NMSA405: exercise 3 – 0-1 laws, random walk

Theorem (Kolmogorov 0-1 law): Let $X = (X_1, X_2, ...)$ be a random sequence of independent random variables. Then $\mathbb{P}(X \in T)$ equals either 0 or 1 for any terminal set T.

Theorem (Hewitt-Savage 0-1 law): Let $X = (X_1, X_2, ...)$ be an iid random sequence. Then $\mathbb{P}(X \in S)$ equals either 0 or 1 for any symmetric set S.

Exercise 3.1: Let $X = (X_1, X_2, ...)$ be a random sequence of independent random variables. Show that the event

$$\left[\sum_{n=1}^{\infty} X_n < \infty\right]$$

occurs with probability 0 or 1.

Definition 2.5: Let $X = (X_1, X_2, ...)$ be an iid random sequence. We call the sequence of partial sums $S_n = X_1 + \cdots + X_n$, $n \in \mathbb{N}$ a random walk.

Exercise 3.2: Let $S = (S_1, S_2, ...)$ be a random walk. Consider the event

 $A = [S_n = 0 \text{ for infinitely many } n].$

Show that $\mathbb{P}(A)$ equals either 0 or 1.

Exercise 3.3: The following variants of the limit behaviour of the random walk $S = (S_1, S_2, ...)$ are mutually exclusive:

- (i) $S_n = 0$ a.s. for all $n \in \mathbb{N}$,
- (ii) $S_n \xrightarrow[n \to \infty]{} \infty$,
- (iii) $S_n \xrightarrow[n \to \infty]{} -\infty$,
- (iv) $-\infty = \liminf_{n \to \infty} S_n < \limsup_{n \to \infty} S_n = \infty.$

Prove that precisely one of these variants occurs with probability 1.

NMSA405: exercise 4 – stopping times

Definition: Let $X = (X_1, X_2, ...)$ be a random sequence. The σ -algebra generated by the random vector $(X_1, ..., X_n)$ is $\sigma(X_1, ..., X_n) = \{[(X_1, ..., X_n) \in B_n], B_n \in \mathcal{B}^n\}$ and the σ -algebra generated by the sequence X is $\sigma(X) = \{[X \in B], B \in \mathcal{B}(\mathbb{R}^N)\}$.

Exercise 4.1: (Proposition 2.1) Check that $\sigma(X_1, \ldots, X_n)$ and $\sigma(X)$ are σ -algebras. Prove that

$$\sigma(X) = \sigma\left(\bigcup_{n=1}^{\infty} \sigma(X_1, \dots, X_n)\right).$$

Definition 2.1: Let (Ω, \mathcal{F}) be a measurable space and $\mathcal{F}_1 \subseteq \mathcal{F}_2 \subseteq \cdots \subseteq \mathcal{F}$ a non-decreasing sequence of σ -algebras. We call (\mathcal{F}_n) a *filtration*. Denote $\mathcal{F}_{\infty} = \sigma (\bigcup_{n=1}^{\infty} \mathcal{F}_n)$. We call the random sequence $X = (X_1, X_2, \ldots)$ adapted to the filtration (\mathcal{F}_n) , shortly \mathcal{F}_n -adapted if $\sigma(X_1, \ldots, X_n) \subseteq \mathcal{F}_n$ for all $n \in \mathbb{N}$. If $\sigma(X_1, \ldots, X_n) = \mathcal{F}_n$ for all $n \in \mathbb{N}$ we call (\mathcal{F}_n) the canonical filtration of the sequence X.

Exercise 4.2: (Proposition 2.2) Let $X = (X_1, X_2, ...)$ be a random sequence and $S = (S_1, S_2, ...)$ the sequence of its partial sums: $S_n = X_1 + \cdots + X_n$, $n \in \mathbb{N}$. Show that X and S have the same canonical filtration. Compare the canonical filtrations of the sequence X and the sequence $X^2 = (X_1^2, X_2^2, ...)$.

Definition 2.3: The mapping $T : \Omega \to \mathbb{N} \cup \{\infty\}$ is called a *stopping time* with respect to the filtration (\mathcal{F}_n) provided that $[T \leq n] \in \mathcal{F}_n$ for all $n \in \mathbb{N}$. Let $X = (X_1, X_2, \ldots)$ be a random sequence. A stopping

time $T : \Omega \to \mathbb{N} \cup \{\infty\}$ is called a *stopping time of the sequence* X if $[T \leq n] \in \sigma(X_1, \ldots, X_n)$ for all $n \in \mathbb{N}$.

Exercise 4.3: Show that T is a stopping time with respect to the filtration (\mathcal{F}_n) if and only if the random sequence $X_n = \mathbf{1}\{T \leq n\}$ is \mathcal{F}_n -adapted.

Definition 2.4: Let (\mathcal{F}_n) be a filtration and T its stopping time. Then

$$\mathcal{F}_T = \{ F \in \mathcal{F}_\infty : F \cap [T \le n] \in \mathcal{F}_n \text{ for all } n \in \mathbb{N} \}$$

is called the stopping time σ -algebra.

Exercise 4.4: Show that \mathcal{F}_T defines a σ -algebra.

Exercise 4.5: (Proposition 2.3) Show that T is a stopping time with respect to the filtration (\mathcal{F}_n) if and only if $[T = n] \in \mathcal{F}_n$ for all $n \in \mathbb{N}$. Further show that the following holds:

$$\mathcal{F}_T = \{ F \in \mathcal{F}_\infty : F \cap [T = n] \in \mathcal{F}_n \text{ for all } n \in \mathbb{N} \}.$$

Exercise 4.6: Consider a fixed $n_0 \in \mathbb{N}$ and $T = n_0$. Show that T is a stopping time with respect to any filtration (\mathcal{F}_n) and determine the σ -algebra \mathcal{F}_T .

Definition: We define the mapping $X_T : \Omega \to \mathbb{R}$ as

$$X_T(\omega) = \begin{cases} X_{T(\omega)}(\omega) & \text{pro } T(\omega) < \infty, \\ 0 & \text{pro } T(\omega) = \infty. \end{cases}$$

Exercise 4.7: (Proposition 2.4) Let S and T be stopping times with respect to the filtration (\mathcal{F}_n) and let the sequence X be \mathcal{F}_n -adapted. Show that:

- a) T and X_T are \mathcal{F}_T -measurable random variables,
- b) min{S,T}, max{S,T} and S+T are stopping times with respect to the filtration (\mathcal{F}_n),
- c) min{T, n} is a \mathcal{F}_n -measurable random variable for any $n \in \mathbb{N}$.

Exercise 4.8: Let T_1, T_2, \ldots be a sequence of stopping times with respect to the filtration (\mathcal{F}_n) . Show that $\sup_n T_n$ and $\inf_n T_n$ are also stopping times with respect to the filtration (\mathcal{F}_n) .

Exercise 4.9: (Proposition 2.5a) Let T be a stopping time with respect to the filtration (\mathcal{F}_n) . Consider the mapping $\lambda : \Omega \to \mathbb{N} \cup \{\infty\}$ which is \mathcal{F}_T -measurable and fulfills $\lambda \geq T$. Show that λ is a stopping time with respect to the filtration (\mathcal{F}_n) .

Exercise 4.10: (Proposition 2.5b) Let $X = (X_1, X_2, ...)$ be a random sequence and T its stopping time. For $B \in \mathcal{B}(\mathbb{R})$ we define $\lambda = \min\{k > T : X_k \in B\}$, i.e. the first hitting time of the set B by the sequence X after the time T. Show that λ is a stopping time of the sequence X.

Exercise 4.11: Let $(S_1, S_2, ...)$ be a symmetric simple random walk (with the step X_n taking on only the values 1 and -1 with equal probabilities). Determine whether the following random variables are stopping times of the sequence $X = (X_1, X_2, ...)$:

- a) $T_N = \max\{n \le N : S_n = 0\}$ for $N \in \mathbb{N}$,
- b) $\lambda = \min\{n : S_n = 5\},\$
- c) $\nu = \min\{n : S_n < -3\},\$
- d) $\lambda + \nu$, min{ λ, ν } + 1, max{ λ, ν }, max{ λ, ν } 1, $2\lambda 1$, λ^2 .