
VIII.4 Ideals, complex homomorphisms and Gelfand transform

Definition. Let A be a Banach algebra. An ideal in A is a proper vector subspace I ⊂ A such that
xy ∈ I and yx ∈ I whenever x ∈ I and y ∈ A. A maximal ideal in the algebra A is an ideal, which is
maximal with respect to inclusion.

Remarks:

(1) Any ideal is a proper subalgebra. A proper subalgebra need not be an ideal.
(2) Also left ideals (defined by the implication x ∈ I, y ∈ A ⇒ yx ∈ I) and right ideals (defined
similarly) are studied. Then an ideal is a subspace which is both a left ideal and a right ideal.
We will not investigate unilateral ideals.

Proposition 18 (properties of ideals and of maximal ideals). Let A be a unital Banach algebra.

(a) If I is an ideal in A, then I ∩G(A) = ∅.
(b) The closure of an ideal in A is again an ideal in A.
(c) Any ideal I in A is contained in a maximal ideal J .
(d) Any maximal ideal in A is closed.

Examples 19.

(1) If X is an infinite-dimensional Banach space, then K(X) is a closed ideal in the Banach algebra
L(X).

(2) The only ideal in the matrix algebra Mn (where n ∈ N) is the zero ideal.
(3) Let K be a compact Hausdorff space. Then all the closed ideals in the Banach algebra C(K) are
the subspaces of the form

{f ∈ C(K); f |F = 0}, where F ⊂ K is a nonempty closed subset.

Proposition 20 (factorization of an algebra). Let A be a Banach algebra and let I be a closed ideal
in A. Then the quotient Banach space A/I is a Banach algebra if the multiplication is defined by
q(x)q(y) = q(xy), where q is the quotient mapping of A onto A/I. Moreover, if A is commutative or
unital, the same holds for A/I.

Definition.

• Let A,B be Banach algebras. A mapping h : A → B is said to be a homomorphism of Banach
algebras (shortly, a homomorphism), if it is linear and, moreover, h(xy) = h(x)h(y) for x, y ∈ A.

• A complex homomorphism on a Banach algebra A is a homomorphism h : A → C.
• By ∆(A) we will denote the set of all the nonzero complex homomorphisms on A.

Remarks:

(1) In the definition of a homomorphism of Banach algebras there is no continuity requirement. In
some important cases a homomorphism is automatically continuous (see, e.g., Proposition 21 or
Proposition 31).

(2) If h : A → B is a homomorpism of Banach algebras, which is not identically zero, its kernel is an
ideal in the algebra A.

(3) By the preceeding remark and Example 19(2) we see that for n ≥ 2 one has ∆(Mn) = ∅.
(4) The quotient mapping from Proposition 20 is a homomorphism of Banach algebras.



Proposition 21 (properties of complex homomorphisms). LetA be a Banach algebra and let h ∈ ∆(A).

• If A has a unit e, then:
(a) h(e) = 1 and ‖h‖ = 1;
(b) ker h is a maximal ideal in A;
(c) h(x) 6= 0 for x ∈ G(A).

• For a general Banach algebra A (unital or not) the following hold:

(d) There exists a unique h̃ ∈ ∆(A+) extending h (i.e., such that h̃(x, 0) = h(x) for x ∈ A);
(e) ‖h‖ ≤ 1;
(f) h(x) ∈ σ(x) for x ∈ A.

Proposition 22 (properties of ∆(A)). Let A be a Banach algebra.

(a) If A is unital, then ∆(A) is a weak* compact subset of the unit sphere SA∗ .

(b) ∆(A+) = {h̃;h ∈ ∆(A)} ∪ {h∞}, where h̃ is the extension of h provided by Proposition 21(d)
and h∞(x, λ) = λ for (x, λ) ∈ A+.

(c) If A has no unit, then ∆(A) is a subset of the unit ball BA∗ and ∆(A) ∪ {o} is weak* compact.
Therefore, ∆(A) is locally compact in the weak* topology.

Proposition 23 (complex homomorphisms and maximal ideals). Let A be a unital Banach algebra.

(1) If I is a ideal in A of codimension one, there exists a unique h ∈ ∆(A) such that I = kerh.
(2) If A is commutative, then h 7→ kerh is a bijection of ∆(A) onto the set of all the maximal ideals
in A.

Definition. Let A be commutative Banach algebra.

• Let x ∈ A. For h ∈ ∆(A) we set x̂(h) = h(x). The function x̂ : ∆(A) → C is then called the
Gelfand transform of x. It easily follows from definitions that x̂ is a continuous complex function
on ∆(A), moreover by Proposition 22(c) we see that x̂ ∈ C0(∆(A)).

• The Gelfand transform of the algebra A is the mapping Γ : A → C0(∆(A)) defined by Γ(x) = x̂,
x ∈ A.

Theorem 24 (properties of the Gelfand transform). Let A be a commutative Banach algebra and let
Γ : A → C0(∆(A)) be its Gelfand transform. Further, let Γ

+ : A+ → C(∆(A+)) be the Gelfand transform
of the algebra A+. To describe ∆(A+) we use Proposition 22(b) (including the notation).

(a) Γ is a homomorphism of the algebra A into the algebra C0(∆(A)).
(b) For (x, λ) ∈ A+ one has

Γ+(x, λ)(h̃) = Γ(x)(h) + λ for h ∈ ∆(A),

Γ+(x, λ)(h∞) = λ.

(c) If A is unital, then

ker Γ = rad(A) :=
⋂

{I : I is a maximal ideal in A}.

Hence, Γ is one-to-one (and so it is an isomorphism of the algebras A and Γ(A) = Â) if and only
if rad(A) = {0} (i.e., if and only if A is semisimple).

(d) Γ is one-to-one if and only if Γ+ is one-to-one.
(e) If A is unital, then for each x ∈ A one has x̂(∆(A)) = σ(x).
(f) If A has no unit, then for each x ∈ A one has σ(x) = x̂(∆(A)) ∪ {0}.
(g) ‖x̂‖ = r(x) for each x ∈ A.
(h) Γ is a continuous homomorphism, one has ‖Γ‖ ≤ 1.
(i) Γ is a topological isomorphism of the algebras A and Γ(A) if and only if it is one-to-one (see

(c,d)) and Â = Γ(A) is closed.
(j) Γ(A) separates points of ∆(A).


