
VIII. Banach algebras and Gelfand transform
Convention: In this chapter all the Banach spaces are considered over the complex field (unless
the converse is explicitly stated).

Remark: The real version of the theory of this chapter is studied as well, but it is quite different.

VIII.1 Banach algebras – basic notions and properties

Definition.

• An algebra is a (complex) vector space A, equipped moreover with the operation of
multiplication · which enjoys the following properties:

◦ x · (y · z) = (x · y) · z for x, y, z ∈ A;
◦ x · (y + z) = x · y + x · z for x, y, z ∈ A;
◦ (x+ y) · z = x · z + y · z for x, y, z ∈ A;
◦ α · (x · y) = (α · x) · y = x · (α · y) for α ∈ C and x, y ∈ A.

• An algebra A is said to be commutative, if the multiplication is commutative, i.e., if
◦ x · y = y · x for x, y ∈ A.

• Let A be an algebra. An element e ∈ A is said to be
◦ a left unit if e · x = x for x ∈ A;
◦ a right unit if x · e = x for x ∈ A;
◦ a unit if e · x = x · e = x for x ∈ A.

An algebra admitting a unit is called unital.
• Let A be an algebra equipped moreover with a norm ‖·‖ satisfying

◦ ‖x · y‖ ≤ ‖x‖ · ‖y‖ for x, y ∈ A.
Then A is said to be a normed algebra.

• A Banach algebra is a normed algebra A, which is complete in the metric generated by
the norm.

Remarks:

(1) An algebra can have many left units or many right units.
(2) If an algebra has both a left unit and a right unit, they are equal. In particular, any
algebra has at most one unit.

(3) If A is a nontrivial normed algebra with a unit e (nontrivial means A 6= {o}), then
‖e‖ ≥ 1.

Examples 1 (examples of Banach algebras).

(1) The complex field is a unital commutative Banach algebra.
(2) Let K be a compact Hausdorff space. Then C(K), the space of all the complex-valued
continuous functions on K equipped with the supremum norm and with the pointwise
multiplication (i.e., (f · g)(x) = f(x) · g(x) for f, g ∈ C(K) and x ∈ K) is a unital
commutative Banach algebra. Its unit is the constant function equal to 1.

(3) Let T be a locally compact Hausdorff space which is not compact (e.g., T = Rn). Let
the space

C0(T ) = {f : T → C continuous; ∀ε > 0 : {x ∈ T ; |f(x)| ≥ ε} is a compact subset of T}
be equipped with the supremum norm and with the pointwise multiplication. Then C0(T )
is a commutative Banach algebra which has no unit.

(4) For n ∈ N let Mn be the space of all the complex square matrices of order n, equipped
with the matrix norm and with the matrix multiplication. Then Mn is a unital Banach
algebra. Its unit is the unit matrix. If n ≥ 2, Mn is not commutative.



(5) Let X be a Banach space and let L(X) be the space of all the bounded linear operators
on X equipped with the operator norm. If we define the multiplication on L(X) as the
composition of operators (i.e., S · T = S ◦ T for S, T ∈ L(X)), then L(X) is a unital
Banach algebra. Its unit is the identity mapping. If dimX ≥ 2, the algebra L(X) is not
commutative.

(6) Let X be a Banach space and let K(X) be the space of all the compact operators on X .
Then K(X) is a closed subalgebra of L(X), hence it is a Banach algebra. The algebra
K(X) is unital if and only if X is finite-dimensional. K(X) is commutative if and only
if dimX = 1.

(7) The Banach space L1(Rn) becomes a commutative Banach algebra, if we define the
multiplication as the convolution. This algebra has no unit.

(8) The Banach space ℓ1(Z), equipped with the multiplication ∗ (called also convolution)
defined by

(xn)n∈Z ∗ (yn)n∈Z =

(

∑

k∈Z

xkyn−k

)

n∈Z

, (xn)n∈Z, (yn)n∈Z ∈ ℓ1(Z),

is a unital commutative Banach algebra. It unit is the canonical vector e0.
(9) Let µ be a normalized Lebesgue measure on [0, 2π) (i.e., µ = 1

2πλ, where λ is a Lebesgue

measure on [0, 2π)). Then the Banach space L1(µ), equipped with the multiplication ∗
(called also convolution) defined by

f ∗ g(x) =

∫

[0,2π)

f(y)g((x− y) mod 2π) dµ(y)

=
1

2π

∫

[0,2π)

f(y)g((x− y) mod 2π) dy, f, g ∈ L1(µ), x ∈ [0, 2π),

is a commutative Banach algebra. This algebra has no unit.

Proposition 2 (adding a unit).

(a) Let A be an algebra. Let A+ denote the vector space A×C equipped with the multipli-
cation defined by

(x, λ) · (y, µ) = (x · y + λy + µx, λµ), (x, λ), (y, µ) ∈ A+.

Then A+ is an algebra and the element (o, 1) is its unit. Moreover, {(a, 0); a ∈ A} is a
subalgebra of A+, which is isomorphic to the algebra A.

(b) If A is a Banach algebra, then A+ is a unital Banach algebra, if we define the norm by
‖(x, λ)‖ = ‖x‖+ |λ|, (x, λ) ∈ A+. Moreover, {(a, 0); a ∈ A} is then a closed subalgebra
of A+, which is isometrically isomorphic to the Banach algebra A.

Remarks:

(1) The algebraic structure of the algebra A+ is uniquely determined, for the norm on A+

it is not the case. The given norm is one of the possible ones, later we will see other
possibilities, which are natural in some special cases.

(2) The procedure of adding a unit is important mainly in case A is not unital. However,
it has a sense also in case A is unital. If A has a unit e, the unit of A+ is (o, 1) and
the element (e, 0) is not a unit anymore. This element is the unit of the subalgebra
{(a, 0), a ∈ A}.



Proposition 3 (renorming og a Banach algebra). Let (A, ‖·‖) be a nontrivial Banach algebra
with a unit e. Then there exists an equivalent norm ||| · ||| on A such that (A, ||| · |||) is also a
Banach algebra and, moreover, |||e||| = 1.

Convention: By a unital Banach algebra we will mean in the sequel a nontrivial Banach algebra,
which has a unit and the unit has norm one.

Proposition 4. Let A be a Banach algebra. Then:

(a) x · o = o · x = o for x ∈ A.
(b) The multiplication is continuous as a mapping of A×A to A.

Definition. Let A be a Banach algebra with a unit e.

• The element y ∈ A is said to be an inverse element (or just an inverse) of an element x ∈ A
if

x · y = y · x = e.

• An alement x ∈ A is called invertible if it admits an inverse.
• The set of all the invertible elements of A is denoted by G(A).

Remark. Let A be a Banach algebra with a unit e and let x ∈ A. If y ∈ A satisfies x · y = e,
it is called a right inverse of x; if it satisfies y · x = e, it is called a left inverse. An element x
can have many different right inverse, or many different left inverses. However, if x has both
a right inverse and a left inverse, it is invertible. It inverse is uniquely determined and it is
simultaneuously the unique right inverse and the unique left inverse. The inverse of x is denoted
by x−1.

Proposition 5 (on multiplication of invertible elements). Let A be a unital Banach algebra.

(a) Let x, y ∈ G(A). Then x · y ∈ G(A) and (x · y)−1 = y−1 · x−1.
(b) G(A) equipped with the operation of multiplication is a group.
(c) If the elements x1, . . . , xn ∈ A commute (i.e., xj ·xk = xk ·xj for j, k ∈ {1, . . . , n}), then

x1 · . . . · xn ∈ G(A) if and only if {x1, . . . , xn} ⊂ G(A).

Lemma 6 (Neumann’s series). Let A be a Banach algebra with a unit e.

(a) Let x ∈ A such that ‖x‖ < 1. Then e− x ∈ G(A) and, moreover,

(e− x)−1 =
∞
∑

n=0

xn,

where the series converges absolutely.
(b) If x ∈ G(A), h ∈ A and ‖h‖ < 1

‖x−1‖
, then x+ h ∈ G(A) and, moreover,

(x+ h)−1 = x−1 ·

∞
∑

n=0

(−1)n(h · x−1)n and ‖(x+ h)−1 − x−1‖ ≤
‖x−1‖2‖h‖

1− ‖x−1‖‖h‖
.

Theorem 7 (topological properties of the group of invertible elements). Let A be a unital
Banach algebra. Then

(1) G(A) is an open subset of A,
(2) the mapping x 7→ x−1 is a homeomorphism of G(A) onto G(A),
(3) if (xn) is a sequence in G(A) which converges in A to some x /∈ G(A), then ‖x−1

n ‖ → ∞.


