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Introduction

This collection of solved exercises was created as a supporting material for the exercise classes for
the course “NMSA409 Stochastic processes 2” at the Faculty of Mathematics and Physics, Charles
University, Prague, during the winter semester 2017/2018.

The lecture notes for this course are available online [4]. Additional material can be found e.g. in
the book by Peter J. Brockwell and Richard A. Davis [1].
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1 Examples of stochastic processes

Example 1.1: The sequence {Xt, t ∈ Z} of uncorrelated random variables with zero mean and finite
positive variance is called white noise. A sample realization is shown on Fig. 1.
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Figure 1: A sample realization of the white noise sequence with standard normal marginals.

Example 1.2: Let X be a random variable with a uniform distribution on the interval (0, π). We
define the sequence of random variables {Yt, t ∈ N} by Yt = cos(tX). Fig. 2 shows sample realizations
of the sequence for different realizations of the random variable X.

In this example we consider the underlying probability space consisting of the interval Ω = (0, π) with
the corresponding Borel σ-algebra and the appropriate multiple of the Lebesgue measure restricted
to the interval. The mapping X : Ω 7→ (0, π) is the identity. With this representation we can easily
assign one sample realization of the sequence to each value of ω ∈ (0, π), see Fig. 2.
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Figure 2: Sample realizations of the sequence from Example 1.2. The realizations correspond to
the elementary events ω1 = 0.15 (left), ω2 = 1 (middle) and ω3 = 2 (right). Note that the curves
cos(ωit) are also plotted in dashed lines for clarity but only the values of the sequence in discrete
times (shown by circles) are observed.

Example 1.3: Consider the stochastic process Xt = cos(t+B), t ∈ R, where B is a random variable
with a uniform distribution on the interval (0, 2π). Fig. 3 shows sample realizations of the sequence
for different realizations of the random variable B. Note that the realization of B does not influence
the shape of the trajectories, only their shift along the real line.

In this example we consider the underlying probability space consisting of the interval Ω = (0, 2π)
with the corresponding Borel σ-algebra and the appropriate multiple of the Lebesgue measure re-
stricted to the interval. The mapping B : Ω 7→ (0, 2π) is the identity. With this representation we
can easily assign one sample realization of the sequence to each value of ω ∈ (0, π), see Fig. 3.

Example 1.4: The Wiener process {Wt, t ≥ 0} with parameter σ2 > 0 (also called the Brownian
motion process) is a Gaussian stochastic process with continuous trajectories, W0 = 0 a.s. and
independent increments with normal distribution (for any 0 ≤ t < s the increment Ws −Wt has
normal distribution with zero mean and variance σ2(s− t)). Fig. 4 shows sample realizations of the
Wiener process for σ2 = 1.

2



-4 -2 2 4 6 8 10

-1.0

-0.5

0.5

1.0

Figure 3: Sample realizations of the process from Example 1.3. The realizations correspond to the
elementary events ω1 = 1 (blue), ω2 = 2 (red) and ω3 = 3 (green).
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Figure 4: Sample realizations of the Wiener process with σ2 = 1, see Example 1.4.

Example 1.5: Let {Wt, t ≥ 0} be the Wiener process with parameter σ2 > 0. We define Bt =
Wt − tW1, t ∈ [0, 1]. The stochastic process {Bt, t ∈ [0, 1]} is called the Brownian bridge. Fig. 5
shows sample realizations of the Brownian bridge for σ2 = 1. Note that the process is constructed
such that B1 = 0 a.s.
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Figure 5: Sample realizations of the Brownian bridge, see Example 1.5.

Example 1.6: Let {Wt, t ≥ 0} be the Wiener process with parameter σ2 > 0. We define the
so-called Ornstein-Uhlenbeck process {Ut, t ≥ 0} by the formula Ut = e−αt/2Wexp{αt}, t ≥ 0, where
α > 0 is a parameter. Fig. 6 shows sample realizations of the Ornstein-Uhlenbeck process for σ2 = 1
and α = 1.

Example 1.7: The Poisson process {Nt, t ≥ 0} with intensity λ > 0 is the counting process with
N0 = 0 a.s. and independent increments with Poisson distribution (for any 0 ≤ t < s the increment
Ns −Nt has Poisson distribution with the parameter λ(s − t)). Fig. 7 shows sample realizations of
the Poisson process for λ = 1.

Example 1.8: Let {Nt, t ≥ 0} be the Poisson process with intensity λ > 0 and let a A be a random
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Figure 6: Sample realizations of the Ornstein-Uhlenbeck process, see Example 1.6.
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Figure 7: Sample realizations of the Poisson process with λ = 1, see Example 1.7.

variable with symmetric alternative distribution on {−1, 1}, i.e. P(A = 1) = P(A = −1) = 1
2 ,

independent of the process {Nt, t ≥ 0}. We define Xt = A(−1)Nt , t ≥ 0. This is a process of
switching between two values (A and −A) at random times given by the Poisson process. Fig. 8
shows two sample realizations of the process. The realization of A only determines whether the
process starts at 1 or -1, i.e. the absolute value of the process is 1 for any t ≥ 0.
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Figure 8: Sample realizations of the switching process from Example 1.8 with the symmetric alter-
native distribution of the random variable A.

We may also consider another distribution for the random variable A, for example the standard
Gaussian N (0, 1) distribution. Note that in this case A has zero mean and unit variance just as
above. Now the realization of A not only determines the sign of the initial value but also the
absolute value of the process – it is equal to |A| for any t ≥ 0. Fig. 9 shows sample realizations of
the process for different realizations of A(ω) and {Nt}(ω).
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Figure 9: Sample realizations of the switching process from Example 1.8. In the first row two
sample realizations {Nt}(ω) in the other two rows corresponding realizations of the process {Xt} for
A(ω) = 0.564 and A(ω) = −1.291.
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2 Autocovariance function and stationarity

Definition 2.1: Let {Xt, t ∈ T}, where T ⊂ R, be a stochastic process with finite second moments,
i.e. E|Xt|2 < ∞ for all t ∈ T . (In general complex) function of two arguments defined on T × T by
the formula

R(s, t) = E(Xs − EXs)(Xt − EXt)

is called the autocovariance function of the process {Xt, t ∈ T}.

Definition 2.2: Let {Xt, t ∈ T} be a stochastic process. We call the process

• strictly stationary if for any n ∈ N, x1, . . . , xn ∈ R, t1, . . . , tn ∈ T and h > 0 such that t1+h, . . . ,
tn + h ∈ T it holds that

P(Xt1 ≤ x1, . . . , Xtn ≤ xn) = P(Xt1+h ≤ x1, . . . , Xtn+h ≤ xn),

• weakly stationary if the process has finite second moments, a constant mean value EXt = µ
and its autocovariance function R(s, t) depends only on s− t,

• covariance stationary if the process has finite second moments and its autocovariance function
R(s, t) depends on s− t only,

• process of uncorrelated random variables if the process has finite second moments and for its
autocovariance function it holds that R(s, t) = 0 for all s 6= t,

• centered if EXt = 0 for all t ∈ T ,

• Gaussian if for all n ∈ N and t1, . . . , tn ∈ T the vector (Xt1 , . . . , Xtn)T has n-dimensional
normal distribution,

• process with independent increments if for all t1, . . . , tn ∈ T fulfilling t1 < · · · < tn the random
variables Xt2 −Xt1 , . . . , Xtn −Xtn−1 are independent,

• process with stationary increments if for all s, t ∈ T fulfilling s < t the distribution of increments
Xt −Xs depends on t− s only.

Remark: The autocovariance function of a weakly stationary process is a function of one variable

R(t) = R(t, 0) = R(t− 0), t ∈ T.

Theorem 2.1: The following implications hold:

a) strictly stationary with finite second moments ⇒ weakly stationary,

b) weakly stationary and Gaussian ⇒ strictly stationary,

c) weakly stationary ⇒ covariance stationary,

d) process of uncorrelated random variables with (the same) finite second moment ⇒ covariance
stationary,

e) centered process of uncorrelated random variables with (the same) finite second moment ⇒
weakly stationary.
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Theorem 2.2: The autocovariance function has the following properties:

• it is non-negative on the diagonal: R(t, t) ≥ 0,

• it is Hermitian: R(s, t) = R(t, s),

• it fulfills the Cauchy-Schwarz inequality: |R(s, t)| ≤
√
R(s, s)

√
R(t, t),

• it is positive semidefinite: for all n ∈ N, c1, . . . , cn ∈ C and t1, . . . , tn ∈ T it holds that

n∑
j=1

n∑
k=1

cjckR(tj , tk) ≥ 0.

Remark: The non-negative values on the diagonal and the Hermitian property follow from the positive
semidefiniteness.

Theorem 2.3: For each positive semidefinite function R on T × T there is a stochastic process
{Xt, t ∈ T} with finite second moments such that R is its autocovariance function.

Corollary 2.4: Any complex valued function R on T × T is positive semidefinite if and only if it
is an autocovariance function of some stochastic process.

Exercise 2.1: Let Xt = a + bt + Yt, t ∈ Z, where a, b ∈ R, b 6= 0 and {Yt, t ∈ Z} be a sequence of
independent identically distributed random variables with zero mean and finite positive variance σ2.

a) Determine the autocovariance function of the sequence {Xt, t ∈ Z} and discuss its stationarity.

b) For q ∈ N we define random variables Vt by the formula

Vt =
1

2q + 1

q∑
j=−q

Xt+j , t ∈ Z.

Determine the autocovariance function of the sequence {Vt, t ∈ Z} and discuss its stationarity.

Solution:

a) We know from the assignment that EYt = 0 and varYt = σ2 > 0, t ∈ Z.

It follows from the linearity of expectation that

EXt = E (a+ bt+ Yt) = a+ bt+ EYt = a+ bt, t ∈ Z.

Hence the mean value function is not constant and the sequence {Xt, t ∈ Z} is neither strictly nor
weakly stationary.

The autocovariance function RX can be then calculated as follows:

RX(s, t) = E (Xs − EXs) (Xt − EXt) = EYsYt, s, t ∈ Z.

Since {Yt, t ∈ Z} is a sequence of independent random variables it follows that EYsYt = EY 2
s = σ2 if

and only if s = t, otherwise EYsYt = EYsEYt = 0.

The autocovariance function can be written as RX(s, t) = σ2 · δ(s − t), s, t ∈ Z, and we conclude
that the sequence {Xt, t ∈ Z} is covariance stationary.
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Note that it could be also argued straight away that RX = RY since adding a constant to random
variables does not affect the respective covariances. Thus the general observation is that changing the
drift, i.e. the non-random part of the random process, does not change the autocovariance function.

b) The sequence {Vt, t ∈ Z} is a moving average type of sequence, i.e. its values are weighted averages
of a certain number of values of an underlying sequence. In this particular case we take averages of
2q + 1 neighbouring values of the sequence {Xt, t ∈ Z} and the weights are all equal to 1/(2q + 1).

We first calculate the mean value function of {Vt, t ∈ Z}:

EVt =
1

2q + 1

q∑
j=−q

EXt+j =
1

2q + 1

q∑
j=−q

(
a+ b(t+ j)

)
=

1

2q + 1

q∑
j=−q

(a+ bt) +
1

2q + 1

q∑
j=−q

bj = a+ bt, t ∈ Z.

Hence the mean value function is not constant and the sequence {Vt, t ∈ Z} is neither strictly nor
weakly stationary.

Before calculating the autocovariance function RV we note that, for any t ∈ Z,

Vt − EVt =
1

2q + 1

q∑
j=−q

(a+ b(t+ j) + Yt+j)−
1

2q + 1

q∑
j=−q

(a+ b(t+ j))

=
1

2q + 1

q∑
j=−q

Yt+j .

Now, for s, t ∈ Z,

RV (s, t) = E (Vs − EVs) (Vt − EVt) = E

 1

2q + 1

q∑
j=−q

Ys+j

 1

2q + 1

q∑
k=−q

Yt+k


=

1

(2q + 1)2
E

 q∑
j=−q

q∑
k=−q

Ys+jYt+k

 .
We recall that EYs+jYt+k = σ2 if and only if s+ j = t+k, otherwise EYs+jYt+k = 0. The problem of
calculating RV is now effectively reduced to the problem of counting how many times a pair of Y ’s
with the same time index occurs in the double sum above. That is how many times s + j = t + k,
which is the same as const = s − t = k − j for k, j ∈ {−q, . . . , q}. The maximum number of such
pairs is 2q + 1, the minimum number is 0 – this is the case if s and t are at least 2q + 1 time units
apart. Also note that if we increase the distance between s and t by one the number of such pairs is
reduced by one (or stays equal to zero). It follows that

RV (s, t) =

{
2q+1−|s−t|
(2q+1)2

σ2, |s− t| ≤ 2q,

0, |s− t| > 2q.

From this representation it is clear that RV is a function of the difference of its arguments and hence
the sequence {Vt, t ∈ Z} is covariance stationary. ♦

Exercise 2.2: Let X be a random variable with a uniform distribution on the interval (0, π).
Consider the sequence of random variables {Yt, t ∈ N} where Yt = cos(tX). Discuss the properties
of such a random sequence.
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Solution:

Sample realizations of the sequence {Yt, t ∈ N} are shown in Example 1.2.

We first calculate the mean value function. For t ∈ N it holds that

EYt = E cos(tX) =

∫ π

0

1

π
cos(tu) du =

1

π

[
sin(tu)

t

]π
u=0

= 0. (1)

In order to determine the autocovariance function RY we recall the well-known formula cosα cosβ =
1
2 [cos(α+ β) + cos(α− β)]. It follows that, for s, t ∈ N,

RY (s, t) = E (Ys − EYs) (Yt − EYt) = EYsYt = E cos(sX) cos(tX)

= E
1

2

(
cos(sX + tX) + cos(sX − tX)

)
=

∫ π

0

1

2π
cos
(
(s+ t)u

)
du+

∫ π

0

1

2π
cos
(
(s− t)u

)
du.

The first integral is equal to 0 for any combination of s, t ∈ N. To see this it is sufficient to take the
same steps as in Eq. 1 with s+ t in place of t. Similarly, the second integral is equal to 0 for s 6= t.
On the other hand, if s = t ∈ N, the second integral reduces to∫ π

0

1

2π
cos
(
(s− t)u

)
du =

∫ π

0

1

2π
du =

1

2
.

Altogether, RY (s, t) = 1
2 · δ(s − t), s, t ∈ N, and the sequence {Yt, t ∈ N} is weakly stationary and

hence also covariance stationary.

Concerning the strict stationarity, we have to decide whether we are going to prove or disprove it.
The one-dimensional distributions are all the same since from the theorem about the transformation
of probability density functions we get Yt ∈ (−1, 1) with density fYt(y) = 1

π
1√
1−y2

. Thus we have to

consider (at least) two-dimensional distributions.

From the picture of sample trajectories on Fig. 2 we may get the idea that observing Y1 very close
to 1 constrains Y2 to be also very close to 1, more than Y2 constrains Y3. We can formalize this idea
as follows. Take ε > 0 small, then

P(Y1 > 1− ε, Y2 > 1− ε) = P
[
{X ∈ (0, α)} ∩

{
X ∈

(
0,
α

2

)
∪
(
π − α

2
, π
)}]

= P
(
X ∈

(
0,
α

2

))
=

α

2π

P(Y2 > 1− ε, Y3 > 1− ε) = P
[{
X ∈

(
0,
α

2

)
∪
(
π − α

2
, π
)}
∩
{
X ∈

(
0,
α

3

)
∪
(

2

3
π − α

3
,
2

3
π +

α

3

)}]
=

α

3π
,

where α = arccos(ε) 6= 0 thus the two expression are not equal and it follows that the process
{Yt, t ∈ N} is not strictly stationary.

♦

Exercise 2.3: Consider the stochastic process Xt = cos(t+B), t ∈ R, where B is a random variable
with a uniform distribution on the interval (0, 2π). Check whether the process is weakly stationary.

Solution:

Sample realizations of the process {Xt, t ∈ R} are shown in Example 1.3.
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As before we start with calculating the mean value function and observe that the process {Xt, t ∈ R}
is centered:

EXt = E cos(t+B) =

∫ 2π

0

1

2π
cos(t+ b) db =

1

2π

[
sin(t+ b)

]2π
b=0

= 0, t ∈ R.

The last equality follows from the fact that sine is a 2π-periodic function.

Using again the formula cosα cosβ = 1
2 [cos(α+ β) + cos(α− β)] it follows that for s, t ∈ R

RX(s, t) = E (Xs − EXs) (Xt − EXt) = EXsXt

= E cos(s+B) cos(t+B)

=

∫ 2π

0

1

2π
cos(s+ b) cos(t+ b) db

=

∫ 2π

0

1

4π

(
cos(s+ t+ 2b) + cos(s− t)

)
db

=
1

2
cos(s− t).

The last equality follows from the fact that cosine is a 2π-periodic function.

We conclude that the process {Xt, t ∈ R} is weakly stationary. ♦

Remark: We can also consider strict stationarity of the process. From the picture of trajectories on
Fig. 3 one gets the idea that the process could be strictly stationary. Let us check the definition.
For n ∈ N, t1, . . . , tn ∈ R and h ∈ R we can write

P(Xt1+h ≤ x1, . . . , Xtn+h ≤ xn) = P(cos(t1 + h+B) ≤ x1, . . . , cos(tn + h+B) ≤ xn)

=

∫ 2π

0

1

2π
1(cos(t1 + h+ b) ≤ x1) . . .1(cos(tn + h+ b) ≤ xn) db

=

∫ 2π+h

h

1

2π
1(cos(t1 + b̃) ≤ x1) . . .1(cos(tn + b̃) ≤ xn) db̃

=

∫ 2π

0

1

2π
1(cos(t1 + b̃) ≤ x1) . . .1(cos(tn + b̃) ≤ xn) db̃

= P(Xt1 ≤ x1, . . . , Xtn ≤ xn)

where in the third equality we used the substitution b̃ = b+ h in the integral. For the forth equality
we observed that the integrand is a 2π-periodic function and as such it has the same value of the
integral over any interval of length 2π. Thus the process {Xt, t ∈ R} is also strictly stationary.

Exercise 2.4: Let X be a random variable such that EX = 0 and varX = σ2 < ∞. We define
Xt = (−1)tX, t ∈ N. Discuss the properties of the sequence {Xt, t ∈ N}.

Solution:

We note that the sequence is in fact of the form (−X,X,−X,X,−X, . . .) and it has a periodic
structure. The sequence is centered:

EXt = E(−1)tX = (−1)tEX = 0, t ∈ N.

The autocovariance function RX is then

RX(s, t) = E (Xs − EXs) (Xt − EXt) = EXsXt = (−1)s+tEX2 = (−1)s+tσ2.
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It seems that the autocovariance function RX is not a function of the difference of its arguments
only. However, we note that (−1)−2t = 1 and hence

RX(s, t) = (−1)s+tσ2 = (−1)s+t(−1)−2tσ2 = (−1)s−tσ2, s, t ∈ N.

We conclude that the sequence {Xt, t ∈ N} is weakly stationary and hence covariance stationary.

For checking the strict stationarity we need to check that all finite dimensional distributions are
translation invariant with respect to time. Starting with the one-dimensional distribution we need
to check that

P(Xt1 ∈ S) = P(X(−1)t1 ∈ S) = P(X(−1)(t1+h) ∈ S) for any t1 ∈ N, h ∈ N, S ∈ B.

The equation is trivially satisfied for h even and for h odd it is equivalent to

P(X ∈ S) = P(−X ∈ S) for any S ∈ B. (2)

Thus if X does not have distribution symmetric w.r.t. 0, the sequence {Xt, t ∈ N} cannot be strictly
stationary. On the other hand,

P(Xt1 ∈ S1, . . . , Xtn ∈ Sn) = P(X(−1)t1 ∈ S1, . . . , X(−1)tn ∈ Sn)

= P

X ∈ ⋂
ti even

Si,−X ∈
⋂

tj odd

Sj

 = P

X ∈ ⋂
ti even

Si ∩
⋂

tj odd

−Sj


= P

−X ∈ ⋂
ti even

Si ∩
⋂

tj odd

−Sj

 ,

the last equality following directly from (2). This is for any h equal either to

P

X ∈ ⋂
ti+h even

Si ∩
⋂

tj+h odd

−Sj

 or P

X ∈ ⋂
ti+h even

−Si ∩
⋂

tj+h odd

Sj

 ,

which are the same from (2) and are equal to P(Xt1+h ∈ S1, . . . , Xtn+h ∈ Sn). Thus {Xt, t ∈ N} is
strictly stationary if and only if X has distribution symmetric w.r.t. 0. ♦

Exercise 2.5: Determine the autocovariance function of the Poisson process {Nt, t ≥ 0} with
intensity λ > 0 and discuss its stationarity.

Solution:

The basic properties were discussed in Example 1.7. In the following we will use the independence
of increments and distributional properties of the process.

We recall that ENt = λt, t ≥ 0, and we see that the mean value function is not constant and hence
the process is neither strictly nor weakly stationary. Also, varNt = RN (t, t) = λt, t ≥ 0, and the
process is not covariance stationary – otherwise the variance would be constant.

To make the calculation of the autocovariance function RN simpler we start with considering the
case t ≥ s ≥ 0. We also want to make use of the special property of the process at hand, i.e. the
independence of its increments and their known distribution. Thus we write

ENtNs = E[(Nt −Ns) + (Ns −N0)][Ns −N0] = E(Nt −Ns)E(Ns −N0) + E(Ns −N0)
2,

11



where the first equality follows from the fact that N0 = 0 a.s. Further using the Poisson distribution
of the increments we get

E(Ns −N0)
2 = var(Ns −N0) + [E(Ns −N0)]

2 = λs+ (λs)2 = λs+ λ2s2,

and

E(Nt −Ns)E(Ns −N0) = λ(t− s)λ(s− 0) = λ2ts− λ2s2.

The autocovariance function RN is then

RN (s, t) = ENsNt − ENs ENt = λs+ λ2st− λs · λt = λs.

When considering s ≥ t ≥ 0, the role of s and t interchange and we obtain in this case that
RN (s, t) = λt. We conclude that

RN (s, t) = λmin{s, t}, s, t ≥ 0.

Finally, we remark that RN (s, t) = λmin{s, t} is not a function of the difference of its arguments.
To see this, consider e.g. λ = RN (1, 2) 6= RN (2, 3) = 2λ. ♦

Remark: A remark to the above stated solution is due here. The solution is perfectly correct, but
it is not the most effective/fastest one. If we write RN (t, s) by means of the covariance instead of
using literally Definition 2.1 we get

RN (t, s) = cov(Nt, Ns) = cov((Nt −Ns) + (Ns −N0), Ns −N0)

= cov(Nt −Ns, Ns −N0) + var(Ns −N0) = 0 + λs.

Here we used the assumption t ≥ s ≥ 0 in the second equality and independence of increments and
information about their mean value and variance in the last equality.

Remark: The Wiener process {Wt, t ≥ 0} with parameter σ2 > 0 has the same form of the
autocovariance function as the Poisson process discussed in the previous exercise: RW (s, t) =
σ2 min{s, t}, s, t ≥ 0. The key point here is again the independence of the increments of the process.
The calculation uses the same trick as above, i.e. rewrite all the terms using increments.

Remark: As discussed in the remark above, the Wiener process has the same form of the autoco-
variance function as the Poisson process, despite the former process having continuous trajectories
and the latter process having piecewise constant trajectories with jumps. This illustrates the fact
that the distribution of a stochastic process with finite second moments is not fully determined by
its autocovariance function.

Exercise 2.6: Let {Nt, t ≥ 0} be a Poisson process with intensity λ > 0 and let A be a real-valued
random variable with zero mean and unit variance, independent of the process {Nt, t ≥ 0}. We
define Xt = A(−1)Nt , t ≥ 0. Determine the autocovariance function of {Xt, t ≥ 0}.

Solution:

Sample realizations of the process {Xt, t ≥ 0} are shown in Example 1.8.

First we determine the mean value function of the process {Xt, t ≥ 0}. Using the independence of
A and Nt we write

EXt = EA(−1)Nt = EAE(−1)Nt = 0, t ≥ 0,
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since EA = 0 and E(−1)Nt <∞ – it is an expectation of a bounded random variable.

Now we write

RX(s, t) = E (Xs − EXs) (Xt − EXt) = EXsXt = EA2(−1)Ns+Nt = EA2 E(−1)Ns+Nt .

Recalling that EA2 = 1 and considering now the case s ≥ t ≥ 0 we get similarly to the Exercise 2.4
that

RX(s, t) = E(−1)Ns+Nt · (−1)−2Nt = E(−1)Ns−Nt .

Since the random variable Ns − Nt has Poisson distribution with parameter λ(s − t) we finish the
calculation as follows:

RX(s, t) = E(−1)Ns−Nt =
∞∑
k=0

(−1)ke−λ(s−t)
[
λ(s− t)

]k
k!

= e−λ(s−t) e−λ(s−t) = e−2λ(s−t).

When considering t > s ≥ 0, the role of s and t interchange and we obtain in this case that
RX(s, t) = e−2λ(t−s). We conclude that

RX(s, t) = e−2λ|s−t|, s, t ≥ 0.

Finally, we remark that RN (s, t) is a function of the difference of its arguments. Hence the process
is weakly and covariance stationary and we can write

RX(t) = e−2λ|t|, t ∈ R.

♦

Remark: Compare the processes in Exercise 2.4 and 2.6: the construction is similar but the switching
times are changed from natural numbers in Exercise 2.4 to the random times of the events in the
independent Poisson process in Exercise 2.6. This dilutes the correlation in the process and the
autocorrelation function changes from |r(s, t)| = 1 in Exercise 2.4 to r(s, t) = e−2λ|s−t| in Exercise
2.6.

Remark: Observe that if the random variable A has a discrete distribution then the process {Xt, t ≥ 0}
is a Markov chain with continuous time. In particular, the switching process with A with symmetric
alternative distribution on {−1, 1} is a Markov chain starting from the stationary distribution. Thus
it is a strictly stationary process (prove this by deriving the intensity matrix Q of {Xt, t ≥ 0} and
finding its stationary distribution).

Remark: Also for non-discretely distributed A the process Xt = A(−1)Nt , t ≥ 0, is strictly stationary
if and only if A has distribution symmetric w.r.t. 0. The necessity of the condition follows in the same
way as in Exercise 2.4. For the sufficiency the proof follows similar lines but we need to condition
on the realization of the Poisson process {Nt}.

Exercise 2.7: Let {Wt, t ≥ 0} be a Wiener process. We define Bt = Wt − tW1, t ∈ [0, 1]. The
stochastic process {Bt, t ∈ [0, 1]} is called the Brownian bridge. Determine the autocovariance
function of {Bt, t ∈ [0, 1]} and discuss its stationarity.

Solution:

Sample realizations of the process {Bt, t ∈ [0, 1]} are shown in Example 1.5.
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Since the Wiener process is centered, it holds for a t ∈ [0, 1] that EBt = EWt − tEW1 = 0. We
already know the autocovariance function of the Wiener process RW (s, t) = σ2 min{s, t}, s, t ≥ 0 and
we can write for s, t ∈ [0, 1]:

RB(s, t) = EBsBt = E(Ws − sW1)(Wt − tW1) = EWsWt − sEW1Wt − tEWsW1 + stEW 2
1

= RW (s, t)− sRW (1, t)− tRW (s, 1) + stRW (1, 1)

= σ2 (min{s, t} − st− st+ st) = σ2 (min{s, t} − st) .

Looking at the formula above, it seems that the function RB(s, t) is not a function of the difference
of its arguments. However, for claiming that the process is not weakly (or covariance) stationary we
need to prove it.

Consider e.g. the following two cases: RB(1, 1) = 0, RB(1/2, 1/2) = σ2/4. We see that the variance
of the process is not constant and RB(s, t) is not a function of the difference of its arguments. We
conclude that the Brownian bridge is neither weakly nor covariance stationary. It follows that it also
is not strictly stationary – the process has finite second moments but is not weakly stationary. ♦

Exercise 2.8: Let {Wt, t ≥ 0} be a Wiener process. We define the so-called Ornstein-Uhlenbeck
process {Ut, t ≥ 0} by the formula Ut = e−αt/2Wexp{αt}, t ≥ 0, where α > 0 is a parameter. Decide
whether {Ut, t ≥ 0} is weakly (strictly) stationary and determine its autocovariance function.

Solution:

Sample realizations of the process {Ut, t ≥ 0} are shown in Example 1.6.

We first note that, just as the Wiener process, the Ornstein-Uhlenbeck process is a Gaussian process
(all finite-dimensional distributions are Gaussian since the transformation of the values of the Wiener
process is linear and the transformation of the times does not affect Gaussianity of finite-dimensional
distributions).

It is easy to see that the Ornstein-Uhlenbeck process is centered: for any t ≥ 0 it holds that
EUt = e−αt/2EWexp{αt} = 0.

Now we can calculate the autocovariance function. For s, t ≥ 0 we write

RU (s, t) = EUtUs = e−αs/2e−αt/2EWexp{αs}Wexp{αt} = σ2e−αs/2e−αt/2 min {exp{αs}, exp{αt}} .

Looking at the formula above we are tempted to conclude that the Ornstein-Uhlenbeck process is not
weakly or covariance stationary. However, when trying to prove it, we fail at finding examples such
that RU (s, t) 6= RU (s+ h, t+ h). We inspect the following two cases separately and take advantage
of the monotonicity of the exponential function:

s ≤ t : RU (s, t) = σ2e−α(t−s)/2,

s > t : RU (s, t) = σ2e−α(s−t)/2.

Thus we can write for s, t ≥ 0: RU (s, t) = σ2e−α|s−t|/2 = RU (s − t). We conclude that in fact the
process is weakly (and covariance) stationary. It is also strictly stationary because it is Gaussian.
We have seen that the mere fact that the autocovariance function does not look like a function of the
difference of its arguments does not mean that there is no other expression for the autocovariance
function that would clearly show the contrary. ♦

Exercise 2.9: Check if the following functions are autocovariance functions of a stochastic process
with index set T = R:

a) R(s, t) = eiω(t−s),
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b) R(s, t) = st,

c) R(s, t) = s+ t,

d) R(s, t) = sin2(t− s).

Solution:

Recalling Corollary 2.4, positive semidefiniteness of a function R(s, t), s, t ∈ T, is equivalent to
R(s, t), s, t ∈ T, being an autocovariance function of a stochastic process with index set T .

a) We try to check the positive semidefiniteness property and write for n ∈ N, c1, . . . , cn ∈ C and
t1, . . . , tn ∈ R:

n∑
j=1

n∑
k=1

cjckR(tj , tk) =
n∑
j=1

n∑
k=1

cjcke
iω(tj−tk) =

n∑
j=1

n∑
k=1

cje
iω(tj)ckeiω(tk)

=

 n∑
j=1

cje
iω(tj)

( n∑
k=1

ckeiω(tk)

)
=

∣∣∣∣∣∣
n∑
j=1

cje
iω(tj)

∣∣∣∣∣∣
2

≥ 0.

We conclude that the function R(s, t) = eiω(s−t), s, t ∈ R, is the autocovariance function of a stochas-
tic process with index set R.

b) Similarly as above, we write for n ∈ N, c1, . . . , cn ∈ C and t1, . . . , tn ∈ R:

n∑
j=1

n∑
k=1

cjckR(tj , tk) =

n∑
j=1

n∑
k=1

cjcktjtk =

 n∑
j=1

cjtj

( n∑
k=1

cktk

)
=

∣∣∣∣∣∣
n∑
j=1

cjtj

∣∣∣∣∣∣
2

≥ 0.

We conclude that the function R(s, t) = st, s, t ∈ R, is the autocovariance function of a stochastic
process with index set R.

c) Unlike the two functions above, R(s, t) = s + t, s, t ∈ R, is not of a product form and we might
get suspiscious that it is in fact not positive semidefinite and that it is not useful to try using the
same approach as above.

We could try using Corollary 2.4 and find a combination of n ∈ N, c1, . . . , cn ∈ C and t1, . . . , tn ∈
R such that

∑n
j=1

∑n
k=1 cjckR(tj , tk) < 0. However, this approach can be very laborious with no

guarantee of success. On the other hand, we may look at Theorem 2.2 (properties of autocovariance
functions) and check if some other, easier to check property is not violated.

For example, the variance R(t, t), t ∈ R, must be non-negative. In this case R(t, t) = 2t, t ∈ R, and
we see that for t < 0 the variance is negative: R(t, t) < 0. We conclude that R(s, t) = s+ t, s, t ∈ R,
is not the autocovariance function of a stochastic process with index set R.

What if we restrict the index set to T = [0,∞)? In this case the variance is non-negative, R(t, t) =
2t ≥ 0, t ∈ [0,∞), and we have to find a different argument. The Hermitian property is clearly
fulfilled and we focus on the Cauchy-Schwarz inequality. We might try to check the inequality for a
couple of values of s and t and we notice that the inequality does not hold e.g. for s = 1, t = 2. We
conclude that R(s, t) = s+ t, s, t ∈ [0,∞), is not the autocovariance function of a stochastic process
with index set [0,∞).

d) Checking positive semidefiniteness of this function from definition does not seem to be an easy
task. Thus we first try to check the properties from Theorem 2.2. R(s, s) = sin2(s− s) = 0 thus R is
nonnegative on the diagonal and it is obviously Hermitian. But having zero on the whole diagonal
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is a very special property. It is also suspicious since there are other times for which R(s, t) is non
zero, e.g. R(0, π/2) = 1. Realizing this we see that the Cauchy-Schwartz inequality is not fulfilled
since e.g.

|R(0, π/2)| = 1 > 0 =
√
R(0, 0)

√
R(π/2, π/2).

We conclude that R(s, t) = sin2(t− s) is not the autocovariance function of a stochastic process with
index set R. ♦

Further exercises

Exercise 2.10: Prove parts c) d) e) of Theorem 2.1.

Exercise 2.11: Let {Xt, t ∈ Z} be a sequence of independent identically distributed random vari-
ables. Prove that the process is strictly stationary. Is it also weakly stationary?

Exercise 2.12: Let {Xt, t ∈ Z} be a sequence of uncorrelated random variables with zero mean and
(the same) finite positive variance (so-called white noise). Prove that it is weakly stationary. Is it
also strictly stationary?

Exercise 2.13: Let X0 = 0, Xt = Y1 + · · · + Yt for t = 1, 2, . . . , where Y1, Y2, . . . are independent
identically distributed discrete random variables with zero mean and finite positive variance. Show
that {Xt, t ∈ N0} is a Markov chain. Determine its autocovariance function. What can we say about
the properties of such a random sequence?

Exercise 2.14: Let {Xt, t ∈ T} a {Yt, t ∈ T} be uncorrelated weakly stationary processes, i.e. for
all s, t ∈ T the random variables Xs and Yt are uncorrelated. Show that in such a case also the
process {Zt, t ∈ T} with Zt = Xt + Yt is weakly stationary.

Exercise 2.15: Let Yt, t ∈ Z, be independent random variables with the standard normal distribu-
tion (so-called Gaussian white noise). For all t ∈ Z we define Xt = a+ bYt + cYt−1 where a, b, c are
real constants. Discuss the stationarity of the sequence {Xt, t ∈ Z}.

Exercise 2.16: Show that any positive semidefinite function is non-negative on the diagonal and
Hermitian.

Exercise 2.17: Let {Xt, t ∈ T} be a centered Gaussian stationary process. Let Yt = X2
t , t ∈ T .

Determine the mean value and the autocovariance function of {Yt, t ∈ T} and discuss its stationarity.

Hint: Use the formula for the moments of the joint normal distribution (X1, X2, X3, X4)
T with zero

mean: EX1X2X3X4 = EX1X2 EX3X4 + EX1X3 EX2X4 + EX1X4 EX2X3.

Exercise 2.18: Determine the autocovariance function of the Wiener process {Wt, t ≥ 0}. For
0 ≤ t1 < t2 < · · · < tn determine the variance matrix of the random vector (Wt1 , . . . ,Wtn)T.
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3 L2-properties of stochastic processes

Definition 3.1: We say that a sequence of random variables Xn such that E|Xn|2 <∞ converges
in L2 (or in the mean square) to a random variable X, if E|Xn −X|2 → 0 for n→∞. In that case
we write X = l.i.m.Xn.

Let T ⊂ R be an open interval and consider a stochastic process {Xt, t ∈ T} with continuous time
and finite second moments.

Definition 3.2: We call the process {Xt, t ∈ T} L2-continuous (mean square continuous) at the
point t0 ∈ T if E|Xt −Xt0 |2 → 0 for t → t0. The process is L2-continuous if it is L2-continuous at
all points t ∈ T .

Theorem 3.1: A stochastic process {Xt, t ∈ T} is L2-continuous if and only if its mean value EXt

is a continuous function on T and its autocovariance function RX(s, t) is continuous at points [s, t]
for which s = t.

Corollary 3.1: Centered weakly stationary process is L2-continuous if and only if its autocovariance
function R(t) is continuous at point 0.

Definition 3.3: We call the process {Xt, t ∈ T} L2-differentiable (mean square differentiable) at
the point t0 ∈ T if there is a random variable X ′t0 such that

lim
h→0

E
∣∣∣∣Xt0+h −Xt0

h
−X ′t0

∣∣∣∣2 = 0.

The random variable X ′t0 is called the derivative in the L2 (mean square) sense of the process
{Xt, t ∈ T} at the point t0. The process is L2-differentiable if it is L2-differentiable at all points
t ∈ T .

Theorem 3.2: A stochastic process {Xt, t ∈ T} is L2-differentiable if and only if its mean value EXt

is differentiable and the second-order generalized partial derivative of the autocovariance function
R(s, t) exists and is finite at points [s, t] for which s = t, i.e. there is a finite limit

lim
h,h′→0

1

hh′
[
RX(t+ h, t+ h′)−RX(t, t+ h′)−RX(t+ h, t) +RX(t, t)

]
.

Remark: A sufficient condition for the existence of the second-order generalized partial derivative is

the existence and continuity of the second-order partial derivatives ∂2R(s,t)
∂s∂t and ∂2R(s,t)

∂t∂s .

Remark: Any L2-differentiable process is also L2-continuous.

Definition 3.4: Let T = [a, b] be a bounded closed interval. For any n ∈ N let Dn = {tn,0, . . . , tn,n}
be a division of the interval [a, b] where a = tn,0 < tn,1 < . . . < tn,n = b. We define the partial sums
In of the centered stochastic process {Xt, t ∈ T} by the formula

In =
n−1∑
i=0

Xtn,i(tn,i+1 − tn,i), n ∈ N.
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If there is a random variable I such that E|In − I|2 → 0 for n → ∞ and for each division of the
interval [a, b] such that max0≤i≤n−1(tn,i+1 − tn,i)→ 0 we call it the Riemann integral of the process

{Xt, t ∈ T} and denote it by I =
∫ b
a Xt dt. For a non-centered process with the mean value EXt we

define the Riemann integral as∫ b

a
Xt dt =

∫ b

a
(Xt − EXt) dt+

∫ b

a
EXt dt,

if the centered process {Xt−EXt, t ∈ T} has a Riemann integral and the Riemann integral
∫ b
a EXt dt

exists and is finite.

Theorem 3.3: A stochastic process {Xt, t ∈ [a, b]} where [a, b] is a bounded closed interval is

Riemann-integrable if the Riemann integrals
∫ b
a EXt dt and

∫ b
a

∫ b
a RX(s, t) ds dt exist and are finite.

Theorem 3.4: [3, p.447] Let M ⊂ Rn be a bounded set, f be a real function on Rn, bounded on
M . Then the Riemann integral

∫
M f(x) dx exists if and only if both following conditions are fulfilled:

a) the boundary of M has Lebesgue measure 0,
b) the set of inner points of M in which f is not continuous has Lebesgue measure 0.

Theorem 3.5: [3, p.440] Let M ⊂ Rn be a bounded set and let the Riemann integral
∫
M f(x) dx

exist. Then also the Lebesgue integral
∫
M f(x) dx exists and both integrals are equal.

Exercise 3.1: Consider a stochastic process Xt = cos(t + B), t ∈ R, where B is a random vari-
able with the uniform distribution on the interval (0, 2π). Is this process L2-continuous and L2-
differentiable? Is it Riemann-integrable on a bounded closed interval [a, b]?

Solution:

This stochastic process has been already discussed in Exercise 2.3 and we recall that EXt = 0, t ∈ R,
and RX(s, t) = 1

2 cos(s− t), s, t ∈ R.

Clearly the mean value EXt is a continuous function on R and the autocovariance function RX(s, t)
is a continuous function on R2 – it is a composition of two continuous functions. Specifically, RX(s, t)
is continuous at points [s, t] for which s = t. Using Theorem 3.1 we now obtain L2-continuity of the
stochastic process {Xt, t ∈ R}.

Considering L2-differentiability of the process, we use Theorem 3.2 and the following Remark about
the existence and continuity of the second-order partial derivatives ofRX(s, t). The partial derivatives
can be calculated easily:

∂RX(s, t)

∂t
=

1

2
sin(s− t), ∂RX(s, t)

∂t∂s
=

1

2
cos(s− t);

∂RX(s, t)

∂s
= −1

2
sin(s− t), ∂RX(s, t)

∂s∂t
=

1

2
cos(s− t).

Hence, the process {Xt, t ∈ R} is L2-differentiable.

For deciding about the Riemann integrability of the process on a given bounded interval [a, b] we
use Theorem 3.3. The mean value function is constant and hence integrable. The autocovariance
function RX(s, t) is a continuous function on R2 and hence the Riemann integral

∫ b
a

∫ b
a RX(s, t) dsdt

exists and is finite. Hence the process {Xt, t ∈ R} is Riemann integrable on the interval [a, b]. ♦

Remark: We have proved that the L2-derivative and L2-integral of the process exist. A natural
question follows – how do they look like? For the process at hand the answer is quite easy since the
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derivative and the integral with respect to time exist for each trajectory separately. Let (Ω,A,P) be
the underlying probability space, e.g. Ω = (0, 2π), A the corresponding Borel sigma-algebra and P
the multiple of the Lebesgue measure on (0, 2π). For ω ∈ Ω the realization of B is B(ω) and we can
write

∂ cos
(
t+B(ω)

)
∂t

= − sin
(
t+B(ω)

)
and

∫ d

c
cos
(
t+B(ω)

)
dt = sin

(
d+B(ω)

)
− sin

(
c+B(ω)

)
.

Thus the candidate for the L2-derivative is the process Yt = − sin(t+B). Now we need to make sure
that the limit from the Definition 3.2,

lim
h→0

E
∣∣∣∣cos(t0 + h+B)− cos(t0 +B)

h
+ sin(t0 +B)

∣∣∣∣2
= lim

h→0

∫ 2π

0

1

2π

(
cos(t0 + h+ b)− cos(t0 + b)

h
+ sin(t0 + b)

)2

d b, (3)

is equal to 0. Let us write

E
∣∣∣∣cos(t0 + h+B)− cos(t0 +B)

h
+ sin(t0 +B)

∣∣∣∣2
= E

∣∣∣∣cos(t0 +B) cosh− sin(t0 +B) sinh− cos(t0 +B)

h
+ sin(t0 +B)

∣∣∣∣2
= E

(
cos(t0 +B)

cosh− 1

h
− sin(t0 +B)

(
sinh

h
− 1

))2

≤ E
(

cos(t0 +B)
cosh− 1

h

)2

+ E
(

sin(t0 +B)
sinh− h

h

)2

+ 2E
∣∣∣∣cos(t0 +B)

cosh− 1

h
sin(t0 +B)

sinh− h
h

∣∣∣∣
≤ 4 max

{
E
∣∣∣∣cos(t0 +B)

cosh− 1

h

∣∣∣∣2 ,E ∣∣∣∣sin(t0 +B)
sinh− h

h

∣∣∣∣2
}

= 4 max

{(
cosh− 1

h

)2

E cos2(t0 +B),

(
sinh

h
− 1

)2

E sin2(t0 +B)

}
,

where we used the formula for cosα cosβ and the Cauchy-Schwartz inequality. The last expression
obviously goes to 0 for h → 0 and our candidate process {Yt, t ∈ R} is the L2-derivative of the
process {Xt, t ∈ R}.

We could also show that (3) equals 0 in a faster way by using the Lebesgue Theorem to change the
order of E and lim. The inner limit is 0 for any b = B(ω), ω ∈ Ω and there exists an integrable

majorant for 1
2π

(
cos(t0+h+B)−cos(t0+B)

h + sin(t0 +B)
)

since cos is a Lipschitz function and sin is

a bounded function.

For the Riemann integral
∫ d
c cos(t+B) dt we have to compute the limit of

E

∣∣∣∣∣
n−1∑
i=0

cos(tn,i +B)(tn,i+1 − tn,i)− sin(d+B) + sin(c+B)

∣∣∣∣∣
2

=

∫ 2π

0

1

2π

∣∣∣∣∣
n−1∑
i=0

cos(tn,i + b)(tn,i+1 − tn,i)− sin(d+ b) + sin(c+ b)

∣∣∣∣∣
2

d b (4)
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for any division of the interval [c, d] whose norm goes to 0. However we again know from the
nonrandom case (i.e. for each nonrandom trajectory separately) that

hn(b) =
1

2π

n−1∑
i=0

cos(tn,i + b)(tn,i+1 − tn,i)− sin(d+ b) + sin(c+ b)

goes to 0 for any fixed b = B(ω), ω ∈ Ω, b ∈ (0, 2π), resp., and any division of the interval [c, d]
whose norm goes to 0. To be able to apply the Lebesgue Theorem we need to find an integrable
majorant for h2n(b). A safe upper bound for any b ∈ (0, 2π) is e.g. h2n(b) ≤ (d − c + 2)2/4π2 which
is a finite constant and thus integrable. The Lebesgue Theorem then gives that (4) converges to 0
for any division of the interval [c, d] whose norm goes to 0 and thus our candidate random variable

sin(d+B)− sin(c+B) really is the L2 integral
∫ d
c Xt dt.

Exercise 3.2: Consider the Wiener process with parameter σ2 > 0. Determine the L2-properties of
the process, including the Riemann-integrability on [a, b], a < b ∈ R+.

Solution:

We recall that the Wiener process {Wt, t ≥ 0} is a centered process with the autocovariance function
RW (s, t) = σ2 min{s, t}, s, t ≥ 0 (see the remark below Exercise 2.5).

The function min{s, t}, s, t ∈ R, can be equivalently expressed in terms of continuous functions:
min{s, t} = 1

2 (s+ t− |s− t|) , s, t ∈ R. Hence the autocovariance function RW is a continuous
function of s and t. Specifically, it is continuous at points [s, t] for which s = t and using Theorem 3.1
we obtain the L2-continuity of the Wiener process.

L2-continuity of the Wiener process can be also established by a direct computation:

E|Wt −Wt0 |2 = var (Wt −Wt0) = σ2|t− t0| → 0, t→ t0.

Here we took advantage of the fact that the increments of the Wiener process are (Gaussian) random
variables with zero mean and variance depending linearly on the time lag.

The mean value function of the Wiener process is differentiable (constant) and thus only the proper-
ties of the autocovariance function need to be discussed in detail in order to assess L2-differentiability
of the process.

We note that the autocovariance function RW (s, t) = σ2 min{s, t}, s, t ≥ 0, is not smooth at points
[s, t] for which s = t. Recalling Theorem 3.2 we might get suspicious that the Wiener process is
in fact not L2-differentiable and that we should first try showing that the second-order generalized
partial derivative of the autocovariance function RW (s, t) does not exist or is not finite at points [s, t]
for which s = t. We fix a point t > 0 and focus on the special case h = h′ > 0:

lim
h→0+

1

h2
[
RW (t+ h, t+ h)−RW (t, t+ h)−RW (t+ h, t) +RW (t, t)

]
= lim

h→0+

1

h2
[
σ2(t+ h)− σ2t− σ2t+ σ2t

]
= lim

h→0+

σ2h

h2
= +∞.

The special case with h = h′ < 0 can be handled in a similar way to obtain −∞ as a result. We
conclude that, at point (t, t), t > 0, the second-order generalized partial derivative of RW (s, t) does
not exist (limits along the diagonal from above and from below are not equal). The Wiener process
is not L2-differentiable at point t and thus it is not L2-differentiable.

For deciding about the Riemann integrability of the process on a given bounded interval [a, b], 0 ≤
a < b, we use Theorem 3.3. The mean value function is constant and hence integrable. The function
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min{s, t} is a continuous function on R2 and hence the Riemann integral
∫ b
a

∫ b
a RW (s, t) ds dt exists

and is finite. Hence the process {Wt, t > 0} is Riemann integrable on the interval [a, b]. ♦

Exercise 3.3: Integrated Wiener process is defined as

Xt =

∫ t

0
Wτ dτ, t ≥ 0.

Using the properties of the Wiener process and L2-convergence prove that Xt ∼ N(0, v2t ) for all t ≥ 0
where v2t = 1

3σ
2t3 and σ2 is the parameter of the Wiener process Wt. Use the fact that the L2-limit

of a sequence of Gaussian random variables is a Gaussian random variable.

Solution:

For the Wiener process we cannot use the method from the Remark after Exercise 3.1. We are not
able to suggest a candidate for the integral in L2 by integrating the process ”‘by trajectories”’. But
we may try to use directly the definition of the integral in L2

Xt = l.i.m.

n−1∑
i=0

Wtn,i(tn,i+1 − tn,i) = l.i.m. In,

for any division of the interval [0, t] whose norm goes to 0.

Wt is a process with independent increments and we know their distribution (centered Gaussian with
variance σ2(τ − s) for Wτ −Ws). Thus we need to rewrite the approximating sums In using the
increments of Wτ . We write

In =
n−1∑
i=0

Wtn,i(tn,i+1 − tn,i) =
n−1∑
i=0

i∑
j=1

(Wtn,j −Wtn,j−1)(tn,i+1 − tn,i)

=
n−1∑
j=1

n−1∑
i=j

(Wtn,j −Wtn,j−1)(tn,i+1 − tn,i) =
n−1∑
j=1

(Wtn,j −Wtn,j−1)(t− tn,j),

where in the third equality we changed the order of summation over i and j. The last expression is
sum of independent centered Gaussian random variables with variances σ2(tn,j − tn,j−1)(t − tn,j)2.
Thus

In ∼ N

0,

n−1∑
j=1

σ2(t− tn,j)2(tn,j − tn,j−1)


We know from the assignment that L2 limit of Gaussian random variables is again a Gaussian random
variable and from the continuity of the inner product in L2 we know that the limit of the mean values
and variances of In is equal to the mean and variance of l.i.m. In. Further we observe that for any
division of the interval [0, t] whose norm goes to 0

lim

n−1∑
j=1

σ2(t− tn,j)2(tn,j − tn,j−1) =

∫ t

0
σ2(t− τ)2d τ = σ2

t3

3
.

Thus together we obtain Xt = l.i.m. In ∼ N
(

0, σ2 t
3

3

)
. ♦

Exercise 3.4: Let {Xt, t ∈ R} be a centered, weakly stationary stochastic process with the autoco-
variance function

RX(t) = exp{λ(eit − 1)}, t ∈ R,
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where λ > 0. Determine the L2 properties of the process, including Riemann-integrability.

Solution:

First we remark that the function RX(t) = exp{λ(eit − 1)}, t ∈ R, is the characteristic function
of the Poisson distribution. Thus it is positive semidefinite and it is an autocovariance function of
a stochastic process.

Recalling Corollary 3.1 it is enough to show that RX(t) is continuous at point 0. This is clearly
the case for this process (RX(t) is a composition of continuous functions) and we conclude that the
process {Xt, t ∈ R} is L2-continuous.

The process is centered and hence the mean value function is differentiable (constant) and only
the properties of the autocovariance function need to be discussed in detail in order to assess L2-
differentiability of the process. To work with the partial derivatives we write the autocovariance
function of the (weakly stationary) process as a function of two variables:

RX(s, t) = exp{λ(ei(t−s) − 1)}, t ∈ R.

Looking at the formula above we see no reason the autocovariance should not be smooth and we
suppose the second-order partial derivatives exist and are continuous (see the Remark below Theo-
rem 3.2). We calculate the derivatives:

∂RX(s, t)

∂t
=RX(s, t) · iλ exp{it− is},

∂RX(s, t)

∂t∂s
= [RX(s, t) · (−i)λ exp{it− is}] [iλ exp{it− is}] + [RX(s, t)] [iλ exp{it− is}(−i)]

=RX(s, t)
[
λ2 exp{2(it− is)}+ λ exp{it− is}

]
.

Clearly the partial derivative ∂RX(s,t)
∂t∂s exists and is continuous. It is easy to check that ∂RX(s,t)

∂t∂s =
∂RX(s,t)
∂s∂t and hence both the second-order partial derivatives exist and are continuous. The Remark

below Theorem 3.2 now gives us L2-differentiability of the process {Xt, t ∈ R}.

For deciding about the Riemann integrability of the process on a given bounded interval [a, b] we
use Theorem 3.3. The mean value function is constant and hence integrable. The autocovariance
function RX(s, t) is a continuous function on R2 and hence the Riemann integral

∫ b
a

∫ b
a RX(s, t) dsdt

exists and is finite. Hence the process {Xt, t ∈ R} is Riemann integrable on the interval [a, b]. ♦

Exercise 3.5: Let {Nt, t ≥ 0} be a Poisson process with intensity λ > 0 and let A be random
variable with symmetric alternative distribution on {−1, 1}, i.e. P(A = 1) = P(A = −1) = 1

2 ,
independent of the process {Nt, t ≥ 0}. We define Xt = A(−1)Nt , t ≥ 0. Is the process {Xt, t ≥ 0}
L2-continuous?

Solution:

In the Exercise 2.6 we have shown that the process {Xt, t ≥ 0} is centered and weakly stationary.
Its autocovariance function can be written as RX(t) = e−2λ|t|, t ∈ R.

Recalling Corollary 3.1 it is enough to show that RX(t) is continuous at point 0. This is clearly
the case for this process (RX(t) is a composition of continuous functions) and we conclude that the
process {Xt, t ≥ 0} is L2-continuous.

This Exercise illustrates the fact that L2-continuity is not equivalent to the continuity of trajectories
– the process {Xt, t ≥ 0} is L2-continuous, yet its trajectories are piecewise constant with jumps. ♦
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Further exercises

Exercise 3.6: Let {Xt, t ∈ R} be a process of independent identically distributed random variables
with a mean value µ and a finite variance σ2 > 0. What are the L2 properties of such a process
(including Riemann-integrability)?

Exercise 3.7: Consider the Poisson process with intensity λ. Determine the L2 properties of the
process, including Riemann-integrability.

Exercise 3.8: Determine the L2 properties, including Riemann-integrability, of the Ornstein-
Uhlenbeck process {Ut, t ≥ 0}, defined by the formula

Ut = e−αt/2Wexp{αt}, t ≥ 0

where α > 0 is a positive parameter and {Wt, t ≥ 0} is a Wiener process.

Exercise 3.9: Let {Wt, t ≥ 0} be a Wiener process. We define Bt = Wt − tW1, t ∈ [0, 1]. The
stochastic process {Bt, t ∈ [0, 1]} is called the Brownian bridge. Determine whether the process
{Bt, t ∈ (0, 1)} is L2-continuous and L2-differentiable. Does the Riemann integral

∫ 1
0 Bt dt exist?
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4 Spectral decomposition of the autocovariance function

Theorem 4.1: A complex function R(t), t ∈ Z, is an autocovariance function of a weakly stationary
random sequence if and only if

R(t) =

∫ π

−π
eitλ dF (λ), t ∈ Z, (5)

where F is a bounded right-continuous non-decreasing function on [−π, π] such that F (−π) = 0.

The function F is determined uniquely and it is called the spectral distribution function of a random
sequence. If F is absolutely continuous w.r.t. the Lebesgue measure on R we call its density f the
spectral density. It follows that F (λ) =

∫ λ
−π f(x) dx, f = F ′ and

R(t) =

∫ π

−π
eitλf(λ) dλ, t ∈ Z. (6)

If F is piecewise constant with jumps at points λi ∈ (−π, π] of the magnitudes ai > 0 then

R(t) =
∑
j

aje
itλj , t ∈ Z.

Theorem 4.2: A complex function R(t), t ∈ R, is an autocovariance function of a centered weakly
stationary L2-continuous stochastic process if and only if

R(t) =

∫ ∞
−∞

eitλ dF (λ), t ∈ R,

where F is a right-continuous non-decreasing function such that limx→−∞ F (x) = 0 and
limx→∞ F (x) = R(0) <∞.

The function F is determined uniquely and it is called the spectral distribution function of an L2-
continuous stochastic process. If F is absolutely continuous w.r.t. the Lebesgue measure on R we
call its density f the spectral density. It follows that F (λ) =

∫ λ
−∞ f(x) dx, f = F ′ and

R(t) =

∫ ∞
−∞

eitλf(λ) dλ, t ∈ R. (7)

If F is piecewise constant with jumps at points λi ∈ R of the magnitudes ai > 0 then

R(t) =
∑
j

aje
itλj , t ∈ R.

Theorem 4.3: Let {Xt, t ∈ Z} be a weakly stationary sequence with the autocovariance function
R(t) such that

∑∞
t=−∞ |R(t)| <∞. Then the spectral density of the sequence {Xt, t ∈ Z} exists and

is given by

f(λ) =
1

2π

∞∑
t=−∞

e−itλR(t), λ ∈ [−π, π]. (8)

Theorem 4.4: Let {Xt, t ∈ R} be a centered weakly stationary L2-continuous process with the
autocovariance function R(t) such that

∫∞
−∞ |R(t)|dt <∞. Then the spectral density of the process

{Xt, t ∈ R} exists and is given by

f(λ) =
1

2π

∫ ∞
−∞

e−itλR(t) dt, λ ∈ R. (9)
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Exercise 4.1: Determine the autocovariance function of a weakly stationary sequence with the
spectral density

f(λ) = a cos
λ

2
, λ ∈ [−π, π],

where a > 0 is a constant.

Solution:

The autocovariance function can be computed using the formula (6) in Theorem 4.1 above. The
spectral density f(λ) is symmetric with respect to point 0 in this case and hence the autocovariance
function will be a real function. Equation (6) then reduces to R(t) =

∫ π
−π cos(tλ)f(λ) dλ, t ∈ Z. We

may then write

R(t) =

∫ π

−π
cos(tλ) · a cos

λ

2
dλ =

a

2

∫ π

−π

(
cos
(
λ(t+ 1/2)

)
+ cos

(
λ(t− 1/2)

))
dλ, t ∈ Z.

In the last step we used the formula cosα · cosβ = 1
2

(
cos(α+β) + cos(α−β)

)
. Now it is not difficult

to compute the integral above and we obtain the result

R(t) = (−1)t+1 a

t2 − 1/4
, t ∈ Z.

We used the following facts to obtain the simple form of the result above: sin(x± y) = sinx cos y ±
cosx sin y; cos(πt) = (−1)t, t ∈ Z.

We stress here that the computation above is correct also for t = 0. This is not always the case (see
the Exercise 4.3) as the factor eitλ in Equation (6) is constant 1 for t = 0. However, we might try to
check this by specifically calculating

R(0) =

∫ π

−π
a cos

λ

2
dλ =

[
2a sin

λ

2

]π
−π

= 2a
(

sin
π

2
− sin

(
−π

2

))
= 4a.

This result conforms to the formula we obtained above and we checked independently the result for
t = 0. ♦

Exercise 4.2: Let {Xt, t ∈ Z} be a weakly stationary sequence with the spectral density

f(λ) = a cos
λ

2
, λ ∈ [−π, π],

where a > 0 is a constant. Determine the autocovariance function of the sequence {Yt, t ∈ Z} defined
by Yt = 1

5Xt−5, t ∈ Z.

Solution:

The autocovariance function of {Xt, t ∈ Z} was determined in the previous exercise. Now we try to
express RY (s, t) by means of RX(s, t):

RY (s, t) = cov

(
1

5
Xs−5,

1

5
, Xt−5

)
=

1

25
cov(Xs−5, Xt−5) =

1

25
RX(s− 5, t− 5)

=
1

25
RX((t− 5)− (s− 5)) =

1

25
RX(t− s).

Thus the random sequence is again weakly stationary and RY (t) = 1
25(−1)t+1 a

t2−1/4 , t ∈ Z. ♦
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Exercise 4.3: Determine the autocovariance function of the centered weakly stationary process
{Xt, t ∈ R} with the spectral distribution function

FX(λ) =


0, λ ≤ −b,
(λ+ b)a, −b ≤ λ ≤ b,
2ab, λ ≥ b,

where a > 0 and b > 0 are constants.

Solution:

Computing the autocovariance function using the Lebesgue-Stieltjes integral in formula (7) is not
convenient. However, we can calculate the spectral density and change the problem into integration
with respect to the Lebesgue measure.

The spectral density is obtained from the spectral distribution function by differentiation (see The-
orem 4.2):

fX(λ) =
dFX(λ)

dλ
=

{
a, λ ∈ (−b, b),
0, otherwise.

We then calculate, for t ∈ R, t 6= 0:

RX(t) =

∫ ∞
−∞

eitλ dλ =

∫ b

−b
aeitλ dλ =

[
aeitλ

it

]b
λ=−b

=
a

it

(
eitb − e−itb

)
=

2a

t
· eitb − e−itb

2i
=

2a

t
sin(bt).

Note that the computation above is only correct for t 6= 0 (otherwise the primitive function is not
correct). The case t = 0 needs to be treated separately:

RX(0) =

∫ b

−b
a dλ = 2ab.

Above we have determined the values of the autocovariance function RX(t) for all values of t ∈ R.
Note that, even though we need two different formulas for t = 0 and t 6= 0, the autocovariance
function is continuous at point 0 (in fact it is continuous everywhere). This is because the limit of
1
bt sin(bt) for t→ 0 is 1. It follows that the process {Xt, t ∈ R} is L2-continuous. ♦

Exercise 4.4: Let {Xt, t ∈ R} be a centered weakly stationary process with the spectral distribution
function

FX(λ) =


0, λ ≤ −b,
(λ+ b)a, −b ≤ λ ≤ b,
2ab, λ ≥ b,

where a > 0 and b > 0 are constants. Define the random process {Yt, t > 0} by Yt = 1
tXt2 , t ∈ R+.

Determine the autocovariance function of {Yt, t ∈> 0} and decide about its weak stationarity.

Solution:

The autocovariance function of {Xt, t ∈ R} was determined in the previous exercise. Now we try to
express RY (s, t) by means of RX(s, t).

RY (s, t) = cov

(
1

s
Xs2 ,

1

t
Xt2

)
=

1

st
cov(Xs2 , Xt2) =

1

st
RX(s2, t2).
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Thus together we obtain

RY (s, t) =

{
2a
st

sin(b(s2−t2))
s2−t2 , s 6= t > 0,

2ab
st = 2ab

s2
, s = t > 0.

Since RY (s, s) = 2ab
s2

is not a constant function of s the process {Yt, t ∈ R+} is not weakly stationary.
♦

Exercise 4.5: Determine the spectral distribution function and the spectral density (if it exists) of
the Ornstein-Uhlenbeck process {Ut, t ≥ 0} defined by the formula

Ut = e−αt/2Wexp{αt}, t ≥ 0,

where α > 0 is a parameter and {Wt, t ≥ 0} is a Wiener process.

Solution:

We recall that (see Exercise 2.8) the Ornstein-Uhlenbeck process is a centered weakly stationary
process with the autocovariance function RU (t) = σ2e−α|t|/2, t ∈ R, where σ2 is a parameter of the
underlying Wiener process. The process is also L2-continuous – it is centered and its autocovariance
function RU (t) is continuous at point 0 (see also the comments in the solution of Exercise 3.5 which
apply also here).

Note that although the process itself is defined on T = [0,∞), its autocovariance function is defined
on the whole R. This is because the argument t of RU (t) in fact plays the role of the difference of
two points in [0,∞) which can be any real number. Thus the relevant theorems about the spectral
decomposition of the autocovariance function of a weakly stationary stochastic process can be applied
here.

The spectral distribution function of a weakly stationary L2-continuous process always exists (see
Theorem 4.2). However, there is no routine approach for determining it. On the other hand, the
spectral density might not exist for certain processes but we have a standard tool for looking for it
– the criterion and inverse formula in Theorem 4.4.

Note that the Ornstein-Uhlenbeck process fulfills the assumptions of Theorem 4.4 and thus we may
look at the criterion: ∫ ∞

−∞
|RU (t)|dt = 2

∫ ∞
0

σ2e−αt/2 dt <∞.

Of course it is not difficult to compute the value of the integral above but the precise value is not
important here – it only matters that the integral is finite. Hence the spectral density of the process
exists and can be determined using the inverse formula from Theorem 4.4:

fU (λ) =
1

2π

∫ ∞
−∞

e−itλRU (t) dt =
1

2π

∫ ∞
−∞

e−itλσ2e−α|t|/2 dt

=
σ2

2π

∫ ∞
−∞

(
cos(tλ)− i sin(tλ)

)
e−α|t|/2 dt =

σ2

2π

∫ ∞
−∞

cos(tλ)e−α|t|/2 dt

=
σ2

π

∫ ∞
0

cos(tλ)e−αt/2 dt =
2σ2

π
· α

α2 + 4λ2
, λ ∈ R.

On the second line of the calculation above we used symmetry arguments to realize that the imaginary
part of the integral is 0 and we may neglect the term i sin(tλ) in the integrand. Later we used
a different symmetry argument to change the integration domain from (−∞,∞) to (0,∞). The last
step requires double application of integration by parts.
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The spectral distribution function can now be recovered from the spectral density by integration:

FU (λ) =

∫ λ

−∞
fU (x) dx =

σ2

π

(
π

2
+ arctan

(
2λ

α

))
, λ ∈ R.

♦

Exercise 4.6: Let {Xt, t ∈ R} be a centered weakly stationary process with the autocovariance
function

RX(t) = cos t, t ∈ R.

Determine the spectral distribution function of the process.

Solution:

We first note that the process is L2-continuous (its autocovariance function RX(t) is continuous
at point 0) and we can use the relevant theorems above. If we try to use the inverse formula in
Theorem 4.4, we run into trouble:∫ ∞

−∞
|RX(t)| dt =

∫ ∞
−∞
| cos t|dt =∞,

i.e. the criterion is not fulfilled and the inverse formula (9) cannot be used. We stress, however, that
this does not imply non-existence of the spectral density! At this point we simply cannot tell if the
spectral density exists or not.

On the other hand, the spectral distribution function FX exists – the assumptions of Theorem 4.2
are fulfilled. We may hence write, for any t ∈ R,

cos t = RX(t) =

∫ ∞
−∞

eitλ dF (λ).

How can the Lebesgue-Stieltjes integration of the complex exponential function result in the cosine
function? The answer becomes clear if we realize that, in fact, for any t ∈ R,

cos t =
1

2
eit +

1

2
e−it,

i.e. only two discrete contributions of the complex exponential function make up the cosine function.
The spectral distribution function must be piecewise constant with two jumps corresponding to the
two terms in the formula above. The positions of the jumps are determined by the arguments of the
complex exponential functions (-1 and 1) and their size is determined by the corresponding weights
(1/2 and 1/2). It can be said that the autocovariance function has a discrete spectrum. We conclude
that

FX(λ) =


0, λ < −1,

1/2, −1 ≤ λ < 1,

1, 1 ≤ λ.

Now that we know the form of the spectral distribution function we can conclude that the spectral
density of the process does not exist – the spectral distribution function has jumps and there is no
(non-negative, measurable) function fX such that FX(λ) =

∫ λ
−∞ fX(x) dx, λ ∈ R. ♦

Exercise 4.7: Determine the spectral density of the weakly stationary sequence {Xt, t ∈ Z} with
the autocovariance function

RX(t) =

{
16
15 ·

1
2|t|

for even values of t,

0 for odd values of t.
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Solution:

Theorem 4.3 provides an inverse formula for determining the spectral density of a weakly stationary
random sequence. The assumption of the theorem is fulfilled:

∞∑
t=−∞

|RX(t)| ≤ 16

15
· 2
∞∑
t=0

1

2t
<∞.

Hence we may use the inverse formula (8) and write for λ ∈ [−π, π], noting that only every other
value of the autocovariance function is non-zero:

fX(λ) =
1

2π

∞∑
k=−∞

e−ikλRX(k)

=
1

2π

∞∑
k=0

(
e−i2kλ

16

15
· 1

22k
+ ei2kλ

16

15
· 1

22k

)
− 1

2π
· 16

15

= − 8

15π
+

8

15π

∞∑
k=0

(
e−2iλ

4

)k
+

8

15π

∞∑
k=0

(
e2iλ

4

)k

=
8

15π

[
−1 +

1

1− e−2iλ

4

+
1

1− e2iλ

4

]

=
8

15π

[
−1 +

4(8− 2 cos(2λ))

(4− e−2iλ)(4− e2iλ)

]
=

8

15π
· 32− 8 cos(2λ)− 17 + 8 cos(2λ)

17− 8 cos(2λ)

=
8

π
· 1

17− 8 cos(2λ)
.

Finally, note that the spectral density is a non-negative function – it must be due to its link to the
spectral distribution function. ♦

Exercise 4.8: Let {Xt, t ∈ R} be a centered weakly stationary process with the autocovariance
function

RX(t) = exp{κ(eit − 1)}, t ∈ R,

where κ > 0. Determine the spectral distribution function of the process.

Solution:

We first note that the process {Xt, t ∈ R} is L2-continuous – its autocovariance function RX(t) is
continuous at point 0. Theorem 4.2 then tells us that the spectral distribution function exists.

We may try to use Theorem 4.4 for determining the spectral density (if it exists) and then obtain the
spectral distribution function by integration. However, the criterion in Theorem 4.4 is not fulfilled:∫ ∞

−∞
|RX(t)|dt =

∫ ∞
−∞
| exp{κeit}| e−κ dt =∞.

In the last step we took advantage of the fact that for any κ > 0 there is a constant c > 0 such that
| exp{κeit}| ≥ c for any t ∈ R. The inverse formula (9) cannot be used. On the other hand we do
not know if the spectral density exists or not.
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At this point we should notice that the autocovariance function RX(t) is in fact the characteristic
function of the Poisson distribution with parameter κ > 0. In the following we denote Z a random
variable with such distribution. For any t ∈ R we may write:

RX(t) = exp{κ(eit − 1)} = EeitZ =

∞∑
k=0

eitk · κ
k

k!
e−κ.

With this in mind we see that the spectral distribution function FX(λ) is piecewise constant with

jumps at points λ = k, k = 0, 1, 2, . . . . The size of the jump at point k is e−κ κ
k

k! . This is an example
of a spectral distribution function with countably many jumps. ♦

Exercise 4.9: Let {Xt, t ∈ R} be a centered weakly stationary process with the autocovariance
function

RX(t) =
1

1− it
, t ∈ R.

Determine the spectral density of the process.

Solution:

We first note that the process {Xt, t ∈ R} is L2-continuous – its autocovariance function RX(t) is
continuous at point 0. Theorem 4.2 then tells us that the spectral distribution function exists.

When we attempt to use the inverse formula in Theorem 4.4 we first need to determine |RX(t)|, t ∈ R:

|RX(t)|2 =
1

1− it

1

1− it
=

1

1− it

1

1 + it
=

1

(1− it)(1 + it)
=

1

1 + t2
,

|RX(t)| = 1√
1 + t2

.

We now see that the assumption of Theorem 4.4 is not fulfilled and the inverse formula cannot be
used: ∫ ∞

−∞
|RX(t)|dt =

∫ ∞
−∞

1√
1 + t2

dt =∞.

This does not mean the spectral density does not exist, we simply do not know at this point. However,
we might notice that the autocovariance function RX(t) is in fact the characteristic function of the
exponential distribution with mean 1. We denote Z a random variable with such distribution and
write:

RX(t) =
1

1− it
= EeitZ =

∫ ∞
0

eitx · e−x dx.

Clearly the spectral density fX(λ) of the process {Xt, t ∈ R} exists and is given by

fX(λ) =

{
e−λ, λ > 0,

0, otherwise.

This is an example of the situation where the spectral density of the process exists but cannot be
determined by the inverse formula. ♦

Further exercises

Exercise 4.10: The centered weakly stationary process {Xt, t ∈ R} has the spectral density

f(λ) = c21{λ0 ≤ |λ| ≤ 2λ0}, λ ∈ R,
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where c and λ0 are positive constants. Determine the autocovariance function of the process.

Exercise 4.11: Let {Xt, t ∈ Z} and {Yt, t ∈ Z} be independent weakly stationary sequences with
the spectral densities fX and fY . Consider the sequence Zt = Xt+Yt, t ∈ Z. Show that the sequence
{Zt, t ∈ Z} has the spectral density of the form fZ = fX + fY .

Exercise 4.12: Let {Xt, t ∈ Z} be a sequence of uncorrelated centered random variables with finite
positive variance σ2. Determine the spectral density of the sequence.

Exercise 4.13: Consider a real-valued centered random variable Y with finite positive variance σ2

and a random sequence defined as Xt = (−1)tY , t ∈ Z. Decide whether the spectral density of this
sequence exists. If it does, find a formula for it.

Exercise 4.14: The elementary process {Xt, t ∈ R} is defined as Xt = Y eiωt, t ∈ R, where ω ∈ R is
a constant and Y is a (complex) random variable such that EY = 0 and E|Y |2 = σ2 < ∞. Discuss
the stationarity of the process {Xt, t ∈ R} and determine its spectral density.

Exercise 4.15: Let {Nt, t ≥ 0} be a Poisson process with the intensity λ > 0 and let A be a
real-valued random variable with zero mean and variance 1, independent of the process {Nt, t ≥ 0}.
Define Xt = A(−1)Nt , t ≥ 0. Determine the spectral distribution function and the spectral density
(if it exists) of the process {Xt, t ≥ 0}.

Exercise 4.16: Let {Xt, t ∈ R} be a centered weakly stationary process with the autocovariance
function

R(t) = c exp{−at2}, t ∈ R,

where a and c are positive constants. Determine the spectral density of the process.
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5 Spectral representation of stochastic processes

Definition 5.1: Let {Xt, t ∈ T}, T an interval, be a (generally complex-valued) second order process
on (Ω,A, P ). We say that {Xt, t ∈ T} is an orthogonal increment process, if for any t1, . . . , t4 ∈ T
such that (t1, t2] ∩ (t3, t4] = ∅,

E(Xt2 −Xt1)(Xt4 −Xt3) = 0.

Theorem 5.1: Let {Zλ, λ ∈ [a, b]} be a centered mean square right-continuous process with
orthogonal increments, [a, b] a bounded interval. Then there exists a unique non-decreasing right-
continuous function F such that

F (λ) = 0, λ ≤ a,
= F (b), λ ≥ b,

F (λ2)− F (λ1) = E|Zλ2 − Zλ1 |2, A ≤ λ1 < λ2 ≤ b.

We call F the distribution function associated with the orthogonal increment process {Zλ, λ ∈ [a, b]}.

Let {Zλ, λ ∈ [a, b]} be a centered mean square right-continuous process with orthogonal increments
and the associated distribution function F . Let f ∈ L2(F ) be a measurable function. Let us

denote I(f) =
∫ b
a f(λ) dZ(λ) the integral of f with respect to the orthogonal increment process

{Zλ, λ ∈ [a, b]} as it was defined in the lecture notes [4] in Chapter 7.2.

Theorem 5.2: Let {Zλ, λ ∈ [a, b]} be a centered mean square right-continuous process with or-
thogonal increments and the associated distribution function F . Then the integral I(f) has the
following properties.

1. Let f ∈ L2(F ). Then EI(f) = E
∫ b
a f(λ) dZ(λ) = 0.

2. Let f, g ∈ L2(F ), α, β ∈ C be constants. Then I(αf + βg) = αI(f) + βI(g).

3. Let f, g ∈ L2(F ). Then

EI(f)I(g) =

∫ b

a
f(λ)g(λ) dF (λ).

4. Let {fn, n ∈ N} and f be functions in L2(f), respectively. Then, as n→∞,

fn → f in L2(f)⇐⇒ I(fn)→ I(f) in L2(Ω,A, P ).

Theorem 5.3: Let Xt, t ∈ Z, be random variables such that

Xt =

∫ π

−π
eitλ dZ(λ),

where {Z(λ), λ ∈ [−π, π]} is a centered mean square right-continuous process with orthogonal in-
crements on [π, π] and associated distribution function F . Then {Xt, t ∈ Z} is a centered weakly
stationary sequence with the spectral distribution function F .
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Theorem 5.4: Let {Xt, t ∈ Z} be a centered weakly stationary sequence with the spectral distri-
bution function F . Then there exists a centered orthogonal increment process {Z(λ), λ ∈ [−π, π]}
such that

Xt =

∫ π

−π
eitλ dZ(λ),

and

E|Z(λ)− Z(−π)|2 = F (λ), −π ≤ λ ≤ π.

Remark: Similar spectral decomposition exists also for centered weakly stationary mean square con-
tinuous processes.

Exercise 5.1: Let {Zλ, λ ∈ [−π, π]} be a centered mean square right-continuous process with
orthogonal increments such that

E|Zλ2 − Zλ1 |2 = a(λ2 − λ1), −π ≤ λ1 ≤ λ2 ≤ π, (10)

for some a > 0. Show that the random sequence {Yt, t ∈ Z} defined as

Yt =

∫ π

−π

(
π − |λ|

2

)−1
eitλ dZ(λ), t ∈ Z,

is weakly stationary. Determine its variance and find its spectral density.

Solution:

First we see from (10) and Theorem 5.1 that the distribution function associated with the orthogonal
increment process {Zλ, λ ∈ [−π, π]} is

FZ(λ) = E|Zλ − Z−π|2 = a(λ+ π), λ ∈ [−π, π].

The function FZ is differentiable on (−π, π) and F ′Z(λ) = a, λ ∈ (π, π).

The function g(λ) =
(
π − |λ|2

)−1
eitλ is in L2(FZ) for any t ∈ Z and Yt is defined as the integral of

g with respect to the orthogonal increment process {Zλ, λ ∈ [−π, π]}. Thus from Theorem 5.2, part
1, we have

EYt = 0, t ∈ Z,

i.e. the random sequence {Yt, t ∈ Z} is centered. Furthermore, from Theorem 5.2, part 3, and by
using the particular form of dFZ(λ) we get

RY (s, t) = EYsY t =

∫ π

−π

(
π − |λ|

2

)−2
eisλe−itλ dFZ(λ) = a

∫ π

−π

(
π − |λ|

2

)−2
ei(s−t)λ dλ, s, t ∈ Z.

(11)

This, obviously, is a function of (s − t) only, thus {Yt, t ∈ Z} is weakly stationary. For the special
case s = t we compute the variance of Yt for t ∈ Z:

varYt = RY (t, t) = RY (0) = E|Yt|2 = a

∫ π

−π

(
π − |λ|

2

)−2
dλ

= 2a

∫ π

0

(
π − λ

2

)−2
dλ = 2a

∫ π
2

π

1

x2
· (−2) dx = 4a

∫ π

π
2

x−2 dx =
4a

π
,
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where in the sixth equality we used the substitution x = π − λ
2 .

To find the spectral density let us rewrite RY given in (11) as a function of one variable only:

RY (t) = RY (t, 0) =

∫ π

−π
a

(
π − |λ|

2

)−2
eitλ dλ, t ∈ Z.

Obviously, from the uniqueness of spectral density (Theorem 4.1) the function a
(
π − |λ|2

)−2
is the

spectral density of the random sequence {Yt, t ∈ Z}. ♦

Exercise 5.2: Let {Xt, t ∈ Z} be a centered weakly stationary sequence with spectral decomposition

Xt =

∫ π

−π
eitλ dZ(λ), t ∈ Z,

where {Zλ, λ ∈ [−π.π]} is a centered right-continuous process with orthogonal increments and asso-
ciated distribution function FZ . Let {Yt, t ∈ Z} be a random sequence defined by

Yt − φYt−1 = Xt, t ∈ Z, (12)

where φ ∈ C is a constant with |φ| < 1. Find a function ψ such that

Yt =

∫ π

−π
eitλψ(λ) dZ(λ), t ∈ Z. (13)

Prove that {Yt, t ∈ Z} is weakly stationary centered random sequence. Determine EYs+tY s and
EYs+tXs as integrals w.r.t. FZ . Calculate them for the special choice

FZ(λ) =


0, λ ≤ −π,
σ2

2π (λ+ π), λ ∈ [−π, π],

σ2, λ ≥ π.

Solution:

To find ψ we have to combine the desired representation (13) with the definition of Yt . By plugging
(13) into (12) and using linearity of the integral we get∫ π

−π
eitλψ(λ) dZ(λ)− φ

∫ π

−π
ei(t−1)λψ(λ) dZ(λ) =

∫ π

−π
eitλ dZ(λ),∫ π

−π
eitλ

(
ψ(λ)− φ

eiλ
ψ(λ)

)
dZ(λ) =

∫ π

−π
eitλ dZ(λ), (14)

which must hold for all t ∈ Z. Now if we find ψ(λ) such that

ψ(λ)− φ

eiλ
ψ(λ) = 1, for all λ ∈ [−π, π], (15)

then (14) will be satisfied for all t ∈ Z. Since
∣∣∣ φeiλ ∣∣∣ < 1 we have 1 − φ

eiλ
6= 0 and we get from (15)

directly the solution

ψ(λ) =
1

1− φ e−iλ
, λ ∈ [−π, π].

Since ∣∣∣∣eitλ 1

1− φ e−iλ

∣∣∣∣ ≤ 1

1− |φ|
< K <∞ for all λ ∈ [−π, π],
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for some constant K > 0, the function eitλψ(λ) must be in L2(FZ) for any associated distribution
function FZ on [−π, π] and we may use Theorem 5.2. Thus we obtain

EYt = E
∫ π

−π
eitλψ(λ) dZ(λ) = 0,

EYs+tY s =

∫ π

−π
ei(s+t)λψ(λ)eisλψ(λ) dFZ(λ) =

∫ π

−π
eitλ|ψ(λ)|2 dFZ(λ),

EYs+tXs =

∫ π

−π
ei(s+t)λψ(λ)eisλ dFZ(λ) =

∫ π

−π
eitλψ(λ) dFZ(λ).

We see that the sequence {Yt, t ∈ Z} is centered and weakly stationary (second equation).

For the special choice of FZ from the assignment we get the derivative fZ(λ) = σ2

2π1(λ ∈ (−π, π)).
This means that {Xt, t ∈ Z} is a white noise since the associated distribution function FZ is in fact
the spectral distribution function of Xt, t ∈ Z (Theorem 5.3). Then

RY (t) = EYs+tY s =

∫ π

−π
eitλ|ψ(λ)|2 σ

2

2π
dλ, (16)

and

σ2

2π
|ψ(λ)|2 =

σ2

2π

∣∣∣∣ 1

1− φe−iλ

∣∣∣∣2 =
σ2

2π

1

1 + |φ|2 − 2Re(φe−iλ)
, λ ∈ [−π, π],

is the spectral density of {Yt, t ∈ Z}. ♦

Remark: In the previous exercise it would not be easy to compute the last integral (16) to get RY (t)
in a closed form. But the random sequence {Yt, t ∈ Z} from the previous exercise is an AR(1)
sequence and there are easier methods to compute R(t) – see Exercise 6.2.
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6 Linear models of time series

6.1 ARMA models

MA(n): The moving average sequence of order n is defined by

Xt = b0Yt + b1Yt−1 + · · ·+ bnYt−n, t ∈ Z,

where {Yt, t ∈ Z} is a white noise WN(0, σ2) and b0, b1, . . . , bn are real- or complex-valued constants,
b0 6= 0, bn 6= 0. It is a centered weakly stationary random sequence with the autocovariance function

RX(t) =


σ2
∑n−t

k=0 bk+tbk for 0 ≤ t ≤ n,
RX(−t) for − n ≤ t ≤ 0,

0 for |t| > n,

and the spectral density

fX(λ) =
σ2

2π

∣∣∣∣∣
n∑
k=0

bke
−ikλ

∣∣∣∣∣
2

, λ ∈ [−π, π].

MA(∞): The causal linear process is a random sequence defined by

Xt =
∞∑
j=0

cjYt−j , t ∈ Z, (17)

where {Yt, t ∈ Z} is a white noise and c0, c1, . . . is a sequence of constants such that
∑∞

j=0 |cj | <∞
(this condition implies the sum converges absolutely almost surely). {Xt, t ∈ Z} is a centered weakly
stationary random sequence with the autocovariance function

RX(t) =

{
σ2
∑∞

k=0 ck+tck for t ≥ 0,

RX(−t) for t ≤ 0,
(18)

and the spectral density

fX(λ) =
σ2

2π

∣∣∣∣∣
∞∑
k=0

cke
−ikλ

∣∣∣∣∣
2

, λ ∈ [−π, π].

AR(m): The autoregressive sequence of order m is defined by

Xt + a1Xt−1 + · · ·+ amXt−m = Yt, t ∈ Z,

where {Yt, t ∈ Z} is a white noise and a1, . . . , am are real-valued constants, am 6= 0. If all the roots
of the polynomial 1 + a1z + · · · + amz

m lie outside the unit circle in C (which is equivalent to all
the roots of zm + a1z

m−1 + · · · + am lying inside the unit circle) then {Xt, t ∈ Z} is a causal linear
process (17) with coefficients cj determined by

∞∑
j=0

cjz
j =

1

1 + a1z + · · ·+ amzm
, |z| ≤ 1.
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We may also get the coefficients cj by solving the equations derived by plugging-in (17) into the
defining relation and by comparing the coefficients by the respective terms Yt−j on both sides. The
autocovariance function is given by (18) and the spectral density is

fX(λ) =
σ2

2π

1

|1 + a1e−iλ + · · ·+ ame−imλ|2
, λ ∈ [−π, π].

The autocovariance function may be also computed by means of the Yule-Walker equations.

ARMA(m,n): This model is defined by the equation

Xt + a1Xt−1 + · · ·+ amXt−m = Yt + b1Yt−1 + · · ·+ bnYt−n, t ∈ Z, (19)

where {Yt, t ∈ Z} is a white noise and a1, . . . , am, b1, . . . , bn are real-valued constants, am 6= 0, bn 6= 0.
Suppose that the polynomials 1 + a1z + · · ·+ amz

m and 1 + b1z + · · ·+ bnz
n have no common roots

and all the roots of the polynomial 1+a1z+ · · ·+amz
m are outside the unit circle. Then {Xt, t ∈ Z}

is a causal linear process (17) with coefficients cj given by

∞∑
j=0

cjz
j =

1 + b1z + · · ·+ bnz
n

1 + a1z + · · ·+ amzm
, |z| ≤ 1.

We may also get the coefficients cj by solving the equations derived by plugging-in (17) into the
defining relation and by comparing the coefficients by the respective terms Yt−j on both sides. The
autocovariance function is given by (18) and the spectral density is

fX(λ) =
σ2

2π

|1 + b1e
−iλ + · · ·+ bne−inλ|2

|1 + a1e−iλ + · · ·+ ame−imλ|2
, λ ∈ [−π, π].

The autocovariance function may be also computed by means of the Yule-Walker equations.

Definition 6.1: Let {Xt, t ∈ Z} be a stationary ARMA(m,n) random sequence defined by (19). If
there exists a sequence of constants {dj , j ∈ N0} such that

∑∞
j=0 |dj | <∞ and

Yt =

∞∑
j=0

djXt−j , t ∈ Z,

then {Xt, t ∈ Z} is called invertible (it has an AR(∞) representation).

Theorem 6.1: Let {Xt, t ∈ Z} be a stationary ARMA(m,n) random sequence. Let the polynomials
a(z) = 1+a1z+ · · ·+amzm and b(z) = 1+b1z+ · · ·+bnzn have no common roots and the polynomial
b(z) = 1 + b1z + · · ·+ bnz

n have all the roots outside the unit circle. Then {Xt, t ∈ Z} is invertible
and the coefficients dj are given by

∞∑
j=0

djz
j =

1 + a1z + · · ·+ amz
m

1 + b1z + · · ·+ bnzn
, |z| ≤ 1.

Remark: We may obtain the coefficients dj by solving the equations we get by plugging the equality
Yt =

∑∞
j=0 djXt−j into the defining formula of the ARMA sequence and comparing the coefficients

on both sides.
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Exercise 6.1: Determine the autocovariance function and the spectral density of the sequence

Xt = Yt + θYt−2, t ∈ Z,

where θ ∈ C a {Yt, t ∈ Z} is a white noise WN(0, σ2).

Solution: The sequence {Xt, t ∈ Z} is an MA(2) sequence with coefficients b0 = 1, b1 = 0, b2 = θ.
Thus it is a centered weakly stationary sequence with only three nonzero values of RX(t):

RX(0) = σ2(1 + |θ|2), RX(2) = σ2θ, RX(−2) = σ2 θ.

From the formula for spectral density of an MA(n) model we get

fX(λ) =
σ2

2π

∣∣∣1 + θe−i2λ
∣∣∣2 =

σ2

2π

(
1 + |θ|2 + 2Re(θe−i2λ)

)
, λ ∈ [−π, π],

and for the special case of θ real fX(λ) = σ2

2π

(
1 + θ2 + 2θ cos(2λ)

)
, λ ∈ [−π, π]. ♦

Exercise 6.2: The random sequence {Xt, t ∈ Z} is defined by

Xt = ρXt−1 + Yt, t ∈ Z, (20)

where ρ ∈ R, 0 < |ρ| < 1, is a constant and the random sequence {Yt, t ∈ Z} is defined by

Yt =

{
Zt for t even,
1√
2
(Z2

t − 1) for t odd.

Here {Zt, t ∈ Z} is a sequence of independent N(0, 1)-distributed random variables. Decide whether
{Xt, t ∈ Z} is strictly or weakly stationary and compute its autocovariance function.

Solution: First we must investigate the random sequence {Yt, t ∈ Z}. Obviously it is a sequence of
independent random variables, EYt = 0, varYt = 1 for t even, and for t odd

EYt =
1√
2

(1− 1) = 0, varYt = EY 2
t =

1

2
var(Z2

t ) = 1,

since Zt ∼ N(0, 1) and Z2
t has the χ2-distribution with one degree of freedom. Thus {Yt, t ∈ Z} is

a white noise.

{Xt, t ∈ Z} is then AR(1) sequence with the coefficient a1 = −ρ. The polynomial 1−ρz has the root
1
ρ which lies outside the unit circle (since |ρ| < 1 from the assignment). Thus {Xt, t ∈ Z} is a causal
linear process, it is centered and weakly stationary.

From the expansion of the geometric series 1
1−ρz =

∑∞
j=0(ρz)

j =
∑∞

j=0 ρ
jzj we get the coefficients of

the causal representation cj = ρj , j = 0, 1, . . . Thus

Xt =

∞∑
j=0

ρjYt−j , t ∈ Z.

Now we see that {Xt, t ∈ Z} is not strictly stationary since e.g. EX3
0 =

√
8ρ3

1−ρ6 6=
√
8

1−ρ6 = EX3
1 .

Moreover,

RX(t) =

∞∑
j=0

ρj+tρj = ρt
1

1− ρ2
, t ∈ Z, t ≥ 0,

and RX(t) = RX(−t) for t ∈ Z, t ≤ 0. ♦
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Remark: Note that we could get the causal representation for the AR(1) model also directly by
iteratively plugging the equation (20) into itself:

Xt = Yt + ρXt−1 = Yt + ρ(Yt−1 + ρXt−2) = · · · =
k∑
j=0

ρjYt−j + ρk+1Xt−k−1 =
∞∑
j=0

ρjYt−j .

The last equality is correct since the sequence ρk+1Xt−k−1 goes to 0 in L2 and Xk
t =

∑k
j=0 ρ

jYt−j ,

k ∈ N0, is a Cauchy sequence in L2 and thus it must have a limit which is exactly
∑∞

j=0 ρ
jYt−j .

Exercise 6.3: The random sequence {Xt, t ∈ Z} is defined by

Xt − 0.7Xt−1 + 0.1Xt−2 = Yt, t ∈ Z, (21)

where {Yt, t ∈ Z} is a white noise WN(0, σ2). Express the random sequence {Xt, t ∈ Z} as a causal
linear process and compute its autocovariance function and spectral density.

Solution: The random sequence {Xt, t ∈ Z} is an AR(2) process with coefficients a1 = −0.7, a2 = 0.1.
The roots of the equation 1− 0.7z + 0.1z2 = 0 are 2 and 5. They lie outside the unit circle and thus
{Xt, t ∈ Z} is really a causal linear process with the representation Xt =

∑∞
k=0 ckYt−k, t ∈ Z. We

can find the coefficients ck by plugging the causal representation into the model equation (21) and
comparing the coefficients in front of every Yt−k. We obtain the set of equations

c0 = 1,

c1 − 0.7c0 = 0,

ck − 0.7ck−1 + 0.1ck−2 = 0, k ≥ 2.

The characteristic polynomial of the difference equation in the third line is λ2− 0.7λ+ 0.1 which has
roots 0.5 and 0.2. Thus the solution is ck = a10.5

k + a2 0.2k for some real values a1, a2. We use the
first two lines to obtain the boundary conditions:

c0 = a1 + a2 = 1,

c1 − 0.7c0 = a10.5 + a2 0.2− 0.7(a1 + a2) = 0,

and we obtain a1 = 5
3 , a2 = −2

3 . The causal representaion is then

Xt =

∞∑
k=0

(
5

3
0.5k − 2

3
0.2k

)
Yt−k, t ∈ Z.

We may compute the autocovariance function RX(t) from the formula for the autocovariance function
of the causal linear process. For t ∈ Z, t ≥ 0, we get

RX(t) = σ2
∞∑
k=0

ck+tck = σ2
∞∑
k=0

(
5

3
0.5(k+t) − 2

3
0.2(k+t)

)(
5

3
0.5k − 2

3
0.2k

)
= σ2

(
200

81
0.5t − 125

162
0.2t

)
(22)

and RX(t) = RX(−t) for t ∈ Z, t ≤ 0.

However, we may also compute RX(t) without the causal representation by using the Yule-Walker
equations. For this we need to assume that the white noise sequence {Yt, t ∈ Z} is real-valued and
the sequence {Xt, t ∈ Z} is a causal linear process (we have shown that above). The Yule-Walker
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equations are obtained by multiplying the model equation (21) by Xt−k for k ∈ N0 and taking
expectations:

EXtXt − 0.7EXt−1Xt + 0.1EXt−2Xt = EYtXt,

EXtXt−1 − 0.7EXt−1Xt−1 + 0.1EXt−2Xt−1 = EYtXt−1,

EXtXt−2 − 0.7EXt−1Xt−2 + 0.1EXt−2Xt−2 = EYtXt−2,

EXtXt−k − 0.7EXt−1Xt−k + 0.1EXt−2Xt−k = EYtXt−k, k ≥ 2.

Since we know that {Xt, t ∈ Z} is centered and weakly stationary we may rewrite the left hand sides
as follows:

RX(0)− 0.7RX(−1) + 0.1RX(−2) = EYtXt,

RX(1)− 0.7RX(0) + 0.1RX(−1) = EYtXt−1,

RX(2)− 0.7RX(1) + 0.1RX(0) = EYtXt−2,

RX(k)− 0.7RX(k − 1) + 0.1RX(k − 2) = EYtXt−k, k ≥ 2.

On the right hand sides we know that EYtXt−k = E(Yt
∑∞

j=0 cjYt−k−j) = 0 for any k ∈ N since from
the causality Xt−k ∈ H(Yt−k, Yt−k−1, . . . ) and Yt is uncorrelated with any random variable from
H(Yt−k, Yt−k−1, . . . ), and hence also with Xt−k. To find the value of EYtXt we multiply the model
equation by Yt and take expectation:

EXtYt − 0.7EXt−1Yt + 0.1EXt−2Yt = EY 2
t ,

and we obtain

EXtYt − 0.7 · 0 + 0.1 · 0 = σ2.

Thus, EXtYt = σ2. Since RX(k) is a real-valued autocovariance function we may put RX(k) =
RX(−k), k ∈ Z, and the Yule-Walker equations finaly look like

RX(0)− 0.7RX(1) + 0.1RX(2) = σ2,

RX(1)− 0.7RX(0) + 0.1RX(1) = 0,

RX(k)− 0.7RX(k − 1) + 0.1RX(k − 2) = 0, k ≥ 2.

The characteristic polynomial of the difference equation in the third line is λ2− 0.7λ+ 0.1 which has
roots 0.5 and 0.2. Thus RX(k) = a10.5

k + a2 0.2k, k ≥ 0. Using the first two equations to get the
boundary conditions we would obtain the solution (22).

Note, however, that from the second equation we easily obtain rX(1) = 7
11 . We also know that

rX(0) = 1 since that always holds for the autocorrelation function. By dividing the third equation
by RX(0) we get the same difference equation

rX(k)− 0.7rX(k − 1) + 0.1rX(k − 2) = 0, k ≥ 2,

also for the autocorrelation function. Thus rX(k) = b10.5
k + b20.2

k, k ≥ 0, and the boundary
conditions are simpler than those for the autocovariance function. We easily compute b1 = 16

11 , b2 =
− 5

11 . Since rX(2) = 19
55 we may express RX(0) from the first Yule-Walker equation as

RX(0) =
σ2

1− 0.7 7
11 + 0.119

55

=
275

162
σ2.

Together, we get for the autocovariance function

RX(k) = rX(k)RX(0) = σ2
(

200

81
0.5|k| − 125

162
0.2|k|

)
, k ∈ Z.
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The spectral density fX(λ) is obtained from the formula for AR model:

fX(λ) =
σ2

2π

1

|1− 0.7e−iλ + 0.1e−i2λ|2
=
σ2

2π

50

75− 77 cos(λ) + 10 cos(2λ)
, λ ∈ [−π, π].

♦

Remark: Note that if we substitute λ = 1
z into 1− 0.7z + 0.1z2 = 0 we get

1− 0.7

λ
+

0.1

λ
= 0 / · λ2

λ2 − 0.7λ+ 0.1 = 0.

Thus, if the roots z1,2 of the first equation lie outside the unit circle, the roots λ1,2 of the other
equation are their reciprocal values and as such lie inside the unit circle. Since the other equation
is the characteristic equation for the system of difference equations for the causal coefficients ck and
for the system of difference equations derived from the Yule-Walker equations for RX(t), it follows
that {ck}∞k=0 and {RX(t)}∞t=0 are linear combinations of geometric series with quotients in absolute
value smaller than 1. Thus, we see again that for the causal AR(2) model RX(t) → 0, t → ∞, and∑∞

k=0 |ck| <∞.

Exercise 6.4: Solve the Yule-Walker equations and determine the autocovariance function of the
random sequence {Xt, t ∈ Z} defined by

Xt − 0.4Xt−1 + 0.04Xt−2 = Yt, t ∈ Z,

where {Yt, t ∈ Z} is a white noise WN(0, σ2).

Solution: The random sequence {Xt, t ∈ Z} is an AR(2) process with coefficients a1 = −0.4, a2 = 0.04.
The equation 1 − 0.4z + 0.04z2 = 0 has a double root 5 which lies outside the unit circle. Thus
{Xt, t ∈ Z} is a centered weakly stationary causal linear process.

Analogously to the previous exercise we derive the Yule-Walker equations:

RX(0)− 0.4RX(1) + 0.04RX(2) = σ2,

RX(1)− 0.4RX(0) + 0.04RX(1) = 0,

RX(k)− 0.4RX(k − 1) + 0.04RX(k − 2) = 0, k ≥ 2.

From the second equation we get rX(1) = 5
13 . The homogeneous difference equation for the autocor-

relation function,

rX(k)− 0.4rX(k − 1) + 0.04rX(k − 2) = 0, k ≥ 2,

has the characteristic polynomial λ2 − 0.4λ + 0.04 with double root 0.2. Thus the autocorrelation
function is rX(k) = (a + bk)0.2k, k ≥ 0. From the boundary conditions rX(0) = 1 and rX(1) = 5

13
we get a = 1, b = 12

13 and hence

rX(k) =

(
1 +

12

13
|k|
)

0.2|k|, k ∈ Z.

We get the variance RX(0) from the first Yule-Walker equation

RX(0) =
σ2

1− 0.4rX(1) + 0.04rX(2)
=

σ2

1− 2
5

5
13 + 1

25
37

25·13
=

8 125

6 912
σ2.

♦
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Exercise 6.5: Solve the Yule-Walker equations and determine the autocovariance function of the
random sequence {Xt, t ∈ Z} defined by

Xt − 1.4Xt−1 + 0.98Xt−2 = Yt, t ∈ Z,

where {Yt, t ∈ Z} is a white noise WN(0, σ2).

Solution: The random sequence {Xt, t ∈ Z} is an AR(2) process with coefficients a1 = −1.4, a2 = 0.98.
The equation 1−1.4z+ 0.98z2 = 0 has complex roots 5

7(1± i) which lie outside the unit circle. Thus
{Xt, t ∈ Z} is a centered weakly stationary causal linear process.

Analogously to the previous exercise we derive the Yule-Walker equations:

RX(0)− 1.4RX(1) + 0.98RX(2) = σ2,

RX(1)− 1.4RX(0) + 0.98RX(1) = 0,

RX(k)− 1.4RX(k − 1) + 0.98RX(k − 2) = 0, k ≥ 2.

The homogeneous difference equation for the autocorrelation function,

rX(k)− 1.4rX(k − 1) + 0.98rX(k − 2) = 0, k ≥ 2,

has the characteristic polynomial λ2 − 1.4λ+ 0.98 with roots λ1,2 = 7
10(1± i) = 7

√
2

10 e±i
π
4 . We could

look for rX(k) in the form rX(k) = aλk1 + bλk2 but we know that the correlation function should be
real-valued and thus it must be possible to write it as rX(k) = c1ρ

k cos(kω) + c2ρ
k sin(kω), where

ρ = |λ1| = 7
√
2

10 and ω = π
4 .

From the second Yule-Walker equation we get rX(1) = 70
99 and we compute c1 = 1 and c2 = 1

99 . It
follows that rX(2) = 49/4950 and RX(0) = 247500

4901 σ
2. ♦

Exercise 6.6: Let {Xt, t ∈ Z} be an ARMA(2,1) random sequence defined by

Xt −Xt−1 +
1

4
Xt−2 = Yt + Yt−1, t ∈ Z, (23)

where {Yt, t ∈ Z} is a white noise WN(0, σ2). Determine the coefficients of the MA(∞) representation
of Xt and compute its autocovariance function and spectral density. Is the process invertible?

Solution: The random sequence {Xt, t ∈ Z} is an ARMA(2,1) process with coefficients a1 = −1,
a2 = 1

4 , b1 = 1. The polynomials 1− z + 1
4z

2 and 1 + z have no common roots and the first one has
a double root 2 which lies outside the unit circle. Thus {Xt, t ∈ Z} is a centered weakly stationary
causal linear process. The root of the second polynomial z = −1 does not lie outside of the unit
circle and thus {Xt, t ∈ Z} is not invertible (but see the remark below this exercise).

We can find the coefficients ck of the MA(∞) representation by plugging the causal representation
into the model equation and comparing the coefficients in front of every Yt−k. We obtain the following
set of equations:

c0 = 1,

c1 − c0 = 1,

ck − ck−1 +
1

4
ck−2 = 0, k ≥ 2.

The characteristic polynomial of the difference equation in the third line is λ2 − λ + 1
4 which has a

double root 0.5. Thus the solution is ck = (a+ bk)0.5k, k ∈ N0. We use the first two lines to get the
boundary conditions:

c0 = a = 1,

c1 − c0 = (a+ b)/2 = 0.

42



We obtain a = 1, b = 3. The causal representaion is

Xt =

∞∑
k=0

(1 + 3k)
1

2k
Yt−k, k ∈ Z.

We could compute the autocovariance function from the formula for the MA(∞) process, but since
we have the double root 0.5 in the causal representation we prefer to use the Yule-Walker equations.
By multiplying the model equation by Xt−k, k ≥ 0 and taking expectations we obtain

RX(0)−RX(1) +
1

4
RX(2) = EXtYt + EXtYt−1,

RX(1)−RX(0) +
1

4
RX(1) = EXt−1Yt + EXt−1Yt−1,

RX(k)−RX(k − 1) +
1

4
RX(k − 2) = EXt−kYt + EXt−kYt−1, k ≥ 2.

From causality we get EXt−kYt = 0 for k > 0 and EXt−kYt−1 = 0 for k > 1 using the same arguments
as in Exercise 6.3. Thus it remains to find the values EXtYt and EXtYt−1 to be able to determine
the values of all the right-hand sides. Let us multiply the model equation with Yt and Yt−1 and take
expectations. We get

EXtYt − EXt−1Yt +
1

4
EXt−2Yt = EY 2

t + EYt−1Yt,

EXtYt−1 − EXt−1Yt−1 +
1

4
EXt−2Yt−1 = EYtYt−1 + EY 2

t−1,

and by plugging-in the 0’s and σ2 we get

EXtYt = EY 2
t = σ2,

EXtYt−1 − EXt−1Yt−1 = EY 2
t−1 = σ2.

Thus EXtYt = σ2 and EXtYt−1 = 2σ2. The Yule-Walker equations are thus the following:

RX(0)−RX(1) +
1

4
RX(2) = 3σ3,

RX(1)−RX(0) +
1

4
RX(1) = σ2,

RX(k)−RX(k − 1) +
1

4
RX(k − 2) = 0, k ≥ 2.

The homogeneous difference equation from the third line has the characteristic polynomial λ2−λ+ 1
4

with the double root 1
2 . Thus RX(k) = (a+ bk) 1

2k
, k ∈ N0, and the first two equations give

a− a+ b

2
+

1

4

a+ 2b

4
= 3σ2,

5

4

a+ b

2
− a = σ2.

The solution is a = 32
3 σ

2, b = 8σ2. The autocovariance function is then

RX(k) = σ2
(

32

3
+ 8|k|

)(
1

2

)|k|
, k ∈ Z.
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We compute the spectral density of {Xt, t ∈ Z} using the formula for the spectral density of the
ARMA model:

fX(λ) =
σ2

2π

|1 + e−iλ|2∣∣1− e−iλ + 1
4e−i2λ

∣∣2 =
σ2

2π

32(1 + cosλ)

(5− 4 cosλ)2
, λ ∈ [−π, π].

♦

Remark: Note that it would not be effective to use the trick with the autocorrelation function for the
ARMA model since we have more than one non-zero right-hand side in the Yule-Walker equations
and we cannot switch from the autocovariance function to the autocorrelation function without
knowing the variance RX(0).

Remark: Concerning the (non)invertibility of the ARMA model: Theorem 6.1 as it is formulated
gives sufficient conditions for invertibility. However, these conditions are also necessary conditions
for invertibility. We show this for the special case of the ARMA model from Exercise 6.6 but the
same argument is valid in general.

Suppose that {Xt, t ∈ Z} is invertible. Then there must exist inverted representation

Yt =

∞∑
k=0

dkXt−k, t ∈ Z,

with {dk}∞k=0 satisfying
∑∞

k=0 |dk| < ∞. But then we can plug this representation into the model
equation (23) and compare the coefficients in front of each Xt−k. We get a set of equations for the
sequence {dk}∞k=0:

d0 = 1,

d1 + d0 = −1,

d2 + d1 =
1

4
,

dk + dk−1 = 0, k ≥ 3.

We solve it to see that d0 = 1, d1 = −2, d2 = 2.25 and the homogeneous difference equation on the
fourth line has the general solution dk = a(−1)k, k ≥ 2. Using the boundary condition d2 = 2.25 we
get the unique solution

d0 = 1, d1 = −2, dk = 2.25(−1)k, k ≥ 2.

But these coefficients are not summable (
∑∞

k=0 |dk| = ∞) and our computed “inverted representa-
tion” Yt =

∑∞
k=0 dkXt−k, t ∈ Z, does not converge in L2 (it is not Cauchy, it cannot converge). Thus

we have obtained a contradiction with our assumption of existence of inverted representation and
we have proved that the ARMA model in question is not invertible.

Exercise 6.7: Consider the ARMA(2,1) model defined by

Xt − 0.1Xt−1 − 0.12Xt−2 = Yt − 0.7Yt−1, t ∈ Z,

where {Yt, t ∈ Z} is a white noise WN(0, σ2). Decide whether it is causal. Decide whether it is
invertible. If it is, determine the coefficients of the AR(∞) representation.

Solution: The random sequence {Xt, t ∈ Z} is an ARMA(2,1) model with coefficients a1 = −0.1, a2 =
−0.12, b1 = −0.7. The polynomials 1 − 0.1z − 0.12z2 and 1 − 0.7z have no common roots and the
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roots of the first one 5
2 ,−

10
3 lie outside of the unit circle. Thus {Xt, t ∈ Z} is a centered weakly

stationary causal linear process. The root of the second polynomial z = 10
7 lies outside of the unit

circle as well and thus {Xt, t ∈ Z} is invertible.

We can find the coefficients dk of the AR(∞) representation by plugging the inverted representation
Yt =

∑∞
k=0 dkXt−k into the model equation and comparing the coefficients in front of every Xt−k.

We obtain the following set of equations:

d0 = 1,

d1 − 0.7d0 = −0.1,

d2 − 0.7d1 = −0.12,

dk − 0.7dk−1 = 0, k ≥ 3.

From the first three equations with nonzero right-hand side we get d0 = 1, d1 = 0.6, d2 = 0.3. The
characteristic polynomial of the homogeneous difference equation in the fourth line is λ− 0.7. It has
the root 0.7 and thus the general solution is dk = a 0.7k, k ≥ 2. Note that the homogeneous difference
equation should be satisfied only from k = 3 on, thus only dk, k ≥ 2, are obliged to be in the shape of
the general solution. The boundary condition is thus d2 = 0.3 = a 0.7k and a = 0.3/0.72. It follows
that dk = 0.3(0.7)k−2, k ≥ 2. ♦

Further exercises

Exercise 6.8: Let

Zt = Yt +Wt and Yt + βYt−1 = Ut, t ∈ Z,

where |β| < 1 and {Ut, t ∈ Z} and {Wt, t ∈ Z} are independent centered sequences of independent
random variables with varUt = σ2, varWt = τ2 for all t ∈ Z. Determine the spectral density of the
random sequence {Zt, t ∈ Z}.

Exercise 6.9: Determine the autocovariance function and the spectral density of the sequence
{Xt, t ∈ Z} defined by

Xt = Yt + c1Yt−1 + c2Yt−2, t ∈ Z,

where {Yt, t ∈ Z} is a white noise WN(0, σ2) and c1, c2 are the coefficients from the equation
z2 + c1z + c2 = 0 with roots z1 = ρeiθ, z2 = ρe−iθ, where ρ > 0, θ ∈ (0, π).

Exercise 6.10: The random sequence {Xt, t ∈ Z} is defined by

Xt −
2

15
Xt−1 −

1

15
Xt−2 = Yt, t ∈ Z,

where {Yt, t ∈ Z} is a white noise WN(0, σ2). Express the random sequence {Xt, t ∈ Z} as a causal
linear process and compute its autocovariance function and spectral density.

Exercise 6.11: Let {Xt, t ∈ Z} be an AR(2) random sequence defined by

Xt + a1Xt−1 + a2Xt−2 = Yt, t ∈ Z.

Determine for which values of a1 and a2 is {Xt, t ∈ Z} a causal linear process. Express the variance
of {Xt, t ∈ Z} by means of a1 and a2 and the white noise variance σ2.

Exercise 6.12: The random sequence {Xt, t ∈ Z} is defined by the equation

Xt −
5

4
Xt−1 +

1

2
Xt−2 −

1

16
Xt−3 = Yt, t ∈ Z,
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where {Yt, t ∈ Z} is a white noise WN(0, σ2). Determine the autocovariance function of {Xt, t ∈ Z}.

Exercise 6.13: Consider the ARMA(1,1) model defined by

Xt + 0.7Xt−1 = Yt + 0.3Yt−1, t ∈ Z,

where {Yt, t ∈ Z} is a white noise WN(0, σ2). Determine the coefficients of the AR(∞) representation.

Exercise 6.14: Consider the ARMA(1,1) model defined by

Xt + 0.6Xt−1 = Yt + 1.2Yt−1, t ∈ Z,

where {Yt, t ∈ Z} is a white noise WN(0, σ2). Determine the autocovariance function of {Xt, t ∈ Z}.

Exercise 6.15: The random sequence {Xt, t ∈ Z} is defined by the equation

Xt − (a+ b)Xt−1 + abXt−2 = Yt − aYt−1, t ∈ Z,

where {Yt, t ∈ Z} is a white noise WN(0, σ2) and a 6= 0, b 6= 0 are real constants. For which
values of a, b is the process causal? For which values of a, b is the process invertible? Derive the
causal (MA(∞)) and inverted (AR(∞)) representation. Compute the autocovariance function of
{Xt, t ∈ Z}.

Exercise 6.16: Consider the ARMA(2,1) model defined by

Xt − 0.5Xt−1 + 0.04Xt−2 = Yt + 0.25Yt−1, t ∈ Z,

where {Yt, t ∈ Z} is a white noise WN(0, σ2). Determine the coefficients of the AR(∞) representation.

6.2 Linear filters

Definition 6.2: Let {Yt, t ∈ Z} be a centered weakly stationary sequence. Let {cj , j ∈ Z} be
a sequence of (complex-valued) numbers such that

∑∞
j=−∞ |cj | <∞.

We say that a random sequence {Xt, t ∈ Z} is obtained by filtration of the sequence {Yt, t ∈ Z} if

Xt =

∞∑
j=−∞

cjYt−j , t ∈ Z.

The sequence {cj , j ∈ Z} is called time-invariant linear filter.
Provided that cj = 0 for all j < 0, we say that the filter {cj , j ∈ Z} is causal.

Theorem 6.2: Let {Yt, t ∈ Z} be a centered weakly stationary sequence with an autocovariance
function RY and spectral density fY and let {ck, k ∈ Z} be a linear filter such that

∑∞
k=−∞ |ck| <∞.

Then {Xt, t ∈ Z}, where Xt =
∑∞

k=−∞ ckYt−k, is a centered weakly stationary sequence with the
autocovariance function

RX(t) =

∞∑
j=−∞

∞∑
k=−∞

cjckRY (t− j + k), t ∈ Z,

and spectral density

fX(λ) = |Ψ(λ)|2fY (λ), λ ∈ [−π, π],
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where

Ψ(λ) =
∞∑

k=−∞
cke
−ikλ, λ ∈ [−π, π],

is called the transfer function of the filter.

Exercise 6.17: Let {Zt, t ∈ Z} be a white noise WN(0, 1) and let {Xt, t ∈ Z} be a causal linear
process defined by

Xt −
1

3
Xt−1 = Zt, t ∈ Z. (24)

Let {Yt, t ∈ Z} be a process obtained by the filtration Yt = Xt+2 − 1
2Xt+1 + 1

4Xt, t ∈ Z. Derive the
transfer function of the filter and compute the spectral density of {Yt, t ∈ Z}.

Solution: {Xt, t ∈ Z} is a causal AR(1) model since the root of the polynomial 1− 1
3z is 3 and it lies

outside the unit circle. We compute the spectral density according to the formula for the AR model

fX(λ) =
σ2

2π

1

|1− 1
3e−iλ|2

=
σ2

2π

9

10− 6 cosλ
, λ ∈ [−π, π].

The coefficients of the filter are c0 = 1
4 , c−1 = −1

2 , c−2 = 1. Then according to the Theorem 6.2 the
transfer function of the filter is

ΨY (λ) =
1

4
− 1

2
eiλ + ei2λ, λ ∈ [−π, π],

and the spectral density of {Yt, t ∈ Z} is

fY (λ) = |ΨY (λ)|2fX(λ) =
σ2

2π

∣∣1
4 −

1
2eiλ + ei2λ

∣∣2
|1− 1

3e−iλ|2
=
σ2

2π

21− 20 cosλ+ 8 cos 2λ

16

9

10− 6 cosλ

=
σ2

2π

9(21− 20 cosλ+ 8 cos 2λ)

32(5− 3 cosλ)
, λ ∈ [−π, π].

♦

Remark: We could ask what does the process {Yt, t ∈ Z} look like. Obviously it is centered and
weakly stationary. If we have a look on the spectral density of {Yt, t ∈ Z} we see that

fY (λ) =
σ2

2π

∣∣1
4 −

1
2eiλ + ei2λ

∣∣2
|1− 1

3e−iλ|2
=
σ2

2π

∣∣ei2λ (14e−i2λ − 1
2e−iλ + 1

)∣∣2
|1− 1

3e−iλ|2

=
σ2

2π

∣∣1− 1
2e−iλ + 1

4e−i2λ
∣∣2

|1− 1
3e−iλ|2

, λ ∈ [−π, π],

which is the spectral density of an ARMA(1,2) model given by the equation

Vt −
1

3
Vt−1 = Wt −

1

2
Wt−1 +

1

4
Wt−2, t ∈ Z,

for some white noise {Wt, t ∈ Z} with variance σ2. Thus {Yt, t ∈ Z} is equivalent to an ARMA(1,2)
model. This can be verified by expressing Yt − 1

3Yt−1 by plugging (24) into the defining formula for
Yt, t ∈ Z, obtaining Yt − 1

3Yt−1 = Zt+2 − 1
2Zt+1 + 1

4Zt, t ∈ Z.

47



Exercise 6.18: Let {Yt, t ∈ Z} be a white noise WN(0, σ2). Let it be transformed by a linear filter
to {Xt, t ∈ Z} so that

Xt − 2Xt−1 = Yt, t ∈ Z, (25)

holds. Determine the coefficients of the linear filter, the transfer function of the filter and compute
the autocovariance function and the spectral density of {Xt, t ∈ Z}.

Solution: The equation (25) corresponds to an AR(1) model. However, the root of 1 − 2z is 1
2 and

it lies inside the unit circle. Thus {Xt, t ∈ Z} is not a well-defined causal autoregressive model.
Nevertheless, it is still possible to express {Xt, t ∈ Z} as a filtered white noise. We try to expand Xt

into the future using (25):

−Xt =
Yt+1 −Xt+1

2
=
Yt+1

2
+

1

2

Yt+2 −Xt+2

2
= · · · =

m∑
k=1

Yt+k
2k
− Xt+m

2t+m
= · · · =

∞∑
k=1

Yt+k
2k

.

Thus

Xt =
∞∑
k=1

− 1

2k
Yt+k =

−1∑
l=−∞

−2lYt−l, t ∈ Z,

is filtered from the white noise by a non-causal filter with coefficients cl = −2l for l < 0 and cl = 0
for l ≥ 0. This filter satisfies the condition

∑∞
k=−∞ |ck| < ∞, thus according to the Theorem 6.2

{Xt, t ∈ Z} is a centered weakly stationary sequence with the transfer function

ΨX(λ) =
∞∑

k=−∞
cke
−ikλ =

−1∑
k=−∞

−2ke−ikλ = −
∞∑
k=1

(
1

2

)k
eikλ = −

1
2eiλ

1− 1
2eiλ

=
1

1− 2e−iλ
, λ ∈ [−π, π],

and the spectral density

fX(λ) = |ΨX(λ)|2fY (λ) =
σ2

2π

1

|1− 2e−iλ|2
=
σ2

2π

1

5− 4 cosλ
, λ ∈ [−π, π],

since {Yt, t ∈ Z} is a white noise.

We compute the autocovariance function RX(t) according to the Theorem 6.2:

RX(t) =
∞∑

j=−∞

∞∑
k=−∞

cjckRY (t− j + k) =
∞∑

j=−∞

∞∑
k=−∞

cjckσ
21(t− j + k = 0) =

−1∑
j=−∞

cjcj−tσ
2,

where we used the fact that the filter is real-valued and that {Yt, t ∈ Z} is a white noise. For t ≥ 0
we get

RX(t) =
−1∑

j=−∞
22j−tσ2 = σ22−t

∞∑
l=1

4−l =
σ2

3

(
1

2

)t
.

Thus RX(t) = σ2

3 2−|t|, t ∈ Z. ♦

Remark: In the previous exercise we found a centered weakly stationary random sequence that
satisfies equation (25). Analogously we would be able to find a centered weakly stationary sequence
satisfying the equation

Xt − ρXt−1 = Yt, t ∈ Z
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for any ρ ∈ R, |ρ| > 1. For ρ ∈ R, |ρ| < 1, we found a causal linear process satisfying the same
equation in Exercise 6.2.

To complete the picture, we could ask about the case ρ = ±1. In this case we are not able to find
a centered weakly stationary solution of equation (20). But if we change the assignment to

Xt −Xt−1 = Yt, t ∈ N,

where {Yt, t ∈ N0} is an i.i.d. white noise, we see that it is satisfied by the random walk

Xt =

t∑
k=0

Yk, t ∈ N, X0 = Y0,

with the same incremental and starting distribution, equal to the distribution of Y0.

Further exercises

Exercise 6.19: Let {Zt, t ∈ Z} be a white noise WN(0, 1) and let {Xt, t ∈ Z} be a causal linear
process defined by

Xt − 0.99Xt−3 = Zt, t ∈ Z.

Let {Yt, t ∈ Z} be a process obtained by the filtration Yt = 1
3(Xt−1 +Xt+Xt+1). Derive the transfer

function of the filter and compute the spectral density of {Yt, t ∈ Z}.

Exercise 6.20: Consider a random sequence given by the formula

Xt −
1

3
Xt−1 = Yt, t ∈ Z,

where {Yt, t ∈ Z} is a centered real-valued white noise with positive finite variance σ2. Let {Zt, t ∈ Z}
be a process obtained by the filtration

Zt = Xt −
1

2
Xt−1, t ∈ Z.

Derive the transfer function of the filter and compute the spectral density of {Zt, t ∈ Z}. Compute
the autocovariance function of {Zt, t ∈ Z}.
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7 Prediction

7.1 Prediction based on infinite history

Let {Xt, t ∈ Z} be a random sequence. Hn
−∞ = H{. . . , Xn−1, Xn} denotes the Hilbert space gene-

rated by the random variables {Xt, t ≤ n}, i.e. by the history of the process {Xt, t ∈ Z} up to
time n.

Prediction X̂n+h(n) of Xn+h (where h ∈ N) based on the infinite history Xn, Xn−1, . . . is the orthogo-
nal projection of the random variable Xn+h into the space Hn

−∞. We denote X̂n+h(n) = PHn
−∞

(Xn+h)

and use a shorter notation X̂n+1 for X̂n+1(n).

Prediction error (residual variance) is defined as E|Xn+h − X̂n+h(n)|2.

Consider a causal and invertible ARMA(m,n) sequence. Invertibility implies that

Xn+1 = −
∞∑
j=1

djXn+1−j + Yn+1, n ∈ Z.

Causality implies that Xn ∈ H{. . . , Yn−1, Yn} ⊥ Yn+1. Thus the random variable Yn+1 is uncor-
related with Xn, and similarly with any other Xn−k, k ∈ N. From linearity and continuity of the
inner product we get Yn+1 ⊥ Hn

−∞. Furthermore, −
∑∞

j=1 djXn+1−j ∈ Hn
−∞. Thus the best linear

prediction of Xn+1 based on the whole history Xn, Xn−1, . . . is the projection

X̂n+1 = −
∞∑
j=1

djXn+1−j , (26)

and the prediction error is

E|Xn+1 − X̂n+1|2 = E|Yn+1|2 = σ2.

Exercise 7.1: Consider the ARMA(2,1) model defined by

Xt − 0.1Xt−1 − 0.12Xt−2 = Yt − 0.7Yt−1, t ∈ Z,

where {Yt, t ∈ Z} is a white noise WN(0, σ2). Assume the whole history up to time n is known. Find
the prediction of Xn+1 and Xn+2 based on Xn, Xn−1, . . . and their prediction error.

Solution: Recall that in Exercise 6.7 we found that this model is causal and invertible with the
inverted representation Yt =

∑∞
k=0 dkXt−k and d0 = 1, d1 = 0.6, dk = 0.3(0.7)k−2, k ≥ 2. Thus,

according to the observation above (equation (26)),

X̂n+1 = −0.6Xn −
∞∑
j=2

0.3(0.7)j−2Xn+1−j ,

and the prediction error is

E|Xn+1 − X̂n+1|2 = E|Yn+1|2 = σ2.

For the prediction of Xn+2 based on Xn, Xn−1, . . . , i.e. prediction two steps ahead, we express from
the model equation

Xn+2 = 0.1Xn+1 + 0.12Xn + Yn+2 − 0.7Yn+1.
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Further, Yn+2, Yn+1 ⊥ Hn
−∞ from the causality of the model and Xn ∈ Hn

−∞ by definition of Hn
−∞.

Thus from the linearity of projection we get

X̂n+2(n) = 0.1X̂n+1 + 0.12Xn + 0− 0 = −0.06Xn −
∞∑
j=2

0.03(0.7)k−2Xn+1−j + 0.12Xn

= 0.06Xn −
∞∑
j=2

0.03(0.7)k−2Xn+1−j .

The prediction error is computed by finding all the terms which were projected to 0:

E|Xn+2 − X̂n+2(n)|2 = E|Yn+2 − 0.7Yn+1 + 0.1Yn+1|2 = E|Yn+2 − 0.6Yn+1|2 = 1.36σ2.

Alternatively, we can obtain the same result by recalling Xn+1 − X̂n+1 = Yn+1 and computing

E|Xn+2 − X̂n+2(n)|2 = E|0.1Xn+1 + 0.12Xn + Yn+2 − 0.7Yn+1 − (0.1X̂n+1 + 0.12Xn)|2.

♦

Remark: If we do not remember the trick with equation (26) we could also find the prediction directly
from the model equation. We write

Xn+1 = 0.1Xn + 0.12Xn−1 + Yn+1 − 0.7Yn, t ∈ Z.

By the same argumentation as above we get

X̂n+1 = 0.1X̂n + 0.12X̂n−1 − 0.7Ŷn, t ∈ Z. (27)

We know from invertibility of the model that Yn ∈ Hn
−∞ but we must express it using Xn, Xn−1, . . .

since these are the only observed random variables. The white noise {Yt, t ∈ Z} is not observed.
However, if we do that – express Yn by the inverted representation and plug it into (27) – we obtain
the equation (26).

Exercise 7.2: Let {Xt, t ∈ Z} be a random sequence given by the equation

Xt −
1

2
Xt−1 +

1

16
Xt−2 = Yt, t ∈ Z,

where {Yt, t ∈ Z} is a white noise WN(0, σ2). Suppose we know the history of the process up to time
t = 100. Compute the predictions X̂101(100), X̂102(100) and X̂103(100) and the respective prediction
errors for X̂101(100) and X̂102(100).

Solution: First we check the causality of the model. The random sequence {Xt, t ∈ Z} is an AR(2)
process with coefficients a1 = −1

2 , a2 = 1
16 . The equation 1− 1

2z+ 1
16z

2 = 0 has a double root 4 which
lies outside the unit circle. Thus {Xt, t ∈ Z} is a centered weakly stationary causal linear process.
Trivially the model is also invertible. We could use the general formula (26) for the ARMA model
but observe that the inverted representation is actually given by the model equation. Thus we can
write directly from the model equation:

Xn+1 =
1

2
Xn −

1

16
Xn−1 + Yn+1.

Since Yn+1 ⊥ Hn
−∞ from the causality of the model (and linearity and continuity of the inner product)

and Xn, Xn−1 ∈ Hn
−∞ by definition of Hn

−∞ we get

X̂n+1 =
1

2
X̂n −

1

16
X̂n−1 + Ŷn+1 =

1

2
Xn −

1

16
Xn−1,

51



and the prediction error is

E|Xn+1 − X̂n+1|2 = E|Yn+1|2 = σ2.

Further,

Xn+2 =
1

2
Xn+1 −

1

16
Xn + Yn+2,

thus

X̂n+2(n) =
1

2
X̂n+1 −

1

16
Xn =

1

2

(
1

2
Xn −

1

16
Xn−1

)
− 1

16
Xn =

3

16
Xn −

1

32
Xn−1,

and

E|Xn+2 − X̂n+2(n)|2 = E
∣∣∣∣Yn+2 +

1

2
Yn+1

∣∣∣∣2 =
5

4
σ2.

We continue analogically:

X̂n+3(n) =
1

2
X̂n+2(n)− 1

16
X̂n+1 =

1

2

(
3

16
Xn −

1

32
Xn−1

)
− 1

16

(
1

2
Xn −

1

16
Xn−1

)
=

1

16
Xn −

3

256
Xn−1.

Thus the answer to our assignment is

X̂101(100) =
1

2
X100 −

1

16
X99, E|X101 − X̂101(100)|2 = σ2,

X̂102(100) =
3

16
X100 −

1

32
X99, E|X102 − X̂102(100)|2 =

5

4
σ2,

X̂103(100) =
1

16
X100 −

3

256
X99.

♦

Exercise 7.3: Let {Xt, t ∈ Z} be a random sequence given by the equation

Xt = Yt − 0.5Yt−1, t ∈ Z,

where {Yt, t ∈ Z} is WN(0, σ2). Determine X̂n+h(n) for h ∈ N and compute the prediction error.

Solution: Any MA model is trivially causal and this particular MA(1) model is also invertible, since
1− 0.5z has the root 2 which lies outside the unit circle.

The inverted representation is Yt =
∑∞

j=0
1
2j
Xt−j . Using formula (26) we get

X̂n+1 = −
∞∑
j=1

1

2j
Xn+1−j ,

and the prediction error is

E|Xn+1 − X̂n+1|2 = E|Yn+1|2 = σ2.

We would get the same result from the model equation, the fact that Yn+1 ⊥ Hn
−∞ (which follows

from the model equation and the linearity and continuity of the inner product) and from the inverted
representation:

X̂n+1 = Ŷn+1 − 0.5Ŷn = 0− 0.5Yn = −0.5
∞∑
j=0

1

2j
Xn−j = −

∞∑
j=1

1

2j
Xn+1−j .
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For X̂n+k(n), k ≥ 2, we get from the model equation and the fact Yn+k, Yn+k−1, . . . Yn+1 ⊥ Hn
−∞

X̂n+k(n) = Ŷn+k(n)− 0.5Ŷn+k−1(n) = 0,

and

E|Xn+k − X̂n+k(n)|2 = E|Xn+k|2 = E|Yn+k − 0.5Yn+k−1|2 =
5

4
σ2.

Note that for these predictions X̂n+k, k ≥ 2, we do not need invertibility of the model in question.
♦

Further exercises

Exercise 7.4: Consider the AR(2) model defined by

Xt − 0.4Xt−1 + 0.04Xt−2 = Yt, t ∈ Z,

where {Yt, t ∈ Z} is a white noise WN(0, σ2). Find the prediction of Xn+1, Xn+2 and Xn+3 based
on the history Xn, Xn−1, . . . . Compute the prediction errors.

Exercise 7.5: Consider the ARMA(1,1) model defined by

Xt + 0.7Xt−1 = Yt + 0.3Yt−1, t ∈ Z,

where {Yt, t ∈ Z} is a white noise WN(0, σ2). Determine the coefficients of the AR(∞) representation.
Find the prediction of Xn+1 and Xn+2 based on the history Xn, Xn−1, . . . . Compute the prediction
errors.

Exercise 7.6: Consider the ARMA(2,1) model defined by

Xt − 0.5Xt−1 + 0.04Xt−2 = Yt + 0.25Yt−1, t ∈ Z,

where {Yt, t ∈ Z} is a white noise WN(0, σ2). Find the prediction of Xn+1 and Xn+2 based on the
history Xn, Xn−1, . . . . Compute the prediction errors.

7.2 Prediction based on finite history

Concerning the prediction based on the finite history we denote Hn
1 = H{X1, . . . , Xn} the Hilbert

space generated by the random variables X1, . . . , Xn.

The best linear prediction of Xn+h (for h ∈ N) is the orthogonal projection into the space Hn
1 , i.e.

X̂n+h(n) =
∑n

j=1 cjXj ∈ Hn
1 such that Xn+h − X̂n+h(n) ⊥ Hn

1 . We use a shorter notation X̂n+1 for

X̂n+1(n).

Prediction error (residual variance) is again defined as E|Xn+h − X̂n+h(n)|2.

Exercise 7.7: Let {Xt, t ∈ Z} be a random sequence given by the equation

Xt = Yt − 0.5Yt−1, t ∈ Z,

where {Yt, t ∈ Z} is a real-valued WN(0, σ2). Determine X̂4, X̂5 based on the observations X1, X2, X3

and compute the prediction errors.
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Solution: Note that for this sequence we have already determined the predictions based on infinite
history in Exercise 7.3. Now we are looking for the projection of X4 into H3

1 = H{X1, X2, X3}, i.e.

X̂4 = c1X1 + c2X2 + c3X3 and (X4 − X̂4) ⊥ Xj , j = 1, 2, 3. Thus

E (X4 − c1X1 − c2X2 − c3X3)Xj = 0, j = 1, 2, 3,

must be fulfilled. This gives the following set of equations:

RX(3) = c1RX(0) + c2RX(1) + c3RX(2),

RX(2) = c1RX(1) + c2RX(0) + c3RX(1),

RX(1) = c1RX(2) + c2RX(1) + c3RX(0).

In this exercise the sequence {Xt, t ∈ Z} is an MA(1) model and we can easily determine the required
values of the autocovariance function: RX(0) = 1.25σ2, RX(1) = −0.5σ2, RX(k) = 0, k = 2, 3, . . . It
follows that the solution of the set of equations above is c1 = − 8

85 , c2 = − 4
17 , c3 = −42

85 and

X̂4 = − 8

85
X1 −

4

17
X2 −

42

85
X3. (28)

When looking for the projection of X5 into H3
1 we obtain a similar set of equations as above. The

right-hand sides will stay unchanged while the left-hand sides will be changed to RX(4), RX(3) and
RX(2), respectively. It follows that all the left-hand sides will be 0 and hence c1 = c2 = c3 = 0. As
a result, X̂5(3) = 0, i.e. the value of X5 is predicted by EX5 = 0 with no influence of the observed
values X1, X2, X3. This is consistent with the fact that X5 depends on the values of the white noise
only through Y4 and Y5 and the observed values X1, X2 and X3 do not contain any information
about them.

Concerning the prediction errors, it is straightforward to calculate E|X5 − X̂5(3)|2 = E|X5|2 =
RX(0) = 1.25σ2 since X̂5(3) = 0. The prediction error of X̂4 can be calculated as follows:

E|X4 − X̂4|2 = E|X4|2 − E|X̂4|2 = RX(0)− E
∣∣∣∣− 8

85
X1 −

4

17
X2 −

42

85
X3

∣∣∣∣2
= RX(0)−

[(
8

85

)2

RX(0) + 2 · 8

85
· 4

17
RX(1) + 2 · 8

85
· 42

85
RX(2)

+

(
4

17

)2

RX(0) + 2 · 4

17
· 42

85
RX(1) +

(
42

85

)2

RX(0)

]
=

5797

5780
σ2.

We remark that this procedure corresponds exactly to the formula one line above (76) on p.83 of the
lecture notes [4]. Another possibility is to take advantage of the properties of the MA(1) model and
express the values of Xk using the values of the white noise Yk, Yk−1 for k = 1, 2, 3, 4. In this way we
only have to calculate the second moment of a linear combination of uncorrelated random variables
and we obtain the same result as above. ♦

Remark: Note that when computing the prediction error for the prediction based on infinite past
we usually determine the difference Xn+k− X̂n+k(n) and compute its variance E|Xn+k− X̂n+k(n)|2.
Since Xn+k−X̂n+k(n) is expressible as a linear combination of marginals of the white noise it is easy
to compute its variance. On the other hand, when computing the prediction error for the prediction
based on finite past we usually do not know any formula for the difference Xn+k − X̂n+k(n). Thus
we have to use the formula

E|Xn+k − X̂n+k(n)|2 = E|Xn+k|2 − E|X̂n+k(n)|2,
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even though it may be a bit laborious to compute E|X̂n+k(n)|2.

Remark: It is good to recall one more time the assumptions which need to be satified for our predic-
tions to be correct. For predictions in ARMA models based on infinite past we need both invertibility
and causality of the model. For predictions based on finite past we only need the sequence to be
weakly stationary and centered. Also, we must be able to compute the required values of the auto-
covariance function. Thus no invertibility or causality is needed for the prediction. Of course, we
may need the causality for computing the autocovariance function.

Exercise 7.8: Consider a stationary AR(1) process {Xt, t ∈ Z} defined by the equation

Xt +
1

3
Xt−1 = Yt, t ∈ Z,

where {Yt, t ∈ Z} is a white noise. Predict the values of Xk+1 for k ∈ N, supposing we have observed
the values X0 = X1 = 1. Compute the prediction error.

Solution: We are looking for the projection ofXk+1 intoH1
0 = H{X1, X0}, i.e. X̂k+1(1) = c0X0+c1X1

and (Xk+1 − X̂k+1(1)) ⊥ Xj , j = 0, 1. Thus

E (Xk+1 − c0X0 + c1X1)Xj = 0, j = 0, 1,

must be fulfilled. This gives a set of two equations:

RX(k + 1) = c0RX(0) + c1RX(1),

RX(k) = c0RX(1) + c1RX(0),

with the solution(
c0
c1

)
=

(
RX(0) RX(1)
RX(1) RX(0)

)−1(
RX(k + 1)
RX(k)

)
=

1

1− r2(1)

(
rX(k + 1)− rX(k)rX(1)
−rX(k + 1)rX(1) + rX(k)

)
.

For our particular model with autocorrelation function rX(k) =
(
−1

3

)k
, k ≥ 1, we get c0 = 0, c1 =(

−1
3

)k
, k ≥ 1. Since Xk+1 − X̂k+1(1) ⊥ X̂k+1(1) ∈ Hn

1 we have

E|Xk+1 − X̂k+1(1)|2 = E|Xk+1|2 − E|X̂k+1(1)|2 = RX(0)−
(
−1

3

)2k

RX(0)

=
1−

(
−1

3

)2k
1− 1

9

σ2 =
9

8

(
1−

(
−1

3

)2k
)
σ2.

Another method how to obtain the prediction is realizing that the prediction of Xk+1 based on H1
−∞

is
(
−1

3

)k
X1 (by using the methods shown in the preceeding chapter 7.1) which is contained in H1

0 .
Thus it must be equal to the prediction based on the finite past. Note also that from plugging the
model equation iteratively into itself we get

Xk+1 = Yk+1 −
1

3
Xk = · · · =

k−1∑
j=0

(
−1

3

)j
Yk+1−j +

(
−1

3

)k
X1,

which is another way how to get the prediction based on the finite past and also how to get the
corresponding prediction error since

E|Xk+1 − X̂k+1(1)|2 = E

∣∣∣∣∣∣
k−1∑
j=0

(
−1

3

)j
Yk+1−j

∣∣∣∣∣∣
2

=
1−

(
−1

3

)2k
1− 1

9

σ2 =
9

8

(
1−

(
−1

3

)2k
)
σ2.

♦
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Exercise 7.9: Consider a stationary AR(2) process {Xt, t ∈ Z} defined by the equation

Xt +
1

3
Xt−1 +

1

3
Xt−2 = Yt, t ∈ Z,

where {Yt, t ∈ Z} is a white noise. Assume that you have observed the values of the process

a) X0 = X1 = 1,

b) X0 = 1,

c) X1 = 1,

d) X0 = X1 = X−1 = 1.

Predict the value of X2 and compute the prediction error.

Solution: The considered model is a causal AR(2) model and using the methods from Chapter 7.1
we obtain the prediction based on the infinite history, i.e. the projection into H1

−∞,

X̃2 = −1

3
X1 −

1

3
X0 = −2

3
,

with the prediction error

E|X2 − X̃2|2 = σ2.

Since X̃2 ∈ H1
0 ⊂ H1

−1, X̃2 is the correct answer in the cases a) and d).

For the other two cases X̃2 /∈ H1
1 , X̃2 /∈ H0

0 . Thus we must project X̃2 further. Let us start with the
case b), i.e. the projection into H0

0 . From the linearity of projection we have

X̂2(0) = ̂̃X2 =
̂(

−1

3
X1 −

1

3
X0

)
= −1

3
X̂1 −

1

3
X0,

since the second term is in H0
0 . The best linear prediction X̂1 = cX0 of X1 based on X0 must fulfill

E(X1 − X̂1)X0 = 0, i.e. RX(1) = cRX(0). This is solved by c = rX(1) = −1
4 (we get this very

quickly from the second Yule-Walker equation). Thus together

X̂2(0) = −1

3

(
−1

4
X0

)
− 1

3
X0 = −1

4
X0 = −1

4
,

and

E|X2 − X̂2(0)|2 = E|X2|2 − E|X̂2(0)|2 = E|X2|2 − E
∣∣∣∣14X0

∣∣∣∣2 = RX(0)− 1

16
RX(0)

=
6

5
σ2
(

1− 1

16

)
=

9

8
σ2.

Here we used RX(0) = 6
5σ

2. For determining the variance RX(0) we also needed rX(2) = −1
4 . These

two values are easily obtained from the first three Yule-Walker equations for {Xt, t ∈ Z}.

For the question c) we get analogically

X̂2 = −1

4
, |X2 − X̂2|2 =

9

8
σ2.

♦

Remark: In the previous exercise we could of course also directly solve the projection equations. For
cases b) and c) it would be more effective since for b) we have

X̂2(0) = c0X0 such that E(X2 − c0X0)X0 = 0,
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which gives

RX(2) = c0RX(0) and thus c0 = rX(2).

For c) we have analogically

X̂2 = c1X1 such that E(X2 − c1X1)X1 = 0,

which gives

RX(1) = c1RX(0) and thus c0 = rX(1).

On the other hand, for the case d) when the observed history is longer it is more effective to use the
knowledge about the prediction based on infinite history since the projection equations would lead
to

RX(3) = c−1RX(0) + c0RX(1) + c1RX(2),

RX(2) = c−1RX(1) + c0RX(0) + c1RX(1),

RX(1) = c−11RX(2) + c0RX(1) + c1RX(0),

and it takes some time to solve this set of equations.

Further exercises

Exercise 7.10: Consider a stationary ARMA(1,1) process {Xt, t ∈ Z} given by the equation

Xt +
1

3
Xt−1 = Yt − Yt−1, t ∈ Z,

where {Yt, t ∈ Z} is a white noise. Predict the values of Xk+1 for k ∈ N, supposing we have observed
the values X0 = −1, X1 = 2.

Exercise 7.11: We know the values X1 = 5.9, X2 = 4.9, X3 = 2.2, X4 = 2.0, X5 = 4.9 of the
process

(Xt − 4)− 0.8(Xt−1 − 4) = Yt, t ∈ Z,

where {Yt, t ∈ Z} is a centered white noise with the variance σ2 = 0.7. Find the prediction of X6

and X7. Compute the respective prediction errors.
Hint: One has to be careful here – our methodology for predictions based on finite past is developed
for centered weakly stationary sequences. Thus we have to determine what is the centered ARMA
sequence in this exercise and compute the predictions for it. In the second step the prediction
is recomputed for the non-centered sequence {Xt, t ∈ Z}. Note (try it out) that applying the
methodology directly to {Xt, t ∈ Z} would lead to a wrong answer.
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8 Ergodicity

Definition 8.1: We say that a stationary sequence {Xt, t ∈ Z} with mean µ is mean square ergodic
or it follows the law of large numbers in L2(Ω,A, P ) if, as n→∞,

Xn =
1

n

n∑
t=1

Xt → µ in the mean square. (29)

If {Xt, t ∈ Z} is a sequence that is mean square ergodic then

1

n

n∑
t=1

Xt
P→ µ,

i.e. {Xt, t ∈ Z} satisfies the weak law of large numbers for stationary sequences.

Definition 8.2: A stationary mean square continuous process {Xt, t ∈ R} with mean µ is mean
square ergodic if, as τ →∞,

Xτ =
1

τ

∫ τ

0
Xt dt→ µ in the mean square. (30)

Remark: The above described convergences imply that the empirical average (29) or the integral
(30) are weakly consistent estimates of the mean value µ of the random sequence or process {Xt},
respectively.

Theorem 8.1: A stationary random sequence {Xt, t ∈ Z} with mean µ and autocovariance function
R is mean square ergodic if and only if

1

n

n∑
t=1

R(t)→ 0 as n→∞.

If the sequence is real-valued and moreover satisfies
∑∞

t=−∞ |R(t)| <∞ then

n var(Xn)→
∞∑

t=−∞
R(t) as n→∞.

Theorem 8.2: A stationary, mean square continuous process {Xt, t ∈ R} is mean square ergodic if
and only if its autocovariance function satisfies the condition

1

τ

∫ τ

0
R(t) dt→ 0 as τ →∞.

If the process is real-valued and moreover satisfies
∫∞
−∞ |R(t)| dt <∞ then τ var(Xτ )→

∫∞
−∞R(t) dt.

Exercise 8.1: Are the AR models from Exercises 6.3–6.5 mean square ergodic? And what about
the ARMA(2,1) model from Exercise 6.6?
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Solution: We will check the condition
∑∞

t=−∞ |R(t)| < ∞. The autocovariance functions of the
considered AR and ARMA models are

RX6.3(k) = σ2
(

200

81
0.5|k| − 125

162
0.2|k|

)
, k ∈ Z,

RX6.4(k) =
8 125

6 912
σ2
(

1 +
12

13
|k|
)

0.2|k|, k ∈ Z,

RX6.5(k) = const1

(
7
√

2

10
ei
π
4

)|k|
+ const2

(
7
√

2

10
e−i

π
4

)|k|
, k ∈ Z,

RX6.6(k) = σ2
(

32

3
+ 8|k|

)(
1

2

)|k|
, k ∈ Z,

as we have computed in the respective Exercises. All of these sequences are linear combinations of
a finite number of (possibly differentiated) geometric sequences with quotients inside the unit circle
in C. Thus all of the sequences are summable and according to the Theorem 8.1 all the considered
models are ergodic. ♦

Remark: Actually any causal ARMA model is ergodic and even satisfies
∑∞

t=−∞ |R(t)| <∞. Thus ac-

cording to the Theorem 8.1 we can even estimate the asymptotic variance n var(Xn)→
∑∞

k=−∞R(k).
The argument is the same as in the previous exercise, since any causal ARMA model has the au-
tocovariance function expressible as a linear combination of finitely many (possibly differentiated)
geometric sequences with quotients in absolute value smaller than 1.

Exercise 8.2: Let {Xt, t ∈ Z} be a random sequence given by the equation

Xt = Yt − 0.5Yt−1, t ∈ Z,

where {Yt, t ∈ Z} is a real-valued WN(0, σ2). Discuss the mean square ergodicity of the sequence
{Xt, t ∈ Z} and determine the limit of n var(Xn), n→∞.

Solution:

Note that this is the same sequence as discussed in Exercises 7.3 and 7.6. It is an MA(1) model
with the autocovariance function RX(0) = 1.25σ2, RX(1) = −0.5σ2, RX(k) = 0, k = 2, 3, . . . Looking
at the Theorem 8.1 we see that the condition 1

n

∑n
t=1RX(t) → 0 as n → ∞ is fulfilled since the

autocovariance function has only finitely many non-zero values. It follows that the sequence is mean
square ergodic.

We also easily check the additional condition of Theorem 8.1,
∑∞

t=−∞ |RX(t)| < ∞, and hence

n var(Xn)→
∑∞

t=−∞RX(t) = 1.25σ2 − 2 · 0.5σ2 = 1
4σ

2, n→∞.

The limit of n var(Xn) can be also obtained directly in this case. We write explicitly the values of
Xi as X1 = −Y0

2 + Y1, X2 = −Y1
2 + Y2, X3 = −Y2

2 + Y3, . . . It follows easily that

n∑
k=1

Xk = −Y0
2

+
1

2

n−1∑
k=1

Yk + Yn,

var

(
n∑
k=1

Xk

)
=
σ2

4
+ (n− 1)

σ2

4
+ σ2,

var(Xn) =
σ2

4n
+
σ2

n2
,

n var(Xn) =
σ2

4
+
σ2

n
→ σ2

4
, n→∞.

♦
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Exercise 8.3: Is the mean square continuous process with spectral density f(λ) = |λ|I(|λ| ≤ 1),
λ ∈ R, mean square ergodic?

Solution: The autocovariance function of an L2-continuous process with spectral density f(λ) may
be written as

∫∞
−∞ eitλf(λ) dλ. Thus we may compute R(t), t ∈ R, as follows:

R(t) =

∫ 1

−1
|λ|eitλ dλ = 2

∫ 1

0
λ cos(tλ) dλ = 2

[
cos(tλ)

t2
+
λ sin(tλ)

t

]1
0

= 2

(
cos t

t2
− 1

t2
+

sin t

t

)
.

Now we could compute 1
τ

∫ τ
0 R(t) dt directly and compute its limit for τ →∞, which is a bit laborious.

Or, we could observe that R(t) is a continuous function on (−∞,∞) – it is obviously continuous
in every t 6= 0 and in 0 it is continuous since the corresponding process is mean square continuous
(Corollary 3.1). Thus

∫ τ
0 R(t) dt exists for any τ > 0 and

|R(t)| ≤ const ·min

(
1

t
, 1

)
, t ∈ R.

Thus

lim
τ→∞

∣∣∣∣1τ
∫ τ

0
R(t) dt

∣∣∣∣ ≤ lim
τ→∞

1

τ

∫ τ

0
|R(t)|dt ≤ lim

τ→∞

1

τ

∫ τ

0
const ·min

(
1

t
, 1

)
dt

≤ const · lim
n→∞

1

n

(
1 +

n−1∑
t=1

1

t

)
,

where the last inequality uses the Riemannian upper bound on the integral. But

lim
n→∞

1

n

(
1 +

n−1∑
t=1

1

t

)
= lim

n→∞

1

n

n∑
t=1

1

t
,

if the latter limit exists. And it does since limn→∞
1
n

∑n
t=1

1
t = 0 is the Cesaro limit of the sequence 1

n ,
see [2, p.81], which is equal to the ordinary limit limn→∞

1
n = 0.

Thus we proved limτ→∞
1
τ

∫ τ
0 R(t) dt = 0 and according to the Theorem 8.2 the corresponding mean

square continuous process is also mean square ergodic. ♦

Remark: Note that 1
t is not integrable in the neighbourhood of +∞ thus our upper bound function

const · min(1t , 1) would not be small enough to imply the stronger condition
∫∞
−∞ |R(t)| dt < ∞.

Moreover, it is not just a problem of the chosen upper bound since
∫∞
−∞

∣∣∣ cos(t)t2
− 1

t2
+ sin(t)

t

∣∣∣ dt =∞.

Further exercises

Exercise 8.4: Let {Xt, t ∈ Z} be a centered weakly stationary sequence with autocovariance function
R(t) = cos(πt), t ∈ Z. Is {Xt, t ∈ Z} mean square ergodic?

Exercise 8.5: Let {Xt, t ∈ R} be a centered weakly stationary process with autocovariance function
R(t) = cos t, t ∈ R. Is {Xt, t ∈ R} mean square ergodic?

Exercise 8.6: Let {Xt, t ∈ R} be a centered weakly stationary L2-continuous process with spectral
density fX(λ) = a1(λ ∈ (−b, b)) for some constants a, b > 0. Is {Xt, t ∈ R} mean square ergodic?

60



9 Partial autocorrelation function

Definition 9.1: Let {Xt, t ∈ Z} be a real-valued centered weakly stationary sequence. The partial
autocorrelation function of {Xt, t ∈ Z} is defined to be

α(k) =

{
corr(X1, Xk+1), k = 1,

corr(X1 − X̃1, Xk+1 − X̃k+1), k > 1,

where X̃1 is the linear projection of X1 onto the Hilbert space Hk
2 = H{X2, . . . , Xk} and X̃k+1 is

the linear projection of Xk+1 onto Hk
2 .

Definition 9.2: (Alternative definition of the partial correlation function) Let {Xt, t ∈ Z} be
a centered weakly stationary sequence, let PHk

1
(Xk+1) be the best linear prediction of Xk+1 based

on X1, . . . , Xk. If Hk
1 = H{X1, . . . , Xk} and PHk

1
(Xk+1) = ϕ1Xk + . . . + ϕkX1, then the partial

autocorrelation function at lag k is defined to be α(k) = ϕk.

Theorem 9.1: Let {Xt, t ∈ Z} be a centered real-valued weakly stationary sequence with the
autocovariance function R such that R(0) > 0, R(t) → 0 as t → ∞. Then both definitions of the
partial autocorrelation function are equivalent and it holds that α(1) = r(1),

α(k) =

∣∣∣∣∣∣∣∣∣
1 r(1) · · · r(k − 2) r(1)
r(1) 1 · · · r(k − 3) r(2)

...
...

. . .
...

...
r(k − 1) r(k − 2) · · · r(1) r(k)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 r(1) · · · r(k − 1)
r(1) 1 · · · r(k − 2)

...
...

. . .
...

r(k − 1) r(k − 2) · · · 1

∣∣∣∣∣∣∣∣∣

, k > 1,

where r is the autocorrelation function of the sequence {Xt, t ∈ Z}.

Exercise 9.1: Let {Xt, t ∈ Z} be a random sequence given by the equation

Xt = Yt − 0.5Yt−1, t ∈ Z,

where {Yt, t ∈ Z} is a real-valued WN(0, σ2). Determine the values of the partial autocorrelation
function α(1), α(2), α(3).

Solution: Note that this is the same sequence as discussed in Exercises 7.3, 7.6 and 8.2. It is an MA(1)
model with the autocovariance function RX(0) = 1.25σ2, RX(1) = −0.5σ2, RX(k) = 0, k = 2, 3, . . .
Hence the autocorrelation function is rX(0) = 1, rX(1) = −2

5 , rX(k) = 0, k = 2, 3, . . . Clearly the
assumptions of the Theorem 9.1 are fulfilled and we may compute

α(1) =rX(1) = −2

5
,

α(2) =

∣∣∣∣ 1 −2
5

−2
5 0

∣∣∣∣∣∣∣∣ 1 −2
5

−2
5 1

∣∣∣∣ =
− 4

25

1− 4
25

= − 4

21
,

α(3) =

∣∣∣∣∣∣
1 −2

5 −2
5

−2
5 1 0

0 −2
5 0

∣∣∣∣∣∣∣∣∣∣∣∣
1 −2

5 0
−2

5 1 −2
5

0 −2
5 1

∣∣∣∣∣∣
=

− 8
125

1− 4
25 −

4
25

= −
8

125
17
25

= − 8

85
.
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We remark here that the value of α(3) calculated above is the same as the coefficient c1 at X1 in
the best linear prediction of X4 based on the values of X1, X2, X3 we calculated in Exercise 7.2, see
Equation (28). This illustrates the fact that the values calculated according to Theorem 9.1 are in
fact the values from Definition 9.2. ♦

Exercise 9.2: Let {Xt, t ∈ Z} be a random sequence given by the equation

Xt −
1

4
Xt−2 = Yt, t ∈ Z,

where {Yt, t ∈ Z} is a real-valued WN(0, σ2). Determine the values of the partial autocorrelation
function α(1), α(2), α(3).

Solution: Since the sequence {Xt, t ∈ Z} is causal and the values of the autocorrelation function rX
can be easily calculated using the Yule-Walker equations, this exercise can be solved similarly to the
previous one. However, we will follow the approach from Definition 9.2.

To determine α(k), k = 1, 2, 3, we have to find the prediction PHk
1
(Xk+1). Using the same arguments

as in the solution of Exercise 7.9, part b), we get that PH1
1
(X2) = rX(1) ·X1. From the Yule-Walker

equation RX(1)− 1
4RX(1) = 0 we easily get rX(1) = 0. Hence, α(1) = rX(1) = 0.

Using the model equation and causality we obtain

PH2
1
(X3) = 0 ·X2 +

1

4
X1,

PH3
1
(X4) = 0 ·X3 +

1

4
X2 + 0 ·X1.

It follows that α(2) = 1
4 and α(3) = 0. ♦
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List of symbols

N set of natural numbers
N0 set of non-negative integers
Z set of integers
R set of real numbers
C set of complex numbers
1 indicator function
|| · || norm in a Hilbert space
B Borel σ−algebra
N (µ, σ2) normal distribution with parameters µ, σ2

X ∼ N (µ, σ2) random variable with distribution N (µ, σ2)
{Xt, t ∈ T} stochastic process indexed by set T
M{Xt, t ∈ T} linear span of {Xt, t ∈ T}
H{Xt, t ∈ T} Hilbert space generated by the stochastic process {Xt, t ∈ T}
AR(p) autoregressive sequence of order p
MA(q) moving average sequence of order q
ARMA(p, q) mixed ARMA sequence of orders p and q
WN(0, σ2) white noise with zero mean and variance σ2

X ⊥ Y orthogonal (perpendicular) random variables

lim limes superior
P−→ convergence in probability
D−→ convergence in distribution

l. i. m. convergence in mean square (limit in the mean)
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