, y(−2) = 2

3
, x ∈ [−2; 2]

(ODE3) y′′ = 100y, y(0) = 1, y′(0) = −10 x ∈ [0; 4]

(ODE4) u′ = 998u+ 1998v, u(0) = 1, x ∈ [0; 10]

v′ = −999u− 1999v, v(0) = 0

(ODE5) y′ =
1

4

√
y, y(0) = 0, x ∈ [0; 5]

(ODE6) prey (kráĺıci) k and predator (lǐsky) l, if k < 1 or l < 1 then prey or predator die

k′ = 2k − αkl, k(0) = k0, x ∈ [0; ?]

l′ = −l + αkl, l(0) = l0, α > 0,

(a) α = 0.01; k0 = 300; l0 = 150 periodic solution, find the period

(b) α = 0.01; k0 = 15; l0 = 22 prey die

114

http://msekce.karlin.mff.cuni.cz/~dolejsi/Vyuka/NS_source/ODE/index.html


(c) α = 0.01; find k0 and l0 when predator die

(ODE7) y′ =

{
−1 for y ≥ 0
1 for y < 0

y(0) = 0, x ∈ [0; 1],

(ODE8) y′ =

{
1

1+y
for 0 < x ≤ 2

1 for x > 2
y(0) = 1, x ∈ [0; 5],

Remark 10.16.

(ODE1) and (ODE2) contain singularities,

(ODE3) is in fact a system of 2 equations of the first order, explain the arising troubles,

(ODE4) is stiff,

(ODE5) has a non-unique solution, find the non-trivial one,

(ODE6) is a little practical

(ODE7) has discontinuous f , exists the solution?

(ODE8) has again discontinuous f , it may cause some troubles.

The main task is not to obtain the correct solution of the ODEs but to under-
stand the behaviour of the codes. For each (ODE1) – (ODE6), carry out the following
steps:

� predict the possible troubles from the analytical form of the problem,

� test both codes with several (at least two tolerances),

� based on the results, the error estimate and the indicator decide, if the result is
reliable,

� in case of some troubles, give an explanation,

� perform also a reference computation using a software package as Matlab, Maple,
Mathematica, etc.
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Part II

Numerical Software 2
(Summer semester)
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Chapter 11

Finite element methods

There are separated Lecture notes (implementation of finite element method) FEM-implement.pdf
at https://msekce.karlin.mff.cuni.cz/~dolejsi/Vyuka/NS2018.html
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Chapter 12

Software for FEM

12.1 FreeFEM++

FreeFem++ is a software to solve partial differential equations numerically. As its name says,
it is a free software (see copyright for full detail) based on the Finite Element Method; it is
not a package, it is an integrated product with its own high level programming language.
This software runs on all unix OS (with g++ 2.95.2 or later, and X11R6) , on Window95,
98, 2000, NT, XP, and MacOS X.

12.2 Fenics

12.2.1 Python

12.2.2 Instalation

12.2.3 Running of available scripts
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Chapter 13

Mesh generation and adaptation

13.1 General settings

Let us consider a PDE in Ω ⊂ Rd. Let Ωh be a polygonal approximation of Ω. The set of
mutually disjoint closed elements K (denoted by Th = {K}K∈Th

) is called the mesh of Ω
if

Ωh = ∪K∈Th
K.

The parameter h is given by

h = max
K∈Th

diam(K)

and it represents the parameter of discretization. Then the approximate solution is sought
in a space of piecewise polynomial functions on K ∈ Th.

The elements K, K ∈ Th are suitable geometrical subjects, triangles or quadrilaterals
for d = 2 or tetrahedra, pyramids, hexahedra and prismatic elements for d = 3, see Figure
13.1.

Figure 13.1: Examples of elements for d = 2 (left) and d = 3 (right).

We distinguish:
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� structured grids – having some structures, elements can be indexed by “ integer
Cartesian coordinates” i, j (for d = 2) or i, j, k (for d = 3); they are simple for
implementation

� unstructured grids – not having structure, better capture complicated domains.

Figure 13.2 shows and example of structured and unstructured meshes for d = 2.

Figure 13.2: Examples of a structured mesh (left) and unstructured one (right).

Depending of the used numerical methods, meshes Th, h > 0 should satisfy some
assumptions, e.g.

� maximal angle condition,

� minimal angle condition,

� shape regularity,

� quasi-uniformity,

� local quasi-uniformity,

� conformity (hanging-nodes are prohibited).

In any case, a special attention has to be paid to the approximation of a nonpolygonal
boundary, i.e., ∂Ωh ≈ ∂Ω.

Mesh generation software usually generate shape regular, quasi-uniform and conforming
meshes, see Section 13.3. Such grids are used initial solution of the given problem and then
they are adapted by mesh adaptation techniques, see Section 13.3.

Mesh generating software produce very often the so-called Delaunay triangulations,i.e.,
the sum of opposite angles of two neighbouring element is ≤ π. This is equivalent to the
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condition that no point of triangulation is inside the circumcircle of any triangle, see Figure
13.3, left.

The Delaunay triangulations is a dual graph to the so-called Voronoi diagram. Voronoi
diagram is a way of dividing space into a finite number of regions. Let Pk, K ∈ I be the
given set of nodes, we define the sets (the Voronoi cells)

Rk := {x; |x− Pk| ≤ |x− Pj| ∀j ∈ I, j ̸= k}, k ∈ I,

see Figure 13.3, right.

Figure 13.3: The Delaunay triangulation with all the circumcircles and their centers in red
(left); Connecting the centers of the circumcircles produces the Voronoi diagram (right).

13.2 Mesh generation

A general strategy of the mesh generation is the following:

1. define the boundary of Ωh,

2. insert a suitable number of nodes on ∂Ωh,

3. insert a suitable number of nodes in the interior Ωh,

4. optimize the mesh.

Optimal mesh means, e.g., that edges of all triangles have the optimal given size hopt,
i.e., we define quality parameter of the mesh by

QTh
=
∑
Γ∈Th

(|Γ| − hopt)2,
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where the sum is taken over all edges of mesh Th and |Γ| denotes the size of the edge Γ.
The value hopt may not be constant, for example generating a mesh around a circle

with center at the origin, we can prescribe hopt ∼ r, where r is the polar coordinate of the
center of the given edge.

Examples of mesh algorithms:

� overlap generation – we define parallelogram containing Ω, then a structured grid is
constructed. Elements outside of the domain are taken away and a correction of the
boundary is necessary.

� step advancing algorithm – from the nodes on the boundary an equilateral element
is constructed, then the boundary is redefined and the meshing proceed to the new
step.

A useful link to mesh generation codes

http://www.cfd-online.com/Links/soft.html#mesh

13.3 Mesh adaptation

Mesh adaptation allows to refine (recoarse, align) the given mesh in order to improve the
quality of the solution. It is based on

� error estimates indicating the elements suitable for refinement,

� mesh adaptation technique performing the itself refinement.

The usual mesh refinement technique is the red-green refinement method, see Figure
13.4. Moreover, Figure 13.5 shows the possible situation for d = 3.

More general approach is the so-called anisotropic mesh adaptation, see

http://msekce.karlin.mff.cuni.cz/~dolejsi/Vyuka/AMA.pdf
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Figure 13.4: A red-refined triangle with a red-refined neighbor (top), A red-refined triangle
with green-refined neighbors (right).

Figure 13.5: A red-refinement for d = 3.

13.4 Main tasks: AMA+FEM

Main task 3. Solve numerically the following PDE:

−∆u = 90x8
1(1− x20

2 ) + 380x18
2 (1− x10

1 ), in Ω = (0, 1)2, (13.1)

u = uD on ∂Ω,

where uD is the exact solution given by

u(x1, x2) = (1− x10
1 )(1− x20

2 ), (x1, x2) ∈ Ω.

Instructions:

1. Solve problem (13.1) by a suitable numerical method and by an arbitrary code based
on your choice. You can used freely available software or you can write a simple own
code. Hint: use the code from tutorials:

http://msekce.karlin.mff.cuni.cz/~dolejsi/Vyuka/NS_source/FEM/index.html
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2. Carry out several adaptation cycles using the code ANGENER, see

http://msekce.karlin.mff.cuni.cz/~dolejsi/angen/angen3.1.htm

3. Use a suitable visualization of the adapted grids and the corresponding solutions.

Main task 4. We consider the L-shape computational domain Ω := (−1, 1) × (−1, 1) \
[0, 1]2. Solve numerically the following PDE:

−∆u = 0, in Ω, (13.2)

u = uD on ∂Ω,

where uD is the exact solution given by

u(r, ϕ) = r2/3 sin(2ϕ/3)

with (r, ϕ) being the polar coordinates. Owing to the re-entrant corner, this problem features
a singularity at the origin such that u ∈ H5/3−ϵ(Ω), ϵ > 0. The presence of the singularity
does not allow for faster convergence than O(h2/3) on uniformly refined grids. Instructions:

1. Using the code ANGENER, generate a sequence of quasi-uniform grids of Ω and set
the experimental order of convergence α in terms

∥u− uh∥ ≈ chα. (13.3)

For quasi-uniform grids we have h ≈ C/
√
#Th.

2. Using the code ANGENER in combination with FEM from Main task 3 generate a
sequence of adaptively refined grids and set the experimental order of convergence α
in terms

∥u− uh∥ ≈ c

(
1√
#Th

)α

. (13.4)

3. Use a suitable visualization of the adapted grids and the corresponding solutions.
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Chapter 14

Fast Fourier Transformation

14.1 Problem definition

14.1.1 Fourier transformation

Fourier transformation transforms a function f(t) representing a detected signal in time t
to its image f̂(ω) representing the amplitude of signal with the frequency ω.

Let f : R→ C be a function, its Fourier image is

f̂(ω) =

∫ ∞

−∞
f(t) exp[−iωt]dt, ω ∈ R, (14.1)

where i =
√
−1 is the imaginary unit. The inverse transformation is given by

f(t) =
1

2π

∫ ∞

−∞
f̂(ω) exp[iωt]dω, t ∈ R. (14.2)

It is valid
̂̂
f = f . (Scaling factors can differ in the literature.)

Many applications, e.g., signal processing, (sound, light), solution of some PDE, etc.

14.1.2 Fourier series

If f : R→ C is a 2π-periodic function then

f(t) =
∞∑

k=−∞

ck exp[i k t],

where

ck =
1

2π

∫ 2π

0

f(t) exp[−i k t]dt, k = −∞, . . . ,∞.
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14.1.3 Discrete Fourier transformation

In practice, input data are available only in the discrete nodes. Moreover, using computers,
we can deal only with the values in discrete nodes.

Let N ∈ N and a := {ak}N−1
k=0 be given vector, its discrete Fourier image is the vector

b := {bj}N−1
j=0 such that

bj =
N−1∑
k=0

ak exp[2π i j k/N ], j = 0, . . . , N − 1. (14.3)

It is valid that (inverse discrete Fourier transformation)

ak =
1

N

N−1∑
j=0

bj exp[−2π i j k/N ], k = 0, . . . , N − 1. (14.4)

For the given a ∈ CN , the evaluation of b ∈ CN requires O(N2) operation (matrix-
vector multiplication) – too expensive. The matrix has the form

1 1 1 1 1 . . . 1

1 exp
[
2πi
N

]
exp

[
4πi
N

]
exp

[
6πi
N

]
exp

[
8πi
N

]
. . . exp

[
2πi(N−1)

N

]
1 exp

[
4πi
N

]
exp

[
8πi
N

]
exp

[
12πi
N

]
exp

[
16πi
N

]
. . . exp

[
4πi(N−1)

N

]
1 exp

[
6πi
N

]
exp

[
12πi
N

]
exp

[
18πi
N

]
exp

[
24πi
N

]
. . . exp

[
6πi(N−1)

N

]
1 exp

[
8πi
N

]
exp

[
16πi
N

]
exp

[
24πi
N

]
exp

[
32πi
N

]
. . . exp

[
6πi(N−1)

N

]
...

1 exp
[
2πi(N−1)

N

]
exp

[
4πi(N−1)

N

]
exp

[
6πi(N−1)

N

]
. . . . . . exp

[
2πi(N−1)(N−1)

N

]


All matrix elements are complex unities: | exp[2π i j k/N ]| = 1 ∀j, k = 0, . . . , N − 1.

They acquire only N different values

exp[2πi
0

N
], exp[2πi

1

N
], exp[2πi

2

N
], exp[2πi

3

N
], . . . exp[2πi

N − 1

N
].

This property can be employed for the reduction of the number of operations.

14.1.4 Fast (discrete) Fourier transformation (FFT)

FFT reduces the computational costs for (14.3) and (14.4) to O(N log2N) -operations.

N 1E+01 1E+03 1E+06 1E+09
DFT N2 1E+02 1E+06 1E+12 1E+18
FFT N log2N 3E+01 1E+04 2E+07 3E+10
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Let N be even. Then

bj =
N−1∑
k=0

ak exp[2π i j k/N ] (14.5)

=

N/2−1∑
k=0

a2k exp

[
2π i j (2k)

N

]
+

N/2−1∑
k=0

a2k+1 exp

[
2π i j (2k + 1)

N

]
, j = 0, . . . , N − 1.

Thus, we can write the relations for odd and even terms separately. Moreover, we have
the relations for the first and the second halves of the bj.

bj =

N/2−1∑
k=0

a2k exp

[
2π i j k

N/2

]
+ exp

[
2π i j

N

]N/2−1∑
k=0

a2k+1 exp

[
2π i j k

N/2

]
, j = 0, . . . , N/2− 1,

(14.6)

bN/2+j =

N/2−1∑
k=0

a2k exp

[
2π i j k

N/2

]
− exp

[
2π i j

N

]N/2−1∑
k=0

a2k+1 exp

[
2π i j k

N/2

]
, j = 0, . . . , N/2− 1.

More details for the second relation of (14.6): Let j ≥ N/2, we put j′ = j−N/2, and from (14.5) we have

bN/2+j′ = bj

=

N/2−1∑
k=0

a2k exp

[
2π i j (2k)

N

]
+

N/2−1∑
k=0

a2k+1 exp

[
2π i j (2k + 1)

N

]

=

N/2−1∑
k=0

a2k exp

[
2π i (N/2 + j′) (2k)

N

]
+

N/2−1∑
k=0

a2k+1 exp

[
2π i (N/2 + j′) (2k + 1)

N

]

=

N/2−1∑
k=0

a2k exp

[
2π iN/2 (2k)

N

]
︸ ︷︷ ︸

=1

exp

[
2π i j′ (2k)

N

]
+

N/2−1∑
k=0

a2k+1 exp

[
2π iN/2 (2k + 1)

N

]
︸ ︷︷ ︸

=−1

exp

[
2π i j′ (2k + 1)

N

]

=

N/2−1∑
k=0

a2k exp

[
2π i j′ k

N/2

]
− exp

[
2π i j′

N

]N/2−1∑
k=0

a2k+1 exp

[
2π i j′ k

N/2

]
.

In (14.6), we have the same sub-sums (red and blue):

bj =

N/2−1∑
k=0

a2k exp

[
2π i j k

N/2

]
+ exp

[
2π i j

N

]N/2−1∑
k=0

a2k+1 exp

[
2π i j k

N/2

]
, j = 0, . . . , N/2− 1,

bN/2+j =

N/2−1∑
k=0

a2k exp

[
2π i j k

N/2

]
− exp

[
2π i j

N

]N/2−1∑
k=0

a2k+1 exp

[
2π i j k

N/2

]
, j = 0, . . . , N/2− 1.

The red sum contains the even terms a0, a2, a4, . . . and the blue sum contains the odd
terms a1, a3, a5, . . . , i.e.,
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the red sum contains a0, a2, a4, a6, . . .
the blue sum contains a1, a3, a5, a7, . . .

Since the red and blue sums for bj and bN/2+j are the same, it is sufficient to compute
each of the sums only one times. Therefore, evaluation of red sum (for each j = 0, . . . , N/2−
1) requires O((N/2)2) operations and for the blue one also O((N/2)2) operations, together

2O((N/2)2) operations for the evaluation of each sum

and

O(N) operations for the setting of bj from the computed sums,

i.e., together

O(N) + 2O((N/2)2).

If N/2 is still even (i.e., N was a multiple of 4) then each of the red and blue sums
can be computed by the similar technique, i.e., again by splitting onto two same sums
containing “odd” and “even terms”:

the first part of red sum contains a0, a4, a8, a12, . . .
the second part of red sum contains a2, a6, a10, a14, . . .
the first part of blue sum contains a1, a5, a9, a13, . . .
the second part of blue sum contains a3, a7, a11, a15, . . .
The number of operation is

O(N) + 2O(N/2) + 4O((N/4)2)

If N = 2M , we can continue further in a similar way. The number of total operations:

O(N) + [O(N/2) +O(N/2)] + [O(N/4) +O(N/4) +O(N/4) +O(N/4)]

+

O(N/16) + · · ·+O(N/16)︸ ︷︷ ︸
16 times

 . . .

+

O(N/2M) + · · ·+O(N/2M)︸ ︷︷ ︸
2M=N times

 = O(NM) = O(N log2N),

where M is the number of levels.
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14.2 Implementation

See the file FourierTrans1.f90

14.2.1 Using the recursion – simple but not too much efficient

subroutine FFTrec(N,a,b,i)

14.2.2 Without the recursion – more efficient

function FFT(N,a,i)

14.2.3 Comparison of the computational times

ONLY example, can differs, the input data are random!

CPU time for DFT forward: 40.5200005

CPU time for DFT backward: 40.5879974

CPU time for FFT forward: 1.99966431E-02 (with recursion)

CPU time for FFT backward: 2.40020752E-02 (with recursion)

CPU time for FFT forward: 1.20010376E-02 (without recursion)

CPU time for FFT backward: 1.20010376E-02 (without recursion)

14.3 Software for FFT

� N can be arbitrary, computation can be split in more parts than two

� efficiency is increased if N is a high power of small numbers, 2, 3, 5 etc.

� software, e.g., www.netlib.org, search “fft”

� three examples: two advanced dr_fft.f90, dr_fft2.f90 and one simple dr_fft1.f90.

Homeworks

Exercise 20. Implementation of FFT

� the web page, link Fast Fourier Transformation (FFT), direct link
msekce. karlin. mff. cuni. cz/ ~ dolejsi/ Vyuka/ NS_ source/ FFT/ index. html

� go though the source code to see the algorithmization

� use code FourierTrans1.f90 and compare the computational times for DFF, FFT
with/without recursion, verify computational costs O(N2) and O(N log2N)
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Exercise 21. More practical examples

� install three codes from the archive fft.tgz, simply use make command and run the
codes using drivers routines

� use some of these codes for data from www. netlib. org/ scilib/ fft. dat , you
should write a simple code which read data, compare results with the results on this
link.
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Chapter 15

Multigrid methods

We introduce only the basis idea of the multigrid methods, advanced ideas and analysis
can be found, e.g., in [Hac85].

15.1 Model problem and its FD discretization

We consider the following 1D boundary value problem: we seek u : (0, 1)→ R such that

−u′′(x) = f(x), u(0) = u(1) = 0, (15.1)

where f : [0, 1]→ R is the given function.
We discretize (15.1) by the finite difference method (FDM). Let N ≥ 1 be the given

number of unknowns, we put

h :=
1

N + 1
, xi = h i, i = 0, . . . , N + 1. (15.2)

The second order derivative can be approximated by the relation (following from the Taylor
series)

u′′(xi) =
u(xi+1)− 2u(xi) + u(xi−1)

h2
+O(h2), i = 1, . . . , N. (15.3)

The approximate value of u(xi), i = 0, . . . , N + 1 is denoted by

ui ≈ u(xi), i = 0, . . . , N + 1. (15.4)

Thus, from (15.3) and (15.4) , we have

u′′(xi) ≈
ui+1 − 2ui + ui−1

h2
, i = 1, . . . , N. (15.5)

Moreover, we put

fi ≈ f(xi), i = 0, . . . , N + 1. (15.6)
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Then the FD discretization of (15.1) can be written in the following way. We seek
ui ∈ R, i = 1, . . . , N such that

−ui+1 + 2ui − ui−1

h2
= fi, i = 1, . . . , N, (15.7)

where u0 := 0 and uN+1 := 0. Relation (15.7) can be written as the linear algebraic
problem

Ahuh = fh, (15.8)

where

Ah = {aij}Ni,j=1 =
1

h2



2 −1
−1 2 −1

−1 2 −1
. . . . . . . . .

−1 2 −1
−1 2


, uh =


u1

u2

u3
...
uN

 , fh =


f1
f2
f3
...
fN

 ,

(15.9)

cf. (15.4) and (15.6).

15.2 Classical iterative methods

The system (15.8) can be solved efficiently with direct methods. However, let us considered
the classical iterative methods having the form

uj+1
h := Muj

h + Nfh, j = 0, 1, . . . , (15.10)

where M and N are obtained from a suitable decomposition of A and uj
h denote the j-th

approximation of uh. The matrix M is called the iteration matrix. Let us note that the
iterative method (15.10) is converging for any initial choice u0

h if and only if

ρ(M) < 1 (15.11)

where ρ(M) is the spectral radius ofM given by ρ(M) := maxj=1,...,N |λj(M)| with λj(M), j =
1, . . . , N denoting eigenvalues of M. Moreover, if ρ(M) is close to 1 then the convergence
is slow.

Here, we deal with the Jacobi method. Thus, we write

Ah = Dh − Bh, (15.12)

where Dh = diag(a11, a22, . . . , aNN) is the diagonal matrix and Bh := Dh − Ah. Obviously,

Dh =
2

h2
I =⇒ D−1

h =
h2

2
I (15.13)
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The the Jacobi method reads

uj+1
h := D−1

h (Bhu
j
h + fh), j = 0, 1, . . . , (15.14)

and u0
h ∈ RN is an initial approximation. The iterative method (15.14) can be written as

uj+1
h := uj

h − D−1
h (Ahu

j
h − fh), j = 0, 1, . . . . (15.15)

The quantity dj
h := Ahu

j
h − fh is called the defect.

Let us consider the damped Jacobi method, which is more interesting for our purposes:

uj+1
h := uj

h − D−1
h ϑ(Ahu

j
h − fh), j = 0, 1, . . . , (15.16)

where ϑ ∈ (0, 1]. Due to (15.13), putting ω = ϑ/2 ∈ (0, 1
2
], we have re-write (15.16) as

uj+1
h := uj

h − ωh2(Ahu
j
h − fh), j = 0, 1, . . . . (15.17)

Consequently, the iteration matrix M from (15.16) has the form

Mh := I− ωh2Ah. (15.18)

In order to proceed with the analysis we introduce the eigenvalues and eigenvectors of
Mh. We start with the matrix Ah. It can be verified that

4

h2
sin2

(
kπh

2

)
, k = 1, . . . , N (15.19)

are the eigenvalues of A and the corresponding eigenvectors are

vk
h =

{√
2h sin(lkπh)

}N

l=1
, k = 1, . . . , N. (15.20)

It follows from (15.18) and (15.19) that the eigenvalues of Mh are

λk(ω) = 1− 4ω sin2

(
kπh

2

)
, k = 1, . . . , N. (15.21)

Figure 15.1 shows the eigenvalues for N = 20 for the Jacobi method with ω = 1
2
(red)

and the damped Jacobi method with ω = 1
4
(blue).

We simply observe that the maximal eigenvalue is for k = 1, i.e., the spectral radius of
Mh is

ρ(Mh) = 1− 4ω sin2

(
πh

2

)
= 1− ωπ2h2 +O(h4). (15.22)

It means that for the Jacobi method (ω = 1
2
), the convergence is decreasing for h → 0.

Moreover, for any other ω ∈ (0, 1
2
) the convergence is still slower.

Finally, let us note that the eigenvectors vk
h, k = 1, . . . , N are also the eigenvectors of

Mh, i.e.,

Mhv
k
h = λk(ω)v

k
h, k = 1, . . . , N. (15.23)

Figure 15.2 shows examples of the eigenvectors. For increasing k, the entries of vk
h are

more and more oscillating.
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Figure 15.1: Eigenvalues of the matrix Mh for ω = 1
2
(red) and ω = 1
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15.3 Smoothing effect of the damped Jacobi iterative

methods

Although the Jacobi method is very inefficient for small h (large N) it has to so-called
smoothing property. In order demonstrate it we fix ω = 1

4
in the following, hence

Mh := I− h2

4
Ah. (15.24)

Moreover, we put λk := λk(
1
4
), k = 1, . . . , N .

From (15.17), we have

uj+1
h := Mhu

j
h +

h2

4
fh, j = 0, 1, . . . . (15.25)

Let uh be the exact solution of (15.8) then it is valid

uh = Mhuh +
h2

4
fh. (15.26)

We define the error of the j-th approximation by

ej
h := uj

h − uh, j = 0, 1, . . . . (15.27)

Using (15.25)–(15.26), we derive

ej+1
h = uj+1

h − uh =

(
Mhu

j
h +

h2

4
fh

)
−
(
Mhuh +

h2

4
fh

)
= Mh

(
uj

h − uh

)
= Mhe

j
h.

Using the induction, we derive

ej
h = Mj

he
0
h, j = 0, 1, . . . , (15.28)

where Mj
h =

j times︷ ︸︸ ︷
Mh Mh . . . Mh and e0

h ∈ RN is the initial error given by the initial approxi-
mation u0

h ∈ RN .
Since the eigenvectors vk

h, k = 1, . . . , N (cf. (15.20)) form a basis of RN , we can write

e0
h =

N∑
k=1

αkv
k
h, (15.29)

where αk ∈ R, k = 1, . . . , N are the coefficients.
In virtue of (15.23), (15.28) and (15.29), we derive

ej
h = Mj

he
0
h = Mj

h

(
N∑
k=1

αkv
k
h

)
=

N∑
k=1

αkMj
hv

k
h =

N∑
k=1

αkλ
j
kv

k
h.
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Figure 15.3: Demonstration of the smoothing property of the damped Jacobi method.

Obviously, due to (15.21), |λk| < 1, k = 1, . . . , N and then the sum converges (at least
slowly) to 0. However, from Figure 15.1, we observe that

|λk| ≤
1

2
for k ≥ N/2. (15.30)

Therefore, the entries αk, k ≥ N/2 of the initial error e0
h, corresponding to “high frequen-

cies” (represented by the eigenvectors vk
h – see Figure 15.2), are reduced at least by factor

1
2
at each Jacobi iteration.
Therefore, we can expect that the high frequencies of the initial error will be eliminated

after a small number of iteration.

Example 15.1. Let us consider problem (15.1) with N = 50, f = 2. The exact solution
is u(x) = x(1− x). Let the initial approximation is chosen as a fast oscillation vector

u0
h :=

{
sin

(
20πi

N + 1

)}N

i=1

. (15.31)

The smoothing effect is demonstrated in Figure 15.3. However, the convergence is very
slow, see Figure 15.4.

15.4 Basic idea of the multigrid method

In previous section, we observed that the high-frequencies components of the initial error
are eliminated quickly, but the convergence is slow. However, when the error is smooth
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Figure 15.4: Convergence of the damped Jacobi method.

(without oscillations) it is sufficient to approximate it on a coarser grid, let us say with the
step 2h. Then the low-frequencies on the grid with step h becomes faster on the grid with
step 2h and they could be eliminated faster.

Let us assume that uj
h is the approximate solution (15.8) such that the corresponding

error

ej
h = uj

h − uh (15.32)

is already smooth. Obviously,

Ahe
j
h = dj

h, where dj
h = Ahu

j
h − fh. (15.33)

If we are able to solve (15.33) and to obtain a sufficiently accurate approximation of ej
h

denoted by ẽj
h, then the term uj

h − ẽj
h exhibits a sufficiently accurate approximation of

uh. However, the solution of (15.33) by the damped Jacobi method is inefficient as the
solution (15.8). But since ej

h is already smooth, we can solve (15.33) on a coarser grid
and the result interpolate back to the actual grid. More precisely, the algebraic problem
(15.33) corresponds to the FD discretization of a problem like (15.1). Hence, we consider
this boundary-value problem and discretize it by FD with the step 2h.

LetN be odd for simplicity and we consider the discretization of (15.1) using FD scheme
with step 2h = 2

N+1
. Let A2h be the corresponding FD matrix of the size N−1

2
× N−1

2
given

by

A2h =
1

4h2



2 −1
−1 2 −1

−1 2 −1
. . . . . . . . .

−1 2 −1
−1 2


. (15.34)
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Further, we have to introduce an operator which recomputes the defect dh = (dh,1, dh,2, . . . , dh,N)
to the defect d2h = (d2h,1, d2h,2, . . . , d2h,(N−1)/2) on the coarser grid. This operator is called
the restriction and it maps vectors from RN → R(N−1)/2. One possibility is to set

d2h,i := dh,2i, i = 1, 2, . . . , (N − 1)/2. (15.35)

However, this choice is not too much efficient since it ignores info from the odd entries of
dh. The better is

d2h,i :=
1

4
(dh,2i−1 + dh,2i + dh,2i+1) , i = 1, 2, . . . , (N − 1)/2. (15.36)

The restriction (15.36) can be written in the matrix form

d2h = Rh
2hdh, (15.37)

where Rh
2h ∈ R(N−1)/2×N is the restriction operator (matrix) having the form

Rh
2h =

1

4


1 2 1

1 2 1
1 2 1

. . . . . . . . .

1 2 1

 . (15.38)

Now, we restrict the problem (15.33) to the grid with step 2h which means that we
seek vector e2h ∈ R(N−1)/2 such that

A2he2h = d2h, (15.39)

where A2h is the matrix (15.34) and d2h is the restriction of the defect dj
h given by d2h =

Rh
2hd

j
h.

Further, we solve (iteratively) the problem (15.39) and obtain an approximation ẽ2h =
(ẽ2h,1, . . . , ẽ2h,(N−1)/2) ∈ R(N−1)/2. This vector has to be prolongated back to the grid with
step h resulting the vector ẽh = (ẽh,1, . . . , ẽh,N), e.g., as

ẽh,i =

{
ẽ2h,i/2 for i even,
1
2

(
ẽ2h,(i−1)/2 + ẽ2h,(i+1)/2

)
for i odd.

(15.40)

This is equivalent with the matrix form

ẽh = P2h
h ẽ2h, (15.41)
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where P2h
h ∈ RN×(N−1)/2 is the prolongation operator (matrix) having the form

P2h
h =

1

2



1
2
1 1

2
1 1

2
. . . . . . . . .

2 0
1 1

2
1



. (15.42)

Having the vector ẽh from (15.41), in virtue of (15.32), we set

ũj
h := uj

h − ẽh (15.43)

as a better approximation of uh than uj
h. The approximation ũj

h contains the errors of the
high-frequencies (but not to low-frequencies which are assumed to be eliminated on the
coarse grid with step 2h) and thus some additional smoothing is necessary.

15.5 Two-grid algorithm

We summarize the previous determination. By symbol Sν we formally denote the smooth-
ing by ν iterations (using damped Jacobi method), i.e., (15.25) can be written as

uj
h = Sju0

h, j = 0, 1, . . . . (15.44)

The following algorithm generates a sequence of approximation u
(k)
h where each term

is a result of smoothing and coarse grid correction which exhibits several damped Jacobi
iterations. (Hence, the meaning of the symbol u

(k)
h is different from uj

h.)

Algorithm 15.2. Two-grid algorithm

1. let ν1 > 0 and ν2 > 0 be integers,

2. let u
(0)
h be the given initial approximation,

3. put k := 0, 1, 2, . . .

(a) pre-smoothing ũh := Sν1u
(k)
h ,

(b) defect dh := Ahũh − fh,

(c) restriction d2h := Rh
2hdh
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(d) solution of the coarse grid : e2h := (A2h)
−1d2h, usually done by an iterative

method, hence ẽ2h ≈ e2h is available only,

(e) prolongation of the error: ẽh := P2h
h ẽ2h

(f) solution correction: ūh := ũh − ẽh,

(g) post-smoothing u
(k+1)
h := Sν2ūh,

(h) if the prescribed accuracy achieved then STOP.

The computational performance of two-grid method can be demonstrated by the fol-
lowing example.

Example 15.3. Similarly as in Example 15.1, let us consider problem (15.1) with N = 50,
f = 2. The exact solution is u(x) = x(1− x). Let the initial approximation is chosen as a
fast oscillation vector as in (15.31). The observations are the following:

� Figure 15.5, (a): damped Jacobi method after 1000, 2000, . . . , 6000 iterations,

� Figure 15.5, (b): two-grid method after 1, 2, . . . , 6 cycles, smoothing with ν2 = 10
with damped Jacobi iterations, problem on the coarse grid solved by the damped Jacobi
method with 1000 iterations

� Figure 15.5, (c): two-grid method after 1, 2, . . . , 6 cycles, smoothing with ν2 = 10
with damped Jacobi iterations, problem on the coarse grid solved directly.

The efficiency of MG method is evident
Moreover, Figure 15.6 shows the same cases for the initial approximation u0

h = 0 which
is more natural. This initial approximation does not contain the oscillations. Thus the
convergence is slightly faster but the differences are evidently the same.
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h given by (15.31).
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Figure 15.6: Comparison of the distribution of the error of damped Jacobi and MG method
with u0

h = 0..
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15.6 Additional comments

15.6.1 Theoretical results

For numerical analysis, see, e.g., [Hac85]. General results:

∥error after n steps∥ ≤ θ∥error after 1 step∥, (15.45)

where θ < 1 is independent of h. Typically θ = 1
10
. Number of operations (in ideal

situation) O(N)!
However, in practice, the prescribed tolerance depends on the discretization error, i.e,

O(h2). It is possible to use full multigrid (FMG) method.

15.6.2 Multilevel techniques

The problem on the coarse grid (15.39) can be solved again by the same approach. This
means that we carry out few smoothing iterations, evaluate the defect and restrict it to
grid with the size 4h. There solve the problem and prolongate back again. There exist
several variants (figure taken from [JSdlKdRB16]):
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1

Analysis shows that time is well spent on the coarse grids. So the W-cycle that stays
coarse longer is generally superior to a V-cycle. Often, the rate of the convergence of
W-cycle is better but it requires more computational work.

The full multigrid cycle is asymptotically better than V or W. Full multigrid starts on
the coarsest grid. The solution on the 8h grid is interpolated to provide a good initial
vector u4h on the 4h grid. A V-cycle between 4h and 8h improves it. Then interpolation
predicts the solution on the 2h grid, and a deeper V-cycle makes it better (using 2h, 4h,
8h). Interpolation of that improved solution onto the finest grid gives an excellent start to
the last and deepest V-cycle.

15.6.3 Multigrid methods for 2D and 3D

Can be generalized to 2D and 3D problems, more technically and (mostly) practically
complicated.

1https://slideplayer.com/slide/3187496/
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2

3

15.6.4 Algebraic multigrid methods

Similar techniques but only on the algebraic level, without a direct connection to the
discretization of PDE. It seeks the “low” and “high” frequencies in the matrix.

15.6.5 p-variant of the multigrid methods

For higher-order methods, but the coarser grids are replaced by lower polynomial approx-
imation degrees.

15.6.6 Nonlinear multigrid methods

Generalization of the MG idea to nonlinear problems.

2https://devblogs.nvidia.com/high-performance-geometric-multigrid-gpu-acceleration/
3https://fun3d.larc.nasa.gov/papers/AIAA-2009-4138.pdf
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Homeworks

Exercise 22. Using the code MG.f90, reproduce the smoothing property from Example 15.1.
What does happen if we put u0

h = 0 instead of (15.31)?

Exercise 23. Using the code MG.f90, compare MG method with the direct solver and the
iterative solver on the coarse grid level.

Exercise 24. Using the code MG.f90, try the restriction operator given by (15.35).

Exercise 25. Modify the code and test it for the Jacobi method without the damping.

Exercise 26. Modify the code and test it for the Gauss-Seidel method.

Exercise* 27. Write own code or modify the code MG.f90 for MG method using more
than two-grids.
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Chapter 16

UMFPACK

UMFPACK is a set of routines for solving unsymmetric sparse linear systems, Ax = b,
using the Unsymmetric-pattern MultiFrontal method and direct sparse LU factorization.
It is written in ANSI/ISO C, with a MATLAB interface. UMFPACK relies on the Level-3
Basic Linear Algebra Subprograms (BLAS) (dense matrix multiply) for its performance.
This code works on Windows and many versions of Unix (Sun Solaris, Red Hat Linux,
IBM AIX, SGI IRIX, and Compaq Alpha).

You will need to install AMD library to use UMFPACK. The UMFPACK and AMD
subdirectories must be placed side-by-side within the same parent directory. AMD is a
stand-alone package that is required by UMFPACK. UMFPACK can be compiled without
the BLAS but your performance will be much less than what it should be.

Installation is a little more complicated, see the manual.

16.1 Instalation of UMFPACK: link of Fortran and

C++ languages
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Chapter 17

Software for visualization

17.1 Gnuplot

17.2 Paraview
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Chapter 18

Notes on a posteriori error estimates

18.1 Residual error estimates

Let Ω ⊂ Rd, d = 2, 3 be a bounded polygonal computational domain with boundary
Γ = ΓD ∪ ΓN where ΓD and ΓN are disjoint and ΓD ̸= ∅. We consider the Laplace
equation: find u : Ω→ R

−∆u = f in Ω, (18.1)

u = uD on ΓD,

∇u · n = gN on ΓN ,

where f , uD and gN are given functions.
Let H1

D(Ω) := {v ∈ H1(Ω) : v|ΓD
= 0} and u∗ ∈ H1(Ω) be a function such that

u∗|ΓD
= uD. The “standard” weak formulation of (18.1) reads: find u ∈ H1(Ω) such that

(i) u− u∗ ∈ H1
D(Ω), (18.2)

(ii)

∫
Ω

∇u · ∇v dx =

∫
Ω

fv dx+

∫
ΓN

gNv dS ∀v ∈ H1
D(Ω). (18.3)

For simplicity, we assume that uD = 0, otherwise we consider u′ := u− u∗.
Let Th be a simplicial shape-regular mesh of Ω whose elements are denotes by K ∈ Th.

LetWh ⊂ H1
D(Ω) be a finite dimensional space of continuous piecewise polynomial functions

over Th. Then the approximate solution of (18.2) – (18.3) reads: find uh ∈ Wh such that∫
Ω

∇uh · ∇vh dx =

∫
Ω

fvh dx+

∫
ΓN

gNvh dS ∀vh ∈ Wh. (18.4)

Let u ∈ H1
D(Ω) and uh ∈ Wh be the weak and approximate solutions, respectively.

From (18.3), we obtain the identity∫
Ω

∇(u− uh) · ∇v dx =

∫
Ω

fv dx+

∫
ΓN

gNv dS −
∫
Ω

∇uh · ∇v dx =: Rh[uh](v), (18.5)

v ∈ H1
D(Ω),
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where Rh[uh](·) denotes the residual of the approximate problem (18.4). Obviously,

Rh[uh](vh) = 0 vh ∈ Wh, (18.6)

which is the Galerkin orthogonality of the error.
We recall the identity following from the Cauchy-Schwartz inequality:

∥∇v∥Ω = sup
w∈H1

D(Ω),w ̸=0

1

∥∇w∥Ω

∫
Ω

∇v · ∇w dx ∀v ∈ H1
D(Ω), (18.7)

where ∥ · ∥Ω = ∥ · ∥L2(Ω). We note that (18.7) defines the seminorm which is an equivalent

norm on H1
D(Ω).

Therefore, relations (18.5)–(18.7) implies

∥∇(u− uh)∥Ω = sup
v∈H1

D(Ω),v ̸=0

Rh[uh](v)

∥∇v∥Ω
. (18.8)

We are going to manipulate with (18.5). Let F I
h denote a set of all interior edges of

the mesh Th, FD
h the set of all edges lying on ΓD, FN

h the set of all edges lying on ΓN and
Fh = F I

h ∪FD
h ∪FN

h . The symbol γ denotes a generic edge from Fh. Using the Green
theorem, we have

Rh[uh](v) =

∫
Ω

fv dx+

∫
ΓN

gNv dS −
∑
K∈Th

∫
K

∇uh · ∇v dx (18.9)

=

∫
Ω

fv dx+

∫
ΓN

gNv dS +
∑
K∈Th

∫
K

∆uh · v dx−
∑
K∈Th

∫
∂K

∇uh · nv dS

=
∑
K∈Th

∫
K

(f −∆uh)v dx+
∑
γ∈FN

h

∫
γ

(gN −∇uh · n)v dS −
∑
γ∈F I

h

∫
γ

[[∇uh · n]]v dS,

where [[·]] denotes a jump of the argument on the edge γ ∈ F I
h in the direction of unit

normal n. Denoting

RK(uh) := f −∆uh, K ∈ Th, (18.10)

RΓ(uh) :=


0, γ ∈ FD

h ,
gN −∇uh · n, γ ∈ FN

h ,
−[[∇uh · n]], γ ∈ F I

h,

we rewrite (18.9) as

Rh[uh](v) =
∑
K∈Th

∫
K

RK(uh)v dx+
∑
γ∈Fh

∫
γ

RΓ(uh)v dS. (18.11)
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Let Πw ∈ Wh be a continuous, piecewise linear Scott-Zhang interpolation of w ∈
H1

D(Ω), [EG04, Section 1.6.2], [Ver13, Section 1.3.3 or Section 3.5] or the original paper
[SZ90]. Then there exists c > 0 such that

∥w − Πw∥K ≤ chK∥∇w∥ωK
∀w ∈ H1

D(Ω), (18.12)

∥w − Πw∥γ ≤ ch1/2
γ ∥∇w∥ωγ

∀w ∈ H1
D(Ω),

where ωK denotes a patch of elements sharing at least a vertex with K ∈ Th and ωγ

denotes a patch of elements sharing at least a vertex with γ ∈ Fh; hK and hγ denote the
diameters of K ∈ Th and γ ∈ Fh.

Using (18.6), we have the identity

Rh[uh](v) = Rh[uh](v − Πv), v ∈ H1
D(Ω). (18.13)

Applying the Cauchy-Schwartz inequality, we obtain from (18.11) – (18.13) the estimate

Rh[uh](v) = Rh[uh](v − Πv) (18.14)

≤
∑
K∈Th

∥RK(uh)∥K∥v − Πv∥K +
∑
γ∈Fh

∥RΓ(uh)∥γ∥v − Πv∥γ

≤ c
∑
K∈Th

hK∥RK(uh)∥K∥∇v∥ωK
+ c

∑
γ∈Fh

h1/2
γ ∥RΓ(uh)∥γ∥∇v∥ωγ

≤ c

(∑
K∈Th

h2
K∥RK(uh)∥2K +

∑
γ∈Fh

hγ∥RΓ(uh)∥2γ

)1/2(∑
K∈Th

∥∇v∥2ωK
+
∑
γ∈Fh

∥∇v∥2ωγ

)1/2

≤ c̃

(∑
K∈Th

h2
K∥RK(uh)∥2K +

∑
γ∈Fh

hγ∥RΓ(uh)∥2γ

)1/2

∥∇v∥Ω,

where in the last step we use the shape-regularity of Th implying the existence of a constant
c∗ > 0 such that∑

K∈Th

∥∇v∥2ωK
+
∑
γ∈Fh

∥∇v∥2ωγ
≤ c∗∥∇v∥2Ω ∀v ∈ H1

D(Ω). (18.15)

Finally, (18.8) and (18.14) imply

∥∇(u− uh)∥Ω ≤ c̄

(∑
K∈Th

h2
K∥RK(uh)∥2K +

∑
γ∈Fh

hγ∥RΓ(uh)∥2γ

)1/2

, (18.16)

which is the classical residual based a posteriori error estimate.
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18.2 Dual weighted residual error estimates

In many practical applications, we are not interested in the solution u of the given partial
differential equations as such, but in the value of a certain quantity of interest, which
depends on the solution. This quantity is given by a solution-dependent (target) functional
denoted hereafter as J(u). Therefore, the output of the numerical solution is the value
J(uh) and the goal is the estimation of the error J(u)−J(uh). This lead to the framework
of the goal-oriented error estimates, a more detailed explanation and analysis can be found,
e.g., in [BR03, BR01, GS02, Har07].

18.2.1 Primal problem

Let Ω be a computational domain with boundary Γ. We consider a linear variational
problem: find u ∈ W such that

a(u, φ) = ℓ(φ) ∀φ ∈ V, (18.17)

where u ∈ W is a weak solution, a(·, ·) : W × V → R is a bilinear form, ℓ(·) : V → R is
a linear form, and W,V are Banach spaces. We assume that (18.17) is well-posed, i.e., it
admits a unique weak solution,

In order to solve (18.17) numerically, we consider the finite element spaces Wh and Vh.
We admit the nonconforming approximation, i.e., Wh ̸⊂ W and Vh ̸⊂ V . Therefore, we
define the spaces W (h) = W +Wh and V (h) = V + Vh. If Wh ⊂ W , we put W (h) = W ,
and similarly for Vh ⊂ V .

In order to define an approximate solution of (18.17), we introduce the (bi)linear forms

ah : W (h)× V (h)→ R and ℓh : V (h)→ R. (18.18)

The approximate solution of the primal problem (18.17) uh ∈ Wh satisfies

ah(uh, φh) = ℓh(φh) ∀φh ∈ Vh. (18.19)

We assume that the numerical scheme (18.19) is consistent, i.e.,

ah(u, φ) = ℓh(φ) ∀φ ∈ V (h) (18.20)

where u ∈ W is the weak solution of (18.17). This implies the Galerkin orthogonality of
the error of the primal problem

ah(uh − u, φh) = 0 ∀φh ∈ Vh. (18.21)

Finally, we define the residual of the primal problem by

Rh[uh](φ) := ℓh(φ)− ah(uh, φ) = ah(u− uh, φ), φ ∈ V (h), (18.22)

where the last equality follows from the consistency (18.20) and the linearity of ah.
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18.2.2 Quantity of interest and the adjoint problem

As mentioned above, we are interested in the quantity of interest J(u) ∈ R given by the
linear functional in the form

J(u) = (jΩ, u)Ω + (jΓ,C u)Γ , (18.23)

where jΩ and jΓ are given integrable functions on Ω and Γ, respectively, C is a boundary
differential operator on Γ, and the symbols (·, ·)Ω and (·, ·)Γ denote the L2(Ω) and L2(Γ)
scalar products, respectively.

In order to estimate the error J(u)− J(uh), we consider the adjoint (or dual) problem
to (18.17) in the form: find z : Ω→ R such that

a(w, z) = J(w) ∀w ∈ W. (18.24)

Furthermore, we introduce the approximate solution of the adjoint problem (18.24) by
zh ∈ Vh such that

ah(wh, zh) = J(wh) ∀wh ∈ Wh, (18.25)

where ah and J are given by (18.18) and (18.23), respectively. Moreover, we assume that
the numerical scheme (18.25) is adjoint consistent, i.e.,

ah(w, z) = J(w) ∀w ∈ W (h), (18.26)

where z ∈ V is the weak solution of the adjoint problem (18.24). Relations (18.25) –
(18.26) imply the Galerkin orthogonality of the error of the adjoint problem

ah(wh, zh − z) = 0 ∀wh ∈ Wh. (18.27)

Finally, we define the residual of the adjoint problem by

R∗
h[zh](w) := J(w)− ah(w, zh) = ah(w, z − zh), w ∈ W (h), (18.28)

where the last equality follows from the adjoint consistency (18.26).

18.2.3 Abstract goal-oriented error estimates

We are ready to derive abstract error estimates of the quantity of interest, i.e, the difference
between the (unknown) exact value J(u) and its approximation J(uh), which is obtained
by computing uh first and then by the evaluating J at uh.

Let u and z be the exact solutions of the primal and adjoint problems (18.17) and
(18.24), respectively, and similarly, let uh and zh be the approximate solutions of the
primal and adjoint problems (18.19) and (18.25), respectively. Using the linearity of J and
the adjoint consistency (18.26), we have the identity

J(u)− J(uh) = J(u− uh) = ah(u− uh, z). (18.29)
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The Galerkin orthogonality of the error (18.21) implies

ah(u− uh, z) = ah(u− uh, z − φh) = Rh[uh](z − φh) ∀φh ∈ Vh, (18.30)

where the second equality follows from the definition of the primal residual Rh[uh](·)
(18.22). Hence, we obtain from (18.29) – (18.30) relation

J(u)− J(uh) = Rh[uh](z − φh) ∀φh ∈ Vh, (18.31)

which is called the primal error identity.
Moreover, setting φh := zh in (18.31), exploiting the Galerkin orthogonality of the error

of the adjoint problem (18.27) and the definition of the residual of the adjoint problem
(18.28), we have

J(u)− J(uh) = ah(u− uh, z − zh) = ah(u− wh, z − zh) = R∗
h[zh](u− wh) ∀wh ∈ Wh,

(18.32)

which is called the adjoint error identity. Obviously, there is the residual equivalence
between the primal and adjoint residuals

Rh[uh](z − φh) = R∗
h[zh](u− wh) ∀φh ∈ Vh ∀wh ∈ Wh. (18.33)

18.2.4 Computable goal-oriented error estimates

The right-hand sides of (18.31) and (18.32) contain the exact adjoint solution z and the
exact primal solution u, respectively, which are unknown. Therefore, in order to have a
computable error estimate, we have to use approximations

u ≈ u+
h ∈ W+

h and z ≈ z+h ∈ V +
h , (18.34)

where W+
h ⊂ W (h) and V +

h ⊂ V (h) are “richer” finite dimensional spaces than Wh and
Vh, respectively. We note that the choice u+

h ∈ Wh and z+h ∈ Vh leads to nullification of
the right-hand sides of (18.31) and (18.32) due to the Galerkin orthogonalities (18.21) and
(18.27), respectively. We set

u+
h = R(uh), z+h = R∗(zh), (18.35)

where R : Wh → W+
h and R∗ : Vh → V +

h denote formally higher order reconstruction
operators.

Then using (18.34) – (18.35), we obtain from (18.31) and (18.32) the computable goal-
oriented error estimates

J(u− uh) ≈ Rh[uh](z
+
h − φh), φh ∈ Vh (18.36)

J(u− uh) ≈ R∗
h[zh](u

+
h − wh), wh ∈ Wh.
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Both right-hand sides in (18.36) are independent of the choice of φh and wh due to
the Galerkin orthogonalities of error. However, this is not true in practical computations
when uh and zh suffer from algebraic errors. Then the choice of φh and wh has impact on
the resulting estimates. In order to obtain accurate error estimates, it is advantageous to
minimize the arguments of Rh[uh](·) and R∗

h[·](). There are two natural possibilities:

(i) φh := zh, wh := uh, (18.37a)

(ii) φh := Π∗z+h , wh := Πu+
h , (18.37b)

where Π : W+
h → Wh and Π∗ : W+

h → Wh are suitable projections. Hence, for both choices
from (18.37), we obtain from (18.36) the estimates

J(u− uh) ≈ 1
2

(
Rh[u

+
h ](z

+
h − zh) +R∗

h[z
+
h ](u

+
h − uh)

)
, (18.38a)

J(u− uh) ≈ 1
2

(
Rh[u

+
h ](z

+
h − Π∗z+h ) +R∗

h[z
+
h ](u

+
h − Πu+

h )
)
. (18.38b)

The choice (18.37b) (and the corresponding estimate (18.38b)) is more suitable for the
forthcoming anisotropic error estimates, which serve as the base of the anisotropic mesh
adaptation process.

18.3 Dual weighted residuals for the Laplace equation

Let us consider again problem (18.1), with its weak formulation (18.2)–(18.3) and numerical
approximation (18.4).

Let the quantity of interest is given by (cf. (18.23))

J(v) = (jΩ, v)L2(Ω) + (jΓD
,∇v · n)ΓD

+ (jΓN
, v)ΓN

, v ∈ H1(Th), (18.39)

where jΓD
, jΓN

∈ L2(Γ) and jΩ ∈ L2(Ω) are given weight functions and (·, ·)M denotes the
L2-scalar product over the set M ∈ Rn, n = 1, 2, 3.

Then the adjoint problem to (18.3) reads: find z ∈ H1(Ω) such that

(i) z − j∗ΓD
∈ H1

D(Ω), (18.40)

(ii)

∫
Ω

∇w · ∇z dx =

∫
Ω

jΩw dx+

∫
ΓN

jΓN
w dS ∀w ∈ H1

D(Ω), (18.41)

where H1
D(Ω) is the same space as in (18.2)–(18.3) and j∗ΓD

∈ H1
D(Ω) denotes a function

such that j∗ΓD
= jΓD

on ΓD, cf. (18.39).
In order to derive goal-oriented error estimate for the approximate solution given by

(18.4), we employ the primal error identity (18.31) and the definition of the residual (18.5),
i.e.

J(u)− J(uh) = Rh[uh](z − φh) (18.42)

=

∫
Ω

f(z − φh) dx+

∫
ΓN

gN(z − φh) dS −
∫
Ω

∇uh · ∇(z − φh) dx
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for any φh ∈ Vh. Using the same procedure as in (18.9), (18.11), we obtain, similarly as in
the fist inequality of (18.14), the estimate

J(u)− J(uh) = Rh[uh](z − φh) (18.43)

≤
∑
K∈Th

∥RK(uh)∥K∥z − φh∥K +
∑
γ∈Fh

∥RΓ(uh)∥γ∥z − φh∥γ, φh ∈ Vh,

where the element and edge residuals RK(uh) and RΓ(uh), respectively, are given by (18.10).
We observe that, in contrary to (18.14) (and thus to (18.16)), the local residuals

∥RK(uh)∥K and ∥RΓ(uh)∥γ are not taken as a pure sum but they are weighted by lo-
cal element and face weights ∥z − φh∥K and ∥z − φh∥γ, respectively. Therefore, we speak
about the dual weighted residual error estimates.

In similar way, we can derive the alternative formula from (18.32) as

J(u)− J(uh) = R∗
h[zh](u− φh) (18.44)

≤
∑
K∈Th

∥R∗
K(zh)∥K∥u− φh∥K +

∑
γ∈Fh

∥R∗
Γ(zh)∥γ∥u− φh∥γ, φh ∈ Vh,

where the dual element and edge residuals R∗
K(uh) and R∗

Γ(uh), respectively, are given by
formulas similar to (18.10).

Finally, computable error estimates can be obtain by the use of the higher-order ap-
proximation (18.34)–(18.35), i.e. for the case (18.38a) we have

J(u)− J(uh) ≈ Rh[uh](z
+
h − zh) (18.45)

≤
∑
K∈Th

∥RK(uh)∥K∥z+h − zh∥K +
∑
γ∈Fh

∥RΓ(uh)∥γ∥z+h − zh∥γ.

18.4 Goal-oriented mesh adaptation

We describe how the error estimate (18.45) can be used for the mesh adaptation. We note
that there are several other possibilities. Although the estimate (18.45) has been derived
for the Laplace equation discretized by conforming finite element method, the solution of
another (linear) problem by any (finite element based) numerical method leads to the same
(or very similar) formula with different relations for the local residuals RK(uh) and RΓ(uh).
Some examples and more detailed analysis can by found in [DM22].

We set

ηI(uh, zh) := Rh[uh](z
+
h − zh), (18.46)

where Rh[uh](·) is the residual of the given (primal) problem evaluated at the approximate
solution uh ∈ Wh, zh ∈ Vh is the approximate solution of the adjoint problem and z+h ∈ V +

h

is the corresponding higher-order approximation.
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Following from formula (18.45), we have the error estimate of type I

J(u)− J(uh) ≈ ηI(uh, zh), (18.47)

where ηI is given by (18.46). For the mesh adaptation, we need an information about the
local distribution of the error. Therefore, let {χK , K ∈ Th} by a partition of the unity, i.e.
χK : Ω → R, K ∈ Th such that

∑
K∈Th

χK = 1. Then due to the linearity of Rh[u2h](·)
we set

ηIK(uh, zh) := Rh[uh](χK(z
+
h − zh)), K ∈ Th, (18.48)

consequently ηI(uh, zh) =
∑

K∈Th
ηIK(uh, zh). The quantities ηIK are called the local error

estimate of type I.
Alternatively, we can use the inequality in (18.45) and obtain

ηI(uh, zh) = Rh[uh](z
+
h − zh) (18.49)

≤
∑
K∈Th

∥RK(uh)∥K∥z+h − zh∥K +
∑
γ∈Fh

∥RΓ(uh)∥γ∥z+h − zh∥γ

=
∑
K∈Th

∥RK(uh)∥K∥z+h − zh∥K +
∑
K∈Th

∑
γ∈∂K

δK∥RΓ(uh)∥γ∥z+h − zh∥γ

=
∑
K∈Th

(
∥RK(uh)∥K∥z+h − zh∥K +

∑
γ∈∂K

δγ∥RΓ(uh)∥γ∥z+h − zh∥γ

)
︸ ︷︷ ︸

=ηIIK(uh,zh)

=: ηII(uh, zh),

where δγ = 1
2
if γ is an interior edge and δγ = 1 if γ belongs to Γ. The quantity ηII is called

the error estimate of type II and ηIIK , K ∈ Th are the corresponding local estimates.
Let η denote either ηI or ηII and similarly let ηK denote either ηIK or ηIIK for K ∈ Th.

Let TOL > 0 be a given tolerance, the goal of the computation is to adapt the mesh Th

such that the corresponding approximate solutions satisfy

η(uh, zh) ≤ TOL. (18.50)

The natural mesh adaptive procedure is given by Algorithm 18.1.
The step of Algorithm 18.14 can be carried out by several techniques. Hereafter, we

mention two of them.

Isotropic mesh refinement

For eachK ∈ Th, we evaluate ηK . Then we mark elements for the refinement: either the fix
ratio of elements having the highest value of ηK or elements such that ηK > ρmaxK∈Th

ηK ,
where ρ ∈ (0, 1). The marked elements are refined by a technique from Section 13.3.

158



Algorithm 18.1: Mesh adaptive algorithm

1: let TOL > 0 and initial mesh Th be given
2: solve the primal and dual problems on Th resulting uh and zh
3: while η(uh, zh) > TOL do
4: using ηK construct a new mesh T N

h

5: recompute uh and zh on T N
h

6: Th := T N
h

7: solve the primal and dual problems on Th resulting uh and zh
8: end while

Anisotropic mesh refinement

This technique admits not only the refinement/coarsening of the mesh but also the mod-
ification of the shape and orientation of elements. The detailed description can be found
in [DM22]. The main idea is the following: each element K

� set the size (=volume) of elements using η using equi-distribution error principle, i.e.,
the goal is that ηK = const for all K ∈ Th,

� find the optimal shape of each element using estimate of the type II, namely, the
residuals RK(uh) and RΓ(uh) in ηIIK (cf. (18.45)) are kept fixed and we optimize the
shape by minimizing the weights ∥z+h − zh∥K and ∥z+h − zh∥γ,

� the new mesh is constructed using anisotropic mesh adaptation method, see
http://msekce.karlin.mff.cuni.cz/~dolejsi/Vyuka/AMA.pdf
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Chapter 19

Parareal method for ODE

This text is the copy of en.wikipedia.org/wiki/Parareal. Parareal is a parallel algorithm from
numerical analysis and used for the solution of initial value problems. It was introduced
in 2001 by Lions, Maday and Turinici [LMT01]. Since then, it has become one of the most
widely studied parallel-in-time integration methods.

19.1 Introduction

The goal is to solve an initial value problem of the form

du

dt
= f(t, u) for t ∈ [t0, T ] with u(t0) = u0. (19.1)

The right hand side f is assumed to be a smooth (possibly nonlinear) function. It can
also correspond to the spatial discretization of a partial differential equation in a method
of lines approach. We wish to solve this problem on a temporal mesh of N + 1 equally
spaced points (t0, t1, . . . , tN), where tj+1 = tj +∆T and ∆T = (T − t0)/N . Carrying out
this discretization we obtain a partitioned time interval consisting of time slices [tj, tj+1]
for j = 0, . . . , N − 1.

The objective is to calculate numerical approximations Uj to the exact solution u(tj)
using a serial time-stepping method (e.g. Runge-Kutta) that has high numerical accuracy
(and therefore high computational cost). We refer to this method as the fine solver F ,
which propagates an initial value Uj at time tj to a terminal value Uj+1 at time tj+1. The
goal is to calculate the solution (with high numerical accuracy) F such that we obtain

Uj+1 = F(tj, tj+1, Uj), where U0 = u0. (19.2)

The problem with this (and the reason for attempting to solve in parallel in the first
place) solution is that it is computationally infeasible to calculate in real-time.
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19.2 Main idea of parareal method

Instead of using a single processor to solve the initial value problem (as is done with
classical time-stepping methods (19.2)), Parareal makes use of N processors. The aim to
is to use N processors to solve N smaller initial value problems (one on each time slice) in
parallel. For example, in a MPI based code, N would be the number of processes, while
in an OpenMP based code, N would be equal to the number of threads.

Parareal makes use of a second time-stepping method to solve this initial value problem
in parallel, referred to as the coarse solver G. The coarse solver works the same way as the
fine solver, propagating an initial value over a time interval of length ∆T , however it does
so at much lower numerical accuracy than F (and therefore at much lower computational
cost). Having a coarse solver that is much less computationally expensive than the fine
solver is the key to achieving parallel speed-up with Parareal.

Henceforth, we will denote the Parareal solution at time tj and iteration k by Uk
j .

Zeroth Iteration Firstly, run the coarse solver serially over the entire time interval
[t0, T ] to calculate an approximate initial guess to the solution:

U0
j+1 = G(tj, tj+1, U

0
j ), j = 0, . . . , N − 1. (19.3)

Subsequent Iterations Next, run the fine solver on each of the time slices, in parallel,
from the most up-to-date solution values:

F(tj, tj+1, U
k−1
j ), j = 0, . . . , N − 1. (19.4)

Now update the parareal solution values sequentially using the predictor-corrector:

Uk
j+1 = G(tj, tj+1, U

k
j ) + F(tj, tj+1, U

k−1
j )− G(tj, tj+1, U

k−1
j ), j = 0, . . . , N − 1. (19.5)

At this stage, one can use a stopping criterion to determine whether the solution values
are no longer changing each iteration. For example, one may test this by checking if

|Uk
j − Uk−1

j | < ε ∀ j ≤ N, (19.6)

and some tolerance ε > 0. If this critertion is not satisfied, subsequent iterations can then
be run by applying the fine solver in parallel and then the predictor-corrector. Once the
criterion is satisfied, however, the algorithm is said to have converged in k ≤ N iterations.
Note that other stopping criterion do exist and have been successfully tested in Parareal.

19.2.1 Convergence of the method

Parareal should reproduce the solution that is obtained by the serial application of the fine
solver and will converge in a maximum of N iterations [GV07]. For Parareal to provide
speedup, however, it has to converge in a number of iterations significantly smaller than
the number of time slices, i.e. k ≪ N .
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In the Parareal iteration, the computationally expensive evaluation of F(tj, tj+1, U
k−1
j )

can be performed in parallel on N processing units. By contrast, the dependency of Uk
j+1

on G(tj, tj+1, U
k
j ) means that the coarse correction has to be computed in serial order.

Typically, some form of Runge-Kutta method is chosen for both coarse and fine inte-
grator, where G might be of lower order and use a larger time step than F . If the initial
value problem stems from the discretization of a PDE, G can also use a coarser spatial
discretization, but this can negatively impact convergence unless high order interpolation
is used.

19.2.2 Computational costs

Under some assumptions, a simple theoretical model for the speedup of Parareal can be
derived. Although in applications these assumptions can be too restrictive, the model still
is useful to illustrate the trade offs that are involved in obtaining speedup with Parareal.

First, assume that every time slice [tj, tj+1] consists of exactly Nf steps of the fine inte-
grator and of Nc steps of the coarse integrator. This includes in particular the assumption
that all time slices are of identical length and that both coarse and fine integrator use a
constant step size over the full simulation. Second, denote by τf and τc the computing
time required for a single step of the fine and coarse methods, respectively, and assume
that both are constant. This is typically not exactly true when an implicit method is used,
because then runtimes vary depending on the number of iterations required by the iterative
solver.

Under these two assumptions, the runtime for the fine method integrating over P time
slices can be modelled as

cfine = NNfτf . (19.7)

The runtime of Parareal using P processing units and performing k iterations is

cparareal = (k + 1)NNcτc + kNfτf . (19.8)

Speedup of Parareal then is

Sp =
cfine

cparareal
=

1

(k + 1)Nc

Nf

τc
τf

+ k
N

≤ min

{
Nfτf
Ncτc

,
N

k

}
. (19.9)

These two bounds illustrate the trade off that has to be made in choosing the coarse
method: on the one hand, it has to be cheap and/or use a much larger time step to make
the first bound as large as possible, on the other hand the number of iterations k has to
be kept low to keep the second bound large. In particular, Parareal’s parallel efficiency is
bounded by

Ep =
Sp

N
≤ 1

k
, (19.10)

that is by the inverse of the number of required iterations.
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Chapter 20

Additional usefull numerical software
packages

20.1 LASPACK

LASPack is a package for solving large sparse systems of linear equations like those which
arise from discretization of partial differential equations. Simple code with a fast imple-
mentation written in C language.

20.1.1 Installation

Download the library

tar xfz laspack.tgz

cd laspack

./install

Library is installed in directory ~/lib/ as files

-rw-r--r-- 1 dolejsi dolejsi 180640 kvě 6 08:28 liblaspack.a

-rw-r--r-- 1 dolejsi dolejsi 5810 kvě 6 08:28 libxc.a

Moreover, there arise a directory ~/include/laspack containing all heading files (*.h)

20.1.2 Use of LASPACK for your own code

File Makefile

TARGETS1=main.o problem.o scalar.o euler.o mesh.o fem.o polynom.o geometry.o

integration.o matrix.o file-io.o f_data.o

CFLAGS=-Wall -ansi -fPIC -Wno-deprecated
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CXX=g++

all: Dgfem

Dgfem: $(TARGETS1)

$(CXX) $(CFLAGS) -o Dgfem $^ -L/home/dolejsi/lib -llaspack

clean:

-rm -f Dgfem *.o *.so

%.o:%.cpp

$(CXX) $(CFLAGS) -c -I/home/dolejsi/include $?

String -L/home/dolejsi/lib -llaspack gives the path to the library.
If your file matrix.cpp contains calls of LASPACK subroutines then the corresponding

header file matrix.h has to contains the LASPACK headers:

* matrix.h - header file for basic finite elements

#ifndef __MATRIX_HEADER_FILE__

#define __MATRIX_HEADER_FILE__

#include <iostream.h>

extern "C" {

#include <laspack/vector.h>

#include <laspack/errhandl.h>

#include <laspack/operats.h>

#include <laspack/qmatrix.h>

#include <laspack/precond.h>

#include <laspack/itersolv.h>

#include <laspack/rtc.h>

}

20.2 FreeFEM++

FreeFem++ is a software to solve partial differential equations numerically. As its name says,
it is a free software (see copyright for full detail) based on the Finite Element Method; it is
not a package, it is an integrated product with its own high level programming language.
This software runs on all unix OS (with g++ 2.95.2 or later, and X11R6) , on Window95,
98, 2000, NT, XP, and MacOS X.
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20.2.1 Installation

For some platforms, you can download executable library of FreeFEM++. This section
describes instalation from source files.1

After downloading the archive freefem++-3.30.tar.gz into you directory, use the
following commands, which installs FreeFEM++ into the current directory:

tar xfz freefem++-3.30.tar

cd freefem++-3.30/

more README

less INSTALL

./configure

make

make install

make clean

The command ./configure automatically finds the correct translators and create the
file Makefile. After command make the instalation leads to several executable files, e.g.,
src/nw/FreeFem++.

20.2.2 Running of FreeFEM++

For details see manual, here are only few commands for an example.

cd examples++-tutorial

../src/nw/FreeFem++ LaplaceP1.edp

../src/nw/FreeFem++ mycode.edp

../src/nw/FreeFem++ adapt.edp

20.3 UMFPACK

UMFPACK is a set of routines for solving unsymmetric sparse linear systems, Ax = b,
using the Unsymmetric-pattern MultiFrontal method and direct sparse LU factorization.
It is written in ANSI/ISO C, with a MATLAB interface. UMFPACK relies on the Level-3
Basic Linear Algebra Subprograms (BLAS) (dense matrix multiply) for its performance.
This code works on Windows and many versions of Unix (Sun Solaris, Red Hat Linux,
IBM AIX, SGI IRIX, and Compaq Alpha).

You will need to install AMD library to use UMFPACK. The UMFPACK and AMD
subdirectories must be placed side-by-side within the same parent directory. AMD is a

1FreeFEM++ requires several software Linux packages which may miss on your computer.

165



stand-alone package that is required by UMFPACK. UMFPACK can be compiled without
the BLAS but your performance will be much less than what it should be.

Installation is a little more complicated, see the manual.

20.4 Software for visualization

See also Lecture Notes about Finite Element Method.

20.4.1 gnuplot

Simple and efficient code namely for 2D graphs.

20.4.2 Techplot

Commercial software, available at our faculty.

Appendix

A possible code for Homework 18

program stab_euler

alpha = 2.

tol = 1E-4

a = 0.

b = 10.

h = 2E-2

x = a

! IC

y = exp(-alpha*(x-1)**2)

write(11,’(6es12.4)’) h, x, y, exp(-alpha*(x-1)**2)

10 continue

ynew = y + h * f(x, y, alpha)

ypp = ( f(x+h, ynew, alpha) - f(x, y, alpha)) /h

hnew = (2*tol / abs(ypp) )**0.5
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x = x + h

y = ynew

write(11,’(6es12.4)’) h, x, y, exp(-alpha*(x-1)**2), ypp, hnew

! comment the following line for a fixed time step

h = hnew

if( x < b) goto 10

end program stab_euler

function f(x, y, alpha)

real :: f

real :: x, y, alpha

f = -2* alpha * (x-1) * y

end function f

A possible code for Homework 19

program stiff

c23456789012345678901234567890123456789012345678901234567890123456789012

implicit DOUBLE PRECISION (a-h,o-z)

dimension a(2,2), aa(2,2), u(2), u_n(2)

ifile = 10

write(*,*) "Put method type (1=explixit), (2= implicit)"

read(*,*) i_method

write(*,*) "Put $b$"

read(*,*) x_max

write(*,*) "Put time step $h$"

read(*,*) tau

if(i_method .eq. 1) then

print*,’Explicit Euler method’
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elseif(i_method .eq. 2) then

print*,’Implicit Euler method’

else

print*,’Unknown method’

stop

endif

print*,’Solution at interval (0., ’,x_max,’)’

print*,’step h = ’,tau

print*

a(1,1) = 998.0D+00

a(1,2) = 1998.0D+00

a(2,1) = -999.0D+00

a(2,2) = -1999.0D+00

k_max = x_max/tau

time = 0.

c IC

u(1) = 1.0D+00

u(2) = 0.0D+00

open(ifile, file=’u_h’ , status=’UNKNOWN’)

if(i_method .eq. 1) then

write(ifile,*) 0., u(1), u(2), 0

do i=1, k_max

u_n(1) = u(1) + tau*(a(1,1)* u(1) + a(1,2)*u(2) )

u_n(2) = u(2) + tau*(a(2,1)* u(1) + a(2,2)*u(2) )

time = time + tau

u(1) = u_n(1)

u(2) = u_n(2)

write(*,*) time, u(1), u(2), i

write(ifile,*) time, u(1), u(2), i

enddo

elseif(i_method .eq. 2) then

write(ifile,*) 0., u(1), u(2), 0

do i=1, k_max
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aa(1,1) = 1.D+00 - tau*a(1,1)

aa(1,2) = - tau*a(1,2)

aa(2,1) = - tau*a(2,1)

aa(2,2) = 1.D+00 - tau*a(2,2)

det = aa(1,1)*aa(2,2) - aa(1,2)*aa(2,1)

det1 = u(1)*aa(2,2) - u(2)*aa(1,2)

det2 = u(2)*aa(1,1) - u(1)*aa(2,1)

u_n(1) = det1/det

u_n(2) = det2/det

time = time + tau

u(1) = u_n(1)

u(2) = u_n(2)

write(*,*) time, u(1), u(2), i

write(ifile,*) time, u(1), u(2), i

enddo

endif

close(ifile)

print*,’Computation finished’

end
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