VII.3 Lebesgue-Bochner spaces

Definition. Let $f: \Omega \to X$ be strongly μ -measurable.

• Let $p \in [1, \infty)$. We say that the function f belongs to $L^p(\mu; X)$ (more precisely, to $L^p(\Omega, \Sigma, \mu; X)$) provided the function $\omega \mapsto \|f(\omega)\|^p$ is integrable. For such a function we set

$$\left\|f\right\|_{p} = \left(\int_{\Omega} \left\|f(\omega)\right\|^{p} \mathrm{d}\mu\right)^{1/p}$$

• We say that f belongs to $L^{\infty}(\mu; X)$ (more precisely, to $L^{\infty}(\Omega, \Sigma, \mu; X)$) $\omega \mapsto ||f(\omega)||$ is essentially bounded. For such a function we set

$$\|f\|_{\infty} = \operatorname{ess\,sup}_{\omega \in \Omega} \|f(\omega)\|$$

Remarks:

(1) If $p \in [1, \infty)$, then simple integrable functions belong to $L^p(\mu; X)$. If $f = \sum_{j=1}^k x_j \chi_{E_j}$ where $E_1, \ldots, E_k \in \Sigma$ are pairwise disjoint and $x_1, \ldots, x_k \in X$, then

$$||f||_{p} = \left(\sum_{j=1}^{k} ||x_{j}||^{p} \mu(E_{j})\right)^{1/p}$$

(2) Simple measurable functions belong $L^{\infty}(\mu; X)$. If f is of the above form, then

•

$$||f||_{\infty} = \max\{||x_j||; j \in \{1, \dots, k\} \& \mu(E_j) > 0\}.$$

(3) If $p \in [1,\infty]$, $h \in L^p(\mu)$ and $x \in X$, then the function $f : \Omega \to X$ defined by the formula $f(\omega) = h(\omega) \cdot x$ belongs to $L^p(\mu; X)$ and one has $\|f\|_p = \|h\|_p \cdot \|x\|$. We denote $f = h \cdot x$.

Theorem 14.

- (a) Let $p \in [1, \infty]$. After identifying the pairs of functions which are almost everywhere equal, the space $(L^p(\mu; X), \|\cdot\|_p)$ is a Banach space.
- (b) The space $L^1(\mu; X)$ is formed exactly by (equivalence classes of) Bochner integrable functions.
- (c) If X is a Hilbert space with the inner product $\langle \cdot, \cdot \rangle$, the space $L^2(\mu; X)$ is a Hilbert space as well, the inner product is defined by

$$\langle f,g\rangle = \int_{\Omega} \langle f(\omega),g(\omega)\rangle \, \mathrm{d}\mu(\omega), \quad f,g \in L^2(\mu;X).$$

(d) If μ is finite, then

$$L^{\infty}(\mu; X) \subset L^{q}(\mu; X) \subset L^{p}(\mu; X) \subset L^{1}(\mu; X).$$

whenever $1 \leq p < q \leq \infty$.

Theorem 15. Let $p \in [1, \infty)$.

- (a) Simple integrable functions form a dense subspace of $L^p(\mu; X)$.
- (b) If both spaces L^p(μ) and X are separable, then L^p(μ; X) is separable as well.

Examples 16.

- (1) Let $G \subset \mathbb{R}^n$ be a Lebesgue measurable set of strictly positive measure and let $p \in [1, \infty]$. By $L^p(G; X)$ we denote the space $L^p(\mu; X)$, where μ is the restriction of the *n*-dimensional Lebesgue measure to G. If $p \in [1, \infty)$ and X is separable, then $L^p(G; X)$ is separable as well.
- (2) Let μ be the counting measure on \mathbb{N} and let $p \in [1, \infty]$. Then the space $L^p(\mu; X)$ is denoted by $\ell^p(X)$ and can be represented as

$$\ell^{p}(X) = \{(x_{n}) \in X^{\mathbb{N}}; \sum_{n=1}^{\infty} ||x_{n}||^{p} < \infty\} \text{ pro } p \in [1, \infty),\\ \ell^{\infty}(X) = \{(x_{n}) \in X^{\mathbb{N}}; \sup_{n \in \mathbb{N}} ||x_{n}|| < \infty\}.$$

The respective norm is then defined by the formula

$$\|(x_n)\|_p = \left(\sum_{n=1}^{\infty} \|x_n\|^p\right)^{1/p}, \quad (x_n) \in \ell^p(X), p \in [1, \infty), \\ \|(x_n)\|_{\infty} = \sup_{n \in \mathbb{N}} \|x_n\|, \quad (x_n) \in \ell^{\infty}(X).$$

If X is separable and $p \in [1, \infty)$, then $\ell^p(X)$ is separable as well.