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Preface

These lecture notes more or less cover the part of the lecture Fundamentals of Numerical
Mathematic given by the author at the bachelor program at the Charles University in Prague,
the Faculty of Mathematics and Physics. They should serve as a survey of the lecture without
a mathematically rigorous derivation and without explaining all details. Most ideas are
explained by some examples.
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Chapter 1

Machine arithmetic (1/2 week)

1.1 Machine arithmetic

e R (system of real numbers) is infinite
e computers can contain only the finite number of real numbers, system F

e computations in R has to use rounding
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1.2 Machine representation of real numbers: system [F

The computers use mostly the binary system (8 = 2):

2t71

where d; € {0,1}, i=0,...,t—1land L<e<U,eandd;, i =0,...,t—1 are integers. The
t-plet (dods ...d¢—1) is called the mantissa (or also significant), the number e is the exponent
and S is base.

The numbers in F are not distributed equidistantly (only relatively equidistantly).

Example 1.1. Let 6 =2,t=3, L=—1and U = 1.

d1 d2 d3 dt—l
x::t(d0+2+22+23+---+>26, (1.1)

zaz|[271] 20 | 2t zaz || 271 | 20 | 2!
0.00 | O 0.00 0
0.01 || 1/8 0.01 || 0.125
0.10 || 2/8 0.10 | 0.250
0.11 || 3/8 = 0.11 || 0.375
1.00 || 4/8 | 4/4 | 4/2 1.00 || 0.500 | 1.00 | 2.0
1.01 || 5/8 | 5/4 | 5/2 1.01 || 0.625 | 1.25 | 2.5
1.10 || 6/8 | 6/4 | 6/2 1.10 || 0.750 | 1.50 | 3.0
111 || 7/8 | 7/4 | 7/2 1.11 || 0.875 | 1.75 | 3.5



Then the numbers from F =TF(B,t, L,U) are plotted here:
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1.3 Standard of IEEE and IEC

w

The standard of the Institute of Electrical and Electronics Engineers (IEEE) and International

Electrotechnical Commission (IEC) from 1985:

precision | 3 t L U #IF UFL OFL €mach
single 2 24 -126 127 | 4.26E409 2.8E-45 6.8E438 | 5.96E-08
double 2 53 -1022 1023 | 1.84E+19 9.9E-304 3.6E+308 | 1.11E-16
extended | 2 64 -16382 16383 | 6.04E+423 5.42E-20
quadruple | 2 113 -16382 16383 | 3.40E+38 9.6.E-35
1.4 Under- and over-flow levels
There exists the maximal and the minimal positive numbers of F by
OFL := max |z| = (1 — 371V, (1.2)
zelF
UFL := min |z| = gL, (1.3)
zelF
where OFL means the over-flow level and UFL means the under-flow level.
1.5 Rounding
Generally, € F for x € R. Hence, we define ¥ € F, z = 7, e.g.,
~_ il — . 1.4
T = arg min |z —y| (1.4)
We define the positive real number €y, by
T—x
€ = max 1.5
meeh T err[UFL.OFL]| = (15)

The number €p,,q, is called the machine accuracy or machine epsilon or simply the accuracy

and it represents the maximal possible relative rounding error
Alternatively, €pnach is the minimal positive number such that

1+ emach > 1 (in the computer representation)

We have

€mach = /B_t .

Remark 1.2. If z € R such that UFL < |z| < OFL then there exists 6 € R, || < €macn such

that © = z(1 4 9).



1.6 Mathematical operations in the system [

e The system F was introduce to approximate the real numbers R.

e We need to deal with the usual mathematical operations (e.g., adding, subtracting,
multiplication, division) within the system F. We speak about the finite precision
arithmetic.

1.7 Basic aspects of the finite precision arithmetic

e Let * denote a mathematical operation on the real numbers R, i.e., zxy € R for any
z,y € R. Eg., x€{+,—,x,/}.

o If x,y € F then x*xy ¢ [F in general,
e we have already introduced the embedding ~: R — F (rounding)

e x: R xR — R, we define its analogue * : F x F — F by

—

TRY = THY (1.6)

e In virtue of Remark 1.2, we have © = x(1 + p), where |p| < €pacn- Analogously,
:C:k\y = (I*y)(l + p)’ ‘P’ < €mach- (17)

Example 1.3. Let x,y,x € R. We assume that |z +y + z| < OFL, for szmplzczty We want
to compute x + 1y + z. In the finite precision arithmetic, we can evaluate only x+y+z. We
investigate the corresponding rounding error. Then, using (1.7), we have

(zFy)+z = (z+y)(1+ p1)+2z = [(z +y) (1 + p1) + 2](1 + p2)
=z+y+z+(z+y)er+p2+p1p2) + 2p2,

where |p1| < €mach and |p2| < €mach- Using the different order of adding, we have

¥ (y+z) =at(y+2)(L+ps) =[x+ (y+2) 1+ p3)](1+ ps)
=z+y+z+xps+ (y+2)(ps+ ps+ p3pa),

where |p3| < €mach and |pa] < €mach. From the above relations we deduce that the adding in
the finite precision arithmetic is not associative. Similarly, we obtain the same conclusion for
the multiplication.

Remark 1.4. The adding (and similarly the multiplication) in the finite precision arithmetic
1s usually commutative, we can write

—_——

tty=r+y=y+z=ytz.

Example 1.5. Let as consider the infinite row >, % Obviously, this row diverges (the

sum s infinity). However, the evaluation in F leads to a finite limit number (approximately
15.40 in the single precision and 22.06 in the double precision — these values may depends on
the used computer and the programming language translator).



This follows from the fact that

1 ol
dng € N : —Semachz —.
no —t n

Therefore, the terms 1/ng, 1/(no+1),... does not bring any increase of the sum.

1.8 Cancellation

The subtraction of two similar numbers leads to a large loss of the accuracy. This effect is
called the cancellation and it is illustrated in the following example.

Example 1.6. Let
x =123.456478, y = 123.432191 — 1z —y=0.0024267 = 2.4267 x 10>
We consider F with B =10 and t = 6. The representation of the numbers x and y in F reads

x = 1.23456 x 10?2, y = 1.23432 x 10?

and their difference in F is
z—y = 2.40000 x 1072,

hence the result has only two decimal digits. Therefore, the relative rounding error of this
computation 1is

(z7y) — (x—y) 2.4 %1072 —2.4267 x 1072

= 0.011003
x—y 2.4267 x 102
i.e., more than 1072 (using t = 6).
Example 1.7. Let us consider the quadratic equation
azx® + bz +c = 0. (1.8)
The roots are given either by
—b+Vb?% — 4ac
r12 = 9 (1.9)
a
or by
2
w10 = < (1.10)

—bF Vb2 — dac

Let a = 0.05010, b = —98.78 and ¢ = 5.015. The ezact roots of (1.8) are

1 = 1971.605916, x2 = 0.05077068387



Let us consider the system F with 8 = 10 and t = 4. Then the roots evaluated in the finite
precision arithmetic by formula (1.9) are

r1 = 1972, x9 = 0.0998

and by formula (1.10) are

r1 = 1003, x2 = 0.05077.

Therefore, xo given by (1.9) and x1 given by (1.10) are completely wrong. The reason is the
cancellation since \/b* — 4ac = 98.77 = b in the finite precision arithmetic.

Example 1.8. Let h > 0, we define the sequence

w=1, (L11)

Yk+1 = Yk + A (—=100y, + 100hk +101), Ek=0,1,....

Let us put h = 0.1, we can derive that

y1 = 1.0+0.1-(~100-1.0 +100-0.0 4+ 101) = 1.1
yp = 1.1+0.1-(~100-1.1+100- 0.1 +101) = 1.2
y3 =1.24+0.1- (=100 1.2 +100- 0.2 + 101) = 1.3
ys=1.3+0.1- (=100 1.3+ 100 0.3 + 101) = 1.4

y0 = 1.D+00
h=20.1
k=0
write(x, °’(i5, 3es14.6)’ ) 0, h, 0., yO
10 continue

y1 = yO + h*(-100% yO + 100 * hxk + 101)
k=k +1
write(*, ’(i5, 3esl14.6)’ ) k,

yo = yi

h, h*k, yi

if(t < 2.) goto 10

gives the output

.000000E-01
.000000E-01
.000000E-01
.000000E-01
.000000E-01
.000000E-01
.000000E-01

o O WNN - O
=

o U1k W N~ O

.000000E+00
.000000E-01
.000000E-01
.000000E-01
.000000E-01
.000000E-01
.000000E-01

.000000E+00
.100000E+00
.200000E+00
.299999E+00
.400007E+00
.499938E+00
.600556E+00

T



7 1.000000E-01 7.000000E-01 1.694994E+00
8 1.000000E-01 8.000000E-01 1.845049E+00
9 1.000000E-01 9.000000E-01 1.494555E+00
10 1.000000E-01 1.000000E+00 5.649004E+00
11 1.000000E-01 1.100000E+00 -3.074104E+01
12 1.000000E-01 1.200000E+00 2.977694E+02
13 1.000000E-01 1.300000E+00 -2.657824E+03
14 1.000000E-01 1.400000E+00 2.394352E+04
15 1.000000E-01 1.500000E+00 -2.154676E+05
16 1.000000E-01 1.600000E+00 1.939234E+06
17 1.000000E-01 1.700000E+00 -1.745308E+07
18 1.000000E-01 1.800000E+00 1.570777E+08
19 1.000000E-01 1.900000E+00 -1.413700E+09
20 1.000000E-01 2.000000E+00 1.272330E+10
Show on the computer

code ./stab_euler 0.1 in directory ~/vyuka/ZNM/arithemtic
It is caused by the instability of (1.11) (for the time step h = 0.1) and the rounding errors.
It is possible to prove that

Inserting into (1.11)

Yke1 =Yg + h (—100y; + 100hk + 101)
=1+ hk + h (=100(1 + hk) 4 100hk + 101)
— 1+ hk +h (=100 + 101) = 1 + h(k + 1).

Show on the computer
code ./stab_euler 0.02 in directory ~/vyuka/ZNM/arithemtic

1.9 Costly disasters caused by rounding errors

e Intel Pentium flaw (chyba) 1994, new Pentium chip has a “bug in the floating point
unit” million dollars to covers costs

e 1996, accident of Racket Ariane 5, 7 billion dollars, allocated memory for deviation was
not enough

e 1991, Gulf War, the Patriot missile defence system failed due to roundoff error: ap-
proximation of 0.1 in 24 bits causes a rounding error which increases after 100 hours of
operations (28 American soldiers died).



Chapter 2

Numerical mathematics for the
mathematical analysis (1/2 week)

Numerical mathematics for linear algebra (Z. Strakos)

e Now: numerical solution of problems of mathematical analysis

Numerical computations always suffers from errors

— problems of linear algebra: dominate the rounding errors

— problems of mathematical analysis: dominate the discretization errors

Practically, we are able to solve only LINEAR problems (exception is, e.g., quadratic
algebraic equation)

We use often a linearization

2.1 Nonlinear algebraic equation

Let f : [a,b] — R be a given continuous function such that f(a)f(b) < 0, thus 3z € [a, b] such
that

f(@) = 0. (2.1)

Example 2.1. Let f(z) = x —cos(z), a =0 and b = 7/2, there exists one T satisfying (2.1)

10



1.6 T T T T T T T
cos(x)

1.4 X i

0.8 - -

0.6 i

0.2 -

0 1 1 1 1 1 1 1
0 0.2 0.4 0.6 0.8 1 1.2 1.4

e We can not evaluate T exactly,
e We approximate Z solving (2.1) numerically.

e We use an iterative process, define {xj} such that zj — =.

We assume that we are able to evaluate f and f’ at any = € [a,b]. We use the Newton
method.

Let z, be a given approximation, we replace f at xj by a linear function (using the Taylor
expansion):

(@) = f ) + (@) (@ — @) = f(z) (2.2)
We seek zj,41 such that f(zp11) =0, ie.,

f(SUk)

T P

We put k := k + 1 and repeat the computation.

11



[z3, f(x3)]
[T, f(24)]

[0 ) SIREEIERRTPPRRRRIEE ............................ g . @

The difference T — xy, is called the discretization error. It arises due to the approximation
n (2.2). All relations are in the exact arithmetic.
Newton method is very efficient but does not always converge.

-‘!.,

2.1.1 System of nonlinear algebraic equations

The previous can be extended to a nonlinear algebraic system

f(z)=0, where f = (f1,..., fa)T : R* - R", z € R™. (2.3)

12



Newton method:

Tpy1 = g — (F(aw)) " Fak)

<~
Tht1 = Tk + dg, F(l‘k)dk = f(xk) (2.4)
where F is the Jacobi matrix
O f;
F={F;}}._, Fj=—-——,17=1,...,n
g K 8£Ej

The numerical solution of the nonlinear algebraic system (2.3) was transformed to the nu-
merical solution of a sequence of linear algebraic systems (2.4).

2.2 Numerical differentiation
Let f:[a,b] — R be a given differentiable function, we want to evaluate

f(z), 7 €la,b].

In practice, f is an output of a code subroutine, hence we can evaluate f at any = € [a, b]
but we can not evaluate f’ analytically.
Definition of the derivative gives

f@+h) - f(z)

! = — l

which we can use in the following approximation: Let h > 0 be given, then

7@~ TN IO ),

2.2.1 Discretization error

Discretization error of f/'(z) — D f(Z; h)?
Let f € C?(R). The Taylor expansion gives:

F(@+h) — f(z) = hf'(z) + %th”(i +0h), 6¢clo,1], (2.5)
%(f(i +h) - (@) = F(2)+ %hf”(i: +0n) ., 6elo,1].

|
discretization error

If f” is bounded then
Df(z;h) — f'(%) for h — 0.

The discretization error is O(h), i.e., the first order method.

13



2.2.2 Rounding errors

However, in finite precision arithmetic:
we do not know  f(z) but f(z) 1£(Z) = f(Z)] < émacn f(T)
we do not know  f(Z + k) but f(z+h) |f(@+h)— f(Z+h)| < emacnfS (T + )
(for simplicity let Z =&, h = h,... )
Then

Kl

and the rounding error gives

Df(z:h) — Df(z:h) = 12 ) N

We estimate

Df(z;h) — Df(z; h)‘ <

>
)
_|_

=

f(z+h)—

. < 2max(f(%), f(7 + h)) 2k

IN

Therefore, the total error (discretization + rounding)

= 1 mac
f'(z) — Df(z; h)’ < if”(a? +0(z — 7))h + 2max(f(z), f(7 + h))* h b
Example 2.2. Ezample of computation f' for f(x) =/ at T = 1.

1 T — T — T L T T T ™3

single —+—

0.1 F M\ '

001 F \\,ﬂ .

\ E

\
0.001 s—\/\ 3
\

00001 bt o .. =

1e-07 1e-06 1e-05 0.0001 0.001 0.01 0.1 1

14



1 T T T T T T T T T T . T T ]
single —+— ]

0.1 \ double -

0.01 N s
/ﬁ:r 4

0.001 F X & ]
4\ g ]

0.0001 | il .

hY

1e-05 3
1e-06 | 3
1e-07 | 3
1e-08 | 3

1e-09 1 1 1 1 1 1 1
1e-16 1e-14 1e-12 1e-10 1e-08 1e-06 0.0001 0.01 1

2.2.3 Second order approximation

Similarly as in (2.5), we have
f(@+h)— f(Z) = +hf'(Z) + %th”(i‘) + éh3f”’(:7: +6h), 6€]0,1],
F(z —h) ~ f(2) = ~hf @)+ SH @)~ h "+ 0R), G [o,1]

Subtracting we have

F@+h) — f(@ —h) = 2hf'(7) + éhB’ (5@ + 0 —2) — (@ + bz — 7))
and thus

—:D2f(2)

which is the approximation of the second order.

Example 2.3. Ezample of computation f’ for f(z) =+/z at T =

1 T T T L T T L
single —+—— 1

single 2nd ]
My %/\—\ |
0.01 | 1
0.001

%/\o—o—v
0.0001 "

16-05 | —:

19'06 L PR L PR L PR | L PR L PR L PR L PR
1e-07 1e-06 1e-05 0.0001 0.001 0.01 0.1 1

15



Nk ' ' ' ' " double —— |
double 2nd
0.01 \ﬁ\w

0.0001 . \'—\M _
1e-06 |- \_\ —

1e-08 —

1e-10 j i

1e-12 1 1 1 1 1 1 1
1e-16 1e-14 1e-12 1e-10 1e-08 1e-06 0.0001 0.01 1

2.3 Numerical integration

Let f: (a,b) — R be an integrable function, we want to evaluate

b
10)= [ 1@,

e Many integrals can not be evaluated analytically.

e Some approximation is necessary.

Idea: The definition of the Riemann integral.
Draw figure
Let Ne N, h=(b—a)/N,x; =a+ih,i=0,...,N be a partition of [a,b], then

b N
/ f(x)dx%hz inf  f(x) =: Mp(f).
a i—1 z€( )

Ti—1,%5

From the definition of the Riemann integral My (f) — I(f) if h — 0.
However, the convergence My, (f) — I(f) is slow, we can show that

|Mp(f) — In(f)| = O(h).

Draw figure More acurate is the trapezoidal rule

b N : o
/ f(ZE) dr ~ hz f(xl) +2f( 171) —. Th(f)7
a i=1

where

ITh(f) — In(f)] = O(h?).

or the Simpson rule

b N ZT; xX; Ti— Ty—
/ f<x>dmh;f< R

where

1Sk(f) = In(f)| = O(h*).

16
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Example 2.4. Example of computation foa Vx dz. Show on the

computer

0.1 ————r -
E Mp(f) ——
— 1E-4 -
l T~
\
0.01 TR 4
: ~—_
\\F\\\
I T
QO —
=, 0.001 F —— .
R T
C’J —
I —
0.0001 | e, i
1e-05 PR — -
10 100 1000 10000
0.1 : :
e Mp(f) —+—
00t iy i
0.001 | T 3
i L
I .
0.0001 | - = o e eIy ]
@ i
g 1e-05 4
S L
:’3 -
1e-06 F ]
16-07 | i
1e-08 L e .

1000

0.1 f — —-
. Mp(f) —+— ]

0.01 | T Th(D) ]

i — Spf) %

i T B4 ]

0.001 F T 7

T it ]

Y T ]
§ 1e-05 | . ]
3 te-06 F % .
1e-07 | T ]

1e-08 | Hoe K % 3

1e-09 L ——
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iVIh(f) M '.
e Th(f) i
0.01 —t B *7777777"»77777777*7 Sh(f) x
0.0001 | = = = = == = o e e ,,ifjffﬁ’ffﬁf:l,—E—fﬂL; T
1e-06 ¥ -
) ke 1
E 1e-08 | yg 1
S T ]
~= 1e-10 | * -
1e12 T .
1e-14 T .
1e-16 L 1
10 100 1000 10000
1 T T T T T T T T
d Mp(f) —+—
001 f Ty Thb) e
T — Sp(f) ---x--
0.0001 |- - - s e T e B e
1e-06 | * T .
* ~— ]
R 1e-08 - . ]
3 1e-10 B
S * |
E fe-12 | * -
1e-14 . .
1e-16 | oK TR :
19'18 L L M| L L | L L | L L | L L | L L L
10 100 1000 10000 100000 1e+06 1e+07

Efficiency of the method:
How many mathematical operations are necessary for achieving the given tolerance.

Very often we replace “number of mathematical operations” by the “number of degrees
of freedom”.

18



Chapter 3

Solution of nonlinear algebraic
equations (1 week)

3.1 Solution of a single nonlinear equation
Let f: [a,b] — R be a continuous function. We seek Z € [a, b] such that
f(@) =0. (3.1)
Such Z may not exist, generally.
Example 3.1. Let f(x) := x — cos(x) and [a,b] = [0, 7], there exists one solution of (3.1).

Example 3.2. The cannon fire on an enemy d meters away. The initial velocity vy is known.
Set the correct angle of attack a. Draw figure Let y(t) denote the height of the projectile.
The gravity is the only one force, hence

y'(t) = —g, g~ 9.8lms 2
Integrating
Y (t) = —gt +c1, where ¢; = vg sin(«).
Second integrating
y(t) = —%th + wvo sin(a)t + c2, where ca = 0 since y(0) = 0.
Thus projectile hits the ground, when

1 2 .
Oz—igt +uvgsin(a)t = t=0, t=

In horizontal direction the velocity is vg cos(a), hence

d = vg cos(a)t = 20} sin(ogz) cos(a).

We know d and seek «. It is a nonlinear equation for o, which can be solved numerically.
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Analytical solution is o = %arcsini—g, but how is arcsin evaluated?
0

Model of shutting is an approximation, an approximate solution is enough.

2
The solution may not exists: namely if d > %0 then solution does not exists.

Including the air resistance:

y'(t) = —g—ky, k > 0 is the coefficient of the resistance.
Analytical solution
1 1 1
y(t) = —Ee_ktvo sin(a) — % (t + ke‘“) + 7V sin(ar) + % (3.2)

Find t such that y(t) = 0 is impossible analytically.

Example 3.3. Inverse problem: Previous example, but k is unknown. We experimentally
found the pair (o, d) and seek k from (3.2). Can not be solved analytically.

Example 3.4. Computer graphics: Object defined by x*+y* < 1 and a line behind y = +0.5
We need the intersection nodes, i.e., equation z* + (x + 0.5)* = 1. It has to be solved
numericaly.

Let us go back to (3.1).

3.1.1 Bisection method

Let f : [a,b] — R be a continuous function such that f(a)f(b) < 0, hence there exists at least
one solution.

Example 3.5. Let us play a game. Select an integer number between 1 and 1 000 000. I have
at most 20 question of type:

“Is your selected number bigger (or smaller) than number a?”

What strategy is optimal? If I take always half of the interval, since 22° = 1048576, I will
always win.

The bisection method is based on the same idea.
Draw figure

Algorithm 1 Bisection method
let f:[a,b] — R such that f(a)f(b) <0 be given
let & > 0 be the given accuracy
while |b—al| > 2§ do
c:=(a+b)/2
if f(c)=0 then
x* := ¢ is the (exact) solution; end
else if f(a)f(c) <0 then
b:=c
else

a:=c
end if

end while

x* := ¢ is the approximate solution; end
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The rate of the convergence

How fast converge the approximate solution z* to z?7
At each step, the size of the interval is reduced by 2, hence
b —al

b —al
oF <26 & ok+1 > T &S k> 10g2

b—al

-1, (3.3)

Hint for exercise: How many time steps are necessary to obtain the given accuracy?
It is a linearly convergent method (first order method), the error is reduced by factor 2
at each time step.

3.1.2 Method regula falsi

Modification of the secant method, ¢ is not (a+b)/2, but the intersection of the line between
[a, f(a)] and [b, f(b)] with y = 0. It can be faster than the bisection method.
Draw figure

e Usually, the problem is to find the interval [a, b], where f(a)f(b) < 0.

e Equation like 22 = 0 can not be solved. Draw figure

3.1.3 Newton method

Let xj, be a given approximation, we replace f at xp by a linear function (using the Taylor
expansion):

f@) = far) + f'(an) (@ — ap) == f(x) (3.4)
We seek x4 1 such that f(:ka) =0, i.e.,

f(@k)

TR )

We put k := k + 1 and repeat the computation.
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Sometimes, the method is called (by engineers) the Newton-Raphson method.

Theorem 3.6. If f € C?(R), if xo is sufficiently close to the solution of (3.1) T and if
1(Z) # 0, then the Newton method converges to T and the asymptotic rate of the convergence
s quadratic, i.e., AC > 0 such that

N Skl NS
k—oo |x) — T|?

Remark 3.7. Comments to the theorem:

o “sufficiently close” will be explained in the proof

e quadratic convergence is very fast: if |z, —Z| ~ 1071, then |xp 1 —Z| ~ 1072, |vp40—7| =
1074, |zpys — & = 1078, ete.

e however, the quadratic convergence is only asymptotical, can be slower, depends on xg.

Proof. Taylor expansion

(@) = fzg) + f(xp) (@ — zp) + %f”(fk)(:i —x3)?, &1 is between ), and %

flxr) 176 o )2
fllzr) 2 f’(:nk)( B (3.5)

The Newton method

f(zx)

TRl =R T R

(3.6)
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Subtraction (3.6) from (3.5), we have

&) 2
Tyl — T = Tw(xk)(x xp). (3.7)
Now, f” is continuous, f'(Z) # 0 then
_ | (=)
Cy = |2f’(x) < 00
Let C' > C, be any constant, then there exists 4 > 0 such that
f"(€) I
< — =:U.
() <C Ve, £ € (2 —06,2+0) =U
Let
_ 1
xg €U and lzo — Z| < rok (3.8)

Then (3.7) gives
lz1 — Z| < Clazo — 2 < |20 — 7.
Hence, 21 € U and |z; — Z| < . By the induction we find that
|z —Z| <|zo—Z| andzp €U Vk € N.
Moreover, let k € N, then (using (3.7))

‘:Bk — ii'| SC\xk_l — if‘|2
<(Clzg—1 — z[) |zp—1 — 2
<(Clag-—1 — () (Clag—2 — Z[) |vp-2 — Z|

S(C|$k—1 - .f’) ce C\(a:l — .f’) |.%'() — i"
<(Clzo — 2|)* |0 — 7.

Since C'|lxg—Z| < 1 then |z —Z| — 0, i.e., x — T as k — 0o. The Newton method converges.
Moreover, since x; — & and consequently & — Z, we have from (3.7) that

Tp1— o (&)

= B ¢ .
@ -2 27 () — C or k — oo

Remark 3.8.

e The assumption xo is sufficiently close to the solution means (3.8), it is difficult to
verify since we can not evaluate C\.
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o There exist many other theorems with different assumptions, which are either too re-
strictive or too difficult to verify.

e [t is possible to combine the Newton method, e.g., with the bisection method.

Example 3.9. Compute /2. We use the Newton method to solve x> —2 = 0. Then fz) =
2?2 -2, f'(z) =2z and

a2 —2 w42

Tkl = Tf — , k=1,2,...

ka 2xk

Let xg = 1. Then we obtain

k x_k x_k - sqrt{2}

0 1.0000000000000000E+00 -4.1421356237309515E-01
1 1.5000000000000000E+00 8.5786437626904855E-02
2 1.4166666666666667E+00 2.4531042935715952E-03
3 1.4142156862745099E+00 2.1239014147411694E-06
4 1.4142135623746899E+00 1.5947243525715749E-12
5 1.4142135623730951E+00 0.0000000000000000E+00
6 1.4142135623730949E+00 -2.2204460492503131E-16

Let xg = 0, then the method fails.
Let xg = —1, then z, — —V/2.

Hint for exercise: On computers: practical examples of convergence and divergence of
the Newton method

Hint for exercise:
Theorem 4.3.2] .

Theoretical: Newton method for the case f/(z) =77, see [GC12,

3.1.4 Quasi-Newton methods

e The evaluation of f/ may be expensive.

Hence, we use

x
Tl = T — F@R) - pere g = f'(x).
9k
Constant slope method
gk = f ,(l“o)

At most linear convergence.
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Secant method

o = f(xk)_f(xkfl)’ k=12,
Lk — Tk—1

Draw figure
Then

Tha!l = Tk — J(xg) (2 — 23-1)
: Fan) — Fan)

We need zg and x1 to start the secant method.
It can be proven that

k=1,2,....

e the secant method is convergent

e the order of convergence is HQ—‘/‘?’

3.1.5 Fixed point method
The problem: let p(z) : R — R, we seek = € R satisfying
x = p(x).
If £ = p(Z), then Z is called the fixed point of ¢. The method given by
Trpr1 = o(Tk), kE=1,2,.... (3.9)

is called the fixed point iteration.
Some equivalence with f(z) =0, e.g.,

plx) =z+flz)==z,  p):=z-f)=z, @) :=z+Af(z)=2 A#0.
Example 3.10. The Newton method can be considered as a fixed point iteration with

C)
=T

There are different types of convergence (Figure from [GC12]):
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Figure 4.11. Fixed point iteration. The iteration may display monotonic convergence (upper left),
oscillatory convergence (upper right), monotonic divergence (lower left), or oscillatory divergence
(lower right).

Not all choices of ¢ are suitable:

Example 3.11. Let f(z) = 2° + 622 —8 = 0. We have f(1) = —1 < 0 and f(2) = 24 > 0,
there is a root in [1,2]. Then

o p1(z) =23 +62%2 +2 -8,

e po(z) = 9%6’
° ()03(x) — 8—6333

Let xg = 1.5, then the method with 1 does not converge and the method with p3 converges
slower than the method with @o.

Hint for exercise: Test on the computer.
Theorem 3.12. Let p € CY(R), ¢(Z) = Z and let I be an interval, T € I such that
|/ (z)] <1 rxel
and ¢ maps I into I, i.e., p(I) C I. If xg € I, then the fized point iteration converges to T.

Proof. Taylor at T gives

rr1 = () =p(7) + (21 — )¢ (&) &k € (T, )
=T + (z — 2)¢' (&)
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Hence
Tpy1 — T = (21, — )¢ (&) < err1 = er' (&),
where e, =2 — &, k=0,1,.... Thus
lewr1] = lexll¥' (&)l

If |¢/(z)] < 1 for all z € I, then the error decreases at each step at least by the factor
max;e; |¢'(z)|. Moreover, asymptotically

Jim 01l @)
—00 |6k|

0

Hint for exercise: Using this theorem explain the convergence or divergence of methods
from example (3.11).
The ¢'(Z) may not exist. Favourable property is the contraction.

Definition 3.13. We say that ¢ is a contraction on M, if there exists L € (0,1) such that
o(z) =)l < Llz —y[  Va,ye M. (3.10)

Theorem 3.14. If ¢ is a contraction on R, then ¢ has a unique fized point T and xpy1 =
o(xg) converges to T for any xo € R).

Proof. We show that {zj} is a Cauchy sequence. Let k > j then
|\, — x| < ok — xp—1| + |Th—1 — Th—2| + -+ F |[Tj41 — 5]
Moreover,
|[Zm — Tm-1] = [p(@m-1) — P(Tm—-2)| < L|m-1 — Tm—2]
=Ty — Tm-1] < Lm_1|m1 — x|
Then

1 — LFJ

lop — 2] < (LFP 4 L2 oo L)y — 20| = L T I |x1 — 20|

If k> N and j > N then

|log, — ;] < LN |z1 — 29| = 0 for N — oo,

1
1—-L
hence {z}} is a Cauchy sequence and it converges to some Z.

Further, we prove that the limit value Z is a fixed point of ¢. If ¢ is a contraction then ¢ is
a continuous function. Therefore,
o(Z) = p(lim z) = lim p(xg) = lim x5 = 7,
k—o00 k—o00 k—o00

Hence the limit of the Cauchy sequence is the fixed point.
The uniqueness: let Z, § be two different fixed points, then

[z =gl = le(z) — ¢(y)| < L|z - 7],

which is a contradiction since L < 1, thus & = . O
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3.2 System of nonlinear algebraic equations
We consider a nonlinear algebraic system

f(z)=0, where f = (f1,..., fa)T : R* - R", z € R™. (3.11)

3.2.1 Newton method

A direct generalization gives the Newton method

Tp1 = o — (F(xr) " f(a)

Tgt1 = Xk + dg, F(:L’k)dk = —f(a:k), (3.12)
where F is a Jacobi matrix
F= {Fij}ijlv Fij = +—
The numerical solution of the nonlinear algebraic system (3.11) was transformed to the nu-
merical solution of a sequence of linear algebraic systems (3.12).
Remark 3.15. Several comments
o Relation (3.12) has (analytically) equivalent form
Flzp) ki = (F(or))zr — f (@)

However, from the numerical point of view (3.12) is more stable.
Hint for exercise: Faxplain why.

o The linear algebraic system can be solved directly or iteratively. Then, it is not necessary
to solve the linear system as exactly as possible, suitable stopping criteria.

o The matriz F has n? entries, their evaluation may be complicated and/or time consum-
ing. A simplification is possible.

3.2.2 Fixed point method
The problem: let p(z) : R™ — R", we seek = € R™ satisfying
x = p(x).
If Z = p(Z), then Z is called the fixed point of ¢. The method given by
Tp+1 = o(Tk), kE=1,2,.... (3.13)
is called the fixed point iteration.
Definition 3.16. We say that ¢ is a contraction on M C R™ if there exists L < 1 such that

lp(z) — W)l < Lllz —yl|  Vz,y € M. (3.14)
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The modified fixed point theorem is also valid.

Example 3.17. Let us consider the problem F(x) = 0, F : R — R"™. We introduce the
method

xk+1:xk—i—5F(xk), k=1,2,...

)

where § € (0,1) is called the damping parameter. A suitable choice of § can ensure the con-
vergence of the method. E.g., we set § such that the mapping x — x+ F(x) is a contraction.

Hint for exercise: Scalar examples, where fixed point method converges with § < 1
but not with § = 1, theoretically as well as on the computer.
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Chapter 4

Interpolation (1 week)

4.1 Motivation

e A general function f : [a,b] — R is described by an infinite number of values f(x), = €
[a, b].

e For practical computations it is advantageous to approximate f by a finite number of
values. The use in engineering, animations, etc.

e Usually f ~ ¢, ¢ is a polynomial approximation.

e Application: numerical quadrature, f; fdr =~ ff @ dx, the second integral can be eval-
uated exactly.

4.2 Polynomial approximation

Problem 4.1. Let f : [a,b] — R be a given function.
Leta<xg<x1 <---<xpyp <b be a partition.
We seek a function ¢ : [a,b] — R such that

o o(z;) = f(z;), i=0,...,n
o o(x)~ f(x) Vzé€la,b
e v is a “nice function” (e.g., polynomial)
We denote
yi = f(xi), 1=0,...,n.

We say that ¢ interpolates f in xq, ..., Zy.
Let P™(a,b) denote the set of polynomial functions of degree at most n over [a, b].
The first idea: let x;,y;, i = 0,...,n be given, we seek ¢ € P"(a,b) such that

o)) =y, 1=0,...,n. (4.1)
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A function from P"(a,b) has n + 1 coefficients, we have n + 1 conditions. Hence, we seek

¢j, j=0,...,n such that

n
yi:ZCj(:Ei)J, ZZO, y I
j=0
It is equivalent to
1 xg x% Sz co Y0
1 oz 23 ... af 1 Y1
1z a3 ay o | =| v (4.2)
1 oz, 22 xy Cn UYn
=V
This matrix is called the Vandermonde matrix.
Has this system a unique solution? Yes, if the Vandermonde matrix is regular. It is
possible to prove that
detV = H (i —xj).
0<i<j<n
Thus if z;, i = 0,...,n are distinct, then there exists a unique solution of (4.2) and the
interpolation polynomial has the form
n
p(x) =) cjal,
j=0

However, V from (4.2) is ill-conditioned and it is not suitable for practical computations.

Hint for exercise: Show a possible example .

4.2.1 The Lagrange form of the interpolation
We define

T —x; ,
goi(x)::H J 1=20,...,n.
Ll —x;
JF#i

Obviously, ¢; € P™ and ¢;(z;) = d;5, where d;; is the Kronecker symbol.

1.2 T T

™\ 0.8

xR T X (k1) (x-2)*(

0.6

0.4

02 f
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) -0.4
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Then

n
= yipi(a Z vi H —
i=0 i J

=0  j#i

is the solution of our problem, since it is a polynomial of degree n and satisfies (4.1). It is
called the Lagrange form of the interpolation polynomials.

e This is an equivalent formulation form the point of view of mathematical analysis, but
not from the point of view numerical mathematics.

e If we solve the problem (4.2) exactly, then we obtain both polynomials more or less
identical. However, in practice we are not able to solve (4.2) exactly.

Hint for exercise: Show a possible example.

4.2.2 The error of the polynomial interpolation

Theorem 4.2. Let f € C"([a,b]) and z; € [a,b], i =0,...,n. Let ¢(x) be the polynomial

of degree n that interpolates f in x;, i =0,...,n. Then, for each x € [a,b], we have
_ - (N+1) _ 4
fa) = o) = o +1 /&) ]f:[o v =), & €lab. (43)

Proof. Obviously, (4.3) is valid for x = x;, i =0,...,n
Let x € [a,b], © # z;, i =0....,n. Let ¢ be the polynomial of degree n+ 1 which interpolates
finx, xg,...,x,. Then

q(t H (t —xj), A= m (4.4)

t) vanishes at n + 2 nodes x, xq, . . ., Tn,
) vanishes at n + 1 nodes between successive pairs.

Let ¢(t) := f(t) — q(t). Then ¢(
Rolle’s theorem implies that ¢(t
(

Rolle’s theorem implies that ¢(¢)” vanishes at n nodes

$(t)"*+1) vanishes at one node, denoted by &,.

Hence,

0= "t (&) = fOT(&,) — ¢"TD(&,).

The (n + 1)-times differentiation of (4.4) gives

@) = A+ 1), since (1) = 0.
Thus
) e _ fz) — o)
FOTE) = At = (b Dl 2
which gives (4.3). N
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Example 4.3. Let f(z) = sin(z), n = 1, 29 = 0 and x; = w/2. We interpolate f, which
gives p(x) = (2/m)z. Draw figure Since |f”| <1, then (4.3) gives

1
lp(2) = f(2)] < 5l(z = 0)(z —7/2)].
The mazimal value is attained for x = /4, thus

(m/4)% ~ 0.308.

N | —

p(z) — f()] <

The actual error is equal to |sin(r/4) — (2/m)w/4| = (V2 —1)/2 =~ 0.207.

Example 4.4. Let f(z) = sin(x) + 1/2 on [-2m,27]. Then ¢ = ¢, converges f for n —
00. Show on the computer Video from ~/vyuka/ZNM/LAGRANG/Lag-sin.avi [t converges
uniformly.

Hint for exercise: More examples of an analytically estimation of the interpolation
error.

Example 4.5. The function f(x) = H% on (—5,5]. Show on the computer Video from

n

~/vyuka/ZNM/LAGRANG/Lag-ratio.avi Divergence at x = +5, term fT1(&,) [T (z — =)
grows faster then 1/(n + 1)!.

2 T T

15 Il

P715| P
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15 ‘.
|

/7 [

|

1y SN | =1 / \ |
0 W/ w . | I /_\‘ |

-05 -05

) = LH(L+x) fi(x) = LI(1+Hx%%)

Possible solution of such problems:

e Chebyshev interpolation: the nodes are more clustered near the endpoints, namely z; =
2j—1
2n

(—1,1) (in the max-norm).

Cos <7r ,j=1,...,n0n (-1,1). These values minimizes the term [[7_,(z — ;) on

e Spline functions — see bellow

There exists also, e.g., Hermit interpolation, where we require

@(ml):f(‘rl)? ZZO??” & 80,($2):f,(1'1)7 ’LZO,,’R
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4.3 Spline interpolation

Spline interpolation — piecewise polynomial approximation. The most used are the cubic
splines.

Problem 4.6. Leta=2p < z1 < - - <axp=bandy; € R, i =0,...,n be given, we seeck
¢ : C*([a,b]) such that

i (P(xl) = yi(: f(xz)): 1=0,...,n,

® Oljw,_, .2, 18 a cubic polynomial function on (v;—1,%;), i =1,...,n.

4.3.1 Construction of splines

Observation:
e n intervals, piecewise cubic function = 4n unknowns,
° @‘(xi,l,xi) is given at endpoints = 2n conditions,
e 0’ is continuous in interior nodes = n — 1 conditions,
e " is continuous in interior nodes = n — 1 conditions.
Hence, 2 conditions are missing, we prescribe, e.g.,
a) ¢'(x0) = o= f'(x0)), ¢'(2n) = B(= [f'(2n)),
b) ¢"(wo) = af= ["(20)), ¢"(xn) = B(= ["(zn)),
¢) ¢"(x9) =0, ¢"(x,) =0 (natural cubic spline).

The case c) is a special variant of b). We describe one (possible) efficient construction of the
cubic spline.

Let M; := ¢"(x;), i =0,...,n (M; are called momentums), My and M,, are known. Let
1=0,...,n—1. We denote p; := @\[%xiﬂ} and h; = x;11 — x;. Since the spline function ¢;
is cubic on [z;, x;+1], then ¢! is linear on [z;_1,x;]. Thus

M(z) = My + (Mipq — My)—— 20 = pp T 7% 20
) i+ (M Z)JUH—l - Yol M h;
Integration gives
(ri01 — )2 (z — z;)?
i(x) =— MleT + MHIT; + A;
€T — 3 T — 1 3
pi(r) = Mz(lJréh) + Mz‘+1(6hl) + Ai(x — ;) + B;
v i

where A; and B; are the integration constants.
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We have the conditions: ¢;(x;) = yi, ¢i(%itr1) = yit1, then

€T — 3 hZ
©i(;) :MiM"‘Bi =Yi = B; =y; — M;—,
6h; 6
B (Tig1 — ;)3 B
©i(Tiy1) —Mi+lT + Ai(zip1 — 23) + Bi = yiq1
T
1 h2 o — e e
= A= —(yi1 - M= -B;) = A=Y _Tan, M.
h; 6 h; 6
It rests to determine M;, i = 1,...,n — 1. We use the continuity of the first derivatives,
i.e.,
g&l(a::') = pi—1(z; ), i=1,....n—1 (4.5)
Thus
_ 1 1 i — Yi— h;_
@i1(z;) =5 Mihiy + Ajoy = S M;hioq + h_ Yl il (M; — M;_y),
2 2 hi—1 6
1ot 1 1 Yiel —Yi N
pi(zi) = — §Mihi + A = _§Mz’hi - E(Mi—&-l — M;).
(3
From the condition (4.5), we have
1 Vi —Yi-1 N1 1 Yit1 —Yi i
~M;hi_ . M; — M;_y) = —=Mih; + 2% D g
2 27,1"’_ hifl 6 ( 7 11) 2 zz+ hz 6( 1+1 Z)a
which gives
1 hi—1 1 hi Yirl — Y Yi — Yi-1
2 iltg—1 6 ( 7 11)+2 zz+6( +1 z) hz hi—l
and
hi—1 1 hi Yitl — Y Yi — Yi-1
LNy 4 = (hioy + hi)Mi + 2 My = - .
6 11+3(zl+ z) z+6 i+1 hz hi—l
Denoting
. hi—1 7 =1\ = hi 7 gi— (yi-i-l — Y Yi— yi—l) 6 ,
hi—1 + h; hi—1 + h; h hi—1 hi—1 + h;
we obtain
AiMiy + 2M; + piMiv1 = gi, i=1,...,n—1 (4.6)

The relations (4.6) can be written in the matrix form
AM =g,

namely
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)\2 2 U2 M2 g2
L | = : (4.7)
>\n—2 2 Hn—2 Mn—Z In—2
An—1 2 My 1 In—1 — /ﬁnfan

The matrix A is tri-diagonal, a;; =2, i =1,...,n—1, A\; < 1, g; < 1 and \;+p; = 1, hence
A is strictly diagonally dominant, it is regular and there exists unique values M1, ..., M, _1.
Hence the cubic spline exists.

Tri-diagonal system can be solved efficiently, e.g., Gauss elimination (Thomas algorithm).

4.3.2 Interpolation error estimates

Theorem 4.7. Let f € C4[a,b]. Then there exists constant C > 0 such that: Let K > 0 be
a constant, let D be a partition of [a,b] formed by a = xo < -+ < x, = b satisfying condition

max h;

<K, (4.8)

minh; —

where h; = x;41 — ;. Let the cubic splines satisfies boundary conditions ¢" (xo) = f"(xo) and
©"(xn) = f"(xn). Then

fP(2) — oW(2)| < CKR*™F, 2 €[ab], k=0,1,2,3,
where h = max h;. For k =3 we consider the left- and the right-hand side derivatives.
Consequence 4.8. If a sequence of partitions satisfies (4.8) such that h — 0, then
e®) = )k =01,23.
Remark 4.9. If we consider natural cubic spline ¢"(xg) =0 and ¢"(x,) =0, then
|f(z) — o(x)] < CKh?, z€la,b], k=0,1.

4.3.3 Cubic spline with a tension

In order to interpolate a singular function, we consider ¢ € C%([a,b]) and ¢|, 4, .,) are the
solutions of

@ — 1o =0,

where 7 > 0 is the tension parameter.
If 7 = 0 then ¢ is a cubic spline.
If 7 — oo then ¢ is a linear function.
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4.3.4 Hermit spline

Problem 4.10. Leta =20 <z1 < - <zxp=bandy; € R, i =0,...,n be given, we seeck
¢ : C'([a,b]) such that

® Ol(; 1,2, 18 a cubic polynomial function on (zi—1,2;), 1 =0,...,n,
o o(z;) = f(x;), i=0,...,n,

o O(x;)=f(x;),1=0,...,n.

We may use an approximation

f'(:L‘z') ~ f(ip1) — f(xz‘—l)_

Tit1 — Ti—1

We have
f(@iv1) — f(wi1) n

Titl — Ti—1

f(x;) = O(h?).

4.3.5 NURBS

Non-uniform rational basis spline (NURBS): the basis functions are not polynomials, but
rational polynomial functions. They are widely used in practice (CAD).
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Chapter 5

Numerical integration (1 week)

Some integrals can not be evaluated analytically, e.g.,

2 x
erf(z) := / e dt
T Jo

is the error function used in mathematical statistics. This integral can be evaluated only
numerically.
Our aim is to evaluate Q(f) such that

b
AN =18 = [ fa)ds (1)
where f is an integrable function. We need
Q) = 1(F)
small and the evaluations of Q(f) should be fast (= a small number of mathematical opera-

tions).
Idea: approximate f by a (piecewise) polynomial function ¢ and integrate ¢.
It is not necessary to explicitly construct the approximation ¢.

5.1 Newton-Cotes quadrature formula

Let n > 1and a =29 < 1 < -+ < &, = b be a uniform partition of [a, b], i.e.,

?

xi=a+ —(b—a), 1=0,...,n. (5.2)
n
We construct the Lagrange interpolation to f at x;, i = 0,...,n and integrate over [a, b], i.e.,
—x; & b T —x;
I(f) / fol J dx:Zf(xi)/ L da.

We call Q(f) the numerical quadrature (or numerical quadrature rule) and usually write

= wif (1), (5.3)
=0
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where z;, ¢ = 0,...,n are the quadrature nodes and w;, ¢« = 0,...,n are the quadrature
weights. If the nodes are given by (5.2) and the weights by

b
X — Xy
w’L:/ Il jdmv
X; — Ij5
@ gt

then we call Q(f) the Newton-Cotes quadrature rule of degree n. Putting

~ Wy .
wW; = , 1=0,...,n,
b—a

then it is possible to show that the weights w; are independent of a and b.
Example 5.1. Newton-Cotes quadrature

e n =1 trapezoid rule T(f) = (b — G)M7 ie., Wy =wy =1/2.

o n. =2 Simpson rule S(f) = (b— a)f(a)+4f((ag_b)/2)+f(b), i.e., Wy = we = 1/6, w1 = 2/3.
Definition 5.2. We say that the quadrature Q(f) has the order p if
Qg) =1(9) Vg€ PP([a,b]),

i.e., Q(f) is exact for polynomials of degree p.

Determination of the Newton-Cotes for general n: We seek wy, ..., w, of the quadrature
Q(f) = wOf(xO) + wlf(xl) +eee wnf(xn)
The quadrature ) should integrate polynomial functions exactly. Hence, we put f := 1,

fi=a, fi=2% ..., f:=2a"

b
/ldz:b—a =wy+w+---+w, =b—a,
a
b b2 — 2 2 _ 2
zdr = = woro + wir1 + -+ WwpTy = ,
a 2 2
b 3_ .3 3_ 3
b® — b® —
/xzdx: 3@ =>w0$%+w1$%+---+wnxi: 3a’
a
b +1 n n+1 n+1
T — 1 Tt —
/ac”da::a+ :>w0x8+--'+wnx2:7a,
a n n
we obtain a linear algebraic system, which has to be solved. The weights w;, ¢ =0,...,n can
be found in textbooks.
5.1.1 Error estimates
From (4.3), we have
1 n
1
@) =@ = gy /) 1@ —a). & elab (54)



e trapezoid rule
b b 1 b
| @ [Ca@ae =5 [ e - @b

b
:;f”(n)/a (x —a)(z —b)dx

= )b~ )’

We use the mean value theorem in the integral form:
(If f(z) is continuous and g(z) > 0, then fab f(@)g(z)dz = f(n) f: g(x)dz.)

Hence, if f is linear, then f” = 0 and the trapezoid rule is exact.

e The Simpson rule: Let m := ‘IT‘H’. Let f € C*([a,b]), the Taylor expansion at m reads

F(x) =fm) + f/(m)r = m) + " (m) (@ = m)? + < fm) ) (55)
1 "
—i—ﬂf (m)(x —m)* +....

Integration of (5.5) over (a,b) gives (the “even” terms disappears)

1

1) = fom)(b = a) + 5 f"(m)(b— a)® + oo

f’”’(m)(b _ a)5 4+ ... (5.6)

Moreover, we put x := a and z := b in (5.5) and then we sum both relations, which

gives (again the “even” terms disappears)

(5.8)

o)+ 18 = 2 m) + 2" L=y 2 pry Oy )
Multiplying (5.7) by (b — a)/6 implies
f(“)‘gf(b)(b _a) = @(b —a) g m) (b~ a)® + ﬁf””(m)(b a4
Finally, (5.6) — (5.8) gives
1) = 3smo - o)+ L0 o o (G ) oo -
~ 5(f) — g " (m) (b~ a)”

Hence, the Simpson rule has the order 3!

Hint for exercise: Repeat and do similar examples.
Hint for exercise: Compute some integrals, e.g., f02 e~t* dt and estimate the error.

Theorem 5.3. The order of the Newton-Cotes quadrature is equal to:
n for odd n (number of nodes is even)
n+ 1 for even n (number of nodes is odd).
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Remark 5.4. Few comments:
e In practice, at most n < 8.
e Too high n are unstable.
o The Newton-Cotes quadrature are closed formulae since xg = a and x, = b. They are
problematic, e.g., for fol 1/y/x dx, where the integrand is not defined at the end-points.

5.2 Gauss quadrature formulae

We consider again the rule of the type

Q(f) = sz’f(ﬂfz% (5.9)

the weights w;, ¢ = 0,...,n and the nodes z;, ¢ = 0,...,n are chosen such that the order of
the quadrature is the maximal one.

Example 5.5. n =0, hence Q(f) = wof(xo). Therefore

b
/ldx:b—a:wo-l = wy=0b—a,
a

b 2_ 2
/:Uda::b 2(1 =wy-xo = (b—a)xy = x0:a+b.

Example 5.6. n =1, it is possible to derive

1
/_ @y = F(1/V3) + [(-1/V5),

as a result of a system of solving a system of nonlinear algebraic equations.

We have 2(n + 1) degrees of freedom, we can expect the order (2n + 1).

For n > 1, we can use orthogonal polynomials:

Let qo(x), q1(z), q2(x), ...(qi(x) € Pa,b], i = 0,1,...) be a sequence of orthogonal
polynomials with respect to the scalar product

b
(p,q) 32/ p(x)q(z) dz.

(E.g., Gram-Schmidt algorithm.)

Example 5.7. The Legendre polynomials

Lo(.CC =1,
Li(z) = =,
2k —1 k-1
Li(z) = : xLp_1(x) — Li_o(z), k=23,

forms the orthogonal basis on (—1,1).

41



Theorem 5.8. Ifz;, i =0,...,n are the roots of ¢,+1(x) (the (n+1)st orthogonal polynomial
on [a,b]), then the formula

b n
/ fla)dz = wif (i), (5.10)
a i=0
where
b — .
Wi = ¢l(l‘)dxv ¢’L = H ] ) 1=0,1, ;1
a S XLy — ZCj
7=0
i
is exact for polynomials of degree 2n + 1.
Proof. Let f be a polynomial of degree 2n + 1, we divide it by ¢,+1 and obtain
f(x) = Qn-‘rl(x)pn(x) + Tn(x>7
where p,, and ¢, are polynomials of degree n. Then f(x;) = r(x;), i =0,...,n. Integrating,

we obtain

/abf(x) dz = /aanJrl(l')pn(l') dz + /abrn(:n) dz = /abfn(:lr) du,

since gn4+1 and p, are orthogonal. From the choice of w;, the relation (5.10) is exact for
polynomials of degree n, hence

b b n n
/ f(r)dz = / r(z) do = Zwﬁn(ﬂci) = sz’f(%)-
a a i=0 =0

0

However, the task of finding the roots of the Legendre polynomial is not easy, but it can
be found in many textbooks.
Show on the computer

Ge [ J w zj
Gp | 1 1.00000000000000 0.50000000000000
G> | 1 0.50000000000000 0.21132486540519
2 0.50000000000000 0.78867513459481
Gs | 1 0.27777777777778  0.11270166537926
2 0.44444444444444  0.50000000000000
3 0.277TTTTTTIITT8  0.88729833462074
Gg | 1 0.17392742256873  0.06943184420297
2 0.32607257743127  0.33000947820757
3 0.32607257743127 0.66999052179243
4 0.17392742256873  0.93056815579703
Gs | 1 0.11846344252809 0.04691007703067
2 0.23931433524968 0.23076534494716
3 0.28444444444444  0.50000000000000
4 0.23931433524968 0.76923465505284
5  0.11846344252809 0.95308992296933
Ge | 1 0.08566224618959 0.03376524289842
2 0.18038078652407 0.16939530676687
3 0.23395696728635 0.38069040695840
4 0.23395696728635 0.61930959304160
5 0.18038078652407 0.83060469323313
6 0.08566224618959  0.96623475710158
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Hint for exercise: Derive two two-point (or three-point) Gauss quadrature using the
Legendre polynomials, see [GC12].

5.3 Composite rules

e it makes no sense to use too high n

e the composite rules are better: Let a = ) < & < -+ < &y = b be a partition of [a, b],
then

b N
/ f(z)dz = Z A f(z)dz
@ i=1"5i-1

so we apply the quadrature on each interval [§;_1,&].

Theorem 5.9. Let Q be a quadrature rule of order p (i.e., it integrates the polynomials of
degree p exactly). Let & = a+ hk, k=0,...,N with h :== (b—a)/N be a partition of [a,b].
Let Qy, be the corresponding composite rule. Let f € CP*1([a,b]), then there exists ¢ > 0 such
that

[I(f) —Qu(f)| <c max, FEDORP (b — a) + o(RPH). (5.11)
X€E|a
Proof. ONLY for the Newton-Cotes formulae with ODD number of nodes! Let
k=1,...,r. Then using Theorem 4.2 (the error of the Lagrangian interpolation), we have
1 P
flz) = @p(z) + o 1),f(p“’(xz) Iz =), e (&%) (5.12)
! 0

where x, € (§k—1,&k), op(T ) is the Lagrange interpolation at nodes xy ; := &1 + js, s =
&k —&k—1)/(p+1),5=0,...,p ( pis even). We have

&k &k
(@) de ~ Qu(Dle e = / op(@) da.
Ek—1 Erk—1

Then, from (5.12), we have

()l _ " f(z)dz = ’ (z) dz + ’ 71 1) ( |p| -
1 :—/ x dm—/ pp(x)de / (x —x
(&k—1.k) - P s (p+1)! k:]

Ek—1 =0

Q)| QTN O (€
=W&h 1, +/ — Tk
(€k—1:Ek) e, (D 1) = )
Then
I(f) - < (1) (1 S Skt 5.13
U0 = Q] < ma 7D (8 EL (5.13)
Summing (5.13) over k =1,..., N, we have
al b
I(F) — - I(F) — < (p+1) hp-&-li
[1(f) = @Qn(f) ; [(TF) = Qnllier 0] < max fEEROORTT =
since the sum contains N = (b — a)/h terms. O
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Remark 5.10. If Q(f) has order 3 (e.g., Simpson rule), then the half partition reduce the
error 16-times.

Example 5.11. FEvaluation of fol exp(z)dx = e — 1, composite rules with N = 2™ intervals,
Ry (f) is the true error :

Trapezoid Tule, I(f) =1.718281828459045:

h N Th(f) Rh(f) Rgh/Rh order
1.000000E+00 1 1.859140914229523E+00 1.408591E-01 — —
5.000000E-01 2 1.758931092464825E+00 3.564926E-02 3.9512  1.9823
2.500000E-01 4 1.72722190455751TE+00 8.940076E-03  3.9876  1.9955

8
6

m
0
1
2
3 1.250000E-01 1.720518592164302E+00 2.236764E-03  3.9969  1.9989
4 06.250000E-02 16 1.718841128579994E+00 5.593001E-04  3.9992  1.9997
5 8.125000E-02 32 1.718421660316327E+00 1.5398319E-04  3.9998  1.9999
6 1.562500E-02 64 1.718316786850093E+00 3.495839E-05  4.0000  2.0000
7 7T.812500E-03 128  1.718290568083479E+00 8.739624E-06  4.0000  2.0000
8 B8.906250E-03 256 1.718284013366820E+00 2.184908E-06  4.0000  2.0000
9  1.953125E-03 512 1.7182823T4686094E+00 5.462270E-07  4.0000  2.0000
10 9.765625E-04 1024 1.718281965015814E+00 1.365568E-07  4.0000  2.0000

Simpson rule, I(f) = 1.718281828459045:

h N Sh(f> Rh(f) RQh/Rh order
1.000000E+00 1 1.718861151876593E+00 5.793234E-04 — —
5.000000E-01 2 1.718318841921747E+00 3.701346E-05 15.6517 3.9682
2.500000E-01 4 1.71828415469989TE+00 2.326241FE-06 15.9113 3.9920

8
6

m
0
1
2
3 1.250000E-01 1.718281974051891E+00 1.465928E-07 15.9777 3.9980
4 6.250000E-02 16 1.718281837561772E+00 9.102727E-09 15.9944 3.9995
5 8.125000E-02 32  1.718281829028015E+00 5.689702E-10 15.9986  3.9999
6 1.562500E-02 64 1.718281828494606E+00 3.556089E-11 15.9999 4.0000
7 T.812500E-03 128 1.718281828461268E+00 2.223111E-12 15.9960 3.9996
8  8.906250E-03 256 1.718281828459185E+00 1.5394440E-13 15.9427 3.9948
9 1.953125E-03 512 1.718281828459054E+00 8.881784E-15 15.7000 3.9727
10 9.765625E-04 1024 1.718281828459047E+00 1.776357E-15 5.0000 2.3219

Gauss rule (n=1), I(f)=1.718281828459045:

h N Gn(f) Ru(f) Ron /Ry, order
1.000000E+00 1 1.717896378007504E+00 3.854505E-04 — —
5.000000E-01 2 1.718257165052592E+00 2.466341E-05 15.6284 3.9661
2.500000E-01 4 1.718280277824108E+00 1.550635E-06 15.9054 53.9914
8
16

m
0
1
2
3 1.250000E-01 1.718281731400156E+00  9.705889E-08 15.9762 3.9979
4 06.250000E-02 1.718281822390608E+00 6.068437TE-09 15.9940 3.9995
5 8.125000E-02 32  1.718281828079732E+00 3.793128E-10 15.9985 3.9999
6 1.562500E-02 64 1.718281828435338E+00 2.370726E-11 15.9999  4.0000
7 T.812500E-03 128  1.718281828457563E+00 1.481926E-12 15.9976 3.9998
8  8.906250E-03 256 1.718281828458953E+00 9.237T056E-14 16.0433 4.0039
9 1.953125E-03 512 1.718281828459038E+00 7.532747T2E-15 12.6061 3.6560
10 9.765625F-04 1024 1.718281828459046E+00 1.3322068E-15  5.5000  2.4594
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Gauss rule (n =6),

I(f) = 1.718281828459045:

m h N Gn(f) Ri(f) Ron/Ry,  order
0 1.000000E+00 1 1.718281828459045E+00 0.000000E+00 — —
1 5.000000E-01 2 1.718281828459045E+00 0.000000E+00  0.0000  0.0000
2 2.500000E-01 4 1.718281828459045E+00 0.000000E+00  0.0000  0.0000
3 1.250000E-01 8 1.718281828459046E+00  4.440892E-16  0.0000  0.0000
4 6.250000E-02 6 1.718281828459045E+00 0.000000E+00  0.0000  0.0000
5 3.125000E-02 32 1.718281828459045E+00 0.000000E+00  0.0000  0.0000
6 1.562500E-02 64 1.718281828459045E+00 0.000000E+00  0.0000  0.0000
7 7.812500E-03 128 1.718281828459046E+00  4.440892E-16  0.0000  0.0000
8§  3.906250E-03 256 1.718281828459045E+00  2.220446E-16  0.0000  0.0000
9 1.953125E-03 512 1.718281828459046E+00 6.661338E-16 ~ 0.0000  0.0000
0  9.765625E-04 1024 1.718281828459047TE+00 1.554312E-15  0.0000  0.0000
Example 5.12. FEvaluation of fol \ﬂx) de = %, composite rules with N = 2™ intervals,
Ry (f) is the true error :
Trapezoid rule, I(f) = 0.666666666666667 :

n h N Tw(f) Ry (f) Ry o/Ry  order
0 1.000000E+00 1 5.000000000000000E-01 1.666667E-01 — —

1 5.000000E-01 2 6.035533905932737E-01 6.311328E-02  2.6408  1.4010
2 2.500000E-01 4 6.432830462427466E-01 2.338362FE-02  2.6990  1.4324
3 1.250000E-01 8 6.581302216244542E-01 8.536445E-03  2.7393  1.4538
4 6.250000E-02 16 6.635811968772282E-01  3.085470E-03  2.7667  1.4681
5 8.125000E-02 32 6.655589362789417E-01 1.107730E-03  2.7854  1.4779
6  1.562500E-02 64 6.662708113785069E-01 3.958553E-04  2.7983  1.4846
7 7.812500E-03 128 6.66525657296825TE-01 1.410094E-04  2.8073  1.4892
8  3.906250E-03 256 6.666165489765280F-01 5.011769E-05  2.8136  1.4924
9 1.953125E-03 512 6.666488815499515E-01 1.778512E-05  2.8180  1.4946
0 9.765625E-04 1024 6.666603622189838E-01 6.304448FE-06  2.8210  1.4962

Simpson rule, I(f) = 0.666666666666667 :

n h N Sn(f) Ry (f) Rpya/Ry  order

0 1.000000E+00 1 6.380711874576983E-01  2.859548E-02 — —

1 5.000000E-01 2 6.565262647925707E-01 1.014040E-02  2.8200  1.4957
2 2.500000E-01 4 6.630792800850236E-01 3.587387TE-03  2.8267  1.4991
3 1.250000E-01 8 6.653981886281528E-01 1.268478E-03  2.8281  1.4998
4 6.250000E-02 6 6.662181827461796E-01 4.484839E-04  2.8284  1.5000
5 8.125000E-02 32 6.665081030783619E-01 1.585636E-04  2.8284  1.5000
6 1.562500FE-02 64 6.666106059362655E-01 5.606073E-05  2.8284  1.5000
7 T.812500E-03 128 6.666468462030957E-01 1.982046E-05  2.8284  1.5000
8  3.906250E-03 256 6.666596590744270E-01 7T.007592E-06  2.8284  1.5000
9  1.953125E-03 512 6.666641891086617E-01 2.477558E-06  2.8284  1.5000
0 9.765625E-04 1024 6.666657907176324F-01 8.759490E-07  2.8284  1.5000

Gauss rule (n=1),

I(f) = 0.666666666666667 :
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n h N Ghu(f) Ru(f) Ry o/Ry,  order
0 1.000000E+00 1 6.738873386790492E-01 7.220672E-03 — —
1 5.000000E-01 2 6.692395023997T495E-01 2.572836E-03  2.8065  1.4888
2 2.500000E-01 4 6.6757T7T701535970E-01  9.111035E-04  2.8239  1.4977
3 1.250000E-01 8 6.669888871745580E-01 3.222205E-04  2.8276  1.4996
4 6.250000E-02 16 6.667805949572163E-01 1.139283E-04  2.8283  1.4999
5  3.125000E-02 32 6.667069467851046E-01 4.028012E-05  2.8284  1.5000
6 1.562500E-02 64 6.666809078632009E-01 1.424120E-05  2.8284  1.5000
7 7.812500E-03 128  6.666717016914930E-01 5.035025E-06  2.8284  1.5000
8  3.906250E-03 256  6.666684468168600E-01 1.780150E-06  2.8284  1.5000
9  1.953125E-03 512  6.666672960448092E-01 6.293781E-07  2.8284  1.5000
10 9.765625E-04 1024 6.666668891854427E-01 2.225188E-07  2.8284  1.5000
Gauss rule (n =6), I(f) = 0.666666666666667 :
n h N Gn(f) Ri(f) Rpy2/Rp  order
0 1.000000E+00 1 6.669130850887391E-01 2.464184F-04 — —
1 5.000000E-01 2 6.667537887353612E-01 8.712207E-05  2.8284  1.5000
2  2.500000E-01 4 0.6066974689694490E-01 3.080230E-05  2.8284  1.5000
3 1.250000E-01 8 6.666775569252534E-01 1.089026E-05  2.8284  1.5000
4 6.250000E-02 16 6.666705169545143E-01 3.850288E-06  2.8284  1.5000
5  3.125000E-02 32 6.666680279489899FE-01 1.361282E-06  2.8284  1.5000
6 1.562500E-02 64 6.666671479526478E-01 4.812860E-07  2.8284  1.5000
7 7.812500E-03 128 6.666668368269568E-01 1.701603E-07  2.8284  1.5000
8  3.906250E-03 256 6.666667268274141E-01 6.016075E-08  2.8284  1.5000
9  1.953125E-03 512  6.666666879367035E-01 2.127004E-08  2.8284  1.5000
10 9.765625E-04 1024 6.666666741867594F-01 7.520093E-09  2.8284  1.5000

Hint for exercise: Examples verifying the order of convergence for both types of
quadrature rules, regular and singular functions.

5.4 Half-step size method
e How can we evaluate |I(f) — Qn(f)|?
e In Theorem 5.9, we do not know f®*1).

e We use the half-step size method.

We assume that

I(f) = Qu(f) + ChP*, (5.14)

where C' is an unknown constant (depending on f), i.e., the order of the method is p,
compare with (5.11). Repeating the computation with h/2 we get

o+l
I(f) = Qnp(f) + Cﬁ-
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Then, subtracting this relations, we have

Qual ) — Qulf) ~ (1

=I(f) = Qnp(f) =

_ﬁ

_ QualH) = Qnlf)

1

2r+l — 1

h

p+l _ (op+1 _ =z p+1N p+1 _ _
Jew—@one(3) -0 U - Qualh)

We carry out computation two-times and from the difference we estimate the error.

Example 5.13. FEvaluation of fol exp(z)dx = e — 1, composite rules with N = 2" intervals,

Ry (f) is the true error, “estim” is the error estimate by the half-step size method:
Simpson rule:

n h N Su(f) Ri(f) estim
0 1.000000E+00 1 1.718861151876593E+00 5.793234E-04 —
1 5.000000E-01 2 1.718318841921747TE+00 3.701346E-05 3.615400E-05
2  2.500000E-01 4 1.71828415469989TE+00 2.326241F-06 2.312481E-06
3 1.250000E-01 8 1.718281974051891E+00 1.455928E-07 1.453765E-07
4 6.250000E-02 16 1.718281837561772E+00 9.102727E-09  9.099341E-09
5  3.125000E-02 32 1.718281829028015E+00 5.689702E-10 5.689171E-10
6 1.562500E-02 64 1.718281828494606E+00 3.556089E-11 3.556062E-11
7 7.812500E-03 128 1.718281828461268E+00 2.223111E-12 2.222518E-12
8  3.906250E-03 256 1.718281828459185E+00 1.394440F-13 1.5389111E-13
9  1.953125E-03 512 1.718281828459054E+00 8.881784L-15 8.704149E-15
10 9.765625E-04 1024 1.71828182845904TE+00 1.776357TE-15 4.736952E-16

The Newton-Cotes formulae are suitable for the half-step size method:

|
i
x
I
-1

| |
+ +
X X X X
| |
-0.5 0

|

+

X X
i

0.5

!
+
X
1
1

Hint for exercise: Show examples comparing the computational error with its estimate
using the half-step size method.
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Chapter 6

Numerical solution of ODE (2
weeks)

Let n > 1, we consider ordinary differential equation (ODE)
y(t) = fty),  te(ab) (6.1)
y(a) =,

where y : [a,b] = R™, f: [a,b] x R" — R™ and n € R™. The problem is called initial-value
problem, 7 is called the initial condition.

Example 6.1. The growth of a population. The increase is proportional to the size of the
population

y/ =ky, k>0 — y(t) — ekt'
Unrealistic model.

Example 6.2. Draw figure Hook’s law: acceleration of an object on a spring is proportional
to the distance of the object from the equilibrium:

y'(t) = —ky(t), k> 0.
FEquivalent to

Y (#) = =(1)
(1) = —hy(t),
solution y(t) = c1 sin(vVkt) 4 ¢ cos(Vkt).
Example 6.3. The use of the numerical solution of ODE:
e CFD (computational fluid dynamics)
e animation “Star Wars”

The existence and uniqueness of the solution of (6.1) follows from the Picard theorem (if
f is Lipschitz continuous with respect to y).
We need also
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Definition 6.4. The system (6.1) is well-posed (or stable), if the solution of (6.1) depends
continuously on the data (i.e., initial condition n). This means that

y'(t) = f(t,y(t), yla) =
2Z(t) = f(t,2(t)), z(a)=n+6, &R,

then
ly(t) — 2(t)] < 6C (1),
where C(t) is an (exponentially increasing function) of t, but independent of §.

e This stability is called the zero-stability. If f is Lipschitz continuous, then (6.1) is
zero-stable.

e The stability is a key for numerical solution of (not only) ODE. Discretization and
rounding errors cause some inaccuracy, they should be under control.
6.1 Basic idea of numerical solution of ODE
e we define a partition of (a,b) : a =ty <t; <...,t, =0,
e we approximate y(tx) by yx, k=0,...,7
e we derive some formulas Draw figure

— Yg+1 = F(tg41,tk, yx) — one step method
— Ykt1 = F(tps1,thy - oyt Yk Yk—1s - - - » Ym) — multi-step method (m-step method)

e possibly, we reconstruct function g from [to, o], .-, [tr, yr] by an interpolation

Always, yi depends on all y;, i = 0,1,..., k — 1, different from numerical integration.

6.2 Examples of numerical methods

6.2.1 The Euler method

Let tg,...,t, be a uniform partition of [a,b] and h = ¢34 — tg, k = 0,...,7 — 1. Let
y € C2%([a,b]), Taylor at t;:

Yltnan) = 9(0) + Ry () + 5P, G € [ sl

Omitting the last term, using y'(tx) = f(tx,yx) and yx =~ y(tx), k = 0,...,r, we obtain the
Euler method

Yk+1 :yk+hf(tk7yk)7 k:0717"‘7r_17 (62)
Yo =1
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We may write

Y(tet1) — y(tx)
h
Yk+1 — Yk
h

= (ths y(t1)) + 5y (),

=f(tr, yk),

the omitted term %hy”(&k) =: L, corresponds to the local discretization (or the local trunca-
tion) error (see below), it is O(h), so the Euler method is a first order method.
The global error

Gk::y(tk)_yka k=0,1,...,m

Remark 6.5. chvzo Ly # Gn.

3.5
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Better figure by J. Hrnéif:
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6.2.2 Midpoint formula

Using the relations

we get

6.2.3 Heun’s method

Y (0t 5) =F 0+ 5yt + 2),

yltn + 5) =y(ta) + 5o/ (1) + O(%),

y'(tk) = (tr, y(te)),

, h — h h
(y (tk+§)%> sz(tk-%ﬂyk-ﬁ-gf(tk,yk))-

h 2

Integration of (6.1) over (¢,t + h) yields

t+h

y(t+h) =y(t) + t f(s,y(s)) ds.

We approximate the integral by the trapezoid rule and put

h
Yk = Yk + 5 (f (i, yr) + f(trr1, Urs1)) -

This is an implicit method, we can use an approximation (by the Euler method)

J(rg1: Urs1) = yr + hf (e, yr),

which gives the Heun’s method
This can be rewritten in more usual form

Yo =1,
Yk+1 =Yk + h(q1 + q2),

1
q1 = §f(tk7yk)7

1
@ = §f(tk + h, Y + 2hq1).
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It is a second order Runge-Kutta method, see bellow.

6.2.4 Two-step method
Let y € C3([a,b]), Taylor:

(tier) =y(ta) + by (8) + 219" () + O(B?),
y(te) + 20y (1) + 2h°y" (L) + O(R%).

Y(te+2)

The -4 multiple of the first relation added to the second equation gives

Y(ter2) — (terr) = =3y(te) — 20y (t) + O(h?),

which allows us to define

Yk+2 — k1 + 3yx = —2hf (tk, yr)
and yo = 7n7. Here y; has to be computed by a one-step method.
e it is a second order method,
e more economical than the Runge-Kutta method

e 2 little less useful.

6.3 Analysis of a one-step methods

A general one-step method can be written in the form
Yer1 =Yk + Y (e, y, h),  k=0,1,... (6.3)
Yo =11,
where 1 : [a,b] x R x RT — R is the relative incremental function.
Example 6.6. The form of ¥:
e the Euler method: ¥(t,y,h) = f(t,y)
e Heun’s method: ¢(t,y,h) = 3 [f(t,y) + f(t + h,y + hf(t,y))]

Relation (6.3) implies

y’“Lh_yk =Pt ye,h),  k=0,1,... (6.4)

Definition 6.7. The one-step method (6.3) is consistent if limp_o (¢, y,h) = f(t,y).
Example 6.8. The Fuler method is consistent.

Hint for exercise: Proof of the consistency of the midpoint formula?
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Definition 6.9. The local truncation error is given by

y(t+h) —y(t)

T(t, h) = Y

The ratio M 1s called the exact relative increment.
Lemma 6.10. If 7(t,h) — 0 for h — 0 for all t € [a,b], then (6.3) is consistent.

Definition 6.11. The one-step method (6.3) is zero-stable, if the numerical solution of (6.1)
depends continuously on the data (i.e., initial condition n). This means that

Yk+1 :yk+h¢(tkaykvh)v kzoalv"'a Yo =1,
Zk41 :Zk—l—h¢(tk,zk,h), k=0,1,..., zo =1+ 9,

then

lye — 21| < 0C(tr),

where C(t) is an (exponentially increasing function) of t, but independent of 8.
Lemma 6.12. If v is Lipschitz continuous, then the one-step method (6.3) is zero-stable.

Definition 6.13. The method is convergent, if Gy — 0 for h — 0,
z'.e., MaXk:q+kh<b |yk — y(tk)| —0 fO’f’ h— 0.

Theorem 6.14. Let us consider the one-step method (6.3). Let function v be Lipschitz
continuous in y: exists L > 0

[ty h) =t 9, M) < Lly =gl Vy,g € R", t € [a,b], h € (0, hol,

where hg > 0 is the given mazimal time step and |7(t,h)| < ChP (i.e, the one-step method
(6.3) is consistent and zero-stable). Then the global error is bounded by

L(b—a) _ 1

max_|yx — y(ty)| < ChPS

ksat+kh<b 7 , h €(0,hq], (6.5)

Proof. We have

Yk+1 =Yk + Db (tr, yr, h),
Y(tr1) =y(te) + hab(ty, y(tr), h) + h7(ty, h).

Subtracting them and putting Gy, := y(tx) — yr we have

Gry1 = Gi + h[(t, y(tr), h) — (e, yr, h)] + b7 (tk, ).

The use of the Lipschitz continuity gives

Grsa| < |Gr| + hLIGy| + hl7(ty, h)| < (1 + hL)|Gy| + ChPTL.
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Hence, using the same estimates for Gy, Gi_1, etc., we have

|Gra1| <(1+ hL)|G| + ChPH
<(1+hL)((1 + hL)|Gr_1| + CHPTY) + CRPT!

1
=(1+ hL)*|Gy_1| + CHP*1 Y "(1+ ALY
j=0

k
<(1+ RL)" M Go| + CRPT Y (14 ALY
=0

In our case Gg = 0. Further, summing the geometric series

(1+hL)M -1

= ChP
hL

|Grya| < CRPH!

(1+hL)F1 —1
i .

Using the fact that (1 + hL)*t! < e® DAL and kh < b—a for all k = 1,2, ..., we have

(k+1)RL _ 4 (b—a)L _q
(& (&

< p_____ 00 < S —
|Git1| < Ch 7 < Ch 7

The assertion of Theorem 6.14 says:
e method (6.3) converges for h — 0,
e order of convergence is O(hP) the same as the local truncation error (¢, h).
e the constant in the estimate exponentially growths.
A generalization of Theorem 6.14:
Theorem 6.15. If (6.3) is zero-stable and consistent then it is convergence.

Example 6.16. Let us consider

y'(t) = — 100y + 100¢ + 101,
y(0) =1.

The exact solution is y(t) = 1 +t. The Euler method

Yo =1,
Yk+1 = Yk + A (—100y, + 100hk +101), k=0,1,....

diverges for h = 0.1, see Example 1.11.

It is in a contradiction with (6.14)7 NO.
The zero-stability is not enough for the computations with fixed h.
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6.3.1 A-Stability of the Euler method
Let f(t,y) € C'. For the Euler method, we have

Yk+1 =Yk + hf (tr, yr),
Y(trs1) =y(te) + hf(te, y(tr)) + h7(ty, h).

Subtracting them and putting Gj := y(tx) — yx we have
Gry1 = G+ h[f(te, y(tr)) — f(te, ye)] + h7(te, h).

The use of the mean value theorem gives: 3¢ such that

Fltasylte)) = £t ) = 52 (0, Oly(ts)) = ] = SO
Hence,
Gri1 = Gi + hf' (Q)Gy + hr(ty, h).
and thus

|Gre1l < 1+hf||Ge|  + |hT(t, h)|.

propagation of err. local error

The term A := 1+ hyf’ is called the amplification factor.

Definition 6.17. A numerical method is absolute stable ( or A-stable) if the magnitude of
the amplification factor is strictly less than 1.

This means that for a stable numerical method, the propagation of the errors from previous
time step is limited. Therefore, the rounding errors do not destroy the approximate solution.
For the explicit Euler equation, we have the stability condition

1+ hf'] <1,
which means that
e [/ <0, we say that the problem (6.1) is A-stable,

o hf' € (~2,0) = hy < —2/f.

6.4 Construction of numerical methods for ODE

6.4.1 Method based on the Taylor expansion
Let y € CPTL. Then the Taylor

yt+h) =y(t)+>_

i=1
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and hence

y(t+h) —yt) _ zp: y() (&) i1 y* ()

Now, we have
y'(t) —f(t y(t)),

V'(0) = F(00(0) = Tt 0(0) + 5 (0 5t (1)

:Z{( VlE)) + £t YOG (60,

00 =5 [(5+ 1) wuen] = .

Defining the differential operator

Dy Oy

and

we find that

Then (6.6), can be written

(t+h —y(t (D'~ 1f (t,y(t ))hi_1+y(p“)(f)
— (p+1)!

M@

hP.

Hence, we define one-step method (6.3) with

AP o) o CYIGIT

=1

the truncation error is

y(p+1)(g) -

7(t.h) = TES

i.e., the ptP-order method.
However, the evaluation of D'f is expensive.
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6.4.2 Runge-Kutta methods

Idea is to define the relative incremental function i by

t y, h sz% t Y, h 7

where

ity h) =f(t, y),
@(t,y,h) =f(t+ azh, y+ Barhqi(t,y, h)),

i—1
ql(t7y7h) :f t—i‘O[ih, y+hZBZJQJ(tJy7h) ) i:27”'78‘
j=1

The values s e N, w; €R, i=1,...,5,, €R, i=2,...;sand B;; €R, j=1,...,i—1, i =
1,...,s have to be suitably chosen. Sometimes, we call the s-stage method. The increase of
the accuracy is obtained by “intermediate states”.

2-stage Runge-Kutta method
Let

5 <Di—lc>|<t, y(t) i1,

1;(@ Y, h) =

i=1
be the relative incremental function for the method based on the Taylor expansion. If we
derive the Runge-Kutta method with

t Y, h sz% t,y,h 7

such that

w(ta Y, h) - @(t, Y, h) - O(hQ)a
then the resulting Runge-Kutta method has order 2. Hence,

Y(t,y, h) =wif(t,y) +wa f(t + agh,y + Barhf(t,y)), (6.7)

9t9.0) =F(t.) + S (DI(t,9) (63)

—rteo)+y (G e+ FenGien).

The Taylor expansion for a function of several variables:
f(t+ ash,y+ Bahf(t,y) (6.9)

0 0
s+ 5P gt 2L 1) + 0007,
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From (6.7) and (6.9), we have

of(t,y) ol 4w of(t,y)

o0 gy Parhf(t.y) + O().

w(tayvh) :(wl —|—w2)f(t,y) + w2 (610)

Comparing (6.8) and (6.10), we have the relations

wy +wy =1,

1
Wl = 5)

1
'UJ2521 = 5

We have 3 equations for 4 unknowns, we put ws := - # 0, then the choice

az=1/(2y),  Pa=1/(2v)
leads to the second order Runge-Kutta method. In practice, one uses v = 1, v = 3/4 and
v=1/2.

Remark 6.18. It is possible to derive the Runge-Kutta method of order p = s for s < 4. In
order to have the method of order 5, we need s > 6. Hence, the fourth order Runge-Kutta
methods are the most used ones.

wy =1-—7, w2 =7,

Hint for exercise: Derive third order Runge-Kutta method.

6.5 Error estimates by the half-size method

e How large is the discretization error?

e Theorem 6.14 gives

6L(b—a) -1
lyx = y(t)| < ORP—— (6.11)
which over-estimates the error. It takes into account the worst-case scenario.
Asymptotic error estimate by (6.11)
Euler method: yn1+1 = yn + hf(xn,yn), h = 276 = 0.015625.
ODE Yy =y Y =y
y(0) =1 y(0) =1
exact y(z) = exp(x) y(z) = exp(—x)
In Yn €n = Yn — y(xn) estim e, Yn €n = Yn — y(xn) estim ey,
1.0 2.69735 -0.02093 0.03649 | 0.364987 -0.002892 0.013424
2.0 7.27567 -0.11339 0.36882 0.133215 -0.002120 0.049914
3.0 19.62499 -0.46055 2.99487 || 0.048622 -0.001165 0.149016
4.0 52.93537 -1.66278 22.86218 || 0.017746 -0.000570 0.418735
5.0 142.7850 -5.6282 170.9223 || 0.006477 -0.000261 1.151666

error ~ 4%

40x over-estimated
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We assume that
y,gh) — y(téh)) ~ ChP.
We take the partition with h/2, then t](gh) = tg,;/m and
v = yltg”) = Ch/2)

The subtraction gives

h/2 h ~ . y(h) _ y(h/2)
WPy~ a2y s Oy s B
hence
h h/2
S0 _ i 10 v
2k 2k o 1

The error estimate by the the half-size method.

Error estimate by the the half-size method
ODE: ¢/ =1 — 32, y(0) = 5, 4th Runge-Kutta 4. h = 0.04

Ty Yn error y, — y(zy) estim
0.00 | 5.000000 0.0E+00 0.0E+4-00
0.04 | 4.200388 3.3E-05
0.08 | 3.630695 3.8E-05 2.4E-05
0.12 | 3.205414 3.5E-05
0.16 | 2.876746 3.1E-05 2.2E-05
0.20 | 2.615879 2.7E-05
0.24 | 2.404407 2.3E-05 1.7E-05
0.28 | 2.230026 2.1E-05
0.32 | 2.084192 1.8E-05 1.3E-05
0.36 | 1.960791 1.5E-05
0.64 | 1.455073 0.6E-05 0.5E-05
0.68 | 1.412863 0.6E-05
0.72 | 1.375166 0.5E-05 0.4E-05
0.76 | 1.341398 0.5E-05
0.80 | 1.311068 0.4E-05 0.3E-05
0.84 | 1.283759 0.4E-05
0.88 | 1.259116 0.4E-05 0.3E-05
0.92 | 1.236835 0.3E-05
0.96 | 1.216654 0.3E-05 0.2E-05
1.00 | 1.198345 0.3E-05
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6.6 Analysis of the rounding errors

The one-step method is written in the form

Yk+1 :yk+h¢(tk7yk7h)7 k:O717 (612)
Yo =1,

however, in practice we have

Uk+1 =0k + A0 (g, Ogy h) + Ext1, k=0,1,... (6.13)
Yo =1,
Yvhere ik is the representation of yj, in the finite precision arithmetic. (We assume that f, = t,,
h = h, etc.
e What is the rounding error, i.e., 7y := §p — Y&

Theorem 6.19. Let the one-step method (6.13) have the function v Lipschitz continuous
and

lek] < e Vk=1,2,...
Then the rounding error is bounded by

L(b—a) _ 1
ce

< - .14
k;ggﬁgbm‘ ~—h L (6.14)

Proof. The proof is analogous to the proof of Theorem 6.14. We have
Ykt+1 =Yk + Y (tk, Yk, h),
Jk+1 =0k + (e, Ik, h) + €
Subtracting them and putting 7 := y(tx) — yx we have
Tht1 =Tk + h[Y(tk, G, ) — P(te, Y, h)] + €
The use of the Lipschitz continuity gives
[Tk41] < Irel + ALk + € < (L4 RL)|rg| + €
Hence, using the same estimates for 7y, rx_1, etc., we have
[7kt1] S(L+AL)|rk| + €
<(U+ RL)((1+ hL)[rea] + ) + ¢
1

=(1+hL)’|re_1|+ €D (1+hL)
j=0

k
=(1+hL)* ro| +€> (1+hL).
j=0

In our case rg = 0. Further, summing the geometric series

gl < LEALH 1 e QUL -
= RL h L ‘

Using the fact that (1 +hL)F*! < e*+TDRL and kh <b—aforall k=1,2,..., we have
¢ e(k+DRL _ 1

| ‘ < < € e(b—a)L -1
, € €
kil =1 L = h L
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Hint for exercise:

Prove this theorem in correlation with Theorem 6.14.
Influence of the rounding errors (simple accuracy)

ODE 3 =1 —y, y(0) = 2, exact solution y = 1 + exp(—x), second order method

x h UYn disc. err. round. err. | comput. err.
1E-2 | 1.36789477 | -0.00001527 | -0.00000006 | -0.00001533
1E-3 | 1.36788023 | -0.00000016 | -0.00000063 | -0.00000079
1.0 | 1E-4 | 1.36788575 | 0.00000000 | -0.00000631 | -0.00000631
1E-5 | 1.36794278 | 0.00000000 | -0.00006334 | -0.00006334
1E-6 | 1.36852278 | 0.00000000 | -0.00064334 | -0.00064334
1E-2 | 1.13534665 | -0.00001129 | -0.00000008 | -0.00001137
1E-3 | 1.13533631 | -0.00000012 | -0.00000091 | -0.00000103
2.0 | 1E-4 | 1.13534376 | 0.00000000 | -0.00000848 | -0.00000848
1E-5 | 1.13542195 | 0.00000000 | -0.00008667 | -0.00008667
1E-6 | 1.13617413 | 0.00000000 | -0.00083885 | -0.00083885
1E-2 | 1.04979342 | -0.00000624 | -0.00000011 | -0.00000635
1E-3 | 1.04978815 | -0.00000006 | -0.00000102 | -0.00000108
3.0 | 1E-4 | 1.04979648 | -0.00000000 | -0.00000941 | -0.00000941
1E-5 | 1.04988325 | -0.00000000 | -0.00009618 | -0.00009618
1E-6 | 1.05090221 | -0.00000000 | -0.00111514 | -0.00111514
6.7 Multi-step methods
The ODE problem
y'(t) =fty®), te(aDb)

y(a) =,

Let xx, =a+ kh, k=0,1,..., we put fr = f(tx,yx), the multi-step method

am 7# 0 and |ag|+|Bo| # 0. We evaluate ypim USING Yrtm—1, Yktrm—2;- - -

e The value yq is given by the initial condition and y, ...

m m
Zazyk+l:h261fk+l7 k:0717"'7
i=0 =0

(6.15)

(6.16)

, Yr, m-step method.

,Ym—1 by a one-step method.

e If 5, # 0 then the method is implicit, we need to solve non-linear algebraic system

— Newton method

— predictor-corrector method

1. by an explicit method (predictor) we evaluate ¢ o

2. by an implicit method (corrector) we evaluate y

Oémy?fm + Z QiYk+i = hﬁmf(tk+m7y§€+m) +h Z Bikaria [ = 07 17 o

explicit relations.

m—1

1=0

I+1

k+m by

m—1

1=0

e multi-step methods are not suitable for a variable time step.
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6.7.1 Adams-Bashforth methods
Integrating (6.15) over (t,tr + 1) gives
tet1
vt~ ylte) = [ s,u(s)) ds.
tk
We approximate f(s,y(s)) by its Lagrange interpolation at
[tk fel,  [tk—1s fe—1ls  [te—2, fr—2ls- ooy [tk—m+1, fromls

then we define the Adams-Bashforth method

m—1 m—1

03 b b 1/tk+1||s_t’” ds, i=0 |
Yk+1 = Yk i J k—i i = T S 1=0,...,m—1.
+ var: i i) ) h " 11 tk—i_tk—j ’ 3 )

j#i

Explicit formulae, the truncation error is O(h™).

Example 6.20. Two step method

3 1
Yk+1 = Yk + h <2fk - 2fk—1> .

6.7.2 Adams-Moulton methods

Integrating (6.15) over (tg,tx + 1) as above and we approximate f(s,y(s)) by its Lagrange
interpolation at

et froval, [ fal, =1 fo—1lso ooy [thmmets Jo—mal,

then we define the Adams-Moulton method

B m B 1 trt1 s — tk+1fj .
Ykt =Yk + D> biferii, bi—E P -ds, i=0,...,m—1.
=0 tr JZO k+1—1 k+1—j
NE

Implicit formulae, the truncation error is O(h™*1).

Example 6.21. One step, second order method:
1 1
Ykt1 = Ye t 0 Sfer1 + 5 Sk ) -

Definition 6.22. If the multi-step method (6.16) has order at least one, then it is consistent,
i.e., the local truncation error converges to 0 if h — 0.

6.7.3 Backward difference formulae

The backward difference formulae

> Qiypri = hfigm,  k=0,1,... (6.17)
=0

The best stability property.
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6.8 Analysis of the multi-step methods

The multi-step method reads
m m
Zaiyk—H = hZBlfk-‘ru k=0,1,... (618)
i=0 i=0
The local truncation error is given by
T(t,y,h) : Zazy (t +ih) — Zﬁ-f(t—}—ih,y(t—l—ih)). (6.19)

Definition 6.23. The method (6.16) has order p if 7(t,y,h) = O(hP).

Theorem 6.24. The method (6.16) has order p if and only if

m m
dai=0, > dai=j3> 778, j=1,....p
i =0 =0

Proof. We expand 7(t,y, h) in the Taylor series with respect to y. First we have

p
y(t +ih) = > yY)(
7=0

(h"*h)
and

flt+ihy(t+ih)) =y/(t+ih) =) y<j+1>(t)7(

This gives together

T(t,y, h) :% > auy(t+ih) = By (t+ih)
=0
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Lemma 6.25. If method (6.16) has the order at least one, i.e.,

m m m
Z%‘ZO and Ziaizz&
i=0 i=0 i=0

then it is consistent
e Is the order of convergence sufficient for a reasonable method?

Example 6.26. The second order method

13 5 5
Ykt+2 — 3Yk+1 + 2y = h(ﬁfkw - gfk—i—l - Efk)-

Let us consider simple problem
y=0 y0)=1 = yt)=1
Let us consider a small perturbation y1 = 1+ €, then

y2 =3y1 — 2y0 = 1 + 3e,
Y3 =3y2 — 2y1 = 1 + Te,
Y4 =3y3 — 2y2 = 1 + 193¢,

ye =1+ (2F — 1e.

For e = 2793 then after 53 steps the error is of order 1 and after 100 steps the error = 247.
The method is unstable for any h > 0/

6.9 Stability of the multistep method

Let us consider again

Then the multistep method reads
m
D aiypri =0, k=0,1,... (6.20)
i=0

Relation (6.20) represents the linear difference equation with constant coefficients. The solu-
tion is a sequence {yx}72 .

Example 6.27. Let m = 2 then (6.20) reads
aay2 + a1y + aoyo = 0,
a2y3 + a1y + aoyr = 0,

oy + ay3 + apyz = 0,
aoys + a1y + apyz = 0,
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Qo a1 Q2 Yo

Qo Q1 Q2 Y1
ap Q1 Qg Y2 =0.

ap a1 02 Y3

We need to solve it. Let us seek the solution in the form g = £*. Inserting into (6.20),
we have

Em: o Ft = ¢k zm: ;& = 0. (6.21)
=0 =0

If £ # 0 then the values £ solving (6.21) are the roots of the characteristic polynomial function
m .
p(&) = g, (6.22)
=0

Obviously, if & is a root of (6.22) then the sequence

(-

is the solution of (6.21). Moreover, if § # 0 is a root of (6.22) with the multiplicity p; then
the sequence

{2, k@, {k(e— D& 12, (6.23)
AR = 1) (R =+ 2) (&),

are the solutions of (6.21). This means

{yk}zozo = gla Elzv 5?7 5[47
{yk}zO:O = 17 2£l> 35127 45137

{yk}zozo = 07 2a 6&7 124-[27

Relation (6.23) follows from the following observation. If { # 0 is a root of p(§) with the
multiplicity p;, then it is a root with the multiplicity p; of

Pn(€) =&"p(§)  n€No.

Hence, p; — 1 derivative of ¢,, is equal to zero, thus

Gn(§) =) @it =0 VneN,
=0

(6n)'(§) =D aili+n)¢™™ =0 VneN,,

1=0

(6)"(€) =Y ai(i+n)(i+n—1)ET2=0  ¥neN,
=0
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If&:thenweputo-fl_j:0forj>0,i.e.

G=0: & {m}Zo=10,0,0,...
ké-lk_l : {yk}iozo = 17 170707 v
k(k — 12 {u}i =1,1,1,0,...

Theorem 6.28. Let &, | =1,...,z be the roots of p(§) with the multiplicity p;, 1 =1,...,z.
Then the solution of (6.21) reads

z
ve =Y (el + skl 4 k= 1) (k= p 25 ).
=1
(If & = 0 then weputO-{l_j =0 forj>0.)
Proof. See [FK14]. O
In order to avoid a propagation of the error we require that
e All roots of |p(¢)| < 1.
o If |p(§)| =1 then its multiplicity is equal to 1.

Definition 6.29. We say that (6.18) is stable (or more precisely zero-stable) if the roots of
the corresponding characteristic polynomial satisfy the above conditions.

Theorem 6.30. The multistep method (6.16) is convergent if and only if it is stable and
consistent.

Remark 6.31. There exists many types of stabilities, A-stability, D-stability, «-stability, etc.

Hint for exercise: Given multistep method, decide if it is table or not, set the order of
the method.
Hint for exercise: Derive the multistep method in the given form
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Chapter 7

Numerical optimization (1 week)

Basic task: let J : U — R be a mapping, U C R" we seek the minimum of J on U, i.e., we
seek % € U such that

J(a) < J(u) YueU. (7.1)
Remark 7.1. If we need a mazimum of J, we seek minimum of —J.

Example 7.2. Interpolation by the least square technique: Let (z;,y;), i = 1,...,n be the
given data, we seek a curve f = f(aq,..., ., ) depending on the real parameters aq, ..., o,
such that

s manimal.
Example 7.3. The optimalization of the shape of a ship.

e The horizontal cut of a ship T' can be parametrized by a function ¢ : [a,b] — R?,
I ={¢(t) e R?, t € [a,b]}.

e The flow around the ship is described by a system of partial differential equations, T’
defines a boundary of the computational domain.

e Solving of this system we obtain the distribution of pressure p

o The drag force is given by
Fp(o) :/pm ds,
r

where ny is the component of the unit outer normal to I' in the direction of the flow.
e The aim is to find ¢ such that Fp(¢) is minimal.

e In practice, we prescribe ¢ by a finite number of parameters.
Our tasks:

e When exists a unique solution of (7.1)7

e How can we approximate the unique solution of (7.1)?
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7.1 Existence of the minimum

Theorem 7.4. Let U be a closed and bounded domain, J : U — R a continuous function,
then there exists a minimum of J on U.

Definition 7.5. Let U be unbounded domain. We say that J is coercive on U if

lim  J(u) = 0.
u€U;|[uf o0

Theorem 7.6. Let U be a closed and unbounded domain, J : U — R a continuous and
coercive function, then there exists a minimum of J on U.

Proof. Let a € U. Since f is coercive, there exists R > 0 such that
a€UNB,R)#0, J(u) > J(a) +1Vu e U\ B(0,R),

where B(0, R) is the closed ball with the centre at the origin and the radius R. Let u be the
minimum on U N B(0, R) (exists due to Theorem 7.4). It is a minimum on U since

Jw) > Ja)+1>J(a) > Ju) YueU\ B(0,R).
U

Definition 7.7. Let J € CY(U), where U is open. For u € U, p € R™ we define the
directional derivative of J at w along the direction ¢ by

7)== lim 2 (T + 0p) — J(w).

It is valid that

T
J' (u; ) = VJ(u) - o, VJ(u) = (%(u),,ii(u)) :

Definition 7.8. Let U C R" be a convex set. We say that J : U — R is a convex function if
Ju+60(v—u)) < J(u)+0(J(v)—J(u)) Vu,v € U V0 € (0,1).
We say that J is a strictly convex function if
Ju+60(v—u)) < J(u)+0(J(v)— J(u)) Vu,v € U, u# v, V0 € (0,1).
Lemma 7.9. Let U C R™ be an open convex set, J € C1(U). Then
i) J is convex < J(v) > J(u) + J' (u;v — u) Yu,v,€ U .
i) J is strictly conver < J(v) > J(u) + J (u;v —u) Yu,v € U, u#u .

Proof. Four steps.
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i) = Let J be convex. Let u,v € U, then
Ju+0(v—u)) < Ju)+6(J(v) — J(u)) Vo € (0,1),
hence

J()—Ju) > =(J(u+0(v—u)) —J(u)) Vo € (0,1).

| =

Let & — 07, then

T0) = J(w) 2 T (It 00— w) — J(w) = J' (0~ w).

-0t
i) < Let
J(©) > J(u) + J'(u; v — u) Vu,v,€ U
Let u,v € U, 6 € (0,1) arbitrary. We put ¢ := u, & = u + 6(v — u). Then

J(u) >J(u+0(v —u)) + J'(u+0(v—u); —0(v —u)) (7.2)
=J(u+0(v—u))—0J (u+0(v—u);(v—u))

Similarly, we put v := v, & = u + 6(v — u),then

J() >J(u+ 0w —u))+J (u+0(v—u); (1 —0)(v—u)) (7.3)
T+ 00— w)) + (1 — 0)T"(w + 00 — w)s (v — u))

Performing (1 — 0)(7.2) +60(7.3) , we have
(1—-0)J(u) +60J(v) > J(u+0(v—u)), uwvel, 0c(0,1),
Hence, J is convex.

ii) < is completely the same as i) <

ii) = Let J be strictly convex. Let u,v € U, u # v, § € (0,1). Then
Ju+0(v—u)) < J(u)+0(J(v) — J(u)),

hence

Theorem 7.10. Let U be open, J € C*(U).
i) Let w € U be a local minimum of J, then J'(u;p) =0 for all ¢ € R™ (i.e., VJ(u) =0).
ii) Let U be convez, J be convex. Then, the following assertion are equivalent:

a) @ is a local minimum
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b) 4 is a minimum

c) VJ(u)=0.
iit) If J is strictly convex, then J has at most one minimum.
Proof. i) Known results of the mathematical analysis.
ii) — b)= a) is obvious
— a)=c¢)isi)

— ¢)= b). Since J is convex then using Lemma 7.9, we have
J(v) > J(u) + J'(u;v —a) = J(a) Vv € U,
hence @ is the local minimum of J on U.

iii) Let J has two minima wu; # ug. Since J is strictly convex then using Lemma 7.9, we
have

J(ul) > J(UQ) + J/(ug;ul - UQ) = J(UQ)

Hence us can not be the minimum.
O

Definition 7.11. Let J € C*(U), U €C R™. Then we define the second order derivative of
J at w € U along the directions ¢ and ¢ by

1

We have

" T 12 2 62‘] !
i) = D40, 040 = {52}

ij=1
D?J is called the Hess matrix. Then, using the Taylor series, there exists 6 € (0, 1) such that
J(v) = J(u) + J (u;v —u) + %J”(u +60(v—u);v—u,v—u).
Theorem 7.12. Let J : R® = R, J € C? and let there exists o > 0 such that
T'(wp,0) 2 allpl* Vu,p € R"
Then J is coercive and strictly convexr on R™.
Proof. The Cauchy inequality gives
|7/ (03w)| = [VJ(0) - u| < [IVTO)|[[|ull =: M]lull,
where M < oo since J € C?. Moreover, the Taylor expansion
T(w) =J(0) + J'(0;w) + %J"(Gu; 1)

«
>J(0) = M|lull + §IIUII2 — oo for luf| = oo,
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hence J is coercive.
Let u # v, using the Taylor expansion

J(w) =J(u) + J (u;v —u) + %J”(u—i—@(v—u);v—u,v —u)
> () +J' (w0 —u) + o — ul?
>J(u) + J (w0 — u),
hence J is strictly convex. (]

Theorem 7.13. If J satisfies the assumptions of Theorem 7.12, then there exists a unique
minimum of J.
7.2 Numerical methods seeking the minimum of J
Let J : R™ — R be a mapping, we seek u € R™ such that
J(u) < J(u) YueR"™. (7.4)
e The minimum of J can be sought numerically (approximate value is sufficient).

e we need to define a sequence uq,uo, ..., such that up — u, where @ is the solution of

(7.4).
e As usually, ug1q is computed from uy, we employ the recurrence formulae
Ukt1 = Uk + PPk, k=0,1,2,..., (7.5)
where i € R™ is the direction of the descend py € R is the size of the descend.
e How to choose ¢ and pp?
e Idea: if uy is an approximation then uy,1 should be such that J(ugs1) < J(ug).

It is suitable to choose @) € R™ such that
J (ug; or) = VJ (ug) - or < 0. (7.6)
Theorem 7.14. Let J € C*(R™), (7.5) and (7.6) be valid. Then there exists p > 0 such that
J(ugy1) < J(ug)  for px € (0, p).
Proof. The Taylor relation gives
I (k1) = J(up) + prd (uns ) + %Pit}”(ﬂ; Pk, Pk);
where 5 € R” is between wuy and uy + prpr. Let K > 0, then there exists M > 0 such that

1T (B; ¢k, )| < M VB = uy + poy, p € 0,K].
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Thus

1
J(upy1) = J(ug) + pie | J' (urs o) +5Pk J"(B; ¢k, o)
= R P
< =

Hence, there exists p > 0 such that

I (uy) + %Pkt]”(ﬁ; Yk, ok) <0 Vpi € (0,0)
and thus J(ug+1) < J(ug). O
7.2.1 Methods of the deepest descent
Usually, we put
ok ==V (uk),
the deepest descent. Then
T (ug, pr) = =V (ug) - VI (u) = =V (ug) > < 0

provided that V.J(ug) # 0.
Two possibilities:

o fixed step pg:
Theorem 7.15. Let J € C?(R") and let there exists A\ > 0 and A > 0 such that
Mel? < ¢TI (e < Allgl®  Vu,p € R%

Putting, pr = 2/(A+ A) and ¢i := —VJ(uy), the method (7.5) converges to the mini-
mum of J.

e optimal step pi: we put
pr. = arg min .o J (ug + ppr.).
Stopping criterion
IVJ(ug)| <e, e > 0 is a tolerance.

7.2.2 Methods using the Newton method

In order to solve (7.1), in virtue of Theorem 7.10, we seek u = (uy,...,u,) € U C R" such
that
oJ
VJ(@) =0 S(@=0Vi=1,...n, (7.7)
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Relation (7.7) exhibits the system of the nonlinear algebraic equations which can be written
as

F(a) == (Fi(a),.... Fo(@) =0  Fi(a) = gi (@, i=1,...,n. (7.8)

Using the Newton method, we have the sequence {a’“} approximating of u, where

DF(a*
att =@k + ak, D(;)dk = —F(@") (7.9)

and

DF(u) _ {8Fi(u)}" _ {OQJ(“)}H ' (7.10)

Du ouj }, .y OujOu; J ; iy

On contrary to the deepest descent methods, the second order derivatives of J are required.
Convergence can be faster.
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