NMTP438, topic 3: random measures and point processes

1. Show that

- a) $\mu \mapsto \mu(B)$ is a measurable mapping from $(\mathcal{M}, \mathfrak{M})$ to $([0, \infty], \mathcal{B}([0, \infty]))$ for every $B \in \mathcal{B}(E)$,
- b) $\mu \mapsto \mu|_B$ is a measurable mapping from $(\mathcal{M}, \mathfrak{M})$ to $(\mathcal{M}, \mathfrak{M})$ for every $B \in \mathcal{B}(E)$.
- c) $\mu \mapsto \int_E f(x) \mu(dx)$ is a measurable mapping from $(\mathcal{M}, \mathfrak{M})$ to $([0, \infty], \mathcal{B}([0, \infty]))$ for every non-negative measurable function f on E.
- **2.** Prove that Ψ is a random measure if and only if $\Psi(B)$ is a random variable for every $B \in \mathcal{B}$.
- **3.** The Prokhorov distance for finite measures μ, ν is defined as

$$\varrho_P(\mu,\nu) = \inf\{\varepsilon > 0 : \mu(F) \le \nu(F^\varepsilon) + \varepsilon, \nu(F) \le \mu(F^\varepsilon) + \varepsilon\} \text{ for every } F \in \mathcal{F}\}$$

where $F^{\varepsilon} = \{x \in E : \exists y \in F, d(x, y) < \varepsilon\}$ is an open ε -neighbourhood of a closed set F. Show that ρ_P is a metric.

- 4. For 0 < a < b < c let us consider the sets $K_1 = \{0, a, a + b, a + b + c\}$ and $K_2 = \{0, a, a + c, a + b + c\}$. Let X_0 be a random variable with the uniform distribution on the interval [0, a + b + c]. We define simple point processes Φ_1 and Φ_2 on \mathbb{R} such that supp $\Phi_i = \{x \in \mathbb{R} : x = X_0 + y + z(a + b + c), y \in K_i, z \in \mathbb{Z}\}, i = 1, 2$. Show that $\mathbb{P}(\Phi_1(I) = 0) = \mathbb{P}(\Phi_2(I) = 0)$ for every interval $I \subseteq \mathbb{R}$ but the distributions of Φ_1 and Φ_2 are different.
- 5. Consider integendent random variables $U_1 a U_2$ with uniform distribution on the interval [0, a], a > 0, and the point process Φ on \mathbb{R}^2 defined as

$$\Phi = \sum_{m,n \in \mathbb{Z}} \delta_{(U_1 + ma, U_2 + na)}.$$

Determine the intensity measure of this process.

- **6.** Let Ψ be a random measure. Check that the following formulas hold for $B, B_1, B_2 \in \mathcal{B}$:
 - a) var $\Psi(B) = M^{(2)}(B \times B) \Lambda(B)^2$, b) cov $(\Psi(B_1), \Psi(B_2)) = M^{(2)}(B_1 \times B_2) - \Lambda(B_1)\Lambda(B_2)$.
- **7.** Let Φ be a simple point process. Check that the following formulas hold for $B, B_1, B_2, B_3 \in \mathcal{B}$:
 - a) $M^{(2)}(B_1 \times B_2) = \Lambda(B_1 \cap B_2) + \alpha^{(2)}(B_1 \times B_2),$
 - b) $M^{(3)}(B_1 \times B_2 \times B_3) = \Lambda(B_1 \cap B_2 \cap B_3) + \alpha^{(2)}((B_1 \cap B_2) \times B_3) + \alpha^{(2)}((B_1 \cap B_3) \times B_2) + \alpha^{(2)}((B_2 \cap B_3) \times B_1) + \alpha^{(3)}(B_1 \times B_2 \times B_3),$
 - c) $\alpha^{(n)}(B \times \cdots \times B) = \mathbb{E}[\Phi(B)(\Phi(B) 1) \cdots (\Phi(B) n + 1)].$