
IX. Operators on a Hilbert space

Convention. In this chapter we consider the Banach spaces over the complex field (unless the converse is explicitly
stated). In particular, the Hilbert spaces we deal with are the complex ones.

IX.1 Various types of operators and their properties

Reminder: Let H and K be Hilbert spaces.

(1) By L(H,K) we denote the Banach space of all the bounded linear operators T : H → K equipped with the
operator norm. L(H) is a shortcut for L(H,H).

(2) For any T ∈ L(H,K) there is a unique operator T ∗ ∈ L(K,H), called the adjoint of T satisfying
〈Tx, y〉K = 〈x, T ∗y〉H for x ∈ H and y ∈ K.

(3) The mapping T 7→ T ∗ is an involution on L(H) it turns L(H) to be a C∗-algebra. Thus the notions and the
results from Chapter VIII could be applied to L(H). This applies, in particular, to the notions of spectrum,
spectral radius, resolvent set, resolvent function, holomorphic functional calculus, self-adjoint, normal and
unitary elements and continuous functional calculus for normal elements.

(4) For x, y ∈ H the following polarization identity holds:

〈x, y〉 = 1

4

(

‖x+ y‖2 − ‖x− y‖2 + i ‖x+ iy‖2 − i ‖x− iy‖2
)

.

Definition. Let H and K be Hilbert spaces. An operator T ∈ L(H,K) is called unitary if T ∗ = T−1, i.e., if
T ∗T = IH and TT ∗ = IK .

Proposition 1 (a characterization of unitary operators). Let H and K be Hilbert spaces and T ∈ L(H,K).
Consider the following assertions:

(i) T is unitary.
(ii) T is an isometry of H onto K.
(iii) T is an isometry of H into K.
(iv) 〈Tx, T y〉K = 〈x, y〉H for x, y ∈ H .

Then (i)⇔ (ii)⇒ (iii)⇔ (iv). If T is assumed to be onto, all the assertions are equivalent.
Definition. Let X be a Banach space, T ∈ L(X) and λ ∈ σ(T ).

• We say that λ is an eigenvalue of T if λI −T is not one-to-one, i.e., whenever there is x ∈ X \ {o} such that
Tx = λx (then x is an eigenvector associated to λ). The set of all the eigenvalues is called the point spectrum
of T and is denoted by σp(T ).

• We say that λ is an approximate eigenvalue of T if there is a sequence of vectors (xn) of norm one such that
(λI − T )xn → o. The set of all the approximate eigenvalues is called the approximate point spectrum of T
and is denoted by σap(T ).

• We say that λ belongs to the continuous spectrum σc(T ) if λI − T is one-to-one, has dense range but is not
onto.

• We say that λ belongs to the residual spectrum σr(T ) (also called compression spectrum) if λI − T is one to
one and its range is not dense.

Proposition 2 (on subsets of the spectrum). Let X be a Banach space and T ∈ L(X). Then the following
assertions hold:

(a) σp(T ) ⊂ σap(T ).
(b) λ ∈ C \ σap(T ) if and only if λI − T is an isomorphism of X into X .
(c) σ(T ) = σap(T ) ∪ σr(T ).
(d) σc(T ) = σap(T ) \ (σp(T ) ∪ σr(T ))) = σ(T ) \ (σp(T ) ∪ σr(T )).
(e) λ ∈ σr(T ) \ σap(T ) if and only if λI − T is an isomorphism of X onto a proper closed subspace of X .

Definition. Let H be a Hilbert space and T ∈ L(H).

• The numerical range of T is the set W (T ) = {〈Tx, x〉 ;x ∈ H, ‖x‖ = 1}.
• The numerical radius of T is defined by w(T ) = sup{|λ| ;λ ∈ W (T )} = sup{|〈Tx, x〉| ;x ∈ H, ‖x‖ = 1}.

Lemma 3 (polarization formula for an operator). Let H be a Hilbert space and T ∈ L(H). For each x, y ∈ H

the following formula holds:

〈Tx, y〉 = 1
4
(〈T (x+ y), x+ y〉 − 〈T (x− y), x− y〉+ i 〈T (x+ iy), x+ iy〉 − i 〈T (x− iy), x− iy〉)



Proposition 4 (properties of the numerical radius). Let H be a Hilbert space.

(a) The numerical radius w is an equivalent norm on L(H) satisfying 1
2
‖T ‖ ≤ w(T ) ≤ ‖T ‖ for T ∈ L(H).

(b) If T ∈ L(H) satisfies 〈Tx, x〉 = 0 for all x ∈ H , then T = 0.
(c) If S, T ∈ L(H) satisfy 〈Tx, x〉 = 〈Sx, x〉 for all x ∈ H , then S = T .
(d) W (T ) is a connected subset of C for T ∈ L(H).

(e) σp(T ) ⊂ W (T ) and σ(T ) ⊂ W (T ) for T ∈ L(H).
(f) w(T ) ≥ r(T ) for T ∈ L(H).

Proposition 5 (structure of normal operators). Let H be a Hilbert space and T ∈ L(H). The operator T is
normal if and only if ‖Tx‖ = ‖T ∗x‖ for each x ∈ H . If T is normal, then the following assertions hold.

(a) kerT = kerT ∗ and kerT = (R(T ))⊥.
(b) R(T ) is dense if and only if T is one-to-one. Hence, σr(T ) = ∅ and σ(T ) = σap(T ).

(c) If λ ∈ C and x ∈ H then Tx = λx if and only if T ∗x = λx. In particular, σp(T
∗) = {λ;λ ∈ σp(T )}.

(d) If λ1, λ2 ∈ σp(T ) are distinct, then ker(λ1I − T ) ⊥ ker(λ2I − T ).

Proposition 6 (characterization of orthogonal projections). Let H be a Hilbert space and let P ∈ L(H) be a
projection (i.e., P 2 = P ). The following assertions are equivalent:

(i) P is an orthogonal projection, i.e., kerP ⊥ R(P ).
(ii) P is self-adjoint.
(iii) P is normal.

(iv) 〈Px, x〉 = ‖Px‖2 for x ∈ H .
(v) 〈Px, x〉 ≥ 0 for x ∈ H .
(vi) ‖P‖ ≤ 1.

Moreover, if P,Q ∈ L(H) are two orthogonal projections, then R(P ) ⊥ R(Q) if and only if PQ = 0. In this case P
and Q are called mutually orthogonal.

Proposition 7 (spectrum of a self-adjoint operator). Let H be a Hilbert space and T ∈ L(H).

(a) T is self-adjoint if and only if W (T ) ⊂ R.
(b) Suppose that T is self-adjoint and set a = infW (T ) and b = supW (T ). Then σ(T ) ⊂ [a, b], a, b ∈ σ(T ),

‖T ‖ = max{|a| , |b|} and σ(T ) contains one of the numbers ‖T ‖, −‖T ‖.
(c) W (T ) ⊂ [0,∞) if and only if T is self-adjoint and σ(T ) ⊂ [0,∞).

Remarks and definitions.

(1) Operators satisfying the two equivalent conditions from Proposition 7(c) are called positive.
(2) T ∗T is a positive operator for any T ∈ L(H).

(3) If T ∈ L(H), we define |T | =
√
T ∗T (i.e., we apply the continuous function t 7→

√
t to the positive operator

T ∗T ).
(4) If T is normal, then the operator |T | defined above coincides with the operator obtained by applying the
continuous function λ 7→ |λ| to the operator T . If T is not normal, then |T | 6= |T ∗|.

(5) An operator U ∈ L(H) is said to be a partial isometry if there is a closed subspace H1 ⊂ H such that U |H1
is an isometry of H1 into H and U |H⊥

1

= 0.

Theorem 8 (polar decomposition). Let H be a Hilbert space and T ∈ L(H). Then there is a unique partial
isometry U ∈ L(H) such that T = U |T | and U = 0 on R(|T |)⊥.
Moreover, U∗ is also a partial isometry and |T | = U∗T and U∗ = 0 on R(T )⊥.

Theorem 9 (Hilbert-Schmidt). Let H be a Hilbert space and T ∈ L(H) be a compact normal operator. Then
there is an orthonormal basis of H consisting of eigenvectors of T . Moreover, if T 6= 0, then there exist an
orthonormal system (xk)k∈N and nonzero complex numbers (λk)k∈N , where either N = N or N = {1, 2, . . . ,m}
for some m ∈ N, such that

Tx =
∑

k∈N λk 〈x, xk〉xk, x ∈ H.

Proposition 10. Let H be an infinite-dimensional Hilbert space. Let T ∈ L(H) be a compact normal operator
represented as in Theorem 9. Then σ(T ) = {0} ∪ {λk; k ∈ N}. If f ∈ C(σ(T )) is arbitrary, then

f̃(T )x = f(0)x+
∑

k∈N (f(λk)− f(0)) 〈x, xk〉xk, x ∈ H.

In particular, f̃(T ) is compact if and only if f(0) = 0.

Theorem 11 (Schmidt representation of compact operators). Let H be a Hilbert space and T ∈ L(H) be a
nonzero compact operator. Then there are orthonormal systems (ek)k∈N , (fk)k∈N and positive numbers (αk)k∈N ,
where either N = N or N = {1, 2, . . . ,m} for some m ∈ N, such that

Tx =
∑

k∈N αk 〈x, ek〉 fk, x ∈ H.


