
L2-properties of stochastic processes

Definition 3.1: We say that a sequence of random variables Xn such that E|Xn|2 < ∞ converges
in L2 (or in the mean square) to a random variable X, if E|Xn −X|2 → 0 for n → ∞. In that case
we write X = l.i.m.Xn.

Let T ⊂ R be an open interval and consider a stochastic process {Xt, t ∈ T} with continuous time
and finite second moments.

Definition 3.2: We call the process {Xt, t ∈ T} L2-continuous (mean square continuous) at the
point t0 ∈ T if E|Xt −Xt0 |2 → 0 for t → t0. The process is L2-continuous if it is L2-continuous at
all points t ∈ T .

Theorem 3.1: A stochastic process {Xt, t ∈ T} is L2-continuous if and only if its mean value EXt

is a continuous function on T and its autocovariance function RX(s, t) is continuous at points [s, t]
for which s = t.

Corollary 3.1: Centered weakly stationary process is L2-continuous if and only if its autocovariance
function R(t) is continuous at point 0.

Definition 3.4: Let T = [a, b] be a bounded closed interval. For any n ∈ N let Dn = {tn,0, . . . , tn,n}
be a division of the interval [a, b] where a = tn,0 < tn,1 < . . . < tn,n = b. We define the partial sums
In of the centered stochastic process {Xt, t ∈ T} by the formula

In =

n−1∑
i=0

Xtn,i(tn,i+1 − tn,i), n ∈ N.

If there is a random variable I such that E|In − I|2 → 0 for n → ∞ and for each division of the
interval [a, b] such that max0≤i≤n−1(tn,i+1 − tn,i) → 0 we call it the Riemann integral of the process

{Xt, t ∈ T} and denote it by I =
∫ b
a Xt dt. For a non-centered process with the mean value EXt we

define the Riemann integral as∫ b

a
Xt dt =

∫ b

a
(Xt − EXt) dt+

∫ b

a
EXt dt,

if the centered process {Xt−EXt, t ∈ T} has a Riemann integral and the Riemann integral
∫ b
a EXt dt

exists and is finite.

Theorem 3.3: A stochastic process {Xt, t ∈ [a, b]} where [a, b] is a bounded closed interval is

Riemann-integrable if the Riemann integrals
∫ b
a EXt dt and

∫ b
a

∫ b
a RX(s, t) ds dt exist and are finite.

Theorem 3.4: Let M ⊂ Rn be a bounded set, f be a real function on Rn, bounded on M . Then
the Riemann integral

∫
M f(x) dx exists if and only if both following conditions are fulfilled:

a) the boundary of M has Lebesgue measure 0,
b) the set of inner points of M in which f is not continuous has Lebesgue measure 0.

Theorem 3.5: Let M ⊂ Rn be a bounded set and let the Riemann integral
∫
M f(x) dx exist. Then

also the Lebesgue integral
∫
M f(x) dx exists and both integrals are equal.



Exercise 3.1: Consider a stochastic process Xt = cos(t + B), t ∈ R, where B is a random
variable with the uniform distribution on the interval (0, 2π). Is this process L2-continuous? Is
it Riemann-integrable on a bounded closed interval [a, b]?

Further question How does the
∫ 2
1 Xtdt from the previous exercise look like?

Exercise 3.3: Integrated Wiener process is defined as

Xt =

∫ t

0
Wτ dτ, t ≥ 0.

Using the properties of the Wiener process and L2-convergence prove that Xt ∼ N(0, v2t ) for all t ≥ 0
where v2t = 1

3σ
2t3 and σ2 is the parameter of the Wiener process Wt. Use the fact that the L2-limit

of a sequence of Gaussian random variables is a Gaussian random variable.

Exercise 3.4: Let {Xt, t ∈ R} be a centered, weakly stationary stochastic process with the autoco-
variance function

RX(t) = exp{λ(eit − 1)}, t ∈ R,

where λ > 0. Is this process L2-continuous? Is it Riemann-integrable on a bounded closed interval
[a, b]?

Exercise 3.6: Let {Xt, t ∈ R} be a process of independent identically distributed random variables
with a mean value µ and a finite variance σ2 > 0. Is this process L2-continuous? Is it Riemann-
integrable on a bounded closed interval [a, b]?

Further question How does the
∫ 5
1 Xtdt from the previous exercise look like?


