
VII.2 Integrability of vector-valued functions

Definition.

• Let f : Ω→ X be a simple measurable function of the form f =
∑k

j=1 xjχEj
(where E1, . . . , Ek ∈

Σ are pairwise disjoint and x1, . . . , xk ∈ X). Let E ∈ Σ. We say that f is integrable over E, if for
each j ∈ {1, . . . , k} one has µ(E ∩ Ej) < ∞ or xj = o. By the integral of f over E we mean the
element of X defined by the formula

∫

E

f dµ =
k
∑

j=1

µ(Ej)xj ,

where by convention ∞ · o = o. If f is integrable over Ω, it is called integrable.
• Let f : Ω→ X be strongly µ-measurable. The function f is said to be Bochner integrable if there
exists a sequence (fn) of simple integrable functions such that

lim
n→∞

∫

Ω

‖fn(ω)− f(ω)‖ dµ(ω) = 0,

where the integral is in the Lebesgue sense. By the Bochner integral of f we then mean the element
of X defined by

(B)

∫

Ω

f dµ = lim
n→∞

∫

Ω

fn dµ.

• A function f : Ω→ X is said to be weakly integrable if ϕ ◦ f is integrable (i.e., ϕ ◦ f ∈ L1(µ)) for
each ϕ ∈ X∗.

Proposition 7 (basic properties of the Bochner integral).

(a) Integrable simple functions form a vector space; and the mapping assigning to a simple integrable
function f its integral

∫

Ω
f dµ is linear.

(b) Let f be a simple measurable function. Then f is integrable if and only if the function ω 7→ ‖f(ω)‖
is integrable. In this case

∥

∥

∥

∥

∫

Ω

f dµ

∥

∥

∥

∥

≤

∫

Ω

‖f(ω)‖ dµ(ω).

(c) The limit defining the Bochner integral does exist and does not depend on the choice of the
sequence (fn).

(d) Bochner integrable functions form a vector space; and the mapping assigning to a Bochner inte-
grable function its Bochner integral is linear.

(e) If f : Ω→ X is Bochner integrable, then the function ω 7→ ‖f(ω)‖ is integrable and

∥

∥

∥

∥

(B)

∫

Ω

f dµ

∥

∥

∥

∥

≤

∫

Ω

‖f(ω)‖ dµ(ω).

(f) If f : Ω → X Bochner integrable, then χE · f is Bochner integrable for each E ∈ Σ. (The value
(B)

∫

Ω
χE · f dµ is called the Bochner integral of f over E and it is denoted by (B)

∫

E
f dµ.)

Theorem 8 (a characterization of Bochner integrability). Let f : Ω→ X be a strongly µ-measurable
function. Then f is Bochner integrable if and only if

∫

Ω
‖f(ω)‖ dµ(ω) < ∞.

Theorem 9 (Lebesgue dominated convergence theorem for Bochner integral). Let (fn) be a sequence
of Bochner integrable functions fn : Ω→ X almost everywhere converging to a function f : Ω→ X. Let
g : Ω → R be an integrable function such that for each n ∈ N one has ‖fn(ω)‖ ≤ g(ω) for almost all
ω ∈ Ω. Then f is Bochner integrable and (B)

∫

Ω
f dµ = lim

n→∞

(B)
∫

Ω
fn dµ.



Proposition 10 (absolute continuity of Bochner integral). Let f : Ω → X be Bochner integrable.
Then:

∀ε > 0 ∃δ > 0 ∀E ∈ Σ : µ(E) < δ ⇒

∥

∥

∥

∥

∫

E

f dµ

∥

∥

∥

∥

< ε.

Proposition 11 (weak integral). Let f : Ω→ X be weakly integrable. Then the mapping

F (ϕ) =

∫

Ω

ϕ ◦ f dµ, ϕ ∈ X∗,

is a continuous linear functional on X∗, i.e., F ∈ X∗∗.

Definition, notation and remarks:

(1) The element F ∈ X∗∗ provided by Proposition 11 is called the weak integral (or the Dunford
integral) of f , it is denoted by (D)

∫

Ω
f dµ.

(2) Let f : Ω → X be weakly integrable. Then χE · f is weakly integrable for each E ∈ Σ. The
respective weak integral is denoted by (D)

∫

E
f dµ.

(3) We say that f : Ω→ X is Pettis integrable if
◦ f is weakly integrable and, moreover,
◦ the weak integral (D)

∫

E
f dµ belongs to κ(X) (where κ : X → X∗∗ is the canonical

embedding) for each E ∈ Σ.
The Pettis integral of f over E is then the respective element of X and it is denoted by (P )

∫

E
f dµ.

I.e., for x ∈ X then one has

x = (P )

∫

E

f dµ ⇔ ∀ϕ ∈ X∗ : ϕ(x) =

∫

E

ϕ ◦ f dµ.

Remarks:

(1) In order that f is Pettis integrable, (D)
∫

E
f dµ ∈ κ(X) should hold for each E ∈ Σ. It is not

enough if it is satisfied in case E = Ω.
(2) A weakly integrable function need not be Pettis integrable.
(3) A Pettis integrable function need not be strongly µ-measurable. For example, the function from
Example 6(1) is Pettis integrable, its integral is zero, but it is not essentially separably valued.

(4) Any Bochner integrable function is Pettis integrable (this follows from Proposition 12), the con-
verse implication fails even for pro strongly µ-measurable functions (see Example 13).

Proposition 12 (Bochner integral and a bounded operator). Let f : Ω → X be Bochner integrable,
let Y be a Banach space and let L : X → Y be a bounded linear operator. Then L ◦ f is Bochner
integrable and

(B)

∫

Ω

L ◦ f dµ = L

(

(B)

∫

Ω

f dµ

)

.

Remark: The preceding proposition shows that the Bochner integrability implies the Pettis one and,
moreover, it can be use to compute the Bochner integral of a function: To this end it is necessary to show
that the Bochner integral exists, its value can be then computed using suitable functionals or operators.

Example 13. Let Ω = N, let Σ be the σ-algebra of all the subsets of N, let µ be the counting measure
and let f : Ω→ X. Then:

(a) f is Bochner integrable if and only if the series
∑

n∈N
f(n) is absolutely convergent. The Bochner

integral then equals the sum of the series.
(b) If the series

∑

n∈N
f(n) is unconditionally convergent, then f is Pettis integrable and its Pettis

integral equals the sum of the series.

Remark: In Example 13(b) the converse implication holds as well – if f is Pettis integrable, then the
series

∑

n∈N
f(n) is unconditionally convergent. The proof is more complicated, this statement is the

content of Orlicz-Pettis theorem.


