NMSAA405: topic 1 — space of sequences of real numbers

Exercise 1.1: For vectors © = (21,...,2,) € R" and y = (y1,...,y,) € R" it is reasonable
to define the L;-distance (Manhattan distance, city-block distance) as d(x,y) = >_7_, |z; — ;1.
For infinite sequences of real numbers z = (11, 2s,...) € RN and y = (y1,92,...) € RY, does it
make sense to define the following “distances”?
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Definition: (D 1.3) For sequences of real numbers x = (z1,29,...) € RN and y = (y1,92,...) €

RN we define .

min{|z; — y;|, 1}
d(x7y) :Z jQJ 2 N

j=1
Recall: What properties does a metric have?

Exercise 1.2: (P 1.2a) Show that d defines a metric on RY.

Exercise 1.3: (P 1.2b) Let 2™ = (2, 2%,...) be sequences of real numbers for n € N and
xr = (21, xa,...). Prove that

d(z",z) — 0 if and only if |2} —z;| — 0 for all j € N.
n—oo

n—o0

Recall: What is a complete separable metric space? What is a Cauchy sequence?
Exercise 1.4: (P 1.2¢c) Prove that (R, d) is a complete separable metric space.

Definition: (D 1.5) Mapping p : RY — RY is called a finite permutation (of order n), if there
is n € N and a permutation (ki,...,k,) of the elements of the set {1,...,n} such that

P(T1, . Ty Togts o) = (Thys oo oy Thy s Trgts -+ - )y (T1, T2, ... ) € RY,

Recall: What properties does a homeomorphism have?
Exercise 1.5: (P 1.5a) Prove that any finite permutation p is a homeomorphism.
Definition: (D 1.6) Mapping s : RN — RN defined by
s(xy,29,...) = (22, 23,...), (x1,29,...) €RY,
is called shift.
Recall: What properties does a continuous mapping have?

Exercise 1.6: (P 1.5b) Prove that the shift s is a continuous mapping.



Definition: (D 1.7) A set T € B(RY) is called terminal if the following implication holds:
r=(r1,09,...) €T,y = (y1,Y2,...) € RV : y, =z for all k € N except of finitely many =y € 7.
We call T' € B(RY) n-terminal if

r=(11,19,...) €ET,y=(y1,40,...) ERY iy = fork >n = yeT.

Exercise 1.7: Find examples of terminal and n-terminal sets of sequences.

Exercise 1.8: (P 1.5¢) Prove that T' € B(RY) is n-terminal if and only if there is a T;, € B(RY)
such that T"=R" x T,,.

Definition: (D 1.8) We use a particular notation for the following systems of sets:

o n-symmetric sets: S, = {S € B(RY) : p(S) = S for any finite permutation p of order n},
o symmetric sets: S = {S € B(RY) : p(S) = S for any finite permutation p},

e shift invariant sets: T ={I € B(RY) : s7' =T},

e n-terminal sets: T, = {T € B(RY) : T n-terminal},

o terminal sets: T = {T € B(RY) : T terminal}.

Exercise 1.9: Find examples of symmetric, n-symmetric and shift invariant sets of sequences.

Exercise 1.10: (P 1.5d)

a) Show that S,11 C S, foralln € Nand § =N2,S,.
b) Show that 7,1 C T, for all n € N and T = N2, 7,.
¢) Prove that ZC 7, C S, for all n € N and hence Z C T C S.
d)
)

e) Extra exercise: Check that S, Z and T are o-algebras.

Show that the previous inclusions are strict, i.e. the sets are not equal. Provide examples!

Definition: (D 1.10) We call the set B € B(RY) finite-dimensional if there are n € N and B,, €
B(R") such that B = B,, x RY.

Recall: What properties does an algebra (system of sets) have?

Exercise 1.11: (P 1.6) Denote by A the system of finite-dimensional sets from B(RY). Prove
that A is an algebra generating B(RY), i.e. it holds that o(A) = B(RY).



NMSA405: topic 2 — random sequences

Definition: (D 1.13) Binary expansion of the number x € (0,1] is the sequence zy,xs,. .. of
zeroes and ones such that it contains infinitely many ones and
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Binary expansion of the number 0 is the sequence of zeroes.

Exercise 2.1: (P 1.14) Prove that if X is a random variable with uniform distribution on the
interval [0, 1] and

(o]
Xy (w)
Xw) =3 =% (1
k=1
is its binary expansion then X;i, X5,... is a sequence of independent random variables with

Bernoulli distribution with parameter 1/2.

Conversely, consider a sequence of independent random variables with Bernoulli distribution
with parameter 1/2 and define X using the equation (1). Prove that X has uniform distribution
on the interval [0, 1].

Exercise 2.2: Show that there is a random sequence Wi, W, ... such that its increments W7,
Wy — Wi, W3 — W, ... are independent random variables with standard normal distribution.
Determine the distribution of the vector (Wi, ..., W,,).

Definition: (D 1.14) We call the random sequence X = (X1, Xo,...)

o 7d if the random variables X;, 7 € N, are independent and identically distributed,

e n-symmetric if the distributions of (Xy,..., X, Xpi1,...) and (X, .., Xk, Xna1, - -)
coincide for each finite permutation (ki,...,k,) of order n € N,

o symmetric if it is n-symmetric for each n € N|

e stationary if the distributions of (Xi,..., X, X,41,...) and (X401, Xnao, .. .) coincide for
each n € N.

Exercise 2.3: Show that the following statements are equivalent:

a) random sequence X = (X7, X»,...) is stationary,
b) X and s(X) have the same distribution,
¢) random vectors (X1,..., X, 1) and (Xs, ..., X,,) have the same distribution for each n € N.

Exercise 2.4: Prove the following assertions.

a) Each iid sequence is symmetric.
b) Each symmetric sequence is stationary.

¢) Each (n + 1)-symmetric sequence is n-symmetric for any n € N.



d) Let X = (X1, Xy,...) be an iid random sequence and f : RN — RN Borel-measurable
mapping such that fos = so f (f and the shift commute). Prove that in such a case
f(X) = (Y1,Ys,...) is stationary. Does this assertion hold if we instead assumed only
stationarity of X7

Exercise 2.5: Give an example of

a) a symmetric sequence which is not iid,
b) a stationary sequence which is not symmetric,

¢) n-symmetric sequence which is not (n + 1)-symmetric.

NMSA405: topic 3 — 0-1 laws, random walk

Theorem (Kolmogorov 0-1 law): Let X = (X;, Xs,...) be a random sequence of indepen-
dent random variables. Then P(X € T) equals either 0 or 1 for any terminal set 7.

Theorem (Hewitt-Savage 0-1 law): Let X = (X, Xs,...) be an iid random sequence.
Then
P(X € S) equals either 0 or 1 for any symmetric set S.

Exercise 3.1: Let X = (X3, Xs,...) be a random sequence of independent random variables.

Show that the event
[Z X, < oo]
n=1

occurs with probability 0 or 1.

Definition: (D 2.5) Let X = (X, Xs,...) be an iid random sequence. We call the sequence of
partial sums S, = X1+ ---+ X,,, n € N a random walk.

Exercise 3.2: Let S = (S1,S5%,...) be a random walk. Consider the event
A =[S, = 0 for infinitely many n|.
Show that P(A) equals either 0 or 1.

Exercise 3.3: The following variants of the limit behaviour of the random walk S = (S, Sz, ...)
are mutually exclusive:

(i) S, =0 as. for alln € N,
e (ii) Snrjooo,
(
(

e (iii) S,, — —o0,

n—oo

e (iv) —oo = liminf, , S, < limsup,,_, . S, = o©.

Prove that precisely one of these variants occurs with probability 1.



NMSAA405: topic 4 — stopping times

Definition: Let X = (X;,Xs,...) be a random sequence. The o-algebra generated by the
random vector (Xy,...,X,,) is o(Xy,..., X,) = {[(X1,...,X,) € B,],B, € B"} and the o-
algebra generated by the sequence X is o(X) = {[X € B|, B € B(RY)}.

Exercise 4.1: (P 2.1) Check that o(X,...,X,,) and 0(X) are o-algebras. Prove that
o(X)=o0 (U o(Xy,... ,Xn)) .
n=1

Definition: (D 2.1) Let (€2, F) be a measurable space and F; C F, C --- C F a non-decreasing
sequence of o-algebras. We call (F,,) a filtration. Denote Fo, = o (U5, F,,). We call the random
sequence X = (X1, Xs,...) adapted to the filtration (F,), shortly F,-adapted if o( X1, ..., X,) C
Fpforalln e N. If o(Xy,...,X,) =F, for all n € N we call (F,) the canonical filtration of the
sequence X.

Exercise 4.2: (P 2.2) Let X = (X, Xs,...) be a random sequence and S = (S, 5s,...)
the sequence of its partial sums: S, = X; + -+ + X,,, n € N. Show that X and S have the

same canonical filtration. Compare the canonical filtrations of the sequence X and the sequence
X2 = (X%, X2,...).

Definition: (D 2.3) The mapping 7' : Q2 — N U {oc} is called a stopping time with respect to
the filtration (F,,) provided that [T < n| € F, for all n € N. Let X = (X3, Xs,...) be a random
sequence. A stopping time T : Q@ — N U {oo} is called a stopping time of the sequence X if
[T <n]e€o(Xy,...,X,) forall n € N.

Exercise 4.3: Show that T is a stopping time with respect to the filtration (F,,) if and only if
the random sequence X,, = 1{T < n} is F,-adapted.

Definition: (D 2.4) Let (F,,) be a filtration and 7" its stopping time. Then
Fr={F € Fo:FN[T <n]eF,foralneN}

is called the stopping time o-algebra.

Exercise 4.4: Show that Fr defines a o-algebra.

Exercise 4.5: (P 2.3) Show that T is a stopping time with respect to the filtration (F,) if and
only if [T = n] € F, for all n € N. Further show that the following holds:

Fr=A{F € Fu: FN[T =n] € F, for all n € N}.
Exercise 4.6: Consider a fixed np € N and T' = ng. Show that T is a stopping time with
respect to any filtration (F,,) and determine the o-algebra Fr.

Definition: We define the mapping X7 : 2 — R as

Xp(w) = 4 K@) proT(w) <eo,
! 0 pro T'(w) = oo.



Exercise 4.7: (P 2.4) Let S and T' be stopping times with respect to the filtration (F,) and
let the sequence X be F,-adapted. Show that:

e a) T and Xp are Fpr-measurable random variables,
e b) min{S, T}, max{S, T} and S+ T are stopping times with respect to the filtration (F,),

e ¢) min{7,n} is a F,-measurable random variable for any n € N.

Exercise 4.8: Let T1,T5, ... be a sequence of stopping times with respect to the filtration (F,).
Show that sup,, T}, and inf, 7T;, are also stopping times with respect to the filtration (F,).

Exercise 4.9: (P 2.5a) Let T" be a stopping time with respect to the filtration (F,,). Consider
the mapping A : © — N U {oo} which is Fr-measurable and fulfills A > 7. Show that A is a
stopping time with respect to the filtration (F,).

Exercise 4.10: (P 2.5b) Let X = (X, Xs,...) be a random sequence and 7' its stopping time.
For B € B(R) we define A = min{k > T : X, € B}, i.e. the first hitting time of the set B by
the sequence X after the time T'. Show that \ is a stopping time of the sequence X.

Exercise 4.11: Let (51, 53,...) be a symmetric simple random walk (with the step X, taking
on only the values 1 and —1 with equal probabilities). Determine whether the following random
variables are stopping times of the sequence X = (X;, Xs,...):

e a) Ty =max{n < N:S,=0}for NeN,

e b) A =min{n: S, =5},

e ¢) v =min{n: S5, < -3},

e d) A+ v, min{\, v} + 1, max{\, v}, max{\, v} — 1, 2\ — 1, \%

NMSA405: topic 5 — symmetric simple random walk

Definition: (D 2.6) Let X3, X5, ... be an iid random sequence with P(X; = 1) =P(X; = —1) =
1/2. We call the corresponding random walk (S,,) the symmetric simple random walk.

Exercise 5.1: (P 2.9) (Reflection principle) Let (S,) be a symmetric simple random walk.
Consider the stopping time T, the first hitting time of the set {a} by the random walk for a
given a € N. Denote

S]: = 2Smin{k,T} — Sk, k € N.

Then .
(S{,Sg, . ..):(Sl,SQ, .. )

Exercise 5.2: (P 2.10) (Maxima of the symmetric simple random walk) For a symmetric simple
random walk (.S,,) denote M,, = maxy—;__, Sk, n € N. Consider the stopping time 7', the first
hitting time of the set {a} by the random walk for a given a € N. Then

P(T <n)=P(M, >a)=2P(S, >a)—P(S,=a) and lim P(M, >a)=1.

n—0o0



NMSA405: topic 6 — martingales

Definition: (D 2.10) Let {F,} be a filtration and let X = (X;, X5,...) be a sequence of
integrable random variables. We say that X is an F,-martingale if it is F,-adapted and
E[X,11]|Fn] = X, as. for all n € N. If {F,,} is the canonical filtration of X, we call X simply a
martingale and it satisfies E[X,,. 1| X1, Xo, ..., X,] = X,, a.s. for all n € N. If the equality sign
is replaced by >, X is called F,-submartingale or submartingale, respectively. If the equality
sign is replaced by <, X is called F,-supermartingale or supermartingale, respectively.

Exercise 6.1: (P 2.18) Let (X,,) be a sequence of independent integrable random variables.
Denote S,, = X; +...+ X, for n € N.

o ¢) f EX,, = 1 for all n € N then Z, = [[}_, X; is a martingale.

o ) IfP(X, =—1) =gand P(X,, = 1) = p where p € (0,1) and p+¢ = 1 then Y, = (¢/p)°"
is a martingale.

Exercise 6.2: Consider the probability space ([0, 1], B([0,1]), Alo,1]), a finite measure p < A on
([0,1], B([0,1])) and an increasing sequence of sets {0 = {j <t} < ... <1} =1} such that

peonAx |tis — k| = 0.
Denote By = [t},t},,) and

#(Bg)

Dy, (x) = ~, T€ B
(By) ’
Show that (D) is an (F,)-martingale where F,, = o(BY, ..., B} ). What is the a.s. limit of D,
for n — oo0?

>~

Exercise 6.3: Let Y be an integrable random variable and let (F,,) be a filtration. Consider
the sequence X,, = E[Y | F,], n € N, and show that (X,,) is a F,-martingale.

Exercise 6.4: (Pdlya urn model) Consider an urn which at time n = 0 contains b black and
w white balls, b,w € N. At each time n € N we draw a ball from the urn at random, write
down its color and put it back together with A € N new balls of the same color. Denote X,, the
relative frequency of the white balls in the urn at time n (i.e. the ratio of the number of white
balls to the number of all balls in the urn at the given time). Show that (X,,) is a martingale.
Consider also the case with A =0 or A = —1.

Exercise 6.5: A deck of cards contains a black and b red cards. The deck has been shuffled
randomly and we start drawing the cards from the top one after another. Denote X, the relative
number of black cards after drawing n cards where n € {0,...,a+b—1}. Let X,, = X4 for
n > a+ b. Show that (X,,) is a martingale.

Exercise 6.6: Let (X,,) be a sequence of random variables such that the probability density
function f,, : R® — (0,00) of the random vector (X3,...,X,) is positive on R". Suppose we
are given a consistent system of probability density functions (g,), i.e. g, : R™ — [0, 00) fulfills



Jan gn(x)dz = 1 and [; gni1(x,y) dy = gn(x) for almost all z € R". We define the likelihood

ratio (x X,)
Gn 1y« An

Sn: s n € N.
fn(Xla s 7Xn)

Show that (S,,) is a martingale.

Exercise 6.7: Let (F,,) be a filtration on the probability space (2, F,P) and (Q,) a consistent
system of F,-probability measures, i.e. Q,i1|7, = @, for n € N, such that @, < P|z,. We

define X,, = d(IiP’?:n‘ Show that (X,,) is a F,-martingale.

Exercise 6.8: Let X, : (2, F) — (S, Sn), n € N, be a sequence of random variables. Let P be a
probability measure on (§2, F) and (v,,) a consistent system of probability distributions such that
77777 X, =: Hp. Similarly as above show that the likelihood ratio 7, = gﬁ(Xl, o X))

between Hy : (Xy,...,X,)" ~ v, and Hy : (X1,..., X,)T ~ p, is a o(Xy,..., X, )-martingale
under the null hypothesis H.

Exercise 6.9: Let (X,,) be an iid random sequence. Let o € R be such that 3 = In[Ee**! € R.
We define Z,, = exp{aS,, — fn} where S, = X; + ...+ X,,. Show that (Z,) is a martingale.

Exercise 6.10: Let (X,,) be a sequence of independent integrable random variables with zero
mean. We define M, = 327, [[5, X; for n € N. Show that (M,,) is a martingale.

NMSAA405: topic 7 — Doob decomposition

Definition: (D 2.11) Let {F,} be a filtration. The random sequence I, I, . .. is F,,-predictable
if I,, is F,,_1-measurable for all n € N, where we put Fy = {0, Q}, i.e. I; is a constant.

Theorem (Doob decomposition theorem): Let {S,} be an F-submartingale. Then there
exists an JF,-martingale {M,,} and a non-decreasing F,-predictable sequence {I,,} so that S,, =
M, + I,,n € N. The summands M, and [, are a.s. uniquely determined under the additional
condition I; = 0. The sequence {I,} is called the compensator of {S,}.

Exercise 7.1: Let (X,,) be an iid random sequence with EX; = 0, EX? = 02 € (0,00) and
Eexp{Xi} = v < oo. Consider the corresponding random walk (S,). Show that the following
sequences are submartingales and determine their compensators:

. a) 57,
e b)V,=X7+... + X3
e ¢) exp{S,}.

Exercise 7.2: Let (X,,) be a F,,-martingale such that X,, € L. Show that

[n = ZV&I‘(Xk ‘ ‘kal)

k=1

is the compensator of the sequence Z, = X2 where Fy = {0, Q}.



NMSA405: topic 8 — optional sampling theorem

Theorem (Optional sampling theorem): Let X;, Xs,... be an F,-martingale and let
Ty <T5 <...be a.s. finite F,-stopping times. If

Xr, € Ly and lim | X,|dP =0

for all k£ € N, then (Xr,, X1, ...) is an Fr, -martingale.

Exercise 8.1: Let (X,,) be a sequence of iid random variables with P(X; = 1) = P(X; = —1) =
1/2 and let S, = >",_,2"71 X}, n € N. Consider the first hitting time T of the sequence (S,)
of the set {1}. Then for (S,) and T the optional sampling theorem does not hold. Show that
ES; # ES7 and the condition lim,, f[T>n] |S,| AP = 0 is not fulfilled.

Exercise 8.2: (remark to the Theorem 3.5) Let (X,,) be a F,,-martingale and 7" < co a.s. be
a JF,-stopping time. Show that the condition

d0<c<o0:T>n=1X,|<c as.
does not imply the condition

XreL; and f[T>n] | X |dP — 0

n—oo

from the Theorem 3.3.
Hint: Consider the sequence X,, = Y _7_, 3*Y, where (V) is a sequence of iid random variables
with the uniform distribution on {—1,0, 1}.

NMSA405: topic 9 — random walks

Definition: Let (X,,) be an iid random sequence such that P(X; = 1) = p and P(X; = —1) =
1 — p where p € [0,1]. We call the corresponding random walk (.S,,) a (simple) discrete random
walk. If p = 1/2 we get the symmetric simple random walk.

Exercise 9.1: Consider the stopping time T2 = min{n € N : S,, ¢ B} defined as the first exit
time of the discrete random walk S,, from the bounded set B € B(R) and the stopping time
T, = min{n € N: S, = a} defined as the first hitting time of the random walk S,, of the set {a}
for a € Z. Show that

1. TP < o0 as.,
2. T, <0 as. if p=1/2.

Exercise 9.2: Show that the discrete random walk fulfills
(i) Sp — o0 as. <= p>1/2,
n—oo
(i) S, — —o0 a.s. <= p < 1/2,
n—oo

(iii) limsup,,_,o Sn = 00 a.s., liminf, ,,, S, = —00 a.s. <= p=1/2.



Exercise 9.3: Consider a discrete symmetric random walk (S,,). For a,b € Z, a < 0, b > 0, we
define T, , = min{n € N: S,, ¢ (a,b)} as the first exit time of S,, from the interval (a,b). Show
that in that case

P(St,, =a) = and ET,;, = —ab.

b—a

Corollary:
(i) ETP < oo for any bounded set B € B(R), (ii) ET}, = oo for any b € Z, b # 0.

Exercise 9.4: Let (S,,) be a symmetric simple random walk and let A < 0 < B be independent
integrable random variables, independent of (S,). Denote T'=min{n € N: S, ¢ (A, B)}. Show
that in that case

B
P(Sp =A)=E—— and ET =-EA-EB < .
B—A
NMSAA405: topic 10 — convergence theorems

Exercise 10.1: Give an example of a martingale which converges to the random variable
X € Ly almost surely but not in L.

Exercise 10.2: Let (Y,,) be a sequence of independent random variables such that
PY,=2"-1)=2" PY,=-1)=1-2", neN.

Check that X, = >,_, Y} is a martingale. Show that X, 2% — o0 and hence the assumptions

n—
of the martingale convergence theorems cannot be fulfilled.

Exercise 10.3: (martingale proof of the Kolmogorov 0-1 law) Let X = (X, X5,...) be a
sequence of independent random variables and F' = [X € T| where T' € T is a terminal set.
Show that

vVneN E[lp | ] =P(F) as. and at the same time E[lp | Fo] 22 15.
n—oo

From this conclude that P(F") is either 0 or 1.



