NMTP438, topic 1: random fields on a lattice

- **1.** Show that a Markov chain $\{Z_1, \ldots, Z_n\}$ is a Markov random field with respect to the relation $i \sim j \Leftrightarrow |i-j| \leq 1$. Prove that the converse implication holds as follows: if $\{Z_1, \ldots, Z_n\}$ is a Markov random field with a probability density function satisfying p(z) > 0 for all $z = (z_1, \ldots, z_n)^T$ then it is a Markov chain.
- **2.** Assume that p(z) > 0 for all $z \in S^L$. Show that z_A and z_B are conditionally independent given z_C if and only if

 $p(\boldsymbol{z}_A \mid \boldsymbol{z}_B \boldsymbol{z}_C) = p(\boldsymbol{z}_A \mid \boldsymbol{z}_C) \text{ for } \nu \text{-almost all } \boldsymbol{z},$

which holds if and only if

 $p(\boldsymbol{z}_B \mid \boldsymbol{z}_A \boldsymbol{z}_C) = p(\boldsymbol{z}_B \mid \boldsymbol{z}_C) \text{ for } \nu \text{-almost all } \boldsymbol{z}.$

- **3.** Local characteristics do not determine the joint distribution. Consider a lattice with two lattice points $L = \{i, j\}$ and assume that $Z_i \mid Z_j = z_j$ has an exponential distribution with rate z_j and $Z_j \mid Z_i = z_i$ has an exponential distribution with rate z_i . Show that these conditional distributions do not correspond to any probability distribution, i.e. a (proper) joint probability density function of the vector $(Z_i, Z_j)^T$ does not exist.
- 4. Show that any Gibbs random field satisfies

$$p(\boldsymbol{z}_A \mid \boldsymbol{z}_{-A}) = p(\boldsymbol{z}_A \mid \boldsymbol{z}_{\partial A})$$

for any $A \subseteq L$ and $z \in S^L$. The symbol ∂A denotes the set of neighbours of the set A, i.e. $\partial A = (\bigcup_{i \in A} \partial i) \setminus A$.

5. Let $S = \mathbb{N}_0$ and L be a finite lattice in \mathbb{R}^d . Show that if $\beta_{ij} \geq 0$ for all $i, j \in L$ such that $i \sim j, i \neq j$, then the constant

$$\sum_{z \in S^L} \exp\left(-\sum_{i \in L} (\log z_i! + \beta_i z_i) - \sum_{\{i,j\} \in \mathcal{C}} \beta_{ij} z_i z_j\right)$$

is finite. On the other hand, it is infinite if $\beta_{ij} < 0$ for any $i, j \in L$: $i \sim j, i \neq j$.

Hint: In the first case consider the configurations with $\max z_i = k$ (there are $(k+1)^n - k^n$ of those). In the second case consider the configurations with $z_i = z_j = k$ and $z_l = 0$ for $l \in L \setminus \{i, j\}$.

6. Let the random field $\{Z_i : i \in L\}$ be given by the joint probability density function

$$p(\boldsymbol{z}) = \frac{\sqrt{\det \boldsymbol{Q}}}{(2\pi)^{n/2}} \exp\left\{-\frac{1}{2}\sum_{i,j\in L} q_{ij}(z_i - \mu_i)(z_j - \mu_j)\right\}, \quad \boldsymbol{z} \in \mathbb{R}^L.$$

Determine the probability density function of the conditional distribution of $Z_i \mid \mathbf{Z}_{-i}$ for $i \in L$.

7. Let the random variable Z_1 have a normal distribution $N(0, \frac{1}{1-\varphi^2})$ with $|\varphi| < 1$. Consider a first-order autoregressive sequence $\{Z_1, \ldots, Z_n\}$ defined by the formula

$$Z_t = \varphi Z_{t-1} + \varepsilon_t, \quad t = 2, \dots, n,$$

where $\{\varepsilon_2, \ldots, \varepsilon_n\}$ is a sequence of independent identically distributed random variables with the N(0, 1) distribution and the sequence is independent of Z_1 . Determine the variance matrix Σ of the vector $(Z_1, \ldots, Z_n)^T$ and the matrix $\mathbf{Q} = \Sigma^{-1}$. Show that $\{Z_1, \ldots, Z_n\}$ is a Gaussian Markov random field with respect to the relation $i \sim j \Leftrightarrow |i - j| \leq 1$.

8. Let $\{Z_i : i \in L\}$ be a Gaussian Markov random field with the precision matrix Q. Show that

$$\operatorname{corr}(Z_i, Z_j \mid \boldsymbol{Z}_{-\{i,j\}}) = -\frac{q_{ij}}{\sqrt{q_{ii}q_{jj}}}, \quad i \neq j.$$

9. Consider random variables X_1 , X_2 having only values 0 or 1. We specify the conditional distributions using the logistic regression models:

logit $\mathbb{P}(X_1 = 1 \mid X_2) = \alpha_0 + \alpha_1 X_2$, logit $\mathbb{P}(X_2 = 1 \mid X_1) = \beta_0 + \beta_1 X_1$,

where $\operatorname{logit} p = \log \frac{p}{1-p}$ and $\alpha_0, \alpha_1, \beta_0, \beta_1$ are real-valued parameters. Determine the joint distribution of the random vector $(X_1, X_2)^T$ using the Brook lemma.