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PROBLEMS TO CHAPTER V

Problems to Section V.1 – linear topologies and their generation

Problem 1. Let X be a vector space and let A ⊂ X be a nonempty set. Show that A is
convex if and only if (α + β)A = αA+ βA for each α, β > 0.

Problem 2. Let X be a vector space and let T be a topology on X.

(1) Show that T is translation invariant if and only if the addition on X is separately
continuous (i.e. x 7→ x+ y is continuous for each y ∈ X).

(2) Find X and T such that the addition is continuous (in both variables simultane-
ously, as a mapping X ×X → X) but the multiplication is not continuous.

(3) Let T be translation invariant and let there exist a base of neighborhoods of zero
consisting of convex sets. Show that the addition is continuous (in both variables).

(4) Find a topology on R2, in which the addition is separately continuous but not
continuous.

Hint: (2) Consider the discrete topology. (4) Consider, for example, a neighborhood base of

zero made by sets {(0, 0)} ∪ {(x, y); |y| < |x| < r}, r > 0.

Problem 3. Let X be a vector space and let ρ be a translation invariant metric on X.
Show that ρ generates a linear topology on X if and only if

lim
x→o

sup
λ∈F,|λ|≤1

ρ(λx, 0) = 0.

Find a translation invariant metric failing this condition.

Problem 4. Let X be a vector space. Let U be the family of all the absolutely convex
absorbing subsets of X.

(1) Show that U is a base of neighborhoods of zero in a Hausdorff locally convex
topology T on X.

(2) Show that this topology T is the strongest locally convex topology on X.
(3) Show that any convergent sequence in (X, T ) is contained in a finite-dimensional

subspace.

Hint: (3) Suppose it is not the case. Then there exists a linearly independent sequence (xn)

which converges to zero. Complete this sequence to an algebraic basis of X. Describe an absolutely

convex absorbing set, not containing any of the vectors xn.

Problem 5. (1) Let A ⊂ R2 be balanced and absorbing. Show that A + A is a nei-
ghborhood of zero (in the standard topology).

(2) Find a balanced absorbing A ⊂ R2, which is not a neighborhood of zero.
(3) Using the previous two points deduce that the family of all the balanced absorbing

subsets of R2 is not the base of neighborhoods of zero in any linear topology on
R2.
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Hint: (1) Show that A+A contains a rectangle of the form [−a, a]× [−b, b].

Problem 6. (1) Show that the convex hull of a balanced subset of a vector space is
again balanced, and hence absolutely convex.

(2) Show that the balanced hull of a convex set need not be convex.

Hint: (2) Consider a suitable segment in R2.

Problem 7. Let X be the space of all the Lebesgue measurable functions on [0, 1] (with
values in F; we identify the functions, which are equal almost everywhere). For f, g ∈ X
set

ρ(f, g) =

∫ 1

0

min{1, |f − g|}.

(1) Show that ρ is a metric generating a linear topology on X.
(2) Show that the convergence of sequences in the metric ρ coincide with the conver-

gence in measure.
(3) Is the resulting topology locally convex?

Hint: (1) Show that the operations are continuous using the convergence of sequences. (3)

Show that for each r > 0 the convex hull of the set {f ∈ X; ρ(f, 0) < r} is the whole X.

Problem 8. Let X be a TVS and let A ⊂ X be a balanced set with nonemptu interior.

(1) Show that intA is balanced if and only if 0 ∈ intA.
(2) Show on a counterexample that intA need not be balanced.

Problem 9. Let (X, T ) be a TVS and let A ⊂ X be nonempty. Show that

A =
⋂
{A+ U ;U ∈ T (0)}.

Problem 10. Let (X, T ) be a non-Hausdorff TVS.

• Denote Z = {o} =
⋂
T (0). Show that Z is a vector subspace of X.

• Let Y = X/Z be the quotient vector space and let q : X → Y be the cano-
nical quotient mapping. Let R be the quotient topology on Y (i.e., R = {U ⊂
Y ; q−1(U) ∈ T }). Show that (Y,R) is a HTVS.
• Show that (Y,R) is locally convex if and only if (X, T ) is locally convex.

Problems to Section V.2 – bounded sets, continuous linear mappings

Problem 11. Let X be a TVS and let A ⊂ X. Show that A is bounded if and only if
each countable subset of A is bounded.

Problem 12. Let X be a TVS and let A,B ⊂ X be bounded sets. Show that the sets
A ∪B, A+B, A, b(A) are bounded as well.

Problem 13. Let X be a LCS and let A ⊂ X be a bounded set. Show that the sets coA
and acoA are bounded as well.

Problem 14. Let X = Lp([0, 1]) where p ∈ (0, 1). Show that A = {f ∈ X; ‖f‖p < 1} is
a bounded set whose convex hull is not bounded.

Hint: Show that coA = X.

Problem 15. Let X be a normed linear space and A ⊂ X. Show that A is bounded as a
subspace of the TVS X if and only if it is bounded in the metric generated by the norm.



Problem 16. Let X be a TVS whose topology is generated by a translation invariant
metric ρ.

(1) Show that any set A ⊂ X bounded in X is bounded in the metric ρ as well.
(2) Show that a set A ⊂ X bounded in the metric ρ need not be bounded in the TVS

X.

Hint: (2) The metric ρ itself may be bounded.

Problem 17. Consider the space of test functions D(Ω) with the topology from Example
V.5(2). Let Λ : D(Ω) → F be a linear functional. Show that Λ ∈ D ′(Ω) if and only if Λ
is continuous.

Problem 18. Consider the space (X, T ) from Problem 4. Show that any linear functional
L : X → F is continuous.

Problem 19. Let X = FΓ and let A ⊂ X. Show that A is bounded in X if and only if it
is

”
pointwise bounded“, i.e., if and only if the set {x(γ);x ∈ A} is bounded in F for each

γ ∈ Γ.

Problem 20. Let X = C([0, 1]) equipped with the topology of pointwise convergence, let
Y = C([0, 1]) equipped with the topology generated by the metric ρ from Problem 7 and
let L : X → Y be the identity mapping.

(1) Show that L maps bounded sets to bounded sets.
(2) Show that L is sequentially continuous (i.e., fn → f in X implies Lfn → Lf in

Y ).
(3) Show that L is not continuous.

Hint: (1) Let A ⊂ X be bounded. For n ∈ N set Fn = {x ∈ [0, 1]; ∀f ∈ A : |f(x)| ≤ n}. Show

that Fn are closed subsets of [0, 1], whose union is the whole interval [0, 1]. For ε > 0 choose

n ∈ N such that λ([0, 1] \ Fn) < ε
2 ; and m > n such that n

m < ε
2 . Show that then L(A) ⊂ m{g ∈

Y ; ρ(g, 0) < ε}. Deduce the boundedness of L(A) in Y . (2) Use Lebesgue dominated convergence

theorem. (3) Let U = {f ∈ Y ; ρ(f, 0) < 1
2}. Then U is a neighborhood of zero in Y . Show that

L−1(U) is not a neighborhood of zero in X. (For any finite F ⊂ [0, 1] find f ∈ C([0, 1]) such that

f |F = 0 but f = 1 on a set of measure at least 1
2 .)

Problem 21. Let X be a TVS and let (xn) be a sequence of elements of X. Show that the
sequence (xn) is bounded in X if and only if for any sequence (λn) in F one has λn → 0
⇒ λnxn → o.

Problem 22. Let X be a metrizable TVS and let (xn) be a sequence of elements of X.
Show that there exists a sequence of strictly positive numbers (λn) such that λnxn → o.

Hint: Let ρ be a metric generating the topology on X. Show and then use that lim
t→0+

ρ(o, tx) = 0

for each x ∈ X.

Problem 23. Is the assertion from Problem 22 true also for non-metrizable TVS?

Hint: Consider the space from Problem 4.

Problem 24. Let X be a TVS, whose topology is generated by a translation invariant
metric ρ. Let (xn) be a sequence of elements X converging to zero. Show that there exists
a sequence of positive numbers (λn) such that λn →∞ and λnxn → o.

Hint: By the translation invariance of ρ it follows ρ(o, nx) ≤ nρ(o, x) for x ∈ X and n ∈ N.



Problem 25. Is the assertion from the previous problem valid for a general TVS?

Hint: Consider, e.g., X = c0 or X = `p for p ∈ (1,∞) with the weak topology (see Section

VI.1), let (xn) be the sequence of canonical unit vectors.

Problems to Section V.3 – finite-dimensional and infinite-dimensional
spaces

Problem 26. Show that any finite-dimensional TVS is locally convex.

Hint: For a Hausdorff space use Proposition V.9. For the general case use Problem 10.

Problem 27. Let X be a vector space of infinite dimension. Show that on X there exists
a Hausdorff linear topology, which is not locally convex.

Hint: Let (ej)j∈J be an algebraic basis of X. Choose p ∈ (0, 1) and define a metric on X by

ρ(
∑
ajej ,

∑
bjej) =

∑
|aj − bj |p.

Problem 28. Let X be a metrizable TVS of infinite dimension. Show that there exists
a discontinuous linear functional on X.

Hint: Use an algebraic basis of X and Problem 22.

Problem 29. Is there a a discontinuous linear functional on each infinite-dimensional
HTVS (or HLCS)?

Hint: Use Problem 18.

Problems to Section V.4 – metrizability of TVS

Problem 30. Let X be a vector space over F and let p : X → [0,∞) be an F -norm on
X.

(1) Show that the formula ρ(x, y) = p(x− y) defines a translation invariant metric on
X, which generates a linear topology na X.

(2) Show that the family
{
{x ∈ X; p(x) < 1

n
};n ∈ N

}
is a base of neighborhoods of

zero in this topology.

Problem 31. Let X be a vector space over F and let q : X → [0,∞) be a quasinorm
on X, i.e., a mapping with the following properties:

• ∀x ∈ X : q(x) = 0⇔ x = o;
• ∀x ∈ X ∀λ ∈ F : q(λx) = |λ| q(x);
• ∃C ≥ 1 ∀x, y ∈ X : q(x+ y) ≤ C(q(x) + q(y)).

(1) Show that the family
{
{x ∈ X; q(x) < r}; r ∈ (0,∞)

}
is a base of neighborhoods

of zero in a linear topology on X.
(2) Show that this topology is metrizable.
(3) Show that xn → x in this topology if and only if q(xn − x)→ 0.

Hint: (2) Show that there exists a countable base of neighborhoods of zero.

Problem 32. Let X be a vector space over F, let q : X → [0,∞) be an F-norm on X
and let p ∈ (0, 1). We say thate q is a p-norm, if q(λx) = |λ|p q(x) for each x ∈ X and
λ ∈ F.

(1) Show that the function f 7→ ‖f‖p is a p-norm on Lp(µ).



(2) Show that the function f 7→ (‖f‖p)1/p is a quasinorm on Lp(µ).

(3) Let q be a p-norm on X. Show that q1/p is a quasinorm on X and estimate C.

Hint: (2) is a special case of (3). Set α = 1
p . By analysing monotonicity of a suitabale function

show that aα + bα ≤ (a+ b)α ≤ 2α−1(aα + bα) whenever a, b ≥ 0.

Problem 33. Let X be a TVS and let p be an F -seminorm on X. Show that p is
continuous if and only if it is continous at zero.

Problem 34. Let X be a TVS and let U be a neigborhood of zero. Show that there
exists a continuous F -seminorm p on X such that {x ∈ X; p(x) < 1} ⊂ U .

Hint: Let (Vn) be sequence of balanced neighborhoods of zero satisfying V1 + V1 ⊂ U and

Vn+1 + Vn+1 ⊂ Vn for n ∈ N . Apply the construction from the proof of Proposition V.14 to this

sequence.

Problem 35. Using the previous problem show that any TVS is completely regular.

Problems to Section V.5 – seminorms, Minkowski functionals,
F-seminorms

Problem 36. On a counterexample show that the Minkowski functional of a balanced
neighborhood of zero need not be continuous.

Hint: It may happen that there is x ∈ X and numbers 0 < a < b such that the segment {tx; t ∈
[a, b]} is contained in the boundary of a given balanced neighborhood of zero. A counterexample

may be constructed already in R2.

Problem 37. Let X be a TVS, let A ⊂ X be a balanced neighborhood of zero and pA
its Minkowski functional. Show that the following three conditions are equivalent:

(i) pA is continuous on X;
(ii) For each x ∈ A one has {tx; t ∈ [0, 1)} ⊂ intA;

(iii) intA = {x ∈ X; pA(x) < 1} & A = {x ∈ X; pA(x) ≤ 1}.

Problem 38. Let X be a TVS, let A ⊂ X be a subset containing the origin and let
p ∈ (0, 1). We say that the set A is p-convex if

∀x, y ∈ A ∀s, t ∈ [0, 1] : sp + tp = 1⇒ sx+ ty ∈ A.
(1) Let A be p-convex, let x1, . . . , xn ∈ A and let t1, . . . , tn ∈ [0, 1] satisfy tp1+· · ·+tpn =

1. Show that t1x1 + · · ·+ tnxn ∈ A.
(2) Let 0 < p < q < 1. Show that

A convex⇒ A q-convex⇒ A p-convex.

(3) On an example demonstrate that a p-convex set need not be convex.
(4) Let A be a p-convex neighborhood of zero. Show that its Minkowski functional is

continuous.

Hint: (1) Use the mathematical induction. (2) Use that 0 ∈ A. (3) Consider for example the

set {f ∈ Lp([0, 1]); ‖f‖p < 1}. (4) Use the characterization from the previous problem.

Problem 39. Show that the topology from Problem 4 is generated by the family of all
the seminorms on X.

Problem 40. Let X be a vector space and let P be a family of F-seminorms na X.



(1) Show that the family{
{x ∈ X; p1(x) < c1, . . . , pk(x) < ck}; p1, . . . , pk ∈ P , c1, . . . , ck > 0

}
forms a base of neighborhoods of zero in a linear topology on X.

(2) Show that the F-seminorms from P are continuous in this topology.
(3) Show that this topology is Hausdorff if and only if for each x ∈ X \ {o} there

exists p ∈ P such that p(x) > 0.

Problem 41. Let (X, T ) be a TVS. Let P be the family of all the continuous F-seminorms
on X. Show that the topology generated by the family P in the sense of Problem 40 equals
T .

Hint: Use Problem 34.

Problem 42. Let X be a vector space. Show that on X there exists the strongest linear
topology and that this topology is Hausdorff.

Hint: Apply the construction from Problem 40 to the family of all the F-seminorms on X.

Problem 43. Let X be a vector space of countable algebraic dimension. Show that the
strongest linear topology on X is locally convex.

Hint: Let T be the topology from Problem 4. Show that each F-seminorm on X is continuous

in T : Let p be an F -seminorm on X and let (en) be an algebraic basis. For each ε > 0 show that

there is (tn), a sequence of strictly positive numbers such that aco {tnen;n ∈ N} ⊂ {x; p(x) < ε}.

Problem 44. Let X be vector space of uncountable algebraic dimension. Show that the
strongest linear topology on X is not locally convex.

Hint: Show that the F-seminorm defined as in the Problem 27 is not continuous in the topology

from Problem 4.

Problems to Section V.6 - F-spaces, Fréchet spaces, totally bounded sets

Problem 45. Let X be a TVS and let A,B ⊂ X be totally bounded subsets. Show that
the sets A ∪B, A+B, A, b(A) are totally bounded as well.

Problem 46. Let X be a TVS, whose topology is generated by a translation invariant
metric ρ. Show that a set A ⊂ X is totally bounded in the TVS X if and only if it is
totally bounded in the metric ρ.

Problem 47. On a counterexample show that in an F -space which is not locally convex,
the closed convex hull of a compact set need not be compact.

Hint: A counterexample may be constructed for example in Lp([0, 1]) for p ∈ (0, 1): Choose

strictly positive numbers ε, η and δ such that p < 1
1+ε , η

ε < p, δ < ε and η
ε−δ < p. For

n ∈ N set xn = 1
n1+η , fn = n1+εχ(xn+1,xn) and tn = 1

n1+δ . Show that fn → 0 in Lp([0, 1]), and

so {0, f1, f2, f3, . . . } is a compact set. Further show, using the elements t1f1+···+tnfn
t1+···+tn , that the

convex hull of the mentioned compact set is an ubbounded set in Lp([0, 1]).



Problems to Section V.7 – separation theorems

Problem 48. Let X = Lp([0, 1]) where p ∈ (0, 1). Show that X∗ = {0}.

Hint: Show that the only two convex open sets in X are ∅ and X.

Problem 49. Let X = `p where p ∈ (0, 1). Show that for each sequence x = (xn) ∈ `∞
the formula

ϕx(y) =
∞∑
n=1

xnyn, y = (yn) ∈ `p,

defines a continuous linear fuctional on `p. Show that the mapping x 7→ ϕx is a linear
bijection of `∞ onto X∗.

Problem 50. Let p ∈ (0, 1). Show that `p is isomorphic (even linearly isometric) to a
subspace of Lp([0, 1]). Using the two previous problems demonstrate on a counterexample
that a continous linear functional on a subspace of a TVS need not admit a continous
linear extension to the whole space.

Problem 51. Let X be a normed linear space of infinite dimension. Show that in X there
exist two disjoint convex sets which are dense in X (and hence they cannot be separated
by a nonzero element of X∗).

Hint: Use the existence of a discontinuous linear functional.

Problem 52. Let X = C([0, 1]) be equipped with the L2-norm (i.e., ‖f‖ =
(∫ 1

0
|f |2
)1/2

).

For α ∈ R define Yα = {f ∈ X; f(0) = α}. Show that (Yα;α ∈ R) is a pairwise disjoint
family if dense convex sets. Show that for α 6= β the sets Yα and Yβ cannot be separated
by a nonzero element of X∗.

Problem 53. Let X = c0 or X = `p for some p ∈ [1,∞) (consider the real version of
these spaces). Let x = (xn) ∈ X be an element with all the coordinates strictly positive
and let y = (xn

n
) ∈ X. Set

A = {z = (zn) ∈ X;∀n ∈ N : zn ≥ 0}, B = {−x + ty; t ∈ R}.
Show that A and B are disjoint closed subsets of X, which cannot be separated by a
nonzero element of X∗.

Hint: Proceed by contradiction: Let f ∈ X∗ \ {0} satisfy sup f(B) ≤ inf f(A). Show that

necessarily f ≥ 0 on A and inf f(A) = 0. The funkcional f can be represented by an appropriate

sequence (by an element of `1 or `q where 1
p +

1
q = 1), show that all the entries of this sequence

have to be non-negative. By the assumption inf f(B) ≤ 0 deduce f(y) = 0, hence f = 0, a

contradiction.


