V.4 Metrizability of topological vector spaces

Theorem 12 (characterization of metrizable TVS). Let (X, \mathcal{T}) be a HTVS. The following assertions are equivalent:

- (i) X is metrizable (i.e., the topology \mathcal{T} is generated by a metric on X).
- (ii) There exists a translation invariant metric on X generating the topology \mathcal{T} .
- (iii) There exists a countable base of neighborhoods of o in (X, \mathcal{T}) .

Proposition 13. Let (X, \mathcal{T}) be a HTVS which has a countable base of neighborhoods of o. Then there exists a function $p: X \to [0, \infty)$ with the following properties:

- (a) p(o) = 0;
- (b) $\forall x \in X \setminus \{o\} : p(x) > 0;$
- (c) $\forall x \in X \forall \lambda \in \mathbb{F}, |\lambda| \le 1 : p(\lambda x) \le p(x);$
- (d) $\forall x, y \in X : p(x+y) \le p(x) + p(y);$
- (e) $\forall x \in X : \lim_{t \to 0+} p(tx) = 0;$
- (f) $\{ \{x \in X; p(x) < r\}; r > 0 \}$ is a base of neighborhoods of o in X.

Then the formula $\rho(x,y) = p(x-y), x, y \in X$, defines a translation invariant metric on X generating the topology \mathcal{T} .

Remark. Given a vector space X, a function $p: X \to [0, \infty)$ satisfying the conditions (a)–(e) from the previous proposition is called an **F-norm** on X. If p satisfies the conditions (a),(c)–(e), it is called an **F-seminorm**.

Corollary 14. Any HTVS which admits a bounded neighborhood of zero is metrizable.

V.5 Minkowski functionals, seminorms and generating of locally convex topologies

Definition. Let X be a vector space and let $A \subset X$ be an absorbing set. By the **Minkowski functional** of the set A we mean the function defined by the formula

$$p_A(x) = \inf\{\lambda > 0; x \in \lambda A\}, \qquad x \in X.$$

Proposition 15 (basic properties of Minkowski functionals). Let X be a vector space and let $A \subset X$ be an absorbing set.

- $p_A(tx) = tp_A(x)$ where $x \in X$ and t > 0.
- If A is convex, p_A is a sublinear functional.
- If A is absolutely convex, p_A is a seminorm.

Lemma 16. Let X be a TVS and let $A \subset X$ be a convex set. If $x \in \overline{A}$ and $y \in \text{Int } A$, then $\{tx + (1-t)y; t \in [0,1)\} \subset \text{Int } A$.

Proposition 17 (on the Minkowski functional of a convex neighborhood of zero). Let X be a TVS and let $A \subset X$ be a convex neighborhood of o. Then:

- p_A is continuous on X.
- Int $A = \{x \in X; p_A(x) < 1\}.$
- $\overline{A} = \{x \in X; p_A(x) \le 1\}.$
- $p_A = p_{\overline{A}} = p_{\operatorname{Int} A}$.

Corollary 18. Any LCS is completely regular. Any HLCS is Tychonoff.

Remark: It can be shown that even any TVS is completely regular, and hence any HTVS is Tychonoff. The proof of this more general case is more complicated, one can use a generalization of Proposition 13 from Section V.4. The proof that any TVS is regular is easy, it follows from Proposition 3(ii).

Theorem 19 (on the topology generated by a family of seminorms). Let X be a vector space and let \mathcal{P} be a nonempty family of seminorms on X. Then there exists a unique topology \mathcal{T} na X such that (X, \mathcal{T}) is TVS and the familym

$$\left\{ \{x \in X; p_1(x) < c_1, \dots, p_k(x) < c_k\}; p_1, \dots, p_k \in \mathcal{P}, c_1, \dots, c_k > 0 \right\}$$

is a base of neighborhoods of o in (X, \mathcal{T}) . The topology \mathcal{T} is moreover locally convex. The topology \mathcal{T} is Hausdorff if and only if for each $x \in X \setminus \{o\}$ there exists $p \in \mathcal{P}$ such that p(x) > 0.

Definition. The topology \mathcal{T} from Theorem 19 is called the topology generated by the family of seminorms \mathcal{P} .

Theorem 20 (on generating of locally convex topologies). Let (X, \mathcal{T}) be a LCS. Let $\mathcal{P}_{\mathcal{T}}$ be the family of all the continuous seminorms on (X, \mathcal{T}) . Then the topology generated by the family $\mathcal{P}_{\mathcal{T}}$ equals \mathcal{T} .

Proposition 21. Let X be a vector space.

- (1) If p is a seminorm on X, then the set $A = \{x \in X; p(x) < 1\}$ is absolutely convex, absorbing and satisfies $p = p_A$.
- (2) Let p, q be two seminorms on X. Then $p \leq q$ if and only if
- {x ∈ X; p(x) < 1} ⊃ {x ∈ X; q(x) < 1}.
 (3) Let P be a nonempty family of seminorms on X and let T be the topology generated by the family P. Let p be a seminorm on X. Then p is T-continuous if and only if there exist p₁,..., p_k ∈ P and c > 0 such that p ≤ c ⋅ max{p₁,..., p_k}.

Theorem 22 (on metrizability of LCS). Let (X, \mathcal{T}) be a HLCS. The following assertions are equivalent:

- (i) X is metrizable (i.e., the topology \mathcal{T} is generated by a metric on X).
- (ii) There exists a translation invariant metric on X generating the topology \mathcal{T} .
- (iii) There exists a countable base of neighborhoods of o in (X, \mathcal{T}) .
- (iv) The topology \mathcal{T} is generated by a countable family of seminorms.

Theorem 23 (a characterization of normable TVS). Let (X, \mathcal{T}) be a HTVS. Then X is normable (i.e., \mathcal{T} is generated by a norm) if and only if X admits a bounded convex neighborhood of o.

Proposition 24. Let X be a LCS.

- (a) The set $A \subset X$ is bounded if and only if each continuous seminorm p on X is bounded on A. (It is enough to test this condition for a family of seminorms generating the topology of X.)
- (b) Let Y be a LCS and let $L: X \to Y$ be a linear mapping. Then L is continuous if and only if

 $\forall q \text{ a continuous seminorm on } Y \exists p \text{ a continuous seminorm on } X \forall x \in X : q(L(x)) \leq p(x).$

If \mathcal{P} is a family of seminorms generating the topology of X and \mathcal{Q} is a family of seminorms generating the topology of Y, then the continuity of L is equivalent to the condition

 $\forall q \in \mathcal{Q} \exists p_1, \dots, p_k \in \mathcal{P} \exists c > 0 \,\forall x \in X : q(L(x)) \le c \cdot \max\{p_1(x), \dots, p_k(x)\}.$

(c) A net (x_{τ}) converges to $x \in X$ if and only if $p(x_{\tau} - x) \to 0$ for each continuous seminorm p on X. (It is enough to test this condition for a family of seminorms generating the topology of X.)