## $L_{2}$-properties of stochastic processes

Definition 3.1: We say that a sequence of random variables $X_{n}$ such that $\mathbb{E}\left|X_{n}\right|^{2}<\infty$ converges in $L_{2}$ (or in the mean square) to a random variable $X$, if $\mathbb{E}\left|X_{n}-X\right|^{2} \rightarrow 0$ for $n \rightarrow \infty$. In that case we write $X=$ l.i.m. $X_{n}$.

Let $T \subset \mathbb{R}$ be an open interval and consider a stochastic process $\left\{X_{t}, t \in T\right\}$ with continuous time and finite second moments.

Definition 3.2: We call the process $\left\{X_{t}, t \in T\right\} L_{2}$-continuous (mean square continuous) at the point $t_{0} \in T$ if $\mathbb{E}\left|X_{t}-X_{t_{0}}\right|^{2} \rightarrow 0$ for $t \rightarrow t_{0}$. The process is $L_{2}$-continuous if it is $L_{2}$-continuous at all points $t \in T$.

Theorem 3.1: A stochastic process $\left\{X_{t}, t \in T\right\}$ is $L_{2}$-continuous if and only if its mean value $\mathbb{E} X_{t}$ is a continuous function on $T$ and its autocovariance function $R_{X}(s, t)$ is continuous at points $[s, t]$ for which $s=t$.

Corollary 3.1: Centered weakly stationary process is $L_{2}$-continuous if and only if its autocovariance function $R(t)$ is continuous at point 0 .

Definition 3.3: We call the process $\left\{X_{t}, t \in T\right\} L_{2}$-differentiable (mean square differentiable) at the point $t_{0} \in T$ if there is a random variable $X_{t_{0}}^{\prime}$ such that

$$
\lim _{h \rightarrow 0} \mathbb{E}\left|\frac{X_{t_{0}+h}-X_{t_{0}}}{h}-X_{t_{0}}^{\prime}\right|^{2}=0 .
$$

The random variable $X_{t_{0}}^{\prime}$ is called the derivative in the $L_{2}$ (mean square) sense of the process $\left\{X_{t}, t \in T\right\}$ at the point $t_{0}$. The process is $L_{2}$-differentiable if it is $L_{2}$-differentiable at all points $t \in T$.

Theorem 3.2: A stochastic process $\left\{X_{t}, t \in T\right\}$ is $L_{2}$-differentiable if and only if its mean value $\mathbb{E} X_{t}$ is differentiable and the second-order generalized partial derivative of the autocovariance function $R(s, t)$ exists and is finite at points $[s, t]$ for which $s=t$, i.e. there is a finite limit

$$
\lim _{h, h^{\prime} \rightarrow 0} \frac{1}{h h^{\prime}}\left[R_{X}\left(t+h, t+h^{\prime}\right)-R_{X}\left(t, t+h^{\prime}\right)-R_{X}(t+h, t)+R_{X}(t, t)\right] .
$$

Remark: A sufficient condition for the existence of the second-order generalized partial derivative is the existence and continuity of the second-order partial derivatives $\frac{\partial^{2} R(s, t)}{\partial s \partial t}$ and $\frac{\partial^{2} R(s, t)}{\partial t \partial s}$.

Remark: Any $L_{2}$-differentiable process is also $L_{2}$-continuous.

Definition 3.4: Let $T=[a, b]$ be a bounded closed interval. For any $n \in \mathbb{N}$ let $D_{n}=\left\{t_{n, 0}, \ldots, t_{n, n}\right\}$ be a division of the interval $[a, b]$ where $a=t_{n, 0}<t_{n, 1}<\ldots<t_{n, n}=b$. We define the partial sums $I_{n}$ of the centered stochastic process $\left\{X_{t}, t \in T\right\}$ by the formula

$$
I_{n}=\sum_{i=0}^{n-1} X_{t_{n, i}}\left(t_{n, i+1}-t_{n, i}\right), \quad n \in \mathbb{N} .
$$

If there is a random variable $I$ such that $\mathbb{E}\left|I_{n}-I\right|^{2} \rightarrow 0$ for $n \rightarrow \infty$ and for each division of the interval $[a, b]$ such that $\max _{0 \leq i \leq n-1}\left(t_{n, i+1}-t_{n, i}\right) \rightarrow 0$ we call it the Riemann integral of the process $\left\{X_{t}, t \in T\right\}$ and denote it by $I=\int_{a}^{b} X_{t} \mathrm{~d} t$. For a non-centered process with the mean value $\mathbb{E} X_{t}$ we define the Riemann integral as

$$
\int_{a}^{b} X_{t} \mathrm{~d} t=\int_{a}^{b}\left(X_{t}-\mathbb{E} X_{t}\right) \mathrm{d} t+\int_{a}^{b} \mathbb{E} X_{t} \mathrm{~d} t
$$

if the centered process $\left\{X_{t}-\mathbb{E} X_{t}, t \in T\right\}$ has a Riemann integral and the Riemann integral $\int_{a}^{b} \mathbb{E} X_{t} \mathrm{~d} t$ exists and is finite.

Theorem 3.3: A stochastic process $\left\{X_{t}, t \in[a, b]\right\}$ where $[a, b]$ is a bounded closed interval is Riemann-integrable if the Riemann integrals $\int_{a}^{b} \mathbb{E} X_{t} \mathrm{~d} t$ and $\int_{a}^{b} \int_{a}^{b} R_{X}(s, t) \mathrm{d} s \mathrm{~d} t$ exist and are finite.

Exercise 3.1: Consider a stochastic process $X_{t}=\cos (t+B), t \in \mathbb{R}$, where $B$ is a random variable with the uniform distribution on the interval $(0,2 \pi)$. Is this process $L_{2}$-continuous and $L_{2}$-differentiable? Is it Riemann-integrable on a bounded closed interval $[a, b]$ ?

Further question How does the $L_{2}$-derivative and the $\int_{1}^{2} X_{t} \mathrm{~d} t$ from the previous exercise look like?

Exercise 3.3: Integrated Wiener process is defined as

$$
X_{t}=\int_{0}^{t} W_{\tau} \mathrm{d} \tau, \quad t \geq 0
$$

Using the properties of the Wiener process and $L_{2}$-convergence prove that $X_{t} \sim N\left(0, v_{t}^{2}\right)$ for all $t \geq 0$ where $v_{t}^{2}=\frac{1}{3} \sigma^{2} t^{3}$ and $\sigma^{2}$ is the parameter of the Wiener process $W_{t}$. Use the fact that the $L_{2}$-limit of a sequence of Gaussian random variables is a Gaussian random variable.

Exercise 3.6: Let $\left\{X_{t}, t \in \mathbb{R}\right\}$ be a process of independent identically distributed random variables with a mean value $\mu$ and a finite variance $\sigma^{2}>0$. What are the $L_{2}$ properties of such a process (including Riemann-integrability)?

Further question How does the $\int_{1}^{5} X_{t} \mathrm{~d} t$ from the previous exercise look like?

