NMST547
Advanced Aspects of the R Environment
Sample Report prepared using Sweave
Arnošt Komárek
December 7, 2023

This document was prepared using Sweave (Leisch, 2002) in R (R Core Team, 2023), version 4.3.2 (2023-10-31). Additionally, the contributed packages colorspace (Zeileis et al., 2020, 2009) and xtable (Dahl et al., 2019) were used.

1 Some Sweave examples

- Here we define our working directory.

```
> ROOT <- "/home/komarek/teach/mff_2023/nmst547_AdvRko/Tutorial11/"
> setwd(ROOT)
```

- Now, we load needed extension packages and provide our smaller functions.

```
> library("colorspace")
> library("xtable")
> source(paste(ROOT, "../Tutorial05/formatOut.R", sep = ""))
> source(paste(ROOT, "../Tutorial05/funTabDescr.R", sep = ""))
```

- Read data (the same as those used the previous time, now directly including some derived variables):

```
> print(load(paste(ROOT, "../TutorialO5/Data/nelsNE2.RData", sep = "")))
[1] "varlabels2" "nelsNE2"
```

- Basic descriptive statistics of some variables:

```
> VARS <- c("fam.comp", "gender", "f2.sco.math", "f2.perc.math")
> summary(nelsNE2[, VARS])
```


- Here, descriptive statistics are calculated but not shown:

```
> sumnelsNE<- summary(nelsNE2[, VARS])
```

- Here, descriptive statistics are calculated, results shown but the code is not shown:

fam. comp	gender	f2.sco.math	f2.perc.math
Mother and father:1601	Male :1140	Min. $: 30.17$	Min. : 1.00
Other : 508	Female:1172	1st Qu.:46.97	1st Qu.:40.00
NA's : 203		Median :54.61	Median :65.00
		Mean :53.86	Mean :60.97
		3rd Qu.:61.76	3rd Qu.:85.00
		Max. :71.49	Max. :99.00
		NA's : 1	NA's : 1

- Here, descriptive statistics are calculated but neither results nor the code are shown:
- Here, only code is shown but nothing calculated:

```
> summary(nelsNE2[, VARS])
```

- It is also possible to use a calculated number (calculated numbers) in the body of the text:

```
> meanScoMath <- mean(nelsNE2[, "f2.sco.math"], na.rm = TRUE)
> meanScoMath <- format(round(meanScoMath, 2), nsmall = 2)
> print(meanScoMath)
```

[1] "53.86"

Mean score in mathematics is $53.86(N=2311)$.

- If long code is shown, we may arrange that it is automatically formatted to fit on the page:
> meanScoMath <- format(round(mean(nelsNE2[, "f2.sco.math"], na.rm = TRUE),
$+\quad 2)$, nsmall = 2)
- Or we may take care ourselves for format of the code:
> meanScoMath <- format(round(mean(nelsNE2[, "f2.sco.math"],
$+$
na.rm $=$ TRUE), 2), nsmall = 2)

2 Tables

Results are seen in Table 1. Slightly extended results (by results of a t-test) are shown in Table 2.

	Mean	Std. Dev.	Std. Error	Median	Q1	Q3	N
All	54.05	9.72	0.21	54.87	47.35	61.86	2108
Mother and father	54.89	9.57	0.24	55.97	48.37	62.74	1600
Other	51.41	9.73	0.43	52.45	43.70	58.89	508

Table 1: Descriptive statistics of score in mathematics by family composition.

Table 2: Descriptive statistics of score in mathematics by family composition.

Score in mathematics by Family composition					
Group	Mean (S.E.)	Std. Dev.	Median	$\mathrm{Q}_{1}-\mathrm{Q}_{3}$	N
All	54.05 (0.21)	9.72	54.87	47.35-61.86	2108
Mother and father	54.89 (0.24)	9.57	55.97	48.37-62.74	1600
Other	51.41 (0.43)	9.73	52.45	$43.70-58.89$	508
Difference in means:	3.48 (2.51,	$45)^{\dagger}$,	$<0.001{ }^{\ddagger}$		
${ }^{\dagger} 95 \%$ confidence interval				Welch two-sam	-test

3 Figures

- Define what should be conducted before each plotting.

```
> figSweave <- function(){
+ par(bty = "n", mar = c(5, 4, 4, 1) + 0.1)
+ ## WHATEVER OTHER R COMMANDS
+ }
> options(SweaveHooks = list(fig = figSweave))
```

- Figure which is drawn, saved as PDF and automatically placed in a text (see Figure 1). Note that pdfIATEX must then be used to process the $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ file.
- Figure which was drawn, saved as PDF but it is nowhere placed automatically. Placing the figure into the document (see Figure 2) is the author's responsibility.

```
> COL2 <- terrain_hcl(2)
> plot(f2.sco.math ~ fam.comp, data = nelsNE2, col = COL2,
+ xlab = "Family composition", ylab = "Score in mathematics")
```

```
> COL <- rainbow_hcl(2, start = 90)
> plot(f2.sco.math ~ fam.comp, data = nelsNE2, col = COL,
+ xlab = "Family composition", ylab = "Score in mathematics")
```


Figure 1: Score in mathematics by family composition.

Figure 2: Score in mathematics by family composition (again).

- It is also possible to use standard functions pdf(), postscript(), png() etc. to save a plot in an arbitrary format on an arbitrary place with an arbitrary filename:

```
> postscript("./Figures/fig-boxplot1.eps", width = 6, height = 6,
+ horizontal = FALSE, paper = "special")
> plot(f2.sco.math ~ fam.comp, data = nelsNE2, col = COL,
+ xlab = "Family composition", ylab = "Score in mathematics")
> dev.off()
> #
> RES <- 500
> png("./Figures/fig-boxplot1.png", width = 6*RES, height = 6*RES, res = RES)
> plot(f2.sco.math ~ fam.comp, data = nelsNE2, col = COL,
+ xlab = "Family composition", ylab = "Score in mathematics")
> dev.off()
```


4 Results of a more extensive analysis

Results of analysis of dependence of score in mathematics on family composition is shown in Table 3 and on Figure 3. All results are then in Tables 4-19 and on Figures 4-19.

Table 3: Analysis of score in mathematics by family composition.

| Math score by Family composition | | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Group | Mean (S.E.) | Std. Dev. | Median | $\mathrm{Q}_{1}-\mathrm{Q}_{3}$ | N |
| All | $54.05(0.21)$ | 9.72 | 54.87 | $47.35-61.86$ | 2108 |
| Mother and father | $54.89(0.24)$ | 9.57 | 55.97 | $48.37-62.74$ | 1600 |
| Other | $51.41(0.43)$ | 9.73 | 52.45 | $43.70-58.89$ | 508 |
| Difference in means: | $\mathbf{3 . 4 8}$ | $\mathbf{(2 . 5 1 , 4 . 4 5) ^ { \dagger }}$, | $\mathrm{P}:<\mathbf{0 . 0 0 1}^{\ddagger}$ | | |
| $\dagger 95 \%$ confidence interval | ${ }^{\ddagger}$ Welch two-sample t-test | | | | |

Figure 3: Score in mathematics by family composition (once again).

4.1 Math score by Family composition

Table 4: Analysis of Math score by Family composition.

Math score by Family composition					
Group	Mean (S.E.)	Std. Dev.	Median	$\mathrm{Q}_{1}-\mathrm{Q}_{3}$	N
All	$54.05(0.21)$	9.72	54.87	$47.35-61.86$	2108
Mother and father	$54.89(0.24)$	9.57	55.97	$48.37-62.74$	1600
Other	$51.41(0.43)$	9.73	52.45	$43.70-58.89$	508
Difference in means: $\mathbf{3 . 4 8}\left(\mathbf{(2 . 5 1 , 4 . 4 5) ^ { \dagger } ,}\right.$	P: $<\mathbf{0 . 0 0 1}^{\ddagger}$				
${ }^{\dagger} 95 \%$ confidence interval	${ }^{\ddagger}$ Welch two-sample t-test				

Family composition

Figure 4: Boxplots of Math score by Family composition.

4.2 Math score by Gender

Table 5: Analysis of Math score by Gender.

Math score by Gender					
Group	Mean (S.E.)	Std. Dev.	Median	$\mathrm{Q}_{1}-\mathrm{Q}_{3}$	N
All	$53.86(0.20)$	9.79	54.61	$46.97-61.76$	2311
Male	$54.25(0.30)$	9.97	55.37	$47.03-62.31$	1139
Female	$53.47(0.28)$	9.60	54.11	$46.91-61.19$	1172
Difference in means: 0.78	$(-0.01,1.58)^{\dagger}$,	P: 0.054^{\ddagger}			
${ }^{\dagger} 95 \%$ confidence interval			${ }^{\ddagger}$ Welch two-sample t-test		

Figure 5: Boxplots of Math score by Gender.

4.3 Math score by Math enrollment past 2 years

Table 6: Analysis of Math score by Math enrollment past 2 years.

Math score by Math enrollment past 2 years					
Group	Mean (S.E.)	Std. Dev.	Median	$\mathrm{Q}_{1}-\mathrm{Q}_{3}$	N
All	$54.19(0.20)$	9.66	55.15	$47.59-61.90$	2249
Yes	$54.72(0.20)$	9.42	55.80	$48.36-62.20$	2122
No	$45.43(0.83)$	9.33	42.98	$37.88-52.95$	127
Difference in means: $\mathbf{9 . 2 9}$	$\mathbf{(7 . 6 0 , 1 0 . 9 7})^{\dagger}$,	P: $<\mathbf{0 0 . 0 0 1}^{\ddagger}$			
${ }^{\dagger} 95 \%$ confidence interval			${ }^{\ddagger}$ Welch two-sample t-test		

Figure 6: Boxplots of Math score by Math enrollment past 2 years.

4.4 Math score by Arrested

Table 7: Analysis of Math score by Arrested.

Math score by Arrested					
Group	Mean (S.E.)	Std. Dev.	Median	$\mathrm{Q}_{1}-\mathrm{Q}_{3}$	N
All	$54.19(0.20)$	9.67	55.16	$47.56-61.92$	2246
Never	$54.35(0.21)$	9.62	55.31	$47.80-62.08$	2187
Ever	$48.27(1.29)$	9.89	48.87	$39.11-56.74$	59
Difference in means: $\mathbf{6 . 0 9}$	$\mathbf{(3 . 4 8 , \mathbf { 8 . 6 9 }) ^ { \dagger } ,}$	$\mathrm{P}:<\mathbf{0 . 0 0 1}^{\ddagger}$			
${ }^{\ddagger} 95 \%$ confidence interval			${ }^{\ddagger}$ Welch two-sample t-test		

Figure 7: Boxplots of Math score by Arrested.

4.5 Science score by Family composition

Table 8: Analysis of Science score by Family composition.

Family composition

Figure 8: Boxplots of Science score by Family composition.

4.6 Science score by Gender

Table 9: Analysis of Science score by Gender.

Science score by Gender					
Group	Mean (S.E.)	Std. Dev.	Median	$\mathrm{Q}_{1}-\mathrm{Q}_{3}$	N
All	$53.51(0.21)$	9.82	54.53	$46.00-61.74$	2294
Male	$54.82(0.30)$	9.93	56.22	$47.72-63.36$	1133
Female	$52.23(0.28)$	9.54	53.15	$44.86-59.95$	1161
Difference in means: $\mathbf{2 . 5 9}$	$\mathbf{(1 . 7 9 , 3 . 3 9) ^ { \dagger } ,}$	$\mathrm{P}:<\mathbf{0 . 0 0 1}^{\ddagger}$			
${ }^{\dagger} 95 \%$ confidence interval			${ }^{\ddagger}$ Welch two-sample t-test		

Figure 9: Boxplots of Science score by Gender.

4.7 Science score by Math enrollment past 2 years

Table 10: Analysis of Science score by Math enrollment past 2 years.

Science score by Math enrollment past 2 years					
Group	Mean (S.E.)	Std. Dev.	Median	$\mathrm{Q}_{1}-\mathrm{Q}_{3}$	N
All	$53.77(0.21)$	9.75	54.85	$46.39-61.90$	2233
Yes	$54.14(0.21)$	9.66	55.39	$47.02-62.17$	2108
No	$47.53(0.81)$	9.01	47.09	$40.59-53.66$	125
Difference in means: $\mathbf{6 . 6 1}$	$\mathbf{(4 . 9 6 , \mathbf { 8 . 2 6 }) ^ { \dagger } ,}$	$\mathrm{P}:<\mathbf{0 . 0 0 1}^{\ddagger}$			
${ }^{\ddagger} 95 \%$ confidence interval			${ }^{\ddagger}$ Welch two-sample t-test		

Figure 10: Boxplots of Science score by Math enrollment past 2 years.

4.8 Science score by Arrested

Table 11: Analysis of Science score by Arrested.

| Science score by Arrested | | | | | |
| :--- | :--- | ---: | ---: | :---: | ---: | ---: |
| Group | Mean (S.E.) | Std. Dev. | Median | $\mathrm{Q}_{1}-\mathrm{Q}_{3}$ | N |
| All | $53.78(0.21)$ | 9.75 | 54.87 | $46.40-61.90$ | 2230 |
| Never | $53.93(0.21)$ | 9.64 | 54.95 | $46.72-61.91$ | 2172 |
| Ever | $48.01(1.57)$ | 11.95 | 45.76 | $37.97-58.72$ | 58 |
| Difference in means: $\mathbf{5 . 9 2}$ | $(\mathbf{2 . 7 5}, \mathbf{9 . 0 9})^{\dagger}$, | $\mathrm{P}:<\mathbf{0 . 0 0 1}^{\ddagger}$ | | | |
| ${ }^{\dagger} 95 \%$ confidence interval | | | ${ }^{\ddagger}$ Welch two-sample t-test | | |

Figure 11: Boxplots of Science score by Arrested.

4.9 Social science score by Family composition

Table 12: Analysis of Social science score by Family composition.

| Social science score by Family composition | | | | | |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: |
| Group | Mean (S.E.) | Std. Dev. | Median | $\mathrm{Q}_{1}-\mathrm{Q}_{3}$ | N |
| All | $53.51(0.21)$ | 9.47 | 54.40 | $46.03-61.48$ | 2081 |
| Mother and father | $54.25(0.24)$ | 9.36 | 55.28 | $46.91-61.95$ | 1584 |
| Other | $51.15(0.42)$ | 9.42 | 51.33 | $44.31-58.73$ | 497 |
| Difference in means: $\mathbf{3 . 1 0}$ | $\mathbf{(2 . 1 5 , 4 . 0 5) ^ { \dagger } ,}$ | $\mathrm{P}:<\mathbf{0 . 0 0 1}^{\ddagger}$ | | | |
| \dagger 95\% confidence interval | | | | | |

Family composition

Figure 12: Boxplots of Social science score by Family composition.

4.10 Social science score by Gender

Table 13: Analysis of Social science score by Gender.

Social science score by Gender							
Group	Mean (S.E.)	Std. Dev.	Median	$\mathrm{Q}_{1}-\mathrm{Q}_{3}$	N		
All	$53.24(0.20)$	9.52	53.85	$45.74-61.30$	2275		
Male	$53.99(0.29)$	9.78	55.15	$46.19-62.11$	1125		
Female	$52.50(0.27)$	9.19	52.52	$45.30-60.36$	1150		
Difference in means: $\mathbf{1 . 4 9}$	$\mathbf{(0 . 7 1 , \mathbf { 2 . 2 8 }) ^ { \dagger } ,}$	$\mathrm{P}:<\mathbf{0 . 0 0 1}{ }^{\ddagger}$					
\dagger 95\% confidence interval			Welch two-sample t-test				

Figure 13: Boxplots of Social science score by Gender.

4.11 Social science score by Math enrollment past 2 years

Table 14: Analysis of Social science score by Math enrollment past 2 years.

Social science score by Math enrollment past 2 years					
Group	Mean (S.E.)	Std. Dev.	Median	$\mathrm{Q}_{1}-\mathrm{Q}_{3}$	N
All	53.52 (0.20)	9.43	54.29	46.06-61.44	2216
Yes	53.84 (0.20)	9.34	54.83	46.44-61.60	2094
No	48.10 (0.85)	9.37	46.54	41.46-54.92	122
Difference in means: 5.74			47) ${ }^{\dagger}$,	$\mathrm{P}:<\mathbf{0 . 0 0 1}^{\ddagger}$	
${ }^{\dagger} 95 \%$ co	dence interval			${ }^{\ddagger}$ Welch two-sam	est

Figure 14: Boxplots of Social science score by Math enrollment past 2 years.

4.12 Social science score by Arrested

Table 15: Analysis of Social science score by Arrested.

| Social science score by Arrested | | | | | |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: |
| Group | Mean (S.E.) | Std. Dev. | Median | $\mathrm{Q}_{1}-\mathrm{Q}_{3}$ | N |
| All | $53.52(0.20)$ | 9.44 | 54.27 | $46.06-61.45$ | 2213 |
| Never | $53.68(0.20)$ | 9.39 | 54.53 | $46.20-61.55$ | 2155 |
| Ever | $47.61(1.24)$ | 9.41 | 47.42 | $41.21-55.07$ | 58 |
| Difference in means: $\mathbf{6 . 0 7}$ | $\mathbf{(3 . 5 7 ,} \mathbf{8 . 5 8})^{\dagger}$, | $\mathrm{P}:<\mathbf{0 . 0 0 1}^{\ddagger}$ | | | |
| $\dagger 95 \%$ confidence interval | | | ${ }^{\ddagger}$ Welch two-sample t-test | | |

Figure 15: Boxplots of Social science score by Arrested.

4.13 Reading score by Family composition

Table 16: Analysis of Reading score by Family composition.

| Reading score by Family composition | | | | | |
| :--- | :---: | ---: | ---: | ---: | ---: | ---: |
| Group | Mean (S.E.) | Std. Dev. | Median | $\mathrm{Q}_{1}-\mathrm{Q}_{3}$ | N |
| All | $53.38(0.21)$ | 9.53 | 54.86 | $46.39-61.08$ | 2107 |
| Mother and father | $53.85(0.24)$ | 9.56 | 55.54 | $47.03-61.82$ | 1600 |
| Other | $51.92(0.41)$ | 9.30 | 53.40 | $45.16-59.16$ | 507 |
| Difference in means: $\mathbf{1 . 9 3}$ | $(\mathbf{0 . 9 9 , 2 . 8 7})^{\dagger}$, | $\mathrm{P}:<\mathbf{0 . 0 0 1}^{\ddagger}$ | | | |
| ${ }^{\dagger} 95 \%$ confidence interval | ${ }^{\ddagger}$ Welch two-sample t-test | | | | |

Family composition

Figure 16: Boxplots of Reading score by Family composition.

4.14 Reading score by Gender

Table 17: Analysis of Reading score by Gender.

Reading score by Gender					
Group	Mean (S.E.)	Std. Dev.	Median	$\mathrm{Q}_{1}-\mathrm{Q}_{3}$	N
All	$53.06(0.20)$	9.69	54.47	$45.80-60.98$	2306
Male	$51.77(0.30)$	10.12	53.11	$43.76-60.23$	1137
Female	$54.31(0.27)$	9.08	55.81	$48.16-61.76$	1169
Difference in means: $\mathbf{- 2 . 5 4}$	$\mathbf{(- 3 . 3 3 ,}, \mathbf{- 1 . 7 6})^{\dagger}$,	$\mathrm{P}:<\mathbf{0 . 0 0 1}{ }^{\ddagger}$			
${ }^{\dagger}$ 95\% confidence interval	${ }^{\ddagger}$ Welch two-sample t-test				

Figure 17: Boxplots of Reading score by Gender.

4.15 Reading score by Math enrollment past 2 years

Table 18: Analysis of Reading score by Math enrollment past 2 years.

Reading score by Math enrollment past 2 years					
Group	Mean (S.E.)	Std. Dev.	Median	$\mathrm{Q}_{1}-\mathrm{Q}_{3}$	N
All	53.30 (0.20)	9.62	54.78	46.31-61.11	2244
Yes	53.68 (0.21)	9.49	55.22	46.79-61.41	2117
No	46.90 (0.84)	9.49	47.06	39.45-53.14	127
Difference in means: $\mathbf{6 . 7}$		79 (5.07,	.50) ${ }^{\dagger}$,	P: <0.001 ${ }^{\ddagger}$	
${ }^{\dagger} 95 \%$	nce interval			Welch two-s	

Figure 18: Boxplots of Reading score by Math enrollment past 2 years.

4.16 Reading score by Arrested

Table 19: Analysis of Reading score by Arrested.

Reading score by Arrested					
Group	Mean (S.E.)	Std. Dev.	Median	$\mathrm{Q}_{1}-\mathrm{Q}_{3}$	N
All	$53.31(0.20)$	9.61	54.81	$46.32-61.14$	2241
Never	$53.50(0.20)$	9.53	54.94	$46.46-61.22$	2182
Ever	$46.49(1.31)$	10.09	47.06	$36.50-52.50$	59
Difference in means: $\mathbf{7 . 0 1}$	$(\mathbf{4 . 3 5 , 9 . 6 6})^{\dagger}$,	$\mathrm{P}:<\mathbf{0 . 0 0 1}{ }^{\ddagger}$			
${ }^{\dagger} 95 \%$ confidence interval			${ }^{\ddagger}$ Welch two-sample t-test		

Figure 19: Boxplots of Reading score by Arrested.

References

Dahl, D. B., Scott, D., Roosen, C., Magnusson, A., and Swinton, J. (2019). xtable: Export tables to $L A T_{E} X$ or HTML. URL http://CRAN.R-project.org/package=xtable. R package version 1.8-4.

Leisch, F. (2002). Dynamic generation of statistical reports using literate data analysis. In Härdle, W. and Rönz, B., editors, COMPSTAT 2002 - Proceedings in Computational Statistics, pages 575-580, Heidelberg, 2002. Physica-Verlag.

R Core Team (2023). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.

Zeileis, A., Hornik, K., and Murrell, P. (2009). Escaping RGBland: Selecting colors for statistical graphics. Computational Statistics and Data Analysis, 53(9), 3259-3270. doi:10.1016/j.csda.2008.11.033.

Zeileis, A., Fisher, J. C., Hornik, K., Ihaka, R., McWhite, C. D., Murrell, P., StaufFer, R., and Wilke, C. O. (2020). colorspace: A toolbox for manipulating and assessing colors and palettes. Journal of Statistical Software, 96(1), 1-49. doi:10.18637/jss.v096.i01.

