NMSA405: exercise 8 – optional sampling theorem

Exercise 8.1: Let (X_n) be a sequence of iid random variables with $\mathbb{P}(X_1 = 1) = \mathbb{P}(X_1 = -1) = 1/2$ and let $S_n = \sum_{k=1}^n 2^{k-1}X_k$, $n \in \mathbb{N}$. Consider the first hitting time T of the sequence (S_n) of the set $\{1\}$. Then for (S_n) and T the optional sampling theorem does not hold. Show that $\mathbb{E}S_1 \neq \mathbb{E}S_T$ and the condition $\lim_{n\to\infty} \int_{[T>n]} |S_n| \, d\mathbb{P} = 0$ is not fulfilled.

Exercise 8.2: (remark to the Theorem 3.5) Let (X_n) be a \mathcal{F}_n -martingale and $T < \infty$ a.s. be a \mathcal{F}_n -stopping time. Show that the condition

$$\exists 0 < c < \infty : T > n \Longrightarrow |X_n| \le c \quad \text{a.s.}$$

does not imply the condition

$$X_T \in L_1$$
 and $\int_{[T>n]} |X_n| \, \mathrm{d}\mathbb{P} \underset{n \to \infty}{\longrightarrow} 0$

from the Theorem 3.3.

Hint: Consider the sequence $X_n = \sum_{k=1}^n 3^k Y_k$ where (Y_k) is a sequence of iid random variables with the uniform distribution on $\{-1, 0, 1\}$.

NMSA405: exercise 9 – random walks

Definition: Let (X_n) be an iid random sequence such that $\mathbb{P}(X_1 = 1) = p$ and $\mathbb{P}(X_1 = -1) = 1 - p$ where $p \in [0, 1]$. We call the corresponding random walk (S_n) a *(simple) discrete random walk*. If p = 1/2we get the symmetric simple random walk.

Exercise 9.1: Consider the stopping time $T^B = \min\{n \in \mathbb{N} : S_n \notin B\}$ defined as the first exit time of the discrete random walk S_n from the bounded set $B \in \mathcal{B}(\mathbb{R})$ and the stopping time $T_a = \min\{n \in \mathbb{N} : S_n = a\}$ defined as the first hitting time of the random walk S_n of the set $\{a\}$ for $a \in \mathbb{Z}$. Show that

1.
$$T^B < \infty$$
 a.s.,

2. $T_a < \infty$ a.s. if p = 1/2.

Exercise 9.2: Show that the discrete random walk fulfills

- (i) $S_n \xrightarrow[n \to \infty]{} \infty$ a.s. $\iff p > 1/2$, (ii) $S_n \xrightarrow[n \to \infty]{} -\infty$ a.s. $\iff p < 1/2$,
- (iii) $\limsup_{n \to \infty} S_n = \infty$ a.s., $\liminf_{n \to \infty} S_n = -\infty$ a.s. $\iff p = 1/2$.

Exercise 9.3: Consider a discrete symmetric random walk (S_n) . For $a, b \in \mathbb{Z}$, a < 0, b > 0, we define $T_{a,b} = \min\{n \in \mathbb{N} : S_n \notin (a,b)\}$ as the first exit time of S_n from the interval (a,b). Show that in that case

$$\mathbb{P}(S_{T_{a,b}} = a) = \frac{b}{b-a}$$
 and $\mathbb{E}T_{a,b} = -ab$.

Corollary: (i) $\mathbb{E}T^B < \infty$ for any bounded set $B \in \mathcal{B}(\mathbb{R})$, (ii) $\mathbb{E}T_b = \infty$ for any $b \in \mathbb{Z}, b \neq 0$.

Exercise 9.4: Let (S_n) be a symmetric simple random walk and let A < 0 < B be independent integrable random variables, independent of (S_n) . Denote $T = \min\{n \in \mathbb{N} : S_n \notin (A, B)\}$. Show that in that case

$$\mathbb{P}(S_T = A) = \mathbb{E}\frac{B}{B-A}$$
 and $\mathbb{E}T = -\mathbb{E}A \cdot \mathbb{E}B < \infty$.