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Summary: In this paper we consider the relationship of covariates to the

time to caries of permanent first molars. This involves an analysis of multi-

variate doubly-interval-censored data. To describe this relationship we sug-

gest an accelerated failure time model with random effects taking into account

that the observations are clustered. Indeed, up to four permanent molars per

child enter into the analysis implying up to four caries times for each child.

Each distributional part of the model is specified in a flexible way as a pe-

nalized Gaussian mixture (PGM) with an overspecified number of mixture

components. A Bayesian approach with the MCMC methodology is used to

estimate the model parameters and a software package in the R language has

been written that implements it.
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1 Introduction

In standard survival methods it is assumed that the time to the event is either exactly

known or right-censored. However, in some areas of medical research (dentistry, HIV

studies), the event can only be recorded at regular intervals (visits to the physician,

dentist) which gives rise to interval-censored data. Moreover, often not only the fail-

ure time but also the onset time is recorded in an interval-censored manner resulting

in doubly-interval-censored data. A typical example is the time to caries development on

a tooth which is equal to the time from tooth emergence to onset of caries. When several

teeth are examined jointly, one needs to take into account that there is clustering, i.e.

that teeth from the same mouth are related. In this paper we aim to analyze the effect

of brushing, plaque accumulation, presence of sealants and the status of the adjacent

deciduous molars on the caries time of the four permanent first molars using the data

from the Signal Tandmobielr study.

De Gruttola and Lagakos (1989) suggested a non-parametric estimate of the survivor

function for doubly-interval-censored data. Alternative methods were subsequently given

by Bacchetti and Jewell (1991); Gómez and Lagakos (1994); Sun (1995); Gómez and Calle

(1999). Further, Kim, De Gruttola, and Lagakos (1993) generalized the one-sample

estimation procedure of De Gruttola and Lagakos (1989) to a Cox proportional hazards

(PH) model. However, their method needs to discretize the data. Cox regression with

the onset time interval-censored and the event time right-censored has been considered

by Goggins, Finkelstein, and Zaslavsky (1999); Sun, Liao, and Pagano (1999); Pan (2001).

To our best knowledge, regression with multivariate doubly-interval-censored survival
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data has not been discussed in the literature yet. In this paper, we propose a Bayesian

method based on the accelerated failure time model. At the same time, our method aims

to avoid strong parametric assumptions concerning the baseline survival time.

The following notation will be used throughout the paper. Let
∑N

i=1 ni observational

units be divided into N clusters, the ith one of size ni. Let Ui,l and Vi,l, i = 1, . . . , N,

l = 1, . . . , ni denote the true chronological onset and event times, respectively, and

Ti,l = Vi,l − Ui,l the true time-to-event. Let zi,l be a vector of covariates which can

possibly influence the onset time Ui,l of the(i, l)th unit and let xi,l be a covariate vector

possibly having an impact on the time-to-event Ti,l. In the remainder of the paper,

whenever a subscript i is used, it is understood that i = 1, . . . , N . Further, whenever

a double subscript i, l is used, it is understood that i = 1, . . . , N , l = 1, . . . , ni.

In our context, it is only known that Ui,l occurred within an interval of time [uL
i,l, uU

i,l],

where uL
i,l ≤ Ui,l ≤ uU

i,l. Similarly, the event time Vi,l is only known to lie in an interval

[vL
i,l, vU

i,l], with vL
i,l ≤ Vi,l ≤ vU

i,l. Note that exactly observed, right- and left-censored

data are special cases of interval-censored data. It is assumed that the observed intervals

result from an independent noninformative censoring process (e.g. pre-scheduled visits).

In Section 2, we describe the data and the research question which motivated the

development of our approach. Section 3 describes the assumed model. In Section 4,

we specify the model from the Bayesian point of view, derive the posterior distribution

of model parameters and describe the estimation procedure. The suggested approach

is validated using a simulation study in Section 5 and in Section 6 it is shown how it

tackled our research question. The paper ends with conclusions.
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2 Data and Research Question

The Signal Tandmobielr study is a longitudinal prospective (1996–2001) oral health

screening project performed in Flanders, Belgium. The children (2 315 boys and 2 153

girls) born in 1989 were examined on a yearly basis by one of 16 trained dentist-examiners.

Additional data on oral hygiene and dietary habits were obtained through structured

questionnaires, completed by the parents. The details of the study design and research

methods can be found in Vanobbergen et al. (2000).

The primary interest of the present analysis is to address the influence of sound versus

affected (decayed/filled/missing due to caries) deciduous second molars (teeth 55, 65, 75,

85, respectively in European dental notation) on the caries susceptibility of the adjacent

permanent first molars (teeth 16, 26, 36, 46, respectively). Note that for about five years

the deciduous second molars are in the mouth together with the permanent first molars.

It is possible that the caries processes on the primary and the permanent molar occur

simultaneously. In this case it is difficult to know whether caries on the deciduous molar

caused caries on the permanent molar or vice versa. For this reason, the permanent

first molar was excluded from the analysis if caries was present when emergence was

recorded. Additionally, the permanent first molar had to be excluded from the analysis

if the adjacent deciduous second molar has not been present in the mouth already at

the first examination. Note that for 948 children none of the permanent first molars

was included in the analysis due to above mentioned reasons. In total, 3 520 children

(12 485 permanent first molars) were included in the analysis of which 187 contributed

one tooth, 317 two teeth, 400 three teeth and 2 616 all four teeth.

Additionally, we considered the impact of gender (boy/girl), presence of sealants in

pits and fissures of the permanent first molar (none/present), occlusal plaque accumu-

lation on the permanent first molar (none/in pits and fissures/on total surface), and
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reported oral brushing habits (not daily/daily). Note that pits and fissures sealing is

a preventive action which is expected to protect the tooth against caries development.

The presence of plaque on the occlusal surfaces of the permanent first molars was assessed

using a simplified version of the index described by Carvalho et al. (1989). All explana-

tory variables were obtained at the examination where the presence of the permanent

first molar was first recorded.

The choice of explanatory variables is motivated by the results of Leroy et al. (2005a,b)

where a relatively simple GEE multivariate log-logistic survival model was used for the

caries times. Nevertheless, it must be pointed out that the doubly-interval-censored

nature of the response was not taken into account properly in these works and this

motivated the developments presented in this paper. We will return to this point in

Section 6.3.

The onset time Ui,l, l = 1, . . . , 4 is the age (in years) of the ith child (ith cluster) at

which the lth permanent first molar emerged. The failure time, Vi,l, indicates the onset

of caries of the lth permanent first molar. The time from tooth emergence to the onset

of caries, Ti,l, is doubly-interval-censored. Here, both the time of tooth emergence and

the onset of caries experience are only known to lie in an interval of about 1 year.

Further, in our example about 85% of the permanent first molars had emerged at the

first examination, giving rise to a huge amount of left-censored onset times. However, at

each examination the permanent teeth were scored according to their clinical eruption

stage using a grading that starts at P0 (tooth not visible in the mouth) and ends with

P4 (fully erupted tooth with full occlusion). Based on the clinical eruption stage at the

moment of the first examination, all left-censored emergence times were transformed into

interval-censored ones with the lower limit of the observed interval equal to the age at

examination minus 0.25 year, 0.5 year and 1 year, respectively for the teeth with the

eruption stage P1, P2 and P3, respectively, and with the lower limit equal to 5 years for
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the teeth with the eruption stage P4. We refer to Leroy et al. (2005a) for details and

motivation.

3 Model

We allow both the true onset time Ui,l and the true time-to-event Ti,l to depend on

covariates via the accelerated failure time (AFT) model. To account for possible depen-

dencies among teeth of the same child we use an AFT model with a random intercept

included in the model and refer to it as the cluster-specific (CS) AFT model. Further,

we have opted for a flexible expression for all distributional parts of the model implying

a smoothly estimated survival and hazard curve with the shape driven by the data. To

this end, we propose a penalized Gaussian mixture (PGM) with an overspecified number

of mixture components.

The choice of the modelling approach has been motivated by the following reasons.

When analyzing clustered survival data, the frailty Cox proportional hazard (PH) model

(e.g., Therneau and Grambsch, 2000) is by far the most common choice. However,

compared to the CS AFT model it has several disadvantages. Firstly, the choice of the

frailty distribution can have an impact on the estimates of the regression coefficients.

On the other hand, in the CS AFT model, estimates of the regression coefficient are

robust against misspecification of the random effects distribution (Keiding, Andersen,

and Klein, 1997; Lambert et al., 2004).

Secondly, the AFT model, in general, provides for our dental problem a better inter-

pretation of the results than the PH model. As pointed out by Sir David Cox in Reid

(1994) or in Hougaard (1999), the regression coefficients in the AFT model have a direct

physical interpretation. For the dental application, an AFT model directly indicates how

the emergence time (or time-to-caries) is increased or decreased. Whereas, in the PH
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model, the regressors express the risk but it is more difficult for practitioners, such as

dentists, to evaluate their practical impact.

3.1 Cluster-specific AFT model

Cluster-specific random effects di and bi, are introduced to account for possible depen-

dencies of different teeth within an individual. Namely, the following model is assumed

log(Ui,l) = di + δ′zi,l + ζi,l, (1)

log(Vi,l − Ui,l) = log(Ti,l) = bi + β′xi,l + εi,l, (2)

where δ and β are unknown regression parameter vectors, ζi,l, are i.i.d. random variables

with some density gζ(ζ). Analogously, the error terms εi,l, are i.i.d. random variables with

density gε(ε). The random effects di, and bi, are assumed to be i.i.d. with a density gd(d)

and gb(b), respectively. Furthermore we assume that εi,l, ζi,l, bi and di are independent

for all i and l.

The assumptions outlined above imply that, given the covariates, the chronological

emergence time Ui,l and the time-to-caries Ti,l are independent for each i and l. Fur-

thermore, the vectors U i = (Ui,1, . . . , Ui,ni
)′ and T i = (Ti,1, . . . , Ti,ni

)′ are independent

for each i. Specifically, here we assume that the caries process on a specific tooth only

depends on the time when that tooth is at risk for caries and not on the chronological

time when the tooth entered the risk group for caries (chronological emergence time Ui,l).

However, it is useful to stress that our assumption implies neither independence of the

chronological caries time Vi,l and the chronological emergence time Ui,l, nor independence

of the vectors V i = (Vi,1, . . . , Vi,ni
)′ and U i = (Ui,1, . . . , Ui,ni

)′.

The above assumptions also imply that (a) whether a child is an early or late emerger

is independent of whether a child is more or less sensitive against caries (independence

of bi and di) and (b) whether a specific tooth emerges early or late is independent of
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whether that tooth is more or less sensitive against caries (independence of εi,l and ζi,l).

3.2 Penalized Gaussian mixture

To allow for a distributional flexibility, the univariate densities gζ, and gε of the random

errors and the densities gd, gb of the random effects in the Model I will be modelled as

a penalized Gaussian mixture (PGM).

Let g(y) be a generic density of a random variable Y (later substitute ζ, ε, d, or

b for Y ). The density g(y) is modelled as a location-and-scale transformed weighted

sum of Gaussian densities over a fixed fine grid of knots µ = (µ−K , . . . , µK)′ centered

around µ0 = 0. The means of the Gaussian components are equal to the knots and their

variances are all equal and fixed to σ2, i.e.

Y = α + τ Y ∗, Y ∗ ∼
K

∑

j=−K

wj N
(

µj , σ2
)

(3)

where the intercept term α and the scale parameter τ have to be estimated as well

as the vector w = (w−K , . . . , wK)′ of weights. A satisfactory condition for (3) to be

a distribution is that the weights satisfy wj > 0 for all j and
∑

j wj = 1. Constraints in

the estimation can be avoided if a generalized logit transformation is used. That is, each

element of w is expressed as a function of the elements of the vector a = (a−K , . . . , aK)′

as follows

wj =
exp(aj)

∑K

k=−K exp(ak)
, j = −K, . . . , K. (4)

Indeed, except an identifiability constraint (i.e., a0 = 0), the elements of the vector a

are unconstrained.

Our model can be considered as a limiting case of the B-spline smoothing (Eilers

and Marx, 1996) of unknown functions. Instead of the B-splines as basis functions, the

Gaussian densities are used which are the limits of the B-splines as their degree tends

to infinity (Unser, Aldroubi, and Eden, 1992). A similar approach was used by Ghidey,
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Lesaffre, and Eilers (2004) who chose an expression similar to (3) to model the distribu-

tion of the random effects in a linear mixed model (with uncensored data). Komárek,

Lesaffre, and Hilton (2005) employed this technique for the error distribution in an AFT

model with univariate censored data.

The choice of the grid points µj and the basis standard deviation σ can be made

independent of the location and the range of the true distribution of Y . In our anal-

ysis (Section 6), the same grid of equidistant knots of length 31 (K = 15) defined on

[−4.5, 4.5] is used with the basis standard deviation σ = 2 (µj − µj−1)/3 = 0.2; see

Komárek et al. (2005) for a motivation.

In the following, a super- or subscript ζ , ε, d, or b will be used to distinguish among

parameters defining the PGM for different parts of the model.

3.3 Dependence between the onset and time-to-event random

effects

It might be useful to relax the assumption of independence of the random effects from the

onset and time-to-event parts of the model by assuming that vectors (di, bi)
′, i = 1, . . . , N

are i.i.d. with a bivariate density gd,b(d, b). This would also induce possible dependence

between the time-to-caries T and the chronological emergence time U . As a tool of the

sensitivity analysis, we explored the model where the density gd,b(d, b) was assumed to

be a bivariate normal distribution N2

(

0, D
)

with an unknown covariance matrix D.

In a sequel, we shall call the model where independence of d and b is assumed and

their densities are modelled using PGM’s as Model I. The model with bivariate normal

random effect vector (d, b) will be called Model D.
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3.4 Likelihood

For p a generic density, the likelihood contribution of the ith cluster is given by

Li =

∫

∞

−∞

∫

∞

−∞

{ ni
∏

l=1

∫ uU
i,l

uL
i,l

∫ vU
i,l
−ui,l

vL
i,l
−ui,l

p(ti,l, bi, ui,l, di) dti,l dui,l

}

dbi ddi

=

∫

∞

−∞

∫

∞

−∞

{ ni
∏

l=1

∫ uU
i,l

uL
i,l

∫ vU
i,l
−ui,l

vL
i,l
−ui,l

p(ti,l | ui,l, di, bi) p(ui,l | di, bi) p(di, bi) dti,l dui,l

}

dbi ddi

=

∫

∞

−∞

∫

∞

−∞

[

ni
∏

l=1

∫ uU
i,l

uL
i,l

{
∫ vU

i,l
−ui,l

vL
i,l
−ui,l

p(ti,l | bi) dti,l

}

p(ui,l | di) dui,l

]

p(di, bi) dbi ddi, (5)

where p(ti,l | bi) = t−1
i,l gε

{

log(ti,l) − bi − β
′xi,l

}

combines the AFT model (2) with the

model of the type (3) for gε(εi,l) and similarly p(ui,l | di) = u−1
i,l gζ

{

log(ui,l) − di − δ
′zi,l

}

combines the AFT model (1) with the model of the type (3) for gζ(ζi,l).

In Model I, p(di, bi) = gd(di) gb(bi), where gd(di) and gb(bi) are PGM’s (3). Note

that it is not possible to distinguish the intercept term of the random effect and the

error term in each part of the doubly-censored AFT model, that is αζ and αd and αε

and αb. For this reason, we fix the random effect intercepts, αd and αb, to zero. Finally,

in Model D, p(di, bi) is a density of N2

(

0, D
)

distribution.

4 Estimation

The method of penalized maximum-likelihood was used by Ghidey et al. (2004) and

Komárek et al. (2005) to obtain the estimates of the parameters defining the PGM.

However, with clustered doubly-censored data, any method requiring optimization of the

likelihood (5) is rather cumbersome and computationally intractable. Instead, a Bayesian

approach together with the MCMC methodology (see, e.g., Robert and Casella, 2004)

will be used here to avoid explicit integration and optimization.
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4.1 Prior distribution

To specify the model from the Bayesian point of view, prior distributions for all unknown

parameters have to be given. Firstly, we introduce some notation. Let Gε refer to the

set {σε, µε, αε, τ ε, wε, aε, λε} which contains the parameters of formulas (3) and (4)

and a smoothing hyperparameter λε which will be discussed further. Let Gζ , Gb, Gd be

defined in an analogous manner. Finally, let Dd,b = {Gd, Gb} in Model I and Dd,b = D

in Model D.

Let θ denote the vector of the unknown quantities. As usual with any Bayesian

approach, besides traditional parameters, the vector θ includes also “true” values of

censored onset and event times, latent values of the random effects and latent values of

the error terms of the AFT model which simplifies considerably all posterior calculations.

Driven partially by the AFT models (1) and (2), the prior distribution of θ is specified

in a hierarchical way, namely

p(θ) = p
(

{vi,l, ui,l, ti,l}i,l, {ζi,l, εi,l}i,l, {di, bi}i, δ, β, Gζ , Gε, Dd,b

)

(6)

=
N
∏

i=1

ni
∏

l=1

{

p
(

vi,l

∣

∣ ui,l, ti,l
)

× p
(

ui,l

∣

∣ δ, di, ζi,l

)

× p
(

ti,l
∣

∣ β, bi, εi,l

)

}

× (7)

N
∏

i=1

ni
∏

l=1

{

p
(

ζi,l

∣

∣ Gζ

)

× p
(

εi,l

∣

∣ Gε

)

}

×
N
∏

i=1

p
(

di, bi

∣

∣ Dd,b

)

× (8)

p
(

Gζ

)

× p
(

Gε

)

× p
(

Dd,b

)

× p
(

δ
)

× p
(

β
)

. (9)

Some of the terms in (7)–(9) follow directly from the previous model specification. Nev-

ertheless, for clarity, all the terms will be discussed in more detail in the remainder of

this section.

4.2 Prior distribution in Model I

Firstly, we concentrate on Model I where

p
(

di, bi

∣

∣ Dd,b

)

= p
(

di

∣

∣ Gd

)

× p
(

bi

∣

∣ Gb

)

, p
(

Dd,b

)

= p
(

Gd

)

× p
(

Gb

)

.
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4.2.1 Prior for the time variables

The prior distributions for the time variables are degenerate and are determined by the

AFT expressions from Section 3.1. Namely, the term (7) is obtained from

p
(

vi,l

∣

∣ ui,l, ti,l
)

= I[vi,l = ui,l + ti,l],

p
(

ui,l

∣

∣ δ, di, ζi,l

)

= I
[

ui,l = exp(di + δ′zi,l + ζi,l)
]

,

p
(

ti,l
∣

∣ β, bi, εi,l

)

= I
[

ti,l = exp(bi + β′xi,l + εi,l)
]

.

4.2.2 Prior for the error terms and for the random effects

Prior distributions p
(

ζi,l

∣

∣ Gζ

)

, p
(

εi,l

∣

∣ Gε

)

, p
(

di

∣

∣ Gd

)

, and p
(

bi

∣

∣ Gd

)

, have all the same

structure of the PGM (3). Note that the posterior computation can further be simplified

by introduction of latent allocation variables rζ
i,l, rε

i,l, rd
i , rb

i , having the following role.

Let y be a generic symbol for ζi,l, εi,l, di, or bi, and let G denote the corresponding

set Gζ , Gε, Gd, or Gb, respectively. Let r be the corresponding allocation variable rζ
i,l, rε

i,l,

rd
i , or rb

i , respectively. From the PGM (3) we have

p
(

y
∣

∣ G
)

= p
(

y
∣

∣ σ, µ, α, τ, w
)

=

K
∑

j=−K

wj ϕ
(

y
∣

∣ α + τµj , (τσ)2
)

, (10)

where ϕ(·|µ, σ2) denotes a density of N (µ, σ2). Let the allocation variable r have a dis-

crete distribution with

p
(

r
∣

∣ G
)

≡ Pr
(

r = j
∣

∣ G
)

= Pr
(

r = j
∣

∣w
)

= wj , j = −K, . . . , K,

and let

p
(

y
∣

∣ G, r
)

= p
(

y
∣

∣ σ, µ, α, τ, r
)

= ϕ
(

y
∣

∣ α + τµr, (τσ)2
)

.

It is easily seen that the marginal density p(y | G) obtained by integrating the allocation

variable r out of the joint distribution p(y, r | G) is indeed equal to the PGM (10).

Let ψ =
(

{rζ
i,l, rε

i,l, rd
i , rb

i

)

be the vector of all allocation variables. Employing the

idea of Bayesian data augmentation (Tanner and Wong, 1987), we replace the prior
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distribution p(θ), see (6), by the prior distribution p(θ, ψ) which is equal to the product

of (7), (8), and

N
∏

i=1

ni
∏

l=1

{

p
(

ζi,l

∣

∣ Gζ , rζ
i,l

)

× p
(

rζ
i,l

∣

∣ Gζ
)

× p
(

εi,l

∣

∣ Gε, rε
i,l

)

× p
(

rε
i,l

∣

∣ Gε
)

}

×

N
∏

i=1

{

p
(

di

∣

∣ Gd, rd
i

)

× p
(

rd
i

∣

∣ Gd
)

× p
(

bi

∣

∣ Gb, rb
i

)

× p
(

rb
i

∣

∣ Gb
)

}

.

Since integrating the allocations ψ out of the distribution p(θ, ψ) leads to the original

prior (6) all posterior characteristics of the parameter of interest θ remain the same.

However, the joint prior p(θ, ψ) has the advantage that it explicitly does not involve

any mixture distributions.

4.2.3 Prior for the penalized Gaussian mixtures

The PGM prior distributions p
(

Gζ

)

, p
(

Gε

)

, p
(

Gd

)

, and p
(

Gb

)

are all of the same structure.

Let G = {σ, µ, α, τ, w, a, λ} stand for Gζ , Gε, Gd, or Gb, respectively. Remember that

only parameters a (or w), λ, α, τ from G are unknown and their prior is decomposed in

the following way

p
(

G
)

= p
(

a, λ, α, τ
)

= p
(

a
∣

∣ λ
)

× p
(

λ
)

× p
(

α
)

× p
(

τ
)

.

As mentioned in Section 3.2, we consider the PGM as a spline model for an unknown

density function. The weights w, or equivalently the transformed weights a, are viewed

as spline coefficients. Spline smoothing using a spline basis specified over a grid with

a relatively high number of equidistant knots, like in our PGM model, became widely

used after the seminal work of Eilers and Marx (1996). To avoid overfitting of the

data and identifiability problems caused by the large number of spline coefficients to be

estimated, they suggested using penalized maximum-likelihood for estimation and call

their approach as “smoothing with penalized splines” (P-splines).

In our notation, if the penalized maximum-likelihood estimation had been used, the
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log-likelihood would have been penalized by adding the term

Q
(

a
∣

∣ λ) = −
λ

2

K
∑

j=−K+s

(

∆saj

)2
= −

λ

2
a′

P
′

sPsa, (11)

where ∆s denotes a difference operator of order s (e.g., ∆3 aj = aj −3 aj−1+3 aj−2−aj−3

is used in the analysis in Section 6) and Ps the corresponding difference operator matrix.

The hyperparameter λ, which has to be estimated, controls the smoothness of the fitted

curve, i.e., the unknown density in our case.

For more complex models where a Bayesian estimation using MCMC is a useful

alternative to the penalized maximum-likelihood, the penalty term corresponds to the

logarithm of the prior density of the spline coefficients. That is,

p
(

a
∣

∣ λ
)

∝ exp
{

Q
(

a
∣

∣ λ)
}

= exp
(

−
λ

2
a′

P
′

sPsa
)

. (12)

This correspondence between the penalized maximum-likelihood and a Bayesian model

specification has been mentioned already in Wahba (1983). Practically, the Bayesian

version of the P-splines has been exploited to smooth the regression function in different

contexts, e.g., by Fahrmeir and Lang (2001); Lang and Brezger (2004); Hennerfeind et al.

(2006); Kneib (2007).

The penalty (11) decreases in its absolute value with decreasing differences between

neighboring spline weights, represented by the vector Psa. Consequently, the prior (12)

favors smooth estimates of the estimated functions (densities in our case). Further,

the prior (12) is actually a multivariate normal density with zero mean and covariance

matrix λ−1
(

P
′

sPs

)

−

, where
(

P
′

sPs

)

−

denotes a generalized inverse of the matrix P
′

sPs. This

distribution is known as an intrinsic Gaussian Markov random field (IGMRF) extensively

used in spatial statistics (e.g., Rue and Held, 2005).

It is seen from the penalty motivated prior (12) that the smoothing hyperparameter

λ scales the prior precision (inverse covariance) matrix of the vector a of transformed

spline weights. This also motivates a choice for the prior distribution p(λ). The standard
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prior for precision parameters is the Gamma distribution. A highly dispersed but proper

prior is, e.g., G(hλ
1 , hλ

2) for hλ
1 = 1 and h2 being a small positive quantity, or for hλ

1 = hλ
2

being small positive quantities. In the analysis in Section 6, G(1, 0.005) is used as a prior

for all smoothing hyperparameters involved.

In the case when the intercept term α is not fixed to zero (intercept of error distri-

butions), a highly dispersed normal distribution has been taken for p(α). In the analysis

in Section 6, p(α) = N (0, 100).

Finally, for the precision τ−2 we have taken a highly dispersed Gamma distribution.

In the analysis in Section 6, p(τ−2) = Gamma(1, 0.005). Alternatively a uniform distri-

bution on τ which is sometimes preferred for hierarchical models (Gelman et al., 2004,

pp. 136, 390) could be taken.

4.2.4 Prior for the regression parameters

Finally, the prior distributions of the regression parameters, p(β) and p(δ), are taken

to be products of independent highly dispersed normal distributions. In the analysis in

Section 6, we used the product of N (0, 100) distributions.

4.3 Prior distribution in Model D

In Model D we have

p
(

di, bi

∣

∣ Dd,b

)

= p
(

di, bi

∣

∣ D
)

, p
(

Dd,b

)

= p
(

D
−1

)

.

According to Section 3.3, p(di, bi |D) is a density of N2

(

0, D
)

. The prior distribution

p(D−1) for the inverse of the covariance matrix of the random effects is taken to be

a Wishart distribution with df degrees of freedom and a scale matrix S. A diffuse prior

is obtained, e.g., with df = 1 + c1, S = diag(c2, c2), where c1 is a small and c2 a large

positive constant. For the analysis in Section 6 using Model D, we used df = 1.5 and
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S = diag(100, 100).

4.4 Posterior distribution

Let Ci,l, denote the censoring process to which the (i, l)-th observation is imposed and

let [data] = {uL
i,l, uU

i,l, vL
i,l, vU

i,l, C i,l}i,l. The joint posterior distribution of the parameter

vector θ and the vector of allocations ψ introduced in Section 4.2 is obtained using

Bayes’ formula as p
(

θ, ψ
∣

∣ [data]
)

∝ p
(

[data]
∣

∣ θ, ψ
)

× p
(

θ, ψ
)

, where p
(

θ, ψ
)

has been

described in Sections 4.2 and 4.3.

Due to a hierarchical structure of the model, the data are conditionally independent,

given the “true” onset and event times ui,l and vi,l that form a part of θ, of all other

components of the vectors θ and ψ. That is p
(

[data]
∣

∣ θ, ψ
)

= p
(

[data]
∣

∣ {ui,l}i,l, {vi,l}i,l

)

.

This can further be decomposed as

p
(

[data]
∣

∣{ui,l}i,l, {vi,l}i,l

)

=
N
∏

i=1

ni
∏

l=1

{

p
(

uL
i,l, uU

i,l

∣

∣ui,l, Ci,l

)

× p
(

vL
i,l, vU

i,l

∣

∣vi,l, Ci,l

)

× p
(

Ci,l

)

}

.

(13)

The conditional distributions p
(

uL
i,l, uU

i,l

∣

∣ ui,l, Ci,l

)

and p
(

vL
i,l, vU

i,l

∣

∣ vi,l, Ci,l

)

are degen-

erate. For example with interval censoring resulting from checking the survivor sta-

tus at (random) times Ci,l = {ci,l,0, . . . , ci,l,S+1}, where ci,l,0 = 0, ci,l,S+1 = ∞ we

have p
(

uL
i,l = ci,l,s, uU

i,l = ci,l,s+1

∣

∣ ui,l, C i,l

)

= I[ci,l,s ≤ ui,l ≤ ci,l,s+1], s = 0, . . . , S.

With standard right-censoring driven by the (random) censoring time Ci,l we have

p
(

uL
i,l = uU

i,l = ui,l

∣

∣ ui,l, Ci,l = ci,l

)

= I[ui,l ≤ ci,l] and p
(

uL
i,l = ci,l, uU

i,l = ∞
∣

∣ui,l, Ci,l =

ci,l

)

= I[ui,l > ci,l].

Finally, provided that the censoring is independent and noninformative, the term

p
(

Ci,l

)

in (13) acts only as a multiplicative constant with respect to the model parameters

θ and ψ. So for the purpose of the posterior calculations, we do not have to specify

a model for the censoring process.

16



The hierarchical structure of both the prior and posterior distribution for proposed

models may best be seen from the directed acyclic graphs. These can be found in Komárek

and Lesaffre (2007).

4.5 Markov chain Monte Carlo

Inference will be based on a sample from the posterior distribution obtained using the

MCMC methodology. For (blocks) of model parameters θ and ψ we derived full condi-

tional distributions and used basically the Gibbs algorithm (Gelfand and Smith, 1990)

to perform one iteration of the MCMC. When the full conditional distribution was not of

a standard form, we exploited either adaptive rejection sampling (Gilks and Wild, 1992)

or slice sampling (Neal, 2003). Details can be found in Komárek and Lesaffre (2007).

A software package, called bayesSurv, was written combining the R language (R

Development Core Team, 2006) with programs in C++, and is available from the Com-

prehensive R Archive Network on http://www.R-project.org.

4.6 Posterior predictive distribution

Closely related to the posterior distribution is the posterior predictive distribution of

the onset time or time-to-event for a new subject with covariate values zpred and xpred.

The posterior predictive survivor or hazard function can be computed easily from the

MCMC output. For instance, the posterior predictive survivor function for the time-to-

event equals

S
(

t
∣

∣ [data], xpred

)

=

∫

S
(

t
∣

∣θ, [data], xpred

)

p
(

θ
∣

∣ [data]
)

dθ.

Further,

S
(

t
∣

∣ θ, [data], xpred

)

= S
(

t
∣

∣ θ, xpred

)

=

K
∑

j=−K

wε
j

[

1−Φ
{ log(t) − αε − b − β′xpred − τ εµε

j

τ εσε

}

]

,
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where Φ is a cumulative distribution function of N (0, 1). Using the MCMC, this quantity

is estimated by

Ŝ
(

t
∣

∣ [data], xpred

)

= M−1
M

∑

m=1

S
(

t
∣

∣ θ(m), xpred

)

,

where θ(m) states for the values of unknown parameters sampled at the mth iteration

of the MCMC consisting of a total of M iterations. All values of θ(m) are directly

available, except b(m) which must be additionally sampled from the normal mixture

given by G(m)
b in Model I or from the zero mean normal distribution with the variance

equal to the diagonal element of the matrix D
(m) in Model D. Analogously, the posterior

predictive survivor function for the onset time or posterior predictive hazard functions

are computed.

5 Simulation study

To validate our approach we conducted a simulation study which mimics to a certain ex-

tent the Signal Tandmobielr data. From each of 150 clusters we simulated 4 observations.

The onset time Ui,l and the time-to-event Ti,l, i = 1, . . . , 150, l = 1, . . . , 4 were generated

according to the AFT models (1) and (2) with zi,l = (zi,l,1, zi,l,2)
′, δ = (0.20, −0.10)′

and xi,l = (xi,l,1, xi,l,2)
′, β = (0.30, −0.15)′. The covariates zi,l,1 and xi,l,1 are continuous

and generated independently from a uniform distribution on (0, 1), the covariates zi,l,2

and xi,l,2 are binary with the equal probabilities for zeros and ones.

The error terms ζi,l and εi,l were obtained from ζi,l = αζ + τ ζ ζ∗

i,l (αζ = 1.75, ζ∗

i,l ∼ g∗

ζ )

and εi,l = αε + τ ε ε∗i,l (αε = 2.00, ε∗i,l ∼ g∗

ε), respectively. Further, the random effects di

and bi were obtained from di = τd d∗

i (d∗

i ∼ g∗

d) and bi = τ b b∗i (b∗i ∼ g∗

b ), respectively. The

scale parameters were chosen such that (τd)2 + (τ ζ)2 = τ 2
onset = 0.1 and (τ b)2 + (τ ε)2 =

τ 2
event = 1.0, see below for the individual values. The choice of τ 2

onset and τ 2
event was

motivated by the results of the analysis in Section 6.

18



Two scenarios for the distributional parts of the model were considered. In scenario

I, both densities g∗

ζ and g∗

ε (of the error terms) are a mixture of normals, i.e., equal to

0.4N (−2.000, 0.25) + 0.6N (1.333, 0.36) and standardized to have unit variance. For

the densities gd∗ and g∗

b (of the standardized random effects) the density of a standardized

extreme value of minimum distribution was taken. In scenario II, we reversed the setting,

i.e., we have taken an extreme value distribution for the error terms and a normal mixture

for the random effects. Additionally, within each scenario, the variances τ 2
onset and τ 2

event

were decomposed such that the ratios τd/τ ζ = τ b/τ ε were equal to 5, 3, 2, 1, 1/2, 1/3,

and 1/5, respectively.

The true onset and event times were interval-censored by simulating the ‘visit’ times

for each subject in the data set. The first visit was drawn from N (1, 0.22). Each of the

distances between the consecutive visits was drawn from N (0.5, 0.052).

Table 1 gives the results for the regression parameters. It shows that the regression

parameters are estimated with only a minimal bias and with a reasonable precision. It is

further seen that the precision of the estimation decreases when the within-cluster vari-

ability (variance of the error terms) increases compared to the between-cluster variability

(variance of the random effects). In practice however, the between-cluster variability is

often much higher than the within-cluster variability. Furthermore, the shape of the

survivor curves is correctly estimated as is illustrated in Figure 1 which shows results

for the fitted survivor functions of the time-to-event Ti,l and selected simulation patterns

and combinations of covariates (results for the other simulation patterns or for the onset

time Ui,l were similar). Full results of the simulation study are given in Komárek and

Lesaffre (2007).

< Table 1 about here >

< Figure 1 about here >

19



6 Analysis of the Signal Tandmobielr data

We started with the Basic Analysis where we allowed for a different effect of the

covariates on both emergence and caries experience for the four permanent first molars.

Namely, the Basic Analysis was based on the AFT models (1) and (2) with the covariate

vector zi,l for emergence composed of gender, three dummies for tooth, and interaction

terms between gender and tooth. The covariate vector xi,l for the caries part of the model

was equal to the covariate vector zi,l extended by three dummy variables expressing the

status of the adjacent deciduous second molar: decayed, filled, missing due to caries with

sound being the baseline, by two binary covariates brushing (1 = daily, 0 = not daily) and

sealants (1 = present, 0 = not present), and by two dummy variables: pits and fissures,

total surface for plaque with no plaque as the baseline. Additionally, two-way interaction

terms between tooth and all remaining factors included in the model were involved.

Clinically, the permanent teeth cannot emerge during more than the first 5 years

after birth (see, e.g., Ekstrand, Christiansen, and Christiansen, 2003). For this reason

we subtracted 5 years from all observed times, i.e. log(Ui,l − 5) was used in the left-

hand side of the model formula (1). Note that this only changes the interpretation of the

emergence time which is now measured from 5 years of age and not from birth. However,

the time-to-caries is unchanged.

Based on the results for the Basic Analysis (see below) we conducted the Final

Analysis in which we omitted all two-way interactions with the covariate tooth and,

additionally, we binarized the covariates status and plaque. More specifically, for the

covariate status we put together the groups of decayed, filled and missing (dmf ) deciduous

molars, and for the covariate plaque we joined the groups with the plaque present in pits

and fissures and on total surface.

Decisions concerning the simplification of the model leading to the Final Analysis
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were based on (posterior) pseudo-contour probabilities P suggested by Held (2004, Sec-

tion 2.1). The pseudo-contour probability P is defined as 1 minus the content of the

(simultaneous) credible region, see Besag et al. (1995, p. 30), which just covers a vec-

tor of zeros. As such, it can be viewed as a Bayesian counterpart of classical two-sided

P -values.

Both analyses were performed using Model I. To explore possible dependency be-

tween emergence and caries child-specific random effects, we also performed the Final

Analysis using Model D. Finally, the question of whether the adjustment of the left-

censored emergence times using recorded eruption stages (see Section 2) has significant

influence is considered. To address this, we also conducted the Final Analysis using

Model I with the original left-censored emergence times. This will be referred to as

Model I.2.

Descriptions of these analyses using the R package bayesSurv can be found in Komárek

and Lesaffre (2007).

6.1 Basic Analysis

For each analysis we ran two chains, both sampling 250 000 values with 1:3 thinning.

Simulation of both chains (1.5 million MCMC iterations) took about 24 hours on a dual

AMD Opteron 250 processor with 2 GB RAM running Unix OS. The convergence was

evaluated by a critical examination of the trace and autocorrelation plots and using the

method of Gelman and Rubin (1992). From each chain we kept the last 50 000 values

for the inference.

In the Basic Analysis, we found out that all interaction terms with tooth are re-

dundant implying that the effect of all considered covariates is the same for all four

permanent first molars. For emergence, the pseudo-contour probability for tooth:gender

interaction was higher than 0.5. For the caries part of the model the pseudo-contour
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probabilities were higher than 0.5 for the two interactions of tooth with gender and

plaque and higher than 0.1 for the three interactions with brushing, sealants and status.

It seemed that the effect of the covariate tooth itself is not significant however we kept it

in the model as the question was also whether the emergence and caries timing are the

same for the four permanent first molars.

Further, for none of the four permanent first molars was a significant difference found

between the status groups decayed, filled or missing, and between the plaque groups

present in pits and fissures or present on total surface. This finding, together with

the fact that the group with extracted deciduous molar and the group with the plaque

present on total surface had very low prevalence (1.45% and 3.13%, respectively) led to

the simplification of these two covariates in the Final Analysis.

6.2 Final Analysis

Table 2 shows posterior medians, 95% highest posterior density (HPD) intervals for the

acceleration factors (exponentiated values of the regression parameters) and correspond-

ing pseudo-contour probabilities in the Final Analysis using all three considered models

(Model I, I.2, D). It is seen that neither for the emergence nor for the caries process

is there a significant difference between the four permanent first molars. However, the

molars of girls emerge significantly earlier than those of boys. With respect to caries

experience, the difference between boys and girls is not significant at 5%, however all

remaining covariates have a significant impact on the caries process. For example, the

fact that the neighboring deciduous second molar is either decayed or filled or extracted

due to caries accelerates the time to caries with a factor of 0.87 (Model I).

< Table 2 about here >
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A low value of the correlation coefficient between the emergence and caries random

effects has been observed in Model D. The posterior median and 95% HPD interval for

cor(di, bi) is −0.133 and (−0.196, −0.068), respectively. As it is seen from Table 2, the

assumption of the independence between the emergence and caries random effects did

not influence the results for the regression as both the posterior medians and 95% HPD

intervals for Model I and Model D are in the most cases practically the same.

Compared to Model I, Model I.2 led, not surprisingly, to a lower precision in

estimation (wider HPD intervals) and to slightly weaker covariate effects on the caries

(acceleration factors closer to 1). However, the key findings concerning the covariate

effects remain the same. We argue that the adjustment of the left-censored emergence

times for Model I according to the eruption stages as described in Section 2 was based

on scientifically confirmed clinical knowledge. That is why a higher precision of Model

I is not artificial or incorrect. Consequently, there is no reason to prefer Model I.2 to

Model I.

Figure 2 shows the posterior predictive survivor and hazard functions for the time-

to-caries on the upper right permanent first molar of boys and ‘the best’, ‘the worst’

and two intermediate combinations of covariates (the curves for the remaining teeth and

girls are similar). It is seen that when the teeth are daily brushed, plaque-free and

sealed the hazard for caries starts to increase approximately 1 year after emergence and

then remains almost constant. Whereas, when the teeth are not brushed daily and are

exposed to other risk factors the hazard starts to increase approximately 6 months after

emergence. After a period of constant risk, then the hazard starts to increase again.

The peak in the hazard for caries at approximately 1 year after emergence was also

observed by Leroy et al. (2005a) and can be explained by the fact that teeth are most

vulnerable for caries soon after emergence when the enamel is not yet fully developed.

This peak is also present, although with a different size and with a slight shift, for all
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covariate combinations. On the other hand, for covariate combinations reflecting good

oral health and hygiene habits, the hazard remains almost constant after the initial

period of highly increasing risk whereas for combinations of covariates reflecting bad oral

conditions the hazard starts to increase again approximately 3 years after emergence.

This shows clearly the relationship between caries experience and oral health and hygiene

habits.

< Figure 2 about here >

6.3 Discussion

One might ask a question why a relatively complex estimation using MCMC is needed

for the analysis of doubly-censored data. A necessity of the complex estimation might

be illustrated by comparison of our analysis of the Signal Tandmobielr data to a sim-

pler analysis of the same data performed by Leroy et al. (2005a,b) using a frequentist

approach, a GEE method. In the works Leroy et al. (2005a,b), doubly-interval-censored

caries times were changed into singly-censored ones using two approaches typical in such

situations. Unfortunately, both approaches are not completely appropriate, mainly due

to complication in the interpretation of the results.

The simplest approach to avoid doubly-censored data is by taking an exactly known

onset time which leads to simply-censored data. This approach was taken by Leroy et al.

(2005b) where the time-to-caries is defined as the time between birth and the time of

cavity. The risk for caries should be equal to zero during the period that the permanent

tooth has not emerged yet. However, this is not guaranteed with this approach. In fact,

the estimated model in Leroy et al. (2005b) shows a non-zero risk for caries development

before permanent teeth have emerged. Furthermore, any survival model requires that the

covariate values are known at each time point starting from the defined onset. Except
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for gender, this was not the case in Leroy et al. (2005b).

A second common approach to dealing with doubly-interval-censored data assumes

that the time-to-event T is simply-interval-censored with the observed interval [vL −

uU , vU − uL]. This is indeed the interval where, given the data, the time-to-event T

may lie. However, the statistical analysis based on such intervals is incorrect unless the

distribution of the onset time U is uniform and U and T are independent (De Gruttola

and Lagakos, 1989). This approach was taken in Leroy et al. (2005a).

Finally, given the reported time needed to run the MCMC simulation, one might

find our approach impractical. However, our analysis involved more than 12 000 obser-

vations whereas most datasets encountered in practice are much smaller, implying much

shorter computation time. Furthermore, in the exploratory parts of the analysis, shorter

chains or random subsamples of the data can be used which significantly reduces the

computation time.

7 Conclusions

A semiparametric method to perform a regression analysis with clustered doubly-interval-

censored data was suggested in this paper. We opted for a fully Bayesian approach and

MCMC methodology. Note however, that the Bayesian approach is used only for tech-

nical convenience to avoid difficult optimizations unavoidable with classical maximum-

likelihood based estimation. We use a penalty-like prior distribution for the transformed

mixture weights a and vague priors for all remaining parameters. Taking account of this,

we conclude that similar results would have been obtained if the penalized maximum-

likelihood estimation had been used.

Owing to flexible distributional assumptions it was unnecessary to perform the clas-

sical checks for correct distributional specification. Clearly, this step cannot be avoided

25



when using fully parametric methods. However, for censored data (let alone doubly-

interval-censored data) this is far from trivial. As illustrated in Section 6, important

new findings concerning the distribution of the event time, derived, e.g., from the shape

of the hazard function, can be discovered without conventional parametric assumptions.

Finally, we have to admit that some covariates used in our dental application should

actually be treated as time-dependent. Unfortunately, with our and any other method

where the distribution of the event time is specified using a density and not using an in-

stantaneous quantity like the hazard function, inclusion of time-dependent covariates is

difficult.
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Figure 1: Simulation study. Results for the survivor functions of the time-to-event part of

the model for the combination of covariates xi,l = (0.5, 1)′. Solid line: pointwise average

over the predictive survivor functions at each simulation, dashed line: true survivor

function (often superimposed by the solid line), grey lines: simulation based pointwise

equal-tail 95% confidence interval. Scenario I is found in the left part, scenario II in the

right part of the figure.
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Figure 2: Signal Tandmobielr data, Final Analysis, Model I. Posterior predictive

caries free (survivor) and caries hazard curves for tooth 16 of boys and the following

combinations of covariates: solid and dashed lines for no plaque, present sealing, daily

brushing and sound primary second molar (solid line) or dmf primary second molar

(dashed line), dotted and dotted-dashed lines for present plaque, no sealing, not daily

brushing and sound primary second molar (dotted line) or dmf primary second molar

(dotted-dashed line).
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τd/τ ζ = τ b/τ ε δ1 = 0.20 δ2 = −0.10 β1 = 0.30 β2 = −0.15

Scenario I

5 0.1995 (0.56) −0.1008 (0.17) 0.3020 (2.12) −0.1493 (0.64)

3 0.2001 (0.56) −0.0998 (0.27) 0.3138 (12.51) −0.1491 (3.20)

2 0.1976 (1.30) −0.1000 (0.37) 0.2982 (30.55) −0.1504 (11.75)

1 0.1988 (1.84) −0.0998 (0.76) 0.3043 (29.04) −0.1478 (7.55)

1/2 0.1996 (3.14) −0.1000 (0.92) 0.3015 (18.07) −0.1475 (9.66)

1/3 0.2010 (3.74) −0.1006 (1.02) 0.3111 (34.67) −0.1498 (11.88)

1/5 0.1997 (3.35) −0.1017 (1.14) 0.3036 (33.00) −0.1493 (9.03)

Scenario II

5 0.1996 (0.93) −0.1005 (0.30) 0.2983 (9.40) −0.1477 (2.74)

3 0.2008 (2.10) −0.1013 (0.76) 0.2950 (22.85) −0.1526 (7.55)

2 0.2003 (3.44) −0.0990 (1.27) 0.3060 (42.02) −0.1458 (13.01)

1 0.1963 (8.73) −0.0991 (3.45) 0.2988 (105.54) −0.1487 (32.60)

1/2 0.1945 (14.46) −0.0973 (6.30) 0.3035 (144.59) −0.1507 (48.40)

1/3 0.2010 (16.73) −0.0986 (5.90) 0.2963 (157.36) −0.1456 (50.06)

1/5 0.2029 (18.12) −0.1001 (4.12) 0.3082 (125.51) −0.1421 (42.10)

Table 1: Simulation study. Results for the regression parameters. Mean of the estimates

over the simulations and MSE (×10−4).
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Model I Model I.2 Model D

Posterior 95% HPD Posterior 95% HPD Posterior 95% HPD

Effect median interval median interval median interval

Emergence

Tooth P > 0.5 P > 0.5 P > 0.5

tooth 26 0.997 (0.989, 1.005) 1.006 (0.869, 1.158) 0.998 (0.991, 1.005)

tooth 36 1.001 (0.993, 1.010) 0.928 (0.806, 1.068) 1.002 (0.994, 1.009)

tooth 46 1.002 (0.994, 1.011) 1.198 (1.039, 1.401) 1.004 (0.996, 1.011)

Gender P = 0.008 P = 0.039 P = 0.005

girl 0.977 (0.962, 0.993) 0.897 (0.806, 0.988) 0.976 (0.958, 0.992)

Caries

Tooth P > 0.5 P > 0.5 P > 0.5

tooth 26 0.994 (0.962, 1.024) 0.991 (0.969, 1.013) 0.995 (0.965, 1.025)

tooth 36 0.991 (0.956, 1.026) 1.000 (0.975, 1.024) 1.000 (0.966, 1.034)

tooth 46 0.984 (0.949, 1.019) 0.978 (0.955, 1.001) 0.989 (0.958, 1.023)

Gender P = 0.085 P = 0.083 P = 0.106

girl 0.931 (0.859, 1.011) 0.963 (0.923, 1.005) 0.934 (0.860, 1.011)

Brushing P < 0.001 P < 0.001 P < 0.001

daily 1.400 (1.263, 1.547) 1.173 (1.103, 1.244) 1.622 (1.447, 1.796)

Sealants P < 0.001 P < 0.001 P < 0.001

present 1.126 (1.059, 1.193) 1.092 (1.057, 1.132) 1.131 (1.067, 1.196)

Plaque P < 0.001 P < 0.001 P < 0.001

present 0.892 (0.845, 0.936) 0.935 (0.902, 0.968) 0.900 (0.853, 0.947)

Status P < 0.001 P < 0.001 P < 0.001

dmf 0.870 (0.825, 0.913) 0.933 (0.901, 0.962) 0.869 (0.828, 0.910)

Table 2: Signal Tandmobielr data, Final Analysis. Posterior medians and 95% highest

posterior density intervals for the acceleration factors (exp(δ) and exp(β)) parameters.
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