Weak Stegall spaces
Ondřej Kalenda, Charles University, Prague, Spring 1997

Remark on references. The unspecified references, and the spaces \(K_B \) as well, are from the paper O.Kalenda, Stegall compact spaces which are not fragmentable, Topol. Appl. 96 (1999), no.2, 121–132.

Proposition W1. Let \(X \) be a topological space. Then the following assertions are equivalent.

(i) Any minimal usco mapping of any complete metric space \(M \) into \(X \) is singlevalued at least at one point of \(M \).

(ii) Any minimal usco mapping of any complete metric space \(M \) into \(X \) is singlevalued at points of a dense subset of \(M \).

(iii) Any minimal usco mapping of any complete metric space \(M \) into \(X \) is singlevalued at points of a second category subset of \(M \).

(iv) Any minimal usco mapping of any complete metric space \(M \) into \(X \) is singlevalued at points of a dense Baire subspace of \(M \).

Proof. The implications \((iv) \Rightarrow (iii) \Rightarrow (i) \) and \((iv) \Rightarrow (ii) \Rightarrow (i) \) are obvious. It remains to prove \((i) \Rightarrow (iv) \). Let \(M \) be a complete metric space, \(\varphi : M \to X \) a minimal usco mapping such that \(A = \{m \in M \mid \varphi(x) \text{ is not a singleton}\} \) is not a dense Baire subspace of \(M \). Then there is \(U \subset M \) nonempty open such that \(U \cap A \) is meager in \(U \), and a dense \(G_\delta \) subset \(G \) of \(U \) such that \(G \cap A = \emptyset \). We apply twice Lemma 2 to get that \(\varphi \upharpoonright G \) is a minimal usco mapping. Moreover, \(G \) is completely metrizable, and \(\varphi \upharpoonright G \) is not singlevalued at any point of \(G \), which completes the proof. \(\square \)

A space \(X \) satisfying one of the equivalent conditions of the above proposition we will call a **weakly Stegall** space, or we will write \(X \in w-S \).

Proposition W2. (a) Let \(X \in w-S \) and \(f : Y \to X \) be continuous one-to-one. Then \(Y \in w-S \).

(b) If \(X = \bigcup_{n \in \mathbb{N}} X_n \) with each \(X_n \) closed in \(X \), and if \(X_n \in w-S \) for every \(n \), then \(X \in w-S \).

(c) If \(X \in w-S \) and \(Y \) is a perfect image of \(X \) then \(Y \in w-S \). In particular, continuous image of a compact space lying in \(w-S \) lies in \(w-S \) too.

(d) If \(X \in w-S \) and \(Y \in S \) then \(X \times Y \in w-S \).

Proof. (a) If \(M \) is a complete metric space and \(\varphi : M \to Y \) is a minimal usco, then, by Lemma 1, \(f \circ \varphi \) is also a minimal usco. Since \(X \in w-S \), there is \(m \in M \) such that \(f(\varphi(m)) \) is a singleton. Now, since \(f \) is one-to-one, \(\varphi(m) \) is a singleton too.

(b) Let \(M \) be a complete metric space and \(\varphi : M \to X \) a minimal usco. Put \(M_n = \varphi^{-1}(X_n) \). Then \(M_n \) is a sequence of closed sets covering \(M \), hence there is some \(n \) such that \(M_n \) has nonempty interior in \(M \). Let \(U \subset M_n \) be nonempty open. By Lemma 1(c) we get \(\varphi(U) \subset X_n \). By Lemma 2 the restriction \(\varphi \upharpoonright U \) is minimal usco. Since \(X_n \in w-S \), there is \(m \in U \) such that \(\varphi(m) \) is a singleton.

(c) Let \(f : X \to Y \) be a perfect mapping of \(X \) onto \(Y \). Then \(f^{-1} \) is an usco mapping. Let \(\varphi : M \to Y \) be a minimal usco, where \(M \) is a complete metric space. Then \(f^{-1} \circ \varphi \) is usco. Let \(\psi \subset f^{-1} \circ \varphi \) be a minimal usco. Then there is \(m \in M \) such that \(\psi(m) \) is a singleton. Clearly we have \(f \circ \psi \subset \varphi \), hence, by minimality of \(\varphi \), \(f \circ \psi = \varphi \). Therefore \(\varphi(m) = f(\psi(m)) \) is a singleton.

(d) Let M be a complete metric space and $\varphi : M \to X \times Y$ be a minimal usco. Then $\pi_X \circ \varphi$ is a minimal usco $M \to X$, so there is $A \subset M$ of second category such that $\pi_X \circ \varphi$ is singlevalued at all points of A. Similarly $\pi_Y \circ \varphi$ is singlevalued at points of a residual set $B \subset M$ (since $Y \in S$). Then φ is singlevalued at points of $A \cap B$, which is a nonempty set. □

Lemma W1. Let M be a complete metric space and $f : M \to X$ a continuous map such that for every $U \subset M$ open $f(U)$ has no isolated points. Then there is a nonempty compact perfect set $P \subset M$ such that $f \mid P$ is one-to-one.

Proof. Let ρ be a complete metric on M such that $\rho \leq 1$. We can construct by induction nonempty open sets $U_s \subset M$ indexed by finite sequences of 0 and 1 satisfying

(i) $\overline{\bigcup_{s \in 0} U_{s \uparrow 1}} \subset U_s$,

(ii) $f(\overline{U_{s \uparrow 0}}) \cap f(\overline{U_{s \uparrow 1}}) = \emptyset$,

(iii) $\text{diam} U_s \leq 2^{-|s|}$.

Put $U_\emptyset = M$. If we have constructed U_s then by the assumption on f we get that $f(U_s)$ has no isolated points and hence we can choose two distinct points $x_0, x_1 \in f(U_s)$. Choose V_0, V_1 two disjoint open neighborhoods of x_0, x_1 and $U_{s \uparrow i}$ of sufficiently small diameter such that $\overline{U_{s \uparrow i}} \subset U_s \cap f^{-1}(V_i)$ for $i = 0, 1$. This completes the construction.

Now put $K = \bigcup_{\alpha \in 2^\omega \cap \mathbb{N}} U_{\alpha \uparrow n}$. Then K is a compact perfect set and $f \mid K$ is one-to-one by the construction. □

Remark. By a similar method one can prove that whenever M is Čech complete and $f : M \to X$ is in the lemma, there is a compact set $K \subset M$ such that $f(K)$ is uncountable.

Proposition W3. Let $K \subset \mathbb{R}$ be a compact perfect set, $B \subset K^d$ arbitrary. Then $K_B \in w$-S if and only of B does not contain any perfect subset.

Proof. Let $F : K_B \to K$ be the natural surjection. If B contains a perfect set P then $F^{-1} : P^d \to K_B$ is, by Proposition 6(6), a minimal usco. Moreover, P^d is completely metrizable and F^{-1} is not singlevalued at any point of P^d.

Now suppose that B contains no perfect set. Let M be a complete metric space and $\varphi : M \to K_B$ a minimal usco, nowhere singlevalued. By Proposition 6(5) there is $G \subset M$ dense G_δ such that for $m \in G$ we have $\varphi(m) \subset \{x\} \times \{0, 1\}$ for some $x \in K$. So $\varphi \mid G$ is a minimal usco (Lemma 2) which is exactly 2-valued. By Proposition 6(6) we get that $F \circ \varphi : G \to B$ satisfies the assumptions of Lemma W1. Hence B contains a perfect set, a contradiction. □

Lemma W2. Let $\varphi_a : M_a \to X_a$ be an usco mapping for each $a \in A$. Put $M = \prod_{a \in A} M_a$, $X = \prod_{a \in A} X_a$ and let $\varphi : M \to X$ be defined by the formula $\varphi((m_a)_{a \in A}) = \prod_{a \in A} \varphi_a(m_a)$. Then φ is an usco mapping. Moreover, if each φ_a is minimal so is φ.

Proof. We denote by π_a the projection of X (or M) onto the a-th coordinate. Similarly for any $F \subset A$ the projection onto $\prod_{a \in F} X_a$ (or $\prod_{a \in F} M_a$) is denoted by π_F.

Clearly the values of φ are compact. Let $m \in M$ and $U \subset X$ be open with $\varphi(m) \subset U$. By the definition of the product topology we get for every $x \in \varphi(m)$ a finite set $F_x \subset A$ and an open set V_x in $\prod_{a \in F_x} X_a$ such that $x \in \pi_{F_x}^{-1}(V_x) \subset U$.
By compactness of \(\varphi(m) \) there is \(H \subset \varphi(m) \) with \(\varphi(x) \subset \bigcup_{x \in H} \pi_{F_x}^{-1}(V_x) \subset U \). Put \(F = \bigcup_{x \in H} F_x \). Then there is an open set \(V \) in \(\prod_{a \in F} X_a \) such that \(\bigcup_{x \in H} \pi_{F_x}^{-1}(V_x) = \pi_F^{-1}(V) \). Hence \(\varphi(m) \subset \pi_F^{-1}(V) \subset U \). Now, if there is no neighborhood \(W \) of \(m \) with \(\varphi(W) \subset \pi_F^{-1}(V) \) then there is a net \(m^\tau \in M \) converging to \(m \) and \(x^\tau \in \varphi(M^\tau) \setminus \pi_F^{-1}(V) \). Since each \(\varphi_a \) is usco, there is a subnet of \(x_a^\tau \) converging to some point of \(\varphi_a(m_a) \). And since \(F \) is finite we can without loss of generality suppose that for each \(a \in F \) the net \(x_a^\tau \) converges to some \(x_a \in \varphi_a(m_a) \). So there is \(\tau_0 \) such that for \(\tau \geq \tau_0 \) we have \((x_a^\tau)_{a \in F} \in V \), \(x^\tau \in \pi_F^{-1}(V) \), a contradiction. Hence \(\varphi \) is usco.

Next suppose that each \(\varphi_a \) is minimal. Let \(U \subset M \) and \(W \subset X \) be open with \(\varphi(U) \cap W \neq \emptyset \). Again by the definition of product topology there is \(F \subset A \) finite and open sets \(U_a \subset M_a \) and \(W_a \subset X_a \) such that \(\bigcap_{a \in F} \pi_a^{-1}(U_a) \subset U \),

\[
\bigcap_{a \in F} \pi_a^{-1}(W_a) \subset W \quad \text{and} \quad \varphi \left(\bigcap_{a \in F} \pi_a^{-1}(U_a) \right) \cap \left(\bigcap_{a \in F} \pi_a^{-1}(U_a) \right) \neq \emptyset.
\]

It follows, by definition of \(\varphi \), that \(\varphi_a(U_a) \cap W_a \neq \emptyset \) for every \(a \in F \). Since \(\varphi \) is minimal, by Lemma 1, we get a nonempty open \(V_a \subset U_a \) with \(\varphi_a(V_a) \subset W_a \). So \(\varphi \left(\bigcap_{a \in F} \pi_a^{-1}(V_a) \right) \subset \left(\bigcap_{a \in F} \pi_a^{-1}(U_a) \right) \), hence \(\varphi \) is minimal by Lemma 1. \(\square \)

Example W1. Let \(K = [0,1] \). There is \(B \subset (0,1) \) such that \(K_B \in w\cdot S \) but \(K_B \times K_B \notin w\cdot S \).

Proof. By [J.Oxtoby, Measure and category, Springer-Verlag 1971] there is \(D \subset \mathbb{R} \) such that neither \(D \) nor its complement contain a perfect compact set. Put \(B = \left(D \cap \left(0, \frac{1}{2} \right) \right) \cup \left(\frac{1}{2} + \left((0, \frac{1}{2}) \setminus D \right) \right) \). Then clearly \(B \) contains no perfect compact set, so by Proposition W3 we get that \(K_B \in w\cdot S \). We will show that the product \(K_B \times K_B \) contain a homeomorphic copy of \(K_{(0,1)} \) and hence it is not weakly Stegall (by Propositions W2 and W3). Let us define \(f : K_{(0,1)} \rightarrow K_B \times K_B \) by the formula \(f((t, \varepsilon)) = (f_1((t, \varepsilon)), f_2((t, \varepsilon))) \), where

\[
\begin{align*}
f_1((t, \varepsilon)) &= \begin{cases} \left(\frac{1}{2}, \varepsilon \right), & t \in B \\ \left(\frac{1}{2}, 0 \right), & t \notin B \end{cases}, \\
f_2((t, \varepsilon)) &= \begin{cases} \left(\frac{1}{2} + \varepsilon, 0 \right), & t \in B \\ \left(\frac{1}{2} + \frac{1}{2}, \varepsilon \right), & t \notin B \end{cases}.
\end{align*}
\]

It is easy to see (by Proposition 6(1)) that \(f_1 \) and \(f_2 \) are continuous, so \(f \) is countinuous too. And it follows easily from the definition of \(B \) that \(f \) is one-to-one. \(\square \)