Foundations of Proot Complexity: Bounded
Arithmetic and Propositional Translations

Stephen Cook and Phuong Nguyen
(©Copyright 2004, 2005, 2006

October 9, 2006

Preface
(Preliminary Version)

This book studies logical systems which use restricted reasoning based on
concepts from computational complexity. The underlying motivation is to de-
termine the complexity of the concepts needed to prove mathematical theo-
rems. The complexity classes of interest lie mainly between the basic class
ACO(characterized by polynomial-size families of bounded-depth circuits), and
the polynomial hierarchy PH, and includes the sequence

AC’ c TC'CNC!'C P CPH (1)

We associate with each of these classes a logical theory and a propositional proof
system, where the proof system can be considered a nonuniform version of the
universal (or sometimes the bounded) fragment of the theory. The functions
definable in the logical theory are those associated with the complexity class,
and (in some cases) the lines in a polynomial size proof in the propositional
system express concepts in the complexity class. This three-way association for
the above classes is depicted as follows:

class ACY TC' NC' P PH
theory V© vTc’ VNC' TV' Vv (2)
system AC"-Frege TC’-Frege Frege eFrege (G;)

Consider, for example, the class NC'. The uniform version is ALogTime,
the class of problems solvable by an alternating Turing machine in time O(logn).
The definable functions in the associated theory VNC! are the NC* functions,
i.e., those functions whose bit graphs are NC! relations. A problem in nonuni-
form NC! is defined by a polynomial-size family of log-depth Boolean circuits,
or equivalently a polynomial-size family of propositional formulas. The cor-
responding propositional proof systems are called Frege systems, and are de-
scribed in standard logic textbooks: a Frege proof of a tautology A consists of
a sequence of propositional formulas ending in A, where each formula is either
an axiom or follows from earlier formulas by a rule of inference. Universal theo-
rems of VNC! translate into polynomial-size families of Frege proofs. Finally,
VNC! proves the soundness of Frege systems, but not of any more powerful
propositional proof system.

A common example used to illustrate the complexity of the concepts needed
to prove a theorem is the Pigeonhole Principle (PHP). Our version states that if
n+ 1 pigeons are placed in n holes, then some hole has two or more pigeons. We
can present an instance of the PHP using a Boolean array (P(i, 7)) (0 <i <mn,
0 < j < n), where P(i,j) asserts that pigeon ¢ is placed in hole j. Then the
PHP can be formulated in the theory VO by the formula

Vi <ndj <TLP(Z,]) D dig,i0 <ndj <n(i1 #iz/\P(il,j)/\P(ig,j)) (3)

Ajtai proved that this formula is not a theorem of V°, and also that the propo-
sitional version (which uses atoms p;; to represent P(i, 7)) does not have poly-
nomial size AC"-Frege proofs. The intuitive reason for this is that a counting

ii

argument seems to be required to prove the PHP, but the complexity class AC°
cannot count the number of ones in a string of bits. On the other hand, the
class NC' can count, and indeed Buss proved that the propositional PHP does
have polynomial size Frege proofs, and his method shows that (3) is a theorem
of the theory VNC®. (In fact it is a theorem of the weaker theory VTC?.)
A second example comes from linear algebra. If A and B are n X n matrices
over some field, then
AB=1D>BA=1 (4)

A standard proof of this uses Gaussian elimination, which is a polynomial-
time process. Indeed Soltys showed that (4) is a theorem of the theory TV
corresponding to polynomial-time reasoning, and its propositional translation
(say over the field of two elements) has polynomial-size eFrege proofs. It is an
open question whether (4) over GF(2) (or any field) can be proved in VNC!,
or whether the propositional version has polynomial-size Frege proofs.

The preceding example (4) is a universal theorem, in the sense that its state-
ment has no existential quantifier. Another class of examples comes from exis-
tential theorems. From linear algebra, a natural example about n X n matrices
is

VAIB #0(AB=1V AB =0) (5)
The complexity of finding B for a given A, even over GF(2), is thought not to
be in NC! (it is hard for log space). Assuming that this is the case, it follows
that (5) is not a theorem of VNC', since only NC* functions are definable in
that theory. This conclusion is the result of a general witnessing theorem, which
states that if the formula Vz3yp(x,y) (for suitable formulas ¢) is provable in
the theory associated with complexity class C, then there is a Skolem function
f(z) whose complexity is in C and which satisfies Vzo(z, f(z)).

The theory VNC! proves that (4) follows from (5), and both (4) and (5)
are theorems of the theory TV associated with polynomial time.

Another example of an existential theorem is “Fermat’s Little Theorem”,
which states that if n is a prime number and 1 < a < n, then a"~ 1l =1
(mod n). Its existential content is captured by its contrapositive form

1<a<n)A(@t#1 (modn)) D 3d(1<d<nAdn) (6)

It is easy to see that the function a® ! mod n can be computed in time poly-
nomial in the lengths of a and n, using repeated squaring. If (6) is provable
in TVY, then by the witnessing theorem mentioned above it would follow that
there is a polynomial time function f(a,n) whose value d = f(a,n) provides a
proper divisor of n whenever a,n satisfy the hypothesis in (6). With the excep-
tion of the so-called Carmichael numbers, which can be factored in polynomial
time, every composite n satisfies the hypothesis of (6) for at least half of the
values of a, 1 < a < n. Hence f(a,n) would provide a probabilistic polynomial
time algorithm for integer factoring. Such an algorithm is thought unlikely to
exist, and would provide a method for breaking the RSA public-key encryption
scheme.

il

Thus Fermat’s Little Theorem is not provable in TV, assuming that there
is no probabilistic polynomial time factoring algorithm.

Propositional tautologies can be used to express universal theorems such
as (3) and (4), but are not well suited to express existential theorems such as
(5) and (6). However the latter can be expressed using formulas in the quan-
tified propositional calculus (QPC), which extends the propositional calculus
by allowing quantifiers VP and 3P over propositional variables P. Each of the
complexity classes in (2) has an associated QPC system, and in fact the systems
(G;) mentioned for PH form a hierarchy of QPC systems.

Most of the theories presented in this book, including those in (2), have the
same “second-order” underlying language £%, introduced by Zambella. The
language £ is actually a language for the two-sorted first-order predicate cal-
culus, where one sort is for numbers in N and the second sort is for finite sets of
numbers. Here we regard an object of the second sort as a finite string over the
alphabet {0, 1} (the i-th bit in the string is 1 iff ¢ is in the set). The strings are
the objects of interest for the complexity classes, and serve as the main inputs
for the machines or circuits that determine the class. The numbers serve a use-
ful purpose as indices for the strings when describing properties of the strings.
When they are used as machine or circuit inputs, they are presented in unary
notation.

In the more common single-sorted theories such as Buss’s hierarchies S4 and
T% the underlying objects are numbers which are presented in binary notation
as inputs to Turing machines. Our two-sorted treatment has the advantage that
the underlying language has no primitive operations on strings except the length
function | X| and the bit predicate X (i) (meaning ¢ € X). This is especially
important for studying weak complexity classes such as AC?. The standard
language for single-sorted theories includes number multiplication, which is not
an ACY function on binary strings.

Another advantage of our two-sorted approach is that the propositional
translations of our theories are especially simple and elegant. These are done
in the style of Paris and Wilkie, rather than the earlier and more cumbersome
style introduced by Cook for the equational theory PV.

Much of this book is based on course notes for a graduate course taught
several times at the University of Toronto by the first author. The notes for the
2002 version are available online [?]. The prerequisites for the course and the
book are some knowledge of both mathematical logic and complexity theory.
There are exercises sprinkled throughout the text, which are intended both to
supplement the material presented and to help the reader master the material.

The first two chapters provide a concise treatment of the required back-
ground in first-order logic, based on Gentzen’s proof system LK. An unusual
feature is our treatment of anchored (or “free-cut-free”) proofs. It is based
on a completeness theorem for such proofs, as opposed to the usual syntactic
cut-elimination theorem.

Chapter 3 presents the necessary background on Peano Arithmetic and its
subsystems, including the bounded theory IAg. The functions definable in IA
are precisely those in the linear time hierarchy. The universal theory IAq has

iv

function symbols for each of these functions, and forms a conservative extension
of IAQ

Chapter 4 introduces the syntax and intended semantics for the two-sorted
theories, which will be used throughout the remaining chapters. Representation
theorems are proved which state that formulas in the syntactic class £ rep-
resent precisely the (two-sorted) AC relations, and for i > 1, formulas in »B
represent the relations in the i-th level of the polynomial hierarchy.

Chapter 5 introduces the two-sorted theory V°, which is associated with the
complexity class AC®. All two-sorted theories considered in later chapters are
extensions of V?. A Buss-style witnessing theorem is proved for V°, showing
that the existential quantifiers in a 3}-theorem of V° can be witnessed by AC’-
functions. Here the 31 theorems have all existential string quantifiers in front,
which makes the proof easier than for the usual Buss-style witnessing theorems.
(The same applies to the witnessing theorems proved in later chapters.) The
final section proves that VY is finitely axiomatizable.

Chapter 6 concentrates on the theory V!, which is associated with the com-
plexity class P. V! is the two-sorted version of Buss’s theory Si. All polynomial
time functions are definable in V. This is shown two ways: by analyzing Turing
machine computations and by using Cobham’s characterization of these func-
tions. The witnessing theorem for V! is proved based on Cobham’s theorem.

Chapter 7 gives a general definition of propositional proof system. The
goal is to associate a proof system with each theory so that each ¥ theorem
of the theory translates into a polynomial size family of proofs in the proof
system. Further the theory should prove the soundness of the proof system.
In this chapter, translations are defined from VY to bounded-depth PK-proofs
(i.e. bounded-depth Frege proofs), and also from V! to extended Frege proofs.
Systems for the quantified propositional calculus are defined, and it is shown
how to translate bounded theorems of V! to polynomial size families of proofs
in the system G7. The two-sorted treatment makes these translations simple
and natural.

Chapter 8 begins by introducing other two-sorted theories associated with
polynomial time. The finitely axiomatized theory TV and its universal con-
servative extension VPV both appear to be weaker than V', although they
have the same X theorems as V!. TV is the base of the hierarchy of theories
TV C TV! C ..., where for i > 1, TV? is isomorphic to Buss’s single-sorted
theory T%. The definable problems in TV! have the complexity of Polynomial
Local Search. Other results on the hierarchies V¢ and TV® will be presented.
This chapter also proves the RSUV isomorphism theorem between S} and V.

Chapter 9 gives a uniform way of introducing minimal canonical theories
for many complexity classes between AC® and P, including those mentioned
earlier in (1). Each finitely axiomatized theory is defined as an extension of
VO obtained by adding a single axiom stating the existence of a computation
solving a complete problem for the associated complexity class. The “minimal-
ity” of each theory is established by defining a universal theory whose axioms
are simply the defining axioms for all the functions in the associated complexity
class. These functions are defined as the function AC-closure of the complexity

class, or (as is the case for P) using a recursion-theoretic characterization of the
function class. The main theorem in each case is that the universal theory is a
conservative extension of the finitely axiomatized theory.

Chapter 10 presents further results on theories for the quantified proposi-
tional calculus.

Two sources have been invaluable for writing this book. The first is Krajicek’s
monograph [?], which is an essential possession for anyone working in this field.
The second source is Buss’s chapters [?, ?] in Handbook of Proof Theory. Chap-
ter I provides an excellent introduction to the proof theory of LK, and Chapter
IT provides a thorough introduction to the first-order theories of bounded arith-
metic.

The authors would like to thank the many students and colleagues who have
provided us with feedback on earlier versions of this book.

Contents

1 The Propositional Calculus
1.1 Gentzen’s Propositional Proof System PK
1.2 Soundness and Completeness of PK
1.3 PK Proofs from Assumptions
1.4 Notes o e

2 The Predicate Calculus
2.1 Syntax
2.2 Semantics of Predicate Calculus
2.3 The First-Order Proof System LK
2.3.1 Free Variable Normal Form
2.3.2 Completeness of LK without Equality
2.4 Equality Axioms
2.4.1 Equality Axioms for LK,
2.4.2 Revised Soundness and Completeness of LK
2.5 Major Corollaries of Completeness
2.6 The Herbrand Theorem
2.7 Notes o e

3 Peano Arithmetic and its Subsystems
3.1 Peano Arithmetic
3.2 Parikh’s Theorem
3.3 Conservative Extensionsof IAg
3.3.1 Introducing New Function and Predicate Symbols
3.3.2 TAg: A Universal Conservative Extension of IAg
3.3.3 Defining y = 2% and BIT (i,z) in IAy
3.4 IA(and the Linear Time Hierarchy
3.4.1 The Polynomial and Linear Time Hierarchies
3.4.2 Representability of LTH Relations
3.4.3 Characterizing the LTH by IAg
3.5 Buss’s S} Hierarchy: The Road Not Taken
3.6 Notes e

vii

11
11
13
15
17
18
24
25
26
27
28
31

viii CONTENTS
4 Two-Sorted First-Order Logic 67
4.1 Basic Descriptive Complexity Theory 67
4.2 Two-Sorted First-Order Logic 69
421 Syntaxo 69

4.2.2 Semantics 71

4.3 Two-sorted Complexity Classes 73
4.3.1 Notation for Numbers and Finite Sets 73

4.3.2 Representation Theorems 74

4.3.3 The LTH Revisited 78

4.4 The Proof System LK? 79
4.4.1 Two-Sorted Free Variable Normal Form 82

4.5 Single-Sorted Logic Interpretation 82
4.6 Notes e e 84

5 The Theory V° and AC’ 85
5.1 Definition and Basic Properties of V¥ 85
5.2 Two-Sorted Functions 90
5.3 Parikh’s Theorem for Two-Sorted Logic 94
5.4 Definability in VO 96
5.4.1 Al-Definable Predicates 104

5.5 The Witnessing Theorem for VO 105
5.5.1 Independence follows from the Witnessing Theorem for V°106

5.5.2 Proof of the Witnessing Theorem for VO 107

5.6 V' : Universal Conservative Extension of VO 112
5.6.1 Alternative Proof of the Witnessing Theorem for V? . . . 116

5.7 Finite Axiomatizability 117
5.8 Notes e 119

6 The Theory V! and Polynomial Time 121
6.1 Induction Schemesin Vi 121
6.2 Characterizing P by V1 123
6.2.1 The “if” Direction of Theorem 6.6 125

6.2.2 Application of Cobham’s Theorem 128

6.3 The Replacement Axiom Scheme 129
6.3.1 Extending V' by Polytime Functions 132

6.4 The Witnessing Theorem for VI 134
6.4.1 The Sequent System LKV 137

6.4.2 Proof of the Witnessing Theorem for V1. 141

6.5 Notes e 143

7 Propositional Translations 145
7.1 Propositional Proof Systems 145
7.1.1 Treelike vs Daglike Proof Systems 147

7.1.2 The Pigeonhole Principle and Bounded Depth PK 149

7.2 Translating VO tobPK 151

7.2.1 Translating ¥ Formulas 151

CONTENTS

7.2.2
7.2.3

VOand LK2-VO
Proof of the Translation Theorem for VO

7.3 Quantified Propositional Calculus

7.3.1
7.3.2

QPC Proof Systems
The System G

7.4 The Systems G; and G} L

74.1

Extended Frege Systems and Witnessing in G

7.5 Translating V1 to G

7.5.1

7.6 Notes

Translating Bounded £4-Formulas

Theories for Polynomial Time and Beyond

8.1 The Theory VPV

8.1.1

Comparing VPV and V'

8.2 TV and the TV® Hierarchy

8.2.1
8.2.2
8.2.3

TVOCVPV . .
VPV is Conservative over TV®
A Finite Axiomatization of TV®

8.3 The Theory VI-HORN
8.4 TV! and Polynomial Local Search
8.5 KPT Witnessing
86 Viand TV fori>2 v i
8.7 RSUV Isomorphism

8.7.1
8.7.2
8.7.3
8.7.4
8.7.5

8.8 Notes

The Theories Shand Th
RSUV Isomorphism
The # Translation
The ” Translation

Theories for Small Classes

9.1 ACY Reductions v
9.2 The Theory VIC®,

9.2.1
9.2.2
9.2.3
9.24
9.2.5
9.2.6

TC’ and VIC’
The Theory VITC. . .« o o oo oo
Aggregate Functions and Conservative Extensions . . .

The Conservativity of VTC' over VIC®
The Witnessing Theorem for VIC®
Proving the Pigeonhole Principle in VIC®

9.3 Theories for Other Subclassesof P

9.3.1
9.3.2

The Theories VC and VC
The X Replacement Rule and Axiom in VC

9.4 Theories for AC’(m) and ACC
9.5 Theories for NC* and AC*

9.5.1
9.5.2

The Theory VNC'
The Theories VNCF and VAC*

ix

953 VTC'CVNC'
9.6 Theoriesfor NLandL
9.6.1 The Theory VNL

9.6.2 Representing NL by ¥1{-Krom Formulas

9.6.3 The Theory V-KROM
9.6.4 The Theory VL
9.7 The Number Recursion Operation
9.7.1 Lind’s Characterizationof FL
9.7.2 Number Summation
9.7.3 k-Bounded Number Recursion
9.7.4 FAC’(2), FAC’(6) and FNC'
9.8 Notes

10 Proof Systems for Small Theories

A Computation Models

A.1 Deterministic Turing Machines
A1l L,P,PSPACE and EXP
A.2 Nondeterministic Turing Machines
A.3 Oracle Turing Machines
A4 Alternating Turing Machines
A41 NC'and ACY
A.5 TImplementation of Multiplication
A.5.1 Adding n Numbers of Lengthn
A.5.2 DMultiplicationin LTH

CONTENTS

Chapter 1

The Propositional Calculus

In this chapter and the next we present the logical foundations for theories of
bounded arithmetic. In general we distinguish between syntactic notions and
semantic notions. Examples of syntactic notions are variables, connectives, for-
mulas, and formal proofs. The semantic notions relate to meaning; for example
truth assignments, structures, validity, and logical consequence.

Propositional formulas (called simply formulas in this chapter) are built from
the logical constants L, T (for False, True), propositional variables (or atoms)
Py, Py, ..., connectives —, V, A, and parentheses (,). We use P,Q, R, ... to stand
for propositional variables, A, B,C, ... to stand for formulas, and ®, ¥, ... to
stand for sets of formulas. When writing formulas such as (P V (Q A R)), our
convention is that P, @, R, .. stand for distinct variables.

Formulas are built according to the following rules:

e |, T, P, are formulas (also called atomic formulas) for any variable P.

e If A and B are formulas, then so are (A V B), (A A B), and —A.

The implication connective D is not allowed in our formulas, but we will take
(A D B) to stand for (mAV B). Also (A < B) stands for ((A D B) A (B D A)).

We sometimes abbreviate formulas by omitting parentheses, but the intended
formula has all parentheses present as defined above.

A truth assignment is an assignment of truth values F,T to atoms. Given
a truth assignment 7, the truth value A7 of a formula A is defined inductively
as follows: L™ = F, T™ =T, P™ = 7(P) for atom P, (AA B)” = T iff both
A"=Tand B" =T, (AVB)" =T iffeither A" =T or B" =T, (-A)" =T iff
AT =F.

Definition 1.1. A truth assignment T satisfies A iff A™ = T'; T satisfies a set
D of formulas iff T satisfies A for all A € ®. ¢ is satisfiable iff some T satisfies
®; otherwise ® is unsatisfiable. Similarly for A. ® = A (i.e., A is a logical
consequence of @) iff T satisfies A for every T such that T satisfies . A formula

1

2 CHAPTER 1. THE PROPOSITIONAL CALCULUS

A isvalid iff E A (i.e.,, AT =T for all 7). A valid propositional formula is
called a tautology. We say that A and B are equivalent (written A <= B) iff
AE B and B E A.

Note that <= refers to semantic equivalence, as opposed to =gy, which
indicates syntactic equivalence. For example, (P V Q) <= (Q V P), but (P V

Q) Fsyn (QV P).

1.1 Gentzen’s Propositional Proof System PK

We present the propositional part PK of Gentzen’s sequent-based proof system
LK. Each line in a proof in the system PK is a sequent of the form

Al,...,Ak —>B1,...,B[(11)

where — is a new symbol and A, ..., Ax and B, ..., By are sequences of for-
mulas (k, ¢ > 0) called cedents. We call the cedent Ay, ..., A the antecedent and
By, ..., By the succedent (or consequent).

The semantics of sequents is given as follows. We say that a truth assignment
T satisfies the sequent (1.1) iff either 7 falsifies some A; or 7 satisfies some B;.
Thus the sequent is equivalent to the formula

—A1 VA3V ...V oA,V BV By V...V By (1.2)

(Here and elsewhere, a disjunction C; V ...V C,, indicates parentheses have been
inserted with association to the right. For example, C; vV Cs V C3 V Cy4 stands
for (C1 Vv (C2 Vv (C3 V Cy))). Similarly for a disjunction Cy A ... A Cy,.) In other
words, the conjunction of the A’s implies the disjunction of the B’s. In the cases
in which the antecedent or succedent is empty, we see that the sequent — A is
equivalent to the formula A, and A — is equivalent to —A, and just — (with
both antecedent and succedent empty) is false (unsatisfiable). We say that a
sequent is wvalid if it is true under all truth assignments (which is the same as
saying that its corresponding formula is a tautology).

Definition 1.2. A PK proof of a sequent S is a finite tree whose nodes are
(labeled with) sequents, whose root (called the endsequent) is S and is written
at the bottom, whose leaves (or initial sequents) are logical axioms (see below),
such that each non-leaf sequent follows from the sequent(s) immediately above
by one of the rules of inference given below.

The logical axioms are of the form
A— A 11— — T

where A is any formula. (Note that we differ here from most other treatments,
which require that A be an atomic formula.) The rules of inference are as follows
(here T and A denote finite sequences of formulas).

GENTZEN’S PROPOSITIONAL PROOF SYSTEM PK

weakening rules
r—A
left:
exchange rules

Fl,A,B,FQ — A
‘T4,B,A, Ty — A

left

contraction rules

AT — A

I —A

right: ————
r—AA

F—’AlvAaBaAQ
F—>A17BaAaA2

right:

INA,A— A ' —AAA
left: ——M8M8M8 right: —
A— A r —AA
— introduction rules
r —AA AT — A
left: right: —
-A T — A I —A-A
A introduction rules
A BT — A I —AA I —AB
left: right:

(AANB),T — A I — A, (AAB)

V introduction rules

AT — A B,I' — A r —AAB
left: right:
(AvB),l — A I — A (AVB)
cut rule
r —AA AT — A
Ir—A

The formula A in the cut rule is called the cut formula. A proof that does
not use the cut rule is called cut-free.

Note that there is one left introduction rule and one right introduction rule
for each of the three logical connectives A,V,—. Further, these rules seem to
be the simplest possible, given the fact that in each case the bottom sequent is
valid iff all top sequents are valid.

Note that repeated use of the exchange rules allows us to execute an arbitrary
reordering of the formulas in the antecedent or succedent of a sequent. In
presenting a proof in the system PK, we will usually omit mention of the steps
requiring the exchange rules, but of course they are there implicitly.

Definition 1.3. A PK proof of a formula A is a PK proof of the sequent

— A.

4 CHAPTER 1. THE PROPOSITIONAL CALCULUS

As an example, we give a PK proof of one of DeMorgan’s laws:
~(PAQ) — ~PV—Q

To find this (or any) proof, it is a good idea to start with the conclusion at
the bottom, and work up by removing the connectives one at a time, outermost
first, by using the introduction rules in reverse. This can be continued until
some formula A occurs on both the left and right side of a sequent, or T occurs
on the right, or 1 occurs on the left. Then this sequent can be derived from
one of the axioms A — A or — T or L — using weakenings and exchanges.
The cut and contraction rules are not necessary, and weakenings are only needed
immediately below axioms. (The cut rule can be used to shorten proofs, and
contraction will be needed later for the predicate calculus.)

P—P Q—Q
——— (weakening) —— (weakening)
P— Pa _'Q Q — Qa -P
———— (—~ right) — (—~ right)
—>P7jP7ﬁQ —’QaﬁpuﬁQ
(A right)

—>P/\Q7_‘Pa_'Q
— PAQ,-PV-Q
-(PAQ) — —PV-Q

(V right)
(= left)

Exercise 1.4. Give PK proofs for each of the following valid sequents:
a) ~PV-Q — ~(PAQ)
b) =(PV Q) — —~PA—-Q
C) _‘P/_‘Q—>—|(P\/Q)

Exercise 1.5. Show that the contraction rules can be derived from the cut rule
(with weakenings and exchanges).

Exercise 1.6. Suppose that we allowed D as a primitive connective, rather than
one introduced by definition. Give the appropriate left and right introduction
rules for D.

1.2 Soundness and Completeness of PK

Now we prove that PK is both sound and complete. That is, a propositional
sequent is provable in PK iff it is valid.

Theorem 1.7 (Soundness Theorem). Every sequent provable in PK is valid.

Proof. We show that the endsequent in every PK proof is valid, by induction
on the number of sequents in the proof. For the base case, the proof is a single
line: a logical axiom. Each logical axiom is obviously valid. For the induction
step, one needs only verify for each rule that the bottom sequent is a logical
consequence of the top sequent(s). O

1.3. PK PROOFS FROM ASSUMPTIONS 5

Theorem 1.8 (Completeness Theorem). Every valid propositional sequent
s provable in PK without using cut or contraction.

Proof. The idea is discussed in the example proof above of DeMorgan’s laws.
We need to use the inversion principle.

Lemma 1.9 (Inversion Principle). For each PK rule except for weakenings,
if the bottom sequent is valid, then all top sequents are valid.

This principle is easily verified by inspecting each of the eleven rules in
question.

Now for the completeness theorem: We show that every valid sequent I' —
A has a PK proof, by induction on the total number of logical connectives
A, V, = occurring in I' — A. For the base case, every formula in I" and A is an
atom or one of the constants 1, T, and since the sequent is valid, some atom P
must occur in both T" and A, or | occursin I or T occurs in A. Hence I' — A
can be derived from one of the logical axioms by weakenings and exchanges.

For the induction step, let A be any formula which is not an atom and not a
constant in I or A. Then by the definition of propositional formula A must have
one of the forms (BAC), (BV (), or =B. Thus ' — A can be derived from
A introduction, V introduction, or — introduction, respectively, using either the
left case or the right case, depending on whether A is in I" or A, and also using
exchanges, but no weakenings. In each case, each top sequent of the rule will
have at least one fewer connective than I' — A, and the sequent is valid by the
inversion principle. Hence each top sequent has a PK proof, by the induction
hypothesis. 0

The soundness and completeness theorems relate the semantic notion of
validity to the syntactic notion of proof.

1.3 PK Proofs from Assumptions

We generalize the (semantic) definition of logical consequence from formulas
to sequents in the obvious way: A sequent S is a logical consequence of a set
® of sequents iff every truth assignment 7 that satisfies ® also satisfies S. We
generalize the (syntactic) definition of a PK proof of a sequent S to a PK proof
of S from a set ® of sequents (also called a PK-® proof) by allowing sequents
in ® to be leaves (called nonlogical azioms) in the proof tree, in addition to the
logical axioms. It turns out that soundness and completeness generalize to this
setting.

Theorem 1.10 (Derivational Soundness and Completeness Theorem).
A sequent S is a logical consequence of a set ® of sequents iff S has a PK-®

proof.

6 CHAPTER 1. THE PROPOSITIONAL CALCULUS

Derivational soundness is proved in the same way as simple soundness: by
induction on the number of sequents in the PK-® proof, using the fact that the
bottom sequent of each rule is a logical consequence of the top sequent(s).

A remarkable aspect of derivational completeness is that a finite proof exists
even in case ® is an infinite set. This is because of the compactness theorem
(below) which implies that if S is a logical consequence of ®, then S is a logical
consequence of some finite subset of ®.

In general, to prove S from ® the cut rule is required. For example, there
is no PK proof of — P from — P A @ without using the cut rule. This
follows from the subformula property, which states that in a cut-free proof 7w of
a sequent S, every formula in every sequent of 7 is a subformula of some formula
in S. This is stated more generally in the Proposition 1.15.

Exercise 1.11. Let Ag be the formula giving the meaning of a sequent S, as
in (1.2). Show that there is a cut-free PK derivation of — Ag from S.

From the above easy exercise and from the earlier Completeness Theorem
and from Theorem 1.16, Form 2 (compactness), we obtain an easy proof of
derivational completeness. Suppose that the sequent I' — A is a logical conse-
quence of sequents Sy, ..., S,. Then by the above exercise we can derive each of
the sequents — Ag,,...,—— Ag, from the sequents Si, ..., S;. Also the sequent

As,, ... Ag, ., T — A (1.3)

is valid, and hence has a PK proof by Theorem 1.8. Finally from (1.3) us-
ing successive cuts with cut formulas Ag,,..., Ag, we obtain the desired PK
derivation of I' — A from the the sequents 51, ..., Sk. O

We now wish to show that the cut formulas in the derivation can be restricted
to formulas occurring in the hypothesis sequents.

Definition 1.12 (Anchored Proof). An instance of the cut rule in a PK-®
proof m is anchored if the cut formula A (also) occurs as a formula (rather than
a subformula) in some nonlogical axiom of m. A PK-® proof 7w is anchored if
every instance of cut in 7 is anchored.

Our anchored proofs are similar to free-cut-free proofs in [?] and elsewhere.
Our use of the term anchored is inspired by [?].
The derivational completeness theorem can be strengthened as follows.

Theorem 1.13 (Anchored Completeness Theorem). If a sequent S is a
logical consequence of a set @ of sequents, then there is an anchored PK-® proof

of S.

We illustrate the proof of the anchored completeness theorem by proving the
special case in which ® consists of the single sequent A — B. Assume that
the sequent I' — A is a logical consequence of A — B. Then both of the
sequents ' — A A and B, A, — A are valid (why?). Hence by Theorem
1.8 they have PK proofs m; and ms, respectively. We can use these proofs to

1.3. PK PROOFS FROM ASSUMPTIONS 7

get a proof of ' — A from A — B as shown below, where the double line
indicates several rules have been applied.

A— B .
——— (weakenings,exchanges) L2
: ATl — A B B,AT — A
:M (cut)
r—AA AT — A
(cut)
r—A

Next consider the case in which ® has the form {— A;,— A,,...,—
Ay} for some set {Ay,..., Ay} of formulas. Assume that ' — A is a logical
consequence of ® in this case. Then the sequent

Al, Ag, ceey Ak,l“ — A
is valid, and hence has a PK proof 7. Now we can use the assumptions ®

and the cut rule to successively remove A;, Ao, ..., A; from the above sequent
to conclude I' — A. For example, A; is removed as follows:

—)Al

(weakenings,exchanges) T
AQ,...,Ak,F—>A,A1 Al,AQ,...,Ak,F—>A

Ag, . A, I — A

(cut)

Exercise 1.14. Prove the anchored completeness theorem for the more general
case in which ® is any finite set of sequents. Use induction on the number of
sequents in P.

A nice property of anchored proofs is the following.

Proposition 1.15 (Subformula Property). If 7 is an anchored PK-® proof
of S, then every formula in every sequent of m is a subformula of a formula
either in S or in some nonlogical axiom of 7.

Proof. This follows by induction on the number of sequents in 7, using the fact
that for every rule other than cut, every formula on the top is a subformula of
some formula on the bottom. For the case of cut we use the fact that every cut
formula is a formula in some nonlogical axiom of 7. O

The Subformula Property can be generalized in a way that applies to cut-
free LK proofs in the predicate calculus, and this will play an important role
later in proving witnessing theorems.

We conclude this chapter with a fundamental result which plays an impor-
tant role in both the propositional and predicate calculus.

8 CHAPTER 1. THE PROPOSITIONAL CALCULUS

Theorem 1.16 (Propositional Compactness Theorem). We state three
different forms of this result. All three are equivalent.

Form 1: If ® is an unsatisfiable set of propositional formulas, then some finite
subset of ® is unsatisfiable.

Form 2: If a formula A is a logical consequence of a set ® of formulas, then A
s a logical consequence of some finite subset of .

Form 3: If every finite subset of a set ® of formulas is satisfiable, then ® is
satisfiable.

Exercise 1.17. Prove the equivalence of the three forms. (Note that Form 3 is
the contrapositive of Form 1.)

Proof of Form 1. Let ® be an unsatisfiable set of formulas. By our definition
of propositional formula, all propositional variables in ® come from a countable
list Py, P, (See Exercise 1.19 for the uncountable case.) Organize the set of
truth assignments into an infinite rooted binary tree B. Each node except the
root is labeled with a literal P; or —P;. The two children of the root are labeled
P, and =Py, indicating that P, is assigned T or F, respectively. The two children
of each of these nodes are labeled P, and =P, respectively, indicating the truth
value of P,. Thus each infinite branch in the tree represents a complete truth
assignment, and each path from the root to a node represents a truth assignment
to the atoms Py, ..., P;, for some 1.

Now for every node v in the tree B, prune the tree at v (i.e., remove the
subtree rooted at v, keeping v itself) if the partial truth assignment 7, repre-
sented by the path to v falsifies some formula A, in ®, where all atoms in A,
get values from 7,,. Let B’ be the resulting pruned tree. Since ® is unsatisfiable,
every path from the root in B’ must end after finitely many steps in some leaf v
labeled with a formula A, in ®. It follows from Konig’s Lemma below that B’
is finite. Let ®' be the finite subset of ® consisting of all formulas A, labeling
the leaves of B’. Since every truth assignment 7 determines a path in B” which
ends in a leaf A, falsified by 7, it follows that @’ is unsatisfiable. O

Lemma 1.18 (Ko6nig’s Lemma). Suppose T is a rooted tree in which every
node has only finitely many children. If every branch in T is finite, then T is
finite.

Proof. We prove the contrapositive: If T is infinite (but every node has only
finitely many children) then T" has an infinite branch. We can define an infinite
path in T as follows: Start at the root. Since T is infinite but the root has
only finitely many children, the subtree rooted at one of these children must be
infinite. Choose such a child as the second node in the branch, and continue. [J

Exercise 1.19. (For those with some knowledge of set theory or point set
topology) The above proof of the propositional compactness theorem only works
when the set of atoms is countable, but the result still holds even when ® is an

1.4. NOTES 9

uncountable set with an uncountable set A of atoms. Complete each of the two
proof outlines below.

(a) Prove Form 3 using Zorn’s Lemma as follows: Call a set ¥ of formulas
finitely satisfiable if every finite subset of W is satisfiable. Assume that & is
finitely satisfiable. Let C be the class of all finitely satisfiable sets ¥ O ® of
propositional formulas using atoms in ®. Order these sets ¥ by inclusion. Show
that the union of any chain of sets in C is again in the class C. Hence by Zorn’s
Lemma, C has a maximal element Wy. Show that U has a unique satisfying
assignment, and hence ® is satisfiable.

(b) Show that Form 1 follows from Tychonoft’s Theorem: The product of com-
pact topological spaces is compact. The set of all truth assignments to the atom
set A can be given the product topology, when viewed as the product for all
atoms P in A of the two-point space {T', F'} of assignments to P, with the dis-
crete topology. By Tychonoff’s Theorem, this space of assignments is compact.
Show that for each formula A, the set of assignments falsifying A is open. Thus
Form 1 follows from the definition of compact: every open cover has a finite
subcover.

1.4 Notes

Our treatment of PK in sections 1.1 and 1.2 is adapted from Section 1.2 of [?].

10 CHAPTER ONAL CALCULUS

g
Q

Chapter 2

The Predicate Calculus

In this chapter we present the syntax and semantics of the predicate calculus
(also called first-order logic). We show how to generalize Gentzen’s proof system
PK for the propositional calculus, described in Chapter 1, to the system LK for
the predicate calculus, by adding quantifier introduction rules. We show that
LK is sound and complete. We prove an anchored completeness theorem which
limits the need for the cut rule in the presence of nonlogical axioms. We present
major corollaries of the completeness theorem, and finally present a form of the
Herbrand Theorem.

2.1 Syntax

A first-order language (or just language, or vocabulary) L is specified by the
following:

1) For each n € N a set of n-ary function symbols (possibly empty). We
use f,g,h, ... as meta-symbols for function symbols. A zero-ary function
symbol is called a constant symbol.

2) For each n > 0, a set of n-ary predicate symbols (which must be nonempty
for some n). We use P,Q, R, ... as meta-symbols for predicate symbols.
A zero-ary predicate symbol is the same as a propositional atom.

In addition, the following symbols are available to build first-order terms and
formulas:

1) An infinite set of variables. We use z,y, z, ... and sometimes a, b, ¢, ... as
meta-symbols for variables.

2) connectives =, A,V (not, and, or); logical constants 1, T (for False, True)
3) quantifiers ¥, 3 (for all, there exists)

4) (,) (parentheses)

11

12 CHAPTER 2. THE PREDICATE CALCULUS

Given a vocabulary £, L-terms are certain strings built from variables and
function symbols of £, and are intended to represent objects in the universe of
discourse. We will drop mention of £ when it is not important, or clear from
context.

Definition 2.1 (£-Terms). Let L be a first-order vocabulary:

1) Ewvery variable is an L-term.

2) If f is an n-ary function symbol of L and t1,...,t, are L-terms, then
fti...t, is an L-term.

Recall that a 0-ary function symbol is called a constant symbol (or sometimes
just a constant). Note that all constants in £ are L-terms.

Definition 2.2 (£-Formulas). Let L be a first-order language. First-order
formulas in L (or L-formulas, or just formulas) are defined inductively as fol-
lows:

1) Pty---t, is an atomic L-formula, where P is an n-ary predicate symbol
in L and ty,--- ,t, are L-terms. Also each of the logical constants 1, T
is an atomic formula.

2) If A and B are L-formulas, so are =A, (AN B), and (AV B)

3) If A is an L-formula and x is a variable, then YA and JxA are L-
formulas.

Examples of formulas: (=VaPz V Jz—Px), (Ya-~Pxy A —VzP fyz).

As in the case of propositional formulas, we use the notation (A D B) for
(mAV B) and (A < B) for ((AD> B) A (B D A)).

It can be shown that no proper initial segment of a term is a term, and
hence every term can be parsed uniquely according to Definition 2.1. A similar
remark applies to formulas, and Definition 2.2.

Notation r = s stands for = rs, and r # s stands for —(r = s).

Definition 2.3 (The Language of Arithmetic). L4 =[0,1,+,-; =,<].
Here 0, 1 are constants; 4+, - are binary function symbols; =, < are binary
predicate symbols. In practice we use infix notation for +, -, =, <. Thus, for

example, (tl . tg) =syn ‘12 and (tl + tg) =syn Tt1to2.

Definition 2.4 (Free and Bound Variables). An occurrence of x in A is
bound ff it is in a subformula of A of the form YxB or dxB. Otherwise the
occurrence is free.

Notice that a variable can have both free and bound occurrences in one
formula. For example, in Pz A VxQx, the first occurrence of x is free, and the
second occurrence is bound.

Definition 2.5. A formula A or a term t is closed if it contains no free occur-
rence of a variable. A closed formula is called a sentence.

2.2. SEMANTICS OF PREDICATE CALCULUS 13

2.2 Semantics of Predicate Calculus

Definition 2.6 (L-Structure). If L is a first-order language, then an L-
structure M consists of the following:

1) A nonempty set M called the universe. (Variables in an L-formula are
intended to range over M.)

2) For each n-ary function symbol f in L, an associated function f™ : M™ —
M.

3) For each n-ary predicate symbol P in L, an associated relation PM C M™.
If L contains =, then =™ must be the true equality relation on M.

Notice that the predicate symbol = gets special treatment in the above
definition, in that =™ must always be the true equality relation. Any other
predicate symbol may be interpreted by an arbitrary relation of the appropriate
arity.

Every L-sentence becomes either true or false when interpreted by an L-
structure M, as explained below. If a sentence A becomes true under M, then
we say M satisfies A, or M is a model for A, and write M = A.

If A has free variables, then these variables must be interpreted as specific
elements in the universe M before A gets a truth value under the structure M.
For this we need the following:

Definition 2.7 (Object Assignment). An object assignment o for a struc-
ture M is a mapping from variables to the universe M.

Below we give the formal definition of notion M = A[o], which is intended
to mean that the structure M satisfies the formula A when the free variables of
A are interpreted according to the object assignment o. First it is necessary to
define the notation t™[o], which is the element of universe M assigned to the
term t by the structure M when the variables of ¢ are interpreted according to
.

Definition 2.8 (Basic Semantic Definition). Let L be a first-order language,
let M be an L-structure, and let o be an object assignment for M. FEach L-term
t is assigned an element t"[a] in M, defined by structural induction on terms
t, as follows (refer to the definition of L-term):

a) 2M[o] is o(x), for each variable x
b) (ftr- ta)Mo] = FM (o], ... " [0])

n

Notation If z is a variable and m € M, then the object assignment o(m/z) is
the same as o except it maps x to m.

Definition 2.9. For A an L-formula, the notion M |= Alo] (M satisfies A
under o) is defined by structural induction on formulas A as follows (refer to
the definition of formula):

a) MEET and M £ L

14 CHAPTER 2. THE PREDICATE CALCULUS

b) M = (Pty---t,)[o] iff o], ..., tM[0]) € PM

¢) If L contains =, then M = (s = t)[o] iff s™M[o] = tM[o]
d) M = —Alo] iff M = Alo].

e) M= (AV B)[o] iff M = Alo] or M |= Blo].

f) M= (AN B)[o] iff M |= Alo] and M |= Blo].

g) M | (YzA)[o] iff M |= Alo(m/x)] for allm € M

h) M = (FzA)|o] iff M |= Alo(m/z)] for some m € M

Note that item c¢) in the definition of M = A[o] follows from b) and the fact
that =M is always the equality relation.

If ¢ is a closed term (i.e., contains no variables), then t™[o] is independent
of o, and so we sometimes just write t*. Similarly, if A is a sentence, then we
sometimes write M |= A instead of M |= A[o], since o does not matter.

Definition 2.10 (Standard Model). The standard model N for the language
L4 is a structure with universe M = N = {0,1,2,...}, where 0,1,+,-,=,< get
their usual meanings on the natural numbers.

As an example, N | VaVy3z(z + 2 = y Vy + z = z) (since either y — z or
x — y exists) but N & VaTy(y + y = z) since not all natural numbers are even.

In the future we sometimes assume that there is some first-order language
L in the background, and do not necessarily mention it explicitly.

Notation In general, ® denotes a set of formulas, A, B, C, ... denote formulas,
M denotes a structure, and o denotes an object assignment.

Definition 2.11. a) M | ®[o] iff M = Alo] for all A € D.
b) M =@ iff M |= o] for all 0.
c) @ = A iff for all M and all o, if M |= ®[o] then M = Alo].
d) = A (Aisvalid) iff M = Alo] for all M and o.

e) A<= B (A and B are logically equivalent, or just equivalent) iff for all
M and all o, M = Alo] iff M |= Blo].

® E Aisread “A is a logical consequence of ®”. Do not confuse this with
our other use of the symbol =, as in M = A (M satisfies A). In the latter, M
is a structure, rather than a set of formulas.

If ® consists of a single formula B, then we write B = A instead of { B} E A.

Definition 2.12 (Substitution). Let s,t be terms, and A a formula. Then
t(s/x) is the result of replacing all occurrences of x in t by s, and A(s/x) is the
result of replacing all free occurrences of x in A by s.

Lemma 2.13. For each structure M and each object assignment o,
(s(t/2))"[o] = sM[a(m/x)]

where m = tM[o].

2.3. THE FIRST-ORDER PROOF SYSTEM LK 15

Proof. Structural induction on the length of s. O

Definition 2.14. A term t is freely substitutable for = in A iff no free occur-
rence of x in A is in a subformula of A of the form YyB or JyB, where y occurs
m t.

Theorem 2.15 (Substitution Theorem). Ift is freely substitutable for x in
A then for all structures M and all object assignments o, M = A(t/x)[o] iff
M = Alo(m/z)], where m = tMa].

Proof. Structural induction on A. O

Remark (Change of Bound Variable) If ¢ is not freely substitutable for x
in A, it is because some variable y in t gets “caught” by a quantifier, say dyB.
Then replace dyB in A by JzB, where z is a new variable. Then the meaning
of A does not change (by the Formula Replacement Theorem below), but by
repeatedly changing bound variables in this way ¢ becomes freely substitutable
for = in A.

Theorem 2.16 (Formula Replacement Theorem). If B and B’ are equiv-
alent and A’ results from A by replacing some occurrence of B in A by B’, then
A and A’ are equivalent.

Proof. Structural induction on A relative to B. 0

2.3 The First-Order Proof System LK

We now extend the propositional proof system PK to the first-order sequent
proof system LK. For this it is convenient to introduce two kinds of variables:
free variables denoted by a,b,c,... and bound variables denoted by x,vy, z,
A first-order sequent has the form Ay,..., Ay — Bi,..., By, where now the
A;’s and Bj’s are first-order formulas satisfying the restriction that they have no
free occurrences of the “bound” variables z,y, z, ... and no bound occurrences
of the “free” variables a, b, c,

The sequent system LK is an extension of the propositional system PK,
where now all formulas are first-order formulas satisfying the restriction ex-
plained above.

In addition to the rules given for PK, the system LK has four rules for
introducing the quantifiers.

Remark In the rules below, ¢ is any term not involving any bound variables
x,Y,7,...and A(t) is the result of substituting ¢ for all free occurrences of x in
A(x). Similarly A(b) is the result of substituting b for all free occurrences of x
in A(z). Note that ¢ and b can always be freely substituted for « in A(x) when
VzA(z) or JxA(x) satisfy the free/bound variable restrictions described above.

16 CHAPTER 2. THE PREDICATE CALCULUS

Y introduction rules

A(t), T — A I — A, A(b)
e
VeA(z), T — A I — A VzA(2)

right

3 introduction rules

Ab), T — A ' — AA(#
o . ®

e right
JzA(z), I — A I — A dzA(2)
Restriction The free variable b is called an eigenvariable and must not occur
in the conclusion in V-right or 3-left. Also, as remarked above, the term ¢ must
not involve any bound variables x, v, z,

Definition 2.17 (Semantics of First-Order Sequents). The semantics of
first-order sequents is a natural generalization of the semantics of propositional
sequents. Again the sequent A1, ..., Ay — Bi,..., By has the same meaning
as its associated formula

—-A1 VAV ...V=AL VB VByV...V By
In particular, we say that the sequent is valid iff its associated formula is valid.

Theorem 2.18 (Soundness Theorem for LK). Every sequent provable in
LK is valid.

Proof. This is proved by induction on the number of sequents in the LK proof,
as in the case of PK. However, unlike the case of PK, not all of the four
new quantifier rules satisfy the condition that the bottom sequent is a logical
consequence of the top sequent. In particular this may be false for V-right
and for 3-left. However it is easy to check that each rule satisfies the weaker
condition that if the top sequent is valid, then the bottom sequent is valid, and
this suffices for the proof. d

Exercise 2.19. Give ezamples to show that the restriction given on the quan-
tifier rules, that b must not occur in the conclusion in V-right and 3-left, is
necessary to ensure that these rules preserve validity.

Example of an LK Proof: An LK proof of a valid first-order sequent can
be obtained using the same method as in the propositional case: Write the goal
sequent at the bottom, and move up by using the introduction rules in reverse.
A good heuristic is: if there is a choice about which quantifier to remove next,
choose V-right and 3-left first (working backward), since these rules carry a
restriction.

2.3. THE FIRST-ORDER PROOF SYSTEM LK 17

Here is an LK proof of the sequent VzPx V VzQx — Vz(Px V Q).

Pb— Pb Qb — Qb
————— weakening —————— weakening
Pb— Pb,Qb Qb — Pb,Qb
V-left V-left
VePx — Pb,Qb VrQr — Pb, Qb

VePx VVrQx — Pb, Qb
VrPx VVrQr — PbV Qb
VaPz VVrQr — Vz(Pz V Qx)

Exercise 2.20. Give LK proofs for the following valid sequents:

a) VePx AVzQx — Va(Px A Qx) b) Vz(Pz A Q) — YaPr AVrQx
¢) Jx(Pzx V Qz) — JzPx VvV JzQx d) 3Pz V I2Qr — Jz(Pz V Q)
e) Jz(Pz A Q) — JxPx A JzQux f) JyYaxPry — VaIyPzy

g) VePx — JxPx

Check that the rule restrictions seem to prevent generating LK proofs for the
following invalid sequents:

h) JzPx A JxQxr — Jz(Px A Q) i) VedyPaxy — JyVzPxy

2.3.1 Free Variable Normal Form

In future chapters it will be useful to assume that LK proofs satisfy certain
restrictions on free variables.

Definition 2.21 (Free Variable Normal Form). Let m be an LK proof with
endsequent S. A free variable in S is called a parameter variable of w. We
say 7 is in free variable normal form if (1) no free variable is eliminated from
any sequent in ™ by any rule except possibly V-right and 3-left, and in these
cases the eigenvariable which is eliminated is not a parameter variable, and
(2) every mnonparameter free variable appearing in 7 is used exactly once as an
etgenvariable.

Every LK proof 7 can be put in free variable normal form (with the same
endsequent) by a simple procedure, assuming that the underlying vocabulary
L has at least one constant symbol e. Note that the only rules other than V-
right and F-left which can eliminate a free variable from a sequent are cut,
J-right, and V-left. It is important that m have a tree structure in order for
the procedure to work.

Transform 7 by repeatedly performing the following operation until the re-
sulting proof is in free variable normal form. Select some upper-most rule in m
which eliminates a free variable from a sequent. If the rule is V-right or 3-left,
and the eignevariable b which is eliminated occurs somewhere in the proof other
than above this rule, then replace b by a new variable b’ (which does not occur
elsewhere in the proof) in every sequent above this rule. If the rule is cut,

18 CHAPTER 2. THE PREDICATE CALCULUS

J-right, or V-left, then replace every variable eliminated by the rule by the
same constant symbol e in every sequent above the rule (so now the rule does
not eliminate any free variable).

2.3.2 Completeness of LK without Equality

Notation Let @ be a set of formulas. Then — & is the set of all sequents of
the form — A, where A is in ®.

Definition 2.22. Assume that the underlying vocabulary does not contain =. If
D is a set of formulas, then an LK-® proof is an LK proof in which sequents at
the leaves may be either logical axioms or nonlogical azioms of the form — A,
where A is in .

Notice that a structure M satisfies — ® iff M satisfies . Also a sequent
I' — A is a logical consequence of — ® iff ' — A is a logical consequence
of ®.

We would like to be able to say that a sequent I' — A is a logical conse-
quence of a set ® of formulas iff there is an LK-® proof of I' — A. Unfor-
tunately the soundness direction of the assertion is false. For example, using
the V-right rule we can derive — VzPx from — Pb, but — Vx Pz is not a
logical consequence of Pb.

We could correct the soundness statement by asserting it true for sentences,
but we want to generalize this a little by introducing the notion of the universal
closure of a formula or sequent.

Definition 2.23. Suppose that A is a formula whose free variables comprise
the list a1, . ..,an. Then the universal closure of A, written VA, is the sentence
Vay .. Ve, Alxi/a1,. .., xn/an), where x1,...,x, is a list of new (bound) vari-
ables. If ® is a set of formulas, then V& is the set of all sentences VA, for A in
.

Notice that if A is a sentence (i.e., it has no free variables), then VA is the
same as A.

Initially we study the case in which the underlying language does not contain
=. To handle the case in which = occurs we must introduce equality axioms.
This will be done later.

Theorem 2.24 (Derivational Soundness and Completeness of LK). As-
sume that the underlying language does not contain =. Let ® be a set of formu-
las and let T' — A be a sequent. Then there is an LK-® proof of T — A iff
I' — A is a logical consequence of V®. The soundness (only if) direction holds
also when the underlying language contains =.

Proof of Soundness. Let m be a LK-® proof of ' — A. We must show that
I' — A is a logical consequence of Y®. We want to prove this by induction on
the number of sequents in the proof 7, but in fact we need a stronger induction

2.3. THE FIRST-ORDER PROOF SYSTEM LK 19

hypothesis, to the effect that the “closure” of ' — A is a logical consequence
of Y®. So we first have to define the closure of a sequent.

Thus we define the closure V.S of a sequent S to be the closure of its associated
formula Ag (Definition 2.17). Note that if S =gn I' — A, then VS is not
equivalent to VI' — VA in general.

We now prove by induction on the number of sequents in 7, that if 7 is
an LK-® proof of a sequent S, then VS is a logical consequence of V®. Since
VS | S, it follows that S itself is a logical consequence of Y®, and so Soundness
follows.

For the base case, the sequent S is either a logical axiom, which is valid and
hence a consequence of V@, or it is a nonlogical axiom — A, where A is a
formula in ®. In the latter case, V.S is equivalent to VA, which of course is a
logical consequence of V.

For the induction step, it is sufficient to check that for each rule of LK,
the closure of the bottom sequent is a logical consequence of the closure(s) of
the sequent(s) on top. With two exceptions, this statement is true when the
word “closure” is omitted, and adding back the word “closure” does not change
the argument much. The two exceptions are the rules V-right and 3-left. For
these, the bottom is not a logical consequence of the top in general, but an easy
argument shows that the closures of the top and bottom are equivalent. 0

The proof of completeness is more difficult and more interesting than the
proof of soundness. The following lemma lies at the heart of this proof.

Lemma 2.25 (Completeness Lemma). Assume that the underlying language
does not contain =. If T — A is a sequent and ® is a (possibly infinite) set of
formulas such that I' — A is a logical consequence of @, then there is a finite
subset {C1,...,Cn} of ® such that the sequent

Ci,....,Cp,I' — A
has an LK proof m which does not use the cut rule.

Note that a form of the Compactness Theorem for predicate calculus sen-
tences without equality follows from the above lemma. See Theorem 2.43 for a
more general form of compactness.

Proof of Derivational Completeness from the Completeness Lemma. Let ® be a
set of formulas such that I' — A is a logical consequence of V®. By the com-
pleteness lemma, there is a finite subset {C,...,C,} of ® such that

vCi,...,VC,,I' — A

has a cut-free LK proof 7. Note that for each i,1 < i < n, the sequent — VC;
has an LK-® proof from the nonlogical axiom — C; by repeated use of the rule
V-right. Now the proof 7 can be extended, using these proofs of the sequents

—)VCl, ey —>VC’n

20 CHAPTER 2. THE PREDICATE CALCULUS

and repeated use of the cut rule, to form an LK-® proof I' — A. O

Proof of the Completeness Lemma. We loosely follow the proof of the Cut-free
Completeness Theorem, pp 33-36 of Buss [?]. (Warning: our definition of logical
consequence differs from Buss’s when the formulas in the hypotheses have free
variables.) We will only prove it for the case in which the underlying first-order
language £ has a countable set (including the case of a finite set) of function
and predicate symbols; i.e., the function symbols form a list fi, f2,... and the
predicate symbols form a list P;, Ps,.... This may not seem like much of a
restriction, but for example in developing the model theory of the real numbers,
it is sometimes useful to introduce a distinct constant symbol e, for every real
number c¢; and there are uncountably many real numbers. The completeness
theorem and lemma hold for the uncountable case, but we shall not prove them
for this case.

For the countable case, we may assign a distinct binary string to each func-
tion symbol, predicate symbol, variable, etc., and hence assign a unique binary
string to each formula and term. This allows us to enumerate all the £-formulas
in a list A, A, ... and enumerate all the £-terms (which contain only free vari-
ables a,b,c,...) in a list t1,t2,.... The free variables available to build the
formulas and terms in these lists must include all the free variables which ap-
pear in @, together with a countably infinite set {cg, c1 ...} of new free variables
which do not occur in any of the formulas in ®. (These new free variables are
needed for the cases 3-left and V-right in the argument below.) Further we
may assume that every formula occurs infinitely often in the list of formulas,
and every term occurs infinitely often in the list of terms. Finally we may enu-
merate all pairs (A4;,¢;), using any method of enumerating all pairs of natural
numbers.

We are trying to find an LK proof of some sequent of the form

Ol,...,Cn,F—>A

for some n. Starting with I' — A at the bottom, we work upward by applying
the rules in reverse, much as in the proof of the propositional completeness
theorem for PK. However now we will add formulas C; to the antecedent from
time to time. Also unlike the PK case we have no inversion principle to work
with (specifically for the rules V-left and 3-right). Thus it may happen that
our proof-building procedure may not terminate. In this case we will show how
to define a structure which shows that I' — A is not a logical consequence of
.

We construct our cut-free proof tree 7 in stages. Initially 7 consists of just
the sequent I' — A. At each stage we modify 7 by possibly adding a formula
from @ to the antecedent of every sequent in 7, and by adding subtrees to some
of the leaves.

Notation A sequent in 7 is said to be active provided it is at a leaf and cannot
be immediately derived from a logical axiom (i.e., no formula occurs in both its

2.3. THE FIRST-ORDER PROOF SYSTEM LK 21

antecedent and succedent, the logical constant T does not occur in its succedent,
and L does not occur in its antecedent).

Each stage uses one pair in our enumeration of all pairs (A;,¢;). Here is the
procedure for the next stage, in general.

Let (A;,t;) be the next pair in the enumeration. We call A; the active
formula for this stage.

Step 1: If A; is in @, then replace every sequent I' — A’ in 7 with the sequent
1—‘/, Al — A/.

Step 2: If A; is atomic, do nothing and proceed to the next stage. Otherwise,
modify 7 at the active sequents which contain A; by applying the appropriate
introduction rule in reverse, much as in the proof of propositional completeness
(Theorem 1.8.) For example, if A; is of the form B V C, then every active
sequent in 7 of the form IV, BV C, T — A’ is replaced by the derivation

P/7B,P// —_ A/].—‘/,C, I\// —_ A/
', BVC,T' — A

Here the double line represents a derivation involving the rule V-left, together
with exchanges to move the principle formulas to the left end of the antecedent
and back. The treatment is similar when B V C' occurs in the succedent, only
the rule V-right is used.

If A; is of the form JzB(x), then every active sequent of 7 of the form
IV, 3xB(z), T — A’ is replaced by the derivation

I, B(c), I" — A’
', 3zB(x), T — A’

where ¢ is a new free variable, not used in 7 yet. (Also ¢ may not occur in any
formula in @, because otherwise at a later stage, Step (1) of the procedure might
cause the variable restriction in the 3-left rule to be violated.) In addition, any
active sequent of the form IV — A’, 3zB(x), A” is replaced by the derivation

I" — A, 3zB(z), B(t;), A"
I — A/, JzB(x), A"

Here the term ¢; is the second component in the current pair (A;,¢;). The
derivation uses the rule 3-right to introduce a new copy of JzB(z), and then
the rule contraction-right to combine the two copies of JxB(z). This and the
dual V-left case are the only two cases that use the term ¢;, and the only cases
that use the contraction rule.

The case where A; begins with a universal quantifier is dual to the above
existential case.

Step 3: If there are no active sequents remaining in 7, then exit from the
algorithm. Otherwise continue to the next stage.

22 CHAPTER 2. THE PREDICATE CALCULUS

Exercise 2.26. Carry out the case above in which A; begins with a universal
quantifier.

If the algorithm constructing 7 ever halts, then 7 gives a cut-free proof
of I',Cy,...,C,, — A for some formulas Ci,...,C, in ®. This is because
the nonactive leaf sequents all can be derived from the logical axioms using
weakenings and exchanges. Thus 7 can be extended, using exchanges, to a
cut-free proof of Cy,...,C,,I' — A, as desired.

It remains to show that if the above algorithm constructing 7 never halts,
then the sequent I' — A is not a logical consequence of ®. So suppose the
algorithm never halts, and let m be the result of running the algorithm for-
ever. In general, m will be an infinite tree, although in special cases 7 is a
finite tree. In general the objects at the leaves of the tree will not be finite
sequents, but because of Step (1) of the algorithm above, they will be of the
form I, Cy,Cy, ... — A’ where C1,C5, ... is an infinite sequence of formulas
containing all formulas in ®, each repeated infinitely often (unless ® is empty).
We shall refer to these infinite pseudo-sequents as just “sequents”.

If 7 has only finitely many nodes, then at least one leaf node must be ac-
tive (and contain only atomic formulas), since otherwise the algorithm would
terminate. In this case, let 8 be a path in 7 from the root extending up to
this active node. If on the other hand 7 has infinitely many nodes, then by
Lemma 1.18 (Ko6nig), there must be an infinite branch 8 in 7 starting at the
root and extending up through the tree. Thus in either case, 3 is a branch in 7
starting at the root, extending up through the tree, and such that all sequents
on § were once active, and hence have no formula occurring on both the left
and right, no T on the right and no L on the left.

We use this branch 3 to construct a structure M and an object assignment
o which satisfy every formula in ®, but falsify the sequent ' — A (so ' — A
is not a logical consequence of ®).

Definition 2.27 (Construction of the “Term Model” M). The uni-
verse M of M is the set of all L-terms t (which contain only “free” variables
a,b,c,...). The object assignment o just maps every variable a to itself.

The interpretation f™ of each k-ary function symbol f is defined so that
fM(ry, ... 1) is the term fry...7, where r1,...,7) are any terms (i.e., any
members of the universe). The interpretation P of each k-ary predicate symbol
P is defined by letting PM(ry,...,) hold iff the atomic formula Pry...ry
occurs in the antecedent (left side) of some sequent in the branch [3.

Exercise 2.28. Prove by structural induction that for every term t, t"[o] = t.

Claim For every formula A, if A occurs in some antecedent in the branch £,
then M and o satisfy A, and if A occurs in some succedent in 3, then M and
o falsify A.

Since the root of 7 is the sequent I',Cy,Cs,... — A, where C1,C5, ...
contains all formulas in @, it follows that M and o satisfy ® and falsify I' — A.

2.3. THE FIRST-ORDER PROOF SYSTEM LK 23

We prove the Claim by structural induction on formulas A. For the base
case, if A is an atomic formula, then by the definition of P™ above, A is satisfied
iff A occurs in some antecedent of 3 or A = T. But no atomic formula can occur
both in an antecedent of some node in 8 and in a succedent (of possibly some
other node) in 3, since then these formulas would persist upward in § so that
some particular sequent in G would have A occurring both on the left and on
the right. Thus if A occurs in some succedent of 3, it is not satisfied by M and
o (recall that T does not occur in any succedent of 3).

For the induction step, there is a different case for each of the ways of
constructing a formula from simpler formulas (see Definition 2.2). In general, if
A occurs in some sequent in 3, then A persists upward in every higher sequent
of B until it becomes the active formula (A =gy, A4;). Each case is handled by
the corresponding introduction rule used in the algorithm. For example, if A is
of the form BV C and A occurs on the left of a sequent in 3, then the rule V-left
is applied in reverse, so that when 3 is extended upward either it will have some
antecedent containing B or one containing C'. In the case of B, we know that
M and o satisfy B by the induction hypothesis, and hence they satisfy BV C.
(Similarly for C'.)

Now consider the interesting case in which A is 3zB(z) and A occurs in
some succedent of 5. (See Step (2) above to find out what happens when A
becomes active in this case.) The path § will hit a succedent with B(¢;) in
the succedent, and by the induction hypothesis, M and o falsify B(¢;). But
this succedent still has a copy of JzB(x), and in fact this copy will be in every
succedent of 5 above this point. Hence every L-term t will eventually be of the
form t; and so the formula B(t) will occur as a succedent on §. (This is why
we assumed that every term appears infinitely often in the sequence t1,ta,. . ..)
Therefore M and o falsify B(t) for every term ¢ (i.e., for every element in the
universe of M). Therefore they falsify 3zB(x), as required.

This and the dual case in which A is VzB(z) and occurs in some antecedent
of 3 are the only subtle cases. All other cases are straightforward. 0

We now wish to strengthen the derivational completeness of LK and show
that cuts can be restricted so that cut formulas are in ®. The definition of
anchored PK proof (Definition 1.12) can be generalized to anchored LK proof.
We will continue to restrict our attention to the case in which all nonlogical
axioms have the simple form — A, although an analog of the following theorem
does hold for an arbitrary set of nonlogical axioms, provided they are closed
under substitution of terms for variables.

Theorem 2.29 (Anchored LK Completeness Theorem). Assume that the
underlying language does not contain =. Suppose that ® is a set of formulas
closed under substitution of terms for variables. (Le., if A(b) is in ®, and t is
any term not containing “bound” variables x,y, z, ..., then A(t) is also in ®.)
Suppose that ' — A is a sequent that is a logical consequence of Y®. Then
there is an LK-® proof of ' — A in which the cut rule is restricted so that
the only cut formulas are formulas in ®.

24 CHAPTER 2. THE PREDICATE CALCULUS

Note that if all formulas in ® are sentences, then the above theorem follows
easily from the Completeness Lemma, since in this case V® is the same as .
However if formulas in ® have free variables, then apparently the cut rule must
be applied to the closures VC' of formulas C in ® (as opposed to C' itself) in
order to get an LK-® proof of ' — A. It will be important later, in our proof
of witnessing theorems, that cuts can be restricted to the formulas C.

Exercise 2.30. Show how to modify the proof of the Completeness Lemma
to obtain a proof of the Anchored LK Completeness Theorem. FExplain the
following modifications to that proof.

a) The definition of active sequent on page 20 must be modified, since now we
are allowing nonlogical axioms in 7. Give the precise new definition.

b) Step (1) of the procedure on page 21 must be modified, because now we are
looking for a derivation of ' — A from nonlogical axioms, rather than a proof
of Cy,...,Cp,T' — A. Describe the modification. (We still need to bring
formulas A; of ® somehow into the proof, and your modification will involve
adding a short derivation to r.)

c) The restriction giwen in Step (2) for the case in which 3xB(z) is in the
antecedent, that the variable ¢ must not occur in any formula in ®, must be
dropped. FExplain why.

d) Ezplain why the term model M and object assignment o, described on page 22
(Definition 2.27), satisfy Y®. This should follow from the Claim on page 22,
and your modification of Step (1), which should ensure that each formula in
® occurs in the antecedent of some sequent in every branch in w. Conclude
that I' — A is not a logical consequence of Y® (when the procedure does not
terminate).

2.4 Equality Axioms

Definition 2.31. A weak L-structure M is an L-structure in which we drop
the requirement that =™ is the equality relation (i.e., =™ can be any binary
relation on M.)

Are there sentences £ (axioms for equality) such that a weak structure M
satisfies £ iff M is a (proper) structure? It is easy to see that no such set £ of
axioms exists, because we can always inflate a point in a weak model to a set of
equivalent points.

Nevertheless every language £ has a standard set £, of equality axioms
which satisfies the Equality Theorem below.

Definition 2.32 (Equality Axioms of £ (£¢)).

EA1l Va(z =z) (reflexivity)

EA2 VaVy(zr =y Dy ==x) (symmetry)

EA3 VaVyVz((z =y Ay = z) D x = 2) (transitivity)

EA4 Vay ... Va,Vy1 .. .Vyn(t1 =1 Ao oA Xy = Yn) D f21.. . T = fY1...Yn
for each n > 1 and each n-ary function symbol f in L.

2.4. EQUALITY AXIOMS 25

EA5 Vay ... Vo, ,Vy1 .. . Vyn(z1 =11 Ao ATy =Yn) D (Px1...20 D Py1...yn)
for each n > 1 and each n-ary predicate symbol P in L other than =.

Axioms EA1, EA2, EA3 assert that = is an equivalence relation. Axiom
EA4 asserts that functions respect the equivalence classes, and Axiom EA5
asserts that predicates respect equivalence classes. Together the axioms assert
that = is a congruence relation with respect to the function and predicate sym-
bols.

Note that the equality axioms are all valid, because of our requirement that
= be interpreted as equality in any (proper) structure.

Theorem 2.33 (Equality Theorem). Let ® be any set of L-formulas. Then
® is satisfiable iff ® U Er is satisfied by some weak L-structure.

Corollary 2.34. ® | A iff for every weak L-structure M and every object
assignment o, if M satisfies ® U Ex under o then M satisfies A under o.

Corollary 2.35. V® = A iff A has an LK-U proof, where ¥ = ® U Ef.

Corollary 2.34 follows immediately from the Equality Theorem and the fact
that ® = A iff ® U {—A} is unsatisfiable. Corollary 2.35 follows from Corol-
lary 2.34 and the derivational soundness and completeness of LK (page 18),
where in applying that theorem we treat = as just another binary relation (so
we can assume £ does not have the official equality symbol).

Proof of Equality Theorem. The ONLY IF (=) direction is obvious, because
every structure M must interpret = as true equality, and hence M satisfies the
equality axioms E.

For the IF («<=) direction, suppose that M is a weak L-structure with
universe M, such that M satisfies ® U .. Our job is to construct a proper
structure M such that M satisfies ®. The idea is to let the elements of M
be the equivalence classes under the equivalence relation =M. Axioms EA4
and EAS5 insure that the interpretation of each function and predicate symbol
under M induces a corresponding function or predicate in M. Further each
object assignment o for M induces an object assignment & on M. Then for
every formula A and object assignment o, we show by structural induction on

A that M = Alo] iff M = A[5]. O

2.4.1 Equality Axioms for LK

For the purpose of using an LK proof to establish ® = A, we can replace
the standard equality axioms EA1,... EA5 by the following quantifier-free
sequent schemes, where we must include an instance of the sequent for all terms
t,u,v,t;,u; (not involving “bound” variables z,y, z, . . .).

Definition 2.36 (Equality Axioms for LK).
El —t=t

26 CHAPTER 2. THE PREDICATE CALCULUS

E2t=u—u=t
E3t=uu=v—t=w
E4 t1 =uy,... .t =up — ft1...ty, = fui...un, for each f in L

E5 t1 =u1,...,tn = up, Pt1...t, — Puy...uy, for each P in L (Here P
is not =)

Note that the universal closures of E1,...,E5 are semantically equivalent
to EA1,...,EA5, and in fact using the LK rule V-right repeatedly, — EAi
is easily derived in LK from Ei (with terms ¢,u, etc., taken to be distinct
variables), ¢ = 1,...,5. Thus Corollary 2.35 above still holds when ¥ = & U
{E1,... ,E5}.

Definition 2.37 (Revised Definition of LK with =). If ® is a set of L-
formulas, where L includes =, then by an LK-® proof we now mean an LK-¥
proof in the sense of the earlier definition, page 18, where ¥ is ® together with
all instances of the equality axioms E1,... E5. If ® is empty, we simply refer
to an LK-proof (but allow E1, ... E5 as axioms).

2.4.2 Revised Soundness and Completeness of LK

Theorem 2.38 (Revised Soundness and Completeness of LK). For any
set ® of formulas and sequent S,

VO = S iff S has an LK-® proof

Notation ® - A means that there is an LK-® proof of — A.
Recall that if @ is a set of sentences, then V® is the same as ®. Therefore

o= Aiff OF A, if @ is a set of sentences

Restricted use of cut: Note that E1,... E5 have no universal quantifiers,
but instead have instances for all terms ¢,u,.... Recall that in an anchored
LK proof, cuts are restricted so that cut formulas must occur in the nonlog-
ical axioms. In the presence of equality, the nonlogical axioms must include

E1,... E5, but the only formulas occurring here are equations of the form
t = w. Since the Anchored LK Completeness Theorem (page 23) still holds
when @ is a set of sequents rather than a set of formulas, and since E1, ..., E5

are closed under substitution of terms for variables, we can extend this theorem
so that it works in the presence of equality.

Definition 2.39 (Anchored LK Proof). An LK-® proof m is anchored! provided
every cut formula in 7 is a formula in some nonlogical axiom of m (including
possibly E1,... E5).

I The definition of anchored in [?] is slightly stronger and more complicated

2.5. MAJOR COROLLARIES OF COMPLETENESS 27

Theorem 2.40 (Anchored LK Completeness Theorem with Equality).
Suppose that ® is a set of formulas closed under substitution of terms for vari-
ables and that the sequent S is a logical consequence of V®. Then there is an
anchored LK-® proof of S.

The proof is immediate from the Anchored LK Completeness Theorem
(page 23) and the above discussion about axioms E1, ..., E5.

We are interested in anchored proofs because of their subformula property.
The following result generalizes Proposition 1.15.

Theorem 2.41 (Subformula Property of Anchored LK Proofs). If 7 is
an anchored LK-® proof of a sequent S, then every formula in every sequent of
15 a term substitution instance of a subformula of a formula either in S or in
a nonlogical aziom of 7 (including E1,... E5).

The proof is by induction on the number of sequents in 7. The induction
step is proved by inspecting each LK rule. The case of the cut rule uses the
fact that every cut formula in an anchored proof is a formula in some nonlogical
axiom. The reason that we must consider term substitutions is because of the
four quantifier rules. For example, in 3-right, the formula A(t) occurs on top,
and this is a substitution instance of a subformula of 3z A(z), which occurs on
the bottom. (]

2.5 Major Corollaries of Completeness

Theorem 2.42 (Lowenheim/Skolem Theorem). If a set ® of formulas
from a countable language is satisfiable, then ® is satisfiable in a countable
(possibly finite) universe.

Proof. Suppose that ® is a satisfiable set of sentences. We apply the proof
of the Completeness Lemma (Lemma 2.25), treating = as any binary relation,
replacing ® by ® = ® U &, and taking I' — A to be the empty sequent
(always false). In this case ' — A is not a logical consequence of &', so the
proof constructs a term model M satisfying &’ (see page 22). This structure
has a countable universe M consisting of all the £-terms. By the proof of the
Equality Theorem, we can pass to equivalence classes and construct a countable
structure M which satisfies ® (and interprets = as true equality). O

As an application of the above theorem, we conclude that no countable
set of first-order sentences can characterize the real numbers. This is because
if the field of real numbers forms a model for the sentences, then there will
also be a countable model for the sentences. But the countable model cannot
be isomorphic to the field of reals, because there are uncountably many real
numbers.

Theorem 2.43 (Compactness Theorem). If ® is an unsatisfiable set of
predicate calculus formulas then some finite subset of ® is unsatisfiable.

28 CHAPTER 2. THE PREDICATE CALCULUS

(See also the three alternative forms in Theorem 1.16.)

Proof. First note that we may assume that ® is a set of sentences, by replacing
the free variables in ® by distinct new constant symbols. The resulting set of
sentences is satisfiable iff the original set of formulas is satisfiable. Since @ is
unsatisfiable iff the empty sequent — is a logical consequence of ®, and since
LK-¥ proofs are finite, the theorem now follows from Corollary 2.35. O

Theorem 2.44. Suppose L has only finitely many function and predicate sym-
bols. Then the set of valid L-sentences is recursively enumerable. Similarly for
the set of unsatisfiable L-sentences.

Concerning this theorem, a set is recursively enumerable if there is an algo-
rithm for enumerating its members. To enumerate the valid formulas, enumer-
ate finite LK proofs. To enumerate the unsatisfiable formulas, note that A is
unsatisfiable iff = A is valid.

Exercise 2.45 (Application of Compactness). Show that if a set ® of
sentences has arbitrarily large finite models, then ® has an infinite model. (Hint:
For each n construct a sentence A, which is satisfiable in any universe with n or
more elements but not satisfiable in any universe with fewer than n elements.)

2.6 The Herbrand Theorem

The Herbrand Theorem provides a complete method for proving the unsat-
isfiability of a set of universal sentences. It can be extended to a complete
method for proving the unsatisfiability of an arbitrary set of first-order sen-
tences by first converting the sentences to universal sentences by introducing
“Skolem” functions for the existentially quantified variables. This forms the
basis of the resolution proof method, which is used extensively by automated
theorem provers.

Definition 2.46. A formula A is quantifier-free if A has no occurrence of either
of the quantifiers ¥V or 3. A V-sentence is a sentence of the form Vxy...VripB
where k > 0 and B is a quantifier-free formula. A ground instance of this
sentence is a sentence of the form B(ty/x1)(t2/x2) ... (tk/xk), where t1, ... tk
are ground terms (i.e., terms with no variables) from the underlying language.

Notice that a ground instance of a V-sentence A is a logical consequence of
A. Therefore if a set ®g of ground instances of A is unsatisfiable, then A is
unsatisfiable. The Herbrand Theorem implies a form of the converse.

Definition 2.47 (L-Truth Assignment). An L-truth assignment (or just
truth assignment) is a map

T : {L-atomic formulas} — {T, F'}

We extend T to the set of all quantifier-free L-formulas by applying the usual
rules for propositional connectives.

2.6. THE HERBRAND THEOREM 29

The above definition of truth assignment is the same as in the propositional
calculus, except now we take the set of atoms to be the set of L-atomic for-
mulas. Thus we say that a set ®y of quantifier-free formulas is propositionally
unsatisfiable if no truth assignment satisfies every member of ®.

Lemma 2.48. If a set ®g of quantifier-free sentences is propositionally unsat-
isfiable, then ®q is unsatisfiable (in the first-order sense).

Proof. We prove the contrapositive: Suppose that @ is satisfiable, and let M be
a first-order structure which satisfies ®y. Then M induces a truth assignment 7
by the definition BT = T iff M |= B for each atomic sentence B. Then B™ =T
iff M = B for each quantifier-free sentence B, so 7 satisfies ®g. O

We can now state our simplified proof method, which applies to sets of V-
sentences: Simply take ground instances of sentences in ® together with the
equality axioms £, until a propositionally unsatisfiable set ®(is found. The
method does not specify how to check for propositional unsatisfiability: any
method (such as truth tables) for that will do. Notice that by propositional
compactness, it is sufficient to consider finite sets ®¢ of ground instances. The
Herbrand Theorem states that this method is sound and complete.

Theorem 2.49 (Herbrand Theorem, Form 1). Suppose that the underlying
language L has at least one constant symbol, and let ® be a set of V-sentences.
Then ® is unsatisfiable iff some finite set @y of ground instances of sentences
in ® U & is propositionally unsatisfiable.

Corollary 2.50 (Herbrand Theorem, Form 2). Let ® be a set of V-sentences
and let A(Z,y) be a quantifier-free formula with all free variables indicated such
that

® |- VT A(Z, y)

Then there exist finitely many terms t1(Z), ..., tx(Z) in the vocabulary of ® and
A(Z,y) such that

O = VE, AT, t1(2)) V...V AT, tr(Z))

We will use Form 2 in later chapters to prove “witnessing theorems” for
various theories. The idea is that one of the terms ¢1(Z),. .., (%) “witnesses”

the existential quantifier 3y in the formula VZ3yA(Z, y).

Exercise 2.51. Prove Form 2 from Form 1. Start by showing that under the
hypotheses of Form 2, ® U{Vy—A(C,y)} is unsatisfiable, where € is a list of new
constants.

Example 2.52. Let ¢ be a constant symbol, and let

& = {Va(Px D Pfx),Pc,~Pffc}.

30 CHAPTER 2. THE PREDICATE CALCULUS

Then the set H of ground terms is {c, fec, ffc,...}. We can take the set ®y of
ground instances to be

®o = {(Pc> Pfe),(PfcD Pffc), Pe,~Pffc}.
Then ®q s propositionally unsatisfiable, so ® is unsatisfiable.

Proof of the Soundness direction of Herbrand Theorem, Form 1. If ®q is propo-
sitionally unsatisfiable, then @ is unsatisfiable. This follows easily from Lemma 2.48,
since @ is a logical consequence of ®. O

Proof of the Completeness direction of Herbrand Theorem, Form 1. This follows
from the Anchored LK Completeness Theorem (see Exercise 2.54 below). Here
we give a direct proof.

We prove the contrapositive: If every finite set of ground instances of PUE,
is propositionally satisfiable, then ® is satisfiable. By Corollary 2.34, we may
ignore the special status of =.

Let @y be the set of all ground instances of ® UE, (using ground terms from
L). Assuming that every finite subset of @y is propositionally satisfiable, it
follows from propositional compactness (Theorem 1.16, Form 3) that the entire
set @ is propositionally satisfiable. Let 7 be a truth assignment which satisfies
®y. We use 7 to construct an L-structure M which satisfies . We use a term
model, similar to that used in the proof of the Completeness Lemma (Definition
2.27).

Let the universe M of M be the set H of all ground L-terms.

For each n-ary function symbol f define

fM(tl,---,tn):ftl...tn.

(In particular, ¢ = ¢ for each constant ¢, and it follows by induction that
=t for each ground term ¢.)
For each n-ary predicate symbol P of L, define

M
tM

PM = {{t;,... t,) : (Pty...t,)" =T}

This completes the specification of M. It follows easily by structural in-
duction that M = B iff B™ = T for each quantifier-free £-sentence B with
no variables. Thus M = B for every ground instance B of any sentence in ®.
Since every member of ® is a V-sentence, and since the elements of the universe
are precisely the ground terms, it follows that M satisfies every member of ®.
(A formal proof would use the Basic Semantic Definition (Definition 2.8) and
the Substitution Theorem (Theorem 2.15). O

Exercise 2.53. Show (from the proof of the Herbrand Theorem) that a sat-
isfiable set of V¥ sentences without = and without function symbols except the
constants c1,...,c, for n > 1 has a model with exactly n elements in the uni-
verse. Give an example showing that n—1 elements would not suffice in general.

2.7. NOTES 31

Exercise 2.54. Show that the completeness direction of the Herbrand Theorem
(Form 1) follows from the Anchored LK Completeness Theorem (with equality,
Definition 2.39 and Theorem 2.40) and the following syntactic lemma.

Lemma 2.55. Let @ be a set of formulas closed under substitution of terms for
variables. Let m be an LK-® proof in which all formulas are quantifier-free, let
t be a term and let b be a variable, and let w(t/b) be the result of replacing every
occurrence of b in 7 by t. Then w(t/b) is an LK-® proof.

Definition 2.56 (Prenex Form). We say that a formula A is in prenex form
if A has the form Qix1 ...Qpxn B, where each Q; is either ¥V or 3, and B is a
quantifier-free formula.

Theorem 2.57 (Prenex Form Theorem). There is a simple procedure which,
given a formula A, produces an equivalent formula A’ in prenex form.

Proof. First rename all quantified variables in A so that they are all distinct
(see the remark on page 15). Now move all quantifiers out past the connectives
A, V, = by repeated use of the equivalences below. (Recall that by the Formula
Replacement Theorem (Theorem 2.16), we can replace a subformula in A by an
equivalent formula and the result is equivalent to A.)

Note In each of the following equivalences, we must assume that z does not
occur free in C.

(VxB A C) <= V(B AC) (VB V C) < Vx(BV C)
(C ANVxB) < Vz(C A B) (CVVzB) < VYz(C V B)
(3zBAC) = Fx(BAC) (3zBV () <= Fx(BV ()
(CA3zB) < Fz(CAB) (CV3zB) < 3z(CV B)

VB <= Jdz—-B —dxB <= Vx—B

2.7 Notes

Sections 2.1 to 2.3 roughly follow Sections 2.1 and 2.2 of [?]. However an im-
portant difference is that the definition of ® = A in [?] treats free variables as
though they are universally quantified, but our definition does not.

The proof of the Anchored LK Completeness Theorem outlined in Exer-
cise 2.30 grew out of discussions with S. Buss.

32 ICATE CALCULUS

Chapter 3

Peano Arithmetic and its
Subsystems

In this chapter we discuss Peano Arithmetic and some of its subsystems. We
focus on IA(, which plays an essential role in the development of the theories
in later chapters: All (two-sorted) theories introduced in this book extend V©,
a conservative extension of IAj. At the end of the chapter we briefly discuss
Buss’s hierarchy S5 € T3 C S2.... These single-sorted theories establish a
link between bounded arithmetic and the polynomial time hierarchy, and have
played a central role in the study of bounded arithmetic. In later chapters we
introduce their two-sorted versions, including V1!, a theory that characterizes
P. The theories considered in this chapter are singled-sorted, and the intended
domain is N={0,1,2,...}.

3.1 Peano Arithmetic

Definition 3.1. A theory over a language L is a set T of formulas over L
which is closed under logical consequence and universal closure.

We often specify a theory by a set I' of axioms for 7, where I' is a set of
L-formulas. In that case

7 ={A] Ais an L-formula and VI" E A}

Here VI is the set of universal closures of formulas in I" (Definition 2.23).

Note that it is more usual to require that a theory be a set of sentences, rather
than formulas. Our version of a usual theory 7 is 7 together with all formulas
(with free variables) which are logical consequences of 7. Recall VA = A, for
any formula A.

Notation We sometimes write 7 - A to mean A € 7. If 7 - A we say that A
is a theorem of 7.

33

34 CHAPTER 3. PEANO ARITHMETIC AND ITS SUBSYSTEMS

The theories that we consider in this section have the language of arithmetic

EA = [0717+7' 5 :7§]
as the underlying language (Definition 2.3). Recall that the standard structure
N for £4 has universe M = N and 0,1, +, -, =, < get their standard meanings
in N.

Notation ¢t < u stands for (¢ < u At # u). For each n € N we define a term n
called the numeral for n inductively as follows:

0=0,1=1, forn>1, n+1=(n+1)

For example, 3 is the term ((1 + 1) + 1). In general, the term n is interpreted
as n in the standard structure.

Definition 3.2. TA (True Arithmetic) is the theory consisting of all formulas
valid in the standard structure:

TA = {A| N VA}

It follows from Godel’s Incompleteness Theorem that TA has no computable
set of axioms. The theories we define below are all sub-theories of TA with nice,
computable sets of axioms.

Note that by Definition 2.6, = is interpreted as true equality in all £4-
structures, and hence we do not need to include the Equality Axioms in our list
of axioms. (Of course LK proofs still need equality axioms: see Definition 2.37
and Corollaries 2.34, 2.35).

We start by listing nine “basic” quantifier-free formulas B1, ..., B8 and C,
which comprise the axioms for our basic theory. See Figure 3.1 below.

Bl.z+1£0 B5.2.0=0

B2. 2+1=y+1Dx=y B6.z-(y+1)=(z-y)+z
B3.z+0=x B7. (z <yAny<z)DdDax=y
B4. 2+ (y+1)=(x+y)+1 B8 xz<z+y

C.0+1=1

Figure 3.1: 1-BASIC

These axioms provide recursive definitions for + and -, and some basic prop-
erties of <. Axiom C is not necessary in the presence of induction, since it then
follows from the theorem 0+ z = z (see Example 3.8, O2). However we put it
in so that VB1,...,VB8,VC alone imply all true quantifier-free sentences over
La

Lemma 3.3. If ¢ is a quantifier-free sentence of L4, then

TAly iff 1BASICH ¢

3.1. PEANO ARITHMETIC 35

Proof. The direction <= holds because the axioms of 1-BASIC are valid in N.

For the converse, we start by proving by induction on m that if m < n, then
1-BASIC + m # n. The base case follows from B1 and C, and the induction
step follows from B2 and C.

Next we use B3, B4 and C to prove by induction on n that if m +n = k,
then 1-BASIC - m + n = k. Similarly we use B5, B6 and C to prove that if
m-n =k then I-BASIC+Fm -n =k.

Now we use the above results to prove by structural induction on ¢, that if
t is any term without variables, and ¢ is interpreted as n in the standard model
N, then 1-BASIC ¢ = n.

It follows from the above results that if ¢ and u are any terms without
variables, then TA + ¢ = u implies 1-BASIC - ¢t = u, and TA F ¢t # u implies
1-BASIC It # .

Consequently, if m < n, then for some k, 1-BASIC F n = m+ k, and hence
by B8, 1-BASIC + m < n. Also if not m < n, then n < m, so by the above
1-BASIC F m # n and 1-BASIC F n < m, so by B7, I-BASIC - —-m < n.

Finally let ¢ be any quantifier-free sentence. We prove by structural in-
duction on ¢ that if TA F ¢ then 1-BASIC F ¢ and if TA + —p then
1-BASIC F —p. For the base case ¢ is atomic and has one of the forms
t = uort < u, so the base case follows from the above. The induction step
involves the three cases A, V, and —, which are immediate. 0

Definition 3.4 (Induction Scheme). If ® is a set of formulas, then ®-IND
axioms are the formulas

[0(0) AV, @(z) D o(x+1)] D Vzp(z) (3.1)

where ¢ is a formula in ®. Note that p(x) is permitted to have free variables
other than x.

Definition 3.5 (Peano Arithmetic). The theory PA has as axioms B1,... B8,
together with the ®-IND azioms, where ® is the set of all L 4-formulas.

(As we noted earlier, C is provable from the other axioms in the presence of
induction.)

PA is a powerful theory capable of formalizing the major theorems of number
theory, including apparently Andrew Wiles’ proof of Fermat’s Last Theorem.
We define subsystems of PA by restricting the induction axiom to certain sets
of formulas. We use the following notation.

Definition 3.6 (Bounded Quantifiers). If the variable x does not occur in
the term t, then 3z < tA stands for x(zx < t A A), and Vo < tA stands for
Ve(x <t D A). Quantifiers that occur in this form are said to be bounded, and
a bounded formula is one in which every quantifier is bounded.

Notation Let 37 stand for Jx13xs...dxk, k& > 0.

36 CHAPTER 3. PEANO ARITHMETIC AND ITS SUBSYSTEMS

Definition 3.7 (IOPEN, IA(, IX;). OPEN is the set of open (i.e., quantifier-
free) formulas; Ay is the set of bounded formulas; and ¥ is the set of formulas
of the form 3Zp, where ¢ is bounded and T is a possibly empty vector of vari-
ables. The theories IOPEN, 1A, and I¥, are the subsystems of PA obtained
by restricting the induction scheme so that ® is OPEN, Ag, and 31, respec-
tively.

Note that the underlying language of the theories defined above is £ 4.

Example 3.8. The following formulas (and their universal closures) are theo-
rems of IOPEN:

O1l. (z+y)+z=a+ (y+ 2) (Associativity of +)
02. v +y =y + x (Commutativity of +)

03. z-(y+2)=(x-y)+ (x-2) (Distributive law)
O4. (z-y)-z=xz-(y-z) (Associativity of -)

05. z -y =y-x (Commutativity of -)

06. v+ 2z=y+zDx=y (Cancellation law for +)
07.0<x

08. 2<0D>z=0

09. z <z

010. z#x+1

Proof. O1: induction on z

02: induction on y, first establishing the special cases y =0 and y =1

03: induction on z

0O4: induction on z, using O3

O5: induction on y, after establishing (y + 1) - © = y - + = by induction on z
0O6: induction on z

O7: B8, 02, B3

08: 07, B7

09: B8, B3

010: induction on x and B2.]

Recall that z < y stands for (x <y Az #y)

Example 3.9. The following formulas (and their universal closures) are theo-
rems of IAg:

D1. 2 #0D> 3y < z(x =y + 1) (Predecessor)

D2. Iz(z+z=yVy+z==2x)

D3. 2 <y« Iz(z+z=y)

D4. (z <yAy<z)Dax <z (Transitivity)

D5. © <yVy<ax (Total order)

D6. s<y—zx+z<y+z

D7.2<yDz-z2<y-z

D8. 2 <y+1le (x<yVa=y+1) (Discreteness 1)
D9. 2 <y < x+ 1<y (Discreteness 2)

D10. z-z2=y-z2Az# 0D x =y (Cancellation law for -)

3.1. PEANO ARITHMETIC 37

Proof. D1: Induction on z

D2: Induction on x. Base case: B2, O2. Induction step: B3, B4, D1.

D3: =—: D2, B3 and B7; <—: BS.

D4: D3, O1.

D5: D2, BS.

D6: —: D3, 01, 02; —: D3, 06.

D7: D3 and algebra (O1,...,08).

D8: —: D3, D1, and algebra; <—: 09, B8, D4.

D9: —: D3, D1, and algebra; «<—=: D3 and algebra.

D10: Exercise. O

Taken together, these results show that all models of IA(are commutative
discretely-ordered semi-rings.

Exercise 3.10. Show that IAq proves the division theorem:
IAGFVaVy(0 <z D IgIr <z, y=xz-q+7)

It follows from Go&del’s Incompleteness Theorem that there is a bounded
formula p(z) such that Yap(x) is true but IAg I/ Vop(z). However if ¢ is a
true sentence in which all quantifiers are bounded, then intuitively ¢ expresses
information about only finitely many tuples of numbers, and in this case we can
show IAg I ¢. The same applies more generally to true ¥; sentences .

Lemma 3.11. If ¢ is a Xq-sentence, then TA F ¢ iff IAg - .

Proof. The direction <= follows because all axioms of IA(are true in the
standard structure.

For the converse, we prove by structural induction on bounded sentences ¢
that if TA F ¢ then IA(F ¢, and if TA F = then IAy - —p. The base case is
 is atomic, and this follows from Lemma 3.3. For the induction step, the cases
V, A, and — are immediate. The remaining cases are ¢ is Vo < tip(x) and ¢ is
Jx < ty(z), where t is a term without variables, and ¢ (z) is a bounded formula
with no free variable except possibly x. These cases follow from Lemma 3.3 and
Lemma 3.12 below.

Now suppose that ¢ is a true 3j-sentence of the form 3ZY (&), where ¥ (&)
is a bounded formula. Then t(77) is a true bounded sentence for some numerals
Nyy ..o, Ny, 80 IAg F (7). Hence IA(F . O

Lemma 3.12. For each n € N,

IAgbz<ne— (x=0Vz=1V..Vz=n)

Proof. Induction on n. The base case n = 0 follows from O7 and O8, and the
induction step follows from D8. O

38 CHAPTER 3. PEANO ARITHMETIC AND ITS SUBSYSTEMS

Minimization

Definition 3.13 (Minimization). The minimization axioms (or least number
principle axioms) for a set ® of formulas are denoted ®-MIN and consist of
the formulas

Jz(2) D Fylp(y) A —3z(z <y A p(x))]

where ¢ is a formula in .
Theorem 3.14. 1A(proves Ag-MIN.

Proof. The contrapositive of the minimization axiom for ¢(z) follows from the
induction axiom for the bounded formula 1(z) = Vy < z(—p(y)). O

Exercise 3.15. Show that IAq can be alternatively axiomatized by B1, ..., B8,
010 (Ezample 3.8), D1 (Ezample 3.9), and the aziom scheme Ag-MIN.
Bounded Induction Scheme

The Ag-IND scheme of IA can be replaced by the following bounded induction
scheme for Ag formulas, i.e.,

[p(0) AVz < 2(p(x) D @z +1))] D ¢(2) (3.2)

where () is any Ag-formula. (Note that the IND formula (3.1) for ¢(x) is a
logical consequence of the universal closure of this.)

Exercise 3.16. Prove that 1Ay remains the same if the Ag-IND scheme is
replaced by the above bounded induction scheme for Ag formulas. (It suffices to
show that the new scheme is provable in 1Ay.)

Strong Induction Scheme

The strong induction aziom for a formula (z) is the following formula:

Vr[(Yy < z¢(y)) D p(x)] D Vzp(2) (3.3)

Exercise 3.17. Show that IAq proves the strong induction axiom scheme for
Ay formulas.

3.2 Parikh’s Theorem

By the results in the previous section, IAy can be axiomatized by a set of
bounded formulas. We say that it is a polynomial-bounded theory, a concept we
will now define.

In general, a theory 7 may have symbols other than those in £4. We say
that a term ¢(Z) is a bounding term for a function symbol f(Z) in 7 if

T FVE f(7) < t(T) (3.4)

3.2. PARIKH’S THEOREM 39

We say that f is polynomially bounded in 7 if it has a bounding term in the
language L4.

Exercise 3.18. Let T be an extension of IAg and let L be the vocabulary of
T. Suppose that the functions of L are polynomially bounded in T . Show that
for each L-term s(T), there is an La-term t(Z) such that

T V7 s(3) < (7).

Suppose that a theory 7 is an extension of IA;. We can still talk about
bounded formulas ¢ in 7 using the same definition (Definition 3.6) as before,
but now ¢ may have function and predicate symbols not in the vocabulary
[0,1,4,;=,<] of IAy, and in particular the terms ¢ bounding the quantifiers
Jx <t and Vo <t may have extra function symbols. Note that by the exercise
above, in the context of polynomial-bounded theories (defined below) we may
assume without loss of generality that the bounding terms are £ 4-terms.

Definition 3.19 (Polynomial-Bounded Theory). Let 7 be a theory with
vocabulary L. Then T is a polynomial-bounded theory if (i) it extends IAg;
(i1) it can be aziomatized by a set of bounded formulas; and (i) each function
f € L is polynomially bounded in T .

Note that IA(is a polynomial-bounded theory.
Theories which satisfy (ii) are often called bounded theories.

Theorem 3.20 (Parikh’s Theorem). If T is a polynomial-bounded theory
and o(Z,y) is a bounded formula with all free variables displayed such that T -
VZyp(Z,y), then there is a term t involving only variables in & such that T
proves Y23y < tp(L,y).

It follows from Exercise 3.18 that the bounding term t can be taken to be
an L 4-term. In fact, Parikh’s Theorem can be generalized to say that if ¢ is a
bounded formula and 7 F 3y, then there are L 4-terms t1, ..., tx not involving
any variable in ¢ or any variable not occurring free in ¢ such that 7 proves
Jyr < t1...3yx < txp. This follows from the above remark, and the following
lemma.

Lemma 3.21. Let T be an extension of IAqg. Let z be a variable distinct from
Y1, ---, Yk and not occurring in ¢. Then

TEIjp— T2y < z..3yp <z

Exercise 3.22. Give a careful proof of the above lemma, using the theorems of
1A described in Example 3.9.

In section 3.3.3 we will show how to represent the relation y = 2% by a
bounded formula ¢czp. It follows immediately from Parikh’s Theorem that

IAO |7[any‘ﬁexp (:Z?, y)

40 CHAPTER 3. PEANO ARITHMETIC AND ITS SUBSYSTEMS

On the other hand PA easily proves the Jye,,(x, y) by induction on x. There-
fore IA(is a proper sub-theory of PA.

Our proof of Parikh’s Theorem will be based on the Anchored LK Com-
pleteness Theorem with Equality (2.40). Let 7 be a polynomial-bounded the-
ory and VZ3yp(Z,y) a theorem of 7. We will look into an anchored proof of
VZ3ye(Z,y) and show that a term ¢ (not involving y) can be constructed so
that VZ3y < tp(Z,y) is also a theorem of 7. In order to apply the Anchored
LK Completeness Theorem (with Equality), we need to find an axiomatization
of 7 which is closed under substitution of terms for variables. Note that 7 is
already axiomatized by a set of bounded formulas (Definition 3.19). The desired
axiomatization of 7 is obtained by substituting terms for all the free variables.
We will consider the example where 7 is IA(. The general case is similar.

Recall that the axioms for IA consist of B1-B8 (page 34) and the Ag-IND
scheme, which can be replaced by the Bounded Induction Scheme (3.2).

Definition 3.23 (IDg). IDg is the set of all term substitution instances of
B1-B8 and the Bounded Induction Scheme, where now the terms contain only
“free” variables a,b,c,

Note that all formulas in IDg are bounded.
For example (c-b) + 1 # 0 is an instance of B1, and hence is in IDg. Also

a+0=0+aAVe<bla+z=2x+aDdDa+(z+1)=(zx+1)+a)
Da+b=b+a

is an instance of (3.2) useful in proving the commutative law a + b = b + a by
induction on b, and is in IDy.

The following is an immediate consequence of the Anchored LK Complete-
ness Theorem (2.40) and Derivational Soundness of LK (2.24).

Theorem 3.24 (LK-ID;, Adequacy Theorem). Let A be an L-formula
satisfying the LK constraint that only variables a,b,c, ... occur free and only
T, Y, 2, ... occur bound. Then IAg F A iff A has an anchored LK-IDg proof.

Proof of Parikh’s Theorem. Suppose that 7 is a polynomial-bounded theory
which is axiomatized by a set of bounded axioms such that 7 F VZ3ye(Z, y),
where ¢(Z,y) is a bounded formula. Let T be the set of all term substitution
instances of the axioms of 7. By arguing as above in the case 7 = 1Ay, we
can assume that — Jyp(d,y) has an anchored LK-T proof w. Further we
may assume that 7 is in free variable normal form (Section 2.3.1). By the sub-
formula property of anchored proofs (2.41), every formula in every sequent of 7
is either bounded, or a substitution instance of the endsequent Jyp(d, y). But in
fact the proof of the sub-formula property actually shows more: Every formula
in 7 is either bounded or it must be syntactically identical to Jyep(d,y), and in
the latter case it must occur in the consequent (right side) of a sequent. The
reason is that once an unbounded quantifier is introduced in 7, the resulting
formula can never be altered by any rule, since cut formulas are restricted to

3.2. PARIKH’S THEOREM 41

the bounded formulas occurring in T, and since no altered version of Jyp(d, y)
occurs in the endsequent. (We may assume that Jyp(d,y) is an unbounded
formula, since otherwise there is nothing to prove.)

We will convert m to an LK-T proof ' of Jy < ty(y) for some term ¢
not containing y, by replacing each sequent S in 7 by a suitable sequent S,
sometimes with a short derivation D(S) of S’ inserted.

Here and in general we treat the cedents I' and A of a sequent I' — A as
multi-sets in which the order of formulas is irrelevant. In particular we ignore
instances of the exchange rule.

The conversion of a sequent S in 7 to &', and the associated derivation
D(S), are defined by induction on the depth of S in 7 such that the following
is satisfied:

Induction Hypothesis: If S has no occurrence of Jyp, then S’ = S. If S has
one or more occurrences of Jyp, then &’ is a sequent which is the same as S
except all occurrences of Jyp are replaced by a single occurrence of Jy < ty,
where the term ¢ depends on S and the placement of S in 7. Further ¢ satisfies
the condition

Every variable in ¢ occurs free in the original sequent S. (3.5)

Thus the endsequent of 7’ has the form — Ty < ty, where every variable
in ¢ occurs free in Jyp.

In order to maintain the condition (3.5) we use our assumption that 7 is
in free variable normal form. Thus if the variable b occurs in ¢ in the formula
Jy < tp, so b occurs in S, then b cannot be eliminated from the descendants of
S except by the rule V-right or 3-left. These rules require special attention in
the argument below.

We consider several cases, depending on the inference rule in 7 forming S,
and whether Jy¢ is the principle formula of that rule.

Case I: S is the result of F-right applied to ¢(s) for some term s, so the

inference has the form
F I Aa SD(S)

I — A, ye(y)

where S is the bottom sequent. Suppose first that A has no occurrence of Jyp.
Since IDg proves s < s there is a short LK-T derivation of

(3.6)

I' — A, 3y < sp(y) (3.7)

from the top sequent. Let D(S) be that derivation and let 8’ be the sequent
(3.7).

If A has one or more occurrence of Jyp, then by the induction hypothesis
the top sequent Sy of (3.6) was converted to a sequent Sj in which all of these
occurrences have been replaced by a single occurrence of the form Jy < tp. We
proceed as before, producing a sequent of the form

I — A,y <tp,Ty < sp (3.8)

42 CHAPTER 3. PEANO ARITHMETIC AND ITS SUBSYSTEMS

Since IDg proves the two sequents — s < s+t and — t < s + t, it follows
that 7 proves
Jy < sp— Jy < (s+1)p

and
Ty <t — Jy<(s+t)p

We can use these and (3.8) with two cuts and a contraction to obtain a
derivation of

I'— A3y < (s+t)e(y) (3.9)
Let D(S) be this derivation and let S’ be the resulting sequent (3.9).

Case II: S is the result of weakening-right, which introduces Jyp. Thus the

inference has the form
I —A

I'— A Jyp
where S is the bottom sequent. If A does not contain Iy, then define S’ to be

(3.10)

(introduced by weakening). If A contains one or more occurrences of Jyep,
then take &’ = &7, where S; is the top sequent of (3.10).

Case III: S is the result of V-right or 3-left. We consider the case 3-left.

The other case is similar and we leave it as an exercise. The new quantifier

introduced must be bounded, since all formulas in 7 except Jyp are bounded,

and the latter must occur on the right. Thus the inference has the form
b<rApD),I' — A

Jz < rp(z), T — A

(3.11)

where S is the bottom sequent. If A has no occurrence of Jyp, then define
S’" = S and let D(S) be the derivation (3.11). Otherwise, by the induction
hypothesis, the top sequent was converted to a sequent of the form

b<r AB(),T — A3y < s()p(y) (3.12)

Note that b may appear on the succedent and thus violate the Restriction of
the 3-left rule (page 16).

In order to apply the 3-left rule (and continue to satisfy the condition (3.5)),
we replace the bounding term s(b) by an L4-term ¢ that does not contain b.
This is possible since the functions of 7 are polynomially bounded in 7. In
particular, by Exercise 3.18, we know that there are £4-terms 7', s'(b) such
that 7 proves both

r<r and s(b) < s'(b)

Let ¢ = §'(r'). Then by the monotonicity of L£a-terms, 7 proves b < r —
s(b) < t. Thus 7 proves

b<r,Iy <sb)ely) — Jy < to(y)

3.3. CONSERVATIVE EXTENSIONS OF 1A, 43

(i.e., the above sequent has an LK-T derivation). From this and (3.12) applying
cut with cut formula Jy < s(b)p we obtain

b<rAy(®),T — ATy <tp(y)
where ¢ does not contain b. We can now apply the 3-left rule to obtain
Jr < rp(x), T — A/, Ty < to(y) (3.13)

Let D(S) be this derivation and let &’ be the resulting sequent (3.13).

Case IV: S results from a rule with two parents. Note that if this rule is cut,
then the cut formula cannot be Iy, because 7 is anchored. The only difficulty in
converting S is that the two consequents A’ and A" of the parent sequents may
have been converted to consequents with different bounded formulas Jy < t1¢
and Jy < tap. In this case proceed as in the second part of Case I to combine
these two formulas to the single formula Jy < (t1 + t2)ep.

Case V: All remaining cases. The inference is of the form derive S from the
single sequent S;. Then take S’ to be the result of applying the same rule in the
same way to 8], except in the case of contraction-right when the principle
formula is Jyp. In this case take S’ = Sj. O

Exercise 3.25. Work out the sub-case V-right in Case III.

3.3 Conservative Extensions of 1A,

In this section we occasionally present simple model-theoretic arguments, and
the following standard definition from model theory is useful.

Definition 3.26 (Expansion of a Model). Let £1 C Lo be vocabularies and
let M; be an L; structure for i = 1,2. We say My is an expansion of My if
My and My have the same universe and the same interpretation for symbols
m El .

3.3.1 Introducing New Function and Predicate Symbols

In the following discussion we assume that all predicate and function symbols
have a standard interpretation in the set N of natural numbers. A theory 7
which extends IA(has defining axioms for each predicate and function symbol
in its vocabulary which ensure that they receive their standard interpretations
in a model of 7 which is an expansion of the standard model N. We often
use the same notation for both the function symbol and the function that it is
intended to represent. For example, the predicate symbol P might be Prime,
where Prime(z) is intended to mean that z is a prime number. Or f might be
LPD, where LPD(z) is intended to mean the least prime number dividing « (or
xifr<1).

44 CHAPTER 3. PEANO ARITHMETIC AND ITS SUBSYSTEMS

Notation (unique existence) Jlzp(x) stands for Ix(p(x) AVy(p(y) D = = y)),
where y is a new variable not appearing in ¢(z).

Definition 3.27 (Definable Predicates and Functions). Let 7 be a theory
with vocabulary L, and let ® be a set of L-formulas.

(a) We say that a predicate symbol P(Z) not in L is ®-definable in T if there
is an L-formula o(Z) in ® such that

P(3) < o(Z) (3.14)

(b) We say that a function symbol f(Z) not in L is ®-definable in T if there is
a formula o(Z,y) in ® such that

T Evalye(Z,y), (3.15)

and that
y=f(@) < (@ y) (3.16)

We say that (3.14) is a defining axiom for P(Z) and (3.16) is a defining axiom
for f(&). We say that a symbol is definable in T if it is ®-definable in T for

some P.

Although the choice of ¢ in the above definition is not uniquely determined
by the predicate or function symbol, we will assume that a specific ¢ has been
chosen, so we will speak of the defining axiom for the symbol.

For example, the defining axiom for the predicate Prime(x) (in any theory
whose vocabulary contains £ 4) might be

Prime(z) < 1 <z AVy < aVz < z(y-z # x).

Note that Ag and ¥; (Definition 3.7) are sets of £4-formulas. In general,
given a language £ the sets Ag(L) and 31 (L) are defined as in Definition 3.7
but the formulas are from L.

Notation In Definition 3.27, if ® = Ay(L) (resp. & = X1(L)) then we some-
times omit mention of £ and simply say that the symbols P, f are Ay-definable
(resp. Xp-definable) in 7.

In the case of functions, the choice ® = ¥4 (L) plays a special role. A -
definable function in 7 is also called a provably total function in 7. It turns out
that the provably total functions of IX; are precisely the primitive recursive
functions and of S} (see Section 3.5) the polytime functions. In Section 3.4 we
will show that the provably total functions of IA are precisely the functions of
the Linear Time Hierarchy.

Exercise 3.28. Suppose that the functions f(x1,...,%m) and hi(z1,...,zy)
(for 1 < i < m) are Xq-definable in a theory T. Show that the function
F(ha(Z),. .., hn(Z)) (where & stands for xy,...,xy,) is also X1-definable in T .
(In other words, show that 31 -definable functions are closed under composition.)

3.3. CONSERVATIVE EXTENSIONS OF 1A, 45

Definition 3.29 (Conservative Extension). Suppose that Ty and T2 are two
theories, where Ty C T, and the vocabulary of 7o may contain function or
predicate symbols not in 7;. We say 75 is a conservative extension of 77 if for
every formula A in the vocabulary of Ty, if To = A then 71 F A.

Theorem 3.30 (Extension by Definition Theorem). If 75 results from Tq
by expanding the vocabulary of 11 to include definable symbols, and by adding
the defining azioms for these symbols, then T3 is a conservative extension of 7T;.

Proof. We give a simple model-theoretic argument. Suppose that A is a formula
in the vocabulary of 77 and suppose that 73 F A. Let M; be a model of 7;.
We expand M; to a model My of 73 by interpreting each new predicate and
function symbol so that its defining axiom (3.14) or (3.16) is satisfied. Notice
that this interpretation is uniquely determined by the defining axiom, and in
the case of a function symbol the provability condition (3.15) is needed (both
existence and uniqueness of y) in order to ensure that both directions of the
equivalence (3.16) hold.

Since My is a model of Ty, it follows that My = A, and hence M; | A.
Since M is an arbitrary model of 77, it follows that 7; - A.]

Corollary 3.31. Let T be a theory and 7o =7 C Ty C ... be a sequence of
extensions of T where each T,41 is obtained by adding to T, a definable symbol
(in the vocabulary of T,,) and its defining axiom. Let Too =J,;~o Tn- Then T
is a conservative extension of T .

Exercise 3.32. Prove the corollary using the Extension by Definition Theorem
and the Compactness Theorem.

As an application of the Extension by Definition Theorem, we can conser-
vatively extend PA to include symbols for all the arithmetical predicates (i.e.,
predicates definable by £ 4-formulas). In fact, the extension of PA remains con-
servative even if we allow induction on formulas over the expanded vocabulary.

Similarly we can also obtain a conservative extension of IAg by adding to
it predicate symbols and their defining axioms for all arithmetical predicates.
However such a conservative extension of IAy no longer proves the induction
axiom scheme on bounded formulas over the expanded vocabulary. It does so if
we only add Ag-definable symbols, and in fact we may add both Ag-definable
predicate and function symbols. To show this, we start with the following
important application of Parikh’s Theorem.

Theorem 3.33 (Bounded Definability Theorem). Let T be a polynomial-
bounded theory. A function f(Z) (not in T) is Xq-definable in T iff it has a
defining axiom

y=f(@) < o(Z,y)
where ¢ is a bounded formula with all free variables indicated, and there is an
La-term t = t(Z) such that T proves Y@3ly < tp(Z,y).

46 CHAPTER 3. PEANO ARITHMETIC AND ITS SUBSYSTEMS

Proof. The IF direction is immediate from Definition 3.27. The ONLY IF di-
rection follows from the discussion after Parikh’s Theorem (3.20). O

Corollary 3.34. If T is a polynomial-bounded theory, then a function f is
3 -definable in T iff [is Ag-definable in T .

From the above theorem we see that the function 2% is not Xi-definable
in any polynomial-bounded theory, even though we shall show in Section 3.3.3
that the relation (y = 2%) is Ag-definable in IA(. Since the function 2% is
Y1-definable in PA, it follows that IAy C PA.

Lemma 3.35 (Conservative Extension Lemma). Suppose that T is a
polynomial-bounded theory and T is the conservative extension of T obtained
by adding to T a Ag-definable predicate or a X1-definable function symbol and
its defining axiom. Then T is a polynomial-bounded theory and every bounded
formula o™ in the vocabulary of T* can be translated into a bounded formula o
in the vocabulary of T such that

Tttt oo
The following corollary follows immediately from the lemma.

Corollary 3.36. Let 7 and T be as in the Conservative Extension Lemma.
Let L and Lt denote the vocabulary of T and T, respectively. Assume further
that T proves the Ao(L)-IND aziom scheme. Then Tt proves the Ag(LT)-IND
azxiom scheme.

Proof of the Conservative Extension Lemma. First, suppose that 7 is obtained
from 7 by adding to it a Ag-definable predicate symbol P and its defining axiom
(3.14). That 7™ is polynomial-bounded is immediate from Definition 3.19. Now
each bounded formula in the vocabulary of 77 can be translated to a bounded
formula in the vocabulary of 7 simply by replacing each occurrence of a formula
of the form P(t) by ¢(t) (see the Formula Replacement Theorem, 2.16). Note
that the defining axiom (3.14) becomes the valid formula ¢(Z) < ¢(Z).

Next suppose that 7T is obtained from 7 by adding to it a X;-definable func-
tion symbol f and its defining axiom (3.16). That 7+ is polynomial bounded
follows from Theorem 3.33.

Start translating o™ by replacing every bounded quantifier Vo < wuip by
Vo < u'(z < u D 1)), where v is obtained from u by replacing every occurrence
of every function symbol other than +, - by its bounding term in £ 4. Similarly
replace 3z < wy) by Jz < u/(z < uAY).

Now we may suppose by Theorem 3.33 that f has a bounded defining axiom

y=f(@) < p(d,y)

and f(Z) has an £4 bounding term t(Z). Repeatedly remove occurrences of f
in an atomic formula 6(s(f(@))) by replacing this with

Fy < t(d@), ei(d,y) AO(s(y)) .

3.3. CONSERVATIVE EXTENSIONS OF 1A, 47

Now we summarize the previous results.

Theorem 3.37 (Conservative Extension Theorem). Let 7y be a polynomial-
bounded theory over a vocabulary Lo which proves the Ag(Ly)-IND axioms. Let
To C Ty C T3 C ... be a sequence of extensions of Ty where each T; 11 is obtained
from T; by adding a 31-definable function symbol fi+1 (or a Ag-definable pred-
icate symbol P;y1) and its defining axiom. Let

T:UZ

i>0

Then T is a polynomial-bounded theory and is a conservative extension of Ty.
Furthermore, if L is the language of T, then T proves the equivalence of each
Ay(L) formula with some Ao(Loy) formula, and T + Ag(L)-IND.

Proof. First, we prove by induction on i that

1) 7; is a polynomial-bounded theory;

2) 7; is a conservative extension of 7p; and

3) 7; proves that each Ag(L;) formula is equivalent to some Ag(Ly) formula,
where L; is the vocabulary of 7;.

The induction step follows from the Conservative Extension Lemma.

It follows from the induction arguments above that 7 is a polynomial-
bounded theory, and that 7 proves the equivalence of each Ag(L) formula with
some Ag(Ly) formula, and 7 + Ag(L)-IND. It follows from Corollary 3.31
that 7 is a conservative extension of 7. O

3.3.2 IAy: A Universal Conservative Extension of IA,

Note This subsection is not needed for the remainder of this chapter, but it is
needed for later chapters.

We begin by introducing terminology that allows us to restate the Herbrand
Theorem (see Section 2.6).

A universal formula is a formula in prenex form (Definition 2.56) in which all
quantifiers are universal. Auniversal theory is a theory which can be axiomatized
by universal formulas. Note that by definition (3.1), a universal theory can be
equivalently axiomatized by a set of quantifier-free formulas, or by a set of
V-sentences (Definition 2.46). We can now restate Form 2 of the Herbrand
Theorem (2.50) as follows.

Theorem 3.38 (Herbrand Theorem, Form 2). Let T be a universal the-
ory, and let p(x1,...,Tm,y) be a quantifier-free formula with all free variables
indicated such that

T E V.. Ve, Jye(Z, y). (3.17)

Then there exist finitely many terms t1(Z),. .., t,(Z) such that
T EVzy.. Ve, [o(@,t1(2) V...V o(Z,tn(Z)))

48 CHAPTER 3. PEANO ARITHMETIC AND ITS SUBSYSTEMS

Note that the theorem easily extends to the case where
T V.. . Ve,Jy ... Jyre(Z, 7).
instead of (3.17), where ¢(Z,) is a quantifier-free formula.

Proof. As we have remarked earlier, 7 can be axiomatized by a set I' of V-
sentences. From (3.17) it follows that

Fu{3z; ... 3, Vy—(Z,y)} (3.18)

is unsatisfiable. Let cq,..., ¢, be new constant symbols. Then it is easy to
check that (3.18) is unsatisfiable if and only if

U {Vy—¢(c y)}

is unsatisfiable. (We will need only the ONLY IF (=) direction.)
Now by Form 1 (Theorem 2.49), there are terms ¢1(¢), ..., t,(€) such that

FU{=p(E (), .-, —9(E 1 (0))}

is unsatisfiable. (We can assume that n > 1, since n = 0 implies that I is itself
unsatisfiable, and in that case the theorem is vacuously true.) Then it follows
easily that

T BNz .. Ve, [p(@,t(Z) V...Vt (F))]d

As stated, the Herbrand Theorem applies only to universal theories. However
every theory has a universal conservative extension, which can be obtained by
introducing “Skolem functions”. The idea is that these functions explicitly
witness the existence of existentially quantified variables. Thus we can replace
each axiom (which contains 3) of a theory 7 by a universal axiom.

Lemma 3.39. Suppose that (%) = Jyp(Z,y) is an axiom of a theory T. Let f
be a new function symbol, and let T' be the theory over the extended vocabulary
with the same set of axioms as T except that (Z) is replaced by

o(Z, f(T))
Then T' is a conservative extension of T .
The new function f is called a Skolem function.

Exercise 3.40. Prove the above lemma by a simple model-theoretic argument
showing that every model of T can be expanded to a model of T'. It may be help-
ful to assume that the language of T is countable, so by the Lowenheim/Skolem
Theorem (Theorem 2.42) we may restrict attention to countable models.

By the lemma, for each axiom of 7 we can successively eliminate the ex-
istential quantifiers, starting from the outermost quantifier, using the Skolem
functions. It follows that every theory has a universal conservative extension.

3.3. CONSERVATIVE EXTENSIONS OF 1A, 49

For example, we can obtain a universal conservative extension of IA(by intro-
ducing Skolem functions for every instance of the Ay-IND axiom scheme. Let
©(z) be a Ay formula (possibly with other free variables #). Then the induction
scheme for ¢(z) can be written as

VIVz, p(2) V =p(0) V Iylp(y) A ey + 1)]

Consider the simple case where ¢ is an open formula. The single Skolem function
(as a function of Z, z) for the above formula is required to “witness” the existence
of y (in case such a y exists).

Although the Skolem functions witness the existence of existentially quan-
tified variables, it is not specified which values they take (and in general there
may be many different values). Here we can construct a universal conservative
extension of IA(by explicitly taking the smallest values of the witnesses if they
exist. Using the least number principle (Definition 3.13), these functions are
indeed definable in IA,.

Let ¢(z) be a formula (possibly with other free variables), and ¢ a term.
Let & be the list of all variables of ¢ and other free variables of ¢ (thus & may
contain z if ¢t does). Let f, +(Z) be the least y < ¢ such that ¢(y) holds, or ¢ if
no such y exists. Then f,; is total and can be defined as follows (we assume
that y,v do not appear in Z):

y=for(@) = y<t A (y<tDoely) A Vv <yp)] (3.19)

Note that (3.19) contains an implicit existential quantifier Jv (consider the
direction «). Our universal theory will contain the following equivalent axiom
instead:

f@) <t AfE) <t D e(f(@)] A o< f(Z) D —p(v)] (3.20)

(here f = fou).
Although the predecessor function pd(x) can be defined by a formula of the
form (3.20), we will use the following two recursive defining axioms instead.

D1’. pd(0)=0 D1". 240> pd(z)+1==x

Note that D1” implies D1 (see Example 3.9), and D1’ is needed to define
pd(0). _

We are now ready to define the language L£a, of the universal theory IA,.
This language has a function symbol for every Ag-definable function in TAy.

Definition 3.41 (La,). Let La, be the smallest set that satisfies

1) La, includes L4 U{pd};
2) For each open La,-formula (%, z) and La-term t(Z) there is a function
f(p,t m EAU.

50 CHAPTER 3. PEANO ARITHMETIC AND ITS SUBSYSTEMS

Note that La, can be alternatively defined as follows. Let

EO S ﬁA U {pd}
for n > 0: L1 = Ly, U{fsz: ¢ is an open L,-formula, ¢ is an £4-term}
Then
La, = £n
n>0

Our universal theory IA(requires two more axioms in the style of 1-BASIC.

BR.0<z
B8’ z<x+1

Definition 3.42 (IAg). Let IAq be the theory over La, with the following set
of azioms: B1,...,B8, B8 B8" D1’ ,D1” and (3.20) for each function fot of
La,-

Thus IA(is a universal theory. Note that there is no induction scheme
among its axioms. Nevertheless we show below that IA proves the Ay-IND
axiom scheme, and hence IA extends IA(. From this it is easy to verify that
IA, is a polynomial-bounded theory.

Theorem 3.43. IA is a conservative extension of IAq.

To show that TA extends IA(we show that it proves the Ap-IND axiom
scheme. Note that if the functions of La, receive their intended meaning, then
every bounded L4-formula is equivalent to an open La,-formula. Therefore,
roughly speaking, the Ayp-MIN (and thus Ay-IND) axiom scheme is satisfied
by considering the appropriate functions of La,.

Lemma 3.44. For each A¢(L4) formula ¢, there is an open La,-formula ¢’
such that IAg F o — ¢'.

Proof. We use structural induction on ¢. The only interesting cases are for
bounded quantifiers. It suffices to consider the case when ¢ is Jy < ti(y).
Then take ¢’ to be ¥'(fy.(%)). It is easy to check that IAg F ¢ < ¢ using
(3.20). No properties of < and < are needed for this implication except the
definition y < f(&) stands for (y < f(Z) Ay # f()). O

Proof of Theorem 3.43. First we show that IA(is an extension of IAy, i.e.,
Ao-IND is provable in TA,.

By the above lemma, it suffices to show that IAg proves the Induction axiom
scheme for open La,-formulas. Let ¢(&, z) be any open £a,-formula. We need
to show that (omitting)

TAo F (0(0) A=p(2)) D Fy(ely) A—ply +1))

3.3. CONSERVATIVE EXTENSIONS OF 1A, 51

Assuming (¢(0) A =¢(z)), we show in TAg that (p(y) A =¢(y + 1)) holds for
y = pd(f-y,-(Z,2)), using (3.20). We need to be careful when arguing about
<, because the properties O1-0O9 and D1-D10 which we have been using for
reasoning in IA require induction to prove.

First we rewrite (3.20) for the case f is f-, ..

(@ 2) <z N [f(#2) <22 =9(f(Z,2)] A [v<f(T2)D0@)] (321)

Now 0 < z by B8 and our assumptions ¢(0) and —¢(z), so f(Z,z) # 0 by
(3.21). Hence y + 1 = pd(f(%,2)) + 1 = f(&, z) by D1”. Therefore —p(y + 1)
by (3.21) and the assumption —p(z).

To establish o(y) it suffices by (3.21) to show y < f(Z, z). This holds because
f(%,2) =y + 1 as shown above, and y < y + 1 by B8".

This completes the proof that IA(extends IAg. Next, we show that IAg
is conservative over IAg. Let fi; = pd, f2, f3,... be an enumeration of La, \
L such that for n > 1, f,41 is defined using some L4-term ¢t and (L4 U
{f1,--, fn})-formula ¢ as in (3.20).

For n > 0 let £, denote L4 U{f1,..., fn}. Let Ty = IAq, and for n > 0 let
Tn+1 be the theory over £,, 11 which is obtained from 7, by adding the defining
axiom for f,11 (in particular, 77 is axiomatized by IAy and D1’,D1”). Then

To=IA¢cCThCcTC... and IA, = UTn.
n>0

By Corollary 3.31, it suffices to show that for each n > 0, f,41 is definable in
7T.. In fact, we prove the following by induction on n > 0:

1) 7, proves the Ag(L,,)-IND axiom scheme;
2) fnt1 is Ag(Ly)-definable in 7.

Consider the induction step. Suppose that the hypothesis is true for n (n > 0).
We prove it for n+ 1. By the induction hypothesis, 7,, proves the Ag(L,,)-IND
axiom scheme and Ag(L,)-defines f,,+1. Therefore by Corollary 3.36, 7,41
proves the Ag(L,+1)-IND axiom scheme. Consequently, 7,11 also proves the
Ag(Lp+1)-MIN axiom scheme. The defining equation for f, 2 has the form
(3.20), and hence 7,11 proves (3.19) where f is f,,12. Thus (3.19) is a defining
axiom which shows that f, 2 is Ag(Ly+1)-definable in 7,1. Here we use the
Ao(Lp+1)-MIN axiom scheme to prove Jy in (3.15). O

An Alternative Proof of Parikh’s Theorem for IA

Now we will present an alternative proof of Parikh’s Theorem for IAy from
Herbrand Theorem applied to IA(, using the fact that IA(is a conservative
extension of TA,.

Note that in proving that IA, is conservative over IAq (see the proof of
Theorem 3.43), in the induction step we have used Corollary 3.36 (the case of

52 CHAPTER 3. PEANO ARITHMETIC AND ITS SUBSYSTEMS

adding X;-definable function) to show that 7, proves the Ag(L,,)-IND axiom
scheme. The proof of Corollary 3.36 (and of the Conservative Extension Lemma)
in turns relies on the Bounded Definability Theorem (3.33), which is proved
using Parikh’s Theorem. However, for IAy, f, 11 is already Ag-definable in 7,,
(the induction step in the proof of Theorem 3.43). Therefore we have actually
used only a simple case of Corollary 3.36 (i.e., adding Ao-definable functions).
Thus in fact Parikh’s Theorem is not necessary in proving Theorem 3.43.

Proof of Parikh’s Theorem. Suppose that VZ3yp(Z, y) is a theorem of IA(, where
@ is a bounded formula. We will show that there is an £ 4-term s such that

1A FVZEdy < sp(Z,y)
By Lemma 3.44, there is an open La,-formula ¢’ (Z, y) such that
IA, - Vavy(e(Z,y) < ¢'(,y))
Then since IA extends IA, it follows that
IA, - Vidyy' (2, y)

Now since IA is a universal theory, by Form 2 of the Herbrand Theorem (3.38)
there are La,-terms t1,...,t, such that

TAg FVE[Q (%, t1(Z) V... V @' (T, tn(F))] (3.22)
Also since IAj is a polynomial-bounded theory, there is an £ 4-term s such that
IAq F (%) < s() foralli, 1<i<n

Consequently,
TIA, - Vidy < s¢' (£, y)

Hence
TIA, - ViTy < sp(T,y)

By the fact that IA(is conservative over IA(we have

1A - Vidy < sp(Z,y)O

Note that we have proved more than a bound on the existential quantifier
Jy. In fact, (3.22) allows us to explicitly define a Skolem function y = f(&),
using definition by cases. This idea will serve as a method for proving witnessing
theorems in future chapters.

3.3. CONSERVATIVE EXTENSIONS OF 1A, 53

3.3.3 Defining y = 2% and BIT(i,z) in 1A,

In this subsection we show that the relation BIT (i, z) is Ag-definable in IA,
where BIT(i,x) holds iff the i-th bit in the binary notation for x is 1. This
is useful particularly in Section 3.4 where we show that IA(characterizes the
Linear Time Hierarchy.

In order to define BIT we will show that the relation y = 2% is Ag-definable
in IA(. Note that on the other hand, by Parikh’s Theorem (3.20), the func-
tion f(x) = 2% is not Xi-definable in IA(, because it grows faster than any
polynomial.

Our method is to introduce a sequence of new function and predicate sym-
bols, and show that each can be Ag-defined in IA(extended by the previous
symbols. These new symbols together with their defining axioms determine a
sequence of conservative extensions of IA(, and according to the Conservative
Extension Theorem 3.37, bounded formulas using the new symbols are prov-
ably equivalent to bounded formulas in the vocabulary £4 of IA(, and hence
the induction scheme is available on bounded formulas with the new symbols.
Finally the bounded formula @eq (2, y) given in (3.25) defines (y = 2%), and the
bounded formula BIT(i,x) given in (3.26) defines the BIT predicate. These
formulas are provably equivalent to bounded formulas in IA(, and IA(proves
the properties of their translations, such as those in Exercise 3.53.

We start by Ag-defining the following functions in IAg: ==y, |z/y],
x mod y and |/z]. We will show in detail that z — y is Ag-definable in IAy. A
detailed proof for other functions is left as an exercise. It might be helpful to re-
visit the basic properties O1,...,09, D1,..., D10 of IAj in Examples 3.8, 3.9.

1) Limited subtraction: The function = y = maz{0,z — y} can be de-
fined by
z=x-yeytz=a)V(@ <ynz=0)]

In order to show that IA can Ag-define this function we must show that
IA, F VavyTlze(z, y, 2)

where ¢ is the RHS of the above equivalence (see Definition 3.27(Db)).

For the existence of z, by D2 we know that there is some z’ such that
z+2 =yVy+2 =2

If y + 2’ = z then simply take z = z’. Otherwise = + 2’ = y, then by B8,
z < x+ 2, hence x < y, and thus we can take z = 0.

For the uniqueness of z, first suppose that z < y. Then we have to show
that y+ 2z =2 D 2z = 0. Assume y + z = z. By B8, y < y + 2, hence
y < z. Therefore z = y by B7. Now fromz+0=2 (B3) andz+ 2z ==z
we have z = 0, by 02 (Commutativity of +) and O6 (Cancellation law
for +).

Next, suppose that =(z < y). Then y + z = z, and by O2 and OB,
yt+z=xAy+zZ=x>dz=2".

54 CHAPTER 3. PEANO ARITHMETIC AND ITS SUBSYSTEMS

2) Division: The function z div y = |2/y] can be defined by
o= afy) o [y 2 ST A <ylz+1)V (y=0Az=0)]

The existence of z is proved by induction on z. The uniqueness of z follows
from transitivity of < (D4), Total Order (D5), and O5, DT7.

3) Remainder: The function z mod y can be defined by
zmody =z =(y-[z/y])

Since z mod y is a composition of 3;-definable functions, it is 33;-definable
by Exercise 3.28. Hence it is Ag-definable by Corollary 3.34.

4) Square root:
y=a]oyy<azrz<(y+1)y+1)

The existence of y follows from the least number principle. The uniqueness
of y follows from Transitivity of < (D4), Total Order (D5), and O5, D7.

Exercise 3.45. Show carefully that the functions z/y, © mod y and |\/z| are
Ay-definable in IA.

Next we define the following relations x|y, Pow2(z), Pow4 (x) and LenBit(y, x):
5) Divisibility: This relation is defined by

zly & 3z < y(z.z =vy)

6) Powers of 2 and 4:
x is a power of 2 : Pow2(z) « [t #0AYy < z((1 < y Ay|z) D 2|y)]
x is a power of 4 : Pow/ (z) < Pow2(z) Nz mod 3 =1

7) LenBit: We want the relation LenBit(2¢,) to hold iff the i-th bit in the
binary expansion of x is 1, where the least significant bit is bit 0. Although
we cannot yet define y = 2¢, we can define

LenBit(y,z) < (|z/y] mod 2 =1)

Note that we intend to use LenBit(y,x) only when y is a power of 2, but
it is defined for all values of y.

Notation (V2¢) stands for “for all powers of 27, i.e.,

(v2%) A(2%) stands for Vo (Pow2(z) D A(x))
(V2! < t) A(2Y) stands for Vo ((Pow2(z) Nz <t) D A(z))

Same for (32%) and (32! < ¢).

3.3. CONSERVATIVE EXTENSIONS OF 1A, 95

Exercise 3.46. Show that the following are theorems of 1Aq:

a) VzPow2(x) < Pow2(2x).

b) (V2%)(v27)(2! < 27 D 2¢|27). (Hint: using strong induction (3.3).)
c) (V29) (V27 < 2%) Pow2(2¢/27)).

d) (V29)(V27)(2" < 27 D227 < 27).

e) (V29)(V27) Pow2(2¢ - 27).

£) (v29)(327 < 2%) ((27)2 =20 v 2(27)% = 2%)).

We also need the following function:

8) Greatest power of 2 less than or equal to x:

y=gp(@) = (x=0Ay=0)V (Pow(y) Ny <z A (¥2' < 2) 2 < y))

Exercise 3.47. Show that IAg can Ag-define gp(x). (Hint: Use induction on

Exercise 3.48. Prove the following in IAy:

a) x> 0D (gp(z) < o < 2gp(x)).
b) = > 0D LenBit(gp(x),x).
c) y=z - gp(x) D (V2! <vy) (LenBit(2',y) < LenBit(2,x)).

It is a theorem of IA(that the binary representation of a number uniquely
determines the number. This theorem can be proved in IAg by using strong
induction (3.3) and part c) of the above exercise. Details are left as an exercise.

Theorem 3.49. 1A, F VyVz <y, (32° < y)LenBit(2%,y) A —LenBit(2!, x)

Exercise 3.50. Prove the above theorem.

Defining the Relation y = 2*

This is much more difficult to Ag-define than any of the previous relations and
functions. A first attempt to define y = 2% might be to assert the existence
of a number s coding the sequence (2°,2!,...,2%). The main difficulty in this
attempt is that the number of bits in s is Q(|y|?) (where |y| is the number of
bits in y), and so s cannot be bounded by any IA(term in z and y.

We get around this by coding a much shorter sequence, of length |z| instead
of length z, of numbers of the form 2%. Suppose that z > 0, and (zx—1...%0)2
is the binary representation of x (where zx_1 = 1), i.e.,

k—1
T = Z ;2! (and z—1 = 1)
i=0

We start by coding the sequence (aq,as, ..., ax), where a; consists of the first ¢
high-order bits of z, so ay = 2. Then we code the sequence (b1, ..., b;), where
b; = 2% so y = by.

56 CHAPTER 3. PEANO ARITHMETIC AND ITS SUBSYSTEMS

We have (note that zx_1 = 1):

a1 = 1, bl =2
. R (3.23)
For 1 <i<k: Qi1 = Th—i—1 + 2a; bi+1 = 2xk7171bi

Note that a; < 2% and b; < 22 for 1 <i<k.

We will code the sequences (ai,...,ar) and (by,...,b;) by the numbers a
and b, respectively, such that a; and b; are represented by the bits 2% to 24! —1
of a and b, respectively. In order to extract a; and b; from a and b we use the
function

ext(u,z) = |z/u] mod u (3.24)

Thus if u = 2% then a; = ext(u,a) and b; = ext(u,b). It is easy to see that the
function ext is Ao-definable in IA.

Note that a,b < 22k+1, and y > 2¥~1. Hence the numbers a and b can be
bounded by a,b < y*. Below we will explain how to express the condition that
a number has the form 22°. Once this is done, we can express

Y= 2% ‘Perp(xvy)

) (3.25)
where Verp = (@ =0Ay=1)V3a,b <y tVegp(z,y,0a,b)

and ez (2, Y, a,b) is the formula stating that the following conditions (express-
ing the above recurrences) hold, for z > 0,y > 1:

1) ext(22',a) =1, and ext(22,b) = 2
2) For all u, 22° < u < y of the form 22, either

(a) ext(u?,a) = 2ext(u,a) and ext(u?,b) = (ext(u,b))?, or
(b) ext(u?,a) =1+ 2ext(u,a) and ext(u?,b) = 2(ext(u,b))?.

3) There is u < y? of the form 22" such that ext(u,a) = 2 and ext(u,b) = y.

Note that condition (2)(a) holds if zx_; = 0, and condition (2)(b) holds
if xx—; = 1. The conditions do not need to mention xj_; explicitly, because
condition (3) ensures that a; = z for some 4, so all bits of must have been
chosen correctly up to this point. v

It remains to express “z has the form 227, First, the set of numbers of the

form
Z .
my = E 22
i=0

can be Ag-defined by the formula

op(x) =—LenBit(1,x) A LenBit(2, x)A
V2 <z, 2 < 2' O (LenBit(2', z) — (Pows (2°) A LenBit(| V2], z)))

3.3. CONSERVATIVE EXTENSIONS OF 1A, o7

From this we can Ag-define numbers of the form =z = 22" as the powers of 2 for
which LenBit(x, me) holds for some my < 2z:

@ is of form 22" : PPow2(z) < Pow2(z) A3Im < 2z (¢p(m) A LenBit(xz,m))

This completes our description of the defining axiom @egp(x,y) for the rela-
tion y = 2”. It remains to show that IA(proves some properties of this relation.
First we need to verify in IA(the properties of PPow?2.

Exercise 3.51. The following are theorems of 1Aq:
a) PPow2(z) « PPow?2(z?%).
b) (PPow2(z) A PPow2(2') ANz < 2') D 2% < 2.
c) (PPow2(z) N4 <z)D |[Vx]?==.
We have noted earlier that a; < 2 and b; < 22" Here we need to show that
these are indeed provable in IAy. We will need this fact in order to prove (in

IA,) the correctness of our defining axiom .y, for the relation y = 2% (e.g.,
Exercise 3.53 ¢ and d).

Exercise 3.52. Assuming (y > 1 A @Yegp(,y,a,b)), show in IAq that
a) Yu < y?, (PPow2(u) A4 <u)D1+ est(u,a) < u.

b) Vu < y?, (PPow2(u) A4 < u) D 2ext(u,b) < u.

Exercise 3.53. Show that IAq proves the following:

a) VaVy, @eup(,y) D Pow2(y).

b) IAg F Pow2(y) D 3z < Y Yexp(x,y). (Hint: strong induction on y, using
FEzercise 3.46 f.)

€) Peap(T,Y1) N Peap(®,Y2) D Y1 = Y.
d) Peap(1,Y) A Peap(22,y) D 1 = 22.
€) Qerp(®+1,2y) < @eap(z,y). (Hint: Look at the least significant 0 bit of x.)

(
£) Veup(T1,91) A Qewp (@2, Y2) D Qewp(®1 + T2, Y1 - y2) (Hint: Induction on ys.)

Although the function 27 is not Ag-definable in 1A, it is easy to see using
©ezp (and useful to know) that the function

Ezp(z,y) = min(27, y)
is Ag-definable in IA,.

Exercise 3.54. The relation y = z® can be defined using the same techniques
that have been used to define the relation y = 2%. Here the sequence (b1, ...,bi)
needs to be modified.

a) Modify the recurrence in (3.23).

58 CHAPTER 3. PEANO ARITHMETIC AND ITS SUBSYSTEMS

Each b; now may not fit in the bits 2¢ to 21 — 1 of b, but it fits in a bigger
segment of b. Let £ be the least number such that

£
z§22

b) Show that for 1 <i <k, zb; < 22"

c) Show that the function lpp(z), which is the least number of the form 22" that
is > z, is Ag-definable in 1A .
d) Show that IAgF 2z > 1D (2 < lpp(z) < 22).

e) What are the bounds on the values of the numbers a and b that respectively
code the sequences (a1, ...,ax) and (by,...,bg) ¢

f) Give a formula that defines the relation y = 2% by modifying the conditions
1-3.

The BIT Relation

Finally the relation BIT (i, z) can be defined as follows, where BIT (i, x) holds
iff the i-th bit (i.e., coefficient of 2%) of the binary notation for z is 1:

BIT (i, x) «» 3z < x(z = 2" A LenBit(z, x)) (3.26)

Exercise 3.55. Show that the Length function, |z| = [logy(z + 1)], is Ao-
definable in IA.

3.4 1A, and the Linear Time Hierarchy

3.4.1 The Polynomial and Linear Time Hierarchies

An element of a complexity class such as P (polynomial time) is often taken to
be a language L, where L is a set of finite strings over some fixed finite alphabet
Y. In the context of bounded arithmetic, it is convenient to consider elements of
P to be subsets of N, or more generally sets of relations over N, and in this case
it is assumed that numbers are presented in binary notation to the accepting
machine. In this context, the notation Xf is sometimes used for polynomial
time. Thus XF is the set of all relations R(z1,...,zx),k > 1 over N such that
some polynomial time Turing machine Mg, given input x1, ..., zx (k numbers in
binary notation separated by blanks) determines whether R(z1, ..., zx) holds.

The class X¥ is the i-th level of the polynomial-time hierarchy. This can be
defined inductively by the recurrence

i = NP(%)

where NP (X?) is the set of relations accepted by a nondeterministic polynomial
time Turing machine which has access to an oracle in X¥.

3.4. 1Ay AND THE LINEAR TIME HIERARCHY 99

Alternatively, 3% is the set of relations accepted by some alternating Turing
machine (ATM) in polynomial time, making at most ¢ alternations, beginning
with an existential state. In any case,

»P = NP

We define the polynomial time hierarchy by

PH = fj x?
1=0

In the context of IAg, we are interested in the Linear Time Hierarchy (LTH),
which is defined analogously to PH. We use LinTime and NLinTime to
denote time O(n) on a deterministic and nondeterministic multi-tape Turing
machine, respectively. Then

»lm — LinTime

and for i >0
/" = NLinTime(Z!") (3.27)

Alternatively, we can define Eém to be the relations accepted in linear time on
an ATM with 7 alternations, beginning with an existential state. In either case,!

LTH = G S
=0

LinTime is not as robust a class as polynomial time; for example it is plausible
that a k + 1-tape deterministic linear time Turing machine can accept sets not
accepted by any k tape such machine, and linear time Random Access Machines
may accept sets not in LinTime. However it is not hard to see that NLinTime
is more robust, in the sense that every set in this class can be accepted by a two
tape nondeterministic linear time Turing machine.

3.4.2 Representability of LTH Relations

Recall the definition of definable predicates and functions (Definition 3.27). If
® is a class of L-formulas, 7 a theory over £, and R a ®-definable relation
(over the natural numbers) in 7, then we simply say that R is ®-definable (or
O-representable).

Thus when ® is a class of £4-formulas, a k-ary relation R over the natural
numbers is ®-definable if there is a formula ¢(z1,...,z;) € @ such that for all
(n1,...,nx) € N¥,

(n1,...,ng) e R f NEomn,...,ng) (3.28)

ILTH is different from LH, the logtime-hierarchy discussed in Section 4.1

60 CHAPTER 3. PEANO ARITHMETIC AND ITS SUBSYSTEMS

More generally, if @ is a class of L£-formulas for some language £ extending L 4,
then instead of N we will take the expansion of N where the extra symbols in £
have their intended meaning.

(Note that a relation R(Z) is sometimes called representable (or weakly rep-
resentable) in a theory T if there is some formula (%) so that for all 7 € N,

R(@) it T ()

Our notation here is the special case where 7 = TA.)

For example, the class of Xj-representable sets (i.e., unary relations) is pre-
cisely the class of r.e. sets. In the context of Buss’s S} hierarchy (Section 3.5),
NP relations are precisely the X%-representable relations. (X% is defined for
the language Lg, of S2.) Here we show that the LTH relations are exactly the
Ay-representable relations.

Definition 3.56. A} is the class of Ag-representable relations.

For instance, we have shown that the relation BIT is in AL so is the relation
Prime(x) (x is a prime number), because

Prime(z) =1 <z AVy <aVz <z(y-z#)

Lemma 3.57. The relation Numones(z,y), asserting that y is the number of
one-bits in the binary notation for x, is in AL.

Proof Sketch. We code a sequence (sg, 1, ...,S,) of numbers s; of at most ¢
bits each using a number s such that bits i£ to i/ + £ — 1 of s are the bits of s;.
Then we can extract s; from s using the equation

si = |s/2%] mod 2°

Our first attempt to define numones(z,y) might be to state the existence of a
sequence (Sq, $1, . - ., Sp), where n = |z| and s; is the number of ones in the first
¢ bits of x. However the number coding this sequence has nlogn bits, which is
too many.

We get around this problem using “Bennett’s Trick” [?], which is to state
the existence of a sparse subsequence of (sg, $1,. - ., S,) and assert that adjacent
pairs in the subsequence can be filled in. Thus

Numones(z,y) < Ito, ..., t m), to=0Atm=yAVi<vnIu,... usm)
[UO zti/\uﬁ:thrl /\V‘] < \/ﬁ (uj+1 :’U,J—FFB]T(Z\/E—F],I))]

where the function FBIT (i,x) is bit i of . O

Theorem 3.58 (LTH Theorem). LTH = A}

3.4. 1Ay AND THE LINEAR TIME HIERARCHY 61

Proof Sketch. First consider the inclusion LTH C A[. The hard part here is to
show NLinTime C AJ. Once this is done we can easily show /" C Al either
by using the recurrence in (3.27), or considering an ATM with 4 alternations.
(Note that on an input 2 € N of length n, a linear time ATM can guess a binary
number y of length cn, and the Ay formula can use the bounded quantifier
Jy < z¢tL)

To show NLinTime C Al we need to represent the computation of a non-
deterministic linear time Turing machine by a constant number k of strings
Z1,...,T of linear length. One string will code the sequence of states of the
computation, and for each tape there is a string coding the sequence of symbols
printed and head moves. In order to check that the computation is correctly en-
coded it is necessary to deduce the position of each tape head at each step of the
computation, from the sequence of head moves. This can be done by counting
the number of left shifts and of right shifts, using the relation Numones(x,y),
and subtracting. It is also necessary to determine the symbol appearing on a
given tape square at a given step, and this can be done by determining the last
time that the head printed a symbol on that square.

We prove the inclusion A} C LTH by structural induction on A formulas.
The induction step is easy, since bounded quantifiers correspond to 3 and V
states in an ATM. The only interesting case is one of the base cases: the atomic
formula -y = z. To show that this relation R(x,y,z) is in LTH we use
Corollary 3.60 below which shows that L € LTH. (L is the class of relations
computable in logarithmic space using Turing machines. See Appendix A.1.1.)
It is not hard to see that using the school algorithm for multiplication the
relation z - y = z can be checked in space O(logn), and thus it is in L. O

Theorem 3.59 (Nepomnjascij’s Theorem). Let € be a rational number,
0 <e< 1, and let a be a positive integer. Then

NTimeSpace(n®,n‘) C LTH

In the above, NTimeSpace(f(n),g(n)) consists of all relations accepted
simultaneously in time O(f(n)) and space O(g(n)) on a nondeterministic multi-
tape Turing machine.

Proof Idea. We use Bennett’s Trick, as in the proof of Lemma 3.57. Suppose
we want to show
NTimeSpace(n?,n"%) C LTH

Let M be a nondeterministic TM running in time n? and space n%. Then M
accepts an input x iff

Jy(y represents an accepting computation for x)

Here § = yi,...,yn2, where each y; is a string of length n®® representing a
configuration of M. The total length of i is || = n?5, which is too long for an
ATM to guess in linear time.

62 CHAPTER 3. PEANO ARITHMETIC AND ITS SUBSYSTEMS

So we guess a vector Z' = z1, ..., 2, representing every n-th string in ¥, so
now M accepts x iff

32Vi < n3d(d shows z;11 follows from z; in n steps and z, is accepting)

Now the lengths of Z and @ are only n', and we have made progress. Two
more iterations of this idea (one for the 37, one for the 34; increasing the
nesting depth of quantifiers to 7) will get the lengths of the quantified strings
below linear. 0

For the following corollary, NL is the class of relations computable by non-
deterministic Turing machines in logarithmic space. See Appendix A.2.

Corollary 3.60. NL C LTH.

Proof. We use the fact that NL C NTimeSpace(n®™), logn). O

Remark We know
L CLTH C PH C PSPACE

where no two adjacent inclusions are known to be proper, although we know
L ¢ PSPACE by a simple diagonal argument.

Also LTH C LinSPACE C PSPACE, where the first inclusion is not
known to be proper. Finally P and LTH are thought to be incomparable, but
no proof is known. In fact it is difficult to find a natural example of a problem
in P which seems not to be in LTH.

3.4.3 Characterizing the LTH by IA,

First note that LTH is a class of relations. The corresponding class of functions
is defined in terms of function graphs. Given a function f(Z), its graph G (Z,y)
is the relation

Gy (7,y) = (y = f(2))

Definition 3.61 (FLTH). A function f : N* — N is in FLTH precisely if its
graph G¢(Z,y) is in LTH and its length has at most linear growth, i.e.,

(@) = (x1 4 ... + 24)°W

Theorem 3.62 (IA(-Definability Theorem). A function is X1 -definable in
1A iff it is in FLTH.

Proof. The = direction follows from the Bounded Definability Theorem (3.33),
the above definition of LTH functions and the LTH Theorem (3.58).

3.5. BUSS’S S{ HIERARCHY: THE ROAD NOT TAKEN 63

For the <= direction, suppose f(Z) is an LTH function. By definition the
graph (y = f(&)) is an LTH relation, and hence by the LTH Theorem (3.58)
there is a Ag-formula ¢(Z,y) such that

y = f(Z) < o(&,y)

Further, by definition, |f(Z)| is linear bounded, so there is an £ 4-term ¢(Z) such
that
1(@) < 4@) (3.29)

The sentence VZ3lyp(Z, y) is true, but unfortunately there is no reason to believe
that it is provable in IAy. We can solve the problem of proving uniqueness by
taking the least y satisfying ¢(Z,y). In general, for any formula A(y), we define
Miny[A(y)](y) to mean that y is the least number satisfying A(y). Thus

Miny[A(y)](y) Zaer A(y) AVz < y(=A(2))

If A(y) is bounded, then we can apply the least number principle to A(y) to
obtain
LA F JyA(y) D 3y Min, [A(y)](y) (3.30)

This solves the problem of proving uniqueness. To prove existence, we modify
¢ and define

(T, y) Zaer (9(F,y) Vy = t(T) + 1)
where ¢(Z) is the bounding term from (3.29). Now define

@' (%, y) = Miny[y(Z,y)|(Z, y)

Then ¢'(#,y) also represents the relation (y = f(Z)), and since trivially IAg
proves Jyi(Z,y) we have by (3.30)

1A, = VZ3lye' (7, y)O

3.5 Buss’s S) Hierarchy: The Road Not Taken

Buss’s PhD thesis Bounded Arithmetic (published as a book in 1986, [?]) intro-
duced the hierarchies of bounded theories

S} CT;CS;CTC..CS,CThC ..

These theories, whose definable functions are those in the polynomial hierarchy,
are of central importance in the area of bounded arithmetic.

Here we present a brief overview of the original theories S} and T%, and
their union Sy = Ty = (J;2,; S5. The idea is to modify the theory IAg so that
the definable functions are those in the polynomial hierarchy as opposed to the
Linear Time Hierarchy, and more importantly to introduce the theory S} whose
definable functions are precisely the polynomial time functions. In order to do
this, the underlying language is augmented to include the function symbol #,

64 CHAPTER 3. PEANO ARITHMETIC AND ITS SUBSYSTEMS

whose intended interpretation is z#y = 2%, Thus terms in Sy represent
functions which grow at the rate of polynomial time functions, as opposed to
the linear-time growth rate of IAg terms. The full vocabulary for Sy is

1
£S2 = [075’7+7'7#7 |I|7 LixJa :;S]

(S is the Successor function, |z| is the length (of the binary representation) of

Sharply bounded quantifiers have the form Va < |¢| or Jz < |¢| (where z does
not occur in t). These are important because sharply bounded (as opposed to
just bounded) formulas represent polynomial time relations (and in fact TC°
relations). The syntactic class 3¢ (b for “bounded”) consists essentially of those
formulas with at most i blocks of bounded quantifiers beginning with 3, with any
number of sharply bounded quantifiers of both kinds mixed in. The formulas
in 3% represent precisely the NP relations, and more generally formulas in 3%
represent precisely the relations in the level X in the polynomial hierarchy.
In summary, bounded formulas in the language of S, represent precisely the
relations in the polynomial hierarchy.

The axioms for T% consist of 32 V-sentences called BASIC which define the
symbols of Lg,, together with the Z°-IND scheme. The axioms for S} are the
same as those of T%, except for E?—IND is replaced by the Ef-PIND scheme:

[(0) A W(@(L%ﬂ) 2 p(x))] O Vap(z)

where ((z) is any 3¢ formula. Note that this axiom scheme is true in N. Also
for i > 1, T% proves the X2-PIND axiom scheme, and Sz;'l proves the X2-IND
axiom scheme. (Thus for i > 1, S5 C T} C S&™)

For ¢ > 1, the functions Ef-deﬁnable in S% are precisely those polytime
reducible to relations in X? ; (level i — 1 of the polynomial hierarchy). In
particular, the functions X%-definable in S} are precisely the polynomial time
functions.

Since Sy is a polynomial-bounded theory, Parikh’s Theorem (3.20) can be ap-
plied to show that all 3;-definable functions in S are polynomial time reducible
to PH. To show that the 3;-definable functions in S} are polynomial-time
computable requires a more sophisticated “witnessing” argument introduced by
Buss. We shall present this argument later in the context of the two-sorted
first-order theory V1.

In the following chapters we will present two-sorted versions (V) of (S%)
and (TV?) of (T%). With the exception of V? and TV" (which have no cor-
responding theories in the S} hierarchy), the two-sorted versions are essentially
equivalent to the originals, but are simpler and naturally represent complexity
classes on strings as opposed to numbers. Buss introduced versions of these
second-order theories in his thesis, and Razborov and Zambella [?] have con-
tributed to their presentation and development.

3.6. NOTES 65

3.6 Notes

The main references for this chapter are [?, ?] and [?, pp 277-293].

Parikh’s Theorem originally appears in [?], and the proof there is based in
the Herbrand Theorem, and resembles our “Alternative Proof” given at the end
of Section 3.3.2. Buss [?] gives a proof based on cut elimination which is closer
to our first proof.

James Bennett [?] was the first to show that the relation y = z* can be de-
fined by Ag formulas. Hdjek and Pudlék [?] give a different definition and show
how to prove its basic properties in IAg, and give a history of such definitions
and proofs. Our treatment of the relations y = 2% and BIT (i, x) in Section 3.3.3
follows that of Buss in [?], simplified with an idea from earlier proofs.

Bennett’s Trick, described in the proof of Lemma 3.57, is due to Bennett [?]
Section 1.7, where it is used to show that the rudimentary functions are closed
under a form of bounded recursion on notation.

Theorem 3.58, stating LTH = A}, is due to Wrathall [?]. Nepomnjaséij’s
Theorem 3.59 appears in [?].

66 CHAPTER 3. PEANO ITS SUBSYSTEMS

g
Q

Chapter 4

Two-Sorted First-Order
Logic

In this chapter we introduce two-sorted first-order logic, an extension of the
(single-sorted) first-order logic that we have seen in the previous chapters. Our
motivation for this two-sorted logic comes from descriptive complexity theory,
where each object (a language or a relation) in a complexity class is described
by a logical formula of a certain kind. In fact each object corresponds to the
set of all finite models of the formula. In the two-sorted logic setting, each
object corresponds to an interpretation of a variable in the formula satisfying the
formula in the standard model. Here we also study the corresponding function
classes: Each class C is associated with a theory whose class of provably total
functions is exactly FC, the function class corresponding to C. Our theories are
also related to propositional proof systems by way of propositional translation,
a topic to be covered later in the book.

In the first part of this chapter we present a brief introduction to descriptive
complexity theory. (A comprehensive treatment can be found in [?].) Then we
introduce the two-sorted first-order logic, describe the two-sorted complexity
classes, and explain how relations in these classes are represented by certain
classes of formulas. We revisit the LTH theorem for two-sorted logic We present
the sequent calculus LK?, the two-sorted version of LK. Finally we show how
to interpret two-sorted logic into single-sorted logic.

4.1 Basic Descriptive Complexity Theory

In descriptive complexity theory, an object (e.g. a set of graphs) in a complexity
class is specified as the set of all finite models of a given formula. Here we
consider the case in which the object is a language L C ¥*, where ¥ = {0,1},
and the formula is a formula of the first-order predicate calculus. We assume

67

68 CHAPTER 4. TWO-SORTED FIRST-ORDER LOGIC

that the underlying vocabulary consists of
Lro = [0, maz; X, BIT, <, =], (4.1)

where 0, maz are constants, X is a unary predicate symbol, and BIT, <, =
are binary predicate symbols. We consider finite £po-structures M in which
the universe M = {0,..,n — 1} for some natural number n > 1, and max is
interpreted by n — 1. The symbols 0, =, <, and BIT receive their standard
interpretations. (Recall that BIT (i, x) holds iff the é-th bit in the binary rep-
resentation of x is 1. In the previous chapter we showed how to define BIT in
IAy, but note that here it is a primitive symbol in Lro.)

Thus the only symbol without a fixed interpretation is the unary predicate
symbol X, and to specify a structure it suffices to specify the tuple of truth
values (X(0),X(1),...,X(n — 1)). By identifying T with 1 and 1 with 0, we
see that there is a natural bijection between the set of structures and the set of
nonempty binary strings {0,1} .

The class FO (First-Order) of languages describable by Lro formulas is
defined as follows. First, for each binary string X, we denote by M[X] the
structure which is specified by the binary string X. Then the language L(y) as-
sociated with an Lo sentence ¢ is the set of strings whose associated structures
satisfy ¢:

L(p) =der {X €{0,1}" | MIX] |= ¢}

Definition 4.1 (The Class FO).
FO = {L | L = L(y) for some Lpo-sentence v}

For example, let Leyven be the set of strings whose even positions (starting
from the right at position 0) have 1. Then Leyen € FO, since Leven = L(p),
where

© =Vy(=BIT(0,y) > X(y)).

To give a more interesting example, we use the fact [?, page 14] that the
relation x + y = z can be expressed by a first-order formula ¢4 (z,y, 2z) in the
vocabulary Lro. Then the set PAL of binary palindromes is represented by the
sentence

VaVy, © 4y =maz D (X(z) < X(y)).

Thus PAL € FO.

Immerman showed that the class FO is the same as a uniform version of AC°
(see Appendix A.4.1). Originally AC° was defined in its nonuniform version,
which we shall refer to as AC° /poly. A language in AC® /poly is specified
by a polynomial size bounded depth family (C,,) of Boolean circuits, where
each circuit C, has n input bits, and is allowed to have —-gates, as well as
unbounded fan-in A-gates and V-gates. In the uniform version, the circuit C,,
must be specified in a uniform way; for example one could require that (C,,) is
in FO.

Immerman showed that this definition of uniform AC" is robust, in the sense
that it has several quite different characterizations. For example, the logtime

4.2. TWO-SORTED FIRST-ORDER LOGIC 69

hierarchy LH consists of all languages recognizable by an ATM (Alternating
Turing Machine) in time O(logn) with a constant number of alternations. Also
CRAM]1] consists of all languages recognizable in constant time on a so-called
Concurrent Random Access Machine. The following theorem is from [?, Corol-
lary 5.32].

Theorem 4.2.
FO = AC’ = CRAM][l] = LH.

Of course the nonuniform class AC° /poly contains non-computable sets, and
hence it properly contains the uniform class ACY. Nevertheless in 1983 Ajtai
(and independently Furst, Saxe, and Sipser) proved that even such a simple set
as PARITY (the set of all strings with an odd number of 1’s) is not in AC°/poly
(and hence not in FO).

On the positive side, we pointed out that the set PAL of palindromes is in
FO, and hence in AC?. If we code a triple (U, V,W) of strings as a single string
in some reasonable way then it is easy to see using a carry look-ahead adder that
binary addition (the set (U, V,U 4 V)) is in AC. Do not confuse this with the
result of [?, page 14] mentioned above that some first-order formula ¢ (z,y, 2)
represents z+y = z, since here x, y, z represent elements in the model M, which
have nothing much to do with the input string X.

In fact PARITY is efficiently reducible to binary multiplication, so Ajtai’s
result implies that the set (U, V,U - V) is not in AC". In contrast, there is a
first-order formula in the vocabulary £ro which represents = -y = z in standard
structures with universe M = {0,...,n — 1}.

4.2 Two-Sorted First-Order Logic

4.2.1 Syntax

Our two-sorted first-order logic is an extension of the (single-sorted) first-order
logic introduced in Chapter 2. Here there are two kinds of variables: the vari-
ables x,y, z, ... of the first sort are called number variables, and are intended to
range over the natural numbers; and the variables X, Y, Z, ... of the second sort
are called set (or also string) variables, and are intended to range over finite
subsets of natural numbers (which represent binary strings). Also the function
and predicate symbols are now over both sorts.

Definition 4.3 (Two-Sorted First-Order Vocabularies). A two-sorted
first-order language (or just two-sorted language, or language, or vocabulary)
L is specified by a set of function symbols and predicate symbols, just as in the
case of a single-sorted language (Section 2.1), except that the functions and pred-
icates now can take arguments of both sorts, and there are two kinds of functions:
the number-valued functions (or just number functions) and the string-valued
functions (or just string functions).

70 CHAPTER 4. TWO-SORTED FIRST-ORDER LOGIC

In particular, for each n,m € N, there is a set of (n, m)-ary number function
symbols, a set of (n,m)-ary string function symbols, and a set of (n, m)-ary
predicate symbols. An (0,0)-ary function symbol is called a constant symbol,
which can be either a number constant or a string constant.

We use f, g, h,...as meta-symbols for number function symbols; F, G, H, ...
for string function symbols; and P, Q, R, ... for predicate symbols.

For example, consider the following two-sorted extension of L4 (Defini-
tion 2.3):

Definition 4.4. £% =[0,1,+,,] | ; =1, =2, <, €].

—

Here the symbols 0,1,4+,-, =1 and < are from L4; they are function and
predicate symbols over the first sort (=1 corresponds to = of £,4). The function
|X| (the “length of X”) is a number-valued function and is intended to denote
the least upper bound of the set X (roughly the length of the corresponding
string). The binary predicate € takes a number and a set as arguments, and
is intended to denote set membership. Finally, =5 is the equality predicate for
the second-sort objects. We will write = for both =, and =,, its exact meaning
will be clear from the context.

We will use the abbreviation

X(t) =qef t € X

where ¢ is a number term (Definition 4.5 below). Thus we think of X (i) as the
i-th bit of the binary string X.

Note that in £% the function symbols +, - each has arity (2,0), while | | has
arity (0,1) and the predicate symbol € has arity (1, 1).

For a two-sorted language £, the notions of L-terms and L-formulas general-
ize the corresponding notions in the single-sorted case (Definitions 2.1 and 2.2).
Here we have two kinds of terms: number terms and string terms. As before,
we will drop mention of £ when it is not important, or clear from the context.

Definition 4.5 (£-Terms). Let L be a two-sorted vocabulary:

1) Every number variable is an L-number term.

2) Every string variable is an L-string term.

3) If f is an (n,m)-ary number function symbol of L, t1,. .., t, are L-number
terms, and Ty, . .., Ty, are L-string terms, then fti...t, 11 ... Ty, is an L-
number term.

4) If F is an (n,m)-ary string function symbol of L, and t1,...,t, and
Ti,...,T, are as above, then Fty...t,T1...Ty, is an L-string term.

Note that all constants in £ are L-terms.

We often denote number terms by r, s,t, ..., and string terms by S, T,

The formulas over a two-sorted language £ are defined as in the single-sorted
case (Definition 2.2), with the addition of quantifiers over string variables. These
are called string quantifiers, and the quantifiers over number variables are called
number quantifiers. Also note that a predicate symbol in general may have
arguments from both sorts.

4.2. TWO-SORTED FIRST-ORDER LOGIC 71

Definition 4.6 (L-Formulas). Let £ be a two-sorted first-order language.
Then a two-sorted first-order formula in £ (or L-formula, or just formula) are
defined inductively as follows:

1) If P is an (n,m)-ary predicate symbol of L, t1,. .., t, are L-number terms
and Ty, ...,Ty are L-string terms, then Pty ...t,T1...T,, is an atomic
L-formula. Also, each of the logical constants L, T is an atomic formula.

2) If ¢, ¥ are L-formulas, so are =@, (p A1), and (@ V).
3) If v is an L-formula, x is a number variable and X is a string variable,

then Vap, Jxp, VX ¢ and 3X ¢ are L-formulas.

We often denote formulas by ¢, 1,
Recall that in £% we write X (¢) for t € X.

Example 4.7 (£%-Terms and £%-Formulas).

1) The only string terms of L2 are the string variables X,Y, Z,

2) The number terms of L% are obtained from the constants 0, 1, number
variables x,y, z, . . ., and the lengths of the string variables | X|,|Y|,|Z|,...
using the binary function symbols +,-.

3) The only atomic formulas of L% are L, T or those of the form s = t,
X =Y, s<tand X(t) for string variables X,Y and number terms s,t.

4.2.2 Semantics

As for single-sorted first-order logic, the semantics of a two-sorted language is
given by structures and object assignments. Here the universe of a structure
contains two sorts of objects, one for the number variables and one for the string
variables. As in the single-sorted case, we also require that the predicate symbols
=; and =, must be interpreted as the true equality in the respective sort. The
following definition generalizes the notion of a (single-sorted) structure given in
Definition 2.6.

Definition 4.8 (Two-Sorted Structures). Let L be a two-sorted language.
Then an L-structure M consists of the following:

1) A pair of two nonempty sets Uy and Us, which together are called the
universe. Number (resp. string) variables in an L-formulas are intended
to range over Uy (resp. Us).

2) For each (n, m)-ary number function symbol f of L an associated function
MUr x U = Uy

3) For each (n,m)-ary string function symbol F of L an associated function
FM . UP x U — Us.

4) For each (n,m)-ary predicate symbol P of L an associated relation PM C
Uup x uy.

Thus, for our “base” language £, an £3-structure with universe (Uy, Us)
contains the following interpretations of £3:

72 CHAPTER 4. TWO-SORTED FIRST-ORDER LOGIC

Elements 0™, 1M € U to interpret 0 and 1, respectively;

Binary functions +™, .M : U; xU; — Uj to interpret + and -, respectively;
A binary predicate <MC U? interpreting <;

A function | [M : Uy — Uy;

e A binary relation eMC Uy x Us.

Note that in an £2-structure M as above, an element @ € Us can be specified
by the pair (|a], Sa), where S, = {u € Uy|u €M a}. Technically many different
elements of Us could be represented by the same such pair. However, if we
define an equivalence class on Us by stating two elements are equivalent if they
have the same pair, then the structure and object assignment (see definition
below) obtained by passing to equivalence classes satisfies exactly the same
formulas as the original structure and object assignment. Therefore without
loss of generality, we assume that every element « of Us is uniquely specified by

(lal; Sa)-

Example 4.9 (The Standard Two-Sorted Model N,). The standard model
Ny has Uy = N and U; the set of finite subsets of N. The number part of the
structure is the standard single-sorted first-order structure N. The relation €
gets its usual interpretation (membership), and for each finite subset S C N, |S]|
1s interpreted as one plus the largest element in S, or 0 if S is empty.

As in the single-sorted case, the truth value of a formula in a structure is
defined based on the interpretations of free variables occurring in it. Here we
need to generalize the notion of an object assignment (Definition 2.7):

Definition 4.10 (Two-Sorted Object Assignment). A two-sorted object
assignment (or just an object assignment) o for a two-sorted structure M is
a mapping from the number variables to Uy together with a mapping from the
string vartables to Us.

Notation We will write o(z) for the first-sort object assigned to the number
variable = by o, and o(X) for the second-sort object assigned to the string
variable X by o. Also as in the single-sorted case, if z is a variable and m € Uy,
then the object assignment o(m/x) is the same as ¢ except it maps x to m, and
if X is a variable and M € Us, then the object assignment o(M/X) is the same
as o except it maps X to M.

Now the Basic Semantic Definition (2.8) and the notion M = ¢[o] (Defini-
tion 2.9) generalize in the obvious way.

Definition 4.11 (Basic Semantic Definition, Two-Sorted Case). Let £
be a two-sorted first-order language, let M be an L-structure with universe
(Uy,Us), and let o be an object assignment for M. FEach L-number term t
is assigned an element t™[o] in Uy, and each L-string term T is assigned an el-
ement T™M[o] in Uy, defined by structural induction on termst and T, as follows
(refer to Definition 4.5 for the definition of L-term):

M

a) zMo] is o(x), for each number variable x

4.3. TWO-SORTED COMPLEXITY CLASSES 73

b) XMo] is 0(X), for each string variable X
e) (fti-- -t ... T)Mlo) = fMEM o],t o], TM[o], ..., TM[0])
d) (Ftl"'tnle'Tm)M[o]:FM(t'{M[U]a-'w n []7TiA/l[]V"?Tn/;/l[a])

Definition 4.12. For ¢ an L-formula, the notion M = plo] (M satisfies ¢
under o) is defined by structural induction on formulas ¢ as follows (refer to
Definition 4.6 for the definition of a formula):

a) MET and M |~ L

b) M = (Pty---t,T1...Tn)lo] iff o], ...t c], TM[o],..., T [0]) €
pM

cl) If L contains =1, then M |= (s = t)[o] iff sM[o] = J]

¢2) If L contains =2, then M = (S = T)[o] iff SM[o] = TM|o]

d) M = —plo] iff M I lo].

tM]

)
)
)
)
f)
)
)
)

e) M= (pVi)lo] iff M k= glo] or M= ylo].
M E (9 A)lo] iff M = plo] and M = o],
gl) M = (Vzy)[o] iff M = plo(m/z)] for all m € Uy
g2) M = (VXo)[o] iff M = plo(M/X)] for all M € Uy
hl) M E (3ze)[o] iff M = plo(m/x)] for some m € Uy
h2) M = (3Xp)[o] iff M = ¢lo(M/X)] for some M € Us

Note that items cl) and c2) in the definition of M = A[o] follow from b) and
the fact that ="' and =4 are always the equality relations in the respective
sorts.

The notions of “M = ¢”, “logical consequence”, “validity”, etc., are defined
as before (Definition 2.11), and we do not repeat them here. Also, the Sub-
stitution Theorem (2.15) generalizes to the current context, and the Formula
Replacement Theorem (2.16) continues to hold, and we will not restate them.

9 “

4.3 Two-sorted Complexity Classes

4.3.1 Notation for Numbers and Finite Sets

In Section 3.4 we explained how to interpret an element of a complexity class,
such as P (polynomial time) and LTH (Linear Time Hierarchy) as a rela-

tion over N. In this context the numerical inputs z1,...,x; of a relation
R(z1,...,x)) are presented in binary to the accepting machine. In the two-
sorted context, however, the relations R(z1,...,xg, X1,...,X;n) in question

have arguments of both sorts, and now the numbers x; are presented to the
accepting machines using unary notation (n is represented by a string of n 1’s)
instead of binary. The elements X; of the second sort are finite subsets of N,
and below we explain exactly how we represent them as binary strings for the
purpose of presenting them as inputs to the accepting machine. The intuitive
reason that we represent the numerical arguments in unary is that now they

74 CHAPTER 4. TWO-SORTED FIRST-ORDER LOGIC

play an auxiliary role as indices to the string arguments, and hence their values
are comparable in size to the length of the string arguments.

Thus a numerical relation R(z) with no string argument is in two-sorted
polynomial time iff it is computed in time 2°(™ on some Turing machine, where
n is the binary length of the input z. In particular, the relation Prime(x) is
easily seen to be in this class, using a “brute force” algorithm that tries all
possible divisors between 1 and =x.

The binary string representation of a finite subset of N is defined as follows.
Recall that we write S(i) for ¢ € S (for ¢ € N and S C N). Thus if we write 0
for L and 1 for T, then we can use the binary string

w(S) = S(n)S(n —1) ... S(1)S(0) (4.2)

to interpret the finite nonempty subset S of N, where n is the largest member
of S. We define w(@) to be the empty string. For example,

w({0,2,3}) = 1101

Thus w is an injective map from finite subsets of N to {0,1}*, but it is not
surjective, since the string w(.S) begins with 1 for all nonempty S. Nevertheless
w(S) is a useful way to represent S as an input to a Turing machine or circuit.
Using the method just described of representing numbers and strings, we can
define two-sorted complexity classes as sets of relations. For example two-sorted
P consists of the set of all relations R(Z, X) which are accepted in polynomial
time by some deterministic Turing machine, where each numerical argument x;
is represented in unary as an input, and each subset arguments X; is represented
as the string w(X;) as an input. Similar definitions specify the two-sorted poly-
nomial hierarchy PH, and the two-sorted complexity classes AC° and LTH.

4.3.2 Representation Theorems

Notation If T = T1,...T,, is a sequence of string terms, then |f| denotes the
sequence |T4|, ..., |T}| of number terms.

Bounded number quantifiers are defined as in the single-sorted case (Defini-
tion 3.6). To define bounded string quantifiers, we need the length function | X|
of £%.

Notation A two-sorted language L is always assumed to be an extension of
2.

Definition 4.13 (Bounded Formulas). Let £ be a two-sorted language. If
x s a number variable and X a string variable that do not occur in the L-
number term t, then Iz < ty stands for Jx(z < t A @), Vo < tp stands for
Ve(z <t D), 3X <ty stands for IX (| X| <t A), and VX < to stands for
VX(|X]| <t D). Quantifiers that occur in this form are said to be bounded,
and a bounded formula is one in which every quantifier is bounded.

4.3. TWO-SORTED COMPLEXITY CLASSES 75

Notation 37 < fcp stands for oy < t1...3x, < tkcp for some k, Where no ;
occurs in any ¢; (even if i < j). Slmllarly for Y <, 3X < t, and vX <t
If the above convention is violated in the sense that z; occurs in ¢; for ¢ < j,

= e
and the terms ¢ are £%-terms, then new bounding terms ¢ in £% can be found
which satisfy the convention. For example Jz1 < ¢35 < to(x1)p is equivalent
to
g < t1Fxg < ta(tr)(z2 < ta2(x1) A p)

We will now define the following important classes of formulas.

Definition 4.14 (The X1(£), P (L) and IIP(£) Formulas). Let £ 2 £2
be a two-sorted language. Then BT (L) = TIF (L) is the set of L-formulas whose
only quantifiers are bounded number quantifiers (there can be free string vari-
ables) Fori >0, 21_,_1() (Tesp 12 (L)) is the set of formulas of the form

3X < tp(X) (Tesp VX < tp(X)), where o is a TIB(L) formula (resp. a EB(E)
formula), and t'is a sequence of L2 -terms not mvolvmg any variable in X. Also,

a 21(L) formula is one of the form EIX(p, where X is a vector of zero or more
string variables, and ¢ is a BF(L) formula.

We will drop mention of £ when it is clear from the context. Thus
sfcxfcslc
B B B
Yy CIIY CII; C

and for 7 >0
P CI?, and P C X5,

Notice the “strict” requirements on 35 (L) and IIZ(£): formulas of these
classes must be in prenex form, with no string quantifier occurs within the scope
of any number quantifier. For example, 3 (£2) is usually called strict E}’b by
other authors. Also notice that the bounding terms ¢ must be in the basic
language £%.

In Section 3.3.1 we discussed the definability of predicates (i.e., relations)
and functions in a single-sorted theory. In the case of relations, the notion is
purely semantic, and does not depend on the theory, but only the underlying
language and the standard model. The situation is the same for the two-sorted
case, and so we will define the notion of a relation R(Z, X) represented by a
formula, without reference to a theory. As in the single-sorted case, we assume
that each relation symbol R has a standard interpretation in an expansion of
the standard model, in this case N,, and formulas in the following definition are
interpreted in the same model.

Definition 4.15 (Representable/Definable Relations). Let £ D L% be a
two-sorted vocabulary, and let @ be an E -formula. Then we say that cp(f,)z)
represents (or defines) a relation R(Z,X) if

R, X) < o(&,X) (4.3)

76 CHAPTER 4. TWO-SORTED FIRST-ORDER LOGIC

If ® is a set of L-formulas, then we say that R(f,X) is ®-representable (or
®-definable) if it is represented by some ¢ € P.

If we want to represent a language L C {0,1}*, then we need to consider
strings that do not necessarily begin with 1. Thus the relation Ry (X) corre-
sponding to L is defined by

Riy(X)—=w'(X)eL

where the string w'(X) is obtained from w(X) (4.2) by deleting the initial 1
(and w'(2) is the empty string).

Example 4.16. The language PAL (page 68) of binary palindromes is repre-
sented by the formula

epran(X) < (IX] < 1) VVr,y <|X], 2 +y+2=|X]D (X(2) < X(y))

Two-sorted AC? restricted to numerical relations R(Z) is exactly the same
as single-sorted LTH as defined in Section 3.4.1. Both classes can be defined
in terms of alternating Turing machines: ACY requires log time and constant
alternations, and LTH requires linear time and constant alternations. But for
AC°, numbers are represented in unary notation, so the length n of an input
x is x, whereas for LTH, numbers are represented in binary, so the length n of
an input z is about log z. Since an ATM accesses its input tape using an index
register written in binary (and it can guess and verify the binary number), it
does not matter whether an input number is written in binary or unary.

Thus for numerical relations, the following representation theorem is the
same as the LTH Theorem 3.58 (LTH = AL). For string relations, it can be
considered a restatement of Theorem 4.2 (FO = AC?).

Theorem 4.17 (£ Representation Theorem). A relation R(Z,X) is in
AC° iff it is represented by some =B formula ¢(%, X).

Proof. In light of the above discussion, the proof is essentially the same as for
Theorem 3.58. The string arguments pose no problem: Each X; is represented
on the input tape of the ATM by the binary string w(X;) whose bits can be

accessed in the formula o(#, X) by atomic formulas X;(t) for suitable terms ¢.
O

Notation For X a finite subset of N, let bin(X) be the number whose binary
notation is w(X) (see (4.2)). Thus

bin(X) = Z X(i)2' (4.4)

where here we treat the predicate X (i) as a 0—1-valued function. Define the
relations Ry and Ry« by

R (X,Y,Z) < bin(X) + bin(Y) = bin(Z)

Ry (XY, Z) < bin(X) - bin(Y) = bin(Z)

4.3. TWO-SORTED COMPLEXITY CLASSES 7

As mentioned earlier, PARITY is efliciently reducible to Ry, and hence
R, is not in ACY, and cannot be represented by any 28 formula. However
R, is in AC". To represent it as a XF formula, we first define the relation
Carry(i, X,Y) to mean that there is a carry into bit position ¢ when computing
bin(X) 4 bin(Y). Then (using the idea behind a carry-lookahead adder)

Carry(i, X,Y) < 3k < i, (X(K) AY (k) AVj <ilk<jD(X(G)VY(H))] (4.5)
Thus

Ri(X,)Y,Z) =|Z| <|X|+ |Y|AVi < | X|+|Y],
Z(i) = (XG) Y () ® Carry(i, X,Y))

where @ represents exclusive or.
Note that the £ Representation Theorem can be alternatively proved by
using the characterization AC? = FO. Here we need the fact that

FO[BIT] = FO[PLUS, TIMES]
i.e., the vocabulary Lpo in (4.1) can be equivalently defined as
[07 mazw, +7 . 7X; S? :]7

Note also that in Lrppo we have only one “free” unary predicate symbol X,
so technically speaking, Lpo formulas can describe only unary relations (i.e.,
languages). In order to describe a k-ary relation, one way is to extend the vo-
cabulary Lro to include additional “free” unary predicates. Then Theorem 4.2
continues to hold. Now the ¥F Representation Theorem can be proved by
translating any £ formula ¢ into an FO formula ¢’ that describes the relation
represented by ¢, and vice versa.

We use BF to denote level i > 1 of the two-sorted polynomial hierarchy. In
particular, { denotes two-sorted NP. Thus a relation R(, X) is in 2P iff it
is accepted by some polynomial time ATM with at most i alternations, starting
with existential, using the input conventions described in Section 4.3.1.

Theorem 4.18 (X and X! Representation Theorem). Fori > 1, a

relation R(Z, X') is in 2T iff it is represented by some XE formula. The relation
is recursively enumerable iff it is represented by some X1 formula.

Proof. We show that a relation R(Z, X) is in NP iff it is represented by a X
formula. First suppose that R(Z, X) is accepted by a nondeterministic polytime
Turing machine M. Then the X formula that represents R has the form

Y <7 X) o X,Y)

where Y codes an accepting computation of M on input (Z, X), t represents the
upper bound on the length of such computation, and ¢ is a X formula that
verifies the correctness of Y. Here the bounding term ¢ exists by the assumption

78 CHAPTER 4. TWO-SORTED FIRST-ORDER LOGIC

that M works in polynomial time, and the formula ¢ can be easily constructed
given the transition function of M.
On the other hand, suppose that R(Z, X) is represented by the ¥ formula

I < iz X) o X,Y)

Then the polytime NTM M that accepts R works as follows. On input (f,)z)
M simply guesses the values of 37, and then verifies that ¢(Z, X , 37) holds. The
verification can be easily done in polytime (it is in fact in AC? as shown by the
3P Representation Theorem). 0

4.3.3 The LTH Revisited

Consider LTH (Linear Time Hierarchy, Section 3.4) as a two-sorted complexity
class. Here we can define the relations in this class by linearly bounded formulas,
a concept defined below.

Definition 4.19. A formula ¢ over L is called a linearly bounded formula if
all of its quantifiers are bounded by terms not involving -.

Theorem 4.20 (Two-Sorted LTH Theorem). A relation is in LTH if and
only if it is represented by some linearly bounded formula.

The proof of this theorem is similar to the proof of Theorem 3.58. Here the
(«<=) direction is simpler: For the base case, we need to calculate the number
terms t(x1, ..., 2k, | X1|,...,|Xm]) in time lnear in (3" x; + 3 |X;|), and this
is straightforward.

For the other direction, as in the proof of the single-sorted LTH Theorem,
the interesting part is to show that relations in NLinTime can be represented
by linearly bounded formulas. Here we do not need to define the relation y =
2% as in the single-sorted case, since the relation X (i) (which stands for ¢ €
X) is already in our vocabulary. We still need to “count” the number of 1-
bits in a string, i.e., we need to define the two-sorted version of Numones:
Numoness(a, i, X) is true iff a is the number of 1-bits in the first ¢ low-order
bits of X. Again, Numoness can be defined using Bennett’s Trick.

Exercise 4.21. a) Define using linearly bounded formula the relation m =
[Vi].

b) Define using linearly bounded formula the relation “k = the number of 1-bits
in the substring X (im) ... X(im+m —1)7.

c) Now define Numoness(a,i, X) using linearly bounded formula.

Exercise 4.22. Complete the proof of the Two-Sorted LTH Theorem.

In [?], Zambella considers the subset of £% without the number function -,
denoted here by EZ_, and introduces the notion of linear formulas, which are
the bounded formulas in the language ﬁi‘. Then LTH is also characterized as

4.4. THE PROOF SYSTEM LK? 79

the class of relations representable by linear formulas. In order to prove this
claim from the Two-Sorted LTH Theorem above, we need to show that the
relation x - y = z is definable by some linear formula.

Exercise 4.23. Define the relation x -y = z using a linear formula. (Hint:
First define the relation “z is a multiple of y”.)

We have shown how to define the relation y = 2% using A, formula in
Section 3.3.3. Here it is much easier to define this relation using linearly bounded
formulas.

Exercise 4.24. Show how to express y = 2% using linearly bounded formula.
(Hint: Use Numoness from Exercise 4.21.)

4.4 The Proof System LK?>

Now we extend the sequent system LK (Section 2.3) to a system LK? for a
two-sorted language £2. As for LK, here we introduce the free string variables
denoted by «, 3,7, ..., and the bound string variables X,Y, Z, ... in addition to
the free number variables denoted by a, b, c, .. ., and the bound number variables
denoted by z,y, z,

Also, in LK? the terms (of both sorts) do not involve any bound variable,
and the formulas do not have any free occurrence of any bound variable.

The system LK? includes all axioms and rules for LK as described in Sec-
tion 2.3, where the term ¢ is a number term respecting our convention for free
and bound variables above. In addition LK? has the following four rules intro-
ducing string quantifiers, here T' is any string term that does not contain any
bound string variable X, Y, Z, ...

String V introduction rules

o(T),I — A , I'— A, 0(B)
: right:
VXp(X), I — A I — AVXp(X)

left

String 3 introduction rules
e(B),I' — A I'— A o(T)
: right:
AXp(X),I — A I — A 3Xp(X)

left

Restriction The free variable 8 must not occur in the conclusion of V-right
and J-left.

The notions of LK? proofs and LK? anchored proofs generalize the notion
of LK proofs and anchored LK proofs. Then the Derivational Soundness, the
Completeness Theorem (2.24), and the Anchored Completeness Theorem (2.29)
continue to hold for LK? (without equality).

In general, when the vocabulary £ does not contain either of the equality
predicate symbols, then the notion of LK?-® proof is defined as in Defini-
tion 2.22. In the sequel our two-sorted vocabularies will all contain both of the

80 CHAPTER 4. TWO-SORTED FIRST-ORDER LOGIC

equality predicates, so we will restrict our attention to this case. Here we need
to generalize the Equality Axioms given in Definition 2.36. Recall that we write
= for both =7 and =».

Definition 4.25 (LK? Equality Axioms for £). Suppose that L is a two-
sorted vocabulary containing both =1 and =,. The LK? Equality Axioms for £
consists of the following azioms. (We let A stand for

tl:Ul,...,tn:un,Tl:Ul,...,Tm:Um

in E4', E4" and E5'.) Here t,u,t;,u; are number terms, and T,U,T;,U; are
string terms.

El. —t=t

El". —T=T

E2. t=u—u=t

E2'.T=U—U=T

E3. t=uu=v—t=vw

E3'. T=UU=V —T=V

E4d. A — ft1.. . t,Ty... Ty = fur...u,Ur...Uy for each f in L

E4". A — Fty...t,Ty... Ty = Fuy...u,Uy... Uy, for each F in L:

E5'. A, Pty...t,T1... T — Puy...unUy ... Uy, for each P in L (here P is

not =1 or =g).

Definition 4.26 (LK?-® Proofs). Suppose that L is a two-sorted vocabulary
containing both =1 and =», and ® is a set of L-formulas. Then an LK?-®
proof is an LK2-W proof in the sense of Definition 2.22, where U is ® together
with all instances of the LK? Equality Azioms E1', E1”, ..., B4, E4", E5'
for L. If ® is empty, we simply refer to an LK*-proof (but allow E1’,... E5’
as axioms).

Recall that if ¢ is a formula with free variables aq,...,an,a1,. .., an, then
V¢, the universal closure of ¢, is the sentence

Vay .. Ve ,VX1 .. VXnp(zi/ar,. .. xn/an, X1/00, ..., X /am)

where x1,...,2,, X1,..., X, is a list of new bound variables. Also recall that
if ® is a set of formulas, then V® is the set of all sentences Ve, for ¢ € ®.

The following Soundness and Completeness Theorem for the two-sorted sys-
tem LK? is the analogue of Theorem 2.38, and is proved in the same way.

Theorem 4.27 (Soundness and Completeness of LK2). For any set ® of
formulas and sequent S,

YO = S iff S has an LK*-® proof

Below we will state the two-sorted analogue of the Anchored LK Complete-
ness Theorem and the Subformula Property of Anchored LK Proofs (Theo-
rems 2.40 and 2.41). They can be proved just as in the case of LK.

4.4. THE PROOF SYSTEM LK? 81

Definition 4.28 (Anchored LK? Proof). An LK?-® proof m is anchored
provided every cut formula in 7 is a formula in some non-logical axiom of m
(including possibly E1',E1” ... E5).

Theorem 4.29 (Anchored LK? Completeness). Suppose that ® is a set of
formulas closed under substitution of terms for variables and that the sequent S
is a logical consequence of V®. Then there is an anchored LK*-® proof of S.

Theorem 4.30 (Subformula Property of Anchored LK?> Proofs). If 7 is
an anchored LK?-® proof of a sequent S, then every formula in every sequent
of ™ is a term substitution instance of a sub-formula of a formula either in S
or in a non-logical axiom of © (including E1',... E4" E5’).

As in the case for LK where the Anchored LK Completeness Theorem is
used to prove the Compactness Theorem (Theorem 2.43), the above Anchored
LK? Completeness Theorem can be used to prove the following (two-sorted)
Compactness Theorem.

Theorem 4.31 (Compactness Theorem). If ® is an unsatisfiable set of
(two-sorted) formulas, then some finite subset of ® is unsatisfiable.

(See also the three alternative forms in Theorem 1.16.)

Form 1 of the Herbrand Theorem (Theorem 2.49) can also be extended to the
two-sorted logic, with the set of (single-sorted) equality axioms £, now replaced
by the set of two-sorted equality axioms E1’, E1”, ..., E4”, E5’' above. Below
we will state only Form 2 of the Herbrand Theorem for the two-sorted logics.
Note that it also follows from Form 1, just as in the single-sorted case.

A two-sorted theory (or just theory, when it is clear) is defined as in Def-
inition 3.1, where now it is understood that the underlying language L is a
two-sorted language. Also, a universal theory is a theory which can be ax-
iomatized by universal formulas, (i.e., formulas in prenex form, in which all
quantifiers are universal).

Theorem 4.32 (Herbrand Theorem for Two-Sorted Logic). a) Let T
be a universal (two-sorted) theory, and let p(z1,...,2%, X1,...,Xm,Z) be a
quantifier-free formula with all free variables displayed such that

T EVay .. VopVXy .. VX, 3202, X, Z).

Then there exist finitely many string terms T1(%,X), ..., Tn(%, X) such that

T Ve .. VoRVXy . VX, (0@ X, TU(E, X)) V...V o(@ X, T, (&, X))]

b) Similarly, let the theory T be as above, and let p(x1, ..., xp, 2, X1,..., Xm)
be a quantifier-free formula with all free variables displayed such that

T Vo .. VoVXy .. VX, 320(7, 2, X).
Then there exist finitely many number terms t1 (&, X), oot (2 X) such that
V...

TV .. Vo VX . VX, [0 40(2,X), X) V...V o(Z, tn(Z, X), X)]

82 CHAPTER 4. TWO-SORTED FIRST-ORDER LOGIC

The theorem easily extends to the cases where

—

THVVX3Z, ... 32,07, X, Z).

and
T EYAVX3z ... 3zp0(F, 2, X).

4.4.1 Two-Sorted Free Variable Normal Form

The notion of free variable normal form (Section 2.3.1) generalizes naturally to
LK? proofs, where now the term free variable refers to free variables of both
sorts. Again there is a simple procedure for putting any LK? proof into free
variable normal form (with the same endsequent), provided that the underlying
language has constant symbols of both sorts. This procedure preserves the size
and shape of the proof, and takes an anchored LK?-® proof to an anchored
LK?-® proof, provided that the set ® of formulas is closed under substitution
of terms for free variables.

In the case of £%, there is no string constant symbol, so we expand the
notion of a LK2-® proof over L% by allowing the constant symbol @ (for the
empty string) and assume that ® contains the following axiom:

E. |[9|=0

Adding this symbol and axiom to any theory 7 over £% we consider will
result in a conservative extension of 7, since every model for 7 can trivially
be expanded to a model of 7 U {E}. Now any LK? proof over £ can be
transformed to one in free variable normal form with the same endsequent, and
similarly for LK?-® for suitable ®.

4.5 Single-Sorted Logic Interpretation

In this section we will briefly discuss how the Compactness Theorem and Her-
brand Theorem in the two-sorted logic follow from the analogous results for the
single-sorted logic that we have seen in Chapter 2. This section is indepen-
dent with the rest of the book, and it is the approach that we follow to prove
the above theorems in Section 4.4 that will be useful in later chapters, not the
approach that we present here.

Although a two-sorted logic is a generalization of a single-sorted logic by
having one more sort, it can be interpreted as a single-sorted logic by merging
both sorts and using 2 extra unary predicate symbols to identify elements of
the 2 sorts.

More precisely, for each two-sorted vocabulary £, w.l.o.g., we can assume
that it does not contain the unary predicate symbols FS (for first sort) and
SS (for second sort). Let £!' = {FS,SS} U £, where it is understood that the
functions and predicates in £; take arguments from a single sort.

In addition, let ®, be the set of £!-formulas which consists of

4.5. SINGLE-SORTED LOGIC INTERPRETATION 83

1) Vz, FS(z) Vv SS(z).
2) For each function symbol f of £! (where f has arity (n,m) in L) the
formula

VEvy, (FS(z1) A...FS(zn) ASS(y1) ... ASS(ym)) D FS(f(Z,9))

(If f is a number constant ¢, the above formula is just FS(c).)

3) For each function symbol F of £ (where F has arity (n,m) in £) the
formula

VG, (FS(z1) A...FS(zn) ASS(y1) ... A SS(ym)) O SS(F(Z, 7))

(If F is a string constant «, the above formula is just SS(«).)

4) For each predicate symbol P of £! (where P has arity (n,m) in £) the
formula

Vavg, P(Z,9) D (FS(z1) A ... FS(@n) ASS®1) - ASS(ym))

Lemma 4.33. For each nonempty two-sorted language L, the set ®, is satis-
fiable.

Proof. The proof is straightforward: For an arbitrary (two-sorted) L-structure
M with universe (Uy, Us), we construct a (single-sorted) £;-structure M; that
has universe (U, Us), FSMi — U, SS™M1 = U, and the same interpretation as
in M for each symbol of L. It is easy to verify that M; = ®. |

It is also evident from the above proof that any model M; of &, can be
interpreted as a two-sorted L-structure M.

Now we construct for each L-formula ¢ an L!'-formula ! inductively as
follows.

1) If is an atomic sentence, then ¢ =qef .

2) If ¢ = 1 Az (or = 1 V o, or p =), then ! =ger ©3 A @} (or
ot =l vVl or pl = bt respectively).

3) If p = Ja)(x), then o' =qor Iw(FS(x) A 1 (2)).

4) If ¢ = Va)(z), then p! =qor Vo (FS(x) D 91 (x)).

5) If p = IXY(X), then p! =ge¢ I2(SS(x) A Yl (2)).

6) If o = VX9(X), then p! =go¢ V2 (SS(x) D ¥l (x)).
Note that when ¢ is a sentence, then ¢! is also a sentence.

For a set ¥ of L-formulas, let ¥! denote the set {p! : ¢ € ¥}. The lemma
above can strengthened as follows.

Theorem 4.34. A set U of L-sentences ¢ is satisfiable iff the set of &, U W'
of L1-sentences is satisfiable.

84 CHAPTER 4. TWO-SORTED FIRST-ORDER LOGIC

Notice that in the statement of the theorem, ¥ is a set of sentences. In
general, the theorem may not be true if ¥ is a set of formulas.

Proof. For simplicity, we will prove the theorem when W is the set of a single
sentence . The proof for the general case is similar.

For the ONLY IF direction, for any model M of ¢ we construct a £;-
structure M as in the proof of Lemma 4.33. It can be proved by structural
induction on ¢ that M; | ¢'. By the lemma, M; = ®,. Hence M; &=
oo U{p'}

For the other direction, suppose that M is a model for ®U{p'}. Construct
the two-sorted L-structure M from M; as in the remark following the proof
of Lemma 4.33. Now we can prove by structural induction on ¢ that M is a
model for ¢. Therefore ¢ is also satisfiable. O

Exercise 4.35. Prove the Compactness Theorem for the two-sorted logic (4.31)
from the Compactness Theorem for single-sorted logic (2.43).

Exercise 4.36. Prove the Herbrand Theorem for the two-sorted logic (4.32)
from Form 2 of the Herbrand Theorem for single-sorted logic (3.38).

4.6 Notes

The main reference for Section 4.1 is [?] Sections 1.1, 1.2, 5.5. Our two-sorted
language £ is from Zambella [?, ?].

Chapter 5

The Theory V' and ACY

In this chapter we introduce the family of two-sorted theories Voicvlicvzc
.-+, For i > 1, V¥ corresponds to Buss’s single-sorted theories S% (Section 3.5).
The theory VO characterizes AC? in the same way that IA(characterizes LTH.
Similarly V! characterizes P, and in general for i > 1, V' is related to the i-th
level of the polynomial time hierarchy.

Here we concentrate on the theory V9, which will serve as the base theory:
all two-sorted theories introduced in this book are extensions of V0. It is ax-
iomatized by the set 2-BASIC of the defining axioms for the symbols in £%,
together with $F-COMP (the comprehension axiom scheme for £ formu-
las). For i > 1, V' is the same as VY except that ZF-COMP is replaced by
»B_.COMP. We generalize Parikh’s Theorem, and show that it applies to each
of the theories V?.

The main result of this chapter is that VO characterizes AC’: The prov-
ably total functions in VO are precisely the AC® functions. The proof of this
characterization is somewhat more involved than the proof of the analogous
characterization of LTH by IA((Theorem 3.62). The hard part here is the
Witnessing Theorem for VO, which is proved by analyzing anchored LK?2-V?
proofs. We also give an alternative proof of the witnessing theorem based on

. q . 570 .
the universal conservative extension V= of V% using the Herbrand Theorem.

5.1 Definition and Basic Properties of V’

The set 2-BASIC of axioms is given in Figure 5.1. Recall that ¢t < u stands for
(t<uAnt#u).

Axioms B1,...,B8 are taken from the axioms in 1-BASIC for 1A, and
B9,...,B12 are theorems of IA (see Examples 3.8 and 3.9). Axioms L1 and
L2 characterize |X| to be one more than the largest element of X, or 0 if X is
empty. Axiom SE (extensionality) specifies that sets X and Y are the same if
they have the same elements. Note that the converse

X =Y D (X|=|Y|AVi<|X|[(X(i) < Y()))

85

86 CHAPTER 5. THE THEORY V° AND AC’

Bl.z+1#0 B7. (z<yAy<z)DdDzx=y
B2.z+1=y+1Dzx=y B8 x<zx+uy

B3.24+0==x B9.0<z

B4. 2+ (y+1)=(x+y)+1 Bl0. z<yVy<z

B5. 2-0=0 Bll. 2 <y<—zxz<y+1

B6. z-(y+1)=(z-y)+= B12. 2 #0> Jy <z(y+1==x)
Ll. X(y) Dy < |X]| L2. y+1=|X|D> X(y)

SE. | X|=|Y|AVi< |X|(X(i) = Y(%E)] D X=Y

Figure 5.1: 2-BASIC

is valid because in every £%-structure, =5 must be interpreted as true equality
over the strings.

Exercise 5.1. Using 2-BASIC, show that

a) —z <0.

b) z <z +1.

c) 0<z+1.

d) z<yD>ax+1<y. (Use B10, B11, B7.)
e)r<ydax+l<y+l.

Definition 5.2 (Comprehension Axiom). If ® is a set of formulas, then
the comprehension axiom scheme for ®, denoted by ®-COMP, is the set of all
formulas

IX < yVz < y(X(2) < ¢(2)), (5.1)

where @(2) is any formula in ®, and X does not occur free in p(z).

In the above definition ¢(z) may have free variables of both sorts, in addition
to z. We are mainly interested in the cases in which ® is one of the formula
classes X5,

Definition 5.3 (V*). For i > 0, the theory V' has the vocabulary £% and is
aziomatized by 2-BASIC and £Z-COMP.

Notation Since now there are two sorts of variables, there are two different
types of induction azxioms: One is on numbers, and is defined as in Defini-
tion 3.4 (where now ® is a set of two-sorted formulas), and one is on strings,
which we will discuss later. For this reason, we will speak of number induction
axioms and string induction axioms. Similarly, we will use the notion of number
manimization axioms, which is different from the string minimization azioms
(to be introduced later). For convenience we repeat the definitions of the axiom
schemes for numbers below.

Definition 5.4 (Number Induction Axiom). If ® is a set of two-sorted
formulas, then ®-IND azioms are the formulas

[(0) AVz, @(x) D p(z+1)] D Vzp(z)

5.1. DEFINITION AND BASIC PROPERTIES OF V! 87

where ¢ is a formula in .

Definition 5.5 (Number Minimization and Maximization Axioms).
The number minimization azioms (or least number principle azioms) for a set
® of two-sorted formulas are denoted ®-MIN and consist of the formulas

e(y) DI <y, o(x) A-3z < 2p(2)

where ¢ is a formula in ©. Similarly the number mazimization axioms for ®
are denoted ®-MAX and consist of the formulas

©(0) >3z <y, p(x) A=Fz <y(z < 2 A p(2))
where ¢ is a formula in ®.

In the above definitions, ¢(z) is permitted to have free variables of both
sorts, in addition to .

Notice that all axioms of V? hold in the standard model N, (page 72). In
particular, all theorems of V° about numbers are true in N. Indeed we will show
that VO is a conservative extension of IAg: all theorems of IA(are theorems
of VO, and all theorems of VO over £, are theorems of IA,.

For the first direction, note that the above axiomatization of VO contains
no explicit induction axioms, so we need to show that it proves the number
induction axioms for the Ay formulas. In fact, we will show that it proves
3B IND by showing first that it proves the X-MIN axiom, where

X-MIN = 0< |X]| D3z < | X|(X(z) AVy <z ~X(y))
Lemma 5.6. V° - X-MIN.

Proof. We reason in V?: By ZF-COMP there is a set Y such that |Y| < | X]|
and for all z < | X|
Y(z) & Vy <z -X(y) (5.2)

Thus the set Y consists of the numbers smaller than every element in X. As-
suming 0 < |X|, we will show that |Y| is the least member of X. Intuitively,
this is because |Y| is the least number that is larger than any member of Y.
Formally, we need to show: (i) X(|Y]), and (ii) Vy < |Y|-X (y). Details are as
follows.

First suppose that Y is empty. Then |Y| = 0 by B12 and L2, hence (ii)
holds vacuously by Exercise 5.1 a. Also, X (0) holds, since otherwise Y (0) holds
by B7 and B9. Thus we have proved (i).

Now suppose that Y is not empty, i.e., Y (y) holds for some y. Then y < |Y|
by L1, and thus |Y'| # 0 by Exercise 5.1 a. By B12, |Y| = z+ 1 for some z and
hence (Y (2) A=Y (24 1)) by L1 and L2. Hence by (5.2) we have

Vy<z-X(y) AN Fi<z+1X(®)

It follows that ¢+ = z 4+ 1 in the second conjunct, since if ¢ < z + 1 then ¢ < z
by B11, which contradicts the first conjunct. This establishes (i) and (ii), since
i=z+1=|Y]|. U

88 CHAPTER 5. THE THEORY V° AND AC’

Consider the following instance of £F-IND:
X-IND = [X(0)AVy<z2(X(y) D X(y+1))] D X(2)
Corollary 5.7. VO F X-IND.

Proof. We prove by contradiction. Assume —X-IND, then we have for some z:
X0)A=X(2)AVy < z(X(y) D X(y+1))
By F-COMP, there is a set Y with |Y| < z + 1 such that
Vy <z+1(Y(y) < =X(y))

Then Y(z) holds by Exercise 5.1 b, so 0 < |Y| by a and L1. By Y-MIN, Y
has a least element yo. Then yg # 0 because X (0), hence yo = z¢ + 1 for some
xo, by B12. But then we must have X (zg) and =X (2 + 1), which contradicts
our assumption. 0

Corollary 5.8. Let T be an extension of VO and ® be a set of formulas in
T. Suppose that T proves the ®-COMP axiom scheme. Then T also proves
the ®-IND azxiom scheme, the ®-MIN aziom scheme, and the ®-MAX azxiom
scheme.

Proof. We show that 7 proves the ®-IND axiom scheme. This will show that
VY proves BF-IND, and hence extends IAg and proves the arithmetic prop-
erties in Examples 3.8 and 3.9. The proof for the ®-MIN and $-MAX axiom
schemes is similar to that for ®-IND, but easier since these properties are now
available.

Let ¢(z) € ®. We need to show that

T [p(0) A VY, ¢(y) Doy +1)] D ¢(2)

Reasoning in V°, assume

p(0) AVY, @(y) D ey +1) (5-3)
By ®-COMP, there exists X such that |X| < z+ 1 and
vy <z+1(X(y) < ¢v)- (5:4)

By B11, Exercise 5.1 c,e and (5.3) we conclude from this
XO0)AVy<z(X(y) D X(y+1))

Finally X (z) follows from this and X-IND, and so ¢(z) follows from (5.4) and
Exercise 5.1 b. O

5.1. DEFINITION AND BASIC PROPERTIES OF V! 89

It follows from the corollary that for alli > 0, V* proves 5-IND, Ef-MIN,
and X5-MAX.

Theorem 5.9. VO is a conservative extension of IAg.

Proof. The axioms for IA(consist of B1,...,B8 and the Ay-IND axioms.
Since B1,...,B8 are also axioms of VY, and we have just shown that VO proves
the IF-IND axioms (which include the Ag-IND axioms), it follows that V°
extends IAg. To show that VY is conservative over IA (i.e. theorems of V° in
the language of IA are also theorems of IA(), we prove the following lemma.

Lemma 5.10. Any model M for 1Aq can be expanded to a model M’ for VO,
where the “number” part of M’ is M.

Note that Theorem 5.9 follows immediately from the above lemma, because
if ¢ is in the language of 1Ay, then the truth of ¢ in M’ depends only on the
truth of ¢ in M. (See the proof of the Extension by Definition Theorem 3.30.)
O

Proof of Lemma 5.10. Suppose that M is a model of IAy with universe M =
U;. Recall that IA(proves B1,...,B12, so M satisfies these axioms. Accord-
ing to the semantics for £% (Section 4.2.2), to expand M to a model M’ for
V0 we must construct a suitable universe Us whose elements are determined by
pairs (m, S), where S C M and m = |S|. In order to satisfy axioms L1 and
L2, if S € Uy is empty, then |S| = 0, and if S is nonempty, then S must have a
largest element s and |S| = s+ 1. Since S € M and |S| is determined by S, it
follows that the extensionality axiom SE is satisfied.

The other requirement for Us is that the £F-COMP axioms must be sat-
isfied. We will construct Us to consist of all bounded subsets of M defined by
Ap-formulas with parameters in M. We use the following conventional notation:
If o(x) is a formula and ¢ is an element in M, then ¢(c) represents p(x) with a
constant symbol (also denoted ¢) substituted for z in ¢, where it is understood
that the symbol ¢ is interpreted as the element ¢ in M. If p(x,) is a formula

and c, d are elements of M , we use the notation

— —

S(c,o(x,d)) = {e € Mle < ¢ and M satisfies (e, d)}.

Then we define

—

Us = {S(c,¢(z,d)) | ¢,dq,...,dr, € M and ¢(x,7) is a Ag(La) formula} (5.5)

We must show that every nonempty element S of U; has a largest element,
so that |S| can be defined to satisfy L1 and L2. The largest element exists
because the differences between the upper bound c for S and elements of S have

—

a minimum element, by Ag-MIN. Specifically, if S = S(¢, ¢(z,d)) is nonempty

— —

and m is the least z satisfying ¢(c~ 1= z,d), then define |S| = £,(c,d) where

-

ly(c,d) =c— m.

90 CHAPTER 5. THE THEORY V° AND AC’

Exercise 5.11. Show that for each Aq formula ¢(x,), the function £, (z,7)
(extended to have the value 0 when S(z,p(x,¥)) is empty) is provably total in
IA.

It remains to show that ©F-COMP holds in M’. This means that for every
25 formula ¢(z,Z,Y) (with all free variables indicated) and for every vector d

of elements of M interpreting & and every vector S of elements in Us interpreting
Y and for every ¢ € M, the set

T={eeM|e<cand M |=1(e,d,S)} (5.6)
must be in Us. Suppose that
Si = S(ci, pilu, dy))

for some A formulas ¢;(z,¥;). Let 6(z,Z, 41,42, ... , w1, wa, ...) be the result of
replacing every sub-formula of the form Y;(t) in (2, z,Y) by (i (t, ;) At < w;)
and every occurrence of |Y;| by £, (w;,¥;). (We may assume that ¢ has no
occurrence of =5 by replacing every equation X =, Z by a X formula using
the extensionality axiom SE.) Finally let

T= S(c,@(z,icﬂ,d}, e €1, C2y 00)).

Then T satisfies (5.6). Since the functions ¢, are ¥-definable in IAg, by the
Conservative Extension Lemma 3.35, 6 can be transformed into an equivalent
Ay(L4) formula. Thus T € Us. O

Exercise 5.12. Suppose that instead of defining Us according to (5.5), we de-
fined Us to consist of all subsets of M which have a largest element, together with
@. Ezplain why the SF-COMP azioms may not be satisfied in the resulting
structure (Uy, Us).

Exercise 5.13. Suppose that we want to prove that VO is conservative over
1A by considering an anchored LK? proof instead of the above model-theoretic
argument. Here we consider a small part of such an argument. Suppose that
¢ is an IAq formula and 7 is an anchored LK*-V° proof of — ¢. Suppose
(to make things easy) that no formula in 7™ contains a string quantifier. Show
ezplicitly how to convert w to an LK-IAq proof n’ of — .

Since according to Theorem 5.9 V© extends IAg, we will freely use the
results in Chapter 3 when reasoning in V in the sequel.

5.2 Two-Sorted Functions

Complexity classes of two-sorted relations were discussed in Section 4.3 Now
we associate with each two-sorted complexity class C of relations a two-sorted
function class FC. Two-sorted functions are either number functions or string
functions. A number function f(Z, 17) takes values in N, and a string function
F(&,Y) takes finite subsets of N as values.

5.2. TWO-SORTED FUNCTIONS 91

Definition 5.14. A function f or F is polynomially bounded (or p-bounded)
if there is a polynomial p(Z,§) such that f(Z,Y) < p(Z,|Y|) or |F(Z,Y)| <
(@, [Y]).

All function complexity classes we consider here contain only p-bounded
functions.
A natural way of defining function classes is in terms of bit graph.

Definition 5.15 (Bit Graph). The bit graph Br of a string function F(Z, 37)
is defined by
Bp(i,#,Y) < F(Z,Y)().

Definition 5.16 (Function Class). If C is a two-sorted complezity class of
relations, then the corresponding functions class FC consists of all p-bounded
number functions whose graphs are in C, together with all p-bounded string
functions whose bit graphs are in C.

In particular, the string functions in FAC® are those p-bounded functions
whose bit graphs are in AC°.

The following characterization of FAC® follows from the above definitions
and the ¥F Representation Theorem (Theorem 4.17).

Corollary 5.17. A string function is in FAC if and only if it is p-bounded,
and its bit graph is represented by a & formula. The same holds for a number
function, with graph replacing bit graph.

An interesting example of a string function in FAC" is binary addition. Note
that as in (4.4) we can treat a finite subset X C N as the natural number

bin(X) = ZX(i)zi

where we write 0 for | and 1 for T. We will write X +Y for the string function
“binary addition”, so X +Y = bin(X) + bin(Y). Let Carry(i, X,Y) hold iff
there is a carry into bit position ¢ when computing X +Y. Then Carry(i, X,Y)
is represented by the BF formula given in (4.5).

The bit graph of X + Y can be defined as follows.

Example 5.18 (Bit Graph of String Addition). The bit graph of X +Y is
(X +Y)i) —i<|X|+ Y] A [X(G)DY(i)® Carry(i, X, Y)] (5.7)
where p® q = ((p A —=q) V (=p A q)).

In general, the graph Gp(Z,Y,Z) = (Z = F(Z,Y)) of a string function
F(#,Y) can be defined from its bit graph as follows:

Gr(Z,Y,Z) < Yi(Z(i) < Bp(i,Z,Y))

92 CHAPTER 5. THE THEORY V° AND AC’

So if F is polynomially bounded and its bit graph is in ACY, then its graph
is also in AC?, because

Gp(Z,Y,Z) — |Z| <t A Vi< t(Z(i) — Bp(i,7,Y)) (5.8)

where ¢ is the bound on the length of F.
As we noted earlier (Section 4.1), the relation Ry is not in AC®, where

Ry (X,Y,Z) & bin(X) - bin(Y) = bin(Z)

(because PARITY, which is not in ACP, is reducible to it). As a result, the bit
graph of (X x Y)(i) is not representable by any X7 formula, where X x Y =
bin(X) - bin(Y") is the string function “binary multiplication”.

If a string function F'(X) is polynomially bounded, it is not enough to say
that its graph is an AC" relation in order to ensure that F € FAC’. For
example, let M be a fixed polynomial-time Turing machine, and define F(X)
to be a string coding the computation of M on input X. If the computation is
nicely encoded then F(X) is polynomially bounded and the graph Y = F(X)
is an AC" relation, but if the Turing machine computes a function not in AC"
(such as the number of ones in X) then F' ¢ FAC®.

For the same reason that the numerical AC relations in the two-sorted
setting are precisely the LTH relations in the single-sorted setting (see the
proof of the ¥F Representation Theorem, 4.17), number functions with no
string arguments are AC? functions iff they are single-sorted LTH functions.

The nonuniform version of FAC? consists of functions computable by bounded-
depth polynomial-size circuits, and it is clear from this definition that the class
is closed under composition. It is also clear that nonuniform ACP is closed
under substitution of (nonuniform) AC® functions for parameters. These are
some of the natural properties that also hold for uniform AC° and FACP.

Exercise 5.19. Show that a number function f(Z,X) is in FAC if and only
if

f(Z,X) = |F(Z, X))
for some string function F(Z,X) in FACC.

Theorem 5.20. a) The AC° relations are closed under substitution of AC°
functions for variables.

b) The AC® functions are closed under composition.

c) The AC? functions are closed under definition by cases, i.e., if ¢ is an AC°
relation, g,h and G, H are functions in FACP, then the functions f and
F defined by

f_{g if o, F_{G if o,

h otherwise H otherwise

are also in FACY.

5.2. TWO-SORTED FUNCTIONS 93

Proof. We will prove a) for the case of substituting a string function for a string
variable. The case of substituting a number function for a number variable is
left as an easy exercise. Part b) follows easily from part a). We leave part c)
as an exercise.

Suppose that R(Z, X, Y) is an AC° relation and F(Z,)?) an AC® function.
We need to show that the relation Q(7, X) = R(Z, X, F(#, X)) is also an AC®
relation, i.e., it is representable by some X formula.

By the & Representation Theorem (4.17) there is a £8 formula ¢(Z, X,Y)
that represents R:

R(#,X,Y) < (%, X,Y)

By Corollary 5.17 there is a £ formula 6(i, 7, X) and a number term #(Z, X)
such that

F(Z,X)(i) — i < t(Z,X) A 0(i,Z, X). (5.9)

It follows from Exercise 5.19 that the relation z = |F(&, X)| is represented by a
= formula 7, so

z=|F(@&X)| < n(zX) (5.10)

The 2% formula that represents the relation Q(,)?) is obtained from ¢(Z, X, Y)
by successively eliminating each occurrence of Y using (5.9) and (5.10) as fol-
lows.

First eliminate all atomic formulas of the form ¥ = Z (or Z = Y) in ¢

by replacing them with equivalent formulas using the extensionality axiom SE.
Thus

Y =2 o (Y| =|2]) AVi< |[Y|(Y() = Z(i))

Now Y can only occur in the form |Y| or Y (r), for some term r. Any occurrence
of Y| in ¢(#, X,Y) must be in the context of an atomic formula ¢ (#, X, |Y|),
which we replace with

—

B2 < t(&@ X) (n(z,7,X) Ap(Z, X, 2)).

Finally we replace each occurrence of Y (r) in o(Z, X,Y) by

The result is a £ formula which represents Q(, X). |

Exercise 5.21. Prove part a) of Theorem 5.20 for the case of substitution of
number functions for variables. Also prove parts b) and c) of the theorem.

94 CHAPTER 5. THE THEORY V° AND AC’

5.3 Parikh’s Theorem for Two-Sorted Logic

Recall (Section 3.2) that a term ¢(Z) is a bounding term for a function symbol
f in a single-sorted theory 7 if

T V3 £(7) < t(Z)

For a two-sorted theory 7 whose vocabulary is an extension of £2, we say that
a number term t(#, X) is a bounding term for a number function f in 7 if

T FVavX f(7 X) < (7, X)
Also, (%, X) is a bounding term for a string function F in 7 if
T HVavX |F(Z X)| < t(Z, X)

Definition 5.22. A number function or a string function is polynomially bounded
in T if it has a bounding term in the language L.

Exercise 5.23. Let T be a two-sorted theory over the vocabulary £ O L%.
Suppose that T extends IAq. Show that if the functions of L are polynomially
bounded in T, then for each number term s(Z,X) and string term T(Z, X) of

L, there is an L3 -number term (%, X) such that
THVEVX (7, X) <t(@X) and THFVYWX |T(Z X)| < (&, X)

Note that a bounded formula is one in which every quantifier (both string and
number quantifiers) is bounded. Recall the definition of a polynomial-bounded
single-sorted theory (Definition 3.19).

In two-sorted logic, a polynomial-bounded theory is required to extend V°.
The formal definition follows.

Definition 5.24 (Polynomial-Bounded Two-Sorted Theory). Let T be a
two-sorted theory over the vocabulary L. Then 7T is a polynomial-bounded the-
ory if (i) it extends V°; (ii) it can be awiomatized by a set of bounded formulas;
and (i) each function f or F in L is polynomially bounded in T .

Note that each theory V¢ i > 0, is a polynomial-bounded theory. In fact,
all two-sorted theories considered in this book are polynomial-bounded.

Theorem 5.25 (Parikh’s Theorem, Two-Sorted Case). Suppose that T
is a polynomial-bounded theory and o(Z, g,X',)7) is a bounded formula with all
free variables indicated such that

T FVAYX33Y o(Z, 7, X, Y) (5.11)

Then . . o
T EVEVXIy <Y <tp(Z,4,X,Y) (5.12)

for some L2 -term t = t(Z,)?) containing only the variables (¥,)?)

5.3. PARIKH’S THEOREM FOR TWO-SORTED LOGIC 95

It follows from Exercise 5.23 that the bounding term ¢ can be taken to be a
term in £3.
It suffices to prove the following simple form of the above theorem.

Lemma 5.26. Suppose that T is a polynomial-bounded theory, and tp(z,f,)?)
s a bounded formula with all free variables indicated such that

T FVEVX3zp(2, &, X)

Then . B .
T EVAVX3z < 8@, X)p(z, 7, X)

for some term t(&, X) with all variables indicated.
Proof of Parikh’s Theorem from Lemma 5.26. Define (omitting Z and X)
¥(2) =37 < 237 < 29(7,Y)
From the assumption (5.11) we conclude that 7 F 3zt (z), since we can take
z=y1+ . +yp + Vi + .+ (Y

Since @ is a bounded formula, 1 is also a bounded formula. By the lemma, we
conclude that 7 proves 3z < t1)(z), where the variables in ¢ satisfy Parikh’s
Theorem. Thus (5.12) follows. O

Proof of Lemma 5.26. The proof is the same as the proof of Parikh’s Theorem
in the single-sorted logic (page 40), with minor modifications. Refer to Sec-
tion 4.4 for the system LK?. Here we consider an anchored LK>-T proof m of
3z¢(z,d, a&), where T is the set of all term substitution instances of axioms of
7 (note that now we have both the substitution of number terms for number
variables and string terms for string variables). We assume that 7 is in free
variable normal form (see Section 4.4.1).

We convert 7 to a proof 7’ by converting each sequent S in 7 into a sequent
S’ and providing an associated derivation D(S), where &’ and D(S) are defined
by induction on the depth of S in 7 so that the following is satisfied:

Induction Hypothesis: If S has no occurrence of Jye, then S’ = S. If S has
one or more occurrences of Jyp, then & is a sequent which is the same as S
except all occurrences of Jyp are replaced by a single occurrence of Jy < ty,
where ¢ is an £4-number term that depends on S and the placement of S in 7.
Further every variable in ¢ occurs free in the original sequent S.

As discussed in Section 4.4.1, if the underlying vocabulary has no string
constant symbol (for example £%), then we allow the string constant @ to
occur in 7, in order to assume that it is in free variable normal form. Thus
the bounding term ¢ in the endsequent — Jy < tp may contain &. Since ¢ is
an L2 (@)-term, each occurrence of & is in the context |&|, and hence can be
replaced by 0 using the axiom E: |&] = 0.

The Cases I-V are supplemented to consider the four string quantifier rules,
which are treated in the same way as their LK counterparts. O

96 CHAPTER 5. THE THEORY V° AND AC’

5.4 Definability in VY

Recall the notion of ®-definable single-sorted function (Definition 3.27). For
a two-sorted theory 7, this notion is defined in the same way for functions of
each sort, and in particular 7 must be able to prove existence and uniqueness
of function values.

Definition 5.27 (Two-Sorted Definability). Let T be a theory with vocab-
ulary £ 2 L%, and let ® be a set of L-formulas. A number function f not in L

is ®-definable in T if there is a formula o(Z, yX') i ® such that
T FVVX (T, y, X) (5.13)

and

y = f(7X) < oy, X) (5.14)

A string function F not in L is P-definable in T if there is a formula o(Z, X', Y)
i ® such that . .
TEVEVXIAY (2, X,Y) (5.15)

and y .
Y=F(#&X) « p&X,Y) (5.16)

Then (5.14) is a defining axiom for f and (5.16) is a defining axiom for F.
We say that f or F is definable in 7 if it is ®-definable in T for some ®.

The Extension by Definition Theorem (3.30) continues to hold. In particular,
adding a definable function symbol together with its defining axiom to a two-
sorted theory 7 results in a conservative extension of 7.

If @ is the set of all £%-formulas, then every arithmetical function (that is,
every function whose graph is represented by an £2-formula) is ®-definable in
V0. To see this, suppose that F(Z, X) has defining axiom (5.16). Then the

graph of F is also defined by the following formula ¢’ (&, X, Y):
(NZp(#, X, Z) N (7, X,Y))V (-3 Zp(7, X, Z) NY = @)

Then (5.15) with ¢’ for ¢ is trivially provable in VO.

We want to choose a standard class ® of formulas such that the class of
®-definable functions in a theory 7 depends nicely on the proving power of 7,
so that various complexity classes can be characterized by fixing ® and varying
7. In single-sorted logic, our choice for ® was X, and we defined the provably
total functions of 7 to be the X1-definable functions in 7. Here our choice for ®
is ©1 (recall (Definition 4.14) that a 1 formula is a formula of the form 3X ¢,
where ¢ is a £ formula). The notion of a provably total function in two-sorted
logic is defined as follows.

Definition 5.28 (Provably Total Function). A function (which can be either
a number function or a string function) is said to be provably total in a theory
T iff it is Xi-definable in T .

5.4. DEFINABILITY IN V° 97

If 7 consists of all formulas of £% which are true in the standard model
N,, then the functions provably total in 7 are precisely all total functions com-
putable on a Turing machine. The idea here is that the existential string quan-
tifiers in a X} formula can be used to code the computation of a Turing machine
computing the function. If 7 is a polynomially bounded theory, then both the
function values and the computation must be polynomially bounded. In fact,
the following result in a corollary of Parikh’s Theorem.

Corollary 5.29. Let T be a polynomial-bounded theory. Then all provably total

functions in T are polynomially bounded. A function is provably total in T iff
it is 2P -definable in T .

We will show that the provably total functions in V° are precisely the func-
tions in FAC", and in the next chapter we will show that the provably total
functions in V! are precisely the polynomial time functions. Later we will give
similar characterizations of other complexity classes.

Exercise 5.30. Show that for any theory T whose vocabulary includes L%, the
provably total functions of T are closed under composition.

In two-sorted logic, for string functions we have the notion of a bit-definable
function in addition to that of a definable function.

Definition 5.31 (Bit-Definable Function). Let ® be a set of L formulas
where £ 2 L% . We say that a string function symbol F (T, }7) not in L is P-bit-
definable from L if there is a formula ¢(i,Z, }7) in ® and an L3 -number term
t(Z, 17) such that the bit graph of F satisfies

F(Z,Y)(i) — i < t(ZY) Ap(i,7,Y). (5.17)

We say that the formula on the RHS of (5.17) is a bit-defining axiom, or bit
definition, of F'.

The choice of ¢ and t in the above definition is not uniquely determined by
F. However we will assume that a specific formula ¢ and a specific number
term ¢ has been chosen, so we will speak of the bit-defining aziom, or the bit
definition, of F'. Note also that such a F' is polynomially bounded in 7, and ¢
is a bounding term for F.

The following proposition follows easily from the above definition and Corol-
lary 5.17.

Proposition 5.32. A string function is X5 -bit-definable iff it is in FAC'.

Exercise 5.33. Let T be a theory which extends VO and proves the bit-defining
aziom (5.17) for a string function F, where o is a £F formula. Show that there
is a £ formula n(z,%,Y) such that T proves

2 =|F(Z,Y)| < n(z2,Y)

98 CHAPTER 5. THE THEORY V° AND AC’

It is important to distinguish between a “definable function” and a “bit-
definable function”. In particular, if a theory 75 is obtained from a theory 77 by
adding a ®-bit-definable function F together with its bit-defining axiom (5.17),
then in general we cannot conclude that 73 is a conservative extension of 77.
For example, it is easy to show that the string multiplication function X x Y
has a P bit definition. However, as we noted earlier, this function is not 35-
definable in V°. The theory that results from adding this function together
with its 3P-bit-definition to V° is not a conservative extension of V°.

To get definability, and hence conservativity, it suffices to assume that 7;
proves a comprehension axiom scheme. The following definition is useful here
and in Chapter 6.

Definition 5.34 (Zf-Closure). Let ® be a set of formulas over a language £
which extends L%. Then 2B(®) is the closure of ® under the operations =, A,V
and bounded number quantification. That is, if and v are formulas in B (P)
and t is an L2 -term not containing x, then the following formulas are also in

=F(@): o, (P AY), (pV 1), Vo < tp, and 3u < tep.

Lemma 5.35 (Extension by Bit-Definition Lemma). Let 7 be a theory
over L that contains VO, and ® be a set of L-formulas such that ® O XF.
Suppose that T proves the ®-COMP azxiom scheme. Then any polynomially
bounded number function whose graph is ®-representable, or a polynomially

bounded string function whose bit graph is ®-representable, is XF (®)-definable
inT.

Proof. Consider the case of a string function. Suppose that F is a polynomially
bounded string function with bit graph in @, so there are an £%-number term
t and a formula ¢ € ® such that

F(Z,Y)(i) < i < t(Z,Y) A (i, Z,Y)
As in (5.8), the graph G of F' can be defined as follows:
Gp(Z,Y,Z) = |Z| <t A Vi<t(Z(i) < o(i,ZY)) (5.18)
Now since 7 proves the -COMP, we have
T HVEVY3Z Gp(Z,Y, Z) (5.19)
Also 7 proves that such Z is unique, by the extensionality axiom SE in 2-BASIC.
Since the formula Gr(,Y, Z) is in ZF (@), it follows that F is F(®)-definable
- Eext consider the case of a number function. Let f be a polynomially
bounded number function whose graph is in @, so there are an £%-number

term ¢ and a formula ¢ € ® such that

y=f(#X) oy <t@X) Ay, 7, X)

5.4. DEFINABILITY IN V° 99

By Corollary 5.8, 7 proves the ®-MIN axiom scheme. Therefore f is definable
in 7 by using the following $F (®) formula for its graph:

Gy, @, X) = Yz < y=p(2,4,X) A y<t>Deply,7X) (5.20)

(i.e., y is the least number < ¢ such that ¢(y) holds, or ¢ if no such y exists). O

In this lemma, if we take 7 = V° and ® = ¥, then (since TF(2F) = =)
we can apply Corollary 5.17 and Proposition 5.32 to obtain the following:

Corollary 5.36. Every function in FACY is > B definable in V°.
This result can be generalized, using the following definition.

Definition 5.37. ! A string function is XF-definable from a collection L of two-
sorted functions and relations if it is p-bounded and its bit graph is represented
by a BE(L) formula. Similarly, a number function is E-definable from L if it
is p-bounded and its graph is represented by a XF (L) formula.

This “semantic” notion of £F-definability should not be confused with 3¥-
definability in a theory (Definition 5.27), which involves provabililty. The next
result connects the two notions.

Corollary 5.38. Let T be a theory over L that contains VO, and suppose that
T proves the XB(L)-COMP aziom scheme. Then a function which is 35 -
definable from L is BE(L)-definable in T.

Later we will prove the Witnessing Theorem for V°, which says that any 3}-
definable function of V© is in FAC". This will complete our characterization of
FAC® by V°. (Compare this with Proposition 5.32, which characterizes FAC®
in terms of bit-definability, independent of any theory.)

Corollary 5.39. Suppose that the theory T proves X5 (L)-COMP, where L
is the vocabulary of T. Then the theory resulting from T by adding the E(L)-
defining azioms or the XL (L)-bit-defining azioms for a collection of number
functions and string functions is a conservative extension of 7.

The following result shows in particular that if we extend V° by a sequence
of £ defining axioms and bit-defining axioms, the resulting theory is not only
conservative over VO, it also proves the X5 (£)-COMP and ZF(L£)-IND ax-
ioms, where L is the resulting vocabulary.

Lemma 5.40 (XF-Transformation Lemma). Let T be a polynomial-bounded
theory which extends V°, and assume that the vocabulary L of T has the same
predicate symbols as L%. Suppose that for every number function f in L, T
proves a £F (L2) defining aziom for f, and for every string function F in L,
T proves a IF (L%) bit-defining aziom for F. Then for every E(L) formula
ot there is a BT (L%) formula ¢ such that

T oo

1This notion is important for our definition of ACP reduction, Definition 9.1.

100 CHAPTER 5. THE THEORY V° AND AC’

Proof. We may assume by the axiom SE that ¢ does not contain =,. We
proceed by induction on the maximum nesting depth of any function symbol
in ¢T, where in defining nesting depth we only count functions which are in £
but not in £%. The base case is nesting depth 0, so ¢* is already a ZF(L£%)
formula, and there is nothing to prove.

For the induction step, assume that o™ has at least one occurrence of a
function not in £2. It suffices to consider the case in which ¢ is an atomic
formula. Since by assumption the only predicate symbols in £ are those in £%,
the only predicate symbols we need consider are €, =, <. First consider the case
€, 50 o has the form F(£,T)(s). Then by assumption 7 proves a bit definition
of the form

F# X)(i) < i<r(@X)Ai, 7 X)
where r is an £ term and ¢ is a £ (£%) formula. Then 7 proves
ot o s <r(f.T) A (s, 0. T)

The RHS has nesting depth at most that of ot and ¢, T have smaller nesting
depth, and hence we have reduced the induction step to the case that ™ has
the form p(85) where p(Z) is an atomic formula over £% and each term s; has

one of the forms f(i,T), for f not in £2, or |F(£,T)|. In either case, using

the defining axiom for f or Exercise 5.33, for each term s; there is a 3 (£2%)

formula 7;(z, #, X) and a bounding term r;(Z, X) of L2 such that 7 proves
z=si o (z<n(BT) Ami(z,1,T))

Hence (since ¢ is p(5)), 7 proves

o =32 <FHT), p(2) A N\ iz £ T)

Thus we have reduced the nesting depth of ¢, and we can apply the induction
hypothesis. O

The following result is immediate from the preceding lemma, Definitions 5.37
and 5.16, and the ¥F Representation Theorem 4.17.

Corollary 5.41 (FAC® Closed under Xf-Definability). Every function
S8 _definable from a collection of FAC" functions is in FACY.

Below we give ZF-bit-definitions of the string functions @ (zero, or empty
string), S(X) (successor), X +Y and several other useful AC functions: Row,
seq, left and right. Each of these functions is X5-definable in V?, and the above
lemmas and corollaries apply.

Example 5.42 (@, S,+). The string constant & has bit defining axiom

F(z) = 2<0

5.4. DEFINABILITY IN V° 101

Binary successor S(X) has bit-defining axiom
S(X)@) i < IXIAIXG)ATj < i=X(G) V (~X(0) AV) < iX()]
Recall from (5.7) that binary addition X+Y has the following bit-defining axiom:
(X+Y)i) —i<|X|+ Y| A [XG) DY (@)D Carry(i, X,Y)]
where @ is exclusive OR, and
Carry(i, X,Y)=Jk < i, (X(k)ANY(k))AVj <ilk <7D (X)) VY(y)))

Exercise 5.43. Let V°(@, 5, +) be VO extended by @, S, + and their bit-defining
axioms. Show that the following are theorems of V°(2, S, +):

a) X+o=X
b) X +S(Y)=S(X +Y)
c) X+Y =Y + X (Commutativity).

d) (X+Y)+7Z =X+ (Y +Z) (Associativity).
For Associativity, first show in V°(+) that

Carry(i,Y, Z)® Carry(i, X, Y +Z) < Carry(i, X, Y)® Carry(i, X +Y, Z).
Derive a stronger statement than this, and prove it by induction on 1.

Example 5.44 (The Pairing Function). We define the pairing function
(x,y) as the following term of IAq:

(T,y) =det (z+y)(z+y+1)+2y (5.21)

Exercise 5.45. Show using results in Section 3.1 that 1A proves (x,y) is a
one-one function. That is

IA - <$1,y1> = <$2,y2> Dx1=T2AY1 =Y2 (522)
(First show that the LHS implies x1 + y1 = x2 + y2.)

In general we can “pair” more than 2 numbers, e.g., define

<x17-'-7xk+1> = <<$17' ..,$k>,xk+1>

We will refer to the term (z1,...,zr11) as a tupling function.
For any constant k£ € N, k > 2, we can use the tupling function to code a
k-dimensional bit array by a single string Z by defining

Notation
Z(xl,...,xk) =def Z(<I1,...,xk>) (523)

102 CHAPTER 5. THE THEORY V° AND AC’

Example 5.46 (The Projection Functions). Consider the (partial) projec-
tion functions:

y=left(z) = Iz <a(r=(y,2) 2z=right(r) = Iy <z(x=(y,2)
To make these functions total, we define
left(x) = right(z) =0 if —Pair(z)
where
Pair(z) =3y < 23z <z (x = (y,2))

For constants n and k < n, if x codes an n-tuple, then the k-th component (x)}
of x can be extracted using left and right, e.g.,

()3 = right (left(z))

Exercise 5.47. Let 1A (left,right) be the conservative extension of IA(result-
ing by adding the Ag defining axioms for left and right. Show that 1A (left,right)
proves the following properties of Pair and the projection functions:
a) YyvzPair({y, z))
b) Vz(Pair(z) D x = (left(x), right(z)))
c) x = (x1,22) D (1 = left(x) A x2 = right(z))

Now we can generalize the XF-comprehension axiom scheme to multiple
dimensions.

Definition 5.48 (Multiple Comprehension Axiom). If ® is a set of formu-
las, then the multiple comprehension axiom scheme for ®, denoted by -MULTICOMP,
is the set of all formulas

X < (Y1, ye)Vz1 <Y1 ... Ve < y(X (21,0, 28) < (21, .., 28)) (5.24)

where k > 2 and ¢(2) is any formula in ® which may contain other free vari-
ables, but not X.

Lemma 5.49 (Multiple Comprehension). Suppose that T 2 V© is a theory
with vocabulary L which proves the XF(L)-COMP azioms. Then T proves the
B (L£)-MULTICOMP azioms.

Proof. For the case L = £ we could work in the conservative extension 7 (left,right)
and apply Lemma 5.40 to prove this. However for general £ we use another
method.

For simplicity we prove the case k = 2. Define ¢ (z) by

Y(z) =32 < 2320 < 2, 2 = (21, 22) A (21, 22)
Now by ZF-COMP,
T H3X < (y1,y2)Vz < (y1,12), X(2) < ¥(2)
By Exercise 5.45, 7 proves that such X satisfies (5.24). O

5.4. DEFINABILITY IN V° 103

Now we introduce the string function Row(z, Z) (or ZI*l) in FAC? to rep-
resent row = of the binary array Z.

Definition 5.50 (Row and V°(Row)). The function Row(z,Z) (also denoted
Z1#1) has the bit-defining axziom

Row(z, Z)(i) < i < |Z| A Z(, i) (5.25)

VO(Row) is the extension of VO obtained from VO by adding to it the string
function Row and its X5 -bit-definition (5.25).

Note that by Corollary 5.39, V?(Row) is a conservative extension of V0.
The next result follows immediately from Lemma 5.40.

Lemma 5.51 (Row Elimination Lemma). For every XF(Row) formula ¢,
there is BF formula ¢’ such that V°(Row) - ¢ « ¢'. Hence V°(Row) proves
the F (Row)-COMP aziom scheme.

We can use Row to represent a tuple X7, ..., X of strings by a single string
Z, where X; = Zll. The following result follows immediately from the Multiple
Comprehension Lemma.

Lemma 5.52. V°(Row) proves
VX1..VX3Z < #(X) = ZH A LA X = ZIH) (5.26)
where t = (k, | X1| + ... + | Xg])- O

Definition 5.53. A single-XP (L) formula is one of the form 3X < to, where
v is BE(C).

Exercise 5.54. Let T be a polynomial-bounded theory with vocabulary L such
that T extends V°(Row). Prove that for every P (L) formula ¢ there is a
single-X8 (L) formula ¢’ such that T ¢ < ¢'.

Now use Lemma 5.51 to show that the same is true when T is VO and L is
2.

Just as we use a “two-dimensional” string Z(z,y) to code a sequence Z [0,
ZW .. of strings, we use a similar idea to allow Z to code a sequence o, y1, . . -
of numbers. Now v, is the smallest element of Z1, or |Z| if Zl1 is empty. We
define an AC? function seq(i, Z) (also denoted (Z)?) to extract y;.

Definition 5.55 (Coding a Bounded Sequence of Numbers). The number
function seq(z, Z) (also denoted (Z)*) has the defining aziom:

y = seq(e, 2) = (y < |Z| A Z(x,y) AV < y=Z(z,2)V
(V2 <|Z|-~Z(z,2) Ny = |Z])
It is easy to check that VO proves the existence and uniqueness of y satisfying
the RHS of the above formula, and hence seq is XF-definable in VY. As in the
case of Row, it follows from Lemma 5.40 that any & (seq) formula is provably

equivalent in VO(seq) to a XF(L£%) formula. (See also the AC? Elimination
Lemma 5.73 for a more general result.)

104 CHAPTER 5. THE THEORY V° AND AC’

5.4.1 Al-Definable Predicates

Recall the notion of a ®-definable (or ®-representable) predicate symbol, where
® is a class of formulas (Definition 3.27). Recall also that we obtain a conserva-
tive extension of a theory 7 by adding to it a definable predicate symbol P and
its defining axiom. Below we define the notions of a “A}(£)-definable predicate
symbol” and a “A¥(L)-definable predicate symbol”. Note that here Al(L) and
AP (L) depend on the theory 7, in contrast to Definition 3.27.

Definition 5.56 (A}(£) and AP(L) Definable Predicate). Let T be a
theory over the vocabulary £ and P a predicate symbol not in L. We say that P
is A}(L)-definable (or simply Al-definable) in T if there are $1(L) formulas
o(Z,Y) and (Z,Y) such that

R(Z,Y) — oY), and Tk o@Y) e)(ZY). (5.27)

We say that P is AP (L)-definable (or simply AP -definable) in T if the formulas
¢ and 1 above are P formulas.

The following exercise can be proved using Parikh’s Theorem.

Exercise 5.57. Show that if T is a polynomial-bounded theory, then a predicate
is Al-definable in T iff it is AP -definable in T.

Definition 5.58 (Characteristic Function). The characteristic function of
a relation R(Z,X), denoted by fr(%,X), is defined as follows:

2 [1 ifR@ZX)
Ir(E, X) _{ 0 otherwise

We will show that FAC? coincides with the class of provably total functions
in VO. Tt follows that AC relations are precisely the A} definable relations in
VO. More generally we have the following theorem.

Theorem 5.59. If the language of a theory T includes L%, and a complexity
class C has the property that for all relations R, R € C iff fr € FC, and
the class of 1-definable functions in T coincides with FC, then the class of
Al-definable relations in T coincides with C.

Proof._'Assume the hypotheses of the theorem, and suppose that the relation
R(7,X) is Al-definable in 7. Then there are £ formulas ¢ and ¢ such that

R(Z X) — 3Y ¢z, X,Y)

and
T+ @AY o7 X,Y) — -3Y ¢(&,X,Y)) (5.28)

—

Thus the characteristic function fr(%, X) of R satisfies

y = fr(@ X) < 0(y, &, X) (5.29)

5.5. THE WITNESSING THEOREM FOR V?° 105

where
0y, 7, X) =3V (y = 1A (7, X,Y)) V(y = 0 A (7, X,Y)))

Then 7 proves 3lyd(y, Z, X), where the existence of y and Y follows from the
«— direction of (5.28) and the uniqueness of y follows from the — direction of
(5.28). Thus fr is Xi-definable in 7, so fg is in FC, and therefore R is in C.

Conversely, suppose that R(Z,)?) is in C, so fg is in FC. Then fg is $1-
definable in 7', so there is a X! formula 6(y, &, X) such that (5.29) holds and

T+ 3oy, 7, X)
Then R(#,X) < 3y(y #0A0(y, & X)) and
TF 3yly #0A0(y, 7 X)) — —6(0,2 X)

Since Jy(y # 0 A 0(y, 7, X)) is equivalent to a X! formula, it follows that R is
Al-definable in 7. O

5.5 The Witnessing Theorem for V'

Notation For a theory 7 and a list £ of functions that are definable/bit-
definable in 7, we denote by 7 (L) the theory 7 extended by the defining/bit-
defining axioms for the symbols in L.

Recall that number functions in FAC? are XF-definable in V°, and string
functions in FAC" are XJ-bit-definable in V© (see Proposition 5.32 and Corol-
lary 5.36). It follows from Corollary 5.39 that VY(L£) is a conservative extension
of VO, for any collection £ of FAC" functions.

Our goal now is to prove the following theorem.

Theorem 5.60 (Witnessing Theorem for V°). Suppose that o(Z, g,)?, 37)
is a £F formula such that

VO VRYXIAY o7, 7, X,Y)
Then there are FAC? functions f1,..., fx, F1,..., Fy, so that

VO(fr, .o fo Py Fo) EYIVX (7, f(7, X), X, F(Z,X))

The functions f; and Fj are called the witnessing functions, for y; and Yj,
respectively.

We will prove the Witnessing Theorem for V in the next section. First, we
list some of its corollaries.

The next corollary follows from the above theorem and Corollary 5.36.

106 CHAPTER 5. THE THEORY V° AND AC’

Corollary 5.61 (X}-Definability Theorem for V°). A function is in FAC®
iff it is X1-definable in VO iff it is XP-definable in VO iff it is LF-definable in
VO,

Corollary 5.62. A relation is in AC° iff it is Al definable in VO iff it is AP
definable in V°.

It follows from the XJ-Representation Theorem 4.17 that a relation is in
ACY iff its characteristic function is in AC®. Therefore Corollary 5.62 follows
from the 31-Definability Theorem for VO and Theorem 5.59. Alternatively, it
can be proved using the Witnessing Theorem for V as follows.

Proof. Since each AC" relation R is represented by a 25 formula 6, it is obvious
that they are AP (and hence Al) definable in V%: In (5.27) simply let ¢ be 6,
and 1 be —.
On the other hand, suppose that R is a Al-definable relation of V°. In
other words, there are XF formulas cp(f,)?, }7) and 111(35’,)?, }7) so that
R(# X) & IV p(Z

,X,Y)
and VO3V (7 X,Y)

-3V (z, X,Y) (5.30)

In particular,

VO E Y (p(7, X,Y) V(7 X,Y))
By the Witnessing Theorem for VO, there are AC® functions F\, ..., F} so that
VO(Fy, ..., Fy) FVYYX (p(@ X, F(7, X)) V (7, X, F(7,X))) (5.31)
We claim that VO(Fy, ..., Fy) proves
VEVX (Y (&, X,Y) — (7 X, F(#, X)))

The « direction is trivial. The other direction follows from (5.30) and (5.31).
Consequently o(Z, X, F(#, X)) also represents R(Z, X). Here R is obtained

from the relation represented by (&, X, 17) by substituting the AC® functions

F for Y. By Theorem 5.20 a, R is also an AC" relation. O

5.5.1 Independence follows from the Witnessing Theorem
for VY

We can use the Witnessing Theorem to show the unprovability in V? of 37 ¢(Z)
by showing that no AC? function can witness the quantifier 3Z. Recall that
the relation PARITY (X) is defined by

PARITY (X) < the set X has an odd number of elements

Then a well known result in complexity theory states:

5.5. THE WITNESSING THEOREM FOR V?° 107

Proposition 5.63. PARITY ¢ ACP.

First, it follows that the characteristic function parity(X) of PARITY (X) is
not in FAC. Therefore parity is not S1-definable in V°. In the next chapter
we will show that parity is $1-definable in the theory V!. This will show that
VO is a proper sub-theory of V.

Now consider the 3F formula Oparity (X, Y):

SY(0) AV < [X|(Y(i+1) = (X(i) @ Y(3))) (5.32)

where @ is exclusive OR. Thus @parity (X, Y) asserts that for 0 < ¢ < |X]|, bit
Y (i+ 1) is 1 iff the number of 1’s among bits X (0), ..., X (i) is odd. Define

p(X)=3Y < (| X[+1) ‘pparity(Xv Y)

Then VX ¢(X) is true in the standard model N,, but by the above proposition,
no function F(X) satisfying VX ¢parisy (X, F(X)) can be in FACY. Hence by
the Witnessing Theorem for V©,

VO VXY < (1X|+ 1) @parity (X, Y)

Note that this independence result does not follow from Parikh’s Theorem.

5.5.2 Proof of the Witnessing Theorem for V°

Recall the analogous statement in single-sorted logic for IA (i.e., that a 3
theorem of IA(can be “witnessed” by a single-sorted LTH function) which
is proved in Theorem 3.62. There we use the Bounded Definability Theo-
rem 3.33 (which follows from Parikh’s Theorem) to show that the graph of
any Xi-definable function of IA(is actually definable by a A(formula, and
hence an LTH relation.

Unfortunately, a similar method does not work here. We can also use
Parikh’s Theorem to show that the graph of a Xi-definable function of V°
is representable by a ¥ formula. However this does not suffice, since there are
string functions whose graphs are in AC° (i.e., representable by $F formulas),
but which do not belong to FAC". An example is the counting function whose
graph is given by the XF formula dypu (2, X,Y) (9.2).

Our first proof is by the Anchored LK? Completeness Theorem 4.29. This
proof is important because the same method can be used to prove the witnessing
theorem for V! (Theorem 6.28). Our second proof method (see Section 5.6.1)
is based on the Herbrand Theorem and does not work for V1.

We will prove the following simple form of the theorem, since it implies the
general form.

Lemma 5.64. Suppose that ga(f,)z,Y) is a £ formula such that
VO - VavX3Zo(E, X, Z)
Then there is an FAC® function F so that
VO(F) - vavXe(Z, X, F(Z, X))

108 CHAPTER 5. THE THEORY V° AND AC’

Proof of Theorem 5.60 from Lemma 5.64. The idea is to use the function Row

—

to encode the tuple (¢,Y) by a single string variable Z, as in Lemma 5.52.
Then by the above lemma, Z is witnessed by an AC° function F. The witness-
ing functions for y1,...,yx, Y1,-.., Yy will then be extracted from F' using the
function Row. Details are as follows.

Assume the hypothesis of the Witnessing Theorem for V?, i.e.,

VO - VaVX3AY (&, 7, X,Y)
for a BF formula ¢(Z, 7, X,Y). Then since V°(Row) extends V°, we have also
VO(Row) - VIVXIAY (&7, X,Y)
Note that

VO(Row) Yy .. VyW¥1. VY, 32(N\ 120 =yin Nz =)

1<i<k 1<j<m
(See also Lemma 5.52.) Thus
VO(Row) F ViVX3Z o(z,|ZzM), ..., |ZzW|, X, Zzk+1 | zktmly
ie.,
VO(Row) - ViVX3Zy(E, X, Z)
where

W@, X, Z) = (@ |2M),...,|ZzW|, X,z Lz

is a (L% U {Row}) formula.
Now by Lemma 5.51, there is a 38 (£2) formula ¢/ (Z, X, Z) so that

VO(Row) + VIVXVZ((Z, X, Z) — ' (7, X, Z))
As a result, since VO(Row) is conservative over VY| we also have
VO - VavX3zZy' (7, X, 2)
Applying Lemma 5.64, there is an AC" function F' so that
VO(F) - vivXy' (2, X, F(Z, X))

Therefore
VO(Row, F) - vavXy(z, X, F(Z, X))

i.e.,
VO (Row, F) - Y&vX (@, |FM), ... |[FF| X, FlkH pltmly

where we write F for F(Z, X).

5.5. THE WITNESSING THEOREM FOR V?° 109

Let fi(Z,X) = |(F(Z, X))l| for 1 <i < k and F;(Z, X) = (F(&, X))+ for
1< j <m and denote {f1,..., fi, F1,..., Fm} by L, we have

V'({Row, F} U L) + ViVX o(Z, f, X, F)

By Corollary 5.39, V({ Row, F} U £) is a conservative extension of V°(£).
Consequently, 4 L.
V(L) FVRYX (@, f, X, F)

The rest of this section is devoted to the proof of Lemma 5.64.

Proof of Lemma 5.64. The proof method is similar to that of Lemma 5.26 (for
Parikh’s Theorem). Suppose that 3Z¢ (@, &, Z) is a theorem of VY. By the
Anchored LK? Completeness Theorem, there is an anchored LK2-T proof m of

— 3Zp(a,a, z)

where T is the set of all term substitution instances of the axioms for VV. We
assume that 7 is in free variable normal form (see Section 4.4.1).

Note that all instances of the ¥F-COMP axioms (5.1) are X1 formulas
(they are in fact =P formulas). Since the endsequent of 7 is also a X1 formula,
by the Subformula Property (Theorem 4.30), all formulas in 7 are X} formulas,
and in fact they contain at most one string quantifier 3X in front. In particular,
every sequent in 7 has the form

AX101(X1), .o AX O (X), T — A, TV (Y1), ..., TVtpn (V) (5.33)

for m,n > 0, where 6; and ; and all formulas in I" and A are I

We will prove by induction on the depth in 7 of a sequent S of the form
(5.33) that there are XF-bit-definable string functions Fi, ..., F,, (i.e., the wit-
nessing functions) such that there is a collection of 3F-bit-definable functions
£ including Fi, ..., F,, and an LK?-V°(£) proof of

S =det 01(B1),---0m(Bm), T — A1 (F1), ..., Yn(Fy) (5.34)

-,

where F; stands for F;(d, @, 3), and @, d is a list of exactly those variables with
free occurrences in S. (This list may be different for different sequents.) Here
081, ..., Bm are distinct new free variables corresponding to the bound variables
X4, ..., X, although the latter variables may not be distinct.

It follows that for the endsequent — IZp(d, d, Z) of =, there is a finite
collection £ of FAC? functions, and an F € £ so that

VO (L)o@ a, F(d,a))

Note that by Corollary 5.39, VO(L£) is a conservative extension of VO(F). Con-
sequently we have
VO(F) - p(d, d, F(d, d))

110 CHAPTER 5. THE THEORY V° AND AC’

and we are done.

Our inductive proof has several cases, depending on whether S is a V°
axiom, or which rule is used to generate S. In each case we will introduce
suitable witnessing functions when required, and it is an easy exercise to check
that in each of the functions introduced has a £F(L%)-bit-definition.

To show that the arguments @, & of previously-introduced witnessing func-
tions continue to include only those variables with free occurrences in the sequent
S, we use the fact that the proof 7 is in free variable normal form, and hence no
free variable is eliminated by any rule in the proof except V-right and 3-left.
(We made a similar argument concerning the free variables in the bounding
terms ¢ in the proof of Lemma 5.26).

In general we will show that & has an LK?-V?° (£) proof not by constructing
the proof, but rather by arguing that the formula giving the semantics of S’
(Definition 2.17) is provable in V? from the bit-defining axioms of the functions
L, and invoking the LK? Completeness Theorem. However in each case the
LK V(L) proof is not hard to find.

Specifically, if we write (5.34) in the form

S/ = Al, ,Ak — Bl, ...,Bg
then we assert

VO(L) F VEVXVYY (A1 A ... AAg) D (B V...V By)] (5.35)

Case L: S is an axiom of V. If the axiom only involves & formulas, then no
witnessing functions are needed. Otherwise S comes from a £F-COMP axiom,
i.e.,

S =det — IX < WYz < b(X(2) < (2,b,d,&))

Then a function witnessing X has bit-defining axiom

F(b,d@,d)(z) < 2 < bA(z,b,d,d)

Case II: S is obtained by an application of the rule string 3-right. Then S is
the bottom of the inference

Sl A — Hu Q/J(T)
S A — IL3Xe(X)

where the string term 7' is either a variable v or the constant @ introduced when
putting 7 in free variable normal form. In the former case, v must have a free
occurrence in S, and we may witness the new quantifier 3X by the function F
with bit-defining axiom

-,

F(d@,,d, f)(2) < z < |y Av(2)

In the latter case T is &, and we define

5.5. THE WITNESSING THEOREM FOR V?° 111

Case III: S is obtained by an application of the rule string 3-left. Then S is
the bottom of the inference

Sl . 9('7),A—7H
S 3X0(X),A——1I

Note that v cannot occur in S, by the restriction for this rule, but S’ has a
new variable 3’ available corresponding to 3X (see (5.34)). No new witnessing

5

function is required. Each witnessing function F}(@,y, &, §) for the top sequent
is replaced by the witnessing function

F;(avo?vﬁ/vg) = Fj(dvﬂlv&v)
for S'.

Case IV: S is obtained by an application of the rule number F-right or
number V-left. No new witnessing functions are required.

Case V: S follows from an application of rule number 3-left or number V-
right. We consider number 3-left, since number V-right is similar. Then S
is the bottom sequent in the inference

S b<tAODb),A — I
s Jr < tb(z),A — 11

No new witnessing function is needed, but the free variable b is eliminated as
an argument to the existing witnessing functions, and it must be given a value.
We give it a value which satisfies the new existential quantifier, if one exists.
Thus define the FAC® number function

9(d,d) = minb < t 6(b)

-,

For each witnessing function Fj(b,a, @, 8) for the top sequent define the corre-
sponding witnessing function for the bottom sequent by

-, -,

Fj(@,a,p) = Fj(g(@,d),a,d,s)

Case VI: S is obtained by the cut rule. Then S is the bottom of the inference
S 527A—>H7¢ P, A — 11

S A—T1
Assume first that ¢ is BF. For i = 1,2, let F}(@,q),..., Fi(d,&) be the wit-
nessing functions for IT in /. Then we define witnessing functions Fi,..., F,

for these formulas in the conclusion &’ by the bit-defining axioms
Fj(@,d)(z) < (-9 A Fj(@,0)(2)) V (¥ AFF(@,0)(2)))
Now assume that ¢ is not ¥, so 1 has the form

¥ = IX0(X) (5.36)

112 CHAPTER 5. THE THEORY V° AND AC’

where 0(X) is F. Let G(@, &) be the witnessing function for 3X in S; and let
3 be the variable in S5 corresponding to X. Let F(a@,@),..., FX(a@, &) be the
other witnessing functions for II in Sj, and F?(a, a, 3),..., F2(a,d, 3) be the
witnessing functions for II in S5. The corresponding witnessing function Fj in
S’ has defining axiom (replace ... by @, @)

Fi(..)(z) < (m0(G(...)) A Fjl(. D)V O(G(..) A Ff(. LG))(R)

Exercise 5.65. Show correctness of this definition of F in the special case
where the cut formula v has the form (5.36), and 11 has only one X1 formula,
by arguing that V°(L) can prove the semantic translation (5.35) of S' from the
semantic translations of Sy and S}.

Case VII: S is obtained from an instance of the rule A-left or V-right. These
are both handled in the same manner. Consider A-right.
81 82 A — H, A A — H, B
& A =TI, (AAB)

Here, as in (5.33),

A =ger 3X101(X1), .., 3X 000 (X)), T
and II —def A, E|}/11/}1 (}/1)7 L) Elann(Yn)

for m,n > 0, where 6; and v; and all formulas in T and A are £F. Also, A and
B are BF formulas.

Let F}(d,d) and F}(d,d) witness Y; in 8] and Sj, respectively. Then we
define the witness Fj(d,d) for Y; in &' to be F}(d,d) or F7?(a,d), depending
on whether F} (@, @) works as a witness. In particular (replace ... by @,a):

Fi(..)(z) o (W(Fi() AF (L)) V (5 (F5 (-)) AFF (.)(2))

Case VIII: S is obtained by any of the other rules. Weakening is easy. There
is nothing to do for exchange and — introduction. The contraction rules can be
derived from cut and exchanges. O

Exercise 5.66. Show that in the Cases V, VI, and VII above, the new func-
tions introduced have X (L?)-bit-definitions.

5.6 VO: Universal Conservative Extension of V'

Recall that a universal formula is a formula in prenex form in which all quanti-
fiers are universal, and a universal theory is a theory which can be axiomatized
by universal formulas. Recall also the universal single-sorted theory IAq intro-
duced in Section 3.3.2.

5.6. V': UNIVERSAL CONSERVATIVE EXTENSION OF V° 113

The universal theory V" extends IAy, and is defined in the same way as

IA,. Here we show that A is a conservative extension of V°, and that this
gives us an alternative proof of the Witnessing Theorem for V° by applying the

Herbrand Theorem 4.32 for v’

The idea is to introduce number functions with universal defining axioms,
and string functions with universal bit-defining axioms, which are provably total
in V9. Thus we obtain a conservative extension of V°. Furthermore, the new
functions are defined in such a way that the axioms of V? with existential quan-
tifiers (namely £F-COMP and B12, SE) can be proved from other axioms,

and hence can be deduced from our set of universal axioms for V.
We use the following notation. For any formula ¢(z,Z, X) and £2%-term
t(Z, X), let F, +(Z, X) be the string function with bit definition

Fuou(Z,X)(2) & 2z < t(Z, X) A (2,1, X) (5.37)

Also, let f, +(Z, X) be the number function defined as in (3.19) to be the least
y < t such that o(y, Z, X') holds, or ¢ if no such y exists. Then f, ; has defining
axiom (we write f for f, ., t for (%, X), and ... for &, X):

FC)SEAFC)<tDo(f())] A < f.) D =p(v,..)] (5.38)

Recall that the predecessor function pd has the defining axioms:
B12'. pd(0) =0 B12". 2 #£ 0D pd(z) +1==x (5.39)

(B12’ and B12” are called respectively D1’ and D2 in Section 3.3.2.)

In two-sorted logic, the extensionality axiom SE contains an implicit exis-
tential quantifier 3i < |X|. Therefore we introduce the function fsg with the
defining axiom (5.38), where ¢(z, X,Y) = X(2) ¢ Y (z), and t(X,Y) = |X|.
Intuitively, fsg(X,Y") is the smallest number < |X| that distinguishes X and
Y, and |X| if no such number exists.

fse(X,Y) < |X| A
fse(X,Y) <|X| D (X(fse(X,Y)) 4 Y(fse(X,Y))) A (5.40)
2 < fse(X,Y) D (X(2) « Y(2)).

Let SE’ be the following axiom
(X =Y|A fse(X,Y)=|X]) DX =Y. (5.41)

The language Lgpco is defined below. It contains a function symbol for
every AC function. Note that it extends La, (Definition 3.41).

Definition 5.67. Lyaco is the smallest set that satisfies

1) Lgaco includes L4 U {pd, fsg}.

114 CHAPTER 5. THE THEORY V° AND AC’

2) For each open formula ¢(z, %, X) over Lpaco and term t = (%, X) of £2
there is a string function Fy,; and a number function f, ¢ in Lrpaco.

Definition 5.68. V' is the theory over Lyaco with the following set of axioms:
B1-B11, L1, L2 (Figure 5.1), B12' and B12" (5.39), (5.40), SE’ (5.41), and
(5.37) for each function F,; and (5.38) for each function f,; of Lraco.

Thus A extends IAg. Also, the axioms for V" do not include any compre-
hension axiom. However, we will show that v’ proves the F-COMP axiom

scheme, and hence V" extends VO.

Recall that an open formula is a formula without quantifier. The follow-
ing lemma can be proved by structural induction on ¢ in the same way as
Lemma 3.44.

Lemma 5.69. For every X8 (Lpaco) formula o there is an open Lgaco-formula
ot such that V' o pt.

Lemma 5.70. V' proves the LB (Lyaco)-COMP, X8 (Lpaco)-IND, and
B (Lpaco)-MIN aziom schemes.

Proof. For comprehension, we need to show, for each 5 (Lgaco) formula ¢(z, 7, X),
V' 32 < gz < y(Z2(2) = (2,7, X))

Simply take Z = F, ,(, X) and apply (5.37). For induction and minimization
we use Corollary 5.8. O

Theorem 5.71. The theory V' is a conservative extension of VO,

Proof. To show that V" extends VO we need to verify that v proves B12,

SE and £F-COMP. First, B12 follows from B12”. We prove SE in V' as
follows. Assume that

[X| = [Y]AVz < [X[|(X(2) < Y(2))

Then from (5.40) we have fsg(X,Y) = |X|. Hence by (5.41) we obtain X =Y.
That V' proves F-COMP follows from Lemma 5.70.

<0 . .
Now we show that V' is conservative over V0. Let

pd, fSE7 ce (542)

be an enumeration of Lgaco such that the n-th function is defined or bit-defined
by an open formula using only the first (n — 1) functions. Let £,, denote the
union of £ and the set of the first n functions in the enumeration, and V°(L,,)

5.6. V': UNIVERSAL CONSERVATIVE EXTENSION OF V° 115

denote VO together with the defining axioms or bit-defining axioms for the
functions of £,, (n > 0). Then

V= VL)

n>0
First we prove:
Claim For n > 1, VY(L,,) satisfies the hypothesis of Lemma 5.40.

From Lemma 5.40 and the claim we have V°(L,,) proves the & (L,,)-COMP
axiom scheme. Therefore by Corollary 5.39 V°(L, 1) is conservative over

VO(L,). Then by Compactness Theorem, it follows that V" is also conser-
vative over VY. (See also Corollary 3.31.) It remains to prove the claim.

First note that V°(L,,) extends V° for all n > 1. Also Lgaco has the same
predicates as £4. We will prove by induction on n that each string function in
L, has a £F(L£?)-bit-defining axiom in V(L,,), and each number function in
L, has a ¥ (L£%)-defining axiom in V°(L,,), and thus establishing the claim.

For the base case, n = 1, by B12" and B12” pd has a £ (L£%)-defining
axiom in VO, therefore VO(£;) (which is VO(pd)) satisfies the hypothesis of
Lemma 5.40.

For the induction step we need to show that the (n + 1)-st function f,41
or F,11 in (5.42) has a X (L%)-defining axiom or a X (L%)-bit-defining ax-
iom in V9(£,,11). By definition, the function f,y1/F, 1 already has an open
defining/bit-defining axiom in the vocabulary £,. From the induction hy-
pothesis, V°(L,,) satisfies the hypothesis of Lemma 5.40. Consequently the
defining/bit-defining axiom for f,,+1/F,+1 is provably equivalent in V°(L,,) to
a XF(£?%) formula. Hence V°(L, 1) proves that f,i1/F,+1 has a ¥ (£%)
defining/bit-defining axiom, and this completes the proof of the claim. 0

Inspection of the above proof shows that each number function of Lgaco has
a B8 (L£2)-defining axiom, and each string function of Lgaco has a ZF(LY)-
bit-defining axiom.

Corollary 5.72. The Lpaco functions are precisely the functions of FAC?.

Proof. By the above remark and the ¥F-Representation Theorem 4.17, the
Lpaco functions are in FACY. The other inclusion follows from the P
Representation Theorem 4.17 and Lemma 5.69. (I

The next lemma follows from Lemma 5.40 and the claim in the above proof
of Theorem 5.71. It generalizes the Row Elimination Lemma 5.51.

Lemma 5.73 (FAC® Elimination Lemma). Suppose that £ C Lpaco. Then
for every =8 (L) formula @, there is a F (L) formula ¢’ so that VO(L) F ¢ «

/

@ .

116 CHAPTER 5. THE THEORY V° AND AC’

5.6.1 Alternative Proof of the Witnessing Theorem for V°

Here we show how to apply the Herbrand Theorem to V' to obtain a simple
proof of Theorem 5.60. For notational simplicity, we consider the case of a single
existential string quantifier, and prove Lemma 5.64.

Suppose that ¢(Z, X, Z) is a £ formula such that

VO +VavX3Z o, X, Z)

By Lemma 5.69 there is an open formula ¢’ over Lyaco such that v p Q.
S =0 o
Since V' extends V", we have

V' - vavX3z o (7, X, Z)

Now V* is a universal theory, so by the Herbrand Theorem 4.32, there are terms
Ty (%, X),...,To(Z,X) of V" such that

V' FvavX [(@ X, Tu(@, X)) V... v (7, X, T (7, X))]
Define F(Z, X) by cases as follows:

(7, X) if o7 X, Ti(7, X))

To1(2,X) if ¢ (% X,Tu1(7, X))
T (Z, X) otherwise

It is easy to see that F(Z, X) has a bit definition (5.37), and hence is a function
in ‘C’FAcov and

V' - vavXy (7, X, F(7, X))
Now V' I ¢ < ¢, and also the proof of Theorem 5.71 shows that Vs

conservative over V?(F) (the extension of VO resulting by adding the defining
axioms for F'). Hence

VO(F) FVivXo(Z, X, F(Z, X))

as required. O

The above proof shows that adding true XF axioms to a theory does not
increase the set of provably total functions in the theory. For example, let
TrueXE be the set of all XF formulas which are true in the standard model
N,. Let VO(TrueX¥F) be the result of adding TrueX¥ as axioms to V°, and

let VO(TTUEE(I)B) be the result of adding TrueXf as axioms to V’. Then

VO(TrueEgg) is a conservative extension of VO(TrueXf), and the above proof
goes through to show that the same class FAC? of functions serve to witness
the 31 theorems of VO(TrueX¥). Thus we have shown

Corollary 5.74. The provably total functions in VO(TrueXf) are precisely the
functions in FACP.

5.7. FINITE AXIOMATIZABILITY 117

5.7 Finite Axiomatizability

Theorem 5.75. VO is finitely axiomatizable.

Proof. Tt suffices to show that all ZF-COMP axioms follow from finitely many
theorems of V0. Let 2-BASIC™ (or simply BT) denote the 2-BASIC axioms
(Fig. 5.1) along with the finitely many theorems of IAg (and hence of V?)
given in Examples 3.8 and 3.9 asserting that +, -, < satisfy the properties of a
commutative discretely-ordered semi-ring.

We show more generally that both ZZ-COMP and the multiple comprehen-
sion axioms (5.24) for all ¥ formulas follow from BT and finitely many such
comprehension instances. We use the notation ¢[@, @](Z) to indicate that the
3B formula ¢ can contain the free variables @, Q in addition to ¥ = x1, ..., k.
Then for k > 1, COMP,(a, Q, l;) denotes the comprehension formula

AY < (by, ...,)V < by Vag < be(Y(F) © (7)) (5.43)

We will show that COMP,, for the following 12 formulas ¢ will suffice.

901($1,$2) = X1 =22

(pg(xl,xg,xg) = Ir3 = X1

w3(x1, 2, x3) = 13 =129

Pa[@Q1, Q2)(w1,22) = Jy < 21(Qr(21,9) A Q2(y, 72))

pslal(z,y) = y=a

06lQ1,Q2)(z,y) = 21 <yIze <y(Qu(w,21) A Qa(z,22) Ny = 21 + 22)
o71Q1, Q2l(z,y) = Fz1 < yIze <y(Qu(w,21) A Qa(z,22) Ny = 21 - 22)
@slQ1,Q2,cl(z) = Ty < cya < c(Qi(z, 1) AQ2(z,y2) Ayr <)
Po X, Q, () = Jy<cQz,y) N X(y))

P10[Q)(2) = Q)

©11[Q1, Q2] () = Q1(z) A Q2(x)

©12(Q,] () = Vy <cQ(w,y)

In the following lemmas, we abbreviate COMP.,(...) by C;.

Lemma 5.76. For ecach k> 1 and 1 <i <k let
wik(xla"'axk7y) = Y=
Then BT, Cq,C5,C5,Cy F COMP,,, .

Proof. We proceed by induction on k. For k = 1 we have 11,1 < ¢1(x1,y) and
for k = 2 we have 21 < @a(r1,22,y) and 22 « @3(x1,22,y). For k > 2
recall (21, ...,zk) = (X1, ..., Tk—1), k). Hence

Bt ,C5 - COMP,,,

For 1 <1 < k use C4 with @1 defined by C2 and Q2 defined by COMP,, , .
O

118 CHAPTER 5. THE THEORY V° AND AC’

Lemma 5.77. Let ¥ = xy1,--- ,x, k > 1, be a list of variables and let t(Z) be a
term which in addition to possibly involving variables from X may involve other
variables @, Q. Let ¥:[d, Q(Z,y) = y=t(Z). Then

B*,Cy, ...,C; - COMP,, (@, @, b, d)

Proof. By using algebraic theorems in B* we may suppose that ¢(¥) is a sum
of monomials in 1, ..., z, where the coefficients are terms involving a, C_j The
case t = u, where u does not involve any x; is obtained from C5 with a «— u.
The cases t = x; are obtained from Lemma 5.76. We then build monomials
using C'7 repeatedly, and build the general case by repeated use of Cg. 0

Lemma 5.78. Let t1(Z), t2(Z) be terms with variables among Z, @, Q. Suppose

= t1(7) < ta(&)
Pold,Q, X|(7) = X(t1())

<=
=
)
Dy
=
&
|

Then BT, Ch, ...,Co = COMPy,, fori=1,2.

Proof. COMP, (@, Q. g) follows from COMP, (Q1, Q2,¢,b) with for i =1, 2,

-, -,

Qi defined from COMPy, in Lemma 5.77 with d « ¢1(b) + t2(b) + 1, so

VZE < by < (t81(b) + ta(b) + 1) (Qi(Z, y) < y = t:(F))

In COMP,, we take ¢ — t;(b) 4 t2(b) and b — (by, ..., by).

For COMPy,(@,@, X,b) we use COMP,, (X, P, ¢,b) with ¢ «— t1(b) and
b« (b1,...,bx) and P defined from Lemma 5.77 similarly to Q1 above. O

Now we can complete the proof of the theorem. Lemma 5.78 takes care of the
case when ¢ is an atomic formula, since equations t1 (Z) = t2(Z) can be initially
replaced by t1(Z) < to(Z) A t2(Z) < ¢1(Z). Then by repeated applications of
COMP,,, and COMP,,, we handle the case in which ¢ is quantifier-free.

Now suppose ¢(Z) = Vy < (X)) (&, y). We assume as an induction hypoth-
esis that we can define @) satisfying

-,

VI < by < t(b) + 1[Q(Z,y) < (y < t(T) D (T, y))]

-, -,

Then COMP,(b) follows from COMP,,,(Q,c,b) with ¢ «— t(b) and b —
(b1, .., bi). 0

5.8. NOTES 119

5.8 Notes

The system VY we introduce in this chapter is essentially 3b-comp in [?], and
IZ(l)’b (without #) in [?]. Zambella [?] used R for FAC" and called it the
class ofrudimentary functions. However there is danger here of confusion with
Smullyan’s rudimentary relations [?].

The set 2-BASIC is similar to the axioms for Zambella’s theory © in [?],
and forms the two-sorted analog of Buss’s single-sorted axioms BASIC [?]. Tt
is slightly different from that which are presented in [?] and [?].

The statement and proof of Theorem 5.60 (witnessing) are inspired by [?],
although our treatment here is simplified because we only witness formulas in
which all string quantifiers are in front.

The universal theory V' is taken from [?].

Theorem 5.75 (finite axiomatizability) is taken from Section 7 of [?].

120 CHA : ORY V° AND AC®

g
Q

Chapter 6

The Theory V! and
Polynomial Time

In this chapter we show that the theory V! characterizes P in the same way
that VO characterizes AC". This is stated in the 3}-Definability Theorem for
V1. A function is 3}-definable in V! if and only if it is in FP. The “only if”
direction follows from the Witnessing Theorem for V1.

The theory of algorithms can viewed, to a large extent, as he study of poly-
nomial time functions. All polytime algorithms can be described in V!, and
experience has shown that proofs of their important properties can usually be
formalized in V!. (See Example 6.30, prime recognition, for an apparent excep-
tion.) Razborov [?] has shown how to formalize lower bound proofs for Boolean
complexity in V.

In Chapter 8 we will introduce other theories for polynomial time, and com-
pare them with V.

6.1 Induction Schemes in V*

Recall (Definition 5.3) that V' is axiomatized by 2-BASIC and XP-COMP,
where £2-COMP consists of all formulas of the form

X < yvz <y(X(2) < ¢(2)), (6.1)

where ¢(z) is a 8 formula, and X does not occur free in ¢(z).
The next result follows from Corollary 5.8.

Corollary 6.1. Fori >0, V! proves the P IND, X5-MIN, and £F-MAX
axiom schemes.

It turns out that V? proves these schemes for a wider class of formulas than
just 3B. To show this, we start with a partial generalization of the Multiple
Comprehension Lemma 5.49.

121

122 CHAPTER 6. THE THEORY V! AND POLYNOMIAL TIME

Lemma 6.2 (Multiple Comprehension Revisited). Let 7 be a theory
which extends V%and has vocabulary L, and suppose that either L = L% or
L includes the projection functions left and right. For each i > 0, if T proves
the XB(L)-COMP azioms, then T proves the multiple comprehension aziom

X < (GVZ < Y(X(2) < ¢(2)) (6.2)

(see (5.24)) for any k > 2 and any ¢ € B (L). In particular, for all i >0, V*
proves XE-MULTICOMP.

Proof. The method used to prove the earlier version, Lemma 5.49, does not
work here, because for i > 1 the £Z(£)-formulas are not closed under bounded
number quantification.

For notational simplicity we prove the case £ = 2. First we consider the
case the £ includes left and right. Assuming that (21, 22) is in £5(L) and T
proves the X2 (£)-COMP axioms it follows that 7 proves

AX < (y1,92)V2 < (Y1, 42), X (2) = p(left(z), right(z))

and (6.2) follows.

For the case £ = L%, we work in the conservative extension 7T (left,right) of
T . Note that the conclusion of Lemma 5.40 applies to transform a 22 (left,right)
formula p* to an equivalent £ formula ¢, since a £F formula is just a X
formula with a prefix of string quantifiers. Therefore if 7 proves the X2-COMP
axioms, it follows that 7 (left,right) proves the XB(left, right)-COMP axioms.
O

The next result refers to the £F-closure of a set of formulas (Definition 5.34).

Theorem 6.3. Let T be a theory over a vocabulary £ which extends VO and
proves the multiple comprehension azioms (6.2) for every k > 1 and every ¢ in
some class ® of L-formulas. Then T proves the & (®)-COMP azioms.

The following result is an immediate consequence of this theorem, Lemma 6.2,
and Corollary 5.8, since every ITP formula is equivalent to a negated X2 for-
mula.

Corollary 6.4. For i > 0 let ®; be ZF(ZB UTIB). Then V' proves the
$,-COMP, ®,-IND, &,-MIN, and ®;,-MAX azxiom schemes.

Proof of Theorem 6.3. We prove the stronger assertion that 7 proves the mul-
tiple comprehension axioms (6.2) for ¢ € XF(®), by structural induction on
¢ relative to ®. We use the fact that 7 extends V° and hence by Lemma 6.2
proves the multiple comprehension axioms for XZ-formulas.

The base case, ¢ € @, holds by hypothesis. For the induction step, consider
the case that ¢ has the form —). By the induction hypothesis 7" proves

WY < (V7 < GV (2) = ¥(2))

6.2. CHARACTERIZING P BY V! 123

and by Lemma 6.2, 7 proves
X < (V2 < y(X(2) & ~Y (2))

Thus 7 proves (6.2).
The cases A and V are similar. Finally we consider the case that ¢(Z) has
the form Vz < ty)(z, Z). By the induction hypothesis 7 proves

Y < (t+ 1, 9)Ve <tVZ < §(Y (2, 2) < ¢(x, 2))
By Lemma 5.49 V? proves
X < (f)VE < JX(Z) o Vo < Y (,2))

Now (6.2) follows from these two formulas. O

6.2 Characterizing P by V!

The class (two-sorted) P cousists of relations computable in polynomial time
by a deterministic Turing machine (i.e., polytime relations), and FP is the class
of functions computable in polynomial time by a deterministic Turing machine
(i.e., polytime functions). Alternatively (Definition 5.16) FP is the class of
the polynomially bounded number functions whose graphs are in P, and the
polynomially bounded string functions whose bit graphs are in P.

Recall that a number input to the accepting machine is represented as a
unary string, and a set input is represented as a binary string (page 74). (Thus
a purely numerical function f(&) is in FP iff it is computed in time 20 where
n is the length of the binary notation for its arguments.)

The following proposition follows easily from the definitions involved.

Proposition 6.5. a) A number function f(f,)z) is in FP iff there is a
string function F(Z,X) in FP so that f(Z,X) = |F(Z, X)|.
b) A relation is in P iff its characteristic function is in FP.

We will prove that the theory V! characterizes P in the same way that V
characterizes ACY:

Theorem 6.6 (X1-Definability Theorem for V). A function is £1-definable
in VY iff it is in FP.

The “if” direction is proved in Section 6.2.1. The “only-if” direction follows
immediately from the Witnessing Theorem for V! (Theorem 6.28).

Note that V! is a polynomial-bounded theory (Definition 5.24). The fol-

lowing corollary follows from the ¥1-Definability Theorem for V! above, and
Parikh’s Theorem (see Corollary 5.29).

Corollary 6.7. A function is in FP iff it is X5 -definable in V*.

124 CHAPTER 6. THE THEORY V! AND POLYNOMIAL TIME

The next corollary follows from the results above and Theorem 5.59.

Corollary 6.8. A relation is in P iff it is is Al-definable in V' iff it is AP-
definable in V1.

Recall (Theorem 4.18) that the X formulas represent precisely the NP
relations, and hence by Definition 5.56 a relation is AP definable in a theory
T iff T proves that the relation is in both NP and co-NP. Thus the above
corollary says that a relation is in P iff V! proves that it is in NP N co-NP.

Corollary 6.9. V'is a proper extension of VY.

Proof. There are relations (such as PARITY (X) — page 106) which are in P
but not in AC”. O

Exercise 6.10 (parity(X) in V). Recall the formula @parity(X,Y) ((5.32)
on page 107). Show that the function parity(X), which is the characteristic
function of PARITY (page 106), is ¥1-definable in V! by showing that

VI EVX Y ©parity (X, Y)

Exercise 6.11 (String Multiplication in V*!). Consider the string multipli-
cation function X ® Y where

X XY =27« bin(Z) =bin(X) - bin(Y)

(see (4.4) on page 76). Consider the the X1 defining axiom for X x Y in V!
that is based on the “school” algorithm for multiplying two numbers in binary.
First, we construct the table X ® Y that has |Y| rows and whose ith row is
either 0, if Y (i) =0 (i.e., =Y (i)), or a copy of X shifted by i bits, if Y (i) = 1.
Thus, X ® Y can be defined by (see Definition 5.50 for row notation)

(X Y| < (Y] IX]+ [Y])A
Vi< |VVz<i+|X|, XoYz) o (Yi)ATu<zw+i=2z2AX(u)))

a) Let Z =X ®Y. Show that V° proves the existence and uniqueness of Z.
b) Show that V' proves the existence and uniqueness of W, where

W] <1+ (Y], X|+|Y) AW =0AVi < Y|, WETT = w4zl

(Hint: Use SP-IND. For the bound on |W|, show that |WU| < |X|+i.)
c) Define X xY in terms of X ® Y. Conclude that the string multiplication
function is provably total in V.

d) Recall string functions &, S and X +Y from Example 5.42. Show that
the following are theorems of V(3, S, +, x):

(i) Xxog=02.
(i) X xSY)=(XxY)+X.

6.2. CHARACTERIZING P BY V! 125

It will follow from our discussion in Section 8.2 that V1(&, S, +, x) proves
the string induction aziom scheme for £ (@, S, +, x) formulas (see Corollary
8.42 and Theorem 8.11). Consequently, V!(2, S, +, x) proves the properties of
the string functions @, S, 4+ and x as listed in Example 3.8.

Exercise 6.12 (String Division and Remainder in V1!). Consider the
string diwision function X +Y = | X/Y| and the string remainder function
Rem(X,Y) =X —Y x (X +Y). These functions can be X1i-defined in V! by
the following steps. Suppose that Y < X, and let z be such that z + Y| = | X]|.

a) Give a XF-bit-definition for the table U, where the row Ul of U is Y
“shifted” by i bits, for 0 <i < z.

b) Prove in V! the existence and uniqueness of a table W such that

W = X AVi <z, (W < gttt 5wl = ittha
(U[i+l] S W[i-l—l] B W[l] 4 U[i-l—l] _ W[l+l]))

c) Define X +Y and Rem(X,Y) using W.
d) Show in V1(+, x,+, Rem) that

X = (Y x (X +Y))+ Rem(X,Y)

6.2.1 The “if” Direction of Theorem 6.6

We will give two proofs of the fact that every polynomial time function is X1-
definable in V. The first is based directly on Turing machine computations,
and the second is based on Cobham’s characterization of FP. We give the
second proof in more detail, since it provides the basis for the universal theory
VPV described in Chapter 8.

The key idea for the first proof is that the computation of a polytime Turing
machine M on a given input T, X can be encoded as a string of configurations
(see Definition 5.50 for notation)

AR VA AU AL

whose length is bounded by some polynomial in Z,|X|, and whose existence we
need to prove in V!. The output of M can then be extracted from Z easily. The
defining axiom for the polytime function computed by M is the formula that
states the existence of such Z.

Exercise 6.13. Describe a method of coding Turing machine configurations by
strings, and show that for each Turing machine M working on input &, X there
are $B-definable string functions in VO: Inity(Z, X), Nexty(Z) and Outy(Z)
such that

o Initm(&,X) is the initial configuration of M on input (%, X);

126 CHAPTER 6. THE THEORY V! AND POLYNOMIAL TIME

o 7' = Nextm(Z) if Z and Z' code two consecutive configurations of M, or
7' = Z if Z codes a final configuration of M, or Z' = & if Z does not code
a configuration of M.

o Outm(Z) is the tape contents of a configuration Z of M, or @ if Z does
not code a configuration of M.

Below we will use all three functions in the above exercise, as well as the
string function Row(z,Y’) (Definition 5.50). Because these functions are 35-
definable in V°, it follows from the FAC® Elimination Lemma 5.73 that any
=8 (L% U {Init, Next, Out, Row}) formula can be transformed into a provably
equivalent 3F (£%) formula. Formally we will work in the conservative extension
of V! consisting of V' together with the defining axioms for these functions,
although we will continue to refer to this theory as simply V!. Thus each X
(resp. ¥P) formula below with the new functions is provably equivalent to a
3B (vesp. £P) formula in the language of V1.

First Proof of the <= Direction of Theorem 6.6. Consider the case of string func-
tions. (The case of number functions is similar.) Suppose that F(Z, X) is a
polytime function. Let M be a Turing machine which computes F'(Z, X) in time
polynomial of Z,|X|, and let ¢(Z,|X|) be a bound on the running time of M on
input &, X. We may assume that M halts with F'(Z, X) equal to the contents of
its tape, so that Outy(Z) = F(#,X) if Z codes the final configuration. Then

Y = F(Z,X) «3Z < {t,)(em(Z, X, Z) A Y = Outy(2Z1)) (6.3)
where o (#, X, Z) is the formula
Z0 = Initm(Z, X) AVz < t ZFH = Neaty(ZF))
We will show that the RHS of (6.3) is a defining axiom for F in V1, i.e.,
V' EVEVX3AY3IZ < (&8 (om(Z, X, Z) AY = Outy(Z21))

For the uniqueness of Y, it suffices to verify that if Z; and Z5 are two strings
satisfying
|Zk| < <t, t> A (pM(f, X, Zk)

(for k =1,2), then for all z,
z<tozH =7 (6.4)

This follows in V! using ZF-IND on the formula (6.4) with induction on z.
For the existence of Y, we need to show that V! proves

VIVX3Z < (t,t) om(Z, X, Z)

This formula can be proved in V! by using number induction axiom (Corol-
lary 6.1) on b for the £ formula

IW < (b,t), W = Inity (2, X) AVz < bWEH = Neaty (W)

6.2. CHARACTERIZING P BY V! 127

Exercise 6.14. Carry out details of the induction step in the proof of the above
formula.

An alternative proof for the above direction of Theorem 6.6 can be obtained
by using Cobham'’s characterization of FP. To explain this, we need the notion
of limited recursion. First we introduce the AC" string function Cut(z,X),
which is the initial segment of X and contains all elements of X that are < .
It has the EF-bit-defining axiom

Cut(z, X)(z) < z < ax AN X(2) (6.5)
Notation: We will sometimes write X <* for Cut(x, X).

Definition 6.15 (Limited Recursion). A string function F(y, &, X) is de-
fined by limited recursion from G(Z,X) and H(y,Z, X, Z) iff

F(0,7,X) = G(&, X) (6.6)
Fly+1,% X) = (H(y, & X, F(y, &, X)))<'®#%) (6.7)

for some L% -term t representing a polynomial in y, T, |X'|

For two-sorted function classes, we can also define the notion of limited
recursion for a number function. However here we can just appeal to Proposi-
tion 6.5 a when we have to deal with number functions. A version of Cobham’s
characterization of FP is as follows.

Theorem 6.16 (Cobham’s Characterization of FP). A string function is
in FP iff it can be obtained from AC® functions by finitely many applications
of composition and limited recursion.

Proof Sketch. The <= direction follows from the fact that AC" functions are
in FP, and that applying the operations composition and limited recursion to
functions in FP results in functions in FP.

For the = direction, the function F' computed by a polytime Turing ma-
chine M can be defined from the AC® functions Inity, Nextm and Outw by
limited recursion and composition. In more detail, we can define a string func-
tion Confy(y,Z, X) to be the string coding the configuration of M on input

(7, X) at time y. Then Conf,, satisfies the recursion
Conf (0,7, X) = Initp (7, X)
Confu(y + 1,7, X) = Nextw(Confu(y, 7. X))

To turn this recursion into one fitting Definition 6.15 we apply Cut(t(y, Z,)?), .
to the RHS of the second equation, for a suitable £%-term ¢ bounding the run
time of M. Then

F(Z,X) = Outy(Conf y(t(z,X),Z, X))

128 CHAPTER 6. THE THEORY V! AND POLYNOMIAL TIME

6.2.2 Application of Cobham’s Theorem

Second proof of the <= Direction of Theorem 6.6. We use Cobham’s Charac-
terization of FP to show that the polytime string functions are 31-definable in
V1. It follows from Proposition 6.5 that the polytime number functions are also
S 1l-definable in V1.

We proceed by induction on the number of applications of composition and
limited recursion needed to obtain F from AC? functions. For the base case,
the AC® functions are X1-definable in V° (Corollary 5.61), hence also in V.
For the induction step, we need to show that the X1-definable functions of V!
are closed under composition and limited recursion. The case of composition
is easily seen to hold for any theory 7 (see exercise 5.30). Hence it suffices to
prove the case of limited recursion.

Suppose that G(Z, X) and H(y,Z, X, Z) are S}-definable functions in V?,
and F(y,#,X) is defined by limited recursion from G and H as in (6.6) and
(6.7) for some polynomial p. Then we can X1-define F by coding the sequence
of values F(0), F(1),...,F(y) as the rows WL Wl Wl of a single array
W. Thus (omitting &, X):

Y = F(y) < 3w, Wl = gOna

Vz <y WET = (H(z, WE)) <t A

Yy = whl
The RHS is not immediately equivalent to a 31 formula when the equations
involving G' and H are replaced by 31 formulas using the defining axioms for G
and H. This is because of the number quantifier Vz < y of the middle conjunct,
which is mixed in between the existential string quantifiers. We obtain a X1-
defining axiom for F' from the RHS as follows:

By assumption, G and H have X1-defining axioms. Therefore there are £
formulas pg and ¢ so that

W =G() & I0ec(U, W), W=HyZ) < Weouly.2,V,W)
and
V! 3IW3IU e (U, W) (6.8)
V' bW ZAW IV o (y, Z, W) (6.9)

The X1-defining axiom for F is obtained by using arrays V for which V! (row
z in the arrays V) codes the values of V needed to satisfy (6.9) when evaluating

H(z, WH),
Y = F(y) ~3W30aV, e, WIHA
Vz < y(ou(z, WEL VEL (w1
Yy = whl

)<t(z)

)A (6.10)

6.3. THE REPLACEMENT AXIOM SCHEME 129

Since the terms such as (W[+1)<t(2) are easily seen to be IF-bit-definable,
it follows from Lemma 5.73 that this defining axiom can be replaced by an
equivalent 31-formula (see the discussion following Exercise 6.13).

It is easy to see that V! proves the uniqueness of Y by proving that if W
and Wy satisfy (6.10), then for z < y we have Wl[z] = W2z]. This is by number
induction on z < y, and follows from the uniqueness of W in (6.8) and (6.9).

Now we show that V!proves the existence of Y satisfying the RHS of (6.10).
We start by noting that all of the initial string quantifiers can be bounded.
This follows from Parikh’s Theorem, using (6.8) and (6.9). Let ¢ (y) be the
3B formula obtained from this bounded form of the RHS of (6.10), with the
final conjunct Y = W deleted. Thus 1(y) asserts the existence of an array

W = (W[O],Wm, N .7w[y])

whose rows are the successive values

We show that V! proves 1 (y) by induction on y. The base case follows from
(6.8): If W’ satisfies the existential quantifier IW in (6.8), then W satisfying
¥ (y) can be defined using multiple comprehension (Lemma 6.2):

W(0,4) < W' (i)

For the induction step, the new values of W and V for y + 1 are obtained by
pasting together the previous values for y, together with values from (6.9) with
(y, Z) in @y replaced by (y, W¥l). The pasting is again defined using multiple
comprehension.

Hence V! | 9(y). From this it follows that V! proves the existence of Y
satisfying the RHS of (6.10): just set Y = W, Hence F(y) is $}-definable in
Vi 0

6.3 The Replacement Axiom Scheme

Recall that the classes 2 and IIP consist of formulas in prenex form, whose
string quantifiers precede the number quantifiers. Below we define more general
classes.

Definition 6.17 (gX7(£) and glI”?(L)). For a vocabulary L extending L,
define
g=5 (L) = glIg (£) = =7 (L)

Forv >0, gEiBJrl is the closure ongZB under A\, V,Vx <t,dx <t and X <t.
Similarly, gl‘[ﬁ_1 is the closure of gElB under A, V,Vx <t, Jx <t and VX <t.

130 CHAPTER 6. THE THEORY V! AND POLYNOMIAL TIME

As usual, we will drop mention of £ when it is clear from context. Notice
that for i > 0, F ¢ =F(=F) c gx?, and TP ¢ P (I1F) c gIT?. Also

K3
»Bcgxfcgslc... and XPcgliPcgnfc...

For any formula ¢t in g2, there is a formula ¢ in TP so that in N, we
have T « . In particular, when ¢ is a g2% formula of the form

Vo < t3X < th(z, X)

where 9 is a £ formula, then we can collect the values of X for z = 0,1,...,¢
into a single array Y whose rows YO, YU VIt are these successive values of
X. Thus we can take ¢ to be

Y < (t,)W < t(|YE| <t A (e, YIRD)

In this case ¢ is a logical consequence of o, and T D ¢ is true in N,. In this
section we are concerned with the provability of formulas of the type ¢ D ¢
in our theories. Consider the following axiom scheme.

Definition 6.18 (Replacement Axiom). For a set ® of formulas over the
vocabulary L, the replacement axiom schemefor ®, denoted by ®-REPL, is the
set of all formulas (over LU {Row}):

Vo <b3IX <c oz, X) D 3Z < (be) Yz <b, |20 <enp(z, 27 (6.11)
where ¢ is in P.

Note that in (6.11) the LHS is a logical consequence of the RHS. Also (6.11)
is true in the expansion of the standard model N,, for any formula ¢.

The function Row occurs on the RHS of (6.11), but by the Row Elimina-
tion Lemma 5.51 (or more generally the FAC® Elimination Lemma 5.73), any
28 (Row) formula is equivalent to a £F(L%) formula. So in the context of the
theories with underlying vocabulary £% (such as V¢, or e below), we define
(6.11) to be the equivalent £ formula which is obtained by transforming every
atomic sub-formula containing Row into a & (£2%) formula.

Notation When we say that a theory 7 with vocabulary £ that proves a REPL
axiom scheme (e.g., ¥ (L£)-REPL), then either £% U {Row} C L, or £ = L3
and (6.11) is as above.

Recall that a single-3P formula has the form 3X < #(X), where ¢ is a
=B formula.

Lemma 6.19. Suppose that T is a polynomial-bounded theory which proves
the BE(L)-REPL axiom scheme, where L is the vocabulary of T (so either
L =LY%, or L3U{Row} C L). Then for each g2 (L) formula ¢ there is a
single-SP (L) formula ¢ so that T = o « ¢'.

6.3. THE REPLACEMENT AXIOM SCHEME 131

Proof. We prove by structural induction on the formula ¢. For the base case,
if ¢ is a BF(L) formula, then we can simply take ¢’ = ¢.

For the induction step, consider the interesting case where ¢ has the form
Vo < sf(x), where 0 is a gXP (L) formula but not a XF (L) formula. By
the induction hypothesis, 6(z) is equivalent in 7 to a single-XP (L) formula
3X < typ(z, X), where 1 is a ¥ (L) formula. In other words,

Tko e Ve <s3X <ty(x,X)

Now 7 proves ¢ is equivalent to a single-X2 (L) formula by ZF(L)-REPL.
The other cases for the induction step follow easily with the help of exercise

5.54, which shows that a prefix of several bounded string quantifiers can be

collapsed into a single one. 0

In the next lemma we generalize the previous lemma. Part b follows easily
from a, and a can be proved by induction on i. The base case is proved in
Lemma 6.19. The induction step is similar to the base case.

Lemma 6.20. Let T be a polynomial-bounded theory with vocabulary L which
proves the IIZ (£)-REPL aziom scheme, for some i >0 (so either L = L2, or
L% U{Row} C L). Then

a) For each gX7. | (L) formula ¢ there is a 25 (L) formula ¢’ so that T +
p oy

b) For each gl‘[ﬁ_l(ﬁ) formula ¢ there is a TIZ, | (L) formula ¢ so that T +
p g

Exercise 6.21. Prove the above lemma.

Exercise 6.22. Let T, L and i be as in Lemma 6.20 above. Show that T proves
the B, (L)-REPL aziom scheme.

The next lemma shows that V! proves the SP-REPL axiom scheme. It
is important to note that the analogous statement does not hold for V°: we
will prove later (see Section 8.5) that V° does not prove the SF-REPL axiom
scheme. Also, we will introduce the universal theory VPV which characterizes
P in the same way that V! characterizes P, and we will show that it is unlikely
that VPV proves SP-REPL.

Lemma 6.23. Let T be an extension of VO, where the vocabulary L of T is
either £ or L3 U{Row} C L). Suppose that T proves the 5 | (£)-IND aziom
scheme, for some i > 0. Then T also proves the IIZ(L)-REPL aziom scheme.

Proof. Let ¢ be a IIZ(L) formula. We will show that 7 proves (6.11). Intu-
itively, the RHS of (6.11) is the formula which states the existence of an array
Z having b rows, whose z-th row Z[*! satisfies olx, Z [””]). We will prove by
number induction the existence of the initial segments of Z, and hence derive
the existence of Z.

132 CHAPTER 6. THE THEORY V! AND POLYNOMIAL TIME

Formally we need to make sure that the RHS of (6.11) is equivalent to a
5 (L) formula. First consider the case where i = 0, so ¢ is a F(L) formula.
Let

Y(z) =3Z < (z,e)Vx < z (|2 < e A p(, Z171Y)

Then 1)(z) is a P (L) formula and the RHS of (6.11) is just 1 (b). Our task is
to show in 7 that (z) holds for z < b, assuming the LHS of (6.11). This is
proved in 7 by induction on z < b. For the base case, ¥(0) follows from the
LHS of (6.11) by putting = 0. The induction step follows from the induction
hypothesis and the LHS of (6.11), using ¥¥-COMP.

For the case where i > 1, note that when ¢ is a II? (L) formula, the RHS of
(6.11) is not really a X5, (£) formula. But it is equivalent (in 7) to:

3Z < (b,)WY <b (|20 < e A gz, 1Y)

which is equivalent to a 5 ,(£) formula. Let ¢ be the equivalent X5 (L)
formula, then we can use the same arguments as for the case 1 = 0. O

From Exercise 6.22, Lemma 6.23, Corollary 6.1, Corollary 6.4, and Lemma 6.19
we have:

Corollary 6.24. For i > 1, the theory V* proves the gEf-REPL aziom
scheme. For each gEf) formula ¢, there is a single-X¥ formula ' such that
VIE @ . Also V! proves Eg(gEf) U ng’)—IND.

6.3.1 Extending V' by Polytime Functions

By the Extension by Definition Theorem 3.30, if we extend V! by a collection
L of its X}-definable functions (i.e., polytime functions), Ai-definable predi-
cates (i.e., polytime predicates), and their defining axioms, then we obtain a
conservative extension V(L) of V1. Here we want to show further that V1(£)
proves the 28 (£)-COMP axiom scheme. This is similar to the situation for
VO, where it follows from Corollary 5.39 and Lemma 5.40 that VO(L) is conser-
vative over VU, and it proves the £ (£)-COMP axiom scheme for a collection
L of AC? functions. Note that for the case of VO, the AC? string functions are
38-bit-definable in V°.

Here it suffices to show that any (L) formula is provably equivalent in
V(L) to a £B(L%) formula. We will prove this by structural induction on the
»B(L) formula. For the induction step, we use Corollary 6.24 above. More
generally, we prove:

Lemma 6.25 (¥F-Transformation Lemma). Let T be a polynomial-bounded
theory over the vocabulary £ O L3 U{Row}. Suppose that T proves F (L)-REPL.
Let T' be the extension of T which is obtained by adding to T a 1 (L)-definable
function or a Al (L)-definable predicate, and its defining axiom, and L' be the
vocabulary of T'. Then

6.3. THE REPLACEMENT AXIOM SCHEME 133

a) 7' is conservative over T, and T' is polynomial-bounded;

b) For any ZB(L') formula oT, there is a BP(L) formula ¢ so that T' -
T g

c) For any ZF(L') formula ¢, there are a P (L) formula o1 and o TIZ (L)
formula pa so that T' F T «— @1, and T - o1 < pa;

d) 7' proves the 8 (L')-REPL aziom scheme.

Indeed, by Exercise 5.54, the formulas ¢ and (1 can be taken to be single-X2 (L)
formulas, and @2 can be taken to be a single-IIZ (L) formula.

Proof. For a, the conservativity of 7’ over 7 follows from the Extension by
Definition Theorem 3.30. Also, 7" is polynomial-bounded because 7 is, and the
S 1-definable functions of 7 are polynomially bounded (Corollary 5.29).

Part b follows from ¢, and d follows from ¢ and Exercise 6.22 (for the case
i = 0). We prove c for the case of extending 7 by a ¥}-definable string function.
The case of adding a X}-definable number function or a Al-definable predicate
is similar, and is left as an exercise.

Let F' be the X1(£)-definable function in 7. Since 7 is a polynomial-
bounded theory, F is polynomially bounded in 7, and is X (L£)-definable in
T (Corollary 5.29). So there is a P (L) formula p(Z, X,Y) such that

Y = F(#X) o op(@ X,Y) and T FV&YX3AY <top(Z,X,Y) (6.12)

By Lemma 6.19, it suffices to prove a simpler statement, i.e., that there exist
a gXP (L) formula ¢; and a gIT? (L) formula @, such that 77 F ¢t < ¢; and
T I 1 < 2. We prove this by induction on the nesting depth of F' in ¢T. For
the base case, F' does not occur in ¢™, and there is nothing to prove. For the
induction step, first we prove:

Claim Suppose that for each atomic sub-formula 9 of ¢, there are a gE{3 (L)
formula t; and a gl'[{g(ﬁ) formula 19 so that 7/ F ¢T « 1y and T F 11 < 1hs.
Then there are a gX7 (L) formula ¢; and a gITP (£) formula ¢y so that 77 +
ot = @1 and T F @1 < .

We prove the claim by structural induction on ¢™. The base case holds
trivially. The induction step is immediate from definition of g=¥(£) formulas
and the DeMorgan’s laws.

Now we return to the proof of the induction step for c. By the claim, it
suffices to consider the atomic formulas over £’. We can reduce the nesting
depth of F' as follows. The maximum nesting depth of F is the depth of F' in
(different) terms of the form F(3,T), where 5, T are terms with less nesting
depth of F. We will show how to eliminate one such term from ¢*. In the
general case all such terms can be eliminated using the same method. Write o™
as ot (F(5,T)). Then using (6.12) it is easy to see that (writing ¢ for ¢(5,T)):

T+t (F(5,T)) < Y <t(er(5.T,Y) Nt (V)
and

T'+3Y <t(or(BT,Y) AT (V) = VY < t(pr(5.T,Y) D ot (Y))

134 CHAPTER 6. THE THEORY V! AND POLYNOMIAL TIME

The last line has the form 77 ¢} < ¢}, where ¢} is equivalent to a 3P (L’)
formula and), is equivalent to a ITP (£’) formula. Further ¢} and) have less
nesting depth of F than o+ (F(3, f)) By applying the induction hypothesis
to the atomic sub-formulas, we obtain a gX¥ (L) formula ¢; and a gIT} (L)
formula ¢ that satisfy the induction step. 0

Exercise 6.26. Prove Lemma 6.25 c for the cases of extending T by a 3}-
definable number function and a Al-definable predicate.

Corollary 6.27. Suppose that 1y is a polynomial-bounded theory with vocabu-
lary Lo 2 L% U{Row}, and that Ty proves the £F(Ly)-REPL aziom scheme.
Let 7o C Ty C T3 C ... be a sequence of extensions of Ty where each T; has
vocabulary L; and each Tiy1 is obtained from T; by adding the defining axiom
for a B1(L;)-definable function or a Al(L;)-definable predicate. Let

T=-7T

i>0

Then T is a polynomial-bounded theory which is conservative over 1y and proves
the 8 (L)-REPL aziom scheme, where L is the vocabulary of T. Furthermore,
each function in L is £1(Lo)-definable in Ty, and each predicate in L is Ai(Lo)-
definable in Ty. Finally each X8(L) formula is provably equivalent in T to a
»B(Ly) formula.

The corollary is proved using Lemma 6.25 by proving by induction on i
that the analogous statement holds for each theory 7;. The conservativity of 7°
follows from the conservativity of each 7; by compactness.

The corollary can be applied to the case in which 7o = V!, since by Corol-
lary 6.24, V! proves SB-REPL, and we may assume that 7; is V1 (Row). We
will use Corollary 6.27 for 7y = V! (Row) in Subsection 6.4.2 when we prove
the Witnessing Theorem for V1.

6.4 The Witnessing Theorem for V!

To prove the = direction of Theorem 6.6, i.e., every Xi-definable function
in V! is a polytime function, we prove the Witnessing Theorem for V! below.
Recall that by the <= direction, each polytime function has a 31-defining axiom
in V1,

Theorem 6.28 (Witnessing Theorem for V!). Suppose that o(Z, y”,)_(', }7)
is a £ formula, and that

V! EVaYX37AY (7, 7, X, Y)
Then there are polytime functions f1,..., fx, F1,..., Fy so that

—

VY1, [Fro oo F) FVIYX (7, f(7, X), X, F (2, X))

6.4. THE WITNESSING THEOREM FOR V! 135

A more general witnessing statement follows from this theorem and Corol-
lary 6.27 and Lemma 6.19.

Corollary 6.29. Let T be a theory with vocabulary £ which results from V' by
a sequence of extensions by Xi-definable functions and Al-definable predicates.

If
T HVEYX3Y (7, X,Y)

where @ is in gE{g(ﬁ) then there is a polytime function F such that
T(F) FVaVXp(Z, X, F(Z, X))

Example 6.30 (Prime Recognition). Any polynomial time prime recogni-
tion algorithm (such as the one by Agrawal et al [?]) gives a predicate Prime(X)
which according to Corollary 6.8 is AP definable in V*. It follows by the Wit-
nessing Theorem that if V1 proves the correctness of the algorithm, then binary
integers can be factored in polynomial time. Here correctness means

Prime(X) « 2 < |X|AWVYVZ, Y xZ=X> (X =Y VX = 2)|

(Recall that Y x Z is 1 definable in V1, by Ezercise 6.11). In fact, the right-
to-left direction of this correctness statement implies

VX3Y3Z, [Y x Z=XAX £Y AX # Z)]V Prime(X) V|X| < 2

Thus if V*(Prime, x) proves correctness then polynomial time witnessing func-
tions for Y and Z would provide proper factors for each nonprime X with
|X| > 2.

Exercise 6.31 (Integer Factoring [?]). Show that V! proves that every bi-
nary integer X greater than 1 can be represented as a product of primes. Use the
fact that V! proves the SB-MAX axioms (Corollary 5.8), where we are trying
to mazimize k such that for some stringY = (Z1, ..., Zy) with each Z; a binary
number > 2, [[Z; = X. Explain why it does not follow from the Witnessing
Theorem for V1 that binary integers can be factored into primes in polynomial
time.

As in the proof of the Witnessing Theorem for V° (Subsection 5.5.2), the
Witnessing Theorem for V! follows from the following special case.

Lemma 6.32. Suppose that o(Z,X,Y) is a 8 formula such that
V! FvavX3ye(z, X,Y)
Then there is a polytime function F so that

VY(F) FVaVXo(Z, X, F(Z, X))

136 CHAPTER 6. THE THEORY V! AND POLYNOMIAL TIME

Our first attempt to prove the lemma would be to consider an anchored
LK?-V! proof mof 3Y < t ©(Z, X,Y), and proceed as in the proof of Lemma 5.64.
In this case, however, a E{B-COMP axiom

X < yVz < y(X(2) < »(2)) (6.13)

is not in general provably equivalent to a ¥ formula, because of the clause
©(2) D X (z). So the LK%V proof m could contain formulas which are not X}.
To get around this difficulty, we begin by showing that V' can be axiomatized
by ZF-IND and IF-COMP instead of 25-COMP. Consider the theory V*:

Definition 6.33. The theory V! has vocabulary L2 and has the azioms of V°
and the XP-IND aziom scheme.

By Exercise 5.54, V! can be axiomatized by V? and the single-XP-IND
axiom scheme.

Lemma 6.34. V! proves the SB-REPL azioms.

Proof. Corollary 6.24 states this for V!, and the only properties of V! used in
the proof are that V! extends V? and proves the ZP-IND axioms. Hence the
same proof works for V1. O

Theorem 6.35. The theories V' and V! are the same.

Proof. By Corollary 6.1, V! proves the SP-IND axiom scheme. Therefore
V! C V. Tt remains to prove the other direction.

As noted earlier, (6.13) is not in general equivalent to a £¥ formula, so we
cannot use XZ-IND directly on (6.13) to prove the existence of X. We introduce
the number function numones(y, X), which is the number of elements of X that
are < y. Recall that seq(u,Z) = (Z)" is the AC" function used for coding a
finite sequence of numbers (Definition 5.55). The function numones has the
defining axiom:

numones(y, X) =z <>z <yA3IZ <1+ (y,y), (Z)° =0A(2)Y = zA
Yu <y, (X(u) D (2)"" =(2)" +1) A (=X (u) D (2)" = (2)") (6.14)
Here Z codes a sequence of (y + 1) number so that (Z)* = numones(u, X), for
u <.

Exercise 6.36. a) Show that (6.14) is a X definition of numones in Vi,
i.e., show that V1 F VyVX 320 numones (¥, 2, X), where numones (Y, 2, X)
is the RHS of (6.14).

b) Show that the following is a theorem of V' (numones).

Jr <y(X(@)AY(@)AVu<y, u#z D (X(u) « Y(u)))
D numones(y, X) = numones(y,Y) + 1

6.4. THE WITNESSING THEOREM FOR V! 137

Although (6.13) may not be X, the result of replacing « by D is 8.
Motivated by this, we define

n(y,Y) =Vz <y(Y(2) 2 ¢(2))

Let X be the set satisfying the existential quantifier in (6.13). Then n(y,Y)
asserts Y C X.
Now consider the formula

Y(w,y) =3Y <y, n(y,Y) Aw = numones(y,Y)

For any w and Y that satisfy ¢(w, y), we have w < numones(y, X),and Y = X
iff Y satisfies 1 (wo, y), where wq is the maximal value for w. To formalize this
argument, we need the XP-MAX axioms, which by Definition 5.5 have the
form

0(0) D3z <y, plx) ATz <y(z < 2z A p(2))

where () is 8. These are provable in V! by Corollary 6.1.

Exercise 6.37. Show that V! proves the SB-MAX azioms. Hint: Apply
SBIND to the formula ¢'(z) given by

Fz <y, z < zAp(2)

Since numones is X1-definable in V!, it follows from Lemmas 6.24 and 6.25
that V! (numones) is a conservative over V! and proves that every X8 (numones)-
formula is equivalent to some X2-formula. Hence by Exercise 6.37, V! (numones)
proves the ZB-MAX (numones) axioms.

Now apply ZP-MAX for the case ¢(w) is ¥ (w,y). Arguing in V1, we have
¥(0,y) (take Y to be the empty set), and hence there is a maximum wy < y
satisfying 1 (wo,y). We argued above that the set Y corresponding to wq is
the set X satisfying (6.13), and this argument can be formalized in V! using
Exercise 6.36. O

6.4.1 The Sequent System LK2-V!

We now convert V! into an equivalent sequent system LKQ—Vl, which is defined
essentially as in Definition 4.26 (for & = \71), but now we replace the ZF-IND
axiom scheme by the XP-IND inference rule. Recall that for LK?, terms do not
contain any bound variables z,y, z,..., X, Y, Z, ..., and formulas do not contain
free occurrence of any bound variable, or bound occurrence of any free variable.

Definition 6.38 (The IND Rule). For a set ® of formulas, the ®-IND rule

consists of the inferences of the form
T, A(b) — A(b+1),A
I, A0) — A1), A

(6.15)

where A is a formula in ®.
Restriction The variable b is called an eigenvariable and does not occur in the
bottom sequent.

138 CHAPTER 6. THE THEORY V! AND POLYNOMIAL TIME

Notation In general, we refer to an LK? proof where the IND rule is allowed
as an LK?+IND proof.

In this chapter we are mainly interested in this rule for the case where ® is
5.

Definition 6.39 (LK2-V'). The rules of LK*-V? consist of the rules of LK>
(Section 4.4), together with the single-SP-IND rule (6.15). The non-logical
axioms of LK2-V! are sequents of the form — A, where A is any term substi-
tution instance of a TF-COMP aziom or a 2-BASIC aziom (Figure 5.1) or
an LK? equality aziom (Definition 4.25).

Thus the axioms of LK2-V! are the same as those of LK2-V?.

The notion of an anchored LK?-V! proof generalizes the notion of an an-
chored LK? proof (Definition 4.28) to include the rule ZP-IND above. Note
that the axioms of LK2-V! are closed under substitution of terms for free vari-
ables. More generally, we have:

Definition 6.40 (Anchored LK? Proof with the IND Rule). An LK?
proof m where the rule ®-IND is allowed, for some set ® of formulas, is said
to be anchored provided that every cut formula in m occurs also either as a
formula in the non-logical axioms of w, or as one of the formulas A(0), A(t) in

an instance of the rule ®-IND (6.15).

The following Exercise is to show the soundness of LK?+IND in general.
It follows that LK% V! is sound, in the sense that the sequents provable in
LK?2-V! are also provable in V1.

Exercise 6.41 (Soundness of LK*+IND). Let ¥ and ® be sets of formulas.
Show that if A has an LK*-U proof, where the ®-IND rule is allowed, then A
is a theorem of the theory aziomatized by ¥ U ®-IND.

To prove the Witnessing Theorem for V!, we first prove that every theorem
of V! has an anchored LK2-V?! proof. This is stated more generally as follows.

Theorem 6.42 (Anchored Completeness for LK*+IND). Let ¥ and ® be
two sets of formulas over a vocabulary L, and suppose that ¥ includes formulas
which are the semantic equivalents of the equality axioms (Definition 4.25).
Suppose that T is the theory which is axiomatized by the set of axioms ¥ U
®-IND. Let V' and @' be the closures of ¥ and ® respectively under substitution
of terms for free variables. Then for any theorem A of T there is an anchored
LK?-0' proof of — A where instances of the ® -IND rule are allowed.

To apply this to e (and hence to V!, by Theorem 6.35) take 7 = Vi,
® =3B and ¥ = 2-BASIC U =F-COMP.

Corollary 6.43. Every theorem of V! has an anchored LK2-V! proof.

Proof of Theorem 6.42. We refer to an anchored LK*+IND proof of the type
stated above simply as an anchored LK2-¥’ proof, with the understanding that

6.4. THE WITNESSING THEOREM FOR V! 139

the ®’-IND rule is allowed. We will show that if a sequent I' — A is a theorem
of T (in the sense that its semantic formula given in Definition 2.17 is a theorem
of T), then there is an anchored LK?-¥’ proof of I' — A.

Recall the proof of the Completeness Lemma 2.25 and the Anchored LK
Completeness Theorem 2.29 (outlined in Exercise 2.30). Our proof here is by
the same method, i.e., for a sequent I' — A purportedly provable in 7, we
try to find an anchored LK?-%¥’ proof of I' — A. Our procedure guarantees
that in the case where no such proof is found, then we will be able to define a
structure that satisfies 7 but does not satisfy I' — A. Thus we can conclude
that ' — A is not provable in 7.

We begin by listing all formulas, variables, and terms. In two-sorted logic,
there are two sorts of terms: number terms and string terms. So we enumerate
all quadruples (A;, ¢;, tx, Ty), where A; is an L-formula, ¢; is a free variable, tj
is an L-number term, and T} is an L-string term. (The term t; contains only
free variables a,b,...,a,3,....) The enumeration is such that each quadruple
(Ai, ¢j, tx, Ty) occurs infinitely many times.

The proof 7 is constructed in stages. Initially 7 consists of just the sequent
I' — A. At each stage we expand 7 by applying the IND rule and the rules
of LK? in reverse. We follow the 3 steps listed in the proof of the Completeness
Lemma, with necessary modifications. The idea is that if this proof-building
procedure does not terminate, then the term model M derived from it satisfies
7T but not I' — A. In particular, in this case the procedure produces an infinite
sequence of sequents I'), — A, (starting with ' — A), and M is defined in
such a way that it satisfies every formula in the antecedents I',,, and falsifies
every formula in the succedents A,,.

We modify the notion of an active sequent as follows.

Notation In the process of constructing m, a sequent is said to be active if it
is active as defined on page 20, and it cannot be derived from — B for some
B in ¥’ using only the exchange and weakening rules.

We use one quadruple (4;, ¢j,tg, Tr) of our enumeration in each stage. Here
are the details for the next stage in general.

Let (A;,c;,tk, Ty) be the next quadruple in our enumeration. Call A; the
active formula for this stage.

Step 1: If A; is in ¥’, then expand 7 at every active sequent I' — A’ as
follows:

Ai,l—‘/ — A/ 1—‘/ — A/,Ai
' — A

weakening

cut

Step 2a: If A; € ® and ¢; has one or more free occurrences in A;, then we
incorporate an application of the IND rule for A;. Let b be a new free variable
that does not occur in the proof so far, and let A(b) be the result of substituting

140 CHAPTER 6. THE THEORY V! AND POLYNOMIAL TIME

b for ¢; in A;. For each active sequent I' — A’ we expand 7 as follows:

A(ty), T — A I, A(b) — A(b+ 1), A’
A(t;), I, A(0) — A I, A(0) — A(ty), A’
I — A’ A(0) ', A(0) — A'
I— A/

Here the top-right inference is by the ®-IND rule, and the three thick lines are
for the weakening, cut and exchange rules (with cut formulas A(0), A(t;)).

Step 2b: Proceed as in the Step 2 in the proof of the Anchored LK Complete-
ness Lemma 2.25. Here we use the string term T} in our enumeration for the
string quantifiers, in addition to the number term ¢; which is for the number
quantifiers, just as in the mentioned proof.

Step 3: If there is no active sequent remaining in 7, then exit from the algo-
rithm. Otherwise continue to the next stage.

It is easy to verify that if the above procedure terminates, then the resulting
proof 7 is an anchored LK2-0’ proof of I' — A. It remains to show that if the
procedure does not halt, then the sequent I' — A is not a logical consequence
of 7. This is similar as for the Completeness Lemma 2.25, and is left as an
exercise. 0

Exercise 6.44. Complete the proof of the Anchored Completeness Lemma for
LK*+IND above by constructing, in the case where the procedure does not
terminate, a term model M (see Definition 2.27) that satisfies T but not the
sequent I' — A. The two equality relations =1 and =5 are not necessarily
interpreted as true equality in the term model, but by our assumption on ¥
the equality axioms of Definition 4.25 are satisfied, so the equivalence classes
of terms form a true model. Also note that the occurrences of A(0) in the an-
tecedent of the construction for Step 2a disappear from the sequents above them,
so the term model must be defined in such a way that A(0) is not necessarily
satisfied. Show nevertheless that the ®-IND azioms are satisfied.

Effectively we have shown that any LK? proof with axioms from 7 can be
transformed into an anchored LK*4+IND proof with axioms only from ¥’. The
advantage of the latter type of LK proofs is that the cut formulas are now essen-
tially from ®UW’, instead of the instances of ®-INDUW. In the case of LK2-V!
proofs, the cut formulas are restricted to £ formulas (indeed, single-X¥ for-
mulas), while normally, an LK? proof with axiom from V! (Definition 2.22)
contains cut formulas which are in general not . This property of LK2-V!
proofs is important for our proof of the Witnessing Theorem for V! that we
present in the next subsection.

Proposition 6.45 (Subformula Property of LK2+IND). Suppose that ¥
and ® are sets of formulas, both of which are closed under substitution of terms

6.4. THE WITNESSING THEOREM FOR V! 141

for free variables. Suppose that 7 is an anchored LK>-U proof of S, where
the ®-IND rule is allowed. Then every formula in every sequent of w is a
sub-formula of a formula in S or in YU ®.

6.4.2 Proof of the Witnessing Theorem for V!

Now we prove the Witnessing Theorem for V', using the same method as for
the proof of the Witnessing Theorem for V© (Subsection 5.5.2). Here it suffices
to prove Lemma 6.32.

Suppose that 3Z¢(a@,d, Z) is a X1 theorem of V!, where ¢ is a BF for-
mula. Then by the Anchored LK2-V! Completeness Theorem 6.42, there is an
anchored LK%V proof 7 of 3Zp(a,a, Z). We may assume that 7 is in free vari-
able normal form, where now Definition 2.21 is modified to allow applications of
the X P-IND rule to eliminate a variable from a sequent (in addition to V-right
and 3-left). By the Subformula Property of LK2-V! (Proposition 6.45), the
formulas in 7 are 1 formulas, and in fact they are £ formulas or single-31
formulas. As a result, every sequent in 7 has the form (5.33):

3X101(X1), ..., 3X 0 (X), T — A, FV1¢b1 (Y1), ..., TVhn (V) (6.16)

for m,n > 0, where 6; and ; and all formulas in I' and A are =B,
We will prove by induction on the depth in 7 of a sequent S of the form
(6.16) that there is a finite collection of polytime functions

L={F,....,F,,...}
so that V1(L£) proves the (semantic equivalent of the) sequent
S =det 01(B1),- -, 0m(Bm), T — A, 1 (F1), ..., n(Fr) (6.17)

i.e., there is an LK?-V'(L) proof of S’. Here F; stands for F(a, d, 3), and @, a
is a list of exactly those variables with free occurrences in S. (This list may be
different for different sequents.) Also (i, ..., B are distinct new free variables
corresponding to the bound variables Xy, ..., X,,,, although the latter variables
may not be distinct.

We proceed as in the proof of the Witnessing Theorem for V° in Subsec-
tion 5.5.2 by considering the cases where S is an axiom of LK2 V! (i.e., an
axiom of V), or S is generated using inference rules of LK*V'. The case of
the non-logical axioms or the introduction rules for =, A, V and bounded number
quantifiers are dealt with just as in Cases I — VIII in the proof for V°. Here
we will consider the only new case, i.e., the case of the ZP-IND rule. This is
the one that causes the introduction of non-AC® witnessing functions.

Case IX: S is obtained by an application of the ZZ-IND rule. Then S is the
bottom sequent of

St AIX < r(b)e(h, X) — 3X <r(b+ (b +1,X), 11

S A, 3X < r(0)9(0, X) — 3X < r(t)w(t, X),II

142 CHAPTER 6. THE THEORY V! AND POLYNOMIAL TIME

where b does not occur in S, and 1 is 5.
By the induction hypothesis for the top sequent S1, there is a finite collection

L of polytime functions, and a polytime function G(b,3) € L (suppressing
arguments for the other variables present) such that V(L) proves the sequent
S1, which is

AL B < r(®) A (b, B) — |G, B) < r(b+1) Ap(b+1,G(b,8)), 1T (6.18)
Note that by the variable restriction, b and 8 do not occur in A’, and can only
occur in II' as arguments to witnessing functions F; (b, 3).

We define the witness function G(t, 3) for the formula 3X < r(t)y(t, X) in
the succedent of S by limited recursion (Definition 6.15) as follows:

G(0,8) = B (6.19)
G(z+1,8) = (G(z,G(z p)))<"E+HD (6.20)

Since G is a polytime function, by Cobham’s Theorem 6.16, G is also a polytime
function.

Let Fi(b,3),...,FL(b,8) € L be the witnessing functions in II'. Consider
the sequent

A |G, B)| < r(b) Ap(b, G(b, B) —
IGb+1,8) <r(0+ 1) Apb+1,G(b+1,38),11" (6.21)

which is obtained from (6.18) by substituting G(b,) for 3, and writing G(b +
1,8) for G(b, G(b,3)) (using (6.20)). In particular, IT” is obtained from II" by
replacing each witnessing function EFl (b, 3) for S; by F?(b, 3), where

FZ(b,B) = F}(b,G(b, B)) (1<i<m)

Let £ = LU{G, F2,...,F2}. Then since (6.18) is a theorem of LK*-V(£),
(6.21) is a theorem of LK*-V'(L’). Note that (6.21) is of the form

N, p(b,B) — p(b+1,3),11" (6.22)

where
p(b, B) = |G(b, B)| < 7(b) Ap(b, G(b, B))

Here p is a 28 (L) formula.

Notice that in IT”, b occurs (only) as an argument to F?. So we cannot apply
the IND rule to (6.22). Moreover, b should not occur in our desired sequent &’.
We remove b from II” by introducing the number function h:

h(B) = miny <t —p(y + 1,)

i.e., h has the X5 (L’)-defining axiom

hB)=y—y<tAy=tV-ply+1,6)AVz<yp(z+1,0) (6.23)

6.5. NOTES 143

Then h is a polytime function, and can be defined from p(b, 3) using limited
recursion. Define for each 7, 1 <1i < m,

Fy(B) = FZ(h(B),5)

Then F; is a polytime function. Let I’ be II” with each witnessing function
F2(b, B) replaced by F;(3). Also define (by composition):

G*(8) = G(t.9)
Now define S’ to be the sequent:
S'= N, [B] <7(0) AY(0, 8) — |GT(B)] < r(t) Ab(E,G7(B)),TT" (6.24)

Then &’ is of the form (6.17). It remains to show that &’ is provable in
LK2-V!(L£"), where £" is L' together with the new functions in &', i.e., £’ =
LU{hFy. ., B, G

First, by (6.19) the sequent (6.24) is equivalent to

A, p(0, 8) — p(t, B), 11" (6.25)
Then by replacing b in (6.22) with h(3), LK*-V'(L") proves
A, p(h(B), B) — p(h(B) + 1, 3), 11" (6.26)

Next, by the definition of h (6.23), LK*-V'(L") proves the sequents

p(0,8) — p(h(B),B8) and p(h(B) +1,8) — p(t,)

From this and (6.26), it follows that LK*-V'(£"”) proves (6.25), and hence
(6.24). O

6.5 Notes

Our theory V! is essentially Zambella’s Theory X7-comp in [?], and is a variation
of the theory Vi! in [?], which in turn is defined in the style of Buss’s second-
order theories [?]. It is a two-sorted version of Buss’s Si. Our ¥ formulas
correspond to strict 34 formulas, but this does not really matter, as shown in
Section 6.3.

The X1 Definability Theorem for V! is essentially due to Buss [?] who proved
it for his first-order theory S3. The interesting part of Theorem 6.35, that V'
proves the Z2-COMP axioms, is essentially Theorem 1 in [?].

144 CHAPTER 6. THE T R LYNOMIAL TIME

g
Q

Chapter 7

Propositional Translations

In Chapter 1 we presented Gentzen’s Propositional Calculus PK, and showed
that PK is sound and complete; i.e. a propositional formula is valid iff it is
provable in PK. In this chapter we introduce the general notion of propositional
proof system (or simply proof system) and study its complexity. In particular a
proof system is called polynomially bounded if there is a polynomial p(n) such
that for every n, every tautology of length n has a proof in the system of size
at most p(n). The question of existence (or nonexistence) of a polynomially
bounded proof system plays a central role in Theoretical Computer Science.

Each of the theories that we introduce is associated with a proof system.
Each X theorem in the theory can be translated into a family of tautolo-
gies which have polynomial size proofs in the corresponding proof system (the
propositional translation), showing that the proof system is sufficiently pow-
erful. On the other hand, the soundness of a proof system is provable in the
associated theory (the Reflection Principle), showing that the proof system is
not too powerful. In this chapter we will present the propositional translations
for VO and V'!. Here the corresponding proof systems are constant-depth Frege
(ACP-Frege), and extended Frege (eFrege).

We also generalize the propositional calculus to the quantified propositional
calculus (QPC), and introduce various proof systems, such as G}, for QPC. We
show that each £ theorem of V! can be translated into a family of valid QPC
formulas with polynomial size G} proofs.

7.1 Propositional Proof Systems

Recall (Chapter 1) that a propositional formula is built from the logical con-
stants L, T (for False, True), the propositional variables (or atoms) pi,pa, ...,
connectives =, V, A and parentheses (,). Also, a tautology is a valid proposi-
tional formula (Definition 1.1). We assume that tautologies are coded as binary
strings (or more properly finite subsets of N) using some efficient encoding.

Definition 7.1. TAUT is the set of (strings coding) propositional tautologies.

145

146 CHAPTER 7. PROPOSITIONAL TRANSLATIONS

A propositional proof system is a formal system for proving tautologies. An
example is the system PK introduced in Chapter 1, where a formal proof of a
formula A is tree of sequents, where the root is — A, the leaves are axioms,
and the sequent at each internal node follows from its parent sequent(s) by a
rule of inference. The soundness and completeness theorems state that TAUT
is exactly the set of formulas with formal PK proofs. Below we give a very
general definition of proof system, and then explain how to make PK fit this
definition.

Definition 7.2 (Propositional Proof System). A propositional proof sys-
tem (or simply a proof system) is a polytime, surjective (onto) function

F:{0,1}" — TAUT
If F(X) = A, then we say that X is a proof of A in the system F.
The length of A is denoted |A|, and the length (or size) of the proof X is
denoted |X|. A proof system F is said to be polynomially bounded if there is

a polynomial p(n) such that for all tautologies A, there is a proof X of A in F
such that | X| < p(|A]).

Informally, a proof system F' is polynomially bounded if every tautology has
a short proof in F'.

Example 7.3. PK can be treated as a proof system in the sense of Defini-
tion 7.2, because the function

PK(X) = {A if X codes a PK proof of — A

T (True) otherwise
s a polytime function.

It is not known whether PK is polynomially bounded. In fact, the existence
of a polynomially bounded proof system is equivalent to the assertion that
NP = co-NP.

Theorem 7.4. There exists a polynomially bounded proof system iff NP =
co-NP.

Proof. Since TAUT is co-NP-complete, we have NP = co-NP iff TAUT € NP.

(=) Suppose that F' is a polynomially bounded proof system. Then by defi-
nition, there is a polynomial p(n) such that

A€ TAUT < 3X < p(JA)F(X) = A

This shows that TAUT € NP: The witness for the membership of A in TAUT
is the proof X.

(<) If TAUT € NP, then there is a polytime relation R(Y, A), and a polyno-
mial p(n) such that

Ae TAUT < 3Y < p(JA)R(Y, A)

7.1. PROPOSITIONAL PROOF SYSTEMS 147

Define the proof system F' by

A if X codes a pair (Y, 4), and R(Y, A)
T otherwise

F(X)={

Clearly F' is a polynomially bounded proof system. O

The general feeling among complexity theorists is that NP # co-NP, so
the above theorem suggests that no proof system is polynomially bounded. In
fact some weak proof systems, including resolution and bounded depth Frege
systems (which is introduced below) have been proved to be not polynomially
bounded. However it seems to be very difficult to prove this for the system PK.
The system PK is p-equivalent (defined below) to a large class of proof systems,
called Frege systems, which includes many standard proof systems described
in logic text books. This adds interest to the problem of showing that PK is
not polynomially bounded.

Also because PK is p-equivalent to the Frege proof systems, we will continue
to work with PK, and will not define the Frege proof systems. Below we
introduce bPK (bounded depth PK) and ePK (extended PK). They belong
respectively to the families call bounded depth Frege and extended Frege.

Definition 7.5. A proof system Fi is said to p-simulate a proof system Fy if
there is a polytime function G such that F»(X) = F1(G(X)), for all X. Two
proof systems Fy and Fy are said to be p-equivalent if Fy p-simulates Fa, and
vice versa.

Thus F; p-simulates F5 if any given Fb-proof X of a tautology A can be
transformed (by a polytime function G) into an Fj-proof G(X) of A.

Exercise 7.6. a) Show that the relation on proof systems “Fy p-simulates
Fy7 is transitive and reflexive.

b) Show that if Fy p-simulates Fs, and Fy is polynomially bounded, then Fy
is also polynomially bounded.

7.1.1 Treelike vs Daglike Proof Systems

Proofs in the system PK are trees. This tree structure is potentially inefficient,
since each sequent in the proof can be used only once as a hypothesis for a rule,
and if it needs to be used again in another part of the proof, then it must be
rederived. This motivates allowing the proof structure to be a dag (directed
acyclic graph), since this allows each sequent to be used repeatedly to derive
others.

Definition 7.7 (Treelike vs Daglike). A proof system is treelike if the struc-
ture of each proof is required to be a tree. The system is daglike if a proof is
allowed to have the more general structure of a dag.

148 CHAPTER 7. PROPOSITIONAL TRANSLATIONS

In general a proof, whether treelike or daglike, can be represented as a se-
quence if “lines”, where each line is the contents of some node in the proof.
Each line is either an axiom or it follows from an earlier line or earlier lines in
the proof (its parent or parents), and the line might be annotated to indicate
this information. The proof is a tree if each sequent is a parent of at most one
line.

The notions treelike and daglike can be used as adjectives to indicate different
version of a proof system. For example, treelike PK is the same as PK, but
daglike PK has the same axioms and rules as PK, but allows a proof to take
the form of a dag.

The next result shows that for PK the distinction is not important. (But it
is important for the system G7 defined later in this chapter.)

Theorem 7.8 ([?]). Treelike PK p-simulates daglike PK.

Proof. Recall that to each sequent S = A;,..., Ay — Bi,..., By we associate
the formula As which gives the meaning of S:

As=-A1V...V=2A, VB V...V By (7.1)

Here it is not important how we parenthesize As (see Lemma 7.15). Also, there
is a treelike PK derivation, whose size is bounded by a polynomial in the size
of S, of S from the sequent — Ag.

Suppose that 7 = &y,...,S, is a daglike PK proof. We show:

Claim The sequence
— As,;; — (As, NAsy); ...; — (As, N...NAs,); — As,

can be augmented to a treelike PK proof whose size is bounded by a polynomial
in the length of 7.

Again it is not important how the conjunctions As, A ... A As, are paren-
thesized. The claim follows easily from the exercise below. O

Exercise 7.9. a) Show that the following sequents have polynomial size cut-
free PK proofs:

o — As, where S is any aziom of PK.
e ANB — B, for any PK formulas A, B.
e ANB — AN BAB, for any PK formulas A, B.

b) Suppose that S is derived from S (and Sz) by an inference rule of PK.
Show that the following sequents have polynomial size cut-free PK proofs,
for any formula A:

(] A/\AS1 — AN As.
e ANAs, NAs, — AN As.

7.1. PROPOSITIONAL PROOF SYSTEMS 149

The next result wil be useful later in the chapter.

Lemma 7.10 (PK Replacement Lemma). Let A(p) and B be propositional
formulas, and let A(B) be the result of substituting B for p in A(p). Then for
all propositional formulas By, Ba, the sequent

(B1 < Bz) — (A(B1) < A(B2))
has a PK proof of size bounded by a polynomial in its endsequent.

Exercise 7.11. Prove the lemma, using structural induction on A(p).

7.1.2 The Pigeonhole Principle and Bounded Depth PK

To show that a proof system F' is not polynomially bounded, it suffices to
exhibit a family of tautologies that requires F-proofs of super-polynomial size.
Similarly, to show that a proof system Fy does not p-simulate a proof system Fi,
it suffices to show the existence of a family of tautologies that has polynomial
size Fi-proofs, but requires super-polynomial size F5-proofs.

There is an important family of tautologies that formalizes the Pigeonhole
Principle, which states that if n + 1 pigeons are placed in n holes, then two
pigeons will wind up in the same hole. The principle is formulated using the
atoms

Di.j (for 0 <i<n,0<j<n)

where p; ; is intended to mean that pigeon i gets placed in hole j. First, the
negation of the principle is expressed as an unsatisfiable propositional formula
—|PHPZ+1, which is the conjunction of the following clauses:

(PioV..Vpin-1), 0<i<n (7.2)
(-pijVprj), 0<i<k<n,0<j<n (7.3)

Here, (7.2) says that the pigeon i is placed in some hole, and (7.3) says that two
pigeons i and k are not placed in the same hole.

The Pigeonhole Principle itself is equivalent to the negation of ﬁPHPZ‘H,
which by applying DeMorgan’s laws, can be expressed as follows.

Definition 7.12 (PHP? ™). The propositional formula PHP™ 1! is defined to

be
(A V ppo \V (Pij A Pr.j) (7.4)

0<i<n 0<j<n 0<i<k<n,0<j<n
Define PHP = {PHP" ™! . n > 1}.

Thus for each n > 1, PHP” ™ is a tautology.

In 1985 Armen Haken proved an exponential lower bound on the length of
any Resolution refutation of ﬁPHPZ‘H, one of the early important results in
propositional proof complexity. On the other hand, in 1987 Buss presented
polynomial size Frege proofs of PHPZ“. (Buss’s proofs are based on the fact

150 CHAPTER 7. PROPOSITIONAL TRANSLATIONS

that there are propositional formulas Ay (p1, ..., pn) of size polynomial in n which
express the condition that at least k of pi,...,p, are true.) It follows that
Resolution does not p-simulate Frege. (While it is easy to show that Frege
p-simulates Resolution.)

In fact the family PHP does not have polynomial size proofs in a stronger
proof system called bounded depth Frege (also known as ACO-Frege). We will
define bPK, a representative from these systems. First, we formally define the
depth of a formula. Here we think of the connectives A,V as having arbitrary
fan-in.

Definition 7.13 (Depth of a Formula). The depth of a formula A is the
mazximal number of times the connective changes in any path in the tree form

of A.

So in particular, the formula (p; V...V p,) has depth 1, for any n, no matter
how the parentheses are inserted. The depth of each clause (7.2) is 2, and the
depth of the conjunction -PHP?*! is 3.

Definition 7.14 (Bounded Depth PK). For each constant d € N we define
a d-PK proof to be a PK proof in which the cut formulas have depth at most d.
We define a bounded depth PK system (or just bPK) to be any system d-PK
ford e N.

Sometimes the definition for a d-PK proof is taken to be that all formulas
in the proof have depth < d. Our definition given above is more general: For
proving a formula of depth < d, the two definitions are the same, but here we
allow d-PK proofs of any formula (not just formulas of depth < d). Indeed, since
any tautology has a PK proof without using the cut rule (the PK Completeness
Theorem 1.8), it follows that d-PK is complete, for any d > 0.

In general, we are not interested in the exact length of bounded depth PK
proofs, but only interested in the length up to the application of a polynomial.
Because of this and the next lemma, we will ignore how parentheses are placed
in a disjunction (A; V...V 4,).

Lemma 7.15. If A is a formula of depth d which is some parenthesization of
(B1 V...V B,), and A’ is another such parenthesization, then there is a d-PK
proof of the sequent A — A’ consisting of O(n?) sequents, where each sequent
has length at most that of the sequent A — A’.

For example, we may have
A= (Bl \Y (B2 vV Bg)) \ B4)7 A/ = (Bl \Y (BQ \ (Bg \ B4)))

Proof. By repeated use of the rule V-left, it is easy to see that there is such a
d-PK proof of the sequent
A— Bl, ceey Bn

Now repeated use of V-right (with exchanges) gives the desired d-PK proof. O

7.2. TRANSLATING V° TO BPK 151

In 1988 Ajtai proved that PHPZ‘F1 does not have polynomial size bounded
depth Frege proofs. This was strengthened by two groups a few years later to
prove the following exponential lower bound, which remains one of the strongest
lower bound results in propositional proof complexity.

Theorem 7.16 (Bounded Depth Lower Bound Theorem [?]). For every
d € N, every d-PK proof of PHPZJrl must have size at least

d

2"
where € = 1/6.
In view of Buss’s upper bound for PHPZ‘H, we have

Corollary 7.17. No bounded depth Frege system p-simulates any Frege sys-
tem.

The lower bound results in propositional proof complexity can be used to
obtain independence results in the theories of bounded arithmetic. We will
explain this in the next sections.

7.2 Translating V° to bPK

In this section we give evidence that the propositional proof system bPK cor-
responds naturally to the theory V. Intuitively a VO proof of a ¥ formula
is able to use concepts from the complexity class AC®. Recall from Subsec-
tion 4.1 that a language in nonuniform AC? is specified by polynomial size
family of bounded depth formulas. Thus the lines in a polynomial size family
of bPK proofs express AC" concepts.

7.2.1 Translating ¥ Formulas

We begin by showing how to translate each £F formula ¢ (7, X) into a polyno-
mial size bounded depth family

(@, X)|| = {o(&, X)[m;] - m,7 € N}

of propositional calculus formulas, and then we show how to translate a V°
proof of a £ formula into a polynomial size family of bPK proofs. Later
we will show how to translate in general a bounded two-sorted formula into a
polynomial size family of quantified propositional calculus. Here, the depth of
each formula in the family [|¢(Z, X)| is bounded by a constant which depends
only on .

We first explain the translation for a 3F formula ¢(X) which has a single
free (string) variable X. We introduce propositional variables p{, ps¥, ..., where
pX is intended to mean X (7). The translation has the property that for each
n € N, p(X)[n] is valid iff the formula VX (|X| = n D ¢(X)) is true in the

152 CHAPTER 7. PROPOSITIONAL TRANSLATIONS

standard model, where n is the n-th numeral. More generally, there is a one-
one correspondence between truth assignments satisfying ¢(X)[n] and strings
X that satisfies ¢(X) and | X| = n.

Notation We use val(t) for the numerical value of a term ¢, where ¢t may have
numerical constants substituted for variables.

We define ¢(X)[n] inductively as follows. For the base case, ¢(X) is an
atomic formula. Consider the following possibilities.

o If p(X) is X = X, then ¢(X)[n] =qet T.
o If o(X)is T or L, then p(X)[n] =der ©(X)
If p(X) is ¢(|X|) = u(|X]), then

e Similarly if ¢(X) is t(|X]) < (| X)).
If p(X) is X (¢(|X])), then we set j = val(t(n)). Define o(X)[0] =der L,
and for n > 1:

pJX ifj<n-1
o(X)n] =gt T ifj=n—1
L ifj>n—1

For the induction step, ¢(X) is built from smaller formulas using a propo-
sitional connective A,V,—, or a bounded number quantifier. For A,V,— we
make the obvious definitions: If both (X)[n] and n(X)[n] are not the logical
constants 1 or T, then

P(X) An(X)[n] =aer (Y(X)[n] An(X)[n])
P(X) Vn(X)n] =aer (Y(X)[n]Vn(X)n])
(X)) [n] =dger ~p(X)[n]

Otherwise, if ¥(X)[n] (or n(X)[n]) is a logical constant L or T, then we simplify
the above definitions in the obvious way, e.g.,

(T An(X)[n]) is simplified to n(X)[n], (W(X)[n] A L) to L,

etc.
For the case of bounded number quantifiers, ¢(X) is Jy < (| X|) ¥(y, X) or
Yy < t(|X]) ¥(y, X). We define

By < (X)) ¢y, X))n] =aer \/w(z,X)[n]

(Vy < t(X[) ¥(y, X))[n] =aer [\ (i X)n]

i=0

7.2. TRANSLATING V° TO BPK 153

where m = val(t(n)), and recall that ¢ is the i-th numeral. Also, if any of the
(i, X)[n] is translated into T or L, we simplify ¢(X)[n] just as above.
Recall that s < ¢ stands for s <t As # t. For val(t(n)) > 1 we have

Gy < t(X)) ¢y, X))[n] <\ ¢ X)h]
1=0
m—1

(Vy < t(X]) ¢y, X))[n] < N\ ¢ X)h]
1=0

In addition,
(Fy <09y, X))n] = L, (Vy<04(y, X))n] =T

Recall that (z,y) is the pairing function, and we write X (z,y) for X ({z,y)).
We formulate the Pigeonhole Principle using a 3 (£%) formula PHP(y, X)
below. Here y stands for the number of holes, and X is intended to be a 2-
dimensional Boolean array, with X (¢, j) holds iff pigeon i gets placed in hole j
(for0<i<y,0<j<y).

Example 7.18 (Formulation of PHP in Two-Sorted Logic).

PHP(y, X) = Vi < y3j < yX(i,5) D
Fi <y3k <y3j <y(i # kAX(G5) ANX(E,5) (7.5)

Then for all 1 <n € N, PHP(n, X)[1 + (n,n — 1)] is just PHP ™! (Defini-
tion 7.12).

In general, we can define the translation of a £F(£2) formula (7, X) (i.e.,
with multiple free variables of both sorts). Then for each string variable X}
we associate a list of propositional variables pé(k p{(¥ ..., and we give each free
number variable a numerical value. Thus the family (&, X)[m; 7] is defined so
that it is valid iff the formula

VAYX, (/\ 1Xkl =) D (i, X)

is true in the standard model N,. Here for the base case we have to handle an
additional case, i.e., where o(Z,)?) = X; = Xy, where i # k. We reduce this
case to other cases by considering ¢ to be its equivalence given by the LHS of
the axiom SE (Figure 5.1):

[Xl = [Xi| AVe < [XG|(Xi(2) = Xi(2))

Lemma 7.19. For every X8 (L£%) formula o(Z, X), there is a constant d € N
and a polynomial p(Mm, 1) such that for all M, € N, the propositional formula
o(Z, X)[m;] has depth at most d and size at most p(m,).

Proof. The proof is by structural induction on ¢, and is straightforward. [

154 CHAPTER 7. PROPOSITIONAL TRANSLATIONS

Now we come to the main result of this section:

Theorem 7.20 (V° Translation Theorem). Suppose that o(&, X) is a T8
formula such that VO +YavX (&, X). Then the propositional family |o(Z, X)||
has polynomial size bounded depth PK proofs. That is, there are a constant d
and a polynomial p(m,) such that for all 1 < m, 7 € N, tp(f,f)[?ﬁ;ﬁ] has a
d-PK proof of size at most p(m,).

In view of the Bounded Depth Lower Bound Theorem 7.16 above, we have:

Corollary 7.21 (Independence of PHP from V°). The true £F formula
VyvX PHP(y, X) (see Ezample 7.18) is not a theorem of V.

To prove the V° Translation Theorem, the idea is to translate each sequent in
an LK? proof of ©(d, @) into a bPK sequent which has a short proof. The issue
here is that an LK?-V? proof may contain 3 formulas (i.e., the 3F-COMP
axioms), whose translation we have not discussed. We introduce the theory Vo
which plays the same role for V as V! does for V1. In the next subsection we
define V and the associated sequent system LK?-V° (an analogue of LK%-V?),
and use these to prove the V? Translation Theorem.

7.2.2 V% and LK2-V?°

Definition 7.22. The theory VO has vocabulary L% and is aziomatized by
2-BASIC and the £F-IND aziom scheme.

Thus V? is the same as V°, except the BB-COMP axioms are replaced by
the ZF-IND axioms. By Corollary 5.8, V° proves the 3F-IND axiom scheme,
hence V° C V. B
_ Unlike the \71, V! case, unfortunately V° is not the same as VO, because
VO does not prove the ZF-COMP axioms. To see this, expand the standard
(single-sorted) model N to a £2 structure M by letting the string universe be
{2}, where |@] = 0. Then it is easy to see that M is a model of V°, but not of
VY. Nevertheless, we can prove a weaker statement.

Definition 7.23 (P-Conservative Extension). Let ® be a set of formulas
in the vocabulary L. Suppose that T is a theory over L, and T’ is an extension
of T (the vocabulary of T' may contain function or predicate symbols not in L).
Then we say that T' is a ®-conservative extension of T if for every formula
peD, if T'F oy thenTF .

So if @ is the set of all £ formulas, then 7" is ®-conservative over 7 precisely
when it is conservative over 7. For the case of V? and V°, we can take ® to be
»5.

Lemma 7.24. VY is 8 -conservative over of VO.

By our definition of semantics (Subsection 4.2.2 and Section 2.2), this is

the same as saying that VO is VEF-conservative over VO, where VB is the
universal closure of £ (Definition 2.23).

7.2. TRANSLATING V° TO BPK 155

Proof. We noted earlier that VO C Vo (by Corollary 5.8). The proof that every
38 theorem of VY is also provable in VO is like the proof that VY is conservative
over IA((Theorem 5.9). We use the following lemma, which is proved in the
same way as Lemma 5.10 (any model of IAj can be expanded to a model of
V?). In the present case, U} is defined as before in (5.5), except that now the
formula ¢ is allowed parameters from Us.

Lemma 7.25. Every model M = (Uy,Us) for VO can be extended to a model
M = (U], U of VO, where Uy = U, and Uy C Uj.

It follows that if o(Z, X) is a & formula with all free variables indicated,
and @ are any elements in U; and & are any elements in Us, then

MEg(@a i M@ a)

(The proof actually shows that VO is ®-conservative over VO for a set ® larger
than ¥F i.e., ® contains formulas with unbounded number quantifiers and
without string quantifiers. But we do not need this fact here.) O

The sequent system LK VO is analogous to LK2-V!:

Definition 7.26 (LKQ-\NfO). The rules of LK2-VO consist of the rules of LK?
(Section 4.4), together with the XE -IND rule (Definition 6.38). The non-logical
azioms of LK?-V are sequents of the form — A, where A is any term sub-

stitution instance of a 2-BASIC aziom (Figure 5.1) or an LK? equality aziom
(Definition 4.25).

Recall the notion of an anchored LKV proof from Definition 6.40, and
the Anchored Completeness Lemma for LK2+IND 6.42. We are now ready to
prove the VO Translation Theorem.

7.2.3 Proof of the Translation Theorem for V?°

By assumption, ¢(@, @) is a ¥ theorem of VY. By the Anchored Completeness
Lemma for LK24+IND 6.42, there is an anchored LK2-VO proof 7 of o(d, d).
We may assume that 7 is in free variable normal form, where (as in Subsec-
tion 6.4.2) we modify Definition 2.21 to allow the rule £F-IND to eliminate a
variable. By the Subformula Property of LK*+IND (Proposition 6.45), every
formula in every sequent of 7 is F. So every sequent S in 7 has the form

¢1(5,g),,¢k(5,g) — 771(&3)7" '7”@(575)

-,

where 1);, n; are & formulas, and (5, () are all the free variables in S (which
may be different for different sequents). We will prove by induction on the
number of lines above this sequent in 7 that there are a constant d and a
polynomial p depending on 7, such that the propositional sequent

-, - =

S[m; 7] =det s i (0, A7), — (b, B) [7,

156 CHAPTER 7. PROPOSITIONAL TRANSLATIONS

has a d-PK proof of size at most p(m, i), for all m, 7 € N.

For the base case, S is a non-logical axiom of LK2-VY. Thus S is of the
form — 7, where 7 is a term substitution instance of the 2-BASIC axioms,
or § is an instance of the Equality axioms (Definition 4.25). First, any string
variable X can occur in an instance of B1-B12 only in the context of a number
term | X|. Since these axioms are true in the standard model N,, they translate
into the propositional constant T. Therefore if 7 is an instance of B1-B12,
then — 7 translates into an axiom of PK.

Instances of L1 and L2 translate into axioms of PK. Consider, for example,
an instance of L1: L

n(b,y,8) =~(t) 2t < |yl
where b, 3 denote all (free) variables occurring in the L2 -number term t =
t(b, |y, 13]). By definition, in order to get n(b,~, 3)[/; n, 7], first we obtain the
formulas
p; DT ifi<n-1
TOT ifi=n—-1
1>l ifi>n-1

where i = val(t(m, n,)). Simplifying these formulas results in

77(57 v, g) [’I”?L, n, ﬁ] —def T

By definition, any instance of the axiom SE translates into a formula of the
form A D A, where A is the translation of the LHS of SE. This tautology has
a short cut-free derivation PK.

Similar (and simple) arguments show that if S is an instance of any of the
Equality Axioms, then its S[m;n, 7] has a short d-PK proof, for some small
constant d. (This constant accounts for the fact that we translate X =Y using
the LHS of SE, which translates into a propositional formula of depth 3.)

For the induction step, we consider the rules of LK>-VY. Since all formulas
in 7 are £, the string quantifier rules are never applied. If S is obtained from
S1 (and S2) by one of the introduction rules for the connectives A, V and —,
then we can apply the same rules to get the PK proof of S[m; | from the PK
proof(s) of Sy[m; 7] (and Sz[m;7]). No new cut is needed for this step.

For the case of the cut rule, the cut formula 1/1(5, ﬁ) is 3P, and since 7 is
in free variable normal form, no variable is eliminated by the rule. The corre-
sponding PK proof also uses the cut rule, where the cut formula is a propo-
sitional translation v (b, 3)[m; @] of this formula, which according Lemma 7.19
has bounded depth d independent of i, 7.

Consider the case of the number V-right. Suppose that the inference is

S A—TLe<t(b|8]) D nb,cf)

=

where ¢ does not occur in §. By the induction hypothesis, there are a constant
d € N and a polynomial p(m,i,7) so that for each (m,i,7), there is a d-PK

7.2. TRANSLATING V° TO BPK 157

proof [, i;7] of size < p(,i,7) of the sequent S [m, i; 7]:

Afri] — Tl], (e < t(b, 1)) b3 73] 2 (b, e, 5) i, i3 7]
Note that ¢ < t(b, |3]) [, i 7] is just T for i < r, where r = val(t(, 7). So for
i <r, S1[m, ;1] is

Thus S[m; 7i] is obtained from S [m, i; 7] (fori = 0,1, ..., r) by the A-right rule.
No new instance of the cut rule is needed. This proof of S[m; 7] has size slightly
more than the sum of the (m -+ 1) proofs m[m, i;7], and m is a polynomial in
m, 7. Hence the resulting proof is bounded in size by a polynomial in 13, 77.
The case 3-left is similar, and the cases V-left, 3-right are straightforward.

These are left as an exercise.
Exercise 7.27. Take care of the other number quantifier cases.
Finally we consider the case that S is obtained by the ZF-IND rule:

i _ A (e) — e+ 1),
S A, 9(0) — (1), 11

where ¢ does not occur in_»S , and we have suppressed all free variables except ¢
(here t is of the form ¢(b, | 3])). By the induction hypothesis, there are polynomial
size d-PK proofs w[m, i; 1] of the propositional sequents

Sl [T?L, 7;; ﬁ] —def A[m7 ﬁ]u 1/1(0) [’I”?L, i; ﬁ] - ¢(C + 1)[17_’}, i; ﬁ]7 H[’Iﬁ, ﬁ]
for some constant d € N. Let r = val(t(m,7)). The sequent S translates into
S] =aer A[m; i, (0) [i) — o (r) [ms 7], TT[mi; 7]

Now if r = 0 then S[m; 7] is derived from the following axiom of PK simply by
weakening:

¥(0)[17; 73] — 9(0)[173; 7]

For r > 0, we combine these proofs w[m, ;7] for i = 0,1,...,7 — 1 by using
repeated cuts, with cut formulas ¥(i)[m;#], 1 < i < r — 1. By Lemma 7.19,
these formulas have depth bounded by a constant depending only on . Also,
given that each w[m, ;7] has a polynomial bounded size, the proof =[m;i] is
easily shown to be bounded in size by some polynomial in 773, 7. This completes
the proof of the Translation Theorem for V. O

158 CHAPTER 7. PROPOSITIONAL TRANSLATIONS

Note that the IF-IND axioms are 3F. So in fact we could have defined
LK?V? to include the ZF-IND aziom scheme instead of the ZF-IND rule.
Here we can use the following version of the ZF-IND axiom:

(p(0) AVz < t(p(x) D p(z+1))) DVz < tp(2) (7.6)

where ¢ is any term not involving = or z, and ¢ is a BF formula which may
contain other free variables.

In this way, the case of the ZZ-IND rule in the induction step of the proof
above is replaced by two cases: One for the base case where the axiom is an
Egg -IND axiom, and one for the induction step, in the case of the cut rule where
the cut formula is an instance of the ZF-IND axioms. The latter is dealt with
just as any other instance of the cut rule. Handling the former is left as an
exercise.

Exercise 7.28. Show directly (without using Theorem 7.20) that the translation
of (7.6) above has polynomial size d-PX proofs, where d depends only on ¢.

7.3 Quantified Propositional Calculus

Quantified Propositional Calculus (QPC) is an extension of the Propositional
Calculus (Chapter 1) which allows quantifiers over propositional variables. In
this section we will discuss the sequent system G which extends Gentzen’s
system PK by the introduction rules for the propositional quantifiers. There
are subsystems of G that relate to the first-order theories in the same way that
bPK relates to V. Here we will show this relationship between V! and the
subsystem G7 of G.
Formally, QPC formulas (or simply formulas) are built from

e propositional constants T, L;
e free variables p,q,7,.. .;

e bound variables x,y, z, . . .;

e connectives A, V, —;

e quantifiers 3,V;

e parentheses (,);
according to the following rules:

a) T, L, and p are atomic formulas, for any free variable p;
b) if ¢ and 9 are formulas, so are (¢ A), (p V), —p;

c¢) if p(p) is a formula, then Vze(z) and Jxp(x) are formulas, for any free
variable p and bound variable x.

A QPC sentence (or just sentence) is a QPC formula with no occurrence of
a free variable.

7.3. QUANTIFIED PROPOSITIONAL CALCULUS 159

Example 7.29. The following is a QPC formula:
Va3y[(~y V (mz Ap)) A (y VoV -p)] (7.7)

A truth assignment is an assignment of truth values F', T' to the free variables.
The truth value of a QPC formula is defined inductively, much as in the case
of the Propositional Calculus. Here in the induction step, for the case of the
quantifiers we use the equivalences

Vop(z) < (p(L) Ap(T)) and Fzp(z) < ((L) vV e(T))

A QPC formula is wvalid if it is true under all assignments. The notions of
satisfiability and logical consequence (Definition 1.1) generalize to QPC in the
obvious way. So, for example, the formula (7.7) is valid (choose y < (—x A p)).

It is a standard result in complexity theory that the problem of determining
validity of a formula of QPC is PSPACE complete. Furthermore, it is natural
to define a language L C {0,1}* to be in nonuniform PSPACE if there is a
polynomial size family (¢, (p)) of QPC formulas such that ¢, (p1, ..., pn) defines
the strings of length n in L. For this and other reasons, G (defined below) is
a natural choice for a QPC proof system corresponding to the complexity class
PSPACE. However if the number of quantifier alternations in a QPC formula
is limited by some constant k, then the validity problem for such formulas is in
the polynomial hierarchy.

Definition 7.30 (X! and IT7). X = II{ is the class of quantifier-free formulas
of QPC. For i > 0, X7, (resp. II{) is the set of all formulas which have
a prenex form where there are at most i alternations of quantifiers, with the
outermost quantifier being 3 (resp. V) if there are exactly i alternations.

Thus
S=Ifc..cx/nIlicX]UIl{c X! NII}, C...

Also, checking the validity of a X7 (resp. II7) sentence is 3¥¥-complete (resp.
IT?-complete), for i > 1. For ¢ = 0, this problem is NC!-complete.

7.3.1 QPC Proof Systems

We generalize Definition 7.2 in the obvious way to define the notion of QPC
proof system where now F maps {0,1}* onto the set of valid QPC formulas.
Since the validity problem for QPC formulas is complete for PSPACE, the
following result is proved in the same way as Theorem 7.4.

Theorem 7.31. There exists a polynomially bounded QPC' proof system iff
NP = PSPACE.

The assertion NP = PSPACE is considerably more implausible than NP =
co-NP, but still the existence of a polynomially bounded QPC proof system is
open.

The notions p-simulate and p-equivalent from Definition 7.5 apply in the
obvious way to QPC proof systems.

160 CHAPTER 7. PROPOSITIONAL TRANSLATIONS

7.3.2 The System G

The QPC proof system G is a sequent system which includes the axioms and
rules for PK, where now formulas are interpreted to be QPC formulas. It also
has the following four quantifier introduction rules:

Y introduction rules:

V-left V-right
VeA(z), T — A I — A,VzA(x)
3 introduction rules:
A(p), I — A r — A LA(B
(7) I-left (B) J-right
JzA(x),T — A I — A dzA(2)

Restriction In the rules V-right and 3-left, p is a free variable called an
etgenvariable that must not occur in the bottom sequent. For the rules V-
left and 3-right, the formula B is called the target formula and may be any
quantifier-free formula (with no bound variables).

Proofs in G are dags of sequents, which generalizes the treelike structure of
LK proofs (see Subsection 7.1.1).

Theorem 7.32 (Soundness and Completeness of G). A sequent of G is
valid iff it has a G proof. In fact, valid sequents have cut-free G proofs.

Proof. Soundness is easy: Provable sequents of G are valid because the axioms
of G are valid, and the rules preserve validity.

For completeness, we first point out that a valid quantifier-free sequent of
QPC has a cut-free G proof, by the PK Completeness Theorem 1.8. In general,
we prove the result by induction on the maximum quantifier depth of the formu-
las in the sequent (and then induction on the number of formulas in the sequent
of maximum quantifier depth). We have just proved the base case, where the
sequent is quantifier-free. For the induction step, the interesting cases are where
the sequent is of the form

Ve A(z), T — A or I — A, 3zA(x)
These two cases are dual. So consider the sequent
VzA(z), T — A (7.8)

We can reduce the quantifier depth in Yz A(x) by showing that (7.8) is valid iff
the sequent
A(T),A(L),T — A (7.9)

is valid. O

Exercise 7.33. Carry out the details in the induction step in the above proof
of the completeness of G.

7.3. QUANTIFIED PROPOSITIONAL CALCULUS 161

The proof above shows that actually G remains complete when the target
formulas B in V-left and 3-right are restricted to be in the set {T, L}. In fact,
the restricted system is p-equivalent to G. This can be shown with the help of
the following exercise.

Exercise 7.34. Show that the following sequents has cut-free G proofs of size
O(|A(B)|?), where A and B are any QPC formulas.

a) B, A(B) — A(T)
b) A(B) — A(L), B
¢) B,A(T) — A(B)
d) A(L) — A(B),B

(Hint: Prove by structural induction on A for a and ¢ simultaneously. Similarly

forb and d.)

Exercise 7.35 ([?]). Let KPG be the modification of G resulting from relazing
the condition that the target formula B in the rules V-left and 3-right must
be quantifier-free (so B is allowed to be any QPC formula). Show that G p-
simulates KPG. Show that the same holds even if G is restricted so that the
target formulas B in the rules V-left and 3-right are restricted to be in the set
{T,L}. Use Exercise 7.34.

The original system G defined in [?] is actually KPG as defined in the above
exercise. Thus the original G and our G are p-equivalent.

The proof of completeness in Theorem 7.32 could yield proofs of doubly
exponential size. For example if the formula VxA(z) in (7.8) begins with &
universal quantifiers, then eliminating them all using (7.9) would yield 2* copies
of A, and the resulting valid sequent could require a proof exponential in its
length. We now prove a singly-exponential upper bound for G proofs which
allow cuts on atomic formulas.

We say that an occurrence of a symbol in a formula is positive (resp. negative)
if it is in the scope of an even (resp. odd) number of —’s.

Definition 7.36 (Sequent Length). An occurrence of a connective ¢ in a
sequent I' — A is general if ¢ is A orV and occurs positively in /A or negatively
i T, or if ¢ is V or 3 and c occurs negatively in A or positively in T'. A
restricted occurrence is defined similarly, except A and I are interchanged. For
a sequent S, |S|g (resp. |S|-) denotes the number of occurrences in S of general
connectives (resp. —’s and restricted connectives). Also |S| denotes the total
number of occurrences of symbols in S, counting variables p,q,r,..., T, Yy, z,...
as one symbol each.

Theorem 7.37. If S is a valid sequent in the language of G with n distinct
free variables, then S has a treelike G proof with O(]S|,2!51s%") sequents (not
counting weakenings and exchanges) in which all cut formulas are atomic and
each sequent in the proof has length O(|S|). If S is quantifier-free, or if all
quantifier occurrences in S are general, then the proof is cut-free and the bound
is improved to O(]S|,2!519).

162 CHAPTER 7. PROPOSITIONAL TRANSLATIONS

Proof. Notation We say that a free variable p is determined in a sequent
Ai,...,Ay, — By,...By if one of the formulas A; or B; is the atomic for-
mula p. A sequent is determined if all of its free variables are determined.

Note that if all free variables of a sequent are determined, then there is
at most one truth assignment to these free variables which fails to satisfy the
sequent.

Lemma 7.38. If S is a valid sequent with all of its free variables determined,
then S has a treelike G proof with O(|S|,2!%ls) sequents (not counting weaken-
ings and exchanges) in which all cut formulas are atomic and each sequent in
the proof has length O(|S|). If S is quantifier-free or if all quantifier occurrences
in S are general, then the same bound applies even if not all free variables in S
are determined, and further the proof is treelike and cut-free.

The second sentence of Theorem 7.37 follows immediately from the lemma.
We now prove the first sentence of the theorem from the lemma. Let F' be the
set of free variables in S. For each of the 2" subsets K of F' let Sk be the sequent
resulting from S by appending a list of the variables in K to the antecedent and
the variables in F' — K to the consequent. For example if S = T' — A and
F = {p1,p2,p3} and K = {pa}, then Sk is

p27F I A7p17p3

Each Sk is valid and determined, and hence by the lemma has a proof with
O(|S|,2%ls) sequents. Then S can be derived by combining these 2" proofs
with 27~! atomic cuts. O

Proof of Lemma 7.88. We use induction on the total number of connectives
A,V,—,V,3in S. The base case is immediate, since any valid sequent with no
such connectives is a subsequent of an axiom.

For the induction step, we have a case for each of the connectives A, V,—,V, 3.
We consider a formula A occurring in the consequent: The argument for the
antecedent is dual. If A is of the form —B then S has the form I' — A, —B.
Let S” be the sequent B,I' — A. Then S’ is valid (and determined if S is)
and |S’|, = |5, — 1, so the induction hypothesis applies and S can be derived
from S’ by the rule —-right. The case in which A has the form BV C is similar,
using the rule V-right.

If S has the foom I' — A (BAC), then ' — A, B and I' — A, C are
each valid (and determined if S is) and have reduced |S|,4, and S can be derived
by A-right from these two sequents.

Suppose that S is ' — A,VzA(z). Then S’ =T — A, A(p) is valid,
where p is a new free variable. Further |S’|; = |S]; — 1 and S follows from S’
using V-right. This takes care of the second sentence in the lemma, but for
the first sentence there is the problem that S’ may not be determined, even
if S is. But each of the sequents p,I' — A, A(p) and T' — A, A(p),p is
valid and determined if S is, and by the induction hypothesis can be proved

74. THE SYSTEMS G; AND Gj 163

with O(|S|,2/%ls=1) sequents. Further S can be derived from these two sequents
with a cut on p and V-right, making a total of O(|S|,2!5ls 4-2) = O(]S|,.2%1s)
sequents.

Finally consider the case in which S is ' — A 3z A(z). Since the occur-
rence of 3 is restricted, the second sentence of the lemma does not apply, so
we may assume that S is determined and valid. We claim that one of the two
sequents I' — A, A(T) and I' — A, A(L) is valid (they are both determined).
To see this, note that since S is determined there is at most one truth assign-
ment 7 to the free variables of S that could falsify I' — A. If no such 7 exists,
we are done. Otherwise 7 satisfies 3z A(x), and hence 7 satisfies either A(T) or
A(L). Hence we may apply the induction hypothesis to one of these sequents,
and obtain S using J-right. 0

7.4 The Systems G; and G}

Definition 7.39 (G; and G}). For each i > 0, G; is the subsystem of G in
which cut formulas are restricted to X! UTI!. The system G} is treelike G;.

The following result is immediate from Theorem 7.37.
Corollary 7.40. Every valid QPC sequent has a G§ proof of size 20(131),

Theorem 7.41. For i > 0, G}, p-simulates G;, when the theories are re-
stricted to proving X7 formulas. Treelike G p-simulates G.

Proof. The argument is similar to the proof of Theorem 7.8, except for the
quantifier rules V-right and 3-left we can no longer argue that the conclusion
is a logical consequence of the hypotheses. However for each rule deriving a
sequent S from a sequent S; we know that VAg is a logical consequence of
VAg,, where VB is the universal closure of B. Thus we replace the Claim in
the earlier proof by the arguing that if # = S1,...,.S, is a daglike G proof then

— VAg,; — (VAg, AVAg,);...; — (VAs, A...ANAg,); — Ag, (7.10)

can be augmented to a treelike G proof whose size is bounded by a polynomial
in the length of 7, and in which cut formulas are restricted to subformulas of
formulas in the sequence. The theorem then follows from the fact if the all
formulas in the sequent S are in 37 UTI] then the formula VAg is in II7 .
Our new claim follows from Exercise 7.9 b), the fact that for every axiom S
of G, — VAg has an easy G proof, and the exercise below. d

Exercise 7.42. a) Suppose that if S is derived from S1 (and Sa2) by an in-
ference rule of G. Show that the following sequents have polynomial size
cut-free G proofs for any formula A. (For the PK rules it is helpful to
use Exercise 7.9 b).)

164 CHAPTER 7. PROPOSITIONAL TRANSLATIONS

° A/\VA51 — AAVAg.
(] A/\V/ls1 /\VA52 — AAVAg.

b) Show that for every sequent S =T — A, the sequent
VAg,I' — A
has a polynomial size cut-free treelike G proof.
The next result strengthens Theorem 7.41 for the case i = 0.

Theorem 7.43 ([?]). G§ p-simulates Go restricted to proving prenex 39 for-
mulas.

Proof Sketch. Note that the proof of Theorem 7.8 (treelike PK p-simulates
daglike PK) does not adapt to this case, because that argument requires cuts on
conjunctions of earlier lines in the proof, which now would involve quantifiers.
Instead, following [?], we argue that a form of Gentzen’s Midsequent Theo-
rem can be made to work in polynomial time. Let m be a G¢ proof of a sequent

— Jzy . T, (P21, - o Tm) (7.11)

where C(p, 21, . .., T) is quantifier-free. Since all cut formulas in 7 are quantifier-
free, it follows that every quantified formula in 7 is an ancestor of the conclusion,
and must occur on the RHS and must have the form

g ... I C(P, Br. .. Br—1, %k, ..y Tm) (7.12)

for some quantifier-free formulas By, ..., Bx_1 and some k, 1 < k < m. Let us

call a formula a w-prototype if it is quantifier-free and is the auxiliary formula

in an 3-right rule (so it is the quantifier-free parent of a formula of the form

(7.12), with £ = m 4+ 1). Thus a w-prototype has the form C(p, By ... Bp,).
The Herbrand 7 disjunction Sy is the sequent

—>A1,...7Ah

where A1,..., Ay is a list of all the m-prototypes. It turns out that S is a valid
sequent, and in fact 7 can be transformed into a PK proof #’ of S, in polynomial
time. To form 7’ from m, delete each quantified formula (i.e. each formula of
the form (7.12)) from 7 and add formulas from the list Ay,..., Aj to the RHS
of each sequent so that each w-prototype is in the succedent of every sequent.
The result can be turned into a PK proof of S; by deleting applications of the
rule 3-right, and adding weakenings, exchanges, and contractions.

We may assume that the PK proof 7’ of S, is treelike, by Theorem 7.8.
Now ' is easily augmented to a treelike proof of (7.11) using the rules 3-right,
exchange and contraction. |

74. THE SYSTEMS G; AND Gj 165

The notion of free variable normal form (Definition 2.21) readily extends to
G proofs. In fact every treelike G proof can be easily transformed to one in
free variable normal form by renaming variables and substituting the constant
L for some variables.

We now show that for G} we may as well assume that all cut formulas are
prenex X7

Theorem 7.44 ([?]). Let Gf be G} with cut formulas restricted to prenex 37
formulas. Then G} p-simulates G} .

Proof. Fixi > 1. Let m be a G} proof. We may assume that is in free variable
normal form.
Consider an application of the cut rule in 7, with cut formula A.

r—AA AT — A
I —A

We may assume that A is 37, since if A is IT] we can simply insert —-introduction

steps just before the cut so that the cut formula becomes —A. Our task is to
show that this cut on A can be replaced with a cut on A’, where A’ is some
prenex form of A. To do this we will replace the tree derivation of ' — A, A
with a similar derivation of I' — A, A’, and similarly replace the derivation of
A,T — A by one of A’,T' — A.

The proof of the Prenex Form Theorem 2.57 lists ten equivalences as follows:

(VxB A C) < V(B AC) (VB V C) < Vx(BV C)
(C AVzB) < Vz(C A B) (CVVzB) < Vz(C V B)
(FzBAC) <= Fx(BAC) (3zBV () = Fx(BV ()
(C ANJxB) < Jx2(C A B) (CVv3IxB) < 3z(C V B)

VB <= dz—-B —dxB <= Vx—B

(where x does not occur free in C').

To put a formula in prenex form (which is in the same class X% or IT] with
the original formula), it suffices to successively transform a formula A(B(Z)) to
A(B'(Z)), where B <= B’ is one of the above equivalences and Z is a list of
the variables in B which are bound by quantifiers in A.

Consider a derivation of I' — A, A(B(%)) or A(B(%)),I' — A in 7. If
we trace the ancestors of A(B(Z)) up through this derivation, each path either
ends when the ancestor is formed by a weakening, or it includes an occurrence
of B(D), where D is the list of target formulas and eigenvariables used by the
quantifier introduction rules in forming A(B(%)) from B(D).

Thus it suffices to show, for each of the above equivalences B <= B’, how
to convert a derivation of A — II, B to one of A — II, B and a derivation of
B,A — II to one of B, A — TI. (In the application to the previous paragraph,
B would be B(D), and B’ would be B'(D).)

166 CHAPTER 7. PROPOSITIONAL TRANSLATIONS

Consider, for example, converting a derivation of
A — T, -VzC(x)

to one of
A — T, 32-C(x)

The ancestral paths of =VzC(z) which do not end in weakening include VzC/(z)
in the antecedent and then C(D) in the antecedent, for some target formula D.
Thus we have arrived at a sequent

C(D),N — 1T
We modify the derivation after this point by using —-right and 3-right to obtain
AN — IT', 32-C(z)

and continue the derivation as before, omitting the steps which formed —VzC/(z)
from C(D).

The argument is similar if =VaC(z) is in the antecedent.

Now consider converting a derivation of

A — T,VaC(x) AN D

to a derivation of
A — TI,Vz(C(x) A D)

The ancestral paths of VzC(z) A D which do not end in weakening split after
an A-right, where the left branch has a V-right step

A =TI, C(p)
A — I, VzC(x)

We modify this by combining it with the right branch just after the split as

follows:
A — 11, C(p) A — 11", D

AN —T1I",C(p)AD
A" — 11" ,Vx(C(z) A D)

Here it is important that the original derivation be in free variable normal
form, both in order to insure that p does not occur in D, and to guarantee
that the variable restrictions continue to hold in the modified derivation of
A — II,Vz(C(x) A D).

The other cases are handled similarly. O

Unlike the situation for PK and Gy, it seems unlikely that G} p-simulates
G;1. To explain why, we need the notion of witnessing for QPC proof systems.

74. THE SYSTEMS G; AND Gj 167

7.4.1 Extended Frege Systems and Witnessing in G}

In previous chapters we proved witnessing theorems which concern the complex-
ity of witnessing the leading existential quantifiers in a bounded £% formula,
given values for the free variables. The analogous witnessing problem for a QPC
formula is trivial, because there are only finitely many possible values for the
free variables. However the problem becomes interesting if we consider a family
of formulas, and include a proof of the formula as part of the input.

Theorem 7.45 (The Witnessing Theorem for G7}). There is a polyno-
mial time function F(m,T) which, given a GY proof m of a formula of the form
ZA(Z, p) (where A(Z,p) is quantifier-free) and an assignment T to p, returns
an extension 7 of T such that 7' satisfies A(Z,p).

The problem of computing such 7/ from 7 without 7 is complete for PNF
if we are required to say “no” if there is no witness. Hence it is clear that the
proof 7 provides helpful information. We will show in a later chapter that if «
is a Gy proof (as opposed to a G} proof), then the problem becomes complete
for the search class PLS. Since it seems unlikely that PLS problems can all be
solved in polynomial time, it seems unlikely that G7 p-simulates G.

We will prove the Witnessing Theorem for G7 by analyzing a closely-related
system ePK, a member of the class of extended Frege proof systems. In general,
a line in an extended Frege proof has the expressive power of a Boolean circuit,
and a problem in nonuniform P is presented by a polynomial size family of
Boolean circuits. The connection between the extended Frege proof systems
and P is thus analogous to that of the bounded depth Frege proof systems
(e.g., bPK) and AC® that we have seen (Section 7.2), or that of the Frege
systems and NC*, as we discussed in the Preface.

Definition 7.46 (Extension Cedent). The sequence of formulas
A= e1 <> By,es < Bs,...,e, «— B, (7.13)

1s an extension cedent provided that for i = 1,...,n, the atom e; does not oc-
cur in any of the formulas Bi, ..., B;. The atoms ey, ...,e, are called extension
variables.

Intuitively, we think of eq, ..., e,, as gates in a Boolean circuit, where the value
of e; is determined by B; together with the values of the earlier gates ey, ..., e;—1.
In an ePK proof of an existential statement, some of these extension variables
are used to witness the existential quantifiers.

Definition 7.47 (ePK Proof). Let 3ZA(Z,p) be a QPC formula with free
variables P’ such that A(Z,p) is quantifier-free. An ePK proof of AZA(Z, p) is a
PK proof of any sequent of the form

A— A(glvﬁ

where A is an extension cedent (7.13) in which the extension variables € are
disjoint from p, €1 is a subset of €, and each B; contains only variables among
e, p.

168 CHAPTER 7. PROPOSITIONAL TRANSLATIONS

This definition is interesting even in the case that the final formula is quantifier-
free. Then the extension variables are not used to witness quantifiers, but they
still may be useful in defining polynomial time concepts needed in the proof. As
far as we know, PK does not p-simulate ePK even when the latter is restricted
to proving quantifier-free formulas.

Theorem 7.48 (Krajicek [?]). G3, restricted to proving prenex XY formulas,
is p-equivalent to ePK.

Before giving the proof, we show how the Witnessing Theorem for G7 follows
from this.

Proof of Theorem 7.45. Let m be a G} proof of 3ZA(Z, p), and let 7 be an as-
signment to p, as in the statement of the Witnessing Theorem. By the preceding
theorem, we can transform 7 to an ePK proof of IZA(Z, p); that is, a PK proof

of a sequent
e1 < By,e3 < By, ...,eq & B, — A(e1,p) (7.14)

Now given the the assignment 7 to p, vaules for ey, es, ..., e, can be computed
successively by evaluating Bj, ..., By, and these values define the desired exten-
sion 7" of 7 which satisfies A(Z, p). O

Proof of Theorem 7.48. First we show that G p-simulates ePK. Let 7 be a
(treelike) ePK proof of 3ZA(Z, p). Then 7 is a PK proof of a sequent of the
form (7.14). We show how to extend this PK proof to make a G7 proof of
IZA(Z, p). We start by repeated application of 3-right to obtain a proof of

€1 < Bl,eg — Bz, ceey €y Bn — HfA(f,m (715)

Now for each formula B there is a short PK proof of — (B < B), and
with one application of 3-right we obtain a short G proof of

— Jz(x < B) (7.16)

Now apply 3-left to (7.15) to change the formula (e, < B,) to Jz(x < B,).
(Note that e, does not occur elsewhere in (7.15), so the variable restriction for
this rule is satisfied.) Now apply the cut rule to this and (7.16) to obtain

e1 <> By,es < B, ...,ep_1 < B,_1 — IZA(Z,p)

Applying this process a total of n times we may eliminate each formula e; < B;
in (7.15) to obtain the desired G} proof of size polynomial in the size of .

Now we prove the converse. Let m be a G} proof of — IFA(Z, p). We may
assume that 7 is in free variable normal form, and by Theorem 7.44 we may
assume that all cut formulas in 7 are prenex X, so each sequent of 7 has the
form

S = 3wty (h F), T —— AL Ty B(yi), (7.17)

74. THE SYSTEMS G; AND Gj 169

where all o; and 3; as well as all formulas in I' and A are quantifier-free, and
is precisely the list of the free variables occurring in S. Notice that ¥ may have
variables not in p, which are used as eigenvariables for 3-left.

We transform the proof m to an ePK proof «’ by transforming each such
sequent S to a corresponding quantifier-free sequent S’, and supplying a suitable
proof of S’. To describe S’, we first replace each vector 2+ of bound variables by
a distinct vector cﬁ =qi, ..., q}i of new free variables, and similarly we replace

Ji by a new vector ¢i. None of these new variables should occur in 7. Then
S = A, ai(gh 7)o T — A, B,), o (7.18)

where A is an extension cedent defining the extension variables ..., e_j, -

If S is the endsequent — 3ZA(Z, p), then S’ has the form A — A(e1, p),
so 7' is the desired ePK proof of IZA(Z, p).

We define A and show that S’ has an ePK proof polynomial in the size of
the G} proof of S, by induction on the depth of S in 7.

For the base case, S is an axiom

(2, 7) — FZa(Z,T)

and S’ is easy to obtain.
For the induction step there is one case for each rule of G7.

Case I: Weakening and exchange are trivial, and contraction follows from cut.
The single parent rules — and A-left and V-right are easy, since the principle
formulas are quantifier-free, and the same rule can be applied to form S’.

Case II: For the two parent rules A-right and V-left, the principle formulas
are quantifier-free, but we face the difficulty that the extension cedents A for the
two parents may give inconsistent definitions of the extension variables. This
is similar to the difficulty for Case VII in the proof of Lemma 5.64 for the
VO witnessing theorem. There the witnessing functions for a formula in II for
the two parents might be different. We solve the problem in a similar way, by
defining the extension variables to values that make them true when possible.

Specifically, consider the case of A-right, where for simplicity we assume
there is exactly one formula in the succedent beginning with existential quanti-
fiers (that formula cannot be C or D):

— —
Sl 52 _ ' — Aaagﬂ(gv Tl)vc r— A,Hﬁﬂ(ﬁ, TQ)aD

— —
where 7 is the union of the lists !, r2

EPK proofs of the two sequents

. By the induction hypothesis, we have

—

Si i Al;F/ - Aaﬁ(gv Tl)vc

and

ol

Sé :A27F/ - A,ﬁ(g,?")aD

170 CHAPTER 7. PROPOSITIONAL TRANSLATIONS

where in the the second case we have changed the extension variables from € to
§. Since 7 is treelike, we can assume that the ePK derivations of S and S} are
disjoint, and hence we can change variable names in one proof without affecting
the other proof. Thus we may assume that the extension variables defined in
A1 and A, are disjoint, and in particular ¢ and § have no variable in common.
Thus the extension cedents A; and Ay are consistent. Further we may assume
that the variables ¢’ are the same in S1 and S5.
From S} and S with A-right we obtain

Al;AQ;F/_’Avﬂ(é‘v??)vﬂ(gaf)v(C/\D) (719)

Now we introduce new extension variables ¢, and introduce the extension for-
mulas

Ei =gey [(B(E,T) Neg) V (2B(F,T) A si)]

and define the extension cedent
A3 =1t1 < Eqi,ty « Es, ...
Then define
S = Av, Ao, A3, TV — A, B(t,7), (C A D)
One can show with the help of Lemma 7.10 that each of the sequents
A3, B(e,7) — B(E7) (7.20)
As, B(5,7) — B(E,7) (7.21)

has a short PK proof. Using these and (7.19) and two cuts we obtain a short
PK derivation of S’ from S; and Ss.

Case III: 3-left is easy, since it just means changing the role of a free eigen-
variable r in S} to the variable ¢ in S’ corresponding to Jz.

Case IV: Suppose S comes from S; using 3-right.
Sl I‘_)Auﬂgﬁ(37g’7;)

S I — A,32356(z, 4, 7)

Here the target formula B is quantifier-free, by definition of G. Since 7 is in free
variable normal form, no free variable can be eliminated by this rule, and so the
list 7 of free variables in S is the same as for S;. By the induction hypothesis,
we have an ePK derivation of

S = AT — A B(B, &)
Let s be a new extension variable, and let

S'= A, s B, T"—= A B(s,&r)

7.5. TRANSLATING V! TO G% 171

It follows from the PK Lemma 7.10 that S’ has a short PK derivation from Sj.
Case V: Suppose S comes from Sp, 52 by cut:

Si Sy I —AC C,T — A

Sg '— A

Since 7 is in free variable normal form, every free variable in C' also occurs in the
conclusion S3. Supppose first that the cut formula C is quantifier-free. Then
the only difficulty is that the extension cedents A for the two parents may give
inconsistent definitions of the extension variables witnessing quantifiers in A.
We handle this difficulty in the same way as for Case 1II above.

The case in which C' has existential quantifiers is more complicated, since the
definitions of the new extension variables witnessing quantifiers in A now depend
on witnesses for the quantifiers in C' supplied by S;. These new definitions are
similar to the new witnessing functions defined for the case of cut (Case VI)
in the proof of Lemma 5.64 used to prove the V® Witnessing Theorem. g

Exercise 7.49. Carry out the details of Case V in the above proof.

7.5 Translating V! to G}

In this section we show that G7 is closely related to the theory V1. In fact, G¥
can be considered a nonuniform version of the bounded fragment of V1.

7.5.1 Translating Bounded £%-Formulas

It is straightforward to extend the propositional translation of £ (£2%) formulas
(Section 7.2) to a translation of any bounded £% formula. Here every g (resp.

gIT?) formula o(Z, X), with all free variables indicated, translates into a family
of X7 (resp. IT}) formulas:

(@, X)|| = {p(Z, X) [7] : m,7i € N}
so that (&, X)[m; 7] is valid iff

N, = VX, (A |X] =) O (i, X)

The formula Lp(f,)z)[m; 7] has size bounded by a polynomial p(7i,7) which
depends only on ¢. The free propositional variables in ¢(Z, X)[m; @] consist of
p;(i, for 0 < j < n; — 1 for each n; > 2.

We define the translation of a bounded £3 formula ¢ inductively, starting
with the 3% formulas, which is described in Section 7.2. For the induction step,
consider the case where o(Z, X, Y) = 3Y < (&, X, Y), where ¢ is a number
term of the form ¢(Z, |X|) By the induction hypothesis, w(f,)?,Y) [m; 7, k]

172 CHAPTER 7. PROPOSITIONAL TRANSLATIONS

contains the free propositional variables p{,p},... for Y, in addition to pj(
(when k < 2, the list p},...,pY , is empty). We drop mention of the pj-(i,
and denote o(Z, X, Y)[i; 7, k] by ¢e(py ..., pY_5). (If k <1 then 1 does not

contain any of the variables p{,p},....) Define
(p(:z"u X)[T?L, ﬁ] —def HPE)/ cee 3p}"/fQ \/ 1/%(]92)/7 v 7kafQ) (722)
k=0

where r = val (11, 77)). Here the free variables p}” become bound, and if r < 1
then the list py , ..., pY_, is empty. Also, if any of the formulas ¢y (p¢ , ..., pY_,)

is a logical constant L or T, then we simplify ¢(Z, X)[m; @] in the obvious way.
The case where ¢ = VY < t(Y) is similar:

VY < (@, X, V) [175; 71) =aee Vpo - py_o \ 0Py - oPi-s) (7.23)
k=0

The cases of the Boolean connectives A, V, — or the number quantifiers are the
same as for £F formulas.

Proposition 7.50. For each i >0, if ¢ is a gZZB (resp. gHZB) formula, then
the formulas in ||| are I (resp. II7). There is a polynomial p(m, i) which
depends only on ¢ so that [ni; 7| has size < p(m, i) for all m, 7 € N.

The connection between the theory V! and the proof system G7 is as follows.

Theorem 7.51 (V! Translation Theorem). For any bounded theorem (T, X)
of V1, there is a polytime function F(m,ii) such that F(m,) is a G} proof of
o(&, X)[m; 7], for all m, 7 € N.

Proof. The proof is similar to that of the Translation Theorem for V° 7.20. By
Corollary 6.43, for every bounded theorem ¢ (@, &) of V1! there is a (treelike)
anchored LK?-V?! proof m of — (@, @). If we translate each sequent of 7 into
the corresponding QPC sequent, the result is close to a G proof. In particular,
since any cut formula in LK% V! is 3B its translation is a 37 formula, and
can be cut in G7.

Formally, we will prove by induction on the depth of a sequent S (5, E) inm
that there is a polytime function F(m,) such that F(m,) is a G} proof of
S[m; 7). For the base case, S is an axiom of LK2V!. The simple axioms are
sequents of X7 formulas, and these are treated as in the proof of the Translation
Theorem for V°. The remaining axioms are instances of ZF-COMP, so

S= — AX < tVz < (X (2) < n(2))

and 7 is a ¥ formula. Let r = val(t). When r < 1, it is easy to see that
S translates into a trivially valid sequent with a short Gy proof. Otherwise, if
r > 2, then S[m;] is the sequent (replace ... by m;]):

r k-2

B VOGS <@L D AnG=DL 1A A 0@)
1=k

k=0 =0

7.5. TRANSLATING V! TO G% 173

where the conjunct n(k — 1) is deleted when k = 0.
Exercise 7.52. Let Ao,...,As be any PK formulas (¢ > 0). Show that the

sequent
£ £

— V 4;n N\ -4)
j=—1 i=j+1
(where for j = —1 the conjunct A; is deleted) has a polynomial size treelike
cut-free PK derivation.

We get S[m;7i] by first using the above exercise for £ = r — 1 and A; =
n(2)[m; 7i], then repeatedly applying the 3-right rule. Thus S[m; 7] has a poly-
nomial size cut-free G proof.

For the induction step, we consider all rules of LK2V!. In each case, as-
sume that S is obtained from &; (and Sz). We will show that SJ...] has short
G7 derivation from &i[...] (and Sz[...]). It is obvious that the polytime func-
tion F'(...) giving the G} proof of S|...] can be constructed from the polytime
function(s) Fi(...) for S; (and Fy(...) for Sa).

All rules (including the IND rule) except for the string quantifier rules are
treated just as in the proof of the Translation Theorem for VO (page 155),
although now the translation will require cuts on X7 formulas in general. We
consider the string 3-introduction rules. The string V-introduction rules are
dual, and are left as an exercise.

Case string J-right: Suppose that S is obtained from & by the string 3-right
rule. Note that in V!, the only string terms are string variables.

S A(y) — II(v), v <t AY(y)
S Aly) — U(v),3Z <ty(2)

We suppress all free variables except for the principle variable v. Note that
|v] < ¢[...,n] is either T or L. Let r = val(t), then

Al...,n] —T[...,n],v()[...,n] fn<r

Al..,n] —T[...,n], L ifn>r (7.24)

By definition (see (7.22)),

S[....n] =det Al..,n] —T[...,n],3pf ... 37, \/ ¥(Z)[... K]
k=0

Consider the interesting case where n < r, First, by repeated applications
of the rules weakening and V-right, we obtain from Si[...,n]

T

Al.on] — Tl \/ ()], K]

k=0

Then we can derive SJ...,n] using the rule 3-right.

174 CHAPTER 7. PROPOSITIONAL TRANSLATIONS

Case string 3-left: Again, suppressing all other free variables:

Si_ hl<tAd(y),A —T

S 3Z<ty(2),A —TI

where v does not occur in S, and v is 8. Let r = val(t), then for n < r,

Sil- .-, n] =det YY) -n AL — T[] (7.25)
Also,
Sl.)=at ... W75\ ¥(@)]...n], AL..] — T[]
n=0
Now if r = 0, then we are done. Otherwise, combine the sequents Si.. ., n)

for n =0,...,r by the rule V-left we obtain

\/ YY) ,n], Al.] —TII[..]

Thus we get SJ...] by » — 1 applications of the 3-left rule. O

Exercise 7.53. Carry out the cases for the string V-introduction rules.

7.6 Notes

Definitions 7.2, 7.5 and Theorem 7.4 are from [?]. Also, the fact that Frege
proof systems are p-equivalent is proved in [?].

The first propositional translation of an arithmetic theory is described in
[?]. The translation of ¥ formulas given in Subsection 7.2.1 is from [?], and
both this and the V° Translation Theorem 7.20 are based on the treatment of
IAo(R) by Paris and Wilkie [?].

A proof system for the Quantified Propositional Calculus was introduced by
Dowd [?]. The system G and its subsystems G; were introduced by Krajicek
and Pudldk [?] (see also Section 4.6 of [?]). The original definition of G is what
we refer to as KPG in Exercise 7.35 and the original definition of G; is KPG
restricted so that all formulas must be either X! or IT7. Our definitions are due
to Morioka [?]. Theorem 7.37 is new.

The idea of G? (treelike G;) is from [?], and the V! Translation Theo-
rem 7.51 is adapted from a similar theorem for Si also in [?]. Theorem 7.45 is
from [?].

Chapter 8

Theories for Polynomial
Time and Beyond

Here we introduce several equivalent “minimal” theories for polynomial time,
and show that those with the basic vocabulary £% are finitely axiomatizable.
The theory V! has the same X% theorems as these minimal theories, but appar-
ently has more 2 theorems. We also introduce the TV hierarchy and show
that TV is one of the minimal theories for polynomial time, while TV? is asso-
ciated with the class PLS (Polynomial Local Search). Finally we show that our
two-sorted theories are “RSUV-isomorphic” to appropriate single-sorted theo-
ries.

8.1 The Theory VPV

In Chapter 6 we proved that the 31-definable functions of V! are precisely the
polynomial time functions FP. However there is an (apparently) weaker theory,
TV, which captures the same class of functions in the same way, and proves
the same X theorems as V!. (Apparently TV does not prove either the
2P REPL scheme or the ¥8-COMP scheme, but these do not consist of &
formulas.) We argue that this theory seems to be the “minimal” theory which
formalizes polynomial time reasoning.

To support the claim that TV is minimal, we first define an equivalent
universal theory VPV which contains function symbols for all functions in FP.
To argue that VPV is minimal, we take for granted that a minimal theory
for any complexity class containing the AC" functions should contain the basic

) . . . =0
theory V9 (Chapter 5) associated with AC®. Since the universal theory V
. . . 570 . .
is a conservative extension of V?, we use V as the starting point. To extend

V'’ to our polytime theory VPV, we simply add a function symbol and its
defining axiom for each way of defining a polytime function, using some standard
method of defining polytime functions. The method we choose is based on

175

176 CHAPTER 8. THEORIES FOR POLYNOMIAL TIME AND BEYOND

Cobham’s Theorem 6.16. There are of course other ways of defining the polytime
functions, but the resulting theories turn out to be equivalent to VPV (at least
for standard methods of defining polytime functions).

The vocabulary Lyp for VPV extends the vocabulary Lgaco for v’ (see
Section 5.6). The difference is that now we introduce new functions based on
Limited Recursion.

Following Definition 6.15, we can write the defining equations for a string
function F(y, Z, X) defined by limited recursion from G(Z, X) and H(y, %, X, Z)
as

F(0,7,X) = G(Z, X) (8.1)
Fly+1,% X) = (H(y, %, X, F(y, & X)) <! 5% (8.2)

where now the bounding term ¢(y, 7, X) is in £.
Definition 8.1. The vocabulary Lyp is the smallest set that satisfies

1) Lyp includes L4 U {pd, fsg}.

2) For each open formula ¢(z,%,X) over Lyp and term t = t(Z,X) of L3
there is a string function Fy,; and a number function f,; in Lrp.

3) For each triple G, H, t, where G(f,)?) and H(y,f,)z, Z) are functions in
Lyp and t =t(y,Z, X) is a term in Ei, there is a function F = Fg mt in
Lyp with defining equations (8.1,8.2).

By Cobham’s Theorem, it is clear that semantically the functions of Lpp
comprise the polytime functions.

We now define the theory VPV in the style of Definition 5.68 of v’

Definition 8.2. VPV is the theory over Lrp with the following set of axioms:
B1-B11, L1, L2 (Figure 5.1), B12' and B12" (5.39), (5.40), SE’ (5.41), and
defining azioms (5.37) for each function F,, in Lrp and defining aziom (5.38)
for each function f, . in Lpp and defining azioms (8.1,8.2) for each function
Fo.my in Lrp.

Thus VPV is a universal theory which extends v’ Every function intro-
duced in Definition 8.1 is explicitly bounded by a term in £%, and hence VPV
is a polynomial-bounded theory. Further it is easy to see, using the definitions
of F, s and f, ¢, that the functions in Lpp are closed under composition. Hence
by Cobham’s Theorem 6.16 the symbols in FP represent precisely the functions
in FP.

The following result can be proved by structural induction on ¢ in the same
way as Lemma 3.44 and Lemma 5.69.

Lemma 8.3. For every X8 (Lpp) formula ¢ there is an open Lpp-formula o
such that VPV | ¢ < o,

Next we state a general witnessing theorem for universal theories, which
applies to VPV.

8.1. THE THEORY VPV 177

Theorem 8.4 (Witnessing). Let 7 be a universal polynomial-bounded the-

ory which extends VO, with vocabulary L, such that for every open formula

o(z,%,X) over L and term t(Z,X) over L2 there is a function F,1 in L such
that

ThHF,(2,X)(2) &z <tAop(ziX)

),

Then for every theorem of T of the form ElZ(p(:E’,)?,Z
formula, there is a function F in L such that

where ¢ is an open

T+ (@ X, F(# X))

Proof. The proof is based on the Herbrand Theorem, and is very similar to the
alternative proof of the witnessing theorem for VO given in Section 5.6.1. This
proof defines the witnessing function F' by cases, and in fact F' has the form F, ;
for suitable ¢,t. By our assumption that 7 is polynomial-bounded, we know
that there is a bounding term ¢ for F, ; in £ (as opposed to L). O

Corollary 8.5 (Witnessing for VPV). Every i(Lgp) theorem of VPV is
witnessed in VPV by functions in Lrp.

Proof. It is clear that VPV satisfies the hypotheses for the theory 7 in the
theorem. Although the theorem only states that formulas of the form 3Z¢
(where ¢ is quantier-free) can be witnessed, it is easy to generalize it to witness
an arbitrary $1(Lpp) formula 373Z¢. (See Lemma 5.64 and how it is used to
prove the witnessing theorem for V°.) g

This witnessing result immediately implies the following.
Corollary 8.6. Every function Xi-definable in VPV is in FP.

Of course this holds whether we interpret X1-definable to mean ¥i(£%)-
definable, or more generally 31(Lgp)-definable. The converse of the latter, that
every polytime function is X1 (Lgp)-definable in VPV, is obvious, since Lgp
comprises the polytime functions. However we are interested in the stronger
converse, that every Lgp-function is X}(£%)-definable in VPV. This is not
straightforward to prove, mainly because we do not have the SF-REPL axioms
available in VPV. (See Section 6.3.1 for how we can proceed if 3F-REPL were
available.) One method would be to introduce the aggregate function F* of a

function F', as we do in Section 9.2.3, to prove the analogous result for vTC .
But here we take a different approach: Since V! proves the ZF-REPL axioms
it is relatively easy to show that every Lpp function is 31(£2)-definable in V1.
From this we use the fact that 31 theorems of V! are witnessed in VPV to get
our desired result (Theorem 8.15).

The next result is proved in the same way as Lemma 5.70.

Lemma 8.7. VPV proves the 38 (Lyp)-COMP, X8 (Lpp)-IND, and
B (Lyp)-MIN aziom schemes.

178 CHAPTER 8. THEORIES FOR POLYNOMIAL TIME AND BEYOND

Definition 8.8 (A2 Formula). Let 7 be a theory over L 2 L%. We say
that a formula ¢ is AP (L) in T if there is a TP (L) formula p1 and a TIZ(L)
formula o such that T = ¢ < 1 and T = ¢ < @3.

Corollary 8.9. If p is AP(Lgp) in VPV then VPV |- ¢ « g for some open
Lyp-formula ¢g.

Proof. Suppose that ¢ is AP(Lpp) in VPV, and let ¢; and ¢ be as in the

definition. Then using pairing functions we may assume that ¢; and @9 each

have single string quantifiers, so for some X (Lpp)-formulas vy, 1> we have
®1 = 3Y S tﬂ/)l(f,
2 =VZ < tathe(7,

X,Y)
X,7)
Since VPV F 2 D ¢ we have
VPV - 3Y3Z, 4u(7,X,2) D (&, X,Y)
By Corollary 8.5 there are FP-functions F' and G such that
VPV F (2, X, F(Z, X)) D ¢1 (%, X, G(Z, X))

Then VPV F ¢ < ¢, where g = ¢4 (%, X, G(Z, X)). By Lemma 8.3 we may
assume 7 is an open Lyp-formula, as required. O

8.1.1 Comparing VPV and V!

Here we prove that every £%-theorem of VPV is provable in V1. We also prove
a partial converse, that every 31 theorem of V! is provable in VPV. Later we
show evidence that not all 2 theorems of V! are provable in VPV.

We establish the first assertion by defining an extension V!(VPV) of both
V! and VPV, and showing that it is conservative over V!. We establish the
partial converse by showing that every X1 theorem of V! can be, provably in
VPV, witnessed by functions in Lgp.

Definition 8.10. For i > 1, the theory VE(VPV) has vocabulary Lyp, and
azioms the union of the axioms for V¢ and for VPV.

Theorem 8.11. a) Every function in Lyp is 2T -definable in V1.

b) Every X8 (Lgp)-formula is provably equivalent in V1(VPV) to a B8 (L?)-
formula.

c) Fori>1 ,Vi{(VPV) is conservative over V°.

Corollary 8.12. V}(VPV) proves the 2 (Lpp)-COMP, X8 (Lpp)-IND,
and 2P (Lyp)-MIN aziom schemes.

8.2. TV AND THE TV! HIERARCHY 179

Proof. The corollary follows immediately from part b) of the theorem, since V*
proves these schemes for £2(£%)-formulas.

The Theorem follows from Corollary 6.27, where we take 7o to be V!(Row),
or V¢{(Row) for part ¢) (we can get rid of the function Row by Lemma 5.51), and
the extensions 77,7, ... are introduced by successively adding the functions in
Lyp and their defining axioms. The fact that the new function introduced in
Ti+1 is Xi-definable in 7; (and even in 7g) is proved in Section 6.2.2. O

Theorem 8.13. Every X1(Lgp) theorem of V(VPV) is witnessed in VPV
by functions in Lyp.

Proof. A slight modification of the proof of the Witnessing Theorem for V!
given in Section 6.4.2 proves this theorem. Note that every witnessing function
introduced is in FP, and, noting that VPV proves XF(Lpp)-IND (by Lemma
8.7), we see that VPV proves the desired sequents. O

The following corollary is immediate from Theorem 8.13.
Corollary 8.14. VPV and VY(VPV) have the same X1(Lrp) theorems.

In particular, every 3% theorem of V! is provable in VPV. From this and
Corollary 8.6 and part a) of Theorem 8.11 we have the following:

Theorem 8.15 (X}-Definability Theorem for VPV). A function is £1(L£%)-
definable in VPV iff it is in FP.

Finally, from Corollary 8.14 and part b) of Theorem 8.11 we have

Theorem 8.16. Every X8 (Lgp)-formula is provably equivalent in VPV to a
=8(L£%)-formula.

8.2 TV and the TV’ Hierarchy

The theory VPV has an infinite vocabulary Lyp, and although it satisfies our
desire for a “minimal” theory for P in terms of proving power, we would like to
find an equivalent theory over the base vocabulary £%. We now introduce the
theory TV, which satisfies this condition. This theory is the first in a hierarchy
of theories TV, where for i > 0 TV corresponds — in the sense of Section 8.7
— to Buss’s single-sorted theory T%.

The theory TV is the same as V?, except instead of the »B_.COMP axioms
we introduce the 38 “string induction” axiom scheme. Here we view a string X
as the number Y, X ()2¢, and define the string zero @ (empty string) and string
successor function S(X) as in Example 5.42. Thus S(X) has XF-bit definition

S(X)(i) < 9" (i, X) (8.3)
where

P86, X) = i <|X|ALX () ATj <i=X () V(=X (0) AV] <iX(5))]

180 CHAPTER 8. THEORIES FOR POLYNOMIAL TIME AND BEYOND

Definition 8.17 (String Induction Axiom). If ® is a set of formulas, then
the string induction axiom scheme, denoted ®-SIND, is the set of all formulas

[p(2) AVX(p(X) D p(S(X))] > (V) (8.4)
where o(X) is in @, and may have free variables other than X .

Since we want the theories TV to have underlying language L%, in case
has vocabulary £% we will interpret (8.4) as a formula over £%, using the stan-
dard method of eliminating 3¥-bit-definable function symbols (Lemma 5.40).

Definition 8.18. For i > 0, TV' is the theory over L2 with axioms those of
VO together with the B -SIND scheme.

Although the induction scheme (8.4) has an unbounded string quantifier, it
is easy to see that the theory TV remains the same if that quantifier VX is
replaced by the bounded quantifier VX < |Y| (see Exercise 3.16). Hence TV’
is a polynomial-bounded theory, axiomatized by Eﬁ_l-formulas.

Lemma 8.19. Fori >0, TV' proves SBIND.
Proof. We are to show that TV proves
[p(0) AVz, o(z) D @z +1)] D ¢(2)

where ¢(z) is 5.
We need the following easily verified fact:

VOE(S(X)=1X] v [S(X)| = |X]|+1) (8.5)
Reasoning in TV?, assume

[p(0) AV, p() D p(z +1)]
From this and (8.5) we conclude

[Y(@) AVX, (X)) D h(S(X))]

where 1(X) = (| X|). Hence 1(X.) follows by ZZ-SIND, where X, is a string
with length z. Hence p(z). O

Theorem 8.20. Fori >0, Vi C TV

Proof. We generalize Definition 6.33 to define V¥ to be VY + S5.IND. The
proof of Theorem 6.35 easily generalizes to show V¢ = V. Hence the theorem
follows from Lemma 8.19. 0

Just as V? proves the number minimization and maximization axioms for
2B formulas (Corollary 5.8), TV proves the stronger string minimization and
maximization axioms for XP-formulas. First, we define the ordering relation
for strings.

8.2. TV AND THE TV! HIERARCHY 181

Definition 8.21 (String Ordering). The string relation X <Y has defining
aziom

X<Yo[X=Y v (X <|YIA
<Y ()N X)) AVu<|Y], z<uD (X(u) DY (w)))] (8.6)
Often, our vocabularies do not contain extra relation symbols outside £2.

Thus, the syntactic formula X < Y will be an abbreviation for the RHS of
Equation (8.6).

Exercise 8.22. Show that the following are theorems of V°:

a) X <YVY <X (X <Y is a total order).
b) X <YANY<X)DX=Y (X <Y isirreflezive).
c) o<X.
d) X<Y o X+Z<Y+Z.
For a string term T, we define 3X < T ¢(X) as an abbreviation for 3X (X <
TAp(X)). Similarly, VX < T ¢(X) is an abbreviation for VX (X < T D ¢(X)).

Note that the bounding term T is for the value of X, while the bounding term
tin 3X <t...or VX <t...is for the length of X (Definition 4.13).

Definition 8.23 (String Minimization and Maximization Axioms). The
string minimization axiom scheme for ®, denoted ®-SMIN, is

(Y) 23X <Y, p(X) A-3Z < Xo(2)

where ¢ is a formula in ®. Similarly the string mazimization axioms scheme

for @, denoted ®-SMAX, is
(@) DIX <Y, o(X)AN-3Z <Y (X < ZNp(Z))
where ¢ is a formula in .

Theorem 8.24. For i > 0, TV' proves the ZF-SMIN and ZF-SMAX az-

oms.

Proof. To prove ZB-SMAX, let ¢(X) be a ZB-formula. Let ¢/(X) be the
3B formula obtained by taking a prenex form of

X<YDIULY, X <UApU)

Then the SMAX axiom for ¢(X) follows from the SIND axiom (8.4) applied
to ¢’ (X).

The proof of ¥8-SMIN is similar, but uses the binary subtraction function
Z-Y.

Exercise 8.25. Show that the limited substraction function for string Z ~Y
is X8 -bit-definable, where the intended meaning of Z =Y is @ if Z <Y, and
(Z-Y)+Y = Z otherwise. O

182 CHAPTER 8. THEORIES FOR POLYNOMIAL TIME AND BEYOND

We now concentrate on TV,
Theorem 8.26. VPV is a conservative extension of TV,
Before proving this theorem, we list some of its corollaries.
Corollary 8.27. Fori >0, TV'(VPV) is a conservative extension of TV".

Pmo_f. For ¢ = 0 this follows from Theorem 8.26. For ¢ > 1 we know Vi C
TV*, and hence TV*® X8.-defines all functions in Lgp, and also TV® proves
SB_REPL by Corollary 6.24. Therefore the corollary follows from Corollary
6.27. O

From Theorem 8.26 and Theorem 8.15 we conclude

Theorem 8.28 (X!-Definability Theorem for TV'). A function is 31-
definable in TV iff it is in FP.

From Theorem 8.26 and part ¢) of Theorem 8.11 we conclude V' c Vv,
From this and Corollary 8.14 we have the following (recall the notion of a ®-
conservative extension from Definition 7.23):

Corollary 8.29. V! is X8_conservative over TVY.

As remarked above, TV? is axiomatized by X% formulas (unlike V).

The proof of Theorem 8.26 takes up the next two subsections. In short, to
show that VPV extends TV, we indeed show that VPV proves the (contra-
positive of) =8 (Lpp)-SIND by using the “binary search” function. To prove
conservativity we introduce the bit recursion axiom scheme, and prove Theorem
8.38 and Lemma 8.39.

8.2.1 TV'C VPV

In this subsection we use the string addition function X + Y introduced in
Chapter 5 and use some of its simple properties stated in Exercise 5.43. We
also need the string relation X < Y (Definition 8.21) and the string function
POW2(x) defined below. The intended meaning of POW2(x) is such that (see
Notation on page 76) bin(POW2(x)) = 2*.

Example 8.30. The string function POW2(x), also denoted by {x}, has bit
defining axiom
POW2(z)(i) ~i=x

Exercise 8.31. Show that V' proves the following:

X 4+ POW2(0) = S(X)
X POW2(|X))
POW2(i) + POW2(i) POW2(i + 1)

N

8.2. TV AND THE TV! HIERARCHY 183

Now we prove the half of Theorem 8.26 stating that VPV is an extension
of TVY. For this it suffices to show that VPV proves the 3F-SIND-axioms.
In fact, we prove a slightly stronger result.

Lemma 8.32. VPV proves the £ (Lpp)-SIND-azioms.

Proof. By Lemma 8.3 we may assume that ¢(X) in (8.4) is an open Lgp-
formula. Let ¢,Y be a list of the parameters in ¢(X). We use binary search to
define in VPV an Lgp function G(%,Y, X) such that VPV proves

(9(2) A =0(X)) D ((p(G(F.Y, X)) A ~(S(G(F.Y, X)) (8.7)

from which (8.4) follows immediately.

In more detail, we use the string functions X +Y and POW2(z) and the
string relation X <Y defined above.

In the following we suppress mention of the parameters ¥/, Y.

Define the formula

(X, Z2)=p(Z)NZ <X

Now we use limited recursion (8.1,8.2) to define in VPV the binary search
function H (i, X), whose value is the left end of the interval [A, B] of length
POW2(|X| = i) satisfying ¢’ (X, A) A ~¢'(X, B). (Recall - is limited subtrac-
tion, Section 3.3.3).

Let n = |X|.
H(0,X) = o
Hii+1,X) = H(i, X) if =" (X, H(i,X) + POW2(n = (i+1)))
T H(i, X) 4+ POW2(n = (i + 1)) otherwise

We can use | X| as a bounding term to limit this recursion. Now define
G(X) = H(|X], X)
The following two formulas can be proved in VPV by induction on i (Lemma
8.7), using Exercises 5.43 and 8.31. The first formula justifies |X| as a length
bound for the recursion.
X#92 D (H(I,X)+ POW2(0)) <X

(p(@) N =p(X) Ni < n) D (@' (X, H(i, X)) A~ (X, H (i, X) + POW2(n = i)))
Then (8.7) follows from these two formulas and X + POW2(0) = S(X) (Exercise
8.31). O

Recall the notion of a AP formula in a theory (Definition 8.8).

Definition 8.33. Let 7T be a theory with vocabulary L. Let AX denote any of
the axiom schemes COMP, IND, SIND, etc. We say that T proves AZB -AX
if for any AB(L) formula @ in T, T proves the AX axiom for .

From Lemma 8.32 and Corollary 8.9 we have
Corollary 8.34. VPV proves AP-SIND.

184 CHAPTER 8. THEORIES FOR POLYNOMIAL TIME AND BEYOND

8.2.2 VPV is Conservative over TV’

In order to show that VPV is conservative over TV, we introduce a bit-
recursion scheme and show that it is provable in TV,

For each formula ¢(i, X) (possibly with other free variables) we define a
formula ¢"™¢(y, X) which says that each bit i of X is defined in terms of the
preceding bits of X using . That is, using the notation X <¢ for Cut(i, X) (6.5)

Py, X) = Vi <y(X(i) & (i, X))

In case (i, X) is an £%-formula we can interpret ¢"*(y, X) as an £ -formula by
eliminating occurrences of Cut(i, X) using the standard method of eliminating
3B bit-definable function symbols (Lemma 5.40).

If (i, X) is in £ it is easy to see that V? can use induction on y to prove
that the condition ¢"™¢(y, X) uniquely determines bits X (0),..., X (y — 1) of X.

Definition 8.35. If ® is a set of formulas, then the bit recursion axiom scheme,
denoted ®-BIT-REC, is the set of formulas

AX " (y, X) (8.8)

where @(i, X) is in ®, and may have free variables other than X.

We will show that the axiom scheme IF-SIND in the definition of TV’
(Definition 8.18) can be replaced by ZF-BIT-REC. First, we show that
SB-BIT-REC can be used to formalize the computation of polytime Turing
machines:

Theorem 8.36. Every function in FP is 8 -definable in VO+XF-BIT-REC.

Proof. We refer to the proof in Section 6.2.1 that every function in FP is 35-
definable in V*. It suffices to show that any polytime string function F(Z, X) is
2P _definable in VO + XF-BIT-REC, since every number function in FP has
the form |F(Z, X)| for some F in FP (Proposition 6.5).

Let M be a polynomial time Turing machine which computes F(Z, X). Ac-
cording to Exercise 6.13 there are £F-bit-definable functions Initw (%, X), Neztm(Z)
and Outpm(Z) which describe the computation of M on input &, X by giving the
initial configuration, next configuration, and output of the computation. Our
goal is to find a EF-formula (i, 7, X, Z) such that (i, Z, X, Z) asserts that
the first 7 bits of Z are the first ¢ bits of the computation of M on input Z, X.
In order to do this, we will let Z code the computation as a concatenation
of the successive configurations of M, rather than our usual method of letting
Z01 7z ... be the successive configurations. (The problem with our usual
method is that according to our definition of the pairing function (5.21), the
index for an element in row ZUt! can be less than the index of some element
in row Z1.)

8.2. TV AND THE TV! HIERARCHY 185

Definition 8.37 (The Substring Function). The string function Z[u,v] is
intended to code the substring Z(u), Z(u +1),---,Z(v — 1) of Z. It has the
S8 -bit-defining axiom

Zu,v)(i) @i <v=uNZ(u+1i)

Let t = t(Z,)?) be an £%-term bounding the run-time of M on input Z, X If
Z codes the computation of M on input &, X , then the successive configurations
of M form the sequence

Z[O,t],Z[t,2t], 7Z[t2 _t7t2]

The é-th bit of Z is defined from the previous bits using the formula (suppressing
the arguments &, X)

(i, Z) = (i <tA Initu(Z, X)) V
(t <iA Nextm(Z[i = t = (i mod t),i — (¢ mod t)])(¢ mod t))

Thus the computation of M on input &, X is the unique string Z of length ¢2
satisfying ¢"(t?, Z).

Arguing in the conservative extension of VO formed by adding the XZ-
definable functions above, we note that ¢(i, Z) is provably equivalent to a 3F-
formula (Lemma 5.40).

The graph Y = F(Z,)Z) of F is given by the ¥ -formula

a7, X,Y)=3Z < 2, o"(t2, Z) AY = Outw(Z[t* = t,£?]) (8.9)

Now, VO + SE-BIT-REC proves 3!Ya(Z,X,Y), so F is provably total in
VO 4 £5.BIT-REC. O

Theorem 8.38. TV' proves the ZF-BIT-REC-scheme.

Proof. We use £F-SMAX to prove the existence of X in (8.8). Informally,
imagine computing the bits X (0),...,X(y — 1) of X in that order. Suppose
that false negative is allowed, but there is no false positive. That is, we consider
strings Y that satisfy

Vi <y, Y(i) D (i, V<9

The idea is that the maximal string Y guaranteed by SMAX cannot have any
false negative bit, and thus must be the correct string.

To actually use the SMLAX principle we need a twist in the above argument.
This is because we compute X in (8.8) from bit 0, while string comparison starts
with high order bits. Thus, let the string reversal function Rev(y, X) have bit-
defining axiom

Rev(y, X)(i) =i <yANX(y—i=1)

where — is limited substraction (Section 3.3.3). Then Reuv(y, X) is the reverse
of the string X (0)... X(y — 1).

186 CHAPTER 8. THEORIES FOR POLYNOMIAL TIME AND BEYOND

Let ¢'(y,Y) be the formula
Vi <y, Rev(y,Y)(i) > ¢(i, (Rev(y,Y))~") (8.10)

We can tacitly assume that ¢/(y,Y) is BF (by Lemma 5.40). It is easy to see
that ¢’ (y, @). Thus, by ZF-SMAX, there is a maximal string X’ < POW2(y)
that satisfies (8.10). It is also easy to show (in V) that X’ in fact satisfies

Vi <y, Rev(y, X")(i) < o(i, (Rev(y, X"))<")

As a result, the string X = Rev(y, X') satisfies (8.8). O

The previous two theorems show that all functions in FP are XP-definable
in TV?. But in order to show that VPV is conservative over TV’ we must
show that every function in the vocabulary Lgp is 8-definable in TV, and
these functions were introduced via Cobham’s Theorem rather than by Turing
machines. Since VO + ZF-BIT-REC C TV, the following lemma suffices.

Lemma 8.39. V’+ X5 BIT-REC+ VPV is a conservative extension of VO +
SB_-BIT-REC. Every function in Lpp is P -definable in VO+XF -BIT-REC.

Proof. The functions in Lgp can be introduced successively, each one either
by a XF-bit-definition or by Limited Recursion, in terms of previously defined
functions. Thus V4+3F-BIT-REC+VPYV is the union of theories 7; satisfying

ITQC’TlC'TQC"'

where 7 is VO + Eg—BIT—REC and for ¢ > 0 each 7; is obtained from 7;_;
by adding the defining equation for one new function F; (or f;). We show
by induction on i that each new string function F; is XP-definable in V° +
SE-BIT-REC by a formula ap(Z, X,Y) satisfying

Y = F(2,X) & ap, (&, X,Y) (8.11)
Further ap, (7, X,Y) has the form
Y| <tA(EZ<t, o3(t,7,X,Z) \Y = Outp,(7,X,Z)) (8.12)

where ¢ = ¢(Z,X) is a term and @p, is a XF-formula and Outp, is a SE-bit-
definable function. Also, 7;_; together with (8.11) proves the original defining
axiom for F; in 7;. (Similarly for number functions f;.)

This shows that each 7; is conservative over 7;_1, and hence |J 7; is conser-
vative over VY + SF-BIT-REC.

The intuitive reason that the defining formula for F; can have the form (8.12)
is that F; is in FP and the proof of Theorem 8.36 shows that every such F' is
3B _definable by a formula of the form (8.9).

We will prove the induction step for the case that F' = F; is defined by
Limited Recursion, and leave the cases F,; and f,; to the reader.

8.2. TV AND THE TV! HIERARCHY 187

(8.2), and as-
) are definable

Thus suppose that the defining equations for F' are (
sume by the induction hypothesis that G(Z, X) and H (y,

—

by formulas of the form (8.12). Then (suppressing &, X),

8.1) and
z,X,W

Y =G« (|Y| <tgAN3IZ <tg, (pz;ec(tg, Z) ANY = Outg(Z)) (8.13)

and

Y=H(zV) « (Y] <tu(z,V) A
U <ty(z,V), o5 tu,z, VU ANY = Outpy(z,V,U)) (8.14)

We compute F(y) by computing the sequence

To do this according to our formulas for computing G and H we can compute
the string W which is a concatenation of computations

W = (ZuF(O)7 UOaF(l)a U17F(2>7 7Uy—17F(y))
where F(0) = G and Z is a witness for (8.13):
|Z| <t NZ(2) = pc(2,Z277) and |F(0)] < tg A F(0) = Oute(Z)

and for j >0, F(j +1) = H(j, F(j)) and U; witnesses (8.14):

|UJ| < tH(]vF(])) A U](Z) i @H(Zvij(j)7Uj<z) and
|F(G+ DI <tu(G, FG) AF(G+1) = Outu (4, F(5),Uj)

Observe that the above conditions for W essentially state that a bit = of W
can be computed from bits W (0),..., W (xz — 1). In more detail, the substrings
of W that encode Z and F(0) can be defined using (8.13), and those that encode
U; and F(j + 1) can be defined using (8.14) from the preceeding substring that
encodes F'(j).

For a formal argument, it is convenient to assume that each of the substrings
Z,F(0),Uy, F(1),--- of W has the same length ¢, by padding with 0’s if nec-
essary, for some £% term t big enough. Also, the following abbreviations are
useful in indexing a particular substring of the form F(j) or U; of W in terms
of the index x for the z-th bit of W:

j(z) = |z/(2t)], 2’ = x mod (2t), =2 =t

Each bit W(z) of W can now be defined (from W<%) by first finding the sub-
string it belongs to (by looking at j(z) and z’), and then using the one of the
formulas (8.13) or (8.14) for the appropirate substrings. Details are left as an
exercise. 0

188 CHAPTER 8. THEORIES FOR POLYNOMIAL TIME AND BEYOND

Exercise 8.40. Give explicit £F formula ¢p(x,y,W) for F. (Note that by
Lemma 5.40, it suffices to give a BF(Lpaco) formula.) Verify that VO proves
the recursion equations (8.1) and (8.2) for F.

Lemma 8.39 and Theorem 8.38 complete the proof of Theorem 8.26. These
two results together with Lemma 8.32 prove the following result.

Corollary 8.41. TV® = V* + ZF.BIT-REC.
The next result follows from Theorem 8.26 and Corollary 8.34.

Corollary 8.42. TV proves its AP-SIND azioms. V' proves its AP -SIND
azioms.

Proof. The first sentence follows from Theorem 8.26 and Corollary 8.34. The
second sentence follows from the first, since by Corollary 8.29 any X -formula
that is AP in V! is also AP in TV, 0

8.2.3 A Finite Axiomatization of TV’

In Chapter 9 we will describe a general method of defining a finitely axiomatized
L?-theory for a complexity class by extending VY by a single axiom asserting
the existence of a computation for a problem complete for the class. Here we
show how to do this for the class P. The relevant problem is the Monotone
Circuit Value Problem MCVP. The resulting theory turns out to be TV,

MCVP is the problem of deciding, given a monotone Boolean circuit and
its input, whether the output of the circuit is 1. The version we describe here
allows A and V gates to have arbitrary fan-in. Consider a layered, monotone
Boolean circuit C' with (d + 1) layers and g gates on each layer. We need to
specify the type (either A or V) of each gate, and the wires between the gates.
Suppose that layer 0 contains the inputs. To encode the gates on other layers,
there is a string variable G such that for 1 < z < d, G(z,) holds if and only if
gate = on layer z is an A-gate (otherwise it is an V-gate). Also, the wires of C
are encoded by a 3-dimensional array F: (z,z,y) € E iff the output of gate x
on layer z is connected to the input of gate y on layer z + 1. The inputs to C
are specified by a string variable I of length |I] < g.

We will formalize the following polytime algorithm which computes the out-
put of C, given inputs I. It evaluates all gates of C using (d+1) loops: in loop z
it identifies all gates on layer z which output 1. In particular, loop 0 is to single
out the input gates with the value 1. Then in each subsequent loop (z + 1) the
algorithm identifies the following gates on layer (z + 1):

e V—gates that have at least one input which is identified in loop z;
e A—gates all of whose inputs are identified in loop z.

The formula §y,cvpe(g,d, E, G, I,Y) below formalizes this algorithm. The 2—
dimensional array Y is used to store the result of computation: For 1 < z < d,
row Y'?l contains the gates on layer z that output 1.

8.2. TV AND THE TV! HIERARCHY 189

Definition 8.43. Define MCVP = 3Y dyeve(g,d, E,G,1,Y), where dpcovp
is the formula

Vo < gVz <d, (Y(0,2) < I(z))A
Y(iz+1,2) « (Giz+1,2) AVu<g, E(z,u,z) DY (z,u)V
(-G(z+1,2) ANJu < g, E(z,u,z) NY(z,u))] (8.15)

It is easy to see that MCVP is equivalent in V to the same axiom with |Y|
bounded by (d, g).

Theorem 8.44. TV’ =V + MCVP.

From this and Theorem 5.75 and Corollary 8.29, since MCVP is equivalent
in VO to a X8-formula, we have:

Corollary 8.45. TV is finitely aziomatizable. The SB_consequences of TV
and of V'are each finitely aziomatizable.

Proof of Theorem 8.44. To show V° + MCVP C TV, it suffices by Corollary
8.41 to show that VO + EJB-BIT-REC proves MCVP. The axiom MCVP
is almost an instance of XF-BIT-REC, but unfortunately using our pairing
function the indices of the elements in row z 4+ 1 of the array Y are not all
bigger than the indices of row z. To fix this, one way is to concatenate the rows
of Y successively to form a string Z. Thus, since each row of Y has length < g,
we can define Z so that
YE = Z[zg, (z + 1)g]

Then (8.15) can be modified to give a definition for Z, and the existence of
Z follows from ZF-BIT-REC. Finally, Y is easily defined from Z in V° by
»B.comP.

To prove the other direction, it suffices (also by Corollary 8.41) to show
that the ZF-BIT-REC axioms are provable in VY + MCVP. Thus for each
S8 formula ¢ (0, y, X, W) we must show

VO + MCVP F 3XVz <y, X(2) — (@, z, X<*\W) (8.16)

We will show that VO proves the existence of a monotone circuit C' that com-
putes X by successively computing the bits X (0),..., X (y — 1) of X, and also
-X(0),...,mX(y — 1). In order to compute X(z) and =X (z) we will use a
monotone subcircuit C, whose input array [is

X(0),-X(0),...,X(z—1),~X(z— 1) (8.17)

(When z = 0 this input array is replaced by the pair of constants 0,1.) The
subcircuits C, are specified by parameters g, d, F/, G which depend on 0, z, W,
but not on X. The final row Y14 in the computed values of C, is almost the

same as its input I, except the values of X (z) and =X (z) have been computed
as (2, X <%) and —p(z, X <#), and have been added. That is, V¥ is

X(0),=X(0),...,X(z—1),=X (2 — 1), 0(2, X <%), ~p(z, X <7)

190 CHAPTER 8. THEORIES FOR POLYNOMIAL TIME AND BEYOND

Thus the final row of C, serves as the input row of C,;;. We show that V°
proves the existence of g, d, E, G, I satisfying these conditions. From this we can
show in VY that the subcircuits C, can be stacked one above the other to form
the sequence Cy,Ch,...,Cy_1 comprising the desired circuit C' for computing
X.

Actually the final layer of C' mixes in negated values of X (i):

X(0),-X(0),...,X(y—-1),"X(y—1)

so we need a function to extract the positive elements. Thus we define the AC°
string function Ext by

Ext(y, Z)(i) < i <y A Z(2i)
Using this we will establish (8.16) by showing

VO = 3.gad7-E‘7G7IV}/ S <dag>7 5MCVP(g7d7E7G717Y))
Vz < y(Brt(y, Y (2) o (@, 2, Ext(y, YIIY<* W) (8.18)

In constructing the subcircuits C, we may assume that string equality Y = Z
has been removed from ¢ by using the VY axiom SE and the equality axioms.
Further we can use De Morgan’s laws to push negations in so that in both ¢ and
—p negations appear only in front of atomic formulas. We proceed to construct
the subcircuits C, by structural induction on the resulting formulas.

For the base case we consider the possible literals

s=t, s #t, s <t, t<s, Z(t), —Z(t) (8.19)

The values of all variables except |X| making up each term ¢ are precomputed
from the data ,z, W, so t = £(]X|) is known as a polynomial in |X| before
constructing C,. In general, the value n of a term ¢ is represented in a row of
C, as an array T}, which satisfies

T.(i)—i=mn, 0<i<b

for some precomputed upper bound b on t. In case ¢ is | X|, this array is com-
puted in C, from the input (8.17) using the circuits

z—1
Tix(i) = X~ 1) A \ X()

where the first term X (¢ — 1) is omitted if 4 = 0. In general the sum s+ ¢ or
product st of two terms is easily computed from s and ¢ using two rows of C,.
For example

Tu(i) = \/ (T:() A Ti(k))

i=jk

8.3. THE THEORY V!-HORN 191

Using these ideas subcircuits C, for the first four literals in (8.19) are easily
constructed. The cases Z(t) and =Z(t) are no problem when Z is X, since values
for X (¢) and =X (7) are given as inputs (8.17) to C,. We can simplify the cases in
which Z is a parameter variable W by preprocessing ¢ so that any occurrence of
the form W (t), where ¢ contains | X, is replaced by 3z < s(z = t AW (z)), where
s is a term not involving |X| which is an upper bound for ¢ (and similarly for
=W (t)). Thus for literals W (t) and =W (¢) we may assume that ¢ is a constant
known “at compile time” and hence the truth value of W(¢) is known. (The
truth values 0 and 1 can be computed by (X (0) A =X (0)) and (X (0) V—-X(0)),
respectively.)

For the induction step, the cases ¢ is ¢1 A @2 and @ is @1 V @9 are easy. So
it remains to consider the bounded quantifier cases, say

o(z,X) =3 < tp(z,2,X) (8.20)

and replace —¢ by Va < t—¢(z,2,X). We may assume the bounding term ¢
in (8.20) does not contain |X| by replacing ¢ by an upper bound s for ¢, and
adding the conjunct x < ¢t. Hence the value of ¢ is known at compile time. By
the induction hypothesis, V? proves the existence of subcircuits for ¥ (z, z, X).
A circuit for 3z < ty(x, 2z, X) can be constructed by placing circuits for each
of ¥(0,2,X),v(1,2,X),...,9¥(t z,X) side by side so that these formulas are
evaluated in parallel. (The second layer for C, can set up the expected inputs
for these circuits.) Then ¢ can be computed by a single V gate from the outputs
of these circuits. Similarly for the case Vz < t.

This completes the description of the subcircuits C,. Now V? proves the sec-
ond line of (8.18) by induction on z, under the assumption dyrcve(g,d, E,G,1,Y),
where g,d, E, G, I are defined by our construction for the circuit C. 0

8.3 The Theory VI-HORN

Here we treat the theory VI-HORN [?], which is the same as TV but pre-
sented with different axioms. The of ideal of VI-HORN comes from a theorem
of Gradel in descriptive complexity theory, characterizing the class P as the sets
of finite models of certain second-order formulas. We will formulate Gréadel’s
theorem as a representation theorem over £4. We start with some definitions
and examples.

Definition 8.46. A Horn formula is a propositional formula in conjunctive
normal form such that each clause (i.e. conjunct) is a Horn clause, i.e. it
contains at most one positive occurrence of a variable.

Horn formulas are important because the satisfiability problem HornSat
(given a Horn formula, determine whether it is satisfiable) is complete for P. A
polytime algorithm for HornSat can be described as follows.

HornSat Algorithm: To test whether a given Horn formula A is satisfiable,
initialize a truth assignment 7 by assigning L to each atom of A. Now repeat

192 CHAPTER 8. THEORIES FOR POLYNOMIAL TIME AND BEYOND

the following until satisfiability is determined: If 7 satisfies all clauses of A then
decide that A is satisfiable. Otherwise select a clause C' of A not satisfied by 7.
If C has no positive occurrence of any atom then decide that A is unsatisfiable.
Otherwise C has a unique positive occurrence of some atom p, in which case
flip the value of 7 on p from 1 to T.

Exercise 8.47. Show that the above algorithm runs in polynomial time and
correctly determines whether a given Horn formula A is satisfiable.

The HornSat algorithm suggests that a Horn clause (pV —¢g1 V- - -V —qi) can
be written as an assignment statement

p— (a1 N Aqr)

(In fact some logic-based programming languages such as Prolog use this idea.)

We now indicate why HornSat is complete for P. It suffices to show that
a known complete problem CVP (Circuit Value Problem) can be reduced to
HornSat. Given a Boolean circuit C' with binary gates A,V and unary gates —,
and given a value v(z) € {0,1} for each input x to C, we want to find a Horn
formula A which is satisfiable iff C' has output 1 for the given inputs v(z). The
formula A uses “double rail logic” to evaluate C: for each gate and each input
x of C the formula has two atoms 2 and 2~ asserting that the gate or input
is 1 or 0, respectively. For each such z, A has a Horn clause (—z™ V —z7) to
insure that not both atoms are true. For each input =, A has a unit clause z™
if v(z) = 1 and unit clause z~ if v(z) = 0. For each gate in C, A has up to
three Horn clauses which assert that the output of the gate has the appropriate
value with respect to its inputs. For example, if x is the V of inputs y, z, then
the clauses are

(@ =y AT = 2)A@T (Y A2)) (8.21)

Finally A has the unit clause x,,, where z,,; is the output gate.

It turns out that the collection of propositional Horn formulas that corre-
spond to a given polytime problem can be represented by single £ formula as
follows.

Definition 8.48. A X5 -Horn formula is an L3 -formula of the form
@Y = 321 s EJZkVyl S tl N 'Vym S tm’t/J (822)

where k,m > 0 and v is quantifier-free in conjunctive normal form and each
clause contains at most one positive occurrence of a literal of the form Z;(t).
No term of the form |Z;| may occur in v, although ¢ may contain free string
variables X (and free number variables) with no restriction on occurrences of
|X|, and any clause of ¥ may contain any number of positive (or negative)
literals of the form X (t).

We will show that £P-Horn formulas represent polynomial time relations in
their free variables.

8.3. THE THEORY V!-HORN 193

Example 8.49 (Parity(X)). This is a P -Horn-formula which holds iff the
string X contains an odd number of 1’s. Parity(X) encodes a dynamic-programming
algorithm for computing the parity of X: Zoqa(i) is true (and Zeyen (i) is false)

iff the prefix of X of length i contains an odd number of 1’s.

3ZcvenIZoaa¥i < | X|
Zewen(0) A =Zoqa(0) A Zoqa(| X |)
A (7 Zeven (i +1) V = Zoga(i + 1))
A (= Zeven (1) V =X (1) V Zoga(i + 1)) A («Zoga (i) V =X (1) V Zeven (i + 1))
A (" Zeven (1) V X () V Zeyen (i + 1)) A (= Zoga(i) V X (1) V Zoga(i + 1))

Exercise 8.50. Prove that Parity(X) has the stated property.

In Section 4.3.2 we showed how the complexity classes AC? and the members
3P of the polynomial hierarchy can be characterized by representation theorems
involving the formula classes £Z. Now we state a similar theorem characterizing
P.

Theorem 8.51 (Gridel). A relation R(Z, X) is polynomial time iff it is rep-
resented by some X -Horn-formula.

Proof sketch. <=: Suppose that the formula (Z, X) has the form (8.22). We
outline an algorithm that runs in time polynomial in (#, | X|) which, given values
for #, X, determines whether cp(f,)z) holds (in the standard model). First
note that once values for #, X are given, the bounding terms t; = ti(f,)?)
can be evaluated to numbers bounded by polynomials in (Z,]X]). We expand
the quantifier prefix Vy; < t1:--Vym < t,, by giving all possible m-tuples of
values (y1,-- ,Ym) satisfying the bounding terms, and form the conjunction
U (Zy,---,Zk) of all instances ¥ (y), as ¢ ranges over all these tuples. (Note
that the number of such tuples is bounded by a polynomial in (Z,|X]).)

Then W(Zy,---,Zk) can be made into a propositional conjunctive normal
form formula ¥’ involving only literals of the form Z;(j) and =Z;(j) for specific
numbers j, since all terms and all other variables in ¥ have been evaluated.
(Here it is important that we have disallowed occurrences of |Z;| in ¢.) The
arguments j in Z;(j) and —Z;(j) are values of terms ¢, for each Z;(t) or =Z;(t)
that is a literal in the original formula . Let B be an upper bound on the
possible values of j (so B is a polynomial in (#, X)). Then ¥’ is a Horn formula
whose propositional variables are all in the set {Z;(j) | ¢« < k,7 < B}. Thus
the problem of checking for the existence of Z1,--- , Zx reduces to the polytime
HornSat problem of deciding whether ¥’ is satisfiable.

= Let R(Z, X) be a polytime relation and let M be a deterministic polytime
Turing machine that recognizes R in time ¢(Z, X). By choosing ¢ large enough,
the entire computation of M on input &, X can be represented (using the pairing
function) by an array Z(i,j) with ¢ rows and columns, where the i-th row

194 CHAPTER 8. THEORIES FOR POLYNOMIAL TIME AND BEYOND

specifies the tape configuration at time 7. Thus R(f,X) is represented by the
3B _Horn-formula

3Z3ZVi <tVj < t(i,§, 7, X, 2, 7)

Here the variable Z is forced to be =Z in the same way that Zeyen and Z,qq are
forced to be complementary in the parity example above. The formula v satisfies
the conditions in Definition 8.48 and each clause specifies a local condition on
the computation. O

Definition 8.52. The theory VI-HORN has vocabulary L% and azioms those
of VO together with ¥ -Horn-COMP.

The original definition of VI-HORN in [?] was a little different. Recall that
VY has axioms 2-BASIC together with 3F-COMP (Definition 5.3). The orig-
inal definition was essentially VI-HORN = 2-BASIC + X¥-Horn-COMP.
It was shown with some effort that VI-HORN proves ¥F-COMP, so the two
definitions are equivalent.

The next theorem follows from results in [?].

Theorem 8.53. VI.HORN = TV".

Proof sketch. VI-HORN € TV: It suffices to show TV’ - £5-Horn-COMP.
Since VPV is a conservative extension of TV (Theorem 8.26), it suffices to
show VPV I Z5-Horn-COMP. Since VPV F X8 (Lpp)-COMP (Lemma 8.7),
it suffices to show that for every £2-Horn-formula ¢ there is a £F(Lgp) for-
mula ¢’ such that VPV F ¢ « ¢,

So let ¢ be a BP-Horn-formula as in (8.22), where we write (21, -+ , Zk)
simply as v, and let f,X be the free variables in ¢. The idea is to find a
“witnessing function” F;(Z, X) in Lrp for each Z; such that VPV proves ¢ <
¢’, where

¢ = Yy <t Yy < tmb(FL(Z, X), - Fi(Z, X))

To define F; we refer to the direction <= in the proof of Theorem 8.51. There
the algorithm to evaluate ¢(Z, X) computes a propositional Horn formula ¥’
whose propositional variables have the form Z;(j), and then applies the HornSat
algorithm to determine whether W’ is satisfiable. This algorithm computes a
truth assignment 7 to the atoms Z;(j) of ¥’ such that ¥’ is satisfiable iff 7
satisfies ¥/. Thus it suffices to define the string Fy(#, X) to be the array of
truth values that 7 gives to Z;. That is, the the bit definition of each F; is

Fy(#,X)(j) < j < BAT(Zi())

The algorithm outlined to compute F; is clearly polytime and hence corresponds
to some function in FP. The missing details in the proof are to show that VPV
proves the correctness of the algorithm; i.e. VPV ¢ D ¢'.

8.3. THE THEORY V!-HORN 195

TVY C VI.HORN: By Theorem 8.44 it suffices to show that VI-HORN
MCVP. We indicated earlier (8.21) how propositional Horn clauses can be
used to evaluate circuit gates. Now we show how to use a ¥F-Horn formula
to evaluate the circuit C' described by parameters g,d, E, G with input I in
Definition 8.43. In essence, the new atoms 2,z etc. in (8.21) are encoded by
the (existentially quantified) string variables Z in the X£-Horn formula. Note
that the algorithm outlined on page 192 is for circuits with binary gates, while
here the circuit may have unbounded fan-ins.

Thus, we want to define an array Z(z,z) (and its negation Z(z,z)) to eval-
uate gate x at layer z in C' (denoted here simply by gate (z,x)). First, for the
input gates we have

Z(0,z) < I(x) and Z(0,x) < ~I(x) (for x < g) (8.23)

Next, consider gate (z+1, z). Suppose that this is an V-gate, i.e., -G(z+1, x)
holds. Translating the first two conjuncts in (8.21) we get:

(-G(z+ 1,2) NE(z,y,2) AN Z(2,9)) D Z(z+ 1,x)

Translating the last clause of (8.21) is more involved, since now the gate
(z 4+ 1, x) may have unbounded fan-in. In fact, we formalize a simple algorithm
that runs through the inputs of gate (z + 1,) to check if all of them are 0. We
use a string variable P — the meaning of P(z + 1,z,y) is that all gates (z,u)
which are input to (z + 1, z), where u < gy, output 0. The formalization is as
follows:

-G(z+1,z) D P(z+1,z,0)
P(z+1,z,y) A—E(z,y,2) D P(z+1,z,y+1)
P(z+1,2,9) A Z(z,y) D P(z+1,z,y+1)
-G(z+ L z) AP(z+1,2,9) D Z(z+1,z)
Let 1\, denote the set of the five clauses described above for the case where
the gate (z 4+ 1,) is an V-gate. Also, let ¢; be the set of clauses in (8.23). The

set ¥, of clauses for handling the case where (z 4+ 1,) is an A-gate is similar
to 1y, using an extra variable @ instead of P.

Exercise 8.54. Give the five clauses of .

Now we can show in VO that a string Y that is computed by

Y (20, x0) < 3Z3Z3PAQVz < d¥z < gVy < g,
(=Z(z,z) vV ﬁZ(z,x)) AL Aa Npy A Z(z0,0) (8.24)

(for zo < d,z¢ < g) satisfies dycvp(g,d, E,G,1,Y). The following exercise is
helpful.

196 CHAPTER 8. THEORIES FOR POLYNOMIAL TIME AND BEYOND

Exercise 8.55. Let the string variables Z,Z, P,Q satisfy the RHS of (8.24),
and Y’ satisfy Speve(g,d, E,G,I,Y"). Show — by (double) induction on z
and xo — that for zog < d,zo < g,

=Z(z0,20) D ~Y'(20,%0) and ﬁZ(Zo,Io) D Y (20, 0)

Exercise 8.56. Prove by number induction that the string Y described above
satisfies the recursion in dyove(g,d, E,G,1,Y).

Finally, the existence of Y in MCVP follows from the existence of Y that sat-
isfies (8.24); the latter is by Z-Horn-COMP. Notice that although the RHS
of (8.24) is a X8-Horn formula, to get a proper instance of X¥-Horn-COMP
we need a slight modification, i.e.,

Y < (g, d)Vi < (g,d), Y (i) < (i)

where

o) = 3Z3Z3P3QVz < d¥z < gVy < gVzo < dV¥zo < g,
(=Z(z,2) V=Z(2,2)) ANbr Aa Ay A (i = (20, 20) D Z(20,20))

This completes the proof that TV C VI-HORN. O

8.4 TV! and Polynomial Local Search

It follows from Theorem 8.20 that V! € TV, and hence TV' can EF-define all
polynomial time functions. But there is no known nice characterization of the set
of all functions XP-definable in TV'. There is however a nice characterization
of the set of all search problems X P-definable in TV',

A search problem is essentially a multivalued function, and the associated
computational problem is to find one of the possible values. Here we are con-
cerned with total search problems, which means that the set of possible values is
always nonempty. We present a search problem by its graph. The search prob-
lem is definable in a theory if the theory proves its totality. In the two-sorted
setting the set of possible values is a set of strings.

Deﬁn_ij:ion 8.57. A search problem Qg is a multivalued function with graph
R(#,X,Z), so

QR(fa X) = {Z | R(f’sz)}
Here the arity of either or both of Z, X may be zero. The search problem is total

if the set Qr(&, X) is non-empty for all T, X. The search problem is a function
problem if |Qr(#, X)| = 1 for all £, X. A function F(&, X) solves Qg if

F(Z X) € Qr(Z, X)

for all f,)_f.

8.4. TV' AND POLYNOMIAL LOCAL SEARCH 197

Here we will be concerned only with total search problems. The following
notion of reduction preserves totality.

Definition 8.58. A search problem Qr, is many-one reducible to a search
problem Qr,, written Qr, <, Qr,, provided there are FAC?-functions f,F,G
such that G(Z, X, Z) € Qr, (%, X) for all Z € Qg,(f(Z,X), F(Z, X)).

We note that the usual definition states the weaker requirement that f, ﬁ, G
are polytime functions. However experience shows that when reductions are
needed they can be made to meet our stronger requirement.

Exercise 8.59. Show that <, is a transitive relation. Also show that if Qr, <,
Qr, and Qr, is solvable by a polytime function, then Qr, is solvable by a
polytime function.

Local search is a method of finding a local maximum of a function by starting
at a point in the domain of the function, finding a neighbor of the point that
increases the value of the function, and continuing this process until no such
neighbor exists. Polynomial Local Search (PLS) formalizes this as a search
problem in case the function is polytime and suitable neighboring points can be
found in polynomial time.

Definition 8.60. A PLS problem Q is specified by the following:

1) A polytime relation po(Z,X,Z) and an L2-term t(Z,X) satisfying the
two conditions

8

Py L

)

(7, X, o
,Z) > |Z| < (%, X)

PQ(,

)

{Z | po(Z, X, Z)} is the set of candidate solutions for problem instance
(7. X).)

2) Polytime string functions Pg(Z, X,Z) and No(Z, X, Z) satisfying the two
conditions
0q(#.X,Z) D ¢q(#, X, No(i, X, 2))
No(#,X,2)+ Z > Po(&,X,Z) < Po(,X,Ng(Z, X, 2))

(Ng is a heuristic for finding a neighbor of Z which increases the profit
Py. No(Z,X,Z) = Z is taken to mean that Z is locally optimal.)

Then
Q& X)={2| vo(& X,2) A No(#, X, Z) = Z} (8.25)

The problem Q is an AC°-PLS problem if vg,Ng, Pg are ACP-relations and

Sfunctions.

198 CHAPTER 8. THEORIES FOR POLYNOMIAL TIME AND BEYOND

It is easy to see that a PLS problem is a total search problem. For fixed &, X,
the set of candidate solutions Z (those satisfying ¢¢ (%, X, Z)) is nonempty and

bounded. Thus given &, X , any candidate solution Z that maximizes the profit
Po(#,X,Z) is a member of Q(Z, X).

We will concentrate on a subclass of PLS called ITERATION, which is
complete for PLS.

Definition 8.61. An ITERATION problem Q = QF 1s specified by a poly-
time function F(Z,X,Z) and a bounding term t(Z, X). The graph relation R is

specified by a formula Vg (x,X, Z) which is (suppressing the parameters T,)?)

Yp(Z) = Z=ONF(@)=0 V
|Z| <tANZ < F(Z)AN[t<|F(Z)|VF(F(Z)) <F(Z) (8.26)
Then B B
The problem Qp is an AC°-ITERATION problem if F is an AC°-function.

To see that Qp is a total search problem, note that the largest Z < ¢ such
that (Z =@V Z < F(Z)) is always a solution.

Lemma 8.62. Fvery ITERATION problem is a PLS problem.

Proof. Let Qr be an ITERATION problem as above. Then Qr can be spec-
ified as a PLS problem using the following definitions:

0olZ2)=|Z| <tAN(Z =0V Z < F(Z))
Po(Z)=2Z

No(Z)/= {g(ﬂfwﬁ(@zn <tand Z < F(Z) < F(F(Z))

Then (8.27) follows from (8.25). Notice that if Qr is an AC’-ITERATION
problem then the corresponding problem is an AC°-PLS problem. O

Theorem 8.63. Fvery PLS problem is many-one reducible to some ITERATION
problem. Every ACY-PLS problems is many-one reducible to some AC°-ITERATION
problem.

Proof. Let @ be a PLS problem and let ¢, pg, Pg, Ng be as in Definition 8.60.
We give the following X -definition of the concatenation function X x, Y,
which is the first z bits of X followed by Y:

(X, Y)({i) o i<z+|Y|A[i<zAX@) V 2<iAY (i~ 2)]

We wish to define an ITERATION problem Qg with bounding term ¢’ whose
solutions yield solutions of). The idea is to let the domain of F' consist of

8.4. TV' AND POLYNOMIAL LOCAL SEARCH 199

concatenations U x; V where U is a candidate solution for @) and V is its profit.
Note that if V7 < V5 then Uy *; Vi < Uy %4 Vo for all Uy, Us.
In the following we suppress the parameters &, X,
Let u = u(Z,X) be an L?-term large enough so that |Pgy(Ng(Z))| < u for
|Z] <t. Then define
t=t4+u

and

Nq(U) ¢ Po(Ng(U)) if V = Po(U) and ¢q(U)
U *; V otherwise

F(U*tV)—{

The term t’ is chosen so that if U satisfies po(U) then |F(U %, Po(U))| < t'.

Here we redefine Py so that Py(@) = @. Note that the result is a PLS
problem with the same solutions as the original problem.

Now suppose Z is a solution to the ITERATION problem Qr. We show
how to obtain a solution G(Z) (= G(Z, X, Z)) to the original PLS problem Q.
We write Z = U #, V where U,V are uniquely determined by Z. Then from
(8.25), (8.27) and our definitions we see that G(U %, V') = Ng(U) is a solution

to Q.
Hence by Definition 8.58 we conclude @ <, Qr, where f,F take &, X to

itself and G(Z, X, Z) = No(Z, X, Z<t@X), 2

Definition 8.64. If S is a set of search problems, then C(S) is the set of search
problems many-one reducible to S.

Theorem 8.65.
C(ITERATION) = C(PLS) = C(AC’-ITERATION) = C(AC’-PLS)

Proof. The first and last equalities follow from the preceding definition and
theorem. The middle equality follows from these and Theorem 8.67 below. [

Definition 8.66. Let Q(Z, X) be a search problem with graph R(Z,X,Z). We
say that Q is ®-definable in a theory T if there is a formula Vg (Z,)?, Z) in ®
such that

Vr(#.X,2) D R(Z X, Z)

and .
TH3AZYr(E,X,7)

Theorem 8.67. The following are equivalent for a search problem Q:
(a) Q is X8 -definable in TV?.
(b) Q is in C(PLS).
(c) Q is in C(AC"-PLS).

200 CHAPTER 8. THEORIES FOR POLYNOMIAL TIME AND BEYOND

Proof. (a) = (c) follows from Theorem 8.68 below (Witnessing for TV') and
Lemma 8.62. (¢) = (b) is obvious. Hence it suffices to show (b) = (a).

By Theorems 8.63 and 8.16 and Corollary 8.27 it suffices to show that every
problem in CITERATION) is 32 (Lgp)-definable in TV (VPV). We start
by showing this for every ITERATION problem Qr. Let g (&, X, Z) be the
formula (8.26) defining Qr. We may assume that F' is an Lpp-function, and
hence ¥ is a P (Lpp)-formula. Let

@ X, 2)=(Z=2VZ<F&X,7))

Then VPV proves 7 is equivalent to a P -formula (Theorem 8.16), and hence
by ZP-SMAX (Theorem 8.24), TV!(VPV) proves the existence of a largest
Z < t satisfying n(Z). Thus TV (VPV) proves that this Z satisfies 1x(Z).

This shows that every ITERATION problem is X (Lpp)-definable in
TVl(VPV). Now suppose the search QQr, is many-one reducible to some
ITERATION problem Qg,. Define the formula ¢ g, (Z, X, Z) by (supressing
Z, X)

VR, (Z) =3IW < UZ = GW) A g, (f, F, W)
where t is the bounding term for Qr, and g, is a P (Lpp)-formula which
defines Qg, in TV (VPV), and f, F, G show Qp, <p Qr, according to Defi-
nition 8.58. Then tp, is equivalent to a X¥(Lpp)-formula, and by Definition
8.58
Vg, (7,X,2) > Ri(Z,X,2)

Since by assumption TV (VPV) proves 3W < u g, (W) (where u is a bound-
ing term from Parikh’s Theorem) it follows that TV (VPV) proves 3Z¢g, (Z),
as required. O

Theorem 8.68 (Witnessing Theorem for TV?). Suppose that ¢(Z, X, Z)
is a X1-formula such that

TV 3207, X, 2)
Then there is an AC°-ITERATION problem Qp with graph g (Z, X, Z) from
(8.26) and an FACC-function G such that
V' k(7 X, 2) 0 (7 X,G(%, X, 7))

Proof. By using pairing functions we may assume that ¢ is $F. The proof is
similar to the proof of the Witnessing Theorem for V! (Section 6.4). Thus we
define a sequent system LK?-TV!, which is the same as LK2-V! except that
we replace the IND Rule by the single-XE-SIND Rule, defined as follows:

Definition 8.69 (The SIND Rule). For a set ® of formulas, the ®-SIND
rule consists of the inferences of the form

T, A(5) — A(S(d)), A

(8.28)
T, A(2) — A(T),A

8.4. TV' AND POLYNOMIAL LOCAL SEARCH 201

where A is a formula in ® and T is a string term.
Restriction The variable § is called an eigenvariable and does not occur in the
bottom sequent.

The proof that LK2.-TV! is a complete system for TV! is the same as the
proof that LK2-V? is a complete system for V!, with obvious modifications.
Further the proof of Theorem 6.42, Anchored Completeness for LK?+IND,
works for LK2.-TV!, so every theorem of TV! has an anchored LK?-TV!
proof.

Now we proceed as in the proof of the Witnessing Theorem for V! (Section
6.4.2) and for VY (Section 5.5.2), with appropriate changes.

Suppose that HZw(f,X,Z) is a Xl-theorem of TV, where ¢ is a EJ-
formula. Then there is an anchored LK?-TV' proof m of — 3Z¢(a,d, Z).
We may assume that 7 is in free variable normal form. By the Subformula
Property the formulas in 7 are 1 formulas, and in fact they are £ formulas
or single-X1 formulas. As a result, every sequent in 7 has the form

—— ———
i=1,...,m Jj=1,...,n

for m,n > 0, where 6; and n; and all formulas in I and A are 3F.

We will prove by induction on the depth in 7 of the sequent S that there
is an AC*-ITERATION problem Qp with graph ¢z and for 1 < i < n there
are Lppco-functions G; such that A proves (the semantic equivalent of) the
sequent

Sl = ez(ﬁz) 7F7’¢F(_'7 0_27 ga ’7) — Aunj(Gj(au O_"a 57 ’7)) (830)
~—— ———
i=1,...,m Jj=1,...n

where @, & is a list of exactly those variables with free occurrences in S. (This
list may be different for different sequents.) Also (1, ..., B, are distinct new free
variables corresponding to the bound variables X7, ..., X,,, although the latter
variables may not be distinct. When S is the final sequent of 7, note that I
and A are empty, i =0, j = 1, and E is empty, so the theorem follows.

Note that this induction hypothesis is the same as in the proof for V! and
VY, except now each witnessing function G; is allowed to take the argument -,
which is a solution to the ITERATION problem Qg. As before, the induction
step has a case for ZF-COMP and for each rule. The argument for F-COMP
is the same as for VY (since the witnessing function G ; can ignore its argument
7). The argument for each rule except XP-SIND is similar to that for V©
(Section 5.5.2), and can be obtained using the following lemma, that shows how
two ITERATION problems can be combined into one.

Lemma 8.70 (Composition of ITERATION Problems). Suppose that
Qr, and Qp, are ITERATION problems with graphs Vg, (7, X, U) and ¢, (T, X,U, V).
Then there is an ITERATION problem Qp with graph wp(f,)?, Z) such that

202 CHAPTER 8. THEORIES FOR POLYNOMIAL TIME AND BEYOND

F is BB -bit-definable from Fy, F», and there are FAC"-functions G (&, X) and
G2 (%, X) such that (suppressing 7, X)

VO (Fy, Fo, F) b $0(2) 5 ¥, (GLZ)) A Ui, (G1(Z), Ga(2))

Proof. Assume the hypotheses of the Lemma, and let ¢ be the bounding term
for QF, and let u be the bounding term for Qp,. Using the notation U *; V'
in the proof of Theorem 8.63, we express the argument Z in F(Z, X, Z) in the
form

Z =U# V xp14, 0

where 0 is a binary string equal to 0,1,or 2. We abbreviate Z by
Z=UxV=%*0
Then we define F' by (suppressing &, X)

UV %2 if vp, (U) AR, (U, VNG <1
else Ux F(U,V)x1 it pp (U)A|V]|<uAV <F(UV)AI<1
else F1(U) x @ x @& fV==aA|U <tAU<F((U)
else UV %

F(UxVxd) =

Let the ITERATION problem @ have bounding term ¢ + u + 2.
We claim that

VP, o, F)F ¢p(UV 8) D8 =2A0p (U)App, (U, V) (8.31)

To see this, note that by line 3 in the definition of F, F(&) # &, since if
Fi (@) = @ then ¢ (@), and hence one of the first two lines applies. Hence
assuming ¥ (U * V * §) we have by (8.26)

UxV*xd<FUx*V x§)=F(F(U=xV x0))

From the definitions of ¥, and 1, we see that this can only happen if line 1
applies in evaluating F(U * V % §).
This establishes (8.31). To prove the lemma, we define

Gi(UxVx%0)=U Go(UxVx0)=V
We can make these definitions explicit by defining
C1(7,X,2) =2 Ga2(7,X,Z) = Z[t, t +u]
O

It remains to handle the case in which S is obtained by an application of the
3B_SIND rule. Then S is the bottom sequent of

S A3X <r(0)0(6, X) — 3X < r(S(6)0(S(5), X), 1T

S A3IX <r(2)0(2,X) — IX < r(T)O(T, X),1I

8.4. TV' AND POLYNOMIAL LOCAL SEARCH 203

where § does not occur in S and 6 is J.

By the induction hypothesis for the top sequent S; it follows that v proves
a sequent S7 of the form

S = N, ni,vr(6,6,7) — n2, I (8.32)

where
m = |8 <r(8) A6, B) (8.33)
n2 = |G(8, B8,7)] < r(S(6)) AO(S(5), G(9,5,7)) (8.34)

and ¢p defines the graph of an AC’-ITERATION problem Qp and G is an
Lpaco-function. Here 4, 3,7 do not occur in A’, but they may occur in IT' as
arguments to the witnessing functions Gj.

Our task is to use QpF and G to find Qp and G’ to find a witness for
X < r(T)9(T, X), given a witness [y for IX < r(&)0(2, X). We want v’ to
prove the following sequent S:

S = Al? Plﬂ/)F' (6057/) y— p25H/I (835)

where
p1 = |Bol < (@) NO(2, Bo) (8.36)
p2 = |G'(Bo,7")| < 7(T) ANO(T, G'(Bo, 7)) (8.37)

and IT” will be given later.
We will use the technique in the proof of Lemma 8.70 and assume that the
search variable 7' for @/ has the form

Y = B ¥ (1) Y *r(T)4¢ O

where 3,7, ¢ are as in (8.32), and ¢t an upper bound for v based on the bounding
term for Qp. In the following we drop the subscripts to * and write

v = Bxyxd

The idea is that Qg uses F' and G to find witnesses (8 for successive string
values of 6 = 1,2,...,T knowing that 3y is a witness in case § = &. @ g/ should
succeed under the assumption that (8.32) holds for all § < 7" and all 3, assuming
that the formulas in A’ are true and those in IT' are false.

We define F'(By, B#v#*0) by cases in such a way that if 1, holds, then it
continues to hold when F’ is applied repeatedly, and progress is made toward
finding 3’ such that 6(T, 3).

G(0,8,7)*@+5(0) ifm A6 <T Npr(6,8,7)
else B F(3,8,7) ¢ iftm AS<T Ay < F(B,6,7)
else Bp*D* iff=y=0=0
else Bxy*0

F/(ﬁ()? /6*7*6) =

204 CHAPTER 8. THEORIES FOR POLYNOMIAL TIME AND BEYOND

We define the witness-extracting function G’ (8y,v’) as follows:

By HfT=o

& (B, Brr)= {G(é,ﬁm T £ o

The following Claim asserts that a witness for 3X6(T, X) can be obtained from
a solution B*vy*d to Qp, provided (8.32) holds with A’ true and I’ false.

Claim: V' proves
T # gvplaq/}F’(ﬂOvﬂ*’Y*(s) — N A T/JF((SvﬁvV) A (_‘772 \ p2)

Proof of Claim: We argue in V’. Assume T #+ &, p1, Ve (Bo, Bxy%0). By
W (Bo, Pryrd) and (8.26) there are two possibilities. The first is that F'(2) = &.
But this is impossible, because if 3 = v = § = & then either 5y # @ and line 3
in the definition of F’ applies, or Sy = @ and one of the first two lines applies
(by p1 and the definition of ¥).

Therefore the second possibility in the definition of ¥z (8g, S*v*0) applies,
and we have

Bxyxd < F'(Bxy*8) = F'(F'(Bxvy%0)) (8.38)
Analyzing the definition of F’ and our assumptions (T' # &, p;) shows that
the only way that (8.38) can hold is if line 1 in the definition of F’ applies
when evaluating F’(S*vy*d). Thus m A (5, 8,7). Also since line 1 applies, if
S(6) < T then -9, for otherwise line 1 or line 2 would apply when evaluating
F'(F'(B+vy%d)), contradicting the second part of (8.38). This proves the Claim
in case S(0) < 7. Finally if S(6) = T then n2 D p2, and the Claim follows.

To establish that V' proves (8.35) we need to specify II” by giving values (in
terms of +') for the variables 0, 3, which occur as arguments to the functions
G, in IT'. Motivated by the Claim and (8.32) we define, for 4" = Bxy*d,

B(Y)=8 GA(W)=v D@H)=9

and define I1” to be the result of replacing 3,v,d in Il' by B(y'), GA(y'), D(v")
respectively.

The fact that V' proves (8.35) now follows from the Claim and by (8.32)
with 8,7, replaced by B(v'),GA(®'),D(v'). (The case T = @ follows from
(T = @ A p1) D p2, which holds by definition of G'.) O
8.5 KPT Witnessing
8.6 V'and TV’ for i > 2

8.7 RSUYV Isomorphism

Recall the hierarchies of single-sorted theories S4 and T4 (for i > 1) from Section
3.5. In particular, S} characterizes the class single-sorted P in much the same

8.7. RSUV ISOMORPHISM 205

way as V! characterizes the class (two-sorted) P (Theorem 6.6 and Corollary
6.8). Here we will show that each theory S} is essentially a single-sorted version
of V¥ (for i > 1), i.e., they are “RSUV isomorphic”, (The same is true for T%
and TV"))

This section is organized as follows. First we formally define S} and T%.
Then in Section 8.7.2 we define the notion of an RSUV isomorphism as a bijec-
tion between classes of single-sorted and two-sorted models. These are associ-
ated with the syntactical translations of single-sorted and two-sorted formulas,
defined in Subsections 8.7.3 and 8.7.4. Finally we sketch a proof of the RSUV
isomorphism between S} and V.

8.7.1 The Theories S} and T}

For this subsection it might be helpful to revisit Sections 3.1 and 3.5, and
Subsection 4.3.2. Recall that the vocabulary for Si is

1
£S2 — [0757+7 '7#7 |$|7 |_§JIJ, =, S]

where |z is the length of the binary representation of z, and the function x#y =
22119l provides the polynomial growth in length for the terms of Lsg, .

The sharply bounded quantifiers are bounded quantifiers (Definition 3.6)
which are of the form 3z < || and Vz < |¢|. The syntactic classes of bounded
formulas of Lg, are defined as follows.

Definition 8.71 (Bounded Formulas of Lg,). A} = X} = II} is the set of
formulas whose quantifiers are sharply bounded. For i > 0, 2?+1 and Hiﬂrl are
the smallest sets of formulas that satisfy:

1) I C 20y, B3 C L.

2) If o) € B8,y (or IIY,), then so are o A, oV 1.

3) If o €Xl,, (resp. p €IIY,,), then —p € IV, | (resp. ~p € B,).

4) If o € By (resp. ¢ € IV,), then 3z < t ¢ and Vz < |t| ¢ are in B¢,
(resp. Yo < t ¢ and 3z < |t| ¢ are in IV, ;).

Notice that different from ¥ and IIP (Definition 4.14), here the formulas
in Ef and Hf are not required to be in prenex form, and any bounded quantifier
can occur in the scope of a sharply bounded quantifier. Nevertheless, it can be
shown that for i > 1, a single-sorted relation is in the (single-sorted) class £
if and only if it is represented by a X% formula. In particular, a single-sorted
relation is in NP if and only if it is represented by a X% formula. (See Definition
4.15 and the X8 and X} Representation Theorem 4.18.)

The set BASIC of the defining axioms for symbols in Lg, are given in
Figure 8.1. There 1 and 2 are the numerals SO and SS0, respectively. Note
that BASIC is by no means optimal, i.e., it is possible to derive some of its
axioms from others. Here we are not concerned with its optimality.

Recall the definition of an induction scheme ®-IND (Definition 3.4). For
formulas of Lg, there are other kinds of induction, namely length induction and
polynomially induction, which are defined below.

206 CHAPTER 8. THEORIES FOR POLYNOMIAL TIME AND BEYOND

l.x<y>Sx<Sy 17. |z| = |y| D a#z = y#=

2. v # Sx 18. |z| = |Ju| + |v] D

3.0<x afty = (uty) - (v#y)

4. (z<yhz#y)—Szx<y 19. z<z+y

5. 2#0D22-2#0 20 z<yAz#yD

6. <yVy<uzx S(2-2)<2-yANS(2-z)#2-y

T (z<yAy<z)DdDzr=y 2l. x+y=y+vy

8. (r<yny<z)Dzx<z 22. z+0=2x

9.10/=0 23. x4+ Sy = S(z +vy)

10. 1S0] = SO 24. (x+y)+z=z+ (y+2)

11. 2 20D (|12 z| = S(|z))A 2. z+y<z+zeoy<z

[S(2-z)| = S(|z|) 26. 2-0=0

12. <y D |z| < |yl 27. - Sy=(z-y)+z

13. [z#ty] = S(Jo] - ly) 28 ¢y =y-g

14. 0#z = S0 2. z-(y+2)=(z-y)+ (z-2)

15, 220D (1#2 - 2)=2-(1#z) 30. 1<zD(zx-y<z-z-y<z)
AN#S(2-x)) = 2 - (14tx)) 31. ¢ # 0D |z] = S(|[52]|)

16. x#y = y#x 32. 2= |3y] <~

2-2=yVvS(2-2)=y)

Figure 8.1: BASIC

Definition 8.72 (LIND and PIND). Let £ be a vocabulary which extends
Ls,, and ® be a set of L-formulas. Then ®-LIND is the set of formulas of the
form

[p(0) AV, o(z) D @z +1)] D Vap(|2]) (8.39)
and ®-PIND is the set of formulas of the form

[£(0) AV, (| 52]) D @(2)] D Vzp(2) (8.40)
where @ is a formula in @, p(x) is allowed to have free variables other than x.

Definition 8.73 (S, and T%). For i > 1, Si is the theory aviomatized by
BASIC and X2-PIND; T} is the theory aziomatized by BASIC and X!-IND.

We leave as an exercise the following interesting results:
Exercise 8.74. Show that for i > 1:

a) Si can be aviomatized by BASIC together with £¢-LIND.
b) S, C Tj C S5t

S} and V! turn out to be essentially the same, as explained in the next
subsection.

8.7. RSUV ISOMORPHISM 207

8.7.2 RSUYV Isomorphism

Here we define the notion of RSUV isomorphism model-theoretically by defin-
ing the ” and * mappings between single-sorted and two-sorted models. These
(semantic) mappings are associated with the syntactical translations between
of single-sorted and two-sorted formulas, to be defined in later sections.

Recall that BIT (i, x) is the relation which holds if and only if the i-th lower-
order bit in the binary representation of = is 1. It is left as an exercise to show
that this relation is definable in S3. It follows that S}(BIT) is a conservative
extension of S3.

Exercise 8.75. Show that BIT (i, x) is definable in S, and that
S3(BIT) FVaYy, x =y < (|| = |y| AVi < |z|, BIT(i,x) « BIT(i,y))

Now let M be a model of S} with universe U. We can construct from
M a two-sorted L£%-structure N as follows. First, expand M to include the
interpretation of BIT. The universe (Uy, Ua) of N is defined to be

Us =T, and U ={|u|l:uweU}

The constants 0 and 1 are interpreted as 0 and S0 respectively (which are in Uy,
by the axioms 9 and 10 of BASIC). The interpretations of the other symbols
of L% (except for €) in N are exactly as in M. (Note that by this definition,
| | is clearly a function from Us to Uy.) Finally € is interpreted as

i €N & e BIT(i,z) holds in M, forallie U,z € U,

Definition 8.76. For a model M of Sk, denote by M* the two-sorted structure
N obtained as described above.

Conversely, suppose that A is a model of V! with universe (U1, Us). We
can construct from N a (single-sorted) Lg,-structure M with universe U = Us
where each bounded set X in Uy is interpreted as the number bin(X) (see (4.4)):

bin(X) = ZX(i)zi

In order to interpret the symbols of Lg, in M, we need the fact that the func-
tions and predicates of Lg, when interpreted as taking string arguments are
respectively provably total and definable in V1.

In fact, by Exercise 6.11 the string multiplication function X x Y is ¥}-
definable in V. Also, using the fact that BIT(i,x) is definable in IAqy (Sub-
section 3.3.3) and that V© is a conservative extension of IAg (Theorem 5.9),
we have BIT (i, z) is F-definable in V°:

Corollary 8.77. The relation BIT(i,z) is X -definable in VO.
Thus the string function | X |2 whose bit-graph is
[X|2(é) = (i < [X| A BIT(, | X]))

208 CHAPTER 8. THEORIES FOR POLYNOMIAL TIME AND BEYOND

is provably total in V©.

The string relation X < Y is defined in Definition 8.21. The constant 0
is interpreted as the empty set @, which is defined in V° by Exercise 5.43.
The successor and addition functions on strings are also definable in V° (Exer-
cise 5.43). Finally, the functions X#Y and |1X] can be defined in VO using
SF-COMP as follows:

(X#Y)(z) o 2= X[Y], [3X|(z) o 2<[|X|Az+1eX

Definition 8.78. For a model N' of V', let N denote the single-sorted Ls, -
structure M constructed as above.

Formal definition of RSUV isomorphism is given below.

Definition 8.79 (RSUYV Isomorphism). Let 7; be a single-sorted theory over
Ls, and Ty be a two-sorted theory over E% so that S} C T, and V! C Ty. Then

RSUV

Ty and Ty are said to be RSUV isomorphic (denoted by Ty ~ Tz) if (i) for
every model M of Ty, M |= Ty, and (ii) for every model N of To, N° = T.

Note that we can loosen the restrictions that S% C 7, and V! C T, by, for
example, imposing that BIT is definable in 77, and X X Y is definable in 75
(while maintaining that 7; extends a certain subtheory of Si, and 75 extends
V?). This allows us to speak of the RSUV isomorphism between subtheories of
S} and V. We will come back to this issue in Chapter 9.

The main result of this section is stated below.

Theorem 8.80. Fori > 1, S, and V¢ are RSUV isomorphic, and T% and TV!
are RSUV isomorphic.

Associated with the ! and * mappings defined above are respectively the
and ¥ translations of formulas that we will introduce shortly. For example, one
direction of Theorem 8.80 (for i = 1) requires showing that M* = V! for every
model M of S3(BIT). Thus we will translate syntactically an £% formula ¢
into an L, (BIT) formula ¢’ (the * translation) so that

MF = Vg if and only if M = V¢

(Recall that Vo is the universal closure of . See Definition 2.23.) Then we will
prove that S3(BIT) I ¢ for each axiom ¢ of V.

The f translation is essentially the inverse of the ” translation. The RSUV
isomorphism between Si and V1 is pictured below (Figure 8.2).

In the next two subsections we define the ” and ? translations. The proof of
Theorem 8.80 will be given in Subsection 8.7.5.

8.7.3 The ! Translation

The sharply bounded quantifiers in a bounded Ls,-formula are translated into
bounded number quantifiers, and other bounded quantifiers are translated into

8.7. RSUV ISOMORPHISM 209

P
%)
c

v

Si T~ Vi
M - M
¢ =
NP = N
(0 - gf

Figure 8.2: The RSUV isomorphism between S3 and V.

bounded string quantifiers. In other words, a bound variable is translated into a
bound number variable if it is sharply bounded. (Note that the bounding term
of a bounded string quantifier bounds the length of the quantified variable, while
in single-sorted logic the bounding terms are for the values of the variables.)

It can be easily seen that simply translating bounded quantifiers as above
results in bounded (two-sorted) formulas over the vocabulary that extends £%
by allowing the functions (except 0) and predicates of Lg, to be two-sorted
functions and predicates whose arguments can be of either sort. For example,
there are formally four 4+ functions: one with arity (2,0), two with arity (1,1)
and one with arity (0,2). Also, it is straightforward to determine the sorts to
which these functions belong. Thus £+ Y and X +Y are string functions, while
|| is a number function.

Notation Let £ denote the extension of £% described above.

The functions of £+ can be shown to be X4-definable in V!. In fact, the
number functions and most of the string functions of £* (except for the string
multiplication function, or the multiplication functions of “mixed” sorts) are re-
spectively ZF-definable (in V?) and X-bit-definable. For example, the number
functions |z| and z#y are EF-bit-definable due to the fact that the predicate
BIT(i,x) is Ag-definable in IA((Subsection 3.3.3). For the fact that the afore-
mentioned multiplication functions are XP-definable in V!, see Exercise 6.11
and the discussion in the previous subsection about the ” mapping.

Now it follows from Corollary 6.27 and Corollary 6.24 that V!(LT) proves
both the g=P(£T)-COMP and g=%(£F)-IND axiom schemes.

Corollary 8.81. V(L) guP(£1)-IND.

Formally we define for each bounded Lg, formula ¢ (Z,%) a bounded £
formula ¢f(Z,Y) (i.e., the subset 7 of the free variables of 1 is selected to be
translated into the free string variables of 1) so that for every model A of V!,

N =vavie(E),) ifand only if N[LT] = VEVY H(Z,Y)

(where N[£*] denote the expansion of A" by the interpretations for £1). We
will focus on the case where all bounding terms of ¢ are of the form ¢(Z, %) (i.e.,
they involve only the free variables of ¢)). We need the following result whose
proof is left as an exercise.

210 CHAPTER 8. THEORIES FOR POLYNOMIAL TIME AND BEYOND

Exercise 8.82. Let t(Z,7) be an Ls, term. Let T(Z,Y) be the LT term obtained

from t(Z,4) by replacing the variables § by new string variables 37, and treating
the functions occurring in t as the corresponding functions of LY. Then there
is an L% term t'(Z,|Y|) so that VI (LT) H|T(2,Y)| < ¢ (Z,|Y]).

The formula ¢#(Z,Y) is constructed inductively as follows. First if ¢ (,7)
is an atomic formula, then $#(Z, Y) is the atomic formula obtained from ¢ (Z, 7)
by translating the free variables ¥ into free string variables 37, and translating
the symbols of Lg, into the appropriate symbols of £LT.

Next, if ¢ is ¢ A ¥a (resp. ¥y V 1), then ¢f is f A ¢ (resp. o v ¢d).
If ¢» = —)y, then ¥* is obtained from of ﬂ@b? by pushing the — to the atomic
subformulas.

Now consider the case where (Z,7) = 3z < ty1(2, &, 7). Let T(Z,Y) and
t'(Z,|Y|) be as in Exercise 8.82. Then

YHE,Y) =32 <1+(Z,|Y)), Z<T(ZY)AHZ,2Y)
Finally suppose that (%, %) = 3z < [¢t|¥1(z, Z, 7). Then
YHEY) =32 < (Z,|Y)), 2 < |T(Z,Y)| A (2,2, Y)

The cases where ¥(Z,) = Vz < t1(z, &, 9) or Y(Z,9) = Vz < |t| ¥1(2, T, 7)
are handled similarly. This completes our description of the # translation. The
proof of its desired properties are left as an exercise.

Exercise 8.83. Let 1(7%,7) be an L% -formula.
a) Show that if ¢ is in XY (resp. TIY) for some i > 0, then ¥!(Y) is in

g=7 (L") (resp. gII7 (LY)).
b) Let N be a model of V1. Show that

N = Vg2, 4) if and only if NILT) = VAVY 4*(£,Y)

8.7.4 The ° Translation

The ° translation is essentially a syntactical counter-part of the # mapping. In
general we will translate bounded string quantifiers into bounded quantifiers,
and bounded number quantifiers into sharply bounded quantifiers. Thus we
need to find the translation ¢’ for each bounding term ¢. This task is left as an
exercise (see also Exercise 8.82).

Exercise 8.84. Let t(Z,|Y]|) be an L2-term, and t,(Z,|]]) be the Ls,-term
obtained from t by replacing each the string variables Y by new variables i, and

replacing each occurrence of 1 by S0. Then there is an Lg,-term t'(Z,Y) so that
S5 t1(12], 191) < [t'(Z,9)].

We also need the following results, which follows from the fact that BIT is
3%-definable in Si.

Notation Let Eérz stand for Lg, U {BIT}.

8.7. RSUV ISOMORPHISM 211

Exercise 8.85. Show that S3(BIT) proves both aziom schemes X4 (BIT)-LIND
and X% (BIT)-IND.

As in the * translation, we will consider only those formulas whose bounding
terms involve only the free variables. Thus suppose that (&, 17) is such a
formula, i.e., all the bounding terms in ¢ are of the form #(Z,|Y]) (with all
variables displayed). Then the £§2 formula ¢’ (,), which has the same set of
variables as that of ¢ (where each string variable Y is replaced by a new variable
y), satisfies

MU EVEVY o(2,Y) ifand only if M = VavEe (1Z),)

for any model M of S3(BIT).
The formula ¢*(Z,7) is defined inductively as follows. First, if ¢(Z,Y) is an
atomic formula, then let ¢°(Z, %) be obtained from o(Z,7) by

e replacing each occurrence of 1 by S0,
e replacing each occurrence of Y'(¢t) by BIT(t,Y), and

e replacing each occurrence of a string variable Y by the corresponding new
variable y.

For the induction step, if ¢ = (1 A @2) (resp. (1 V ¢2), —¢1), then define
0" = (95 A @3) (resp. (] V@), ~h). 3 3

Next consider the case where ¢(Z,Y) = 37 < ¢(Z,|Y]) p1(Z,Y,Z). Let
t'(Z,9) be as in Exercise 8.84. Then

O (&, §) = 3z < S0+ (Z,7), |2] < UZ [§)) A @1 (7. 2)

Now consider the case where o(Z,Y) = Ju < (&, |Y]) ¢1(u, Z,Y). Let
t'(Z, 9) be as before. Then define

(2, 9) = Ju < (@, §)|, u < HE |G A @, (u, T, §)

The cases where o(Z,Y) = VZ < t(Z,|Y]) ¢1(Z,Y, Z) or o(Z,Y) = Yu <
t(Z,]Y]) ¢1(u, £,Y) are handled analogously. This completes our description of
the ° translation.

The desired properties of ¢” can be proved by structural induction on ¢.
Details are left as an exercise.

Exercise 8.86. Let p(Z, }7) be an L% -formula.

a) Show that if ¢ is in B (resp. TIP) for some i > 0, then ¢’ (|7],¥) is in
SY(BIT) (resp. TI2(BIT)).
b) Let M be a model of SY(BIT). Show that

M EVIVY o(2,Y) if and only if M = V&Y (|, §)

212 CHAPTER 8. THEORIES FOR POLYNOMIAL TIME AND BEYOND

8.7.5 The RSUV Isomorphism between S} and V*

In this subsection we discuss some issues related to the concept of RSUV iso-
morphism. Then we will sketch the proof of the RSUV isomorphism between
S} and V1. The proof of the RSUV isomorphism between S} and V* for i > 2
is similar, and is left as an exercise.

First, the next theorem is useful in proving RSUV isomorphism.

Notation We will assume that the theories mentioned here are axiomatized by
set of formulas whose bounding terms do not contain any bound variable.

Theorem 8.87. Let T; be a single-sorted theory over Ls, such that S3 C Ty,
and T3 be a two-sorted theory over L% such that V1 C Ty. Suppose that (i)
Ti(BIT) & " for every aziom ¢ of Tz, and (ii) To(L) - ¥ for every aziom 1
of Ty. Then Ty Rgv’fg.
Proof. We show that M* |= 75 for every model M of 7;. The other half (that
N? |= T; for every model N of T3) is similar.

Thus suppose that M |= 7;(BIT). Then by (i) we have M |= ¢” for every
axiom ¢ of 7. By Exercise 8.86 b, it follows that M! = T5. O

Exercise 8.88. Show that S3(BIT) &1 < (f)* and VI(L) F o « (p°)F for
every bounded Ls, formula v and bounded L formula .

Notice that it follows from Theorem 8.80 that if M is a model of S3, then
Mt is a model of V. Hence we can define (M*)°. Similarly, if A is a model
of V1, then (N”)f is well-defined. The # and ° operations turn out to define a
bijection between isomorphism classes of models of S} and V!, as shown in the
next corollary.

Corollary 8.89. Let T; be a single-sorted theory that extends Sy. Then (MF)
and M are same for every model M of Ty. Similarly, suppose that T3 is a
two-sorted theory that extends V. Then (Nb)u is isomorphic to N for every
model N of Ts.

Proof Sketch. First, let M be a model of 7;. Clearly M and (M*#)” have the
same universe. Indeed, the mappings

U(M) — U2(MF) — U((MF))

are all identity maps. (Here U(M) and U((M?*)?) denote respectively the uni-
verse of M and (M*)’, and Us(M*) denotes the second-sort universe of MF.)
So we need to show that the symbols of Lg, have the same interpretations in
M and (M*)°. This essentially follows from the fact that M* = V!, the func-
tions and relations of £t are definable in V!, and that the “extension axiom”
is provable in S3 (Exercise 8.75).

The second statement is proved similarly. (Here (A”)* and N might have
different first-sort universes, but they are isomorphic.) O

8.7. RSUV ISOMORPHISM 213

The next corollary provides the converse of Theorem 8.87 above.

Corollary 8.90. Let T; be a single-sorted theory over Lg, and Ty be a two-

RSU

sorted theory over Li such that Ty QV’TQ. Then

(i) TL(BIT) - " for every aziom ¢ of Tz, and
(ii) To(LY) =4t for every axiom v of Ty.

Proof. For (i), let M be a model of 7; and ¢ be an axiom of 7. Then M* |= T5.
Therefore by Exercise 8.86 b, (M*)’ |= ¢”. Since (MF)” and M are the same
structure (Corollary 8.89), it follows that M |= ¢”. Hence 7; F ¢”.

(ii) is proved similarly using Exercise 8.83 b. O

Theorem 8.91. Suppose that 71 and 75 are RSUV isomorphic. Then Ty is
finitely aziomatizable if and only if T is.

Proof. Suppose that 77 is a finitely axiomatizable single-sorted theory. Note
that by the XP-Transformation Lemma 6.25, for each £+ formula ¢ there is
an £2 formula ¢’ so that VI(LT) F ¢ < /. We will use this notation in the
following definition. Let 7 denote the union of the following set

{(¥* : ¢ is an axiom of 7;(BIT)}

and the set of the sentences of the form VW?EI!ch(f, z, 17) or V.’Z‘V?H!Z(p({f, Z, 37),
where ¢ the the formula in the defining axiom of a function symbol of £7.

We show that 75 can be axiomatized by 7. First, let ¢ be an axiom of 7.
By Corollary 8.90 (ii) above, To(L*) F *. Consequently (since 75 extends V!,
and To(L£*) is conservative over 75) 75 - (¢*)’. The defining axioms for symbols
of £t are in 73 because V! C T5.

It remains to show that 7 F ¢ for each axiom ¢ of 75.

Claim For each model A of 7', there is a model M of 7;(BIT) so that M* = \/.

Let ¢ be an axiom of 73. Let N be any model of 7, and let M be as in the
Claim. Since M |= Ty (BIT) and T;(BIT) |= ¢” we have M |= ¢”. By Exercise
8.86 b we have N = .

Finally, the Claim follows from part a of the exercise below and the fact
that 7 I (¢*)" < ¢ for every axiom 1 of 7;. The latter follows from a careful
examination of the proof of part ¢ of the ¥ -Transformation Lemma 6.25. (Here
we do not require that 7 proves the Replacement axiom scheme.) d

Exercise 8.92. a) Suppose that Ty is a single-sorted theory that extends S3.
Show that for every two-sorted model N of the set {1* : v is an aziom of T,}
there is a model M of Ty so that M* = N
b) Similarly, let To be a two-sorted theory that extends V', and T] = {¢" :
© is an axiom of Ta}. Show that for every model M of Ty there is a model
N of Ty so that M = N?.

214 CHAPTER 8. THEORIES FOR POLYNOMIAL TIME AND BEYOND

1RV

Proof sketch of S5 "~ V'. We need to show that V!(£*) proves the ! trans-
lations of the axioms in BASIC as well as 35-LIND (see Exercise 8.74). The
former is straightforward and is left as an exercise.

Exercise 8.93. Show that V(L) proves the ¥ translations of the BASIC

axioms.

Now we consider the 3¢-LIND axiom scheme. We will show that A satisfies
the ¥ translations of the following bounded length induction for X% formulas,
which logically imply 3%-LIND:

[p(0) AVz < 2], @(z) D @z +1)] D Vzp(|2]) (8.41)

(where ¢ is a X% formula).

Using Exercise 8.83 a it is easy to see that instances of (8.41) translate into
g¥P(L£1)-IND. Hence the conclusion follows from Corollary 8.81.

Now consider the next half of the RSUV isomorphism. By Theorem 6.35
it suffices to show that S}(BIT) satisfies the ” translations of the 2-BASIC
axioms and XP-IND axioms. The latter translate into 3¢ (BIT)-LIND which
is provable in S3(BIT) by Exercise 8.85. Thus the following simple exercise
completes our proof of the RSUV isomorphism between Si and V1. O

Exercise 8.94. Show that S5(BIT) proves the * translation of the 2-BASIC

axioms.

SUV

Exercise 8.95. Complete the proof of Theorem 8.80 by showing that S R
fori>2.

8.8 Notes

The theory VPV defined in Section 8.1 is based on the single-sorted equational
theory PV [?]. The results in Section 8.1.1 were first proved in single-sorted
versions in Chapter 6 of [?].

In Section 8.2 the TV® hierarchy for i > 1 is the two-sorted version of Buss’s
[?] T hierarchy. The theory TV was introduced in [?] where the results of
Section 8.2 are outlined, except the presentation in Section 8.2.3 is new.

The theory VI-HORN was introduced in [?], where versions of the results
of Section 8.3 are proved.

The PLS problems were introduced in [?]. The results in Section 8.4 are
mostly two-sorted versions of results from [?]. However our Witnessing Theorem
8.68 is stronger than the one in [?], in that our witnessing function G is in the

small class FAC?, and the weak theory VO, as opposed to TV, proves the
witnessing.

Buss [?] introduced the hierarchies Sg, T2, and more generally, Sy, T} (for
k > 2). (The index k indicates the presence of the function #y, where #9 = #,
and z#p1y = 2|x|#k‘y‘.) He also introduced the hierarchy Usg, Vg, where U%

8.8. NOTES 215

and V1 capture PSPACE and EXPTIME, respectively. (The theories V*
in this book is sometimes called V3.) The equivalence between S | and V7,
was first realized in [?, ?]. The name “RSUV isomorphism” was introduced
by Takeuti in [?], where he also introduced the hierarchies Ry, and proved the
equivalences between Rj_; and U}, and between S}, and V;. The S - V
equivalence was also proved in [?]. The syntactic translations > and ¥ are called
interpretations in [?, ?] (the symbols * and # were introduced in [?]).

216 CHAPTER 8. THEORIES FOR POLYNOMIAL TIME AND BEYOND

Chapter 9

Theories for Small Classes

In this chapter we present subtheories of TV which are associated with several
subclasses of P. These classes include the sequence

AC’(p) CTC°CNC'CLCNLCNCCP

We present a generic method for developing the theories. As an accompanying
example, we will treat in detail the theory VTC, which is associated with the
class TC". In general, each class C has a complete (under AC° reduction)
problem P. The associated theory VC is axiomatized by V? and an axiom
that encodes a suitable algorithm that solves P. These theories are finitely
axiomatizable, because V© is. To show that VC characterizes the corresponding
class, we introduce a universal theory VC in the style of v’ (Section 5.6) and

show that it is a conservative extension of VC. As for IA, and VO, the idea is
to introduce function symbols for all functions in FC (see Definition 5.16). The
main task is to show that these functions are provably total in VC.

Our universal theories are “minimal” theories for the corresponding complex-
ity classes in the sense that the axioms consist of straightforward definitions for
the functions and predicates in the classes. For example, VTC satisfies this
condition, and since it is a conservative extension of VI'C?, the latter is also a
minimal theory for TC'.

The chapter is organized as follows. First, we define the notion of AC®
reduction. Then, in Section 9.2, we present the theory VI'C? and its universal
counterpart VTCO, and show that VTC' is a conservative extension of VT'CY.
This proves the Definability Theorem for VTC? (Corollary 9.10). We will in
fact prove general results which lead to establishing theories for other classes.
These theories will be presented in the following sections. Finally, in Section 9.7
we prove interesting recursion-theoretic characterization of several subclasses of
FL using the number recursion scheme.

217

218 CHAPTER 9. THEORIES FOR SMALL CLASSES

9.1 AC’ Reductions

The classes that we consider in this chapter are nice in the sense that they
are closed under AC® reductions in the Turing style (as opposed to the more
restricted many-one style). We will formalize this notion. The idea is (see for
example [?]) that a function F is AC’-reducible to a collection £ of functions
if F' can be computed by a uniform polynomial size constant depth family of
circuits which have unbounded fan-in gates computing functions from £, in
addition to Boolean gates. We will also show that in standard settings, the
FAC? closure of a set of functions is the same as closure under composition and
a comprehension operator.

Recall that a function F (resp. f) is XF-definable from £ if it is polyno-
mially bounded, and its bit graph (resp. graph) is represented by a XF (L)
formula (Definition 5.37). The following definition generalizes the notion of
3B _definability.

Definition 9.1 (ACO Reductions). We say that a string function F (resp.
a number function f) is AC-reducible to L if there is a sequence of string
functions Fy,..., F, (n>0) such that

F; is 8 -definable from LU{Fy,...,Fi_1}, fori=1,...,n; (9.1)

and that F (resp. f) is XE-definable from LU {Fy,...,F,}. A relation R
is AC-reducible to L if there is a sequence Fi,...,F, as above, and R is
represented by a XF(LU{F1,..., F,}) formula.

If in the above definition £ consists only of functions in FACY, then a single
interation (n = 1) is enough to obtain any function in FAC®, and by Corollary
5.41 no more functions are obtained by further iterations. However, as we
shall see in the next section, if we start with a function such as numones, then
repeated iterations generate the complexity class TC?. As far as we know
there is no bound on the number of iterations needed, because (as far as we
know) there is no fixed d such that every member of TCP can be defined by a
polynomial size family of circuits of depth d.

Definition 9.2 (FAC? and AC° Closure). For a language L, the FAC®
closure of L is the class of functions which are AC°-reducible to L. The ACP
closure of L is the class of relations which are AC°-reducible to L.

All complexity classes of interest here are closed under AC° reductions,
because the corresponding function classes are closed under XF-definability.
For the case of FAC®, this follows from Corollary 5.41.

Corollary 9.3. The FAC" closure of FAC® is FAC". The AC° closure of
AC’ is AC".

For a complexity class C, recall that FC is the corresponding function class
(Definition 5.16). The following lemma is straightforward consequence of the
definitions involved.

9.1. AC° REDUCTIONS 219

Lemma 9.4. A complezity class C is the AC? closure of a language L iff FC
is the FAC closure of L.

The composition of two functions is ACY reducible to the functions. We
now define another operation which preserves AC° reducibility and which will
be used together with composition to give a characterization of AC® reducibility.
The new operation takes a number function and collects a bounded number of
its values in a set to form a string function.

Definition 9.5 (String Comprehension). For a number function f(x) (which
may contain other arguments), the string comprehension of f is the string func-
tion F(y) such that

Fy)={f(z):z <y}

Note that if f is polynomially bounded, then so is F.

For example, recall that the £F formula ¢pam, (X,Y) (5.32) asserts that
for 0 <4 < |X]|, bit Y (¢ +1) is 1 iff the number of 1’s among bits X (0), ..., X (7)
is odd. As a function of X, Y = F(|X|,X), where F is obtained from the
following function f by string comprehension:

x if £ > 0 and the number of 1 bits in X (0),...,X(z —1) is odd

0 otherwise

-

Theorem 9.6. Suppose that L is a class of polynomially bounded functions that
includes FAC®. Then a function is AC°-reducible to L iff it can be obtained
from L by finitely many applications of composition and string comprehension.

Proof. For the IF direction, it suffices to prove that a function obtained from
input functions by either of the operations composition or string comprehension
is 3F-definable from the input functions.

For composition, suppose

F(#,X)=Gh(Z,X),.... (2, X), Hi(Z,X), ..., Hn(Z, X))

where G and hq,...,hg, Hy,..., H,, are polyno_’mially bounded. Then F' is also
polynomially bounded, and its bit graph F(Z, X)(z) is represented by the open
formula

G(hy (2, X), ..., hi(® X), Hi (%, X), ..., Hn(Z,X))(2)

(A similar argument works for a number function f.)

For string comprehension, suppose that f(z) is a polynomially bounded
number function. As noted before, the string comprehension F(y) of f is also
polynomially bounded, and it has bit graph

Fy)(z) @ z<tANTx<yz= f(z)

where t is the bounding term for F. Hence F is also £F-definable from f.

For the ONLY IF direction, it suffices to show that if £ D FAC? and F
(or f) is XF-definable from L, then F (resp. f) can be obtained from £ by
composition and string comprehension.

220 CHAPTER 9. THEORIES FOR SMALL CLASSES

Claim : If £ D FAC® and ¢(7, X) is a £ (L) formula, then the characteristic
function c, defined by

1 if o(%,2)
0 otherwise

otz)~ {

can be obtained from £ by composition.

The Claim is holds because ¢y (Z, X) is in FAC® for every £5(£2)-formula
¥, and (by structural induction on ¢) it is clear that for every ¥ (L£)-formula
©(Z, Z) there is a S (L2)-formula 1(Z, X) such that

for some L-terms § and T. Hence
¢o(7,Z) = cy(5.T)
Now suppose that F' is £F-definable from L, so
F(Z,X)(z) = z <t Aoz, 7, X)

where ¢ = £(Z, X) is an L2 term and ¢ is a P (L) formula.
Define the number function f by cases as follows:

z if oz, 2, X)

7_'7X =
UCERS {t if =p(x, 2, X)

Then by the Claim, f can be obtained from £ by composition as follows. Define
the FAC? function g by

g(x7yuzuw) = ‘Ty—i_zw
Thus
f(x,,?, X) = g('rvctpatvcﬂw)

Now
F(z,X) = Cut(t,G(t, 7, X))

where G(y, 7, X) is the string comprehension of f(z,Z, X), and Cut (see (6.5)
on page 127) is the FAC? function defined by
Cut(x, X)(2) & z <z AN X(z)

It remains to show that if a number function f is $-definable from £ then
f can be obtained from £ by composition and string comprehension. Suppose
f satisfies
y=r(ZX) oy <trelyz X)

9.2. THE THEORY VTC" 221

where t = ¢(Z, X) is a £% term and ¢ is a $Z(L) formula. Use the Claim to
define ¢, (y, 7, X) by composition from £, and define g by

g(z,%2,X) = x-cg,(;v,z?',)?)

Then . A
fZ,X)=|Gt 2z, X)|-1

where G(y, Z, X) is the string comprehension of g(z, Z, X). O

9.2 The Theory VTC'

The class nonuniform TC® (or TC®/poly) is defined similarly to nonuniform
AC’ (Section 4.1), but now the circuits may contain majority gates, i.e., gates
with unbounded fan-in, which output 1 if and only if the number of 1 inputs is
more than the number of 0 inputs. Thus, a language is in nonuniform TC? if it
is accepted by a family of polynomial size, bounded depth circuits (C,,) of this
type. In the uniform version, the circuits are specified in a uniform way. We use
FO uniformity, i.e., (C,) is required to be in FO, so TC° refers to FO-uniform
TC'.

In this section we develop the theory VIT'C®, whose S 1-definable functions
are precisely functions in FTC". VT C? is obtained from V° by adding a for-
mula that formalizes a polytime computation of the counting function numones,
where numones(x, X) is the number of elements of X that are < x (page 136).
(Intuitively, majority gates can be equivalently replaced by counting gates, i.e.,
gates which output the number of 1 inputs.)

In order to show that the provably total functions of VI'C? are precisely
the TC functions, we introduce the universal theory VTCO7 whose language
Lprco consists of all TC® functions. The theory VTC' is developed in the style

of V' (Section 5.6), and the main task here is to show that VTC' is a conserva-
tive extension of VT'C (see the alternative proof of the Witnessing Theorem for
VY in Subsection 5.6.1). Because of the additional function numones, proving
this conservativity turns out to be more involved than proving the conservativ-
ity of VO over VY (Theorem 5.71). We will prove the conservativity of this type
in a more general setting; the general conservativity result proved here enables
us to develop theories for a number of other classes in the subsequent sections.
At the end of this section, we will present a proof of the Pigeonhole Principle
in VTC®.

In Subsection 9.7.2, we will provide another characterization of FTC® using
the number summation operation. It is possible to develop an universal theory
over Lppco using this operation in the style of VPV and use this universal
theory to obtain the desired characterization of TC® by VTC’. Tt is also
possible to show that this universal theory is equivalent to VTC' . We will not
go into further detail here. !

LOR SHOULD WE ?

222 CHAPTER 9. THEORIES FOR SMALL CLASSES

9.2.1 TC° and VTC®

As for AC? (review Section 4.1), there are several equivalent ways of defining
uniform TC®. The descriptive characterization of TC" is FO(M) (i.e., FO
augmented with the majority quantifier), or FO(COUNT) (i.e., FO with the
counting quantifier). Here we use the characterization of TC? which is based
on the notion of AC -reducibility defined in Section 9.1. In particular, we use
the Ofact that the function numones(z, X) (page 136) is complete for the class
TC".

Definition 9.7. TC? is the AC® closure of numones. FTC" is the FAC®
closure of numones.

The theory VT'C is axiomatized by VO together with the axiom NUMONES,
which is essentially a £ defining axiom for numones(z, X) (see formula (6.14)
on page 136).

Below we abbreviate part of the 31-defining axiom for numones (6.14) by
introducing the ¥F formula dyyas (2, X,Y), which states that Y is a “counting
array” for X, i.e., for each z < z, Y (z, y) holds if and only if numones(z, X) = y.
Recall that (Y)? denotes seq(z,Y’), the z-th element of the bounded sequence
of numbers coded by Y (Definition 5.55).

Svum (@, X, V)= V) =0A
Ve<a, (X)) =) +1)AX(2) D)™ =) (9.2

Definition 9.8 (VTC"). Let NUMONES denote VXVx3Y dnun (2, X,Y). The
theory VT C is aziomatized by V° and NUMONES.

In VO, NUMONES is equivalent to the same axiom with 3Y replaced by the
bounded quantifier 3Y < 1+ (z,z). Hence, VTC" is a polynomial-bounded
theory.

The following fact are easily verified.

Proposition 9.9. The function numones is provably total in VTC®. VTC° C
TVC. VTC® is finitely axiomatizable.

Our goal for the rest of this section is to prove the following theorem:

Theorem 9.10 (Definability Theorem for VT C"). a) The X1-definable
(and B -definable) functions in VTC" are precisely those in FTCY.

b) The Al-definable (and AP -definable) predicates in VTC® are precisely
those in TC".

Corollary 9.11. VTC° is a proper extension of VV. In fact, VTC? is not
2B -conservative over V°.

Proof. The first part follows from the theorem and the fact that the number
function parity(X), which is the parity of the total number of elements in X
(Subsection 5.5.1), is not in FAC", but parity is in FTCY, since it can be easily

9.2. THE THEORY VTC" 223

computed using numones. The second part of the theorem holds because VT C°
proves the Pigeonhole Principle (Subsection 9.2.6 below), while this principle is
not provable in VO (Corollary 7.21). O

Outline of the Proof of the Definability Theorem for VT'C". For part a, the state-
ment for X£-definable functions follows from that of 31-definable functions and
Parikh’s Theorem (see Corollary 5.29). Part b of the theorem follows from a
and Theorem 5.59. The proof of part a spans over Subsections 9.2.2 — 9.2.5
(Corollaries 9.24 and 9.25). O

9.2.2 The Theory VTC'

For this subsection, it is useful to review the theory V" introduced in Section 5.6.
The theory VTC' is defined similarly to VO, with the addition of numones.
We first specify the vocabulary Lgpco of VTC . The purpose is that the
symbols in Lppco represent precisely the functions of FTC® and that every
function of FTC® has a quantifier-free defining axiom. Consider the following
quantifier-free defining axioms for numones:

numones(0,X) =0 (9.3)
X (2) D numones(z + 1,X) = numones(z, X) + 1 (9.4)
=X (z) D numones(z + 1, X)) = numones(z, X). (9.5)

The language Lprco is defined in the same way as Lgaco (Definition 5.67).
Recall the definitions of pd, fsg, F,+ and f,; from Section 5.6.

Definition 9.12. Lgrco is the smallest set that satisfies

1) Lgpco includes L% U {pd, fsg, numones}

2) For each open formula o(z, T, X') over Lyrco and termt = t(Z, X) of L%,
there is a string function F,: and a number function f,; in Lppco-

Definition 9.13. VTC. is the theory over Lypco with the following quantifier-
free azioms: B1-B11, L1, L2 (Figure 5.1), B12', B12” (5.40), SE’ (5.41),
the defining axzioms (9.3), (9.4) and (9.5) for numones, and (5.37) for each
function F,+ and (5.38) for each function f,: of Lypco.

Lemma 9.14. a) For every 8 (Lprco) formula ¢ there is an open formula
¥ of Lrppgo such that VTG proves (@ «—).
b) The functions in Lppco represent precisely FTC’. A relation is in TC®
if and only if it is represented by some open Lyrco formula.

c) VTC' proves the B (Lyrco)-COMP aziom scheme.

224 CHAPTER 9. THEORIES FOR SMALL CLASSES

Proof. Part a is proved in the same way as Lemma 3.44. (See also Lemma 5.69.)

Part b follows from a and Definition 9.7.

For c, let (z, Z, 17) be a B (Lprco) formula. By a, there is a quantifier-free
formula 1 so that VTC' o(z,%,Y) < ¢(z,%,Y). The function F,, (5.37)
satisfies

Vz <y Fy(Z, }7)(2) = Y(z, T, 17)

Therefore, the string X in the comprehension axiom (5.1) for ¢ can be taken to
be Fy 4. In other words, VTCO proves the comprehension axiom for ¢. 0

Corollary 9.15. VTC' extends VTCP.

Proof. Lemma 9.14 ¢ shows that VTC' extends V. By Lemma 5.49, VTC'
proves Multiple Comprehension for 3% (Lgpco) formulas. Using this axiom

scheme, VTC' proves
Y < ((z,2) +1)Vz <aVy <z (Y(z,y) < y = numones(z, X))

From the defining axioms (9.3), (9.4) and (9.5) for numones, we can show that

this Y satisfies dyua (2, X,Y) (9.2). Consequently, VTG’ proves NUMONES.
0

9.2.3 Aggregate Functions and Conservative Extensions

Now we set out to prove that VTC' is conservative over VI'C". Recall the

similar result that V' is conservative over V° (Theorem 5.71), whose proof
relies essentially on the fact that every Lgaco function has a 3 (£%) defining
axiom (Lemma 5.40). Unfortunately, the analog (i.e., every Lgpco function has
a X5 (numones) defining axiom) does not appear to hold. This is because, in
general, an open formula of Lgpco is not equivalent to a & (numones) formula,
for the same reason that a TC? circuit involving nested threshold gates cannot
be made polynomially equivalent to a circuit with unnested threshold gates.
Hence we must work harder to prove that VTC® is conservative over VIT'CY.
Notice that VTC® is defined inductively, and since VTC' extends VTCY,

the starting point can be taken to be VI'C®. In other words, VTC is obtained
from VTC® by a series of extensions. Our goal is to show that each succes-
sive extension is conservative over the preceeding one. It will then follow from
Corollary 3.31 that VTC is a conservative extension of VTCP.

More formally, the inductive definition of Lgpco (Definition 9.12) gives rise
to a sequence of vocabularies: Lo = £, £1 = £% U {pd, fsg, numones} and
each L1 (for n > 1) extends £, by either f,; or F,;, where ¢ is an open
formula over £,,, and t is a £% term. Let VT'C’(L,,) be the extension of VT C"
obtained by adding the functions in £,, and their defining axioms. We will

9.2. THE THEORY VTC" 225

show that VTC%(L,,,1) is conservative over VT'C’(L,,) by showing that the
new function in £, 11 is provably total in VTCO(En). Since this new function
is already $F-definable from £,, (see Definition 5.37) — in fact, it is definable
from £,, by a quantifier-free formula — it suffices to show that

vTC®(L,) F=8(L,)-COMP (9.6)

(see Corollary 5.38 and Corollary 5.39).

We will prove (9.6) by induction on n. It turns out that we need a slightly
stronger induction hypothesis, which is stated using the notion of aggregate
functions defined below. Informally, for a string funtion F' (or a number function
f), the aggregate function of F' (resp. f), denoted by F* (resp. f*), is the string
function that gathers different values of F' (resp. f). Recall the functions Row
and seq from Section 5.4 (Definition 5.50 and Definition 5.55).

Definition 9.16 (Aggregate Function). Suppose that F(x1,..., 2k, X1,..., Xn)
is a polynomially bounded string function, i.e., for some L term t,

(@ X)| < t(&,1X])

Then F*(b, Z1,..., 2k, X1,...,Xy) is the polynomially bounded string function
that satisfies - Yy
|[F*(b, Z, X)| < (b, t(12],1X]))

and
F*(b,Z,X)(w) < Ju < bIv < w, w = (u,v)A
F((Z0)", - (Z)" X7 X w) - (9.7)

Similarly, suppose that f(x1,...,xk, X1,...,Xn) is a polynomially bounded
number function, i.e., for some L% term t,

(@ X) <@ |X))
Then f*(b, Z)_f) s the polynomially bounded string function that satisfies
£, 2, %) < (b1 +1)

and

0,2, X) (w) = 3u < b, w=(u, f((Z1)" ... (Z)", X[, X)) (9.8)

Notice that, by (9.7), for u < b,

F* (b, Z, X)W = F((Z0)", ... (Z)", XM Xl

Also, by (9.8), for u < b,

(f*(0, Z, X)) = f(Z0)", ... (Z)", X1, ... X[y

226 CHAPTER 9. THEORIES FOR SMALL CLASSES

Example 9.17 (numones*).

numones*(b, Z,X) =Y < (Y| < ({14 |X])A
Yw < (b, 14 |X]),Y (w) < Ju < b, w = (u, numones((Z)*, X)) (9.9)

In Lemma 9.23, we will show that numones* is provably total in VTCP.

The next lemma strengthens Corollary 5.38 when the underlying vocabulary
contains Row and seq (see also the Extension by Bit-Definition Lemma 5.35).
Its proof is left as an exercise.

Lemma 9.18. Suppose that the vocabulary L contains Row and seq, and that
T is a theory over L that extends V° and proves the F(L)-COMP aziom
scheme. Suppose that a function F (or f) is SE-definable from L. Then the
function F* (or f*) is 5 (L)-definable from L. In addition, F* (resp. f*) is
B (L)-definable, and hence provably total, in T .

Exercise 9.19. Prove the lemma.

Our goal now is to prove Theorem 9.21 below, which is important in the proof
(by induction) of (9.6). First we prove the next result, which gives sufficient
conditions for ¥ (£)-COMP to continue to hold in a theory after the theory
is extended by a X}-definable function. Instead of Xi-definable, we state this
theorem for the more general notion of definable function (Definition 5.27).

Theorem 9.20. Let T be an extension of VO with vocabulary L, where L
contains the functions Row and seq. Suppose that T proves BF(L)-COMP.
Let F' be a definable string function of T such that the function F* is also
definable in T. Then T (F) proves 28 (L U {F})-COMP. The same is true for
a number function f definable in T for which f* is definable in T .

Proof. We will consider the case of extending £ by a string function F. The
case where L is extended by a number function is handled similarly by using
number variables w; instead of the string variables W; in the argument below.

First, since 7 proves X7 (L£)-COMP, by Lemma 5.49 it proves the Multiple
Comprehension axioms for (L) formulas.

Claim For any L-terms §,7T that contain variables Z, T (F) proves
YVz <by...Va, < b Y = F(5,T) (9.10)

Proof of the Claim. Since T proves the Multiple Comprehension axiom scheme
for P (L) formulas, it proves the existence of X such that X J[ii = Tj, for

j < n. It also proves the existtence of Z; such that (Z)<5> = s, for

pN

1<
1 <i < k. Now the value of Y that satisfies (9.10) is just F*((b), Z, X). O

9.2. THE THEORY VTC" 227

Let £’ = LU{F}. We show by induction on the quantifier depth of a ZF (L)
formula ¢ that 7 (F') proves

3Z < (by,y..., bm)V21 < by ... Vem < b, Z(2) < $(2) (9.11)

where 7 are all free number variables of 1. It follows that 7 (F) F X5 (£')-COMP.
For the base case, ¥ is quantifier-free. The idea is to replace every occurrence
of a term F(3, f) in v by a new string variable W which has the intended value
of F(5, f) The resulting formula is 3% (L), and we can apply the hypothesis.
Formally, suppose that F(37, fl), _ ,F(§k,fk) are all occurrences of F' in
1. Note that the terms §j, T; may contain Z' as well as nested occurrences of F'.
Assume further that s7, fl do not contain F', and for 1 < ¢ < k, any occurrence

— —

of F in §;,T; must be of the form F(§;,T}), for some j < i. We proceed to
eliminate F' from v by using its defining axiom.

— — o
Let Wh,...,W) be new string variables. Let s{ = &, T{ = T1, and for
— — -
2 <i <k, s; and T} be obtained from §; and T; respectively by replacing every
maximal occurrence of any F'(s;,T}), for j < ¢, by W, Thus F does not occur
— — — — J
in any s, and T but for i > 2, s, and T may contain Wy,..., W;_;.
By claim above, for 1 <14 < k, 7 (F') proves the existence of W; such that
[2) o T
Va1 <bi... Yz < b, W, =F(s;,T)) (9.12)

K2 2 3

Let ¢/ (2, W1,..., W) be obtained from 1(2) by replacing each maximal occur-

—

rence of F'(5;,T;) by Wl-[g], for 1 < i < k. Then, by Multiple Comprehension for
3B (L) and the fact that £ contains Row,

TH3Z < (by,...,byp)V21 < by... Vam < bm, Z(2) = ' (Z,W1,..., Wi).

Such Z satisfies (9.11) when each W; is defined by (9.12).
The induction step is straightforward. Consider for example the case 1(Z) =
Vo < t\(Z,z). By the induction hypothesis,

T(F)E3Z'V21 <by... Nz < bV <t, Z'(Z,z) < \(Z,).
Now, by Lemma 5.49
VO 32V2 < by.. . V2m < by, Z(2) < Vo < tZ'(Z,).
Thus 7(F) F 32YZ < b Z(Z) < (2). O
Now we extend the above theorem for the case where the new functions
F/f are actually provably total (i.e., £i-definable) in 7. The most important

application of this strengthening is the proof of (9.6), which, as discussed before,
implies that VT'C" is conservative over VT'C.

Theorem 9.21. Let T be an extension of VO with the vocabulary L, where L
contains Row and seq. Suppose that T and L satisfy

228 CHAPTER 9. THEORIES FOR SMALL CLASSES

a) T proves the £F(L)-COMP, and
b) For each XF(L) formula 0 there is a £1(L%) formula n such that T +
0 — .

Let F (or f) be a provably total string function in T such that the function F*
(or *) is also provably total in T. Then a and b hold with T (F) (resp. T(f))
replacing T, and LU{F} (resp. LU{f}) replacing L.

In our applications of this theorem, the theory 7 is always polynomial-
bounded; therefore, the formula 7 in b can be taken to be 3 (£?%) (as opposed to
¥1(£%)). Furthermore, VTCO, as well as most of our other universal theories,
are obtained by inductively adding new functions F,,1 or f,41, which are 35-
definable from the current language £,,. Corollary 5.38 and Lemma 9.18 now
become handy, since they show that F and F* (resp. f and f*) are provably
total in VTC®(L,,).

Proof of Theorem 9.21. We prove for the case of the string function F'. The
case for the number function f is similar. First, 7 (F) and £ U {F} satisfy a by
Theorem 9.20. We show that they also satisfy b. Suppose that

0=Qi1z1 <71...Qnzn < rp)(2)

is a P(L U {F}) formula, where v is quantifier-free. Let §i,ﬁ,s_;),ﬁ and
'(Z,W1h,...,Wy) be as described in the proof of Theorem 9.20. Define

O (Wi, ,Wi) = Qr21 <71 ... Quzn < 1m0 (2, W1, ..., Wi).

For 1 <i <k let \; be the formula

);

Vz1 < by...Vz, < bm<p(s’- T

1 19

Wi[f])
Then, 6 is equivalent in 7 (F) to
Wy 3W, (A X) A0 (W, W)

By property b for 7 and £, we may replace the first conjunct in the scope of
the string quantifiers by a 31 formula, and thus obtain the required X1 formula
nin b for 7(F) and LU {F}. O

The next corollary summarizes our discussion so far.

Corollary 9.22. Suppose that Ty and Lo satisfy the hypotheses a and b of
Theorem 9.21. Let 7o C Ty C T2 C ... be a sequence of extensions of 1y, where
each T;11 is obtained from T; by adding the defining axiom for a function F or
f that is £F-definable from L;, the vocabulary of T;. Let

T.=JT

i>0

9.2. THE THEORY VTC" 229

and let Lo, be the vocabulary of To.. Then Ty is a conservative extension of Ty,
and the additional functions in To, are X1(L%)-definable in Ty. Also To, and
Lo satisfy the hypotheses a and b of Theorem 9.21.

Proof. First, by the hypothesis that 7y proves XF(Lo)-COMP, it is easy to
prove by induction on ¢, using Corollary 5.38, Lemma 9.18 and Theorem 9.21,
that 7; and £; satisfy the properties a, b of Theorem 9.21.

It then follows from Corollary 5.38 that the new function in 7;; is provably
total in 7;, and therefore 7;;1 is a conservative extension of 7;. As a result, 7
is conservative over 7y (Corollary 3.31).

Finally, the graph of each function in 7o, has a £F(L;) definition for some
i. This definition is provably equivalent in 7; to a ¥1(£2%) formula, by the
property stated in b of Theorem 9.21. Consequently, every function in 7, is
1(L£%)-definable in 7Ty, since 7; is conservative over 7. a

9.2.4 The Conservativity of VTC' over VTC®

The theory VTC' is obtained from Ty = VTCO(nun”Lones7 Row, seq) by a se-
ries of extension just as described in Corollary 9.22. The final step of proving

the conservativity of VTC' over VIC' is to show that 7Ty satisfies the hy-
potheses a and b of Theorem 9.21. For this we apply the same theorem for
T = VTC®(Row, seq, left, right). We need the following lemma.

Lemma 9.23. The function numones* is X1-definable in VTCO(Row7 seq).

Proof. 1t suffices to show that for any number term ¢(u) over £4 U { Row, seq},
VTC’(Row, seq) F 3YYu < b dypa (t(u), X, yT)

To prove this, the idea is to construct Y using X5 (Row)-COMP from the
counting array Y’ for a “big” string X', where X’ is the concatenation of the
initial segments of the rows X0 ... X[P~1 of X. Formally, let s be an £%
number term that dominates ¢(u), for all u < b. Let X’ be defined by 2

X'(us +2) & z < t(u) A X(2), for z < s,u <b.
In other words, the bit string
X'(us) ... X'(us+t(u) — 1)

is a copy of
X0y ... xM(tw) —1)
and X' (us +t(u)),..., X'((u+1)s — 1) are all 0. Therefore, for z < t(u),
numones(z, X" = numones(us + z, X') — numones(us, X').

2USE SUBSTRING FUNCTION FROM CHAPTER 8 HERE

230 CHAPTER 9. THEORIES FOR SMALL CLASSES

Let Y’ be the counting array for X', i.e., Y'(z,y) < numones(z,X’) = y.
Then,
Y(z,9) & y + numones(us, X') = numones(us + z, X')

Hence,
Y (2, y) & Fyi,ye < |X'), Y (us,y1) AY (us + 2,y0) Ay +y1 = yo

Consequently, Y exists in V? by XF Multiple Comprehension. O

The complete proof of the conservativity of VTC' over VTCY is presented
in the next corollary.

Corollary 9.24. a) VTC' is a conservative extension of VTC.
b) Every function in Lypco is $1(L%)-definable in VTCP.

Proof. Let Ty = VT C®(Row, seq, numones). It suffices to show that 7 satisfies

the hypotheses a, b of Theorem 9.21. Then VTC0 is the theory 7., obtained
from 7y as in Corollary 9.22. Consequently, both parts a and b of Corollary 9.24
follow from Corollary 9.22 and the fact that 7y is a conservative extension of
VTC" (because the functions Row, seq and numones are definable in VT CY).
Now we show that 7y satisfies the hypotheses a and b of Theorem 9.21. Let
T = VTC"(Row, seq). Then Ty = T (numones). Since Row and seq are AC°
functions and 7 extends V°, 7 satisfies hypotheses a and b of Theorem 9.21
(see the FAC" Elimination Lemma 5.73). Also, it follows from Lemma 9.23 that
numones* (9.9) is Xi-definable in 7. Thus, by Theorem 9.21, 7y also satisfies
the hypotheses a, b there. O

The above corollary proves one direction of (part a of) the Definability Theo-
rem for VT'C® 9.10. The other direction is the Witnessing Theorem for VT C,
which is stated and proved in the next Subsection.

9.2.5 The Witnessing Theorem for VTC’

Recall that each string function F € FTC' has a defining axiom according
to our construction of Lgpco (see Definition 9.12 and Lemma 9.14 b). In fact,
there is a finite sequence of FTC? functions F; = Row, . .., F, that are involved
in defining F. Let L denote this sequence of functions (including F'). Similar

to Corollary 9.24, for each F' € FTCY, VTC is a conservative extension of the
theory VI'C®(Lp).

Corollary 9.25 (Witnessing Theorems for VTC’). For each theorem
Y p(z, X,Y) of VIC?, where ¢ is 2B there is a string function F e FTC®
such that

VTC’(Lp) F ¢(Z, X, F(Z,X)).

9.2. THE THEORY VTC" 231

Proof. This is an application of the Herbrand Theorem 4.32, using the fact that
@ is equivalent in V’toa quantifier-free Lgaco formula (Lemma 5.69), and that
the symbols in Lgpco represent precisely the functions of FTC’ (Lemma 9.14
b). The proof is similar to the proof of the second proof of Parikh’s Theorem
(page 52). O

9.2.6 Proving the Pigeonhole Principle in VTC°

In this subsection we present a proof of the Pigeonhole Principle (Subsection
7.1.2) in VTC". From this and the independence of PHP from V° (Corol-
lary 7.21), it follows that VIT'C? is a proper extension of VO (see the proof of
Corollary 9.11). (Although this also follows from the fact that numones is not
an AC? function.) In the next chapter we will show that each £ theorem of
VTC" translates into a family of tautologies having polysize TC’-Frege proofs.
It will follow that the family PHP (Definition 7.12) has polysize TC’-Frege
proofs. This separates bPK from TC°-Frege. On the other hand, we will show
(Subsection 9.5.3) that VNC' extends VT'C’. Therefore PHP is provable in
VNC!. The Propositional Translation Theorem for VNC! then allows us to
derive a theorem of Buss that PHP has polysize Frege proofs. This subsection
is independent of the remaining of this chapter.
Recall (Example 7.18) that PHP(a, X) is the following formula

Ve <ady <aX(z,y) DO Jr<adz<ady<alz#zAX(x,y) AX(z,y))

Theorem 9.26. VIC" - PHP(a, X).

Proof. We will actually prove that VTC® - PHP’(a, X), where PHP'(a, X)
is the formula

Ve <ady < aX(y,z) D o <adz <ady <alz # 2AX(y,2)AX(y,2)) (9.13)

This will show that VT'C° - PHP (a, X), since PHP (a, X) is just PHP' (a, X*),
where X! is the “transpose” of X:

X'y, 2) < X(2,9) fory<a,z<a

Intuitively, the premise of (9.13) implies that the total number of elements
in all @ rows of X is at least (a + 1), because the union of these rows contains
all number that are < a. We show that there is a row of X that has at least two
elements, which implies the conclusion of (9.13). Below, we will formalize the
argument that if every row of X contains at most one element, then the total
number of elements in all @ rows X is at most a, which is a contradiction. We
need the following functions, all except the last one are in fact in FACY:

e Union: X UY

(XUY)(2) @ z< | X|+|Y|A(X(2) VY (2))

232 CHAPTER 9. THEORIES FOR SMALL CLASSES

e Multiple Union: We interpret X as an array of a rows. Then MultUnion(a, X)
is the union of the rows X! for z < a:

MultUnion(a, X)(z) — z < |X| A 3z < aX")(2)

e Concatenation: Suppose that X codes an array of a rows. Then the func-
tion Concat(a,b, X) is the concatenation of the initial segments bounded
by b of the rows X* of X, for z < a:

Concat(a,b, X)(bx +y) @z <aAy <bA X[r](y)

e Total Number of Bits in an Array: Again, X is viewed as coding an array
of a rows. Then totNum(a,b, X) is the total number of elements of the
initial segments (bounded by b) of the rows X# of X, for z < a:

totNum(a, b, X) = numones(ab, Concat(a,b, X))

Exercise 9.27. Show that the following are theorems of VTC :

a) numones(b, X UY) < numones(b, X) + numones(b,Y).

b) totNum(a+ 1,b, X) = totNum(a, b, X) + numones(b, X1).
c) numones(b, MultUnion(a, X)) < totNum(a,b, X).

d) Yz < a numones(b, XI¥1) <u > totNum(a,b, X) < au.

Now the total number of elements that are < « in all ¢ rows of X is
totNum(a,a + 1, X). Suppose, by way of contradiction, that

Va < a numones(a + l,X[z]) <1
Then, by d of the exercise above, we have
totNum(a,a+1,X) < a
It follows from c that
numones(a + 1, MultUnion(a, X)) < a

However, it is obvious that Vz < a MultUnion(a, X)(z). By a simple induction
argument, this implies

numones(a + 1, MultUnion(a, X)) = a+ 1

a contradiction.]

9.3. THEORIES FOR OTHER SUBCLASSES OF P 233

9.3 Theories for Other Subclasses of P

In this section, we show how to develop finitely axiomatizable theories for a
number of other uniform subclasses of P in the style of VI CY. Consider a
polytime function F, and let C be the class of two-sorted relations which are
AC"-reducible to F. The class FC (Definition 5.16) can be equivalently defined
as the FAC" closure of F' (Definition 9.2). In the case of TC’, F is essentially
the string function computing the “counting array” Y in (9.2) (page 222).

The theory VC defined in this section is similar to VI'C® in the sense that
VC is axiomatized by V° together with a single axiom AXIOM r that formalizes
a polytime algorithm that computes F. To show that the functions in FC are
precisely the provably total functions of VC we will proceed just as in Section
9.2: here we will introduce the universal theory VC, whose vocabulary consists
precisely of functions of FC, and show that VC is a conservative extension of
VC.

As in the case of VT'CY and VTCO, the main task here is to show that
VC is conservative over C. We will use the results from Subsection 9.2.3. In
particular, we will need the aggregate function F* of F' to be provably total in
VC. Thus, in general, AXIOM r is indeed a defining axiom for F* instead of
F.

Another instance of VC is the finite axiomatization of TV presented in
Subsection 8.2.3, where TV is shown to be equal to VO + MCVP. In this
case, the function F' can be viewed as the string function that evaluates the
gate values of a monotone circuit on a given input (a complete problem for P).
Notice that MCVP defines just F', but it possible to define the function F* in
VO + MCVP. The same is true for VI'C” — we show in Lemma 9.23 that
numones* is provably total in VIT'CC. In fact, for each class that we consider
in the following sections, the additional axiom is essentially a defining axiom
for F, and thus is simpler than the axiom AXIOM r defined in this section. In
each case, we are able to show that F™* is definable in the corresponding theory.
Each proof is, however, rather ad hoc.

9.3.1 The Theories VC and VC

The quantifier-free defining axiom for F' is obtained from Cobham’s recursion
theoretic characterization of the polytime functions (Theorem 6.16). The proof
of that theorem actually shows that each polytime function can be obtained
from ACY functions by composition and at most one application of the limited
recursion operation (Definition 6.15). In each complexity class of interest it
turns out that a suitable function F' complete for the class can be defined by
such a recursion of the form (e.g., Conf)y in the proof of Theorem 6.16)

F(0,X) = Cut(t(0,|X]), Init(X)) (0.
Flz+1,X) = Cut(t(z +1,|X|), Neat(z, X, F(z, X))) (0.

4)
5)

where Cut (6.5), Init(X) and Next(z,X,Y) are AC" functions, t(z,y) is a
polynomial. (For example, F'(x, X) is the configuration at time x of a polytime

1
1

234 CHAPTER 9. THEORIES FOR SMALL CLASSES

Turing machine that solves some complete problem for a given class.) Notice
that the above defining axioms for F' are quantifier-free in Lgaco-

Now Lrc and VC are defined in the same way as Lgrco and VTG’ (Detf-
inition 9.12 and Definition 9.13). Recall the definitions of Fi,; and f,: from
Section 5.6.

Definition 9.28 (Lrc and W) The language Lyc is the smallest set that
satisfies

1) Lrc includes Lyaco U {F}

2) For each open formula o(z,%,X) over Lyc and term t = t(Z, X) of L2,
there is a string function F,; and a number function f,: in Lrc.

The theory VC is the extension of VO where the additional axioms include:
the defining azioms (9.14), (9.15) for F, and (5.37)/(5.38) for each (new) func-
tion Fy1/fo+ of Lrc.

The next lemma is analogous to Lemma 9.14, and its proof is left as an
exercise.

Lemma 9.29. a) For every I (Lrc) formula ¢ there is a quantifier-free

formula ¥ of Lrc such that VC F ¢ « 1.

b) The functions in Lrc represent precisely FC. A relation is in C if and
only if it is represented by some open Lyrc formula.

c) VC proves the 8 (Lrc)-COMP aziom scheme.
Exercise 9.30. Prove the lemma.

Now we define AXIOM . This axiom specifies the (polytime) computa-
tion of multiple (i.e., polynomially many) values of F(x, X). In particular, let
0r(a,b,X,Y) be the formula stating that Y encodes simultaneously the b re-
cursive computations of F(a, X[, ..., F(a, X[=1): Yl»2l = F(2, X4 for all
z < a,u < b. More precisely,

Or(a,b, X,Y) =Vu < b, YO = Cut(t(0, | X)), Init (X)) A
Vr < a, Y[u,z+1] = Cut(t(:v +1, |‘X'[u]|)7 Next(ac, ‘X'[u]7 Y[u,m])) (916)

Here we do not introduce new functions Cut, Init, Next, but tacitly use their
=5 (£%) bit definitions instead (see the FAC? Elimination Lemma 5.73).

Definition 9.31. Let AXIOM g be YaVOVX3Y 0p(a,b, X,Y). The theory VC
has vocabulary £ and is aziomatized by V® and the axiom AXIOM p.

Again, AXIOM r is equivalent in VY to the same axiom with |Y| bounded by
(b,t(a,|X])). Also, since V? is finitely axiomatizable, so is VC. The following
proposition is immediate from definition.

Proposition 9.32. a) VC C TV'.

9.3. THEORIES FOR OTHER SUBCLASSES OF P 235

b) The function F* is ¥i-definable in VC.

Corollary 9.33. a) VC is a conservative extension of VC.
b) Every function in Lrc is $1(L£%) definable in VC.

Proof. First we show that VC extends VC. Since VC proves ¥ (Lrc)-COMP
(Lemma 9.29 c), it also proves the Multiple Comprehension for 3% (Lgc) for-
mulas (Lemma 5.49). Hence VC proves AXIOM f, i.e., VC extends VC.

The remaining parts of the corollary are proved in almost the same way
as Corollary 9.24. First, we apply Theorem 9.21, using the fact that F* is 3}-
definable in VC(Lgaco) (Proposition 9.32 above). This shows that VC(LgacoU
{F}) is conservative over VC(Lgaco) and satisfies the hypotheses of Theorem
9.21. Next, we apply Corollary 9.22 for 7o = VC(Lgaco U{F}) and 7, = VC.
It follows from both steps that VC is conservative over VC(Lgaco) and every
function in Lpc is X1(L%) definable in VC(Lpaco). Finally, the conclusions
follow from the fact that VC(Lgaco) is conservative over VC. O

Similar to the Witnessing Theorem for VIT'C® 9.25 we have:

—

Corollary 9.34 (Witnessing Theorem for VC). For each theorem 3Zo(a, &, Z)
of VC, where ¢ is a ZF formula, there are functions F of Lrc such that

VC+VivX o, X, F(7,X)).
We summarize the characterization of C by VC in the next corollary.

Corollary 9.35 (Definability Theorem for VC). a) The X1-definable
(and B -definable) functions in VC are precisely those in Lpc.

b) The Al-definable (and AP-definable) predicates in VC are precisely those
in C.

9.3.2 The XF Replacement Rule and Axiom in VC

In this subsection we discuss the 3F replacement rule. In general, if a theory T
admits this rule, then the string functions f*/F* are provably total in 7, given
that f/F are provably total in 7.

Definition 9.36 (Replacement Rule). Suppose that T is a theory over L,
where either L= L% or L4 U{Row} C L. Let ® be a set of L-formulas. Then
T is said to admit the ® replacement rule if whenever 7 proves

Vz < b3Y ¢(2,Y) (9.17)
for a formula ¢ € ®, ¢ may contain other free variables, then T also proves

IYVz < b o(z, Y (9.18)

236 CHAPTER 9. THEORIES FOR SMALL CLASSES

Note that 7 admits the ® replacement rule whenever it proves the ®-REPL
axiom scheme (Definition 6.18). In general the converse is not true. For example,
VY admits the 3F replacement rule as shown in the lemma below, but it does
not proves XF-REPL.

We are mainly interested in the case where ® = X (L). Then a for theory 7
which extends VO, “T admits the £ (L) replacement rule” implies that f*/F*
are also Xi-definable in 7, for ¥1-definable functions f/F. The converse is true
when 7 is a universal theory. We prove this for VC. It will follow also that
VC admits the B replacement rule.

Lemma 9.37. a) The theory VC admits the X (Lrc) replacement rule.
b) VC admits the £F replacement rule.

Proof. Part b follows from a and the fact that VC is a conservative extension
of VC. We prove a. Suppose that VC proves (9.17), where ¢ is a ZF(Lpc)
formula. Then by the Witnessing Theorem for VC 9.34, there is a function
F(z) of Lrc such that

VC F ¢(2, F(2))

The existence of Y in (9.18) is witnessed by the function G(b), where G(b)¥l =
F(z), for z < b. The function G(b) has the XF-bit-definition:

G)(z,u) < z <bAu<t(z) NF(z)(u)

where t is a bounding term for F(z). Thus VC also proves (9.18). O

9.4 Theories for AC’(m) and ACC

For each m € N, m > 2, the class nonuniform/uniform AC®(m) are defined
just as nonuniform/uniform TC" but using the modulo m gates instead of the
majority gates. A modulo m gate has unbounded fan-in and outputs 1 if and
only if the total number of 1 inputs is exactly 1 modulo m.

In descriptive complexity, uniform AC°(m) (or just AC"(m)) can be char-
acterized using the mod(m) quantifier [?]. Here we define AC"(m) using the
number function mod,,(z, X), where

mod ., (x, X) = numones(z, X) mod m

Definition 9.38. AC°(m) is the class of relations that are AC°-reducible to
mod (2, X) and FAC®(m) is the class of functions which are AC°-reducible to
mod,,. Also,

ACC=|JAC(m), FACC=|JFAC’(m)

i>2 i>2

9.4. THEORIES FOR AC°(M) AND ACC 237

In this section we will define the theory VO(m) that characterizes AC®(m).
(Then VACC = |JVY(m).) Following the discussion in Section 9.3, we will
first define the universal theory v’ (m). Here, we use the following quantifier-
free defining axioms for mod,, (we identify the natural number m with the
corresponding numeral m):

modn,(0,X) =0 (9.19)

X (z) Amody(z,X)+1<m>Dmodpy(z+1,X)=modn(z,X)+1 (9.20)
X (z) Amody (2, X)+1=m>D modn(z+1,X)=0 (9.21)

=X (x) D modp(x+1,X) = mod,(x,X) (9.22)

Definition 9.39. For each m > 2, Lraco(m) 1S the smallest set that satisfies

1) Lpaco(m) includes L3 U {pd, fsg, mod,}

2) For each open formula ¢(z,, X) over Lpacom) and term t = t(Z, X)
of L%, there is a string function F,: and a number function f,; (see
Equations (5.37) and (5.38) in Section 5.6) in Lraco(m)-

The universal theory Vo(m) 1s aziomatized by the azioms B1-B11, L1, L2
(Figure 5.1), B12', B12"” (5.40), SE’ (5.41) and (9.19) - (9.22) Also, Lracc =

U{Lraco(m) | m > 2}, and VACC = {V" (m) | m > 2}.

Proposition 9.40. The symbols in Lyacom) and Lracc represent precisely

the functions of FAC®(m) and FACC, respectively. A relation is in AC®(m)
or ACC if and only if it is represented by an open formula in Lgacom) or
Lracc, respectively.

For m > 2, the theory VY(m) is defined using the formula dmop,, (7, X,Y),
which states that Y is a “counting modulo m” array for X:

dmop,, (2, X,Y)=Y(0,0) A Vz <z,
(X(2) 2 ()" = ((Y)* +1) modm))A(=X(2) DY) = (Y)?).

Since (y mod m) is an AC® number function, dpop,, (z, X,Y) is equivalent
to a £F(£%) formula (by FAC® Elimination Lemma 5.73). Indeed, if o(y) is a
=8 formula, we can take ¢(y mod m) as an abbreviation for the £ formula

Ir<m,I <y, y=qgm+rAe(r).

Definition 9.41.