VII. Elements of vector integration

Convention: In this chapter we will use the following notation:

- (M, A) is a fixed measurable space, i.e., M is a nonempty set and A is a σ -algebra of subsets of M.
- (Ω, Σ, μ) is a fixed complete measure space, i.e., Ω is a nonempty set, Σ is a σ -algebra of subsets of Ω and μ is a non-negative σ -additive measure on Σ , which is moreover complete.
- X is a fixed Banach space over \mathbb{F} .

Remarks:

- (1) (Ω, Σ) is a special case of a measurable space. Therefore, whatever is below stated for (M, \mathcal{A}) , can be applied to (Ω, Σ) as well.
- (2) We do not a priori assume that μ is finite or σ -finite, even though these cases are the most important ones.

VII.1 Measurability of vector-valued functions

Definition. Let $f: M \to X$ be a mapping. The function f is said to be

- simple, if its range is a finite set, i.e., if $f = \sum_{j=1}^k x_j \chi_{A_j}$, where $x_1, \ldots, x_k \in X$ and A_1, \ldots, A_k are nonempty pairwise disjoint subsets of M;
- simple measurable, if it can be expressed as above and, moreover, $A_1, \ldots, A_k \in \mathcal{A}$;
- (strongly) A-measurable if there exists a sequence (u_n) of simple measurable functions pointwise converging to f (i.e.m such that $\lim_{n\to\infty} ||u_n(t)-f(t)|| = 0$ for each $t\in M$);
- Borel A-measurable if $f^{-1}(U) \in A$ for each $U \subset X$ open;
- weakly A-measurable, if $\varphi \circ f : M \to \mathbb{F}$ is (Borel) A-measurable for each $\varphi \in X^*$.

Proposition 1.

- (a) Simple functions, simple measurable functions, strongly A-measurable functions and weakly A-measurable functions form vector spaces.
- (b) Let (f_n) be a sequence of functions $f_n: M \to X$ pointwise converging to a function $f: M \to X$. If all the functions f_n are Borel A-measurable (or weakly A-measurable), the same holds for f.
- (c) Let $f: M \to X$ be a function. Then

f strongly A-measurable $\Rightarrow f$ Borel A-measurable $\Rightarrow f$ weakly A-measurable

For simple functions all the mentioned types of measurability coincide.

- (d) If $f: M \to X$ is strongly A-measurable, then f(M) is a separable subset of X.
- (e) If $f: M \to X$ is Borel A-measurable, then $\omega \mapsto ||f(\omega)||$ is a A-measurable (scalar-valued) function.

Remarks:

- (1) Borel A-measurable functions form a vector space if X is separable (by Theorem 3), in general they need not form a vector space.
- (2) The converse implications in (c) fail, see Examples 6.

Lemma 2. Let (f_n) be a sequence of strongly A-measurable functions $f_n : M \to X$ pointwise converging to a function $f : M \to X$. Then f is strongly A-measurable as well.

Theorem 3 (Pettis). Let $f: M \to X$ be a function. The following assertions are equivalent:

- (i) f is strongly A-measurable.
- (ii) f is Borel A-measurable and f(M) is a separable subset of X.
- (iii) f is weakly A-measurable a f(M) is a separable subset of X.

Definition. Let $f: \Omega \to X$ be a mapping. The function f is said to be

- (strongly) μ -measurable if there exists a sequence (u_n) of simple measurable functions $u_n: \Omega \to X$ almost everywhere converging to f (i.e. such that $\lim_{n\to\infty} \|u_n(\omega) f(\omega)\| = 0$ for almost all $\omega \in \Omega$);
- Borel μ -measurable (or weakly μ -measurable), it it is Borel Σ -measurable (or weakly Σ -measurable).

Remarks:

(1) Let $f: \Omega \to X$ be a function. Then

f strongly μ -measurable $\Rightarrow f$ Borel μ -measurable $\Rightarrow f$ weakly μ -measurable

(2) If $f: \Omega \to X$ is (strongly) μ -measurable, then

$$\exists Y \subset\subset X \text{ separable } \exists N \in \Sigma : \mu(N) = 0 \& f(\Omega \setminus N) \subset Y.$$

A function satisfying this condition is called **essentially separably valued**.

Lemma 4. Let (f_n) be a sequence of strongly μ -measurable functions $f_n: M \to X$ almost everywhere converging to a function $f: M \to X$. Then f is strongly μ -measurable as well.

Theorem 5 (Pettis). Let $f: \Omega \to X$ be a function. The following assertions are equivalent:

- (i) f is strongly μ -measurable.
- (ii) f is Borel μ -measurable and essentially separably valued.
- (iii) f is weakly μ -measurable and essentially separably valued.

Examples 6.

(1) Let $\Omega = [0, 1]$, let μ be the Lebesgue measure on [0, 1] and let Σ be the σ -algebra of all the Lebesgue measurable subsets of [0, 1]. Consider the function $f : [0, 1] \to \ell^2([0, 1])$ defined by $f(t) = \mathbf{e}_t$, $t \in [0, 1]$, where \mathbf{e}_t denotes the respective canonical unit vector.

Then f is weakly μ -measurable, but fails to be essentially separably valued, hence it is not strongly μ -measurable. It is neither Borel μ -measurable.

- (2) Let (Ω, Σ, μ) and f be as in (1). Let moreover $h : [0,1] \to [0,\infty)$ be any function. Then the function $h \cdot f$ is weakly μ -measurable as well. Further, for $t \in [0,1]$ one has ||h(t)f(t)|| = h(t). Therefore, if we choose h to be non-measurable, then $g = h \cdot f$ is weakly μ -measurable, but the function $t \mapsto ||g(t)||$ is not measurable.
- (3) Let $\Omega = [0, 1]$, let Σ be the σ -algebra of all the subsets of [0, 1], let μ be the counting measure and let f be as in (1). Then f is Borel μ -measurable, but fails to be essentially separably valued, thus it is not strongly μ -measurable.

Remark: The question, whether for a finite measure μ any Borel μ -measurable function is essentially separably valued (and hence strongly μ -measurable), is more complicated. The answer depends on additional axioms of the set theory.