NMTP438, topic 3: random measures and point processes

1. Show that
a) $\mu \mapsto \mu(B)$ is a measurable mapping from $(\mathcal{M}, \mathfrak{M})$ to $([0, \infty], \mathcal{B}([0, \infty]))$ for every $B \in \mathcal{B}(E)$,
b) $\left.\mu \mapsto \mu\right|_{B}$ is a measurable mapping from $(\mathcal{M}, \mathfrak{M})$ to $(\mathcal{M}, \mathfrak{M})$ for every $B \in \mathcal{B}(E)$.
c) $\mu \mapsto \int_{E} f(x) \mu(\mathrm{d} x)$ is a measurable mapping from $(\mathcal{M}, \mathfrak{M})$ to $([0, \infty], \mathcal{B}([0, \infty]))$ for every nonnegative measurable function f on E.
2. Prove that Ψ is a random measure if and only if $\Psi(B)$ is a random variable for every $B \in \mathcal{B}$.
3. The Prokhorov distance for finite measures μ, ν is defined as

$$
\left.\varrho_{P}(\mu, \nu)=\inf \left\{\varepsilon>0: \mu(F) \leq \nu\left(F^{\varepsilon}\right)+\varepsilon, \nu(F) \leq \mu\left(F^{\varepsilon}\right)+\varepsilon\right) \text { for every } F \in \mathcal{F}\right\},
$$

where $F^{\varepsilon}=\{x \in E: \exists y \in F, d(x, y)<\varepsilon\}$ is an open ε-neighbourhood of a closed set F. Show that ϱ_{P} is a metric.
4. For $0<a<b<c$ let us consider the sets $K_{1}=\{0, a, a+b, a+b+c\}$ and $K_{2}=\{0, a, a+c, a+b+c\}$. Let X_{0} be a random variable with the uniform distribution on the interval $[0, a+b+c]$. We define simple point processes Φ_{1} and Φ_{2} on \mathbb{R} such that $\operatorname{supp} \Phi_{i}=\left\{x \in \mathbb{R}: x=X_{0}+y+z(a+b+c), y \in K_{i}, z \in \mathbb{Z}\right\}$, $i=1,2$. Show that $\mathbb{P}\left(\Phi_{1}(I)=0\right)=\mathbb{P}\left(\Phi_{2}(I)=0\right)$ for every interval $I \subseteq \mathbb{R}$ but the distributions of Φ_{1} and Φ_{2} are different.
5. Consider intependent random variables U_{1} a U_{2} with uniform distribution on the interval $[0, a], a>0$, and the point process Φ on \mathbb{R}^{2} defined as

$$
\Phi=\sum_{m, n \in \mathbb{Z}} \delta_{\left(U_{1}+m a, U_{2}+n a\right)} .
$$

Determine the intensity measure of this process.
6. Let Ψ be a random measure. Check that the following formulas hold for $B, B_{1}, B_{2} \in \mathcal{B}$:
a) $\operatorname{var} \Psi(B)=M^{(2)}(B \times B)-\Lambda(B)^{2}$,
b) $\operatorname{cov}\left(\Psi\left(B_{1}\right), \Psi\left(B_{2}\right)\right)=M^{(2)}\left(B_{1} \times B_{2}\right)-\Lambda\left(B_{1}\right) \Lambda\left(B_{2}\right)$.
7. Let Φ be a simple point process. Check that the following formulas hold for $B, B_{1}, B_{2}, B_{3} \in \mathcal{B}$:
a) $M^{(2)}\left(B_{1} \times B_{2}\right)=\Lambda\left(B_{1} \cap B_{2}\right)+\alpha^{(2)}\left(B_{1} \times B_{2}\right)$,
b) $M^{(3)}\left(B_{1} \times B_{2} \times B_{3}\right)=\Lambda\left(B_{1} \cap B_{2} \cap B_{3}\right)+\alpha^{(2)}\left(\left(B_{1} \cap B_{2}\right) \times B_{3}\right)+\alpha^{(2)}\left(\left(B_{1} \cap B_{3}\right) \times B_{2}\right)+\alpha^{(2)}\left(\left(B_{2} \cap\right.\right.$ $\left.\left.B_{3}\right) \times B_{1}\right)+\alpha^{(3)}\left(B_{1} \times B_{2} \times B_{3}\right)$
c) $\alpha^{(n)}(B \times \cdots \times B)=\mathbb{E}[\Phi(B)(\Phi(B)-1) \cdots(\Phi(B)-n+1)]$.

