
NMSA405: topic 1 – space of sequences of real numbers

Exercise 1.1: For vectors x = (x1, . . . , xn) ∈ Rn and y = (y1, . . . , yn) ∈ Rn it is reasonable
to define the L1-distance (Manhattan distance, city-block distance) as d(x, y) =

∑n
j=1 |xj − yj|.

For infinite sequences of real numbers x = (x1, x2, . . . ) ∈ RN and y = (y1, y2, . . . ) ∈ RN, does it
make sense to define the following “distances”?

d1(x, y) =
∞∑
j=1

|xj − yj|, d2(x, y) =
∞∑
j=1

|xj − yj|
2j

, d3(x, y) =
∞∑
j=1

min{|xj − yj|, 1}
2j

Definition: (D 1.3) For sequences of real numbers x = (x1, x2, . . . ) ∈ RN and y = (y1, y2, . . . ) ∈
RN we define

d(x, y) =
∞∑
j=1

min{|xj − yj|, 1}
2j

.

Recall: What properties does a metric have?

Exercise 1.2: (P 1.2a) Show that d defines a metric on RN.

Exercise 1.3: (P 1.2b) Let xn = (xn1 , x
n
2 , . . . ) be sequences of real numbers for n ∈ N and

x = (x1, x2, . . . ). Prove that

d(xn, x) −→
n→∞

0 if and only if |xnj − xj| −→
n→∞

0 for all j ∈ N.

Recall: What is a complete separable metric space? What is a Cauchy sequence?

Exercise 1.4: (P 1.2c) Prove that (RN, d) is a complete separable metric space.

Definition: (D 1.5) Mapping p : RN → RN is called a finite permutation (of order n), if there
is n ∈ N and a permutation (k1, . . . , kn) of the elements of the set {1, . . . , n} such that

p(x1, . . . , xn, xn+1, . . . ) = (xk1 , . . . , xkn , xn+1, . . . ), (x1, x2, . . . ) ∈ RN.

Recall: What properties does a homeomorphism have?

Exercise 1.5: (P 1.5a) Prove that any finite permutation p is a homeomorphism.

Definition: (D 1.6) Mapping s : RN → RN defined by

s(x1, x2, . . . ) = (x2, x3, . . . ), (x1, x2, . . . ) ∈ RN,

is called shift.

Recall: What properties does a continuous mapping have?

Exercise 1.6: (P 1.5b) Prove that the shift s is a continuous mapping.



Definition: (D 1.7) A set T ∈ B(RN) is called terminal if the following implication holds:

x = (x1, x2, . . .) ∈ T, y = (y1, y2, . . .) ∈ RN : yk = xk for all k ∈ N except of finitely many ⇒ y ∈ T.

We call T ∈ B(RN) n-terminal if

x = (x1, x2, . . . ) ∈ T, y = (y1, y2, . . . ) ∈ RN : yk = xk for k > n ⇒ y ∈ T.

Exercise 1.7: Find examples of terminal and n-terminal sets of sequences.

Exercise 1.8: (P 1.5c) Prove that T ∈ B(RN) is n-terminal if and only if there is a Tn ∈ B(RN)
such that T = Rn × Tn.

Definition: (D 1.8) We use a particular notation for the following systems of sets:

• n-symmetric sets: Sn = {S ∈ B(RN) : p(S) = S for any finite permutation p of order n},
• symmetric sets: S = {S ∈ B(RN) : p(S) = S for any finite permutation p},
• shift invariant sets: I = {I ∈ B(RN) : s−1I = I},
• n-terminal sets: Tn = {T ∈ B(RN) : T n-terminal},
• terminal sets: T = {T ∈ B(RN) : T terminal}.

Exercise 1.9: Find examples of symmetric, n-symmetric and shift invariant sets of sequences.

Exercise 1.10: (P 1.5d)

a) Show that Sn+1 ⊂ Sn for all n ∈ N and S = ∩∞n=1Sn.

b) Show that Tn+1 ⊂ Tn for all n ∈ N and T = ∩∞n=1Tn.

c) Prove that I ⊂ Tn ⊂ Sn for all n ∈ N and hence I ⊂ T ⊂ S.

d) Show that the previous inclusions are strict, i.e. the sets are not equal. Provide examples!

e) Extra exercise: Check that S, I and T are σ-algebras.

Definition: (D 1.10) We call the set B ∈ B(RN) finite-dimensional if there are n ∈ N and Bn ∈
B(Rn) such that B = Bn × RN.

Recall: What properties does an algebra (system of sets) have?

Exercise 1.11: (P 1.6) Denote by A the system of finite-dimensional sets from B(RN). Prove
that A is an algebra generating B(RN), i.e. it holds that σ(A) = B(RN).



NMSA405: topic 2 – random sequences

Definition: (D 1.13) Binary expansion of the number x ∈ (0, 1] is the sequence x1, x2, . . . of
zeroes and ones such that it contains infinitely many ones and

x =
∞∑
k=1

xk
2k
.

Binary expansion of the number 0 is the sequence of zeroes.

Exercise 2.1: (P 1.14) Prove that if X is a random variable with uniform distribution on the
interval [0, 1] and

X(ω) =
∞∑
k=1

Xk(ω)

2k
(1)

is its binary expansion then X1, X2, . . . is a sequence of independent random variables with
Bernoulli distribution with parameter 1/2.
Conversely, consider a sequence of independent random variables with Bernoulli distribution
with parameter 1/2 and define X using the equation (1). Prove that X has uniform distribution
on the interval [0, 1].

Exercise 2.2: Show that there is a random sequence W1,W2, . . . such that its increments W1,
W2 −W1, W3 −W2, . . . are independent random variables with standard normal distribution.
Determine the distribution of the vector (W1, . . . ,Wn).

Definition: (D 1.14) We call the random sequence X = (X1, X2, . . .)

• iid if the random variables Xj, j ∈ N, are independent and identically distributed,

• n-symmetric if the distributions of (X1, . . . , Xn, Xn+1, . . .) and (Xk1 , . . . , Xkn , Xn+1, . . .)
coincide for each finite permutation (k1, . . . , kn) of order n ∈ N,

• symmetric if it is n-symmetric for each n ∈ N,

• stationary if the distributions of (X1, . . . , Xn, Xn+1, . . .) and (Xn+1, Xn+2, . . .) coincide for
each n ∈ N.

Exercise 2.3: Show that the following statements are equivalent:

a) random sequence X = (X1, X2, . . .) is stationary,

b) X and s(X) have the same distribution,

c) random vectors (X1, . . . , Xn−1) and (X2, . . . , Xn) have the same distribution for each n ∈ N.

Exercise 2.4: Prove the following assertions.

a) Each iid sequence is symmetric.

b) Each symmetric sequence is stationary.

c) Each (n+ 1)-symmetric sequence is n-symmetric for any n ∈ N.



d) Let X = (X1, X2, . . .) be an iid random sequence and f : RN → RN Borel-measurable
mapping such that f ◦ s = s ◦ f (f and the shift commute). Prove that in such a case
f(X) = (Y1, Y2, . . .) is stationary. Does this assertion hold if we instead assumed only
stationarity of X?

Exercise 2.5: Give an example of

a) a symmetric sequence which is not iid,

b) a stationary sequence which is not symmetric,

c) n-symmetric sequence which is not (n+ 1)-symmetric.

NMSA405: topic 3 – 0-1 laws, random walk

Theorem (Kolmogorov 0-1 law): Let X = (X1, X2, . . . ) be a random sequence of indepen-
dent random variables. Then P(X ∈ T ) equals either 0 or 1 for any terminal set T .

Theorem (Hewitt-Savage 0-1 law): Let X = (X1, X2, . . . ) be an iid random sequence.
Then
P(X ∈ S) equals either 0 or 1 for any symmetric set S.

Exercise 3.1: Let X = (X1, X2, . . . ) be a random sequence of independent random variables.
Show that the event [

∞∑
n=1

Xn <∞

]
occurs with probability 0 or 1.

Definition: (D 2.5) Let X = (X1, X2, . . . ) be an iid random sequence. We call the sequence of
partial sums Sn = X1 + · · ·+Xn, n ∈ N a random walk.

Exercise 3.2: Let S = (S1, S2, . . . ) be a random walk. Consider the event

A = [Sn = 0 for infinitely many n].

Show that P(A) equals either 0 or 1.

Exercise 3.3: The following variants of the limit behaviour of the random walk S = (S1, S2, . . . )
are mutually exclusive:

• (i) Sn = 0 a.s. for all n ∈ N,

• (ii) Sn −→
n→∞

∞,

• (iii) Sn −→
n→∞

−∞,

• (iv) −∞ = lim infn→∞ Sn < lim supn→∞ Sn =∞.

Prove that precisely one of these variants occurs with probability 1.



NMSA405: topic 4 – stopping times

Definition: Let X = (X1, X2, . . . ) be a random sequence. The σ-algebra generated by the
random vector (X1, . . . , Xn) is σ(X1, . . . , Xn) = {[(X1, . . . , Xn) ∈ Bn], Bn ∈ Bn} and the σ-
algebra generated by the sequence X is σ(X) = {[X ∈ B], B ∈ B(RN)}.

Exercise 4.1: (P 2.1) Check that σ(X1, . . . , Xn) and σ(X) are σ-algebras. Prove that

σ(X) = σ

(
∞⋃
n=1

σ(X1, . . . , Xn)

)
.

Definition: (D 2.1) Let (Ω,F) be a measurable space and F1 ⊆ F2 ⊆ · · · ⊆ F a non-decreasing
sequence of σ-algebras. We call (Fn) a filtration. Denote F∞ = σ (∪∞n=1Fn). We call the random
sequence X = (X1, X2, . . . ) adapted to the filtration (Fn), shortly Fn-adapted if σ(X1, . . . , Xn) ⊆
Fn for all n ∈ N. If σ(X1, . . . , Xn) = Fn for all n ∈ N we call (Fn) the canonical filtration of the
sequence X.

Exercise 4.2: (P 2.2) Let X = (X1, X2, . . . ) be a random sequence and S = (S1, S2, . . . )
the sequence of its partial sums: Sn = X1 + · · · + Xn, n ∈ N. Show that X and S have the
same canonical filtration. Compare the canonical filtrations of the sequence X and the sequence
X2 = (X2

1 , X
2
2 , . . . ).

Definition: (D 2.3) The mapping T : Ω → N ∪ {∞} is called a stopping time with respect to
the filtration (Fn) provided that [T ≤ n] ∈ Fn for all n ∈ N. Let X = (X1, X2, . . . ) be a random
sequence. A stopping time T : Ω → N ∪ {∞} is called a stopping time of the sequence X if
[T ≤ n] ∈ σ(X1, . . . , Xn) for all n ∈ N.

Exercise 4.3: Show that T is a stopping time with respect to the filtration (Fn) if and only if
the random sequence Xn = 1{T ≤ n} is Fn-adapted.

Definition: (D 2.4) Let (Fn) be a filtration and T its stopping time. Then

FT = {F ∈ F∞ : F ∩ [T ≤ n] ∈ Fn for all n ∈ N}

is called the stopping time σ-algebra.

Exercise 4.4: Show that FT defines a σ-algebra.

Exercise 4.5: (P 2.3) Show that T is a stopping time with respect to the filtration (Fn) if and
only if [T = n] ∈ Fn for all n ∈ N. Further show that the following holds:

FT = {F ∈ F∞ : F ∩ [T = n] ∈ Fn for all n ∈ N}.

Exercise 4.6: Consider a fixed n0 ∈ N and T = n0. Show that T is a stopping time with
respect to any filtration (Fn) and determine the σ-algebra FT .

Definition: We define the mapping XT : Ω→ R as

XT (ω) =

{
XT (ω)(ω) pro T (ω) <∞,
0 pro T (ω) =∞.



Exercise 4.7: (P 2.4) Let S and T be stopping times with respect to the filtration (Fn) and
let the sequence X be Fn-adapted. Show that:

• a) T and XT are FT -measurable random variables,

• b) min{S, T}, max{S, T} and S+T are stopping times with respect to the filtration (Fn),

• c) min{T, n} is a Fn-measurable random variable for any n ∈ N.

Exercise 4.8: Let T1, T2, . . . be a sequence of stopping times with respect to the filtration (Fn).
Show that supn Tn and infn Tn are also stopping times with respect to the filtration (Fn).

Exercise 4.9: (P 2.5a) Let T be a stopping time with respect to the filtration (Fn). Consider
the mapping λ : Ω → N ∪ {∞} which is FT -measurable and fulfills λ ≥ T . Show that λ is a
stopping time with respect to the filtration (Fn).

Exercise 4.10: (P 2.5b) Let X = (X1, X2, . . . ) be a random sequence and T its stopping time.
For B ∈ B(R) we define λ = min{k > T : Xk ∈ B}, i.e. the first hitting time of the set B by
the sequence X after the time T . Show that λ is a stopping time of the sequence X.

Exercise 4.11: Let (S1, S2, . . . ) be a symmetric simple random walk (with the step Xn taking
on only the values 1 and −1 with equal probabilities). Determine whether the following random
variables are stopping times of the sequence X = (X1, X2, . . . ):

• a) TN = max{n ≤ N : Sn = 0} for N ∈ N,

• b) λ = min{n : Sn = 5},
• c) ν = min{n : Sn < −3},
• d) λ+ ν, min{λ, ν}+ 1, max{λ, ν}, max{λ, ν} − 1, 2λ− 1, λ2.

NMSA405: topic 5 – symmetric simple random walk

Definition: (D 2.6) Let X1, X2, . . . be an iid random sequence with P(X1 = 1) = P(X1 = −1) =
1/2. We call the corresponding random walk (Sn) the symmetric simple random walk.

Exercise 5.1: (P 2.9) (Reflection principle) Let (Sn) be a symmetric simple random walk.
Consider the stopping time T , the first hitting time of the set {a} by the random walk for a
given a ∈ N. Denote

Srk = 2Smin{k,T} − Sk, k ∈ N.

Then
(Sr1 , S

r
2 , . . . )

d
=(S1, S2, . . . ).

Exercise 5.2: (P 2.10) (Maxima of the symmetric simple random walk) For a symmetric simple
random walk (Sn) denote Mn = maxk=1,...,n Sk, n ∈ N. Consider the stopping time T , the first
hitting time of the set {a} by the random walk for a given a ∈ N. Then

P(T ≤ n) = P(Mn ≥ a) = 2P(Sn ≥ a)− P(Sn = a) and lim
n→∞

P(Mn ≥ a) = 1.



NMSA405: topic 6 – martingales

Definition: (D 2.10) Let {Fn} be a filtration and let X = (X1, X2, . . .) be a sequence of
integrable random variables. We say that X is an Fn-martingale if it is Fn-adapted and
E[Xn+1|Fn] = Xn a.s. for all n ∈ N. If {Fn} is the canonical filtration of X, we call X simply a
martingale and it satisfies E[Xn+1|X1, X2, . . . , Xn] = Xn a.s. for all n ∈ N. If the equality sign
is replaced by ≥, X is called Fn-submartingale or submartingale, respectively. If the equality
sign is replaced by ≤, X is called Fn-supermartingale or supermartingale, respectively.

Exercise 6.1: (P 2.18) Let (Xn) be a sequence of independent integrable random variables.
Denote Sn = X1 + . . .+Xn for n ∈ N.

• c) If EXn = 1 for all n ∈ N then Zn =
∏n

j=1Xj is a martingale.

• d) If P(Xn = −1) = q and P(Xn = 1) = p where p ∈ (0, 1) and p+q = 1 then Yn = (q/p)Sn

is a martingale.

Exercise 6.2: Consider the probability space ([0, 1],B([0, 1]), λ|[0,1]), a finite measure µ� λ on
([0, 1],B([0, 1])) and an increasing sequence of sets {0 = tn0 < tn1 < . . . < tnkn = 1} such that

max
k∈{0,1,...,kn−1}

|tnk+1 − tnk | → 0.

Denote Bn
k = [tnk , t

n
k+1) and

Dn(x) =
µ(Bn

k )

λ(Bn
k )
, x ∈ Bn

k .

Show that (Dn) is an (Fn)-martingale where Fn = σ(Bn
1 , . . . , B

n
kn

). What is the a.s. limit of Dn

for n→∞?

Exercise 6.3: Let Y be an integrable random variable and let (Fn) be a filtration. Consider
the sequence Xn = E[Y | Fn], n ∈ N, and show that (Xn) is a Fn-martingale.

Exercise 6.4: (Pólya urn model) Consider an urn which at time n = 0 contains b black and
w white balls, b, w ∈ N. At each time n ∈ N we draw a ball from the urn at random, write
down its color and put it back together with ∆ ∈ N new balls of the same color. Denote Xn the
relative frequency of the white balls in the urn at time n (i.e. the ratio of the number of white
balls to the number of all balls in the urn at the given time). Show that (Xn) is a martingale.
Consider also the case with ∆ = 0 or ∆ = −1.

Exercise 6.5: A deck of cards contains a black and b red cards. The deck has been shuffled
randomly and we start drawing the cards from the top one after another. Denote Xn the relative
number of black cards after drawing n cards where n ∈ {0, . . . , a+ b− 1}. Let Xn = Xa+b−1 for
n ≥ a+ b. Show that (Xn) is a martingale.

Exercise 6.6: Let (Xn) be a sequence of random variables such that the probability density
function fn : Rn → (0,∞) of the random vector (X1, . . . , Xn) is positive on Rn. Suppose we
are given a consistent system of probability density functions (gn), i.e. gn : Rn → [0,∞) fulfills



∫
Rn gn(x) dx = 1 and

∫
R gn+1(x, y) dy = gn(x) for almost all x ∈ Rn. We define the likelihood

ratio

Sn =
gn(X1, . . . , Xn)

fn(X1, . . . , Xn)
, n ∈ N.

Show that (Sn) is a martingale.

Exercise 6.7: Let (Fn) be a filtration on the probability space (Ω,F ,P) and (Qn) a consistent
system of Fn-probability measures, i.e. Qn+1|Fn = Qn for n ∈ N, such that Qn � P|Fn . We
define Xn = dQn

dP|Fn
. Show that (Xn) is a Fn-martingale.

Exercise 6.8: Let Xn : (Ω,F)→ (Sn,Sn), n ∈ N, be a sequence of random variables. Let P be a
probability measure on (Ω,F) and (νn) a consistent system of probability distributions such that
νn � PX1,...,Xn =: µn. Similarly as above show that the likelihood ratio Tn = dνn

dµn
(X1, . . . , Xn)

between H1 : (X1, . . . , Xn)T ∼ νn and H0 : (X1, . . . , Xn)T ∼ µn is a σ(X1, . . . , Xn)-martingale
under the null hypothesis H0.

Exercise 6.9: Let (Xn) be an iid random sequence. Let α ∈ R be such that β = lnEeαX1 ∈ R.
We define Zn = exp{αSn − βn} where Sn = X1 + . . .+Xn. Show that (Zn) is a martingale.

Exercise 6.10: Let (Xn) be a sequence of independent integrable random variables with zero
mean. We define Mn =

∑n
k=1

∏k
i=1Xi for n ∈ N. Show that (Mn) is a martingale.

NMSA405: topic 7 – Doob decomposition

Definition: (D 2.11) Let {Fn} be a filtration. The random sequence I1, I2, . . . is Fn-predictable
if In is Fn−1-measurable for all n ∈ N, where we put F0 = {∅,Ω}, i.e. I1 is a constant.

Theorem (Doob decomposition theorem): Let {Sn} be an F -submartingale. Then there
exists an Fn-martingale {Mn} and a non-decreasing Fn-predictable sequence {In} so that Sn =
Mn + In, n ∈ N. The summands Mn and In are a.s. uniquely determined under the additional
condition I1 = 0. The sequence {In} is called the compensator of {Sn}.

Exercise 7.1: Let (Xn) be an iid random sequence with EX1 = 0, EX2
1 = σ2 ∈ (0,∞) and

E exp{X1} = γ < ∞. Consider the corresponding random walk (Sn). Show that the following
sequences are submartingales and determine their compensators:

• a) S2
n,

• b) Vn = X2
1 + . . .+X2

n,

• c) exp{Sn}.

Exercise 7.2: Let (Xn) be a Fn-martingale such that Xn ∈ L2. Show that

In =
n∑
k=1

var(Xk | Fk−1)

is the compensator of the sequence Zn = X2
n where F0 = {∅,Ω}.



NMSA405: topic 8 – optional sampling theorem

Theorem (Optional sampling theorem): Let X1, X2, . . . be an Fn-martingale and let
T1 ≤ T2 ≤ . . . be a.s. finite Fn-stopping times. If

XTk ∈ L1 and lim
n→∞

∫
[Tk>n]

|Xn| dP = 0

for all k ∈ N, then (XT1 , XT2 , . . .) is an FTn-martingale.

Exercise 8.1: Let (Xn) be a sequence of iid random variables with P(X1 = 1) = P(X1 = −1) =
1/2 and let Sn =

∑n
k=1 2k−1Xk, n ∈ N. Consider the first hitting time T of the sequence (Sn)

of the set {1}. Then for (Sn) and T the optional sampling theorem does not hold. Show that
ES1 6= EST and the condition limn→∞

∫
[T>n]

|Sn| dP = 0 is not fulfilled.

Exercise 8.2: (remark to the Theorem 3.5) Let (Xn) be a Fn-martingale and T < ∞ a.s. be
a Fn-stopping time. Show that the condition

∃ 0 < c <∞ : T > n =⇒ |Xn| ≤ c a.s.

does not imply the condition

XT ∈ L1 and
∫
[T>n]

|Xn| dP −→
n→∞

0

from the Theorem 3.3.
Hint: Consider the sequence Xn =

∑n
k=1 3kYk where (Yk) is a sequence of iid random variables

with the uniform distribution on {−1, 0, 1}.

NMSA405: topic 9 – random walks

Definition: Let (Xn) be an iid random sequence such that P(X1 = 1) = p and P(X1 = −1) =
1− p where p ∈ [0, 1]. We call the corresponding random walk (Sn) a (simple) discrete random
walk. If p = 1/2 we get the symmetric simple random walk.

Exercise 9.1: Consider the stopping time TB = min{n ∈ N : Sn /∈ B} defined as the first exit
time of the discrete random walk Sn from the bounded set B ∈ B(R) and the stopping time
Ta = min{n ∈ N : Sn = a} defined as the first hitting time of the random walk Sn of the set {a}
for a ∈ Z. Show that

1. TB <∞ a.s.,

2. Ta <∞ a.s. if p = 1/2.

Exercise 9.2: Show that the discrete random walk fulfills

(i) Sn −→
n→∞

∞ a.s. ⇐⇒ p > 1/2,

(ii) Sn −→
n→∞

−∞ a.s. ⇐⇒ p < 1/2,

(iii) lim supn→∞ Sn =∞ a.s., lim infn→∞ Sn = −∞ a.s. ⇐⇒ p = 1/2.



Exercise 9.3: Consider a discrete symmetric random walk (Sn). For a, b ∈ Z, a < 0, b > 0, we
define Ta,b = min{n ∈ N : Sn /∈ (a, b)} as the first exit time of Sn from the interval (a, b). Show
that in that case

P(STa,b = a) =
b

b− a
and ETa,b = −ab.

Corollary:
(i) ETB <∞ for any bounded set B ∈ B(R), (ii) ETb =∞ for any b ∈ Z, b 6= 0.

Exercise 9.4: Let (Sn) be a symmetric simple random walk and let A < 0 < B be independent
integrable random variables, independent of (Sn). Denote T = min{n ∈ N : Sn /∈ (A,B)}. Show
that in that case

P(ST = A) = E
B

B − A
and ET = −EA · EB <∞.

NMSA405: topic 10 – convergence theorems

Exercise 10.1: Give an example of a martingale which converges to the random variable
X∞ ∈ L1 almost surely but not in L1.

Exercise 10.2: Let (Yn) be a sequence of independent random variables such that

P(Yn = 2n − 1) = 2−n, P(Yn = −1) = 1− 2−n, n ∈ N.

Check that Xn =
∑n

k=1 Yk is a martingale. Show that Xn
a.s.−→
n→∞

−∞ and hence the assumptions

of the martingale convergence theorems cannot be fulfilled.

Exercise 10.3: (martingale proof of the Kolmogorov 0-1 law) Let X = (X1, X2, . . . ) be a
sequence of independent random variables and F = [X ∈ T ] where T ∈ T is a terminal set.
Show that

∀n ∈ N E[1F | Fn] = P(F ) a.s. and at the same time E[1F | Fn]
a.s.−→
n→∞

1F .

From this conclude that P(F ) is either 0 or 1.


