FUNCTIONAL ANALYSIS 1

WINTER SEMESTER 2016/2017
PROBLEMS TO CHAPTER VIII

Problems to Section VIII. 1 - examples of Banach algebras, invertible ELEMENTS

Problem 1. Let $A=\left(\mathbb{C}^{n},\|\cdot\|_{\infty}\right)$, where $n \geq 2$.
(1) Define multiplication on A by

$$
\left(x_{1}, x_{2} \ldots, x_{n}\right) \cdot\left(y_{1}, y_{2} \ldots, y_{n}\right)=\left(x_{1} y_{1}, x_{1} y_{2}, \ldots, x_{1} y_{n}\right) .
$$

Show that A equipped with this mutliplication is a Banach algebra and that A has many left units but no right unit.
(2) Define multiplication on A by

$$
\left(x_{1}, x_{2} \ldots, x_{n}\right) \cdot\left(y_{1}, y_{2} \ldots, y_{n}\right)=\left(x_{1} y_{1}, x_{2} y_{1}, \ldots, x_{2} y_{1}\right)
$$

Show that A equipped with this mutliplication is a Banach algebra and that A has many right units but no leftt unit.
Problem 2. Let $A=\left(\mathbb{C}^{n},\|\cdot\|_{p}\right)$, where $p \in[1, \infty]$ and $n \geq 2$. Equip A with the coordinatewise multiplication, i.e.,

$$
\left(x_{1}, x_{2} \ldots, x_{n}\right) \cdot\left(y_{1}, y_{2} \ldots, y_{n}\right)=\left(x_{1} y_{1}, x_{2} y_{2}, \ldots, x_{2} y_{n}\right) .
$$

(1) Show that A is a unital Banach algebra and find its unit.
(2) Show that the unit has norm one if and only if $p=\infty$.
(3) Apply on A the renorming from Proposition VIII. 3 and show, that the new norm is just $\|\cdot\|_{\infty}$.

Problem 3. Let $A=\ell^{p}(\Gamma)$, where $p \in[1, \infty)$ and Γ is an infinite set. Equip A with the pointwise multiplication. Show that A is a Banach algebra with no unit.

Problem 4. Let M_{n} be the algebra of complex $n \times n$-matrices equipped with the matrix multiplication. Recall that any $n \times n$-matrix represents a linear mapping $\mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ and that the matrix multiplication corresponds to composition of linear mappings.
(1) Fix $p \in[1, \infty]$ and equip M_{n} with the operator norm coming from $L\left(\left(\mathbb{C}^{n},\|\cdot\|_{p}\right)\right)$. Show that M_{n} is then a unital Banach algebra and that the unit has norm one.
(2) Show that for $p_{1} \neq p_{2}$ the two norms defined in (1) are equivalent but different whenever $n \geq 2$.

Problem 5. Let M_{n} be the algebra of complex $n \times n$-matrices equipped with the matrix multiplication. Equip M_{n} with the norm

$$
\left\|\left(a_{i j}\right)_{i, j=1, \ldots, n}\right\|=\sum_{i, j=1}^{n}\left|a_{i j}\right| .
$$

Show that M_{n} equipped with this norm is a unital Banach algebra and its unit has norm greater than 1 (whenever $n \geq 2$).

Problem 6. Let X be any nontrivial Banach space. Define on X the trivial multiplication, i.e., $x \cdot y=\boldsymbol{o}$ for $x, y \in X$.
(1) Show that X is a Banach algebra with no unit.
(2) Describe the unital algebra X^{+}.
(3) Find a subalgebra of the matrix algebra M_{n} (where $n \geq 2$) isomorphic with such a trivial algebra.
Problem 7. Let A_{1}, \ldots, A_{n} be Banach algebras and let $p \in[1, \infty]$. Consider the vector space $A=A_{1} \times A_{2} \times \cdots \times A_{n}$, where the norm and multiplication are defined by

$$
\begin{gathered}
\left\|\left(a_{1}, \ldots, a_{n}\right)\right\|=\left\|\left(\left\|a_{1}\right\|, \ldots,\left\|a_{n}\right\|\right)\right\|_{p} \\
\left(a_{1}, \ldots, a_{n}\right) \cdot\left(b_{1}, \ldots, b_{n}\right)=\left(a_{1} b_{1}, \ldots, a_{n} b_{n}\right) .
\end{gathered}
$$

(1) Show that A is a Banach algebra.
(2) Show that A is unital if and only if A_{1}, \ldots, A_{n} are unital.

Problem 8. Let K be a compact Hausdorff space and let A be a Banach algebra. Let $\mathcal{C}(K, A)$ be the vector space of all the continuous mappings $f: K \rightarrow A$. Equip $\mathcal{C}(K, A)$ with the norm and with the multiplication given by

$$
\begin{aligned}
\|f\| & =\sup \{\|f(t)\| ; t \in K\}, \quad f \in \mathcal{C}(K, A), \\
(f \cdot g)(t) & =f(t) \cdot g(t), \quad t \in K, \quad f, g \in \mathcal{C}(K, A) .
\end{aligned}
$$

(1) Show that $\mathcal{C}(K, A)$ is a Banach algebra.
(2) Show that $\mathcal{C}(K, A)$ is unital if and only if A is unital and find the unit.
(3) Show that $\mathcal{C}(K, A)$ is commutative if and only if A is commutative.

Problem 9. Let $(G,+)$ be a commutative group. Equip the Banach space $\ell^{1}(G)$ with the multiplication $*$ defined by

$$
(f * g)(x)=\sum_{y \in G} f(y) g(x-y), \quad f, g \in \ell^{1}(G)
$$

Show that $\ell^{1}(G)$ is then a unital commutative Banach algebra and find its unit.
Problem 10. Let (G, \cdot) be a non-commutative group. Equip the Banach space $\ell^{1}(G)$ with the multiplication $*$ defined by

$$
(f * g)(x)=\sum_{y \in G} f(y) g\left(y^{-1} x\right), \quad f, g \in \ell^{1}(G)
$$

Show that $\ell^{1}(G)$ is then a unital non-commutative Banach algebra and find its unit.
Problem 11. Let $(G,+)$ be a commutative compact topological group. (I.e., $(G,+)$ is a commutative group equipped with a Hausdorff topology in which the operations $(x, y) \mapsto x+y$ and $x \mapsto-x$ are continuous, which is moreover compact in this topology.) Let $\mathcal{M}(G)$ be the space of all the complex Radon measures on G, equipped with the total variation norm and with the multiplication $*$ defined by

$$
(\mu * \nu)(A)=(\mu \times \nu)(\{(x, y) \in G \times G ; x+y \in A\})
$$

where $\mu \times \nu$ denotes the respective product measure. Show that $\mathcal{M}(G)$ is then a unital commutative Banach algebra and find its unit.

Problem 12. Let (G, \cdot) be a non-commutative compact topological group. (I.e., (G, \cdot) is a non-commutative group equipped with a Hausdorff topology in which the operations $(x, y) \mapsto x \cdot y$ and $x \mapsto x^{-1}$ are continuous, which is moreover compact in this topology.) Let $\mathcal{M}(G)$ be the space of all the complex Radon measures on G, equipped with the total variation norm and with the multiplication $*$ defined by

$$
(\mu * \nu)(A)=(\mu \times \nu)(\{(x, y) \in G \times G ; x \cdot y \in A\}),
$$

where $\mu \times \nu$ denotes the respective product measure. Show that $\mathcal{M}(G)$ is then a unital non-commutative Banach algebra and find its unit.

Problem 13. Let T be a non-compact locally compact space and $A=\mathcal{C}_{0}(T)$. Let $B=$ span $(A \cup\{1\})$ as a subalgebra of $\ell^{\infty}(T)$. Show that B is (algebraically) isomorphic to A^{+}, but not isometric.

Problem 14. Let X be an infinite-dimensional Banach space and let $A=K(X)$ be the Banach algebra of compact operators on X. Let $B=\operatorname{span}(A \cup\{I\})$ as a subalgebra of $L(X)$. Show that B is (algebraically) isomorphic to A^{+}, but not isometric.
Problem 15. Show that in the matrix algebra M_{n} an element has a right inverse if and only if it has a left inverse.
Problem 16. Let $A=L\left(\ell^{2}\right)$. Define two operators $S, T \in A$ by

$$
S\left(x_{1}, x_{2}, \ldots\right)=\left(x_{2}, x_{3}, \ldots\right) \quad \text { and } \quad T\left(x_{1}, x_{2}, \ldots\right)=\left(0, x_{1}, x_{2}, \ldots\right) .
$$

(1) Show that S and T are not invertible.
(2) Show that S has a right inverse and describe all its right inverses.
(3) Show that T has a left inverse and describe all its left inverses.

Problem 17. Let $G=\left(\mathbb{Z}_{n},+\right)$ where $\mathbb{Z}_{n}=\{0,1, \ldots, n-1\}$ equipped with the addition modulo n. Let $A=\ell^{1}(G)$ be the Banach algebra described in Problem 9.
(1) Represent A as a subalgebra of the matrix algebra M_{n} (with an appropriate norm).
(2) For $n=2$ and $n=3$ explicitly characterize invertible elements in A.

Problem 18. Let A be a Banach algebra. Define on A a new multiplication \odot by

$$
x \odot y=y \cdot x, \quad x, y \in A .
$$

(1) Show that $A^{o p}=(A, \odot)$ is a Banach algebra.
(2) Show that $A^{o p}$ need not be (algebraically) isomorphic to A.
(3) Let X be a reflexive Banach space. Show that $L(X)^{o p}$ is isometrically isomorphic to $L\left(X^{*}\right)$.
(4) Let H be a Hilbert space. Show that $L(H)^{o p}$ is isometrically isomorphic to $L(H)$.

Hint: (2) Use Problem 1.

Problems to Section VIII. 2 - Spectrum and its properties

Problem 19. Let $A=\mathcal{C}(K)$ for a compact Hausdorff space K and let $f \in A$.
(1) Show that $\sigma(f)=f(K)$.
(2) Compute the resolvent function of f.

Problem 20. Let $A=\mathcal{C}_{0}(T)$ for a noncompact locally compact space T.
(1) Show that $\sigma(f)=f(T) \cup\{0\}$ for each $f \in A$.
(2) Suppose that T is not σ-compact. Show that $\sigma(f)=f(T)$ for each $f \in A$.
(3) In case $T=\mathbb{R}$ find an example of $f \in A$ with $f(T) \varsubsetneqq \sigma(f)$.

Problem 21. Let $A=\ell^{1}\left(\mathbb{Z}_{n}\right)$ (see Problem 17) and $x \in A$.
(1) Characterize $\sigma(x)$ as the set of eigenvalues of certain matrix.
(2) For $n=2,3$ compute $\sigma(x)$ and the resolvent function explicitly.

Problem 22. Let $\mathbb{T}=\{z \in \mathcal{C} ;|z|=1\}, A=\mathcal{C}(\mathbb{T})$ and $f(z)=z$ for $z \in \mathbb{T}$. Let B be the unital closed subalgebra of A generated by f, i.e.,

$$
B=\overline{\operatorname{span}}\left\{1, f, f^{2}, f^{3}, \ldots\right\} .
$$

Compute and compare $\sigma_{A}(f)$ and $\sigma_{B}(f)$.
Problem 23. Let A be a unital Banach algebra and let $x \in A$ be such that $x^{n}=\boldsymbol{o}$ for some $n \in \mathbb{N}$. Determine $\sigma(x)$ and compute the resolvent function.
Problem 24. Let A be a unital Banach algebra and let $x \in A$ be such that $x^{2}=x$. Determine $\sigma(x)$ and compute the resolvent function.

Hint: Distinguish three cases: $x=\boldsymbol{o}, x=e$ and $x \notin\{\boldsymbol{o}, e\}$. The inverse of $\lambda e-x$ find in the form $\alpha e+\beta x$ for suitable $\alpha, \beta \in \mathbb{C}$.

Problem 25. Let A be a unital Banach algebra and let $x \in A$ be such that $x^{3}=x$. Determine $\sigma(x)$ and compute the resolvent function.

Hint: There are several cases to be distinguished: The case $x^{2}=x$ is covered by Problem 24. The case $x^{2}=-x$ can be solved similarly as Problem 24. The next case to be solved is $x^{2}=e$. Finally, if $x^{2} \notin\{e, x,-x\}$, then show that e, x, x^{2} are linearly independent and find the inverse of $\lambda e-x$ as a linear combination of e, x, x^{2}.

Problem 26. Let $A=\ell^{1}(\mathbb{Z})\left(c f\right.$. Problem 9) and $n \in \mathbb{Z}, n \neq 0$. Show that $\sigma\left(\boldsymbol{e}_{n}\right)=\mathbb{T}$ (where \boldsymbol{e}_{n} is the respective canonical vector) and that

$$
R\left(\lambda, \boldsymbol{e}_{n}\right)= \begin{cases}\sum_{k=0}^{\infty} \frac{\boldsymbol{e}_{k n}}{\lambda^{k+1}}, & |\lambda|>1, \\ \sum_{k=1}^{\infty}-\lambda^{k} \boldsymbol{e}_{-k n}, & |\lambda|<1\end{cases}
$$

Hint: This can be proved directly by solving the equation $\left(\lambda e_{0}-\boldsymbol{e}_{n}\right) * f=\boldsymbol{e}_{0}$. One can also use the formula from Proposition VIII.8(v) and its modifications.

Problems to Section VIII. 3 - holomorphic functional calculus

Problem 27. Let A be a unital Banach algebra and let f be an entire function. Let

$$
f(\lambda)=\sum_{n=0}^{\infty} a_{n} \lambda^{n}, \quad \lambda \in \mathbb{C},
$$

be its Taylor expansion. Show that for each $x \in A$ we have

$$
\tilde{f}(x)=\sum_{n=0}^{\infty} a_{n} x^{n} .
$$

Problem 28. Let $A=M_{n}$ and $D \in A$ be a diagonal matrix, with values d_{1}, \ldots, d_{n} on the diagonal.
(1) Show that $\sigma(D)=\left\{d_{1}, \ldots, d_{n}\right\}$ and compute the resolvent function.
(2) Let f be a function holomorphic on a neighborhood of $\sigma(D)$. Show that $\tilde{f}(D)$ is the diagonal matrix with values $f\left(d_{1}\right), \ldots, f\left(d_{n}\right)$ on the diagonal.
(3) Deduce that in this case the value of $\tilde{f}(D)$ depends only on $\left.f\right|_{\sigma(D)}$.

Problem 29. Let $A=M_{n}$ where $n \geq 2$ and let $J \in A$ be a Jordan cell, with the value z on the diagonal, i.e.,

$$
J=\left(\begin{array}{cccccc}
z & 1 & 0 & \ldots & 0 & 0 \\
0 & z & 1 & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & z & 1 \\
0 & 0 & 0 & \ldots & 0 & z
\end{array}\right) .
$$

(1) Show that $\sigma(J)=\{z\}$.
(2) Show that

$$
(\lambda I-J)^{-1}=\left(\begin{array}{cccc}
\frac{1}{\lambda-z} & \frac{1}{(\lambda-z)^{2}} & \cdots & \frac{1}{(\lambda-z)^{n}} \\
0 & \frac{1}{\lambda-z} & \cdots & \frac{1}{(\lambda-z)^{n-1}} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \frac{1}{\lambda-z}
\end{array}\right) \quad \text { for } \lambda \in \mathbb{C} \backslash\{z\} .
$$

(3) Let f be a function holomorphic on a neigborhood of z. Show that

$$
\tilde{f}(J)=\left(\begin{array}{ccccc}
f(z) & f^{\prime}(z) & \frac{f^{\prime \prime}(z)}{2} & \ldots & \frac{f^{(n-1)(z)}}{(n-1)!} \\
0 & f(z) & f^{\prime}(z) & \ldots & \frac{f^{(n-2)(z)}}{(n-2)!} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & f(z)
\end{array}\right)
$$

(4) Deduce that in this case the value of $\tilde{f}(J)$ is not determined by $\left.f\right|_{\sigma(J)}$.

Problem 30. Let $A=M_{n}$ and $E \in A$ be an arbitrary matrix. Let f be a function holomorphic on a neighborhood of $\sigma(E)$.
(1) Express $\tilde{f}(E)$ using the Jordan canonical form of E.
(2) Characterize those matrices E for which $\tilde{f}(E)$ is determined by $\left.f\right|_{\sigma(E)}$.

Problem 31. Let $A=\ell^{1}\left(\mathbb{Z}_{2}\right)$ or $A=\ell_{1}\left(\mathbb{Z}_{3}\right)$. For $x \in A$ and f holomorphic on a neighborhood of $\sigma(x)$ compute the value of $\tilde{f}(x)$.
Problem 32. Let A be a unital Banach algebra and $x \in A$ be an element satisfying one of the following conditions:
(1) $x^{n}=0$ for some $n \in \mathbb{N}$;
(2) $x^{2}=x$;
(3) $x^{2}=-x$;
(4) $x^{2}=e$;
(5) $x^{3}=x$, but none of the conditions (2)-(4) holds.

Let f be a function holomorphic on a neighborhood of $\sigma(x)$. Compute $\tilde{f}(x)$. In which cases it is determined by $\left.f\right|_{\sigma(x)}$?

Problem 33. Let $A=\mathcal{C}(K)$, let $g \in A$ and let F be a function holomorphic on a neigborhood of $\sigma(g)=g(K)$. Show that $\tilde{F}(g)=F \circ g$.

Problem 34. Let $A=\ell^{1}(\mathbb{Z})$ (cf. Problem 9) and $n \in \mathbb{Z}, n \neq 0$. By Problem 26 we know that $\sigma\left(\boldsymbol{e}_{n}\right)=\mathbb{T}$. Let g be a function holomorphic on a neighborhood of \mathbb{T}. Show that

$$
\tilde{g}\left(\boldsymbol{e}_{n}\right)=\sum_{k \in \mathbb{Z}} a_{k} e_{k n},
$$

where $\left(a_{k}\right)_{k \in \mathbb{Z}}$ are the coeficients of the Laurent expansion of g in a neighborhood of \mathbb{T}.
Hint: One can use either the definitions and the formula from Problem 26, or one can prove an analogue of the statement in Problem 27 for Laurent series.

