NMTP438, topic 2: random fields

1. Let $\left\{W^{H}(t): t \in \mathbb{R}_{+}^{d}\right\}$ be a centered Gaussian random field with the covariances

$$
\mathbb{E} W^{H}(t) W^{H}(s)=\frac{1}{2}\left(\|t\|^{2 H}+\|s\|^{2 H}-\|t-s\|^{2 H}\right), t, s \in \mathbb{R}_{+}^{d},
$$

where $H \in(0,1)$. Such a random field is called the Lévy's fractional Brownian random field. Show that it is an intrinsically stationary random field and determine its variogram.
2. Consider a spherical model for the autocovariance function of a stationary isotropic random field:

$$
C(\|h\|)=\sigma^{2} \frac{|b(o, \varrho) \cap b(h, \varrho)|}{|b(o, \varrho)|}, h \in \mathbb{R}^{d} .
$$

This model is valid in the dimension d and all the lower dimensions. However, it is not valid in higher dimensions. Express this autocovariance function for $d=1$ and check that it is a positive semidefinite function. Show that this function considered in \mathbb{R}^{2} (using $\|h\|, h \in \mathbb{R}^{2}$, as its argument) is not positive semidefinite.

Hint: Consider the points $x_{i j}=(i \sqrt{2} \varrho, j \sqrt{2} \varrho), i, j=1, \ldots, 8$ and the coefficients $\alpha_{i j}=(-1)^{i+j}$.
3. Express the autocovariance function from the previous Exercise for $d=2$ using elementary functions.
4. Determine the spectral density of a weakly stationary random field with the autocovariance function

$$
C(h)=\exp \left\{-\|h\|^{2}\right\}, h \in \mathbb{R}^{d}
$$

NMTP438, topic 2: random fields

1. Let $\left\{W^{H}(t): t \in \mathbb{R}_{+}^{d}\right\}$ be a centered Gaussian random field with the covariances

$$
\mathbb{E} W^{H}(t) W^{H}(s)=\frac{1}{2}\left(\|t\|^{2 H}+\|s\|^{2 H}-\|t-s\|^{2 H}\right), t, s \in \mathbb{R}_{+}^{d},
$$

where $H \in(0,1)$. Such a random field is called the Lévy's fractional Brownian random field. Show that it is an intrinsically stationary random field and determine its variogram.
2. Consider a spherical model for the autocovariance function of a stationary isotropic random field:

$$
C(\|h\|)=\sigma^{2} \frac{|b(o, \varrho) \cap b(h, \varrho)|}{|b(o, \varrho)|}, h \in \mathbb{R}^{d} .
$$

This model is valid in the dimension d and all the lower dimensions. However, it is not valid in higher dimensions. Express this autocovariance function for $d=1$ and check that it is a positive semidefinite function. Show that this function considered in \mathbb{R}^{2} (using $\|h\|, h \in \mathbb{R}^{2}$, as its argument) is not positive semidefinite.
Hint: Consider the points $x_{i j}=(i \sqrt{2} \varrho, j \sqrt{2} \varrho), i, j=1, \ldots, 8$ and the coefficients $\alpha_{i j}=(-1)^{i+j}$.
3. Express the autocovariance function from the previous Exercise for $d=2$ using elementary functions.
4. Determine the spectral density of a weakly stationary random field with the autocovariance function

$$
C(h)=\exp \left\{-\|h\|^{2}\right\}, h \in \mathbb{R}^{d} .
$$

