VII. 3 Lebesgue-Bochner spaces

Definition. Let $f: \Omega \rightarrow X$ be strongly μ-measurable.

- Let $p \in[1, \infty)$. We say that the function f belongs to $L^{p}(\mu ; X)$ (more precisely, to $\left.L^{p}(\Omega, \Sigma, \mu ; X)\right)$ provided the function $\omega \mapsto\|f(\omega)\|^{p}$ is integrable. For such a function we set

$$
\|f\|_{p}=\left(\int_{\Omega}\|f(\omega)\|^{p} \mathrm{~d} \mu\right)^{1 / p}
$$

- We say that f belongs to $L^{\infty}(\mu ; X)$ (more precisely, to $L^{\infty}(\Omega, \Sigma, \mu ; X)$) $\omega \mapsto\|f(\omega)\|$ is essentially bounded. For such a function we set

$$
\|f\|_{\infty}=\underset{\omega \in \Omega}{\operatorname{ess} \sup }\|f(\omega)\|
$$

Remarks:

(1) If $p \in[1, \infty)$, then simple integrable functions belong to $L^{p}(\mu ; X)$. If $f=$ $\sum_{j=1}^{k} x_{j} \chi_{E_{j}}$ where $E_{1}, \ldots, E_{k} \in \Sigma$ are pairwise disjoint and $x_{1}, \ldots, x_{k} \in$ X, then

$$
\|f\|_{p}=\left(\sum_{j=1}^{k}\left\|x_{j}\right\|^{p} \mu\left(E_{j}\right)\right)^{1 / p}
$$

(2) Simple measurable functions belong $L^{\infty}(\mu ; X)$. If f is of the above form, then

$$
\|f\|_{\infty}=\max \left\{\left\|x_{j}\right\| ; j \in\{1, \ldots, k\} \& \mu\left(E_{j}\right)>0\right\}
$$

(3) If $p \in[1, \infty], h \in L^{p}(\mu)$ and $x \in X$, then the function $f: \Omega \rightarrow X$ defined by the formula $f(\omega)=h(\omega) \cdot x$ belongs tp $L^{p}(\mu ; X)$ and one has $\|f\|_{p}=\|h\|_{p} \cdot\|x\|$. We denote $f=h \cdot x$.

Theorem 14.

(a) Let $p \in[1, \infty]$. After identifying the pairs of functions which are almost everywhere equal, the space $\left(L^{p}(\mu ; X),\|\cdot\|_{p}\right)$ is a Banach space.
(b) The space $L^{1}(\mu ; X)$ is formed exactly by (equivalence classes of) Bochner integrable functions.
(c) If X is a Hilbert space with the inner product $\langle\cdot, \cdot\rangle$, the space $L^{2}(\mu ; X)$ is a Hilbert space as well, the inner product is defined by

$$
\langle f, g\rangle=\int_{\Omega}\langle f(\omega), g(\omega)\rangle \mathrm{d} \mu(\omega), \quad f, g \in L^{2}(\mu ; X)
$$

(d) If μ is finite, then

$$
L^{\infty}(\mu ; X) \subset L^{q}(\mu ; X) \subset L^{p}(\mu ; X) \subset L^{1}(\mu ; X)
$$

whenever $1 \leq p<q \leq \infty$.
Theorem 15. Let $p \in[1, \infty)$.
(a) Simple integrable functions form a dense subspace of $L^{p}(\mu ; X)$.
(b) If both spaces $L^{p}(\mu)$ and X are separable, then $L^{p}(\mu ; X)$ is separable as well.

Examples 16.

(1) Let $G \subset \mathbb{R}^{n}$ be a Lebesgue measurable set of strictly positive measure and let $p \in[1, \infty]$. By $L^{p}(G ; X)$ we denote the space $L^{p}(\mu ; X)$, where μ is the restriction of the n-dimensional Lebesgue measure to G. If $p \in[1, \infty)$ and X is separable, then $L^{p}(G ; X)$ is separable as well.
(2) Let μ be the counting measure on \mathbb{N} and let $p \in[1, \infty]$. Then the space $L^{p}(\mu ; X)$ is denoted by $\ell^{p}(X)$ and can be represented as

$$
\begin{aligned}
\ell^{p}(X) & =\left\{\left(x_{n}\right) \in X^{\mathbb{N}} ; \sum_{n=1}^{\infty}\left\|x_{n}\right\|^{p}<\infty\right\} \text { pro } p \in[1, \infty) \\
\ell^{\infty}(X) & =\left\{\left(x_{n}\right) \in X^{\mathbb{N}} ; \sup _{n \in \mathbb{N}}\left\|x_{n}\right\|<\infty\right\}
\end{aligned}
$$

The respective norm is then defined by the formula

$$
\begin{aligned}
\left\|\left(x_{n}\right)\right\|_{p} & =\left(\sum_{n=1}^{\infty}\left\|x_{n}\right\|^{p}\right)^{1 / p}, \quad\left(x_{n}\right) \in \ell^{p}(X), p \in[1, \infty) \\
\left\|\left(x_{n}\right)\right\|_{\infty} & =\sup _{n \in \mathbb{N}}\left\|x_{n}\right\|, \quad\left(x_{n}\right) \in \ell^{\infty}(X)
\end{aligned}
$$

If X is separable and $p \in[1, \infty)$, then $\ell^{p}(X)$ is separable as well.

