Lo-properties of stochastic processes

Definition 3.1: We say that a sequence of random variables X, such that E|X,|?> < co converges
in Lo (or in the mean square) to a random variable X, if E|X,, — X|? — 0 for n — oco. In that case
we write X = L.im. X,,.

Let T'C R be an open interval and consider a stochastic process {X;,t € T'} with continuous time
and finite second moments.

Definition 3.2: We call the process {X;,t € T'} La-continuous (mean square continuous) at the
point g € T if E|X; — Xy, — 0 for t — tg. The process is Ly-continuous if it is Lo-continuous at
all points t € T'.

Theorem 3.1: A stochastic process {X;,t € T'} is La-continuous if and only if its mean value EX;
is a continuous function on 7" and its autocovariance function Rx(s,t) is continuous at points s, t]
for which s =t.

Corollary 3.1: Centered weakly stationary process is La-continuous if and only if its autocovariance
function R(t) is continuous at point 0.

Definition 3.4: Let T' = [a, b] be a bounded closed interval. For any n € Nlet D,, = {ts0,...,tnn}
be a division of the interval [a,b] where a =t,0 < t,1 < ... <tp, =0b. We define the partial sums
I, of the centered stochastic process {X;,t € T'} by the formula

n—1

In = Z th,z' (tn,i-l-l - tn,i)a n € N.
1=0

If there is a random variable I such that E|I, — I|?> — 0 for n — oo and for each division of the
interval [a,b] such that maxo<i<p—1(tnit1 — tni) — 0 we call it the Riemann integral of the process

{Xi,t € T} and denote it by I = fab X;dt. For a non-centered process with the mean value EX; we
define the Riemann integral as

b b b
/Xtdt:/ (Xt—IEXt)dt—s—/ EX, dt,

if the centered process {X; —EX;,t € T'} has a Riemann integral and the Riemann integral ff EX;dt
exists and is finite.

Theorem 3.3: A stochastic process {X¢,t € [a,b]} where [a,b] is a bounded closed interval is
Riemann-integrable if the Riemann integrals f; EX, dt and f; fab Rx(s,t)dsdt exist and are finite.

Theorem 3.4: Let M C R" be a bounded set, f be a real function on R™, bounded on M. Then
the Riemann integral [,, f(x)dx exists if and only if both following conditions are fulfilled:

a) the boundary of M has Lebesgue measure 0,

b) the set of inner points of M in which f is not continuous has Lebesgue measure 0.

Theorem 3.5: Let M C R™ be a bounded set and let the Riemann integral [, f(z)dx exist. Then
also the Lebesgue integral [,, f(z) dz exists and both integrals are equal.



Exercise 3.1: Consider a stochastic process X; = cos(t + B), t € R, where B is a random
variable with the uniform distribution on the interval (0,27). Is this process Lo-continuous? Is
it Riemann-integrable on a bounded closed interval [a, b]?

Further question How does the ff Xdt from the previous exercise look like?

Exercise 3.3: Integrated Wiener process is defined as
t
X :/ Wrdr, t>0.
0

Using the properties of the Wiener process and Lo-convergence prove that X; ~ N(0,v?) for allt > 0
where UtQ = %02753 and o2 is the parameter of the Wiener process W;. Use the fact that the Lo-limit

of a sequence of Gaussian random variables is a Gaussian random variable.

Exercise 3.4: Let {X;,t € R} be a centered, weakly stationary stochastic process with the autoco-
variance function

Rx(t) = exp{\(e — 1)}, teR,

where A > 0. Is this process Lo-continuous? Is it Riemann-integrable on a bounded closed interval
[a,b]?

Exercise 3.6: Let {X;,t € R} be a process of independent identically distributed random variables
with a mean value u and a finite variance o? > 0. Is this process Lo-continuous? Is it Riemann-
integrable on a bounded closed interval [a, b]?

Further question How does the f15 Xdt from the previous exercise look like?



