V.7 Separation theorems in locally convex spaces

Definition. Let X be a TVS over \mathbb{F} . By X^* we will denote the vector space of all the continuous linear functionals $f: X \to \mathbb{F}$. The space X^* is called **the dual space** (or **the dual**) of X.

Remark: We define X^* to be just a vector space, for the time being we do not equip it with any topology. Later we will consider some natural topologies on X^* .

Theorem 32 (Hahn-Banach extension theorem). Let X be a LCS over \mathbb{F} , $Y \subset X$ and $f \in Y^*$. Then there exists $g \in X^*$ such that $g|_Y = f$.

Remark: The assumption that X is locally convex is essential, the theorem fails in TVS.

Corollary 33 (separation from a subspace). Let X be a LCS, Y a closed subspace of X and $x \in X \setminus Y$. Then there exists $f \in X^*$ such that $f|_Y = 0$ and f(x) = 1.

Corollary 34 (a proof of density using Hahn-Banach theorem). Let X be a LCS and let $Z \subset Y \subset X$. Then Z is dense in Y if and only if

$$\forall f \in X^* : f|_Z = 0 \Rightarrow f|_Y = 0.$$

Theorem 35 (Hahn-Banach separation theorem). Let X be a LCS, let $A, B \subset X$ be nonempty disjoint convex subsets.

(a) If the interior of A is nonempty, there exist $f \in X^* \setminus \{0\}$ and $c \in \mathbb{R}$ such that

$$\forall a \in A \,\forall b \in B : \operatorname{Re} f(a) \le c \le \operatorname{Re} f(b).$$

(b) If A is compact and B is closed, there exist $f \in X^*$ and $c, d \in \mathbb{R}$ such that

 $\forall a \in A \,\forall b \in B : \operatorname{Re} f(a) \le c < d \le \operatorname{Re} f(b).$

Corollary 36. Let X be a LCS, let $A \subset X$ be a nonempty set and let $x \in X$. Then:

(a) $x \in X \setminus \overline{co}A$ if and only if there exists $f \in X^*$ such that

$$\operatorname{Re} f(x) > \sup\{\operatorname{Re} f(a); a \in A\}.$$

(b) $x \in X \setminus \overline{\text{aco}}A$ if and only if there exists $f \in X^*$ such that

$$|f(x)| > \sup\{|f(a)|; a \in A\}.$$