
IX.2 Measurable calculus and spectral decomposition for normal operators

Proposition 12 (Lax-Milgram). Let H be a Hilbert space and B : H × H → C a mapping satisfying the
following properties.

• x 7→ B(x, y) is linear for each y ∈ H .
• y 7→ B(x, y) is conjugate linear for each x ∈ H .
• ‖B‖ = sup{|B(x, y)| ;x, y ∈ BH} < ∞.

Then there is a unique T ∈ L(H) such that B(x, y) = 〈Tx, y〉 for h, k ∈ H . Moreover, ‖T ‖ = ‖B‖.

Constructing the spectral measure of a normal operator - Step 1. Let H be a Hilbert space and let
T ∈ L(H) be a normal operator. Let f 7→ f̃(T ), f ∈ C(σ(T )), be the continuous functional calculus for T . For any
x, y ∈ H let Ex,y denote the (unique) complex Radon measure on σ(T ) satisfying

〈
f̃(T )x, y

〉
=

∫

σ(T )

f dEx,y, f ∈ C(σ(T )).

Proposition 13 (properties of the measures Ex,y). Using the above notation, the following holds:

(a) x 7→ Ex,y is linear for each y ∈ H .
(b) y 7→ Ex,y is conjugate linear for each x ∈ H .
(c) Ex,x is a non-negative measure for each x ∈ H .
(d) ‖Ex,y‖ ≤ ‖T ‖ · ‖x‖ · ‖y‖ for x, y ∈ H .
(e) Ex,y =

1
4 (Ex+y,x+y − Ex−y,x−y + iEx+iy,x+iy − iEx−iy,x−iy) for x, y ∈ H .

Measurable calculus and the spectral mesure. We use the above notation.

• Denote by A the σ-algebra of all the subsets of σ(T ) which are Ex,y-measurable for each x, y ∈ H . (Recall
that A is Ex,y-measurable if and only if there are Borel sets B,C such that B ⊂ A ⊂ C and |Ex,y| (B \C) =
0.) Then A is the σ-algebra of all the subsets of σ(T ) which are Ex,x-measurable for each x ∈ H .

• Let f : σ(T )→ C be a bounded A-measurable function By f̃(T ) we denote the operator in L(H) satisfying

〈
f̃(T )x, y

〉
=

∫

σ(T )

f dEx,y, x, y ∈ H.

Its existence and uniqueness is provided by Proposition 12. The assignement f 7→ f̃(T ) is called the
measurable calculus for T .

• For A ∈ A set ET (A) = χ̃A(T ). The assignement ET : A 7→ ET (A) is called the spectral measure of T .
• Denote by N the subfamily of A formed by the sets which are |Ex,y|-null for each x, y ∈ H . N is the family
of all the sets which are Ex,x-null for each x ∈ H .

• Denote by L∞(ET ) the space of all the bounded A-measurable functions on σ(T ), where we identify the
functions which are equal everywhere except on a set from N . Equip L∞(ET ) with the norm

‖f‖ = ess sup
λ∈σ(T )

|f(λ)| = inf{c > 0; {λ ∈ σ(T ); f(λ) > c} ∈ N}.

Then L∞(ET ) is a commutative C
∗-algebra (with the pointwise multiplication and the involution defined

as the complex conjugation).

• f̃(T ) is defined exactly for f ∈ L∞(ET ). Moreover, f̃(T ) is then well defined, i.e., f̃(T ) = g̃(T ) whenever
f = g except on a set from N .

Lemma 14 (a consequence of Luzin’s theorem).

(a) Let K be a compact metric space and let µ be a non-negative finite Borel measure on K. Let f : K → C

be a bounded µ-measurable function. Then there is a uniformly bounded sequence (fn) in C(K) such that
fn → f µ-almost everywhere. In particular, there is a bounded Borel function g on σ(T ) such that f = g
µ-almost everywhere.

(g) Let H be a separable Hilbert space and let T ∈ L(H) be a normal operator. Let f ∈ L∞(ET ) Then there
is a uniformly bounded sequence (fn) in C(σ(T )) such that fn → f except on a set from N . In particular,
there exists a bounded Borel function g on σ(T ) such that f = g except on a set form N .
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Theorem 15 (properties of the measurable calculus). Let H be a Hilbert space and T ∈ L(H) be a normal
operator.

(a) f 7→ f̃(T ) is an isometric ∗-isomorphism of L∞(E) into L(H).
(b) If (fn) is a bounded sequence in L∞(E) which pointwise converges to a function f (except on a set from

N ), then f ∈ L∞(E) and, moreover,

〈
f̃n(T )x, y

〉
→

〈
f̃(T )x, y

〉
, x, y ∈ H.

(c) σ(f̃(T )) = ess rng(f) = {λ ∈ C; ∀r > 0 : f−1(U(λ, r)) /∈ N} for f ∈ L∞(E).

(d) f̃(T ) is a normal operator for each f ∈ L∞(E). f̃(T ) is self-adjoint if and only if f is essentially real-valued
(i.e., f(λ) ∈ R except on a set from N ).

(e) g̃(f̃(T )) = g̃ ◦ f(T ) whenever f ∈ L∞(E) and g is continuous on σ(f̃(T )) (see (c)).

(f) If S ∈ L(H) commutes with T , then S commutes with f̃(T ) for each f ∈ L∞(E).

Definition. An abstract spectral measure in a Hilbert space H is a mapping E with the following properties:

(i) The domain of E is a σ-algebra A of subsets of C containing all the Borel sets.
(ii) E(A) is an orthogonal projection on H for each A ∈ A.
(iii) E(∅) = 0, E(C) = I.
(iv) If A ∈ A satisfies E(A) = 0, then B ∈ A (and E(B) = 0) for each B ⊂ A.
(v) E(A ∩B) = E(A)E(B) for A,B ∈ A.
(vi) E(A ∪B) = E(A) + E(B) whenever A,B ∈ A, A ∩B = ∅.
(vii) For each pair x, y ∈ H the mapping Ex,y : A 7→ 〈E(A)x, y〉 is a complex Borel measure on C.

The spectral measure E is called compactly supported if there is a compact set K ⊂ C such that E(C \K) = 0.
Recall that µ is a Borel measure if it is a σ-additive measure defined on a σ-algebra Aµ containing all Borel sets

such that for any A ∈ Aµ there are Borel sets B,C such that B ⊂ A ⊂ C and |µ| (B \ C) = 0.

Lemma 16. If T ∈ L(H) is a normal operator, then ET is a compactly supported abstract spectral measure.

Proposition 17 (integral with respect to an abstract spectral measure). Let E be an abstract spectral measure
defined on a σ-algebra A. Let f : C → C a bounded A-measurable function. Then there is a unique T ∈ L(H) such
that

〈Tx, y〉 =

∫
f dEx,y, x, y ∈ H.

Moreover, ‖T ‖ ≤ ‖f‖
∞
.

Theorem 18. Let E be an abstract spectral measure defined on a σ-algebra A. Define N and L∞(E) in the
same way as above (for ET ). Then the following holds:

(a) The mapping Ψ : f 7→
∫
f dE is an isometric ∗-isomorphism of the C∗-algebra L∞(E) into L(H).

(b) For each f ∈ L∞(E) the operator Ψ(f) is normal. Moreover, Ψ(f) is self-adjoint if and only if f is real-
valued except on a set from N and Ψ(f) is a positive operator if and only if f ≥ 0 except on a set from
N .

(c) ‖Ψ(f)x‖ =
(∫

|f |2 dEx,x

) 1
2

for f ∈ L∞(E) and x ∈ H .

(d) If f ∈ L∞(E) and g ∈ C(σ(Ψ(f))), then Ψ(g ◦ f) = g̃(Ψ(f)).

Lemma 19. Let E be an abstract spectral measure, f ∈ L∞(E) and T =
∫
f dE. Then the spectral measure

ET of T is defined by ET (A) = E(f−1(A)).

Corollary 20 (spectral decomposition of a normal operator). . Let H be a Hilbert space and T ∈ L(H) a normal
operator. Then there is a unique abstract spectral measure such that T =

∫
id dE. Moreover, this is the measure

ET .

Theorem 21. Let H be a Hilbert space and T ∈ L(H) a normal operator. Then there is a nonnegative measure
µ (defined on some measurable space), a unitary operator U : H → L2(µ) and a function g ∈ L∞(µ) such that

Tx = U∗(g · Ux), x ∈ H.

If H is separable, µ can be chosen to be σ-finite.


