
V.4 Metrizability of topological vector spaces

Theorem 12 (characterization of metrizable TVS). Let (X,T ) be a HTVS. The following assertions
are equivalent:

(i) X is metrizable (i.e., the topology T is generated by a metric on X).
(ii) There exists a translation invariant metric on X generating the topology T .
(iii) There exists a countable base of neighborhoods of o in (X,T ).

Proposition 13. Let (X,T ) be a HTVS which has a countable base of neighborhoods of o. Then
there exists a function p : X → [0,∞) with the following properties:

(a) p(o) = 0;
(b) ∀x ∈ X \ {o} : p(x) > 0;
(c) ∀x ∈ X∀λ ∈ F, |λ| ≤ 1 : p(λx) ≤ p(x);
(d) ∀x, y ∈ X : p(x+ y) ≤ p(x) + p(y);
(e) ∀x ∈ X : lim

t→0+
p(tx) = 0;

(f)
{

{x ∈ X; p(x) < r}; r > 0
}

is a base of neigborhoods of o in X.

Then the formula ρ(x, y) = p(x − y), x, y ∈ X, defines a translation invariant metric on X generating
the topology T .

Remark. Given a vector space X, a function p : X → [0,∞) satisfying the conditions (a)–(e) from
the previous proposition is called an F-norm on X. If p satisfies the conditions (a),(c)–(e), it is called an
F-seminorm.

Corollary 14. Any HTVS which admits a bounded neighborhood of zero is metrizable.

V.5 Minkowski functionals, seminorms
and generating of locally convex topologies

Definition. Let X be a vector space and let A ⊂ X be an absorbing set. By the Minkowski functional of
the set A we mean the function defined by the formula

pA(x) = inf{λ > 0;x ∈ λA}, x ∈ X.

Proposition 15 (basic properties of Minkowski functionals). Let X be a vector space and let A ⊂ X

be an absorbing set.

• pA(tx) = tpA(x) whever x ∈ X and t > 0.
• If A is convex, pA is a sublinear functional.
• If A is absolutely convex, pA is a seminorm.

Lemma 16. Let X be a TVS and let A ⊂ X be a convex set. If x ∈ A and y ∈ IntA, then
{tx+ (1− t)y; t ∈ [0, 1)} ⊂ IntA.

Proposition 17 (on the Minkowski functional of a convex neighborhood of zero). Let X be a TVS
amd let A ⊂ X be a convex neighborhood of o. Then:

• pA is continuous on X.
• IntA = {x ∈ X; pA(x) < 1}.
• A = {x ∈ X; pA(x) ≤ 1}.
• pA = p

A
= pIntA.

Corollary 18. Any LCS is completely regular. Any HLCS is Tychonoff.

Remark: It can be shown that even any TVS is completely regular, and hence any HTVS is Tychonoff.
The proof of this more general case is more complicated, one can use a generalization of Proposition 13
from Section V.4. The proof that any TVS is regular is easy, it follows from Proposition 3(ii).



Theorem 19 (on the topology generated by a family of seminorms). Let X be a vector space and let
P be a nonempty family of seminorms on X. Then there exists a unique topology T na X such that
(X,T ) is TVS and the familym

{

{x ∈ X; p1(x) < c1, . . . , pk(x) < ck}; p1, . . . , pk ∈ P , c1, . . . , ck > 0
}

is a base of neighborhoods of o in (X,T ). The topology T is moreover locally convex. The topology T
is Hausdorff if and only if for each x ∈ X \ {o} there exists p ∈ P such that p(x) > 0.

Definition. The topology T from Theorem 19 is called the topology generated by the family of seminorms
P .

Theorem 20 (on generating of locally convex topologies). Let (X,T ) be a LCS. Let PT be the family
ofr all the continuous seminorms on (X,T ). Then the topology generated by the family PT equals T .

Proposition 21. Let X be a vector space.

(1) If p is a seminorm on X, then the set A = {x ∈ X; p(x) < 1} is absolutely convex, absorbing and
satisfies p = pA.

(2) Let p, q be two seminorms on X. Then p ≤ q if and only if
{x ∈ X; p(x) < 1} ⊃ {x ∈ X; q(x) < 1}.

(3) Let P be a nonempty family of seminorms onX and let T be the topology generated by the family
P . Let p be a seminorm on X. Then p is T -continuous if and only if there exist p1, . . . , pk ∈ P
and c > 0 such that p ≤ c ·max{p1, . . . , pk}.

Theorem 22 (on metrizability of LCS). Let (X,T ) be a HLCS. The following assertions are equivalent:

(i) X is metrizable (i.e., the topology T is generated by a metric on X).
(ii) There exists a translation invariant metric on X generating the topology T .
(iii) There exists a countable base of neighborhoods of o in (X,T ).
(iv) The topology T is generated by a countable family of seminorms.

Theorem 23 (a characterization of normable TVS). Let (X,T ) be a HTVS. Then X is normable
(i.e., T is generated by a norm) if and only if X admits a bounded convex neigborhood of o.

Proposition 24. Let X be a LCS.

(a) The set A ⊂ X is bounded if and only if each continuous seminorm p on X is bounded on A. (It
is enough to test this condition for a family of seminorms generating the topology of X.)

(b) Let Y be a LCS and let L : X → Y be a linear mapping. Then L is continuous if and only if

∀q a continuous seminorm on Y ∃p a continuous seminorm on X ∀x ∈ X : q(L(x)) ≤ p(x).

If P is a family of seminorms generating the topology of X and Q is a family of seminorms
generating the topology of Y , then the continuity of L is equivalent to the condition

∀q ∈ Q∃p1, . . . , pk ∈ P ∃c > 0 ∀x ∈ X : q(L(x)) ≤ c ·max{p1(x), . . . , pk(x)}.

(c) A net (xτ ) converges to x ∈ X if and only if p(xτ − x) → 0 for each continuous seminorm p on
X. (It is enough to test this condition for a family of seminorms generating the topology of X.)


