
Gaussian vectors

Definition (Gaussian distribution): A real random variable Z is said to have the standard
Gaussian distribution if its probability distribution is absolutely continuous with respect to the
Lebesgue measure and its density is given by

fN (0,1)(x) =
1√
2π

e−
x2

2 , x ∈ R.

(In this case, we write Z ∼ N (0, 1).) Let m,n ∈ N. An n-dimensional random vector X is said
to have the n-dimensional Gaussian distribution if there exists µ ∈ Rn and A ∈ Rn×m such that
X = µ + AZ where Z is an m-dimensional random vector whose components are independent and
have the standard Gaussian distribution. (In this case, we write X ∼ Nn(µ,Σ) where Σ = AA>.)

Corollaries: Let Z and X be random vectors as in the above definition. Then

1. It holds that EX = µ (vector of means) and varX = Σ (covariance matrix).

2. For k ∈ N and matrix B ∈ Rk×n, it holds that BX ∼ Nk(Bµ,BΣB>).

3. If Σ is non-singular, then the distribution of X is absolutely continuous with respect to the
n-dimensional Lebesgue measure and its density is given by

fNn(µ,Σ)(x) =
1

(2π)
n
2

√
det Σ

e−
1
2

(x−µ)>Σ−1(x−µ), x ∈ Rn.

Stochastic processes

Recall the definition of a distribution function.

Definition (Distribution function): Let k ∈ N. A function F : Rk → [0, 1] is a distribution
function if it has the following properties:

1. For every x ∈ Rk there is a sequence {xn}n∈N ⊂ Rk such that xn > x (coordinatewise) for
every n ∈ N, limxn = x, and

lim
n→∞

F (xn) = F (x).

2. There exists a sequence {yn}n∈N ⊂ Rk such that lim yn = (∞, . . . ,∞)> and

lim
n→∞

F (yn) = 1.

3. For every i ∈ {1, . . . , k} and every x = (x1, . . . , xk)
> ∈ Rk we have that

lim
y→−∞

F (x1, . . . , xi−1, y, xi+1, . . . , xk) = 0.

4. For every x = (x1, . . . , xk)
> ∈ Rk and y = (y1, . . . , yk)

> ∈ Rk, x < y, it holds that∑
δ1∈{x1,y1}

...
δk∈{xk,yk}

(−1)card({i:δi=xi})F (δ1, . . . , δk) ≥ 0.
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Let T ⊂ R, T 6= ∅. A collection of (real-valued) random variables {Xt, t ∈ T} is called a (real-valued)
stochastic process. Given such a process, the system

{FXt1,...,tn , n ∈ N, t1, . . . , tn ∈ T}

of its marginal distribution functions defined by

FXt1,...,tn(x1, . . . , xn) = P(Xt1 ≤ x1, . . . , Xtn ≤ xn), x1, . . . , xn ∈ R,

for n ∈ N and t1, t2, . . . , tn ∈ T can be considered. This system is symmetric and consistent in the
following manner: For any n ∈ N, t1, . . . , tn ∈ T and x1, . . . , xn ∈ R, we have that

1. the equality
FXtπ1 ,...,tπn (xπ1 , . . . , xπn) = FXt1,...,tn(x1, . . . , xn)

holds for any permutation {π1, . . . , πn} of {1, . . . , n}; and

2. we also have
lim

xn→∞
FXt1,...,tn−1,tn(x1, . . . , xn) = FXt1,...,tn−1

(x1, . . . , xn−1).

In fact, if for any n ∈ N and t1, . . . , tn ∈ T we are given a distribution function Ft1,...,tn , we say that
the system {Ft1,...,tn , n ∈ N, t1 . . . , tn ∈ T} is consistent if it has the two properties above. One can
always construct a stochastic process from a given system of marginal distributions as long as the
system is consistent.

Exercise 1.1: Let T = {1, 2}. Give an example of

• a consistent system of distribution functions,

• a system of distribution functions that does not satisfy consistency condition 1,

• a system of distribution functions that does not satisfy consistency condition 2.

Theorem 1.1 (Daniell-Kolmogorov): Let {Ft1,...,tn , n ∈ N, t1 . . . , tn ∈ T} be a consistent system
of distribution functions. Then there exists a probability space (Ω,F ,P) and a stochastic process
{Xt, t ∈ T} defined on it such that for every n ∈ N and t1, . . . , tn ∈ T , we have

P(Xt1 ≤ x1 . . . , Xtn ≤ xn) = Ft1,...,tn(x1, . . . , xn), x1, . . . , xn ∈ R.

Gaussian processes

Definition (Gaussian process): A stochastic process {Xt, t ∈ T} is called Gaussian if for all n ∈ N
and t1, . . . , tn ∈ T , the random vector (Xt1 , . . . , Xtn)> has n-dimensional Gaussian distribution.

Exercise 1.2: Let {Xt, t ∈ Z} be a stochastic process that consists of independent random variables
that have the standard Gaussian distribution. Show that {Xt, t ∈ Z} is a Gaussian process. Let
further ρ ∈ R be such that |ρ| < 1 and let {Yt, t ∈ Z} be a stochastic process defined by

Yt = Xt + ρXt−1, t ∈ Z.

Show that {Yt, t ∈ Z} is also a Gaussian process.
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Mean and autocovariance function

Definition (Mean of a process): Let {Xt, t ∈ T} be a stochastic process with finite first moments,
i.e. E|Xt| <∞ for every t ∈ T . Then the (possibly C-valued) function µ defined by

µ(t) := EXt, t ∈ T,

is called the mean value of the process {Xt, t ∈ T}.

Definition (Autocovariance function): Let {Xt, t ∈ T} be a stochastic process with finite
second moments, i.e. E|Xt|2 <∞ for all t ∈ T . Then the (possibly C-valued) function defined by

R(s, t) = E(Xs − EXs)(Xt − EXt), s, t ∈ T,

is called the autocovariance function of the process {Xt, t ∈ T}.

Theorem 2.2: The autocovariance function has the following properties:

• it is non-negative on the diagonal: R(t, t) ≥ 0,

• it is Hermitian: R(s, t) = R(t, s),

• it satisfies the Cauchy-Schwarz inequality: |R(s, t)| ≤
√
R(s, s)

√
R(t, t),

• it is positive semidefinite: for all n ∈ N, c1, . . . , cn ∈ C and t1, . . . , tn ∈ T it holds that

n∑
j=1

n∑
k=1

cjckR(tj , tk) ≥ 0.

Stationarity

Definition (Properties of stochastic processes): A stochastic process {Xt, t ∈ T} is called

• centered if µ(t) = 0 for every t ∈ T,
• a process of uncorrelated random variables if the process has finite second moments and for its

autocovariance function it holds that R(s, t) = 0 whenever s, t ∈ T are such that s 6= t,

• process with independent increments if for all n ∈ N and t1, . . . , tn ∈ T such that t1 < · · · < tn
the random variables Xt2 −Xt1 , . . . , Xtn −Xtn−1 are independent,

• process with stationary increments if for all s, t ∈ T such that s < t the distribution of the
increment Xt −Xs depends only on t− s.

Definition (Stationarity): A stochastic process {Xt, t ∈ T} is called

• strictly stationary if for any n ∈ N, t1, . . . , tn ∈ T and h > 0 such that t1 +h, . . . , tn+h ∈ T the
distributions of the random vectors (Xt1 , . . . , Xtn)> and (Xt1+h, . . . , Xtn+h)> are the same;

• weakly stationary if the process has

– finite second moments,
– constant mean value (i.e. if there is µ ∈ R such that µ(t) = µ holds for every t ∈ T ), and
– if its autocovariance function depends only on the difference of its arguments (i.e. if
R(s+ h, t+ h) = R(s, t) holds for every h ∈ R, s, t ∈ T such that s+ h, t+ h ∈ T ),

• covariance stationary if the process has finite second moments and its autocovariance function
depends only on the difference of its arguments.
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Theorem 2.1: The following implications hold:

a) strictly stationary with finite second moments ⇒ weakly stationary,

b) weakly stationary ⇒ covariance stationary,

c) covariance stationary and constant mean ⇒ weakly stationary,

d) weakly stationary and Gaussian ⇒ strictly stationary,

e) process of uncorrelated random variables with constant variance ⇒ covariance stationary,

f) centered process of uncorrelated random variables with constant variance⇒ weakly stationary.

Important examples of stochastic processes

Definition (Poisson process): A Poisson process N = {Nt, t ≥ 0} is a stochastic process with
the following properties:

• N0 = 0 almost surely,

• N has independent increments, i.e. for every n ∈ N and 0 < t1 < t2 < . . . < tn, the random
variables Nt1 , Nt2 −Nt1 , . . . , Ntn −Ntn−1 are independent,

• N has Poisson stationary increments, i.e. there exists a finite positive constant λ such that for
every 0 ≤ s < t, we have that Nt −Ns has the Poisson distribution Po(λ(t− s)).

Definition (Wiener process): A Wiener process W = {Wt, t ≥ 0} is a stochastic process with
the following properties:

• W0 = 0 almost surely,

• W has continuous trajectories, i.e. for almost every ω ∈ Ω, the map t 7→Wt(ω) is continuous,

• W has independent increments, i.e. for every n ∈ N and 0 < t1 < t2 < . . . < tn, the random
variables Wt1 ,Wt2 −Wt1 , . . . ,Wtn −Wtn−1 are independent,

• W has stationary Gaussian increments, i.e. there exists a finite positive constant σ2 such that
for every 0 ≤ s < t, we have that Wt −Ws has the normal distribution N(0, σ2(t− s)).
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Exercises

Exercise 2.1: Let Xt = a + bt + Yt, t ∈ Z, where a, b ∈ R, b 6= 0 and {Yt, t ∈ Z} be a sequence of
independent identically distributed random variables with zero mean and finite positive variance σ2.

a) Determine the autocovariance function of the sequence {Xt, t ∈ Z} and discuss its stationarity.

b) For q ∈ N we define random variables Vt by the formula

Vt =
1

2q + 1

q∑
j=−q

Xt+j , t ∈ Z.

Determine the autocovariance function of the sequence {Vt, t ∈ Z} and discuss its stationarity.

Exercise 2.2: Let X be a random variable with a uniform distribution on the interval (0, π).
Consider the sequence of random variables {Yt, t ∈ N} where Yt = cos(tX). Discuss the properties
of such a random sequence.

Exercise 2.3: Consider the stochastic process Xt = cos(t+B), t ∈ R, where B is a random variable
with a uniform distribution on the interval (0, 2π). Check whether the process is weakly stationary.

Exercise 2.4: Let X be a random variable such that EX = 0 and varX = σ2 < ∞. We define
Xt = (−1)tX, t ∈ N. Discuss the properties of the sequence {Xt, t ∈ N}.

Exercise 2.6: Let {Nt, t ≥ 0} be a Poisson process with intensity λ > 0 and let A be a real-valued
random variable with zero mean and unit variance, independent of the process {Nt, t ≥ 0}. We
define Xt = A(−1)Nt , t ≥ 0. Determine the autocovariance function of {Xt, t ≥ 0}.

Exercise 2.8: Let {Wt, t ≥ 0} be a Wiener process. We define the so-called Ornstein-Uhlenbeck
process {Ut, t ≥ 0} by the formula Ut = e−αt/2Wexp{αt}, t ≥ 0, where α > 0 is a parameter. Decide
whether {Ut, t ≥ 0} is weakly (strictly) stationary and determine its autocovariance function.

Exercise 2.11: Let {Xt, t ∈ Z} be a sequence of independent identically distributed random vari-
ables. Prove that the process is strictly stationary. Is it also weakly stationary?

Exercise 2.12: Let {Xt, t ∈ Z} be a sequence of uncorrelated random variables with zero mean and
finite positive variance (so-called white noise). Prove that it is weakly stationary. Is it also strictly
stationary?

Exercise 2.13: Let X0 = 0, Xt = Y1 + · · · + Yt for t = 1, 2, . . . , where Y1, Y2, . . . are independent
identically distributed discrete random variables with zero mean and finite positive variance. Show
that {Xt, t ∈ N0} is a Markov chain. Determine its autocovariance function. What can we say about
the properties of such a random sequence?

Exercise 2.14: Let {Xt, t ∈ T} a {Yt, t ∈ T} be uncorrelated weakly stationary processes, i.e. for
all s, t ∈ T the random variables Xs and Yt are uncorrelated. Show that in such a case also the
process {Zt, t ∈ T} with Zt = Xt + Yt is weakly stationary.

Exercise 2.18: Determine the autocovariance function of the Wiener process {Wt, t ≥ 0}. For
0 ≤ t1 < t2 < · · · < tn determine the variance matrix of the random vector (Wt1 , . . . ,Wtn)>.
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