
D
R

A
FT

Foundations of Proof Complexity: Bounded

Arithmetic and Propositional Translations

Stephen Cook and Phuong Nguyen
c©Copyright 2004, 2005, 2006

October 9, 2006

D
R

A
FT

i

Preface
(Preliminary Version)

This book studies logical systems which use restricted reasoning based on
concepts from computational complexity. The underlying motivation is to de-
termine the complexity of the concepts needed to prove mathematical theo-
rems. The complexity classes of interest lie mainly between the basic class
AC0(characterized by polynomial-size families of bounded-depth circuits), and
the polynomial hierarchy PH, and includes the sequence

AC0 ⊂ TC0 ⊆ NC1 ⊆ P ⊆ PH (1)

We associate with each of these classes a logical theory and a propositional proof
system, where the proof system can be considered a nonuniform version of the
universal (or sometimes the bounded) fragment of the theory. The functions
definable in the logical theory are those associated with the complexity class,
and (in some cases) the lines in a polynomial size proof in the propositional
system express concepts in the complexity class. This three-way association for
the above classes is depicted as follows:

class AC0 TC0 NC1 P PH

theory V0 VTC0 VNC1 TV0 V

system AC0-Frege TC0-Frege Frege eFrege 〈Gi〉
(2)

Consider, for example, the class NC1. The uniform version is ALogTime,
the class of problems solvable by an alternating Turing machine in time O(log n).
The definable functions in the associated theory VNC1 are the NC1 functions,
i.e., those functions whose bit graphs are NC1 relations. A problem in nonuni-
form NC1 is defined by a polynomial-size family of log-depth Boolean circuits,
or equivalently a polynomial-size family of propositional formulas. The cor-
responding propositional proof systems are called Frege systems, and are de-
scribed in standard logic textbooks: a Frege proof of a tautology A consists of
a sequence of propositional formulas ending in A, where each formula is either
an axiom or follows from earlier formulas by a rule of inference. Universal theo-
rems of VNC1 translate into polynomial-size families of Frege proofs. Finally,
VNC1 proves the soundness of Frege systems, but not of any more powerful
propositional proof system.

A common example used to illustrate the complexity of the concepts needed
to prove a theorem is the Pigeonhole Principle (PHP). Our version states that if
n+1 pigeons are placed in n holes, then some hole has two or more pigeons. We
can present an instance of the PHP using a Boolean array 〈P (i, j)〉 (0 ≤ i ≤ n,
0 ≤ j < n), where P (i, j) asserts that pigeon i is placed in hole j. Then the
PHP can be formulated in the theory V0 by the formula

∀i ≤ n ∃j < nP (i, j) ⊃ ∃i1, i2 ≤ n ∃j < n (i1 6= i2 ∧ P (i1, j) ∧ P (i2, j)) (3)

Ajtai proved that this formula is not a theorem of V0, and also that the propo-
sitional version (which uses atoms pij to represent P (i, j)) does not have poly-
nomial size AC0-Frege proofs. The intuitive reason for this is that a counting

D
R

A
FT

ii

argument seems to be required to prove the PHP, but the complexity class AC0

cannot count the number of ones in a string of bits. On the other hand, the
class NC1 can count, and indeed Buss proved that the propositional PHP does
have polynomial size Frege proofs, and his method shows that (3) is a theorem
of the theory VNC1. (In fact it is a theorem of the weaker theory VTC0.)

A second example comes from linear algebra. If A and B are n×n matrices
over some field, then

AB = I ⊃ BA = I (4)

A standard proof of this uses Gaussian elimination, which is a polynomial-
time process. Indeed Soltys showed that (4) is a theorem of the theory TV0

corresponding to polynomial-time reasoning, and its propositional translation
(say over the field of two elements) has polynomial-size eFrege proofs. It is an
open question whether (4) over GF(2) (or any field) can be proved in VNC1,
or whether the propositional version has polynomial-size Frege proofs.

The preceding example (4) is a universal theorem, in the sense that its state-
ment has no existential quantifier. Another class of examples comes from exis-
tential theorems. From linear algebra, a natural example about n× n matrices
is

∀A∃B 6= 0(AB = I ∨AB = 0) (5)

The complexity of finding B for a given A, even over GF(2), is thought not to
be in NC1 (it is hard for log space). Assuming that this is the case, it follows
that (5) is not a theorem of VNC1, since only NC1 functions are definable in
that theory. This conclusion is the result of a general witnessing theorem, which
states that if the formula ∀x∃yϕ(x, y) (for suitable formulas ϕ) is provable in
the theory associated with complexity class C, then there is a Skolem function
f(x) whose complexity is in C and which satisfies ∀xϕ(x, f(x)).

The theory VNC1 proves that (4) follows from (5), and both (4) and (5)
are theorems of the theory TV0 associated with polynomial time.

Another example of an existential theorem is “Fermat’s Little Theorem”,
which states that if n is a prime number and 1 ≤ a < n, then an−1 ≡ 1
(mod n). Its existential content is captured by its contrapositive form

(1 ≤ a < n) ∧ (an−1 6≡ 1 (mod n)) ⊃ ∃d(1 < d < n ∧ d|n) (6)

It is easy to see that the function an−1 mod n can be computed in time poly-
nomial in the lengths of a and n, using repeated squaring. If (6) is provable
in TV0, then by the witnessing theorem mentioned above it would follow that
there is a polynomial time function f(a, n) whose value d = f(a, n) provides a
proper divisor of n whenever a, n satisfy the hypothesis in (6). With the excep-
tion of the so-called Carmichael numbers, which can be factored in polynomial
time, every composite n satisfies the hypothesis of (6) for at least half of the
values of a, 1 ≤ a < n. Hence f(a, n) would provide a probabilistic polynomial
time algorithm for integer factoring. Such an algorithm is thought unlikely to
exist, and would provide a method for breaking the RSA public-key encryption
scheme.

D
R

A
FT

iii

Thus Fermat’s Little Theorem is not provable in TV0, assuming that there
is no probabilistic polynomial time factoring algorithm.

Propositional tautologies can be used to express universal theorems such
as (3) and (4), but are not well suited to express existential theorems such as
(5) and (6). However the latter can be expressed using formulas in the quan-
tified propositional calculus (QPC), which extends the propositional calculus
by allowing quantifiers ∀P and ∃P over propositional variables P . Each of the
complexity classes in (2) has an associated QPC system, and in fact the systems
〈Gi〉 mentioned for PH form a hierarchy of QPC systems.

Most of the theories presented in this book, including those in (2), have the
same “second-order” underlying language L2

A, introduced by Zambella. The
language L2

A is actually a language for the two-sorted first-order predicate cal-
culus, where one sort is for numbers in N and the second sort is for finite sets of
numbers. Here we regard an object of the second sort as a finite string over the
alphabet {0, 1} (the i-th bit in the string is 1 iff i is in the set). The strings are
the objects of interest for the complexity classes, and serve as the main inputs
for the machines or circuits that determine the class. The numbers serve a use-
ful purpose as indices for the strings when describing properties of the strings.
When they are used as machine or circuit inputs, they are presented in unary
notation.

In the more common single-sorted theories such as Buss’s hierarchies Si2 and
Ti

2 the underlying objects are numbers which are presented in binary notation
as inputs to Turing machines. Our two-sorted treatment has the advantage that
the underlying language has no primitive operations on strings except the length
function |X | and the bit predicate X(i) (meaning i ∈ X). This is especially
important for studying weak complexity classes such as AC0. The standard
language for single-sorted theories includes number multiplication, which is not
an AC0 function on binary strings.

Another advantage of our two-sorted approach is that the propositional
translations of our theories are especially simple and elegant. These are done
in the style of Paris and Wilkie, rather than the earlier and more cumbersome
style introduced by Cook for the equational theory PV.

Much of this book is based on course notes for a graduate course taught
several times at the University of Toronto by the first author. The notes for the
2002 version are available online [?]. The prerequisites for the course and the
book are some knowledge of both mathematical logic and complexity theory.
There are exercises sprinkled throughout the text, which are intended both to
supplement the material presented and to help the reader master the material.

The first two chapters provide a concise treatment of the required back-
ground in first-order logic, based on Gentzen’s proof system LK. An unusual
feature is our treatment of anchored (or “free-cut-free”) proofs. It is based
on a completeness theorem for such proofs, as opposed to the usual syntactic
cut-elimination theorem.

Chapter 3 presents the necessary background on Peano Arithmetic and its
subsystems, including the bounded theory I∆0. The functions definable in I∆0

are precisely those in the linear time hierarchy. The universal theory I∆0 has

D
R

A
FT

iv

function symbols for each of these functions, and forms a conservative extension
of I∆0.

Chapter 4 introduces the syntax and intended semantics for the two-sorted
theories, which will be used throughout the remaining chapters. Representation
theorems are proved which state that formulas in the syntactic class ΣB

0 rep-
resent precisely the (two-sorted) AC0 relations, and for i ≥ 1, formulas in ΣB

i

represent the relations in the i-th level of the polynomial hierarchy.
Chapter 5 introduces the two-sorted theory V0, which is associated with the

complexity class AC0. All two-sorted theories considered in later chapters are
extensions of V0. A Buss-style witnessing theorem is proved for V0, showing
that the existential quantifiers in a Σ1

1-theorem of V0 can be witnessed by AC0-
functions. Here the Σ1

1 theorems have all existential string quantifiers in front,
which makes the proof easier than for the usual Buss-style witnessing theorems.
(The same applies to the witnessing theorems proved in later chapters.) The
final section proves that V0 is finitely axiomatizable.

Chapter 6 concentrates on the theory V1, which is associated with the com-
plexity class P. V1 is the two-sorted version of Buss’s theory S1

2. All polynomial
time functions are definable in V1. This is shown two ways: by analyzing Turing
machine computations and by using Cobham’s characterization of these func-
tions. The witnessing theorem for V1 is proved based on Cobham’s theorem.

Chapter 7 gives a general definition of propositional proof system. The
goal is to associate a proof system with each theory so that each ΣB

0 theorem
of the theory translates into a polynomial size family of proofs in the proof
system. Further the theory should prove the soundness of the proof system.
In this chapter, translations are defined from V0 to bounded-depth PK-proofs
(i.e. bounded-depth Frege proofs), and also from V1 to extended Frege proofs.
Systems for the quantified propositional calculus are defined, and it is shown
how to translate bounded theorems of V1 to polynomial size families of proofs
in the system G⋆

1. The two-sorted treatment makes these translations simple
and natural.

Chapter 8 begins by introducing other two-sorted theories associated with
polynomial time. The finitely axiomatized theory TV0 and its universal con-
servative extension VPV both appear to be weaker than V1, although they
have the same ΣB

1 theorems as V1. TV0 is the base of the hierarchy of theories
TV0 ⊆ TV1 ⊆ . . ., where for i ≥ 1, TVi is isomorphic to Buss’s single-sorted
theory Ti

2. The definable problems in TV1 have the complexity of Polynomial
Local Search. Other results on the hierarchies Vi and TVi will be presented.
This chapter also proves the RSUV isomorphism theorem between Si2 and Vi.

Chapter 9 gives a uniform way of introducing minimal canonical theories
for many complexity classes between AC0 and P, including those mentioned
earlier in (1). Each finitely axiomatized theory is defined as an extension of
V0 obtained by adding a single axiom stating the existence of a computation
solving a complete problem for the associated complexity class. The “minimal-
ity” of each theory is established by defining a universal theory whose axioms
are simply the defining axioms for all the functions in the associated complexity
class. These functions are defined as the function AC0-closure of the complexity

D
R

A
FT

v

class, or (as is the case for P) using a recursion-theoretic characterization of the
function class. The main theorem in each case is that the universal theory is a
conservative extension of the finitely axiomatized theory.

Chapter 10 presents further results on theories for the quantified proposi-
tional calculus.

Two sources have been invaluable for writing this book. The first is Kraj́ıček’s
monograph [?], which is an essential possession for anyone working in this field.
The second source is Buss’s chapters [?, ?] in Handbook of Proof Theory. Chap-
ter I provides an excellent introduction to the proof theory of LK, and Chapter
II provides a thorough introduction to the first-order theories of bounded arith-
metic.

The authors would like to thank the many students and colleagues who have
provided us with feedback on earlier versions of this book.

D
R

A
FT

vi

D
R

A
FTContents

1 The Propositional Calculus 1

1.1 Gentzen’s Propositional Proof System PK 2

1.2 Soundness and Completeness of PK 4

1.3 PK Proofs from Assumptions . 5

1.4 Notes . 9

2 The Predicate Calculus 11

2.1 Syntax . 11

2.2 Semantics of Predicate Calculus 13

2.3 The First-Order Proof System LK 15

2.3.1 Free Variable Normal Form 17

2.3.2 Completeness of LK without Equality 18

2.4 Equality Axioms . 24

2.4.1 Equality Axioms for LK 25

2.4.2 Revised Soundness and Completeness of LK 26

2.5 Major Corollaries of Completeness 27

2.6 The Herbrand Theorem . 28

2.7 Notes . 31

3 Peano Arithmetic and its Subsystems 33

3.1 Peano Arithmetic . 33

3.2 Parikh’s Theorem . 38

3.3 Conservative Extensions of I∆0 43

3.3.1 Introducing New Function and Predicate Symbols 43

3.3.2 I∆0: A Universal Conservative Extension of I∆0 47

3.3.3 Defining y = 2x and BIT (i, x) in I∆0 53

3.4 I∆0 and the Linear Time Hierarchy 58

3.4.1 The Polynomial and Linear Time Hierarchies 58

3.4.2 Representability of LTH Relations 59

3.4.3 Characterizing the LTH by I∆0 62

3.5 Buss’s Si2 Hierarchy: The Road Not Taken 63

3.6 Notes . 65

vii

D
R

A
FT

viii CONTENTS

4 Two-Sorted First-Order Logic 67
4.1 Basic Descriptive Complexity Theory 67
4.2 Two-Sorted First-Order Logic . 69

4.2.1 Syntax . 69
4.2.2 Semantics . 71

4.3 Two-sorted Complexity Classes 73
4.3.1 Notation for Numbers and Finite Sets 73
4.3.2 Representation Theorems 74
4.3.3 The LTH Revisited . 78

4.4 The Proof System LK2 . 79
4.4.1 Two-Sorted Free Variable Normal Form 82

4.5 Single-Sorted Logic Interpretation 82
4.6 Notes . 84

5 The Theory V0 and AC0 85
5.1 Definition and Basic Properties of Vi 85
5.2 Two-Sorted Functions . 90
5.3 Parikh’s Theorem for Two-Sorted Logic 94
5.4 Definability in V0 . 96

5.4.1 ∆1
1-Definable Predicates 104

5.5 The Witnessing Theorem for V0 105
5.5.1 Independence follows from the Witnessing Theorem for V0 106
5.5.2 Proof of the Witnessing Theorem for V0 107

5.6 V
0
: Universal Conservative Extension of V0 112

5.6.1 Alternative Proof of the Witnessing Theorem for V0 . . . 116
5.7 Finite Axiomatizability . 117
5.8 Notes . 119

6 The Theory V1 and Polynomial Time 121
6.1 Induction Schemes in Vi . 121
6.2 Characterizing P by V1 . 123

6.2.1 The “if” Direction of Theorem 6.6 125
6.2.2 Application of Cobham’s Theorem 128

6.3 The Replacement Axiom Scheme 129
6.3.1 Extending V1 by Polytime Functions 132

6.4 The Witnessing Theorem for V1 134
6.4.1 The Sequent System LK2-Ṽ1 137
6.4.2 Proof of the Witnessing Theorem for V1 141

6.5 Notes . 143

7 Propositional Translations 145
7.1 Propositional Proof Systems . 145

7.1.1 Treelike vs Daglike Proof Systems 147
7.1.2 The Pigeonhole Principle and Bounded Depth PK 149

7.2 Translating V0 to bPK . 151
7.2.1 Translating ΣB

0 Formulas 151

D
R

A
FT

CONTENTS ix

7.2.2 Ṽ0 and LK2-Ṽ0 . 154
7.2.3 Proof of the Translation Theorem for V0 155

7.3 Quantified Propositional Calculus 158
7.3.1 QPC Proof Systems . 159
7.3.2 The System G . 160

7.4 The Systems Gi and G⋆
i . 163

7.4.1 Extended Frege Systems and Witnessing in G⋆
1 167

7.5 Translating V1 to G⋆
1 . 171

7.5.1 Translating Bounded L2
A-Formulas 171

7.6 Notes . 174

8 Theories for Polynomial Time and Beyond 175
8.1 The Theory VPV . 175

8.1.1 Comparing VPV and V1 178
8.2 TV0 and the TVi Hierarchy . 179

8.2.1 TV0 ⊆ VPV . 182
8.2.2 VPV is Conservative over TV0 184
8.2.3 A Finite Axiomatization of TV0 188

8.3 The Theory V1-HORN . 191
8.4 TV1 and Polynomial Local Search 196
8.5 KPT Witnessing . 204
8.6 Vi and TVi for i ≥ 2 . 204
8.7 RSUV Isomorphism . 204

8.7.1 The Theories Si2 and Ti
2 205

8.7.2 RSUV Isomorphism . 207
8.7.3 The ♯ Translation . 208
8.7.4 The ♭ Translation . 210
8.7.5 The RSUV Isomorphism between Si2 and Vi 212

8.8 Notes . 214

9 Theories for Small Classes 217
9.1 AC0 Reductions . 218
9.2 The Theory VTC0 . 221

9.2.1 TC0 and VTC0 . 222
9.2.2 The Theory VTC

0
. 223

9.2.3 Aggregate Functions and Conservative Extensions 224

9.2.4 The Conservativity of VTC
0

over VTC0 229
9.2.5 The Witnessing Theorem for VTC0 230
9.2.6 Proving the Pigeonhole Principle in VTC0 231

9.3 Theories for Other Subclasses of P 233
9.3.1 The Theories VC and VC 233
9.3.2 The ΣB

0 Replacement Rule and Axiom in VC 235
9.4 Theories for AC0(m) and ACC 236
9.5 Theories for NCk and ACk . 238

9.5.1 The Theory VNC1 . 239
9.5.2 The Theories VNCk and VACk 241

D
R

A
FT

x CONTENTS

9.5.3 VTC0 ⊆ VNC1 . 242
9.6 Theories for NL and L . 246

9.6.1 The Theory VNL . 246
9.6.2 Representing NL by Σ1

1-Krom Formulas 248
9.6.3 The Theory V1-KROM 250
9.6.4 The Theory VL . 254

9.7 The Number Recursion Operation 256
9.7.1 Lind’s Characterization of FL 257
9.7.2 Number Summation . 257
9.7.3 k-Bounded Number Recursion 258
9.7.4 FAC0(2), FAC0(6) and FNC1 262

9.8 Notes . 265

10 Proof Systems for Small Theories 267

A Computation Models 269
A.1 Deterministic Turing Machines 269

A.1.1 L, P, PSPACE and EXP 271
A.2 Nondeterministic Turing Machines 273
A.3 Oracle Turing Machines . 274
A.4 Alternating Turing Machines . 275

A.4.1 NC1 and AC0 . 276
A.5 Implementation of Multiplication 276

A.5.1 Adding n Numbers of Length n 277
A.5.2 Multiplication in LTH . 277

D
R

A
FTChapter 1

The Propositional Calculus

In this chapter and the next we present the logical foundations for theories of
bounded arithmetic. In general we distinguish between syntactic notions and
semantic notions. Examples of syntactic notions are variables, connectives, for-
mulas, and formal proofs. The semantic notions relate to meaning; for example
truth assignments, structures, validity, and logical consequence.

Propositional formulas (called simply formulas in this chapter) are built from
the logical constants ⊥, ⊤ (for False, True), propositional variables (or atoms)
P1, P2, ..., connectives ¬,∨,∧, and parentheses (,). We use P,Q,R, ... to stand
for propositional variables, A,B,C, ... to stand for formulas, and Φ,Ψ, ... to
stand for sets of formulas. When writing formulas such as (P ∨ (Q ∧ R)), our
convention is that P,Q,R, .. stand for distinct variables.

Formulas are built according to the following rules:

• ⊥, ⊤, P , are formulas (also called atomic formulas) for any variable P .

• If A and B are formulas, then so are (A ∨B), (A ∧B), and ¬A.

The implication connective ⊃ is not allowed in our formulas, but we will take
(A ⊃ B) to stand for (¬A∨B). Also (A↔ B) stands for ((A ⊃ B)∧ (B ⊃ A)).

We sometimes abbreviate formulas by omitting parentheses, but the intended
formula has all parentheses present as defined above.

A truth assignment is an assignment of truth values F, T to atoms. Given
a truth assignment τ , the truth value Aτ of a formula A is defined inductively
as follows: ⊥τ = F , ⊤τ = T , P τ = τ(P) for atom P , (A ∧ B)τ = T iff both
Aτ = T and Bτ = T , (A∨B)τ = T iff either Aτ = T or Bτ = T , (¬A)τ = T iff
Aτ = F .

Definition 1.1. A truth assignment τ satisfies A iff Aτ = T ; τ satisfies a set
Φ of formulas iff τ satisfies A for all A ∈ Φ. Φ is satisfiable iff some τ satisfies
Φ; otherwise Φ is unsatisfiable. Similarly for A. Φ |= A (i.e., A is a logical
consequence of Φ) iff τ satisfies A for every τ such that τ satisfies Φ. A formula

1

D
R

A
FT

2 CHAPTER 1. THE PROPOSITIONAL CALCULUS

A is valid iff |= A (i.e., Aτ = T for all τ). A valid propositional formula is
called a tautology. We say that A and B are equivalent (written A⇐⇒ B) iff
A |= B and B |= A.

Note that ⇐⇒ refers to semantic equivalence, as opposed to =syn, which
indicates syntactic equivalence. For example, (P ∨ Q) ⇐⇒ (Q ∨ P), but (P ∨
Q) 6=syn (Q ∨ P).

1.1 Gentzen’s Propositional Proof System PK

We present the propositional part PK of Gentzen’s sequent-based proof system
LK. Each line in a proof in the system PK is a sequent of the form

A1, ..., Ak −→ B1, ..., Bℓ (1.1)

where −→ is a new symbol and A1, ..., Ak and B1, ..., Bℓ are sequences of for-
mulas (k, ℓ ≥ 0) called cedents. We call the cedent A1, ..., Ak the antecedent and
B1, ..., Bℓ the succedent (or consequent).

The semantics of sequents is given as follows. We say that a truth assignment
τ satisfies the sequent (1.1) iff either τ falsifies some Ai or τ satisfies some Bi.
Thus the sequent is equivalent to the formula

¬A1 ∨ ¬A2 ∨ ... ∨ ¬Ak ∨B1 ∨B2 ∨ ... ∨Bℓ (1.2)

(Here and elsewhere, a disjunction C1 ∨ ...∨Cn indicates parentheses have been
inserted with association to the right. For example, C1 ∨ C2 ∨ C3 ∨ C4 stands
for (C1 ∨ (C2 ∨ (C3 ∨ C4))). Similarly for a disjunction C1 ∧ ... ∧Cn.) In other
words, the conjunction of the A’s implies the disjunction of the B’s. In the cases
in which the antecedent or succedent is empty, we see that the sequent −→ A is
equivalent to the formula A, and A −→ is equivalent to ¬A, and just −→ (with
both antecedent and succedent empty) is false (unsatisfiable). We say that a
sequent is valid if it is true under all truth assignments (which is the same as
saying that its corresponding formula is a tautology).

Definition 1.2. A PK proof of a sequent S is a finite tree whose nodes are
(labeled with) sequents, whose root (called the endsequent) is S and is written
at the bottom, whose leaves (or initial sequents) are logical axioms (see below),
such that each non-leaf sequent follows from the sequent(s) immediately above
by one of the rules of inference given below.

The logical axioms are of the form

A −→ A ⊥ −→ −→ ⊤

where A is any formula. (Note that we differ here from most other treatments,
which require that A be an atomic formula.) The rules of inference are as follows
(here Γ and ∆ denote finite sequences of formulas).

D
R

A
FT

1.1. GENTZEN’S PROPOSITIONAL PROOF SYSTEM PK 3

weakening rules

left:
Γ −→ ∆

A,Γ −→ ∆
right:

Γ −→ ∆

Γ −→ ∆, A

exchange rules

left:
Γ1, A,B,Γ2 −→ ∆

Γ1, B,A,Γ2 −→ ∆
right:

Γ −→ ∆1, A,B,∆2

Γ −→ ∆1, B,A,∆2

contraction rules

left:
Γ, A,A −→ ∆

Γ, A −→ ∆
right:

Γ −→ ∆, A,A

Γ −→ ∆, A

¬ introduction rules

left:
Γ −→ ∆, A

¬A,Γ −→ ∆
right:

A,Γ −→ ∆

Γ −→ ∆,¬A

∧ introduction rules

left:
A,B,Γ −→ ∆

(A ∧B),Γ −→ ∆
right:

Γ −→ ∆, A Γ −→ ∆, B

Γ −→ ∆, (A ∧B)

∨ introduction rules

left:
A,Γ −→ ∆ B,Γ −→ ∆

(A ∨B),Γ −→ ∆
right:

Γ −→ ∆, A,B

Γ −→ ∆, (A ∨B)

cut rule
Γ −→ ∆, A A,Γ −→ ∆

Γ −→ ∆

The formula A in the cut rule is called the cut formula. A proof that does
not use the cut rule is called cut-free.

Note that there is one left introduction rule and one right introduction rule
for each of the three logical connectives ∧,∨,¬. Further, these rules seem to
be the simplest possible, given the fact that in each case the bottom sequent is
valid iff all top sequents are valid.

Note that repeated use of the exchange rules allows us to execute an arbitrary
reordering of the formulas in the antecedent or succedent of a sequent. In
presenting a proof in the system PK, we will usually omit mention of the steps
requiring the exchange rules, but of course they are there implicitly.

Definition 1.3. A PK proof of a formula A is a PK proof of the sequent
−→ A.

D
R

A
FT

4 CHAPTER 1. THE PROPOSITIONAL CALCULUS

As an example, we give a PK proof of one of DeMorgan’s laws:

¬(P ∧Q) −→ ¬P ∨ ¬Q

To find this (or any) proof, it is a good idea to start with the conclusion at
the bottom, and work up by removing the connectives one at a time, outermost
first, by using the introduction rules in reverse. This can be continued until
some formula A occurs on both the left and right side of a sequent, or ⊤ occurs
on the right, or ⊥ occurs on the left. Then this sequent can be derived from
one of the axioms A −→ A or −→ ⊤ or ⊥ −→ using weakenings and exchanges.
The cut and contraction rules are not necessary, and weakenings are only needed
immediately below axioms. (The cut rule can be used to shorten proofs, and
contraction will be needed later for the predicate calculus.)

P −→ P
(weakening)

P −→ P,¬Q
(¬ right)

−→ P,¬P,¬Q

Q −→ Q
(weakening)

Q −→ Q,¬P
(¬ right)

−→ Q,¬P,¬Q
(∧ right)

−→ P ∧Q,¬P,¬Q
(∨ right)

−→ P ∧Q,¬P ∨ ¬Q
(¬ left)

¬(P ∧Q) −→ ¬P ∨ ¬Q

Exercise 1.4. Give PK proofs for each of the following valid sequents:
a) ¬P ∨ ¬Q −→ ¬(P ∧Q)
b) ¬(P ∨Q) −→ ¬P ∧ ¬Q
c) ¬P ∧ ¬Q −→ ¬(P ∨Q)

Exercise 1.5. Show that the contraction rules can be derived from the cut rule
(with weakenings and exchanges).

Exercise 1.6. Suppose that we allowed ⊃ as a primitive connective, rather than
one introduced by definition. Give the appropriate left and right introduction
rules for ⊃.

1.2 Soundness and Completeness of PK

Now we prove that PK is both sound and complete. That is, a propositional
sequent is provable in PK iff it is valid.

Theorem 1.7 (Soundness Theorem). Every sequent provable in PK is valid.

Proof. We show that the endsequent in every PK proof is valid, by induction
on the number of sequents in the proof. For the base case, the proof is a single
line: a logical axiom. Each logical axiom is obviously valid. For the induction
step, one needs only verify for each rule that the bottom sequent is a logical
consequence of the top sequent(s). �

D
R

A
FT

1.3. PK PROOFS FROM ASSUMPTIONS 5

Theorem 1.8 (Completeness Theorem). Every valid propositional sequent
is provable in PK without using cut or contraction.

Proof. The idea is discussed in the example proof above of DeMorgan’s laws.
We need to use the inversion principle.

Lemma 1.9 (Inversion Principle). For each PK rule except for weakenings,
if the bottom sequent is valid, then all top sequents are valid.

This principle is easily verified by inspecting each of the eleven rules in
question.

Now for the completeness theorem: We show that every valid sequent Γ −→
∆ has a PK proof, by induction on the total number of logical connectives
∧,∨,¬ occurring in Γ −→ ∆. For the base case, every formula in Γ and ∆ is an
atom or one of the constants ⊥, ⊤, and since the sequent is valid, some atom P
must occur in both Γ and ∆, or ⊥ occurs in Γ or ⊤ occurs in ∆. Hence Γ −→ ∆
can be derived from one of the logical axioms by weakenings and exchanges.

For the induction step, let A be any formula which is not an atom and not a
constant in Γ or ∆. Then by the definition of propositional formula A must have
one of the forms (B ∧ C), (B ∨ C), or ¬B. Thus Γ −→ ∆ can be derived from
∧ introduction, ∨ introduction, or ¬ introduction, respectively, using either the
left case or the right case, depending on whether A is in Γ or ∆, and also using
exchanges, but no weakenings. In each case, each top sequent of the rule will
have at least one fewer connective than Γ −→ ∆, and the sequent is valid by the
inversion principle. Hence each top sequent has a PK proof, by the induction
hypothesis. �

The soundness and completeness theorems relate the semantic notion of
validity to the syntactic notion of proof.

1.3 PK Proofs from Assumptions

We generalize the (semantic) definition of logical consequence from formulas
to sequents in the obvious way: A sequent S is a logical consequence of a set
Φ of sequents iff every truth assignment τ that satisfies Φ also satisfies S. We
generalize the (syntactic) definition of a PK proof of a sequent S to a PK proof
of S from a set Φ of sequents (also called a PK-Φ proof) by allowing sequents
in Φ to be leaves (called nonlogical axioms) in the proof tree, in addition to the
logical axioms. It turns out that soundness and completeness generalize to this
setting.

Theorem 1.10 (Derivational Soundness and Completeness Theorem).
A sequent S is a logical consequence of a set Φ of sequents iff S has a PK-Φ
proof.

D
R

A
FT

6 CHAPTER 1. THE PROPOSITIONAL CALCULUS

Derivational soundness is proved in the same way as simple soundness: by
induction on the number of sequents in the PK-Φ proof, using the fact that the
bottom sequent of each rule is a logical consequence of the top sequent(s).

A remarkable aspect of derivational completeness is that a finite proof exists
even in case Φ is an infinite set. This is because of the compactness theorem
(below) which implies that if S is a logical consequence of Φ, then S is a logical
consequence of some finite subset of Φ.

In general, to prove S from Φ the cut rule is required. For example, there
is no PK proof of −→ P from −→ P ∧ Q without using the cut rule. This
follows from the subformula property, which states that in a cut-free proof π of
a sequent S, every formula in every sequent of π is a subformula of some formula
in S. This is stated more generally in the Proposition 1.15.

Exercise 1.11. Let AS be the formula giving the meaning of a sequent S, as
in (1.2). Show that there is a cut-free PK derivation of −→ AS from S.

From the above easy exercise and from the earlier Completeness Theorem
and from Theorem 1.16, Form 2 (compactness), we obtain an easy proof of
derivational completeness. Suppose that the sequent Γ −→ ∆ is a logical conse-
quence of sequents S1, ..., Sk. Then by the above exercise we can derive each of
the sequents −→ AS1 ,...,−→ ASk

from the sequents S1, ..., Sk. Also the sequent

AS1 , ..., ASk
,Γ −→ ∆ (1.3)

is valid, and hence has a PK proof by Theorem 1.8. Finally from (1.3) us-
ing successive cuts with cut formulas AS1 , ..., ASk

we obtain the desired PK
derivation of Γ −→ ∆ from the the sequents S1, ..., Sk. �

We now wish to show that the cut formulas in the derivation can be restricted
to formulas occurring in the hypothesis sequents.

Definition 1.12 (Anchored Proof). An instance of the cut rule in a PK-Φ
proof π is anchored if the cut formula A (also) occurs as a formula (rather than
a subformula) in some nonlogical axiom of π. A PK-Φ proof π is anchored if
every instance of cut in π is anchored.

Our anchored proofs are similar to free-cut-free proofs in [?] and elsewhere.
Our use of the term anchored is inspired by [?].

The derivational completeness theorem can be strengthened as follows.

Theorem 1.13 (Anchored Completeness Theorem). If a sequent S is a
logical consequence of a set Φ of sequents, then there is an anchored PK-Φ proof
of S.

We illustrate the proof of the anchored completeness theorem by proving the
special case in which Φ consists of the single sequent A −→ B. Assume that
the sequent Γ −→ ∆ is a logical consequence of A −→ B. Then both of the
sequents Γ −→ ∆, A and B,A,Γ −→ ∆ are valid (why?). Hence by Theorem
1.8 they have PK proofs π1 and π2, respectively. We can use these proofs to

D
R

A
FT

1.3. PK PROOFS FROM ASSUMPTIONS 7

get a proof of Γ −→ ∆ from A −→ B as shown below, where the double line
indicates several rules have been applied.

··· π1

Γ −→ ∆, A

A −→ B
=========== (weakenings,exchanges)
A,Γ −→ ∆, B

··· π2

B,A,Γ −→ ∆
(cut)

A,Γ −→ ∆
(cut)

Γ −→ ∆

Next consider the case in which Φ has the form {−→ A1,−→ A2, ...,−→
Ak} for some set {A1, ..., Ak} of formulas. Assume that Γ −→ ∆ is a logical
consequence of Φ in this case. Then the sequent

A1, A2, ..., Ak,Γ −→ ∆

is valid, and hence has a PK proof π. Now we can use the assumptions Φ
and the cut rule to successively remove A1, A2, ..., Ak from the above sequent
to conclude Γ −→ ∆. For example, A1 is removed as follows:

−→ A1
================== (weakenings,exchanges)
A2, ..., Ak,Γ −→ ∆, A1

··· π
A1, A2, ..., Ak,Γ −→ ∆

(cut)
A2, ..., Ak,Γ −→ ∆

Exercise 1.14. Prove the anchored completeness theorem for the more general
case in which Φ is any finite set of sequents. Use induction on the number of
sequents in Φ.

A nice property of anchored proofs is the following.

Proposition 1.15 (Subformula Property). If π is an anchored PK-Φ proof
of S, then every formula in every sequent of π is a subformula of a formula
either in S or in some nonlogical axiom of π.

Proof. This follows by induction on the number of sequents in π, using the fact
that for every rule other than cut, every formula on the top is a subformula of
some formula on the bottom. For the case of cut we use the fact that every cut
formula is a formula in some nonlogical axiom of π. �

The Subformula Property can be generalized in a way that applies to cut-
free LK proofs in the predicate calculus, and this will play an important role
later in proving witnessing theorems.

We conclude this chapter with a fundamental result which plays an impor-
tant role in both the propositional and predicate calculus.

D
R

A
FT

8 CHAPTER 1. THE PROPOSITIONAL CALCULUS

Theorem 1.16 (Propositional Compactness Theorem). We state three
different forms of this result. All three are equivalent.
Form 1: If Φ is an unsatisfiable set of propositional formulas, then some finite
subset of Φ is unsatisfiable.
Form 2: If a formula A is a logical consequence of a set Φ of formulas, then A
is a logical consequence of some finite subset of Φ.
Form 3: If every finite subset of a set Φ of formulas is satisfiable, then Φ is
satisfiable.

Exercise 1.17. Prove the equivalence of the three forms. (Note that Form 3 is
the contrapositive of Form 1.)

Proof of Form 1. Let Φ be an unsatisfiable set of formulas. By our definition
of propositional formula, all propositional variables in Φ come from a countable
list P1, P2, (See Exercise 1.19 for the uncountable case.) Organize the set of
truth assignments into an infinite rooted binary tree B. Each node except the
root is labeled with a literal Pi or ¬Pi. The two children of the root are labeled
P1 and ¬P1, indicating that P1 is assigned T or F , respectively. The two children
of each of these nodes are labeled P2 and ¬P2, respectively, indicating the truth
value of P2. Thus each infinite branch in the tree represents a complete truth
assignment, and each path from the root to a node represents a truth assignment
to the atoms P1, ..., Pi, for some i.

Now for every node ν in the tree B, prune the tree at ν (i.e., remove the
subtree rooted at ν, keeping ν itself) if the partial truth assignment τν repre-
sented by the path to ν falsifies some formula Aν in Φ, where all atoms in Aν
get values from τν . Let B′ be the resulting pruned tree. Since Φ is unsatisfiable,
every path from the root in B′ must end after finitely many steps in some leaf ν
labeled with a formula Aν in Φ. It follows from König’s Lemma below that B′

is finite. Let Φ′ be the finite subset of Φ consisting of all formulas Aν labeling
the leaves of B′. Since every truth assignment τ determines a path in B′ which
ends in a leaf Aν falsified by τ , it follows that Φ′ is unsatisfiable. �

Lemma 1.18 (König’s Lemma). Suppose T is a rooted tree in which every
node has only finitely many children. If every branch in T is finite, then T is
finite.

Proof. We prove the contrapositive: If T is infinite (but every node has only
finitely many children) then T has an infinite branch. We can define an infinite
path in T as follows: Start at the root. Since T is infinite but the root has
only finitely many children, the subtree rooted at one of these children must be
infinite. Choose such a child as the second node in the branch, and continue. �

Exercise 1.19. (For those with some knowledge of set theory or point set
topology) The above proof of the propositional compactness theorem only works
when the set of atoms is countable, but the result still holds even when Φ is an

D
R

A
FT

1.4. NOTES 9

uncountable set with an uncountable set A of atoms. Complete each of the two
proof outlines below.

(a) Prove Form 3 using Zorn’s Lemma as follows: Call a set Ψ of formulas
finitely satisfiable if every finite subset of Ψ is satisfiable. Assume that Φ is
finitely satisfiable. Let C be the class of all finitely satisfiable sets Ψ ⊇ Φ of
propositional formulas using atoms in Φ. Order these sets Ψ by inclusion. Show
that the union of any chain of sets in C is again in the class C. Hence by Zorn’s
Lemma, C has a maximal element Ψ0. Show that Ψ0 has a unique satisfying
assignment, and hence Φ is satisfiable.
(b) Show that Form 1 follows from Tychonoff’s Theorem: The product of com-
pact topological spaces is compact. The set of all truth assignments to the atom
set A can be given the product topology, when viewed as the product for all
atoms P in A of the two-point space {T, F} of assignments to P , with the dis-
crete topology. By Tychonoff’s Theorem, this space of assignments is compact.
Show that for each formula A, the set of assignments falsifying A is open. Thus
Form 1 follows from the definition of compact: every open cover has a finite
subcover.

1.4 Notes

Our treatment of PK in sections 1.1 and 1.2 is adapted from Section 1.2 of [?].

D
R

A
FT

10 CHAPTER 1. THE PROPOSITIONAL CALCULUS

D
R

A
FTChapter 2

The Predicate Calculus

In this chapter we present the syntax and semantics of the predicate calculus
(also called first-order logic). We show how to generalize Gentzen’s proof system
PK for the propositional calculus, described in Chapter 1, to the system LK for
the predicate calculus, by adding quantifier introduction rules. We show that
LK is sound and complete. We prove an anchored completeness theorem which
limits the need for the cut rule in the presence of nonlogical axioms. We present
major corollaries of the completeness theorem, and finally present a form of the
Herbrand Theorem.

2.1 Syntax

A first-order language (or just language, or vocabulary) L is specified by the
following:

1) For each n ∈ N a set of n-ary function symbols (possibly empty). We
use f, g, h, . . . as meta-symbols for function symbols. A zero-ary function
symbol is called a constant symbol.

2) For each n ≥ 0, a set of n-ary predicate symbols (which must be nonempty
for some n). We use P,Q,R, . . . as meta-symbols for predicate symbols.
A zero-ary predicate symbol is the same as a propositional atom.

In addition, the following symbols are available to build first-order terms and
formulas:

1) An infinite set of variables. We use x, y, z, . . . and sometimes a, b, c, . . . as
meta-symbols for variables.

2) connectives ¬,∧,∨ (not, and, or); logical constants ⊥, ⊤ (for False, True)

3) quantifiers ∀, ∃ (for all, there exists)

4) (,) (parentheses)

11

D
R

A
FT

12 CHAPTER 2. THE PREDICATE CALCULUS

Given a vocabulary L, L-terms are certain strings built from variables and
function symbols of L, and are intended to represent objects in the universe of
discourse. We will drop mention of L when it is not important, or clear from
context.

Definition 2.1 (L-Terms). Let L be a first-order vocabulary:

1) Every variable is an L-term.

2) If f is an n-ary function symbol of L and t1, . . . , tn are L-terms, then
ft1 . . . tn is an L-term.

Recall that a 0-ary function symbol is called a constant symbol (or sometimes
just a constant). Note that all constants in L are L-terms.

Definition 2.2 (L-Formulas). Let L be a first-order language. First-order
formulas in L (or L-formulas, or just formulas) are defined inductively as fol-
lows:

1) Pt1 · · · tn is an atomic L-formula, where P is an n-ary predicate symbol
in L and t1, · · · , tn are L-terms. Also each of the logical constants ⊥, ⊤
is an atomic formula.

2) If A and B are L-formulas, so are ¬A, (A ∧B), and (A ∨B)

3) If A is an L-formula and x is a variable, then ∀xA and ∃xA are L-
formulas.

Examples of formulas: (¬∀xPx ∨ ∃x¬Px), (∀x¬Pxy ∧ ¬∀zPfyz).
As in the case of propositional formulas, we use the notation (A ⊃ B) for

(¬A ∨B) and (A↔ B) for ((A ⊃ B) ∧ (B ⊃ A)).
It can be shown that no proper initial segment of a term is a term, and

hence every term can be parsed uniquely according to Definition 2.1. A similar
remark applies to formulas, and Definition 2.2.

Notation r = s stands for = rs, and r 6= s stands for ¬(r = s).

Definition 2.3 (The Language of Arithmetic). LA = [0, 1,+, · ; =,≤].

Here 0, 1 are constants; +, · are binary function symbols; =, ≤ are binary
predicate symbols. In practice we use infix notation for +, ·, =, ≤. Thus, for
example, (t1 · t2) =syn ·t1t2 and (t1 + t2) =syn +t1t2.

Definition 2.4 (Free and Bound Variables). An occurrence of x in A is
bound iff it is in a subformula of A of the form ∀xB or ∃xB. Otherwise the
occurrence is free.

Notice that a variable can have both free and bound occurrences in one
formula. For example, in Px ∧ ∀xQx, the first occurrence of x is free, and the
second occurrence is bound.

Definition 2.5. A formula A or a term t is closed if it contains no free occur-
rence of a variable. A closed formula is called a sentence.

D
R

A
FT

2.2. SEMANTICS OF PREDICATE CALCULUS 13

2.2 Semantics of Predicate Calculus

Definition 2.6 (L-Structure). If L is a first-order language, then an L-
structureM consists of the following:

1) A nonempty set M called the universe. (Variables in an L-formula are
intended to range over M .)

2) For each n-ary function symbol f in L, an associated function fM : Mn →
M .

3) For each n-ary predicate symbol P in L, an associated relation PM ⊆Mn.
If L contains =, then =M must be the true equality relation on M .

Notice that the predicate symbol = gets special treatment in the above
definition, in that =M must always be the true equality relation. Any other
predicate symbol may be interpreted by an arbitrary relation of the appropriate
arity.

Every L-sentence becomes either true or false when interpreted by an L-
structureM, as explained below. If a sentence A becomes true underM, then
we sayM satisfies A, orM is a model for A, and write M |= A.

If A has free variables, then these variables must be interpreted as specific
elements in the universe M before A gets a truth value under the structureM.
For this we need the following:

Definition 2.7 (Object Assignment). An object assignment σ for a struc-
tureM is a mapping from variables to the universe M .

Below we give the formal definition of notionM |= A[σ], which is intended
to mean that the structureM satisfies the formula A when the free variables of
A are interpreted according to the object assignment σ. First it is necessary to
define the notation tM[σ], which is the element of universe M assigned to the
term t by the structureM when the variables of t are interpreted according to
σ.

Definition 2.8 (Basic Semantic Definition). Let L be a first-order language,
letM be an L-structure, and let σ be an object assignment forM. Each L-term
t is assigned an element tM[σ] in M , defined by structural induction on terms
t, as follows (refer to the definition of L-term):

a) xM[σ] is σ(x), for each variable x

b) (ft1 · · · tn)M[σ] = fM(tM1 [σ], . . . , tMn [σ])

Notation If x is a variable and m ∈M , then the object assignment σ(m/x) is
the same as σ except it maps x to m.

Definition 2.9. For A an L-formula, the notion M |= A[σ] (M satisfies A
under σ) is defined by structural induction on formulas A as follows (refer to
the definition of formula):

a) M |= ⊤ and M 6|= ⊥

D
R

A
FT

14 CHAPTER 2. THE PREDICATE CALCULUS

b) M |= (Pt1 · · · tn)[σ] iff 〈tM1 [σ], . . . , tMn [σ]〉 ∈ PM

c) If L contains =, then M |= (s = t)[σ] iff sM[σ] = tM[σ]

d) M |= ¬A[σ] iff M 6|= A[σ].

e) M |= (A ∨B)[σ] iff M |= A[σ] or M |= B[σ].

f) M |= (A ∧B)[σ] iff M |= A[σ] and M |= B[σ].

g) M |= (∀xA)[σ] iff M |= A[σ(m/x)] for all m ∈M
h) M |= (∃xA)[σ] iff M |= A[σ(m/x)] for some m ∈M

Note that item c) in the definition ofM |= A[σ] follows from b) and the fact
that =M is always the equality relation.

If t is a closed term (i.e., contains no variables), then tM[σ] is independent
of σ, and so we sometimes just write tM. Similarly, if A is a sentence, then we
sometimes writeM |= A instead ofM |= A[σ], since σ does not matter.

Definition 2.10 (Standard Model). The standard model N for the language
LA is a structure with universe M = N = {0, 1, 2, . . .}, where 0, 1,+, ·,=,≤ get
their usual meanings on the natural numbers.

As an example, N |= ∀x∀y∃z(x + z = y ∨ y + z = x) (since either y − x or
x− y exists) but N 6|= ∀x∃y(y + y = x) since not all natural numbers are even.

In the future we sometimes assume that there is some first-order language
L in the background, and do not necessarily mention it explicitly.

Notation In general, Φ denotes a set of formulas, A,B,C, . . . denote formulas,
M denotes a structure, and σ denotes an object assignment.

Definition 2.11. a) M |= Φ[σ] iff M |= A[σ] for all A ∈ Φ.

b) M |= Φ iff M |= Φ[σ] for all σ.

c) Φ |= A iff for all M and all σ, if M |= Φ[σ] then M |= A[σ].

d) |= A (A is valid) iff M |= A[σ] for all M and σ.

e) A⇐⇒ B (A and B are logically equivalent, or just equivalent) iff for all
M and all σ, M |= A[σ] iff M |= B[σ].

Φ |= A is read “A is a logical consequence of Φ”. Do not confuse this with
our other use of the symbol |=, as inM |= A (M satisfies A). In the latter,M
is a structure, rather than a set of formulas.

If Φ consists of a single formula B, then we write B |= A instead of {B} |= A.

Definition 2.12 (Substitution). Let s, t be terms, and A a formula. Then
t(s/x) is the result of replacing all occurrences of x in t by s, and A(s/x) is the
result of replacing all free occurrences of x in A by s.

Lemma 2.13. For each structureM and each object assignment σ,

(s(t/x))M[σ] = sM[σ(m/x)]

where m = tM[σ].

D
R

A
FT

2.3. THE FIRST-ORDER PROOF SYSTEM LK 15

Proof. Structural induction on the length of s. �

Definition 2.14. A term t is freely substitutable for x in A iff no free occur-
rence of x in A is in a subformula of A of the form ∀yB or ∃yB, where y occurs
in t.

Theorem 2.15 (Substitution Theorem). If t is freely substitutable for x in
A then for all structures M and all object assignments σ, M |= A(t/x)[σ] iff
M |= A[σ(m/x)], where m = tM[σ].

Proof. Structural induction on A. �

Remark (Change of Bound Variable) If t is not freely substitutable for x
in A, it is because some variable y in t gets “caught” by a quantifier, say ∃yB.
Then replace ∃yB in A by ∃zB, where z is a new variable. Then the meaning
of A does not change (by the Formula Replacement Theorem below), but by
repeatedly changing bound variables in this way t becomes freely substitutable
for x in A.

Theorem 2.16 (Formula Replacement Theorem). If B and B′ are equiv-
alent and A′ results from A by replacing some occurrence of B in A by B′, then
A and A′ are equivalent.

Proof. Structural induction on A relative to B. �

2.3 The First-Order Proof System LK

We now extend the propositional proof system PK to the first-order sequent
proof system LK. For this it is convenient to introduce two kinds of variables:
free variables denoted by a, b, c, . . . and bound variables denoted by x, y, z,
A first-order sequent has the form A1, . . . , Ak −→ B1, . . . , Bℓ, where now the
Ai’s and Bj ’s are first-order formulas satisfying the restriction that they have no
free occurrences of the “bound” variables x, y, z, . . . and no bound occurrences
of the “free” variables a, b, c,

The sequent system LK is an extension of the propositional system PK,
where now all formulas are first-order formulas satisfying the restriction ex-
plained above.

In addition to the rules given for PK, the system LK has four rules for
introducing the quantifiers.

Remark In the rules below, t is any term not involving any bound variables
x, y, z, . . . and A(t) is the result of substituting t for all free occurrences of x in
A(x). Similarly A(b) is the result of substituting b for all free occurrences of x
in A(x). Note that t and b can always be freely substituted for x in A(x) when
∀xA(x) or ∃xA(x) satisfy the free/bound variable restrictions described above.

D
R

A
FT

16 CHAPTER 2. THE PREDICATE CALCULUS

∀ introduction rules

A(t),Γ −→ ∆
left

∀xA(x),Γ −→ ∆

Γ −→ ∆, A(b)
right

Γ −→ ∆, ∀xA(x)

∃ introduction rules

A(b),Γ −→ ∆
left

∃xA(x),Γ −→ ∆

Γ −→ ∆, A(t)
right

Γ −→ ∆, ∃xA(x)

Restriction The free variable b is called an eigenvariable and must not occur
in the conclusion in ∀-right or ∃-left. Also, as remarked above, the term t must
not involve any bound variables x, y, z,

Definition 2.17 (Semantics of First-Order Sequents). The semantics of
first-order sequents is a natural generalization of the semantics of propositional
sequents. Again the sequent A1, . . . , Ak −→ B1, . . . , Bℓ has the same meaning
as its associated formula

¬A1 ∨ ¬A2 ∨ . . . ∨ ¬Ak ∨B1 ∨B2 ∨ . . . ∨Bℓ

In particular, we say that the sequent is valid iff its associated formula is valid.

Theorem 2.18 (Soundness Theorem for LK). Every sequent provable in
LK is valid.

Proof. This is proved by induction on the number of sequents in the LK proof,
as in the case of PK. However, unlike the case of PK, not all of the four
new quantifier rules satisfy the condition that the bottom sequent is a logical
consequence of the top sequent. In particular this may be false for ∀-right
and for ∃-left. However it is easy to check that each rule satisfies the weaker
condition that if the top sequent is valid, then the bottom sequent is valid, and
this suffices for the proof. �

Exercise 2.19. Give examples to show that the restriction given on the quan-
tifier rules, that b must not occur in the conclusion in ∀-right and ∃-left, is
necessary to ensure that these rules preserve validity.

Example of an LK Proof: An LK proof of a valid first-order sequent can
be obtained using the same method as in the propositional case: Write the goal
sequent at the bottom, and move up by using the introduction rules in reverse.
A good heuristic is: if there is a choice about which quantifier to remove next,
choose ∀-right and ∃-left first (working backward), since these rules carry a
restriction.

D
R

A
FT

2.3. THE FIRST-ORDER PROOF SYSTEM LK 17

Here is an LK proof of the sequent ∀xPx ∨ ∀xQx −→ ∀x(Px ∨Qx).

Pb −→ Pb
weakening

Pb −→ Pb,Qb
∀-left

∀xPx −→ Pb,Qb

Qb −→ Qb
weakening

Qb −→ Pb,Qb
∀-left

∀xQx −→ Pb,Qb
∨-left

∀xPx ∨ ∀xQx −→ Pb,Qb
∨-right

∀xPx ∨ ∀xQx −→ Pb ∨Qb
∀-right

∀xPx ∨ ∀xQx −→ ∀x(Px ∨Qx)

Exercise 2.20. Give LK proofs for the following valid sequents:

a) ∀xPx ∧ ∀xQx −→ ∀x(Px ∧Qx) b) ∀x(Px ∧Qx) −→ ∀xPx ∧ ∀xQx
c) ∃x(Px ∨Qx) −→ ∃xPx ∨ ∃xQx d) ∃xPx ∨ ∃xQx −→ ∃x(Px ∨Qx)
e) ∃x(Px ∧Qx) −→ ∃xPx ∧ ∃xQx f) ∃y∀xPxy −→ ∀x∃yPxy
g) ∀xPx −→ ∃xPx

Check that the rule restrictions seem to prevent generating LK proofs for the
following invalid sequents:

h) ∃xPx ∧ ∃xQx −→ ∃x(Px ∧Qx) i) ∀x∃yPxy −→ ∃y∀xPxy

2.3.1 Free Variable Normal Form

In future chapters it will be useful to assume that LK proofs satisfy certain
restrictions on free variables.

Definition 2.21 (Free Variable Normal Form). Let π be an LK proof with
endsequent S. A free variable in S is called a parameter variable of π. We
say π is in free variable normal form if (1) no free variable is eliminated from
any sequent in π by any rule except possibly ∀-right and ∃-left, and in these
cases the eigenvariable which is eliminated is not a parameter variable, and
(2) every nonparameter free variable appearing in π is used exactly once as an
eigenvariable.

Every LK proof π can be put in free variable normal form (with the same
endsequent) by a simple procedure, assuming that the underlying vocabulary
L has at least one constant symbol e. Note that the only rules other than ∀-
right and ∃-left which can eliminate a free variable from a sequent are cut,
∃-right, and ∀-left. It is important that π have a tree structure in order for
the procedure to work.

Transform π by repeatedly performing the following operation until the re-
sulting proof is in free variable normal form. Select some upper-most rule in π
which eliminates a free variable from a sequent. If the rule is ∀-right or ∃-left,
and the eignevariable b which is eliminated occurs somewhere in the proof other
than above this rule, then replace b by a new variable b′ (which does not occur
elsewhere in the proof) in every sequent above this rule. If the rule is cut,

D
R

A
FT

18 CHAPTER 2. THE PREDICATE CALCULUS

∃-right, or ∀-left, then replace every variable eliminated by the rule by the
same constant symbol e in every sequent above the rule (so now the rule does
not eliminate any free variable).

2.3.2 Completeness of LK without Equality

Notation Let Φ be a set of formulas. Then −→ Φ is the set of all sequents of
the form −→ A, where A is in Φ.

Definition 2.22. Assume that the underlying vocabulary does not contain =. If
Φ is a set of formulas, then an LK-Φ proof is an LK proof in which sequents at
the leaves may be either logical axioms or nonlogical axioms of the form −→ A,
where A is in Φ.

Notice that a structure M satisfies −→ Φ iff M satisfies Φ. Also a sequent
Γ −→ ∆ is a logical consequence of −→ Φ iff Γ −→ ∆ is a logical consequence
of Φ.

We would like to be able to say that a sequent Γ −→ ∆ is a logical conse-
quence of a set Φ of formulas iff there is an LK-Φ proof of Γ −→ ∆. Unfor-
tunately the soundness direction of the assertion is false. For example, using
the ∀-right rule we can derive −→ ∀xPx from −→ Pb, but −→ ∀xPx is not a
logical consequence of Pb.

We could correct the soundness statement by asserting it true for sentences,
but we want to generalize this a little by introducing the notion of the universal
closure of a formula or sequent.

Definition 2.23. Suppose that A is a formula whose free variables comprise
the list a1, . . . , an. Then the universal closure of A, written ∀A, is the sentence
∀x1 . . .∀xnA(x1/a1, . . . , xn/an), where x1, . . . , xn is a list of new (bound) vari-
ables. If Φ is a set of formulas, then ∀Φ is the set of all sentences ∀A, for A in
Φ.

Notice that if A is a sentence (i.e., it has no free variables), then ∀A is the
same as A.

Initially we study the case in which the underlying language does not contain
=. To handle the case in which = occurs we must introduce equality axioms.
This will be done later.

Theorem 2.24 (Derivational Soundness and Completeness of LK). As-
sume that the underlying language does not contain =. Let Φ be a set of formu-
las and let Γ −→ ∆ be a sequent. Then there is an LK-Φ proof of Γ −→ ∆ iff
Γ −→ ∆ is a logical consequence of ∀Φ. The soundness (only if) direction holds
also when the underlying language contains =.

Proof of Soundness. Let π be a LK-Φ proof of Γ −→ ∆. We must show that
Γ −→ ∆ is a logical consequence of ∀Φ. We want to prove this by induction on
the number of sequents in the proof π, but in fact we need a stronger induction

D
R

A
FT

2.3. THE FIRST-ORDER PROOF SYSTEM LK 19

hypothesis, to the effect that the “closure” of Γ −→ ∆ is a logical consequence
of ∀Φ. So we first have to define the closure of a sequent.

Thus we define the closure ∀S of a sequent S to be the closure of its associated
formula AS (Definition 2.17). Note that if S =syn Γ −→ ∆, then ∀S is not
equivalent to ∀Γ −→ ∀∆ in general.

We now prove by induction on the number of sequents in π, that if π is
an LK-Φ proof of a sequent S, then ∀S is a logical consequence of ∀Φ. Since
∀S |= S, it follows that S itself is a logical consequence of ∀Φ, and so Soundness
follows.

For the base case, the sequent S is either a logical axiom, which is valid and
hence a consequence of ∀Φ, or it is a nonlogical axiom −→ A, where A is a
formula in Φ. In the latter case, ∀S is equivalent to ∀A, which of course is a
logical consequence of ∀Φ.

For the induction step, it is sufficient to check that for each rule of LK,
the closure of the bottom sequent is a logical consequence of the closure(s) of
the sequent(s) on top. With two exceptions, this statement is true when the
word “closure” is omitted, and adding back the word “closure” does not change
the argument much. The two exceptions are the rules ∀-right and ∃-left. For
these, the bottom is not a logical consequence of the top in general, but an easy
argument shows that the closures of the top and bottom are equivalent. �

The proof of completeness is more difficult and more interesting than the
proof of soundness. The following lemma lies at the heart of this proof.

Lemma 2.25 (Completeness Lemma). Assume that the underlying language
does not contain =. If Γ −→ ∆ is a sequent and Φ is a (possibly infinite) set of
formulas such that Γ −→ ∆ is a logical consequence of Φ, then there is a finite
subset {C1, . . . , Cn} of Φ such that the sequent

C1, . . . , Cn,Γ −→ ∆

has an LK proof π which does not use the cut rule.

Note that a form of the Compactness Theorem for predicate calculus sen-
tences without equality follows from the above lemma. See Theorem 2.43 for a
more general form of compactness.

Proof of Derivational Completeness from the Completeness Lemma. Let Φ be a
set of formulas such that Γ −→ ∆ is a logical consequence of ∀Φ. By the com-
pleteness lemma, there is a finite subset {C1, . . . , Cn} of Φ such that

∀C1, . . . ,∀Cn,Γ −→ ∆

has a cut-free LK proof π. Note that for each i, 1 ≤ i ≤ n, the sequent −→ ∀Ci
has an LK-Φ proof from the nonlogical axiom −→ Ci by repeated use of the rule
∀-right. Now the proof π can be extended, using these proofs of the sequents

−→ ∀C1, . . . , −→ ∀Cn

D
R

A
FT

20 CHAPTER 2. THE PREDICATE CALCULUS

and repeated use of the cut rule, to form an LK-Φ proof Γ −→ ∆. �

Proof of the Completeness Lemma. We loosely follow the proof of the Cut-free
Completeness Theorem, pp 33-36 of Buss [?]. (Warning: our definition of logical
consequence differs from Buss’s when the formulas in the hypotheses have free
variables.) We will only prove it for the case in which the underlying first-order
language L has a countable set (including the case of a finite set) of function
and predicate symbols; i.e., the function symbols form a list f1, f2, . . . and the
predicate symbols form a list P1, P2, This may not seem like much of a
restriction, but for example in developing the model theory of the real numbers,
it is sometimes useful to introduce a distinct constant symbol ec for every real
number c; and there are uncountably many real numbers. The completeness
theorem and lemma hold for the uncountable case, but we shall not prove them
for this case.

For the countable case, we may assign a distinct binary string to each func-
tion symbol, predicate symbol, variable, etc., and hence assign a unique binary
string to each formula and term. This allows us to enumerate all the L-formulas
in a list A1, A2, . . . and enumerate all the L-terms (which contain only free vari-
ables a, b, c, . . .) in a list t1, t2, The free variables available to build the
formulas and terms in these lists must include all the free variables which ap-
pear in Φ, together with a countably infinite set {c0, c1 . . .} of new free variables
which do not occur in any of the formulas in Φ. (These new free variables are
needed for the cases ∃-left and ∀-right in the argument below.) Further we
may assume that every formula occurs infinitely often in the list of formulas,
and every term occurs infinitely often in the list of terms. Finally we may enu-
merate all pairs 〈Ai, tj〉, using any method of enumerating all pairs of natural
numbers.

We are trying to find an LK proof of some sequent of the form

C1, . . . , Cn,Γ −→ ∆

for some n. Starting with Γ −→ ∆ at the bottom, we work upward by applying
the rules in reverse, much as in the proof of the propositional completeness
theorem for PK. However now we will add formulas Ci to the antecedent from
time to time. Also unlike the PK case we have no inversion principle to work
with (specifically for the rules ∀-left and ∃-right). Thus it may happen that
our proof-building procedure may not terminate. In this case we will show how
to define a structure which shows that Γ −→ ∆ is not a logical consequence of
Φ.

We construct our cut-free proof tree π in stages. Initially π consists of just
the sequent Γ −→ ∆. At each stage we modify π by possibly adding a formula
from Φ to the antecedent of every sequent in π, and by adding subtrees to some
of the leaves.

Notation A sequent in π is said to be active provided it is at a leaf and cannot
be immediately derived from a logical axiom (i.e., no formula occurs in both its

D
R

A
FT

2.3. THE FIRST-ORDER PROOF SYSTEM LK 21

antecedent and succedent, the logical constant ⊤ does not occur in its succedent,
and ⊥ does not occur in its antecedent).

Each stage uses one pair in our enumeration of all pairs 〈Ai, tj〉. Here is the
procedure for the next stage, in general.

Let 〈Ai, tj〉 be the next pair in the enumeration. We call Ai the active
formula for this stage.

Step 1: If Ai is in Φ, then replace every sequent Γ′ −→ ∆′ in π with the sequent
Γ′, Ai −→ ∆′.

Step 2: If Ai is atomic, do nothing and proceed to the next stage. Otherwise,
modify π at the active sequents which contain Ai by applying the appropriate
introduction rule in reverse, much as in the proof of propositional completeness
(Theorem 1.8.) For example, if Ai is of the form B ∨ C, then every active
sequent in π of the form Γ′, B ∨ C,Γ′′ −→ ∆′ is replaced by the derivation

Γ′, B,Γ′′ −→ ∆′ Γ′, C,Γ′′ −→ ∆′
=============================

Γ′, B ∨C,Γ′′ −→ ∆′

Here the double line represents a derivation involving the rule ∨-left, together
with exchanges to move the principle formulas to the left end of the antecedent
and back. The treatment is similar when B ∨ C occurs in the succedent, only
the rule ∨-right is used.

If Ai is of the form ∃xB(x), then every active sequent of π of the form
Γ′, ∃xB(x),Γ′′ −→ ∆′ is replaced by the derivation

Γ′, B(c),Γ′′ −→ ∆′
=================
Γ′, ∃xB(x),Γ′′ −→ ∆′

where c is a new free variable, not used in π yet. (Also c may not occur in any
formula in Φ, because otherwise at a later stage, Step (1) of the procedure might
cause the variable restriction in the ∃-left rule to be violated.) In addition, any
active sequent of the form Γ′ −→ ∆′, ∃xB(x),∆′′ is replaced by the derivation

Γ′ −→ ∆′, ∃xB(x), B(tj),∆
′′

======================
Γ′ −→ ∆′, ∃xB(x),∆′′

Here the term tj is the second component in the current pair 〈Ai, tj〉. The
derivation uses the rule ∃-right to introduce a new copy of ∃xB(x), and then
the rule contraction-right to combine the two copies of ∃xB(x). This and the
dual ∀-left case are the only two cases that use the term tj , and the only cases
that use the contraction rule.

The case where Ai begins with a universal quantifier is dual to the above
existential case.

Step 3: If there are no active sequents remaining in π, then exit from the
algorithm. Otherwise continue to the next stage.

D
R

A
FT

22 CHAPTER 2. THE PREDICATE CALCULUS

Exercise 2.26. Carry out the case above in which Ai begins with a universal
quantifier.

If the algorithm constructing π ever halts, then π gives a cut-free proof
of Γ, C1, . . . , Cn −→ ∆ for some formulas C1, . . . , Cn in Φ. This is because
the nonactive leaf sequents all can be derived from the logical axioms using
weakenings and exchanges. Thus π can be extended, using exchanges, to a
cut-free proof of C1, . . . , Cn,Γ −→ ∆, as desired.

It remains to show that if the above algorithm constructing π never halts,
then the sequent Γ −→ ∆ is not a logical consequence of Φ. So suppose the
algorithm never halts, and let π be the result of running the algorithm for-
ever. In general, π will be an infinite tree, although in special cases π is a
finite tree. In general the objects at the leaves of the tree will not be finite
sequents, but because of Step (1) of the algorithm above, they will be of the
form Γ′, C1, C2, . . . −→ ∆′, where C1, C2, . . . is an infinite sequence of formulas
containing all formulas in Φ, each repeated infinitely often (unless Φ is empty).
We shall refer to these infinite pseudo-sequents as just “sequents”.

If π has only finitely many nodes, then at least one leaf node must be ac-
tive (and contain only atomic formulas), since otherwise the algorithm would
terminate. In this case, let β be a path in π from the root extending up to
this active node. If on the other hand π has infinitely many nodes, then by
Lemma 1.18 (König), there must be an infinite branch β in π starting at the
root and extending up through the tree. Thus in either case, β is a branch in π
starting at the root, extending up through the tree, and such that all sequents
on β were once active, and hence have no formula occurring on both the left
and right, no ⊤ on the right and no ⊥ on the left.

We use this branch β to construct a structureM and an object assignment
σ which satisfy every formula in Φ, but falsify the sequent Γ −→ ∆ (so Γ −→ ∆
is not a logical consequence of Φ).

Definition 2.27 (Construction of the “Term Model” M). The uni-
verse M of M is the set of all L-terms t (which contain only “free” variables
a, b, c, . . .). The object assignment σ just maps every variable a to itself.

The interpretation fM of each k-ary function symbol f is defined so that
fM(r1, . . . , rk) is the term fr1 . . . rk, where r1, . . . , rk are any terms (i.e., any
members of the universe). The interpretation PM of each k-ary predicate symbol
P is defined by letting PM(r1, . . . , rk) hold iff the atomic formula Pr1 . . . rk
occurs in the antecedent (left side) of some sequent in the branch β.

Exercise 2.28. Prove by structural induction that for every term t, tM[σ] = t.

Claim For every formula A, if A occurs in some antecedent in the branch β,
then M and σ satisfy A, and if A occurs in some succedent in β, then M and
σ falsify A.

Since the root of π is the sequent Γ, C1, C2, . . . −→ ∆, where C1, C2, . . .
contains all formulas in Φ, it follows thatM and σ satisfy Φ and falsify Γ −→ ∆.

D
R

A
FT

2.3. THE FIRST-ORDER PROOF SYSTEM LK 23

We prove the Claim by structural induction on formulas A. For the base
case, if A is an atomic formula, then by the definition of PM above, A is satisfied
iff A occurs in some antecedent of β or A = ⊤. But no atomic formula can occur
both in an antecedent of some node in β and in a succedent (of possibly some
other node) in β, since then these formulas would persist upward in β so that
some particular sequent in β would have A occurring both on the left and on
the right. Thus if A occurs in some succedent of β, it is not satisfied byM and
σ (recall that ⊤ does not occur in any succedent of β).

For the induction step, there is a different case for each of the ways of
constructing a formula from simpler formulas (see Definition 2.2). In general, if
A occurs in some sequent in β, then A persists upward in every higher sequent
of β until it becomes the active formula (A =syn Ai). Each case is handled by
the corresponding introduction rule used in the algorithm. For example, if A is
of the form B∨C and A occurs on the left of a sequent in β, then the rule ∨-left
is applied in reverse, so that when β is extended upward either it will have some
antecedent containing B or one containing C. In the case of B, we know that
M and σ satisfy B by the induction hypothesis, and hence they satisfy B ∨C.
(Similarly for C.)

Now consider the interesting case in which A is ∃xB(x) and A occurs in
some succedent of β. (See Step (2) above to find out what happens when A
becomes active in this case.) The path β will hit a succedent with B(tj) in
the succedent, and by the induction hypothesis, M and σ falsify B(tj). But
this succedent still has a copy of ∃xB(x), and in fact this copy will be in every
succedent of β above this point. Hence every L-term t will eventually be of the
form tj and so the formula B(t) will occur as a succedent on β. (This is why
we assumed that every term appears infinitely often in the sequence t1, t2,)
Therefore M and σ falsify B(t) for every term t (i.e., for every element in the
universe ofM). Therefore they falsify ∃xB(x), as required.

This and the dual case in which A is ∀xB(x) and occurs in some antecedent
of β are the only subtle cases. All other cases are straightforward. �

We now wish to strengthen the derivational completeness of LK and show
that cuts can be restricted so that cut formulas are in Φ. The definition of
anchored PK proof (Definition 1.12) can be generalized to anchored LK proof.
We will continue to restrict our attention to the case in which all nonlogical
axioms have the simple form −→ A, although an analog of the following theorem
does hold for an arbitrary set of nonlogical axioms, provided they are closed
under substitution of terms for variables.

Theorem 2.29 (Anchored LK Completeness Theorem). Assume that the
underlying language does not contain =. Suppose that Φ is a set of formulas
closed under substitution of terms for variables. (I.e., if A(b) is in Φ, and t is
any term not containing “bound” variables x, y, z, . . ., then A(t) is also in Φ.)
Suppose that Γ −→ ∆ is a sequent that is a logical consequence of ∀Φ. Then
there is an LK-Φ proof of Γ −→ ∆ in which the cut rule is restricted so that
the only cut formulas are formulas in Φ.

D
R

A
FT

24 CHAPTER 2. THE PREDICATE CALCULUS

Note that if all formulas in Φ are sentences, then the above theorem follows
easily from the Completeness Lemma, since in this case ∀Φ is the same as Φ.
However if formulas in Φ have free variables, then apparently the cut rule must
be applied to the closures ∀C of formulas C in Φ (as opposed to C itself) in
order to get an LK-Φ proof of Γ −→ ∆. It will be important later, in our proof
of witnessing theorems, that cuts can be restricted to the formulas C.

Exercise 2.30. Show how to modify the proof of the Completeness Lemma
to obtain a proof of the Anchored LK Completeness Theorem. Explain the
following modifications to that proof.
a) The definition of active sequent on page 20 must be modified, since now we
are allowing nonlogical axioms in π. Give the precise new definition.
b) Step (1) of the procedure on page 21 must be modified, because now we are
looking for a derivation of Γ −→ ∆ from nonlogical axioms, rather than a proof
of C1, . . . , Cn,Γ −→ ∆. Describe the modification. (We still need to bring
formulas Ai of Φ somehow into the proof, and your modification will involve
adding a short derivation to π.)
c) The restriction given in Step (2) for the case in which ∃xB(x) is in the
antecedent, that the variable c must not occur in any formula in Φ, must be
dropped. Explain why.
d) Explain why the term modelM and object assignment σ, described on page 22
(Definition 2.27), satisfy ∀Φ. This should follow from the Claim on page 22,
and your modification of Step (1), which should ensure that each formula in
Φ occurs in the antecedent of some sequent in every branch in π. Conclude
that Γ −→ ∆ is not a logical consequence of ∀Φ (when the procedure does not
terminate).

2.4 Equality Axioms

Definition 2.31. A weak L-structure M is an L-structure in which we drop
the requirement that =M is the equality relation (i.e., =M can be any binary
relation on M .)

Are there sentences E (axioms for equality) such that a weak structure M
satisfies E iff M is a (proper) structure? It is easy to see that no such set E of
axioms exists, because we can always inflate a point in a weak model to a set of
equivalent points.

Nevertheless every language L has a standard set EL of equality axioms
which satisfies the Equality Theorem below.

Definition 2.32 (Equality Axioms of L (EL)).

EA1 ∀x(x = x) (reflexivity)

EA2 ∀x∀y(x = y ⊃ y = x) (symmetry)

EA3 ∀x∀y∀z((x = y ∧ y = z) ⊃ x = z) (transitivity)

EA4 ∀x1 . . . ∀xn∀y1 . . . ∀yn(x1 = y1 ∧ . . . ∧ xn = yn) ⊃ fx1 . . . xn = fy1 . . . yn
for each n ≥ 1 and each n-ary function symbol f in L.

D
R

A
FT

2.4. EQUALITY AXIOMS 25

EA5 ∀x1 . . .∀xn∀y1 . . . ∀yn(x1 = y1∧ . . .∧xn = yn) ⊃ (Px1 . . . xn ⊃ Py1 . . . yn)
for each n ≥ 1 and each n-ary predicate symbol P in L other than =.

Axioms EA1, EA2, EA3 assert that = is an equivalence relation. Axiom
EA4 asserts that functions respect the equivalence classes, and Axiom EA5
asserts that predicates respect equivalence classes. Together the axioms assert
that = is a congruence relation with respect to the function and predicate sym-
bols.

Note that the equality axioms are all valid, because of our requirement that
= be interpreted as equality in any (proper) structure.

Theorem 2.33 (Equality Theorem). Let Φ be any set of L-formulas. Then
Φ is satisfiable iff Φ ∪ EL is satisfied by some weak L-structure.

Corollary 2.34. Φ |= A iff for every weak L-structure M and every object
assignment σ, if M satisfies Φ ∪ EL under σ then M satisfies A under σ.

Corollary 2.35. ∀Φ |= A iff A has an LK-Ψ proof, where Ψ = Φ ∪ EL.

Corollary 2.34 follows immediately from the Equality Theorem and the fact
that Φ |= A iff Φ ∪ {¬A} is unsatisfiable. Corollary 2.35 follows from Corol-
lary 2.34 and the derivational soundness and completeness of LK (page 18),
where in applying that theorem we treat = as just another binary relation (so
we can assume L does not have the official equality symbol).

Proof of Equality Theorem. The ONLY IF (=⇒) direction is obvious, because
every structureM must interpret = as true equality, and henceM satisfies the
equality axioms EL.

For the IF (⇐=) direction, suppose that M is a weak L-structure with
universe M , such that M satisfies Φ ∪ EL. Our job is to construct a proper
structure M̂ such that M̂ satisfies Φ. The idea is to let the elements of M̂
be the equivalence classes under the equivalence relation =M. Axioms EA4
and EA5 insure that the interpretation of each function and predicate symbol
under M induces a corresponding function or predicate in M̂. Further each
object assignment σ for M induces an object assignment σ̂ on M̂. Then for
every formula A and object assignment σ, we show by structural induction on
A thatM |= A[σ] iff M̂ |= A[σ̂]. �

2.4.1 Equality Axioms for LK

For the purpose of using an LK proof to establish Φ |= A, we can replace
the standard equality axioms EA1, . . . ,EA5 by the following quantifier-free
sequent schemes, where we must include an instance of the sequent for all terms
t, u, v, ti, ui (not involving “bound” variables x, y, z, . . .).

Definition 2.36 (Equality Axioms for LK).

E1 −→ t = t

D
R

A
FT

26 CHAPTER 2. THE PREDICATE CALCULUS

E2 t = u −→ u = t

E3 t = u, u = v −→ t = v

E4 t1 = u1, . . . , tn = un −→ ft1 . . . tn = fu1 . . . un, for each f in L
E5 t1 = u1, . . . , tn = un, P t1 . . . tn −→ Pu1 . . . un, for each P in L (Here P

is not =)

Note that the universal closures of E1,. . . ,E5 are semantically equivalent
to EA1,. . . ,EA5, and in fact using the LK rule ∀-right repeatedly, −→ EAi
is easily derived in LK from Ei (with terms t, u, etc., taken to be distinct
variables), i = 1, . . . , 5. Thus Corollary 2.35 above still holds when Ψ = Φ ∪
{E1, . . . ,E5}.

Definition 2.37 (Revised Definition of LK with =). If Φ is a set of L-
formulas, where L includes =, then by an LK-Φ proof we now mean an LK-Ψ
proof in the sense of the earlier definition, page 18, where Ψ is Φ together with
all instances of the equality axioms E1, . . . ,E5. If Φ is empty, we simply refer
to an LK-proof (but allow E1, . . . ,E5 as axioms).

2.4.2 Revised Soundness and Completeness of LK

Theorem 2.38 (Revised Soundness and Completeness of LK). For any
set Φ of formulas and sequent S,

∀Φ |= S iff S has an LK-Φ proof

Notation Φ ⊢ A means that there is an LK-Φ proof of −→ A.

Recall that if Φ is a set of sentences, then ∀Φ is the same as Φ. Therefore

Φ |= A iff Φ ⊢ A, if Φ is a set of sentences

Restricted use of cut: Note that E1, . . . ,E5 have no universal quantifiers,
but instead have instances for all terms t, u, Recall that in an anchored
LK proof, cuts are restricted so that cut formulas must occur in the nonlog-
ical axioms. In the presence of equality, the nonlogical axioms must include
E1, . . . ,E5, but the only formulas occurring here are equations of the form
t = u. Since the Anchored LK Completeness Theorem (page 23) still holds
when Φ is a set of sequents rather than a set of formulas, and since E1, . . . ,E5
are closed under substitution of terms for variables, we can extend this theorem
so that it works in the presence of equality.

Definition 2.39 (Anchored LK Proof). An LK-Φ proof π is anchored1provided
every cut formula in π is a formula in some nonlogical axiom of π (including
possibly E1, . . . ,E5).

1The definition of anchored in [?] is slightly stronger and more complicated

D
R

A
FT

2.5. MAJOR COROLLARIES OF COMPLETENESS 27

Theorem 2.40 (Anchored LK Completeness Theorem with Equality).
Suppose that Φ is a set of formulas closed under substitution of terms for vari-
ables and that the sequent S is a logical consequence of ∀Φ. Then there is an
anchored LK-Φ proof of S.

The proof is immediate from the Anchored LK Completeness Theorem
(page 23) and the above discussion about axioms E1, . . . ,E5.

We are interested in anchored proofs because of their subformula property.
The following result generalizes Proposition 1.15.

Theorem 2.41 (Subformula Property of Anchored LK Proofs). If π is
an anchored LK-Φ proof of a sequent S, then every formula in every sequent of
π is a term substitution instance of a subformula of a formula either in S or in
a nonlogical axiom of π (including E1, . . . ,E5).

The proof is by induction on the number of sequents in π. The induction
step is proved by inspecting each LK rule. The case of the cut rule uses the
fact that every cut formula in an anchored proof is a formula in some nonlogical
axiom. The reason that we must consider term substitutions is because of the
four quantifier rules. For example, in ∃-right, the formula A(t) occurs on top,
and this is a substitution instance of a subformula of ∃xA(x), which occurs on
the bottom. �

2.5 Major Corollaries of Completeness

Theorem 2.42 (Löwenheim/Skolem Theorem). If a set Φ of formulas
from a countable language is satisfiable, then Φ is satisfiable in a countable
(possibly finite) universe.

Proof. Suppose that Φ is a satisfiable set of sentences. We apply the proof
of the Completeness Lemma (Lemma 2.25), treating = as any binary relation,
replacing Φ by Φ′ = Φ ∪ EL, and taking Γ −→ ∆ to be the empty sequent
(always false). In this case Γ −→ ∆ is not a logical consequence of Φ′, so the
proof constructs a term model M satisfying Φ′ (see page 22). This structure
has a countable universe M consisting of all the L-terms. By the proof of the
Equality Theorem, we can pass to equivalence classes and construct a countable
structure M̂ which satisfies Φ (and interprets = as true equality). �

As an application of the above theorem, we conclude that no countable
set of first-order sentences can characterize the real numbers. This is because
if the field of real numbers forms a model for the sentences, then there will
also be a countable model for the sentences. But the countable model cannot
be isomorphic to the field of reals, because there are uncountably many real
numbers.

Theorem 2.43 (Compactness Theorem). If Φ is an unsatisfiable set of
predicate calculus formulas then some finite subset of Φ is unsatisfiable.

D
R

A
FT

28 CHAPTER 2. THE PREDICATE CALCULUS

(See also the three alternative forms in Theorem 1.16.)

Proof. First note that we may assume that Φ is a set of sentences, by replacing
the free variables in Φ by distinct new constant symbols. The resulting set of
sentences is satisfiable iff the original set of formulas is satisfiable. Since Φ is
unsatisfiable iff the empty sequent −→ is a logical consequence of Φ, and since
LK-Ψ proofs are finite, the theorem now follows from Corollary 2.35. �

Theorem 2.44. Suppose L has only finitely many function and predicate sym-
bols. Then the set of valid L-sentences is recursively enumerable. Similarly for
the set of unsatisfiable L-sentences.

Concerning this theorem, a set is recursively enumerable if there is an algo-
rithm for enumerating its members. To enumerate the valid formulas, enumer-
ate finite LK proofs. To enumerate the unsatisfiable formulas, note that A is
unsatisfiable iff ¬A is valid.

Exercise 2.45 (Application of Compactness). Show that if a set Φ of
sentences has arbitrarily large finite models, then Φ has an infinite model. (Hint:
For each n construct a sentence An which is satisfiable in any universe with n or
more elements but not satisfiable in any universe with fewer than n elements.)

2.6 The Herbrand Theorem

The Herbrand Theorem provides a complete method for proving the unsat-
isfiability of a set of universal sentences. It can be extended to a complete
method for proving the unsatisfiability of an arbitrary set of first-order sen-
tences by first converting the sentences to universal sentences by introducing
“Skolem” functions for the existentially quantified variables. This forms the
basis of the resolution proof method, which is used extensively by automated
theorem provers.

Definition 2.46. A formula A is quantifier-free if A has no occurrence of either
of the quantifiers ∀ or ∃. A ∀-sentence is a sentence of the form ∀x1 . . . ∀xkB
where k ≥ 0 and B is a quantifier-free formula. A ground instance of this
sentence is a sentence of the form B(t1/x1)(t2/x2) . . . (tk/xk), where t1, . . . , tk
are ground terms (i.e., terms with no variables) from the underlying language.

Notice that a ground instance of a ∀-sentence A is a logical consequence of
A. Therefore if a set Φ0 of ground instances of A is unsatisfiable, then A is
unsatisfiable. The Herbrand Theorem implies a form of the converse.

Definition 2.47 (L-Truth Assignment). An L-truth assignment (or just
truth assignment) is a map

τ : {L-atomic formulas} → {T, F}
We extend τ to the set of all quantifier-free L-formulas by applying the usual
rules for propositional connectives.

D
R

A
FT

2.6. THE HERBRAND THEOREM 29

The above definition of truth assignment is the same as in the propositional
calculus, except now we take the set of atoms to be the set of L-atomic for-
mulas. Thus we say that a set Φ0 of quantifier-free formulas is propositionally
unsatisfiable if no truth assignment satisfies every member of Φ0.

Lemma 2.48. If a set Φ0 of quantifier-free sentences is propositionally unsat-
isfiable, then Φ0 is unsatisfiable (in the first-order sense).

Proof. We prove the contrapositive: Suppose that Φ0 is satisfiable, and letM be
a first-order structure which satisfies Φ0. ThenM induces a truth assignment τ
by the definition Bτ = T iffM |= B for each atomic sentence B. Then Bτ = T
iffM |= B for each quantifier-free sentence B, so τ satisfies Φ0. �

We can now state our simplified proof method, which applies to sets of ∀-
sentences: Simply take ground instances of sentences in Φ together with the
equality axioms EL until a propositionally unsatisfiable set Φ0 is found. The
method does not specify how to check for propositional unsatisfiability: any
method (such as truth tables) for that will do. Notice that by propositional
compactness, it is sufficient to consider finite sets Φ0 of ground instances. The
Herbrand Theorem states that this method is sound and complete.

Theorem 2.49 (Herbrand Theorem, Form 1). Suppose that the underlying
language L has at least one constant symbol, and let Φ be a set of ∀-sentences.
Then Φ is unsatisfiable iff some finite set Φ0 of ground instances of sentences
in Φ ∪ EL is propositionally unsatisfiable.

Corollary 2.50 (Herbrand Theorem, Form 2). Let Φ be a set of ∀-sentences
and let A(~x, y) be a quantifier-free formula with all free variables indicated such
that

Φ |= ∀~x∃yA(~x, y)

Then there exist finitely many terms t1(~x), . . . , tk(~x) in the vocabulary of Φ and
A(~x, y) such that

Φ |= ∀~x, A(~x, t1(~x)) ∨ . . . ∨A(~x, tk(~x))

We will use Form 2 in later chapters to prove “witnessing theorems” for
various theories. The idea is that one of the terms t1(~x), . . . , tk(~x) “witnesses”
the existential quantifier ∃y in the formula ∀~x∃yA(~x, y).

Exercise 2.51. Prove Form 2 from Form 1. Start by showing that under the
hypotheses of Form 2, Φ∪{∀y¬A(~c, y)} is unsatisfiable, where ~c is a list of new
constants.

Example 2.52. Let c be a constant symbol, and let

Φ = {∀x(Px ⊃ Pfx), P c,¬Pffc}.

D
R

A
FT

30 CHAPTER 2. THE PREDICATE CALCULUS

Then the set H of ground terms is {c, fc, ffc, . . .}. We can take the set Φ0 of
ground instances to be

Φ0 = {(Pc ⊃ Pfc), (Pfc ⊃ Pffc), P c,¬Pffc}.

Then Φ0 is propositionally unsatisfiable, so Φ is unsatisfiable.

Proof of the Soundness direction of Herbrand Theorem, Form 1. If Φ0 is propo-
sitionally unsatisfiable, then Φ is unsatisfiable. This follows easily from Lemma 2.48,
since Φ0 is a logical consequence of Φ. �

Proof of the Completeness direction of Herbrand Theorem, Form 1. This follows
from the Anchored LK Completeness Theorem (see Exercise 2.54 below). Here
we give a direct proof.

We prove the contrapositive: If every finite set of ground instances of Φ∪EL
is propositionally satisfiable, then Φ is satisfiable. By Corollary 2.34, we may
ignore the special status of =.

Let Φ0 be the set of all ground instances of Φ∪EL (using ground terms from
L). Assuming that every finite subset of Φ0 is propositionally satisfiable, it
follows from propositional compactness (Theorem 1.16, Form 3) that the entire
set Φ0 is propositionally satisfiable. Let τ be a truth assignment which satisfies
Φ0. We use τ to construct an L-structure M which satisfies Φ. We use a term
model, similar to that used in the proof of the Completeness Lemma (Definition
2.27).

Let the universe M ofM be the set H of all ground L-terms.
For each n-ary function symbol f define

fM(t1, . . . , tn) = ft1 . . . tn.

(In particular, cM = c for each constant c, and it follows by induction that
tM = t for each ground term t.)

For each n-ary predicate symbol P of L, define

PM = {〈t1, . . . , tn〉 : (Pt1 . . . tn)
τ = T }

This completes the specification of M. It follows easily by structural in-
duction that M |= B iff Bτ = T for each quantifier-free L-sentence B with
no variables. Thus M |= B for every ground instance B of any sentence in Φ.
Since every member of Φ is a ∀-sentence, and since the elements of the universe
are precisely the ground terms, it follows that M satisfies every member of Φ.
(A formal proof would use the Basic Semantic Definition (Definition 2.8) and
the Substitution Theorem (Theorem 2.15). �

Exercise 2.53. Show (from the proof of the Herbrand Theorem) that a sat-
isfiable set of ∀ sentences without = and without function symbols except the
constants c1, . . . , cn for n ≥ 1 has a model with exactly n elements in the uni-
verse. Give an example showing that n−1 elements would not suffice in general.

D
R

A
FT

2.7. NOTES 31

Exercise 2.54. Show that the completeness direction of the Herbrand Theorem
(Form 1) follows from the Anchored LK Completeness Theorem (with equality,
Definition 2.39 and Theorem 2.40) and the following syntactic lemma.

Lemma 2.55. Let Φ be a set of formulas closed under substitution of terms for
variables. Let π be an LK-Φ proof in which all formulas are quantifier-free, let
t be a term and let b be a variable, and let π(t/b) be the result of replacing every
occurrence of b in π by t. Then π(t/b) is an LK-Φ proof.

Definition 2.56 (Prenex Form). We say that a formula A is in prenex form
if A has the form Q1x1 . . .QnxnB, where each Qi is either ∀ or ∃, and B is a
quantifier-free formula.

Theorem 2.57 (Prenex Form Theorem). There is a simple procedure which,
given a formula A, produces an equivalent formula A′ in prenex form.

Proof. First rename all quantified variables in A so that they are all distinct
(see the remark on page 15). Now move all quantifiers out past the connectives
∧,∨,¬ by repeated use of the equivalences below. (Recall that by the Formula
Replacement Theorem (Theorem 2.16), we can replace a subformula in A by an
equivalent formula and the result is equivalent to A.)

Note In each of the following equivalences, we must assume that x does not
occur free in C.

(∀xB ∧ C)⇐⇒ ∀x(B ∧ C) (∀xB ∨ C)⇐⇒ ∀x(B ∨ C)

(C ∧ ∀xB)⇐⇒ ∀x(C ∧B) (C ∨ ∀xB)⇐⇒ ∀x(C ∨B)

(∃xB ∧ C)⇐⇒ ∃x(B ∧ C) (∃xB ∨ C)⇐⇒ ∃x(B ∨ C)

(C ∧ ∃xB)⇐⇒ ∃x(C ∧B) (C ∨ ∃xB)⇐⇒ ∃x(C ∨B)

¬∀xB ⇐⇒ ∃x¬B ¬∃xB ⇐⇒ ∀x¬B

�

2.7 Notes

Sections 2.1 to 2.3 roughly follow Sections 2.1 and 2.2 of [?]. However an im-
portant difference is that the definition of Φ |= A in [?] treats free variables as
though they are universally quantified, but our definition does not.

The proof of the Anchored LK Completeness Theorem outlined in Exer-
cise 2.30 grew out of discussions with S. Buss.

D
R

A
FT

32 CHAPTER 2. THE PREDICATE CALCULUS

D
R

A
FTChapter 3

Peano Arithmetic and its

Subsystems

In this chapter we discuss Peano Arithmetic and some of its subsystems. We
focus on I∆0, which plays an essential role in the development of the theories
in later chapters: All (two-sorted) theories introduced in this book extend V0,
a conservative extension of I∆0. At the end of the chapter we briefly discuss
Buss’s hierarchy S1

2 ⊆ T1
2 ⊆ S2

2 These single-sorted theories establish a
link between bounded arithmetic and the polynomial time hierarchy, and have
played a central role in the study of bounded arithmetic. In later chapters we
introduce their two-sorted versions, including V1, a theory that characterizes
P. The theories considered in this chapter are singled-sorted, and the intended
domain is N = {0, 1, 2, ...}.

3.1 Peano Arithmetic

Definition 3.1. A theory over a language L is a set T of formulas over L
which is closed under logical consequence and universal closure.

We often specify a theory by a set Γ of axioms for T , where Γ is a set of
L-formulas. In that case

T = {A | A is an L-formula and ∀Γ |= A}

Here ∀Γ is the set of universal closures of formulas in Γ (Definition 2.23).
Note that it is more usual to require that a theory be a set of sentences, rather

than formulas. Our version of a usual theory T is T together with all formulas
(with free variables) which are logical consequences of T . Recall ∀A |= A, for
any formula A.

Notation We sometimes write T ⊢ A to mean A ∈ T . If T ⊢ A we say that A
is a theorem of T .

33

D
R

A
FT

34 CHAPTER 3. PEANO ARITHMETIC AND ITS SUBSYSTEMS

The theories that we consider in this section have the language of arithmetic

LA = [0, 1,+, · ; =,≤]

as the underlying language (Definition 2.3). Recall that the standard structure
N for LA has universe M = N and 0, 1,+, ·,=,≤ get their standard meanings
in N.

Notation t < u stands for (t ≤ u ∧ t 6= u). For each n ∈ N we define a term n
called the numeral for n inductively as follows:

0 = 0, 1 = 1, for n ≥ 1, n+ 1 = (n+ 1)

For example, 3 is the term ((1 + 1) + 1). In general, the term n is interpreted
as n in the standard structure.

Definition 3.2. TA (True Arithmetic) is the theory consisting of all formulas
valid in the standard structure:

TA = {A | N |= ∀A}

It follows from Gödel’s Incompleteness Theorem that TA has no computable
set of axioms. The theories we define below are all sub-theories of TA with nice,
computable sets of axioms.

Note that by Definition 2.6, = is interpreted as true equality in all LA-
structures, and hence we do not need to include the Equality Axioms in our list
of axioms. (Of course LK proofs still need equality axioms: see Definition 2.37
and Corollaries 2.34, 2.35).

We start by listing nine “basic” quantifier-free formulas B1, . . ., B8 and C,
which comprise the axioms for our basic theory. See Figure 3.1 below.

B1. x+ 1 6= 0 B5. x · 0 = 0
B2. x+ 1 = y + 1 ⊃ x = y B6. x · (y + 1) = (x · y) + x
B3. x+ 0 = x B7. (x ≤ y ∧ y ≤ x) ⊃ x = y
B4. x+ (y + 1) = (x+ y) + 1 B8. x ≤ x+ y
C. 0 + 1 = 1

Figure 3.1: 1-BASIC

These axioms provide recursive definitions for + and ·, and some basic prop-
erties of ≤. Axiom C is not necessary in the presence of induction, since it then
follows from the theorem 0 + x = x (see Example 3.8, O2). However we put it
in so that ∀B1, . . . ,∀B8, ∀C alone imply all true quantifier-free sentences over
LA
Lemma 3.3. If ϕ is a quantifier-free sentence of LA, then

TA ⊢ ϕ iff 1-BASIC ⊢ ϕ

D
R

A
FT

3.1. PEANO ARITHMETIC 35

Proof. The direction⇐= holds because the axioms of 1-BASIC are valid in N.
For the converse, we start by proving by induction on m that if m < n, then

1-BASIC ⊢ m 6= n. The base case follows from B1 and C, and the induction
step follows from B2 and C.

Next we use B3, B4 and C to prove by induction on n that if m + n = k,
then 1-BASIC ⊢ m+ n = k. Similarly we use B5, B6 and C to prove that if
m · n = k then 1-BASIC ⊢ m · n = k.

Now we use the above results to prove by structural induction on t, that if
t is any term without variables, and t is interpreted as n in the standard model
N, then 1-BASIC ⊢ t = n.

It follows from the above results that if t and u are any terms without
variables, then TA ⊢ t = u implies 1-BASIC ⊢ t = u, and TA ⊢ t 6= u implies
1-BASIC ⊢ t 6= u.

Consequently, if m ≤ n, then for some k, 1-BASIC ⊢ n = m+ k, and hence
by B8, 1-BASIC ⊢ m ≤ n. Also if not m ≤ n, then n < m, so by the above
1-BASIC ⊢ m 6= n and 1-BASIC ⊢ n ≤ m, so by B7, 1-BASIC ⊢ ¬m ≤ n.

Finally let ϕ be any quantifier-free sentence. We prove by structural in-
duction on ϕ that if TA ⊢ ϕ then 1-BASIC ⊢ ϕ and if TA ⊢ ¬ϕ then
1-BASIC ⊢ ¬ϕ. For the base case ϕ is atomic and has one of the forms
t = u or t ≤ u, so the base case follows from the above. The induction step
involves the three cases ∧, ∨, and ¬, which are immediate. �

Definition 3.4 (Induction Scheme). If Φ is a set of formulas, then Φ-IND
axioms are the formulas

[ϕ(0) ∧ ∀x, ϕ(x) ⊃ ϕ(x+ 1)] ⊃ ∀zϕ(z) (3.1)

where ϕ is a formula in Φ. Note that ϕ(x) is permitted to have free variables
other than x.

Definition 3.5 (Peano Arithmetic). The theory PA has as axioms B1, . . . ,B8,
together with the Φ-IND axioms, where Φ is the set of all LA-formulas.

(As we noted earlier, C is provable from the other axioms in the presence of
induction.)

PA is a powerful theory capable of formalizing the major theorems of number
theory, including apparently Andrew Wiles’ proof of Fermat’s Last Theorem.
We define subsystems of PA by restricting the induction axiom to certain sets
of formulas. We use the following notation.

Definition 3.6 (Bounded Quantifiers). If the variable x does not occur in
the term t, then ∃x ≤ tA stands for ∃x(x ≤ t ∧ A), and ∀x ≤ tA stands for
∀x(x ≤ t ⊃ A). Quantifiers that occur in this form are said to be bounded, and
a bounded formula is one in which every quantifier is bounded.

Notation Let ∃~x stand for ∃x1∃x2...∃xk, k ≥ 0.

D
R

A
FT

36 CHAPTER 3. PEANO ARITHMETIC AND ITS SUBSYSTEMS

Definition 3.7 (IOPEN, I∆0, IΣ1). OPEN is the set of open (i.e., quantifier-
free) formulas; ∆0 is the set of bounded formulas; and Σ1 is the set of formulas
of the form ∃~xϕ, where ϕ is bounded and ~x is a possibly empty vector of vari-
ables. The theories IOPEN, I∆0, and IΣ1 are the subsystems of PA obtained
by restricting the induction scheme so that Φ is OPEN, ∆0, and Σ1, respec-
tively.

Note that the underlying language of the theories defined above is LA.

Example 3.8. The following formulas (and their universal closures) are theo-
rems of IOPEN:
O1. (x+ y) + z = x+ (y + z) (Associativity of +)
O2. x+ y = y + x (Commutativity of +)
O3. x · (y + z) = (x · y) + (x · z) (Distributive law)
O4. (x · y) · z = x · (y · z) (Associativity of ·)
O5. x · y = y · x (Commutativity of ·)
O6. x+ z = y + z ⊃ x = y (Cancellation law for +)
O7. 0 ≤ x
O8. x ≤ 0 ⊃ x = 0
O9. x ≤ x
O10. x 6= x+ 1

Proof. O1: induction on z
O2: induction on y, first establishing the special cases y = 0 and y = 1
O3: induction on z
O4: induction on z, using O3
O5: induction on y, after establishing (y + 1) · x = y · x+ x by induction on x
O6: induction on z
O7: B8, O2, B3
O8: O7, B7
O9: B8, B3
O10: induction on x and B2. �

Recall that x < y stands for (x ≤ y ∧ x 6= y)

Example 3.9. The following formulas (and their universal closures) are theo-
rems of I∆0:
D1. x 6= 0 ⊃ ∃y ≤ x(x = y + 1) (Predecessor)
D2. ∃z(x+ z = y ∨ y + z = x)
D3. x ≤ y ↔ ∃z(x+ z = y)
D4. (x ≤ y ∧ y ≤ z) ⊃ x ≤ z (Transitivity)
D5. x ≤ y ∨ y ≤ x (Total order)
D6. x ≤ y ↔ x+ z ≤ y + z
D7. x ≤ y ⊃ x · z ≤ y · z
D8. x ≤ y + 1↔ (x ≤ y ∨ x = y + 1) (Discreteness 1)
D9. x < y ↔ x+ 1 ≤ y (Discreteness 2)
D10. x · z = y · z ∧ z 6= 0 ⊃ x = y (Cancellation law for ·)

D
R

A
FT

3.1. PEANO ARITHMETIC 37

Proof. D1: Induction on x
D2: Induction on x. Base case: B2, O2. Induction step: B3, B4, D1.
D3: =⇒: D2, B3 and B7; ⇐=: B8.
D4: D3, O1.
D5: D2, B8.
D6: =⇒: D3, O1, O2; ⇐=: D3, O6.
D7: D3 and algebra (O1,...,O8).
D8: =⇒: D3, D1, and algebra; ⇐=: O9, B8, D4.
D9: =⇒: D3, D1, and algebra; ⇐=: D3 and algebra.
D10: Exercise. �

Taken together, these results show that all models of I∆0 are commutative
discretely-ordered semi-rings.

Exercise 3.10. Show that I∆0 proves the division theorem:

I∆0 ⊢ ∀x∀y(0 < x ⊃ ∃q ∃r < x, y = x · q + r)

It follows from Gödel’s Incompleteness Theorem that there is a bounded
formula ϕ(x) such that ∀xϕ(x) is true but I∆0 6⊢ ∀xϕ(x). However if ϕ is a
true sentence in which all quantifiers are bounded, then intuitively ϕ expresses
information about only finitely many tuples of numbers, and in this case we can
show I∆0 ⊢ ϕ. The same applies more generally to true Σ1 sentences ϕ.

Lemma 3.11. If ϕ is a Σ1-sentence, then TA ⊢ ϕ iff I∆0 ⊢ ϕ.

Proof. The direction ⇐= follows because all axioms of I∆0 are true in the
standard structure.

For the converse, we prove by structural induction on bounded sentences ϕ
that if TA ⊢ ϕ then I∆0 ⊢ ϕ, and if TA ⊢ ¬ϕ then I∆0 ⊢ ¬ϕ. The base case is
ϕ is atomic, and this follows from Lemma 3.3. For the induction step, the cases
∨, ∧, and ¬ are immediate. The remaining cases are ϕ is ∀x ≤ tψ(x) and ϕ is
∃x ≤ tψ(x), where t is a term without variables, and ψ(x) is a bounded formula
with no free variable except possibly x. These cases follow from Lemma 3.3 and
Lemma 3.12 below.

Now suppose that ϕ is a true Σ1-sentence of the form ∃~xψ(~x), where ψ(~x)
is a bounded formula. Then ψ(~n) is a true bounded sentence for some numerals
n1, . . . , nk, so I∆0 ⊢ ψ(~n). Hence I∆0 ⊢ ϕ. �

Lemma 3.12. For each n ∈ N,

I∆0 ⊢ x ≤ n↔ (x = 0 ∨ x = 1 ∨ ... ∨ x = n)

Proof. Induction on n. The base case n = 0 follows from O7 and O8, and the
induction step follows from D8. �

D
R

A
FT

38 CHAPTER 3. PEANO ARITHMETIC AND ITS SUBSYSTEMS

Minimization

Definition 3.13 (Minimization). The minimization axioms (or least number
principle axioms) for a set Φ of formulas are denoted Φ-MIN and consist of
the formulas

∃zϕ(z) ⊃ ∃y[ϕ(y) ∧ ¬∃x(x < y ∧ ϕ(x))]

where ϕ is a formula in Φ.

Theorem 3.14. I∆0 proves ∆0-MIN.

Proof. The contrapositive of the minimization axiom for ϕ(z) follows from the
induction axiom for the bounded formula ψ(z) ≡ ∀y ≤ z(¬ϕ(y)). �

Exercise 3.15. Show that I∆0 can be alternatively axiomatized by B1, . . . ,B8,
O10 (Example 3.8), D1 (Example 3.9), and the axiom scheme ∆0-MIN.

Bounded Induction Scheme

The ∆0-IND scheme of I∆0 can be replaced by the following bounded induction
scheme for ∆0 formulas, i.e.,

[ϕ(0) ∧ ∀x < z(ϕ(x) ⊃ ϕ(x+ 1))] ⊃ ϕ(z) (3.2)

where ϕ(x) is any ∆0-formula. (Note that the IND formula (3.1) for ϕ(x) is a
logical consequence of the universal closure of this.)

Exercise 3.16. Prove that I∆0 remains the same if the ∆0-IND scheme is
replaced by the above bounded induction scheme for ∆0 formulas. (It suffices to
show that the new scheme is provable in I∆0.)

Strong Induction Scheme

The strong induction axiom for a formula ϕ(x) is the following formula:

∀x[(∀y < xϕ(y)) ⊃ ϕ(x)] ⊃ ∀zϕ(z) (3.3)

Exercise 3.17. Show that I∆0 proves the strong induction axiom scheme for
∆0 formulas.

3.2 Parikh’s Theorem

By the results in the previous section, I∆0 can be axiomatized by a set of
bounded formulas. We say that it is a polynomial-bounded theory, a concept we
will now define.

In general, a theory T may have symbols other than those in LA. We say
that a term t(~x) is a bounding term for a function symbol f(~x) in T if

T ⊢ ∀~x f(~x) ≤ t(~x) (3.4)

D
R

A
FT

3.2. PARIKH’S THEOREM 39

We say that f is polynomially bounded in T if it has a bounding term in the
language LA.

Exercise 3.18. Let T be an extension of I∆0 and let L be the vocabulary of
T . Suppose that the functions of L are polynomially bounded in T . Show that
for each L-term s(~x), there is an LA-term t(~x) such that

T ⊢ ∀~x s(~x) ≤ t(~x).

Suppose that a theory T is an extension of I∆0. We can still talk about
bounded formulas ϕ in T using the same definition (Definition 3.6) as before,
but now ϕ may have function and predicate symbols not in the vocabulary
[0, 1,+, ·; =,≤] of I∆0, and in particular the terms t bounding the quantifiers
∃x ≤ t and ∀x ≤ t may have extra function symbols. Note that by the exercise
above, in the context of polynomial-bounded theories (defined below) we may
assume without loss of generality that the bounding terms are LA-terms.

Definition 3.19 (Polynomial-Bounded Theory). Let T be a theory with
vocabulary L. Then T is a polynomial-bounded theory if (i) it extends I∆0;
(ii) it can be axiomatized by a set of bounded formulas; and (iii) each function
f ∈ L is polynomially bounded in T .

Note that I∆0 is a polynomial-bounded theory.
Theories which satisfy (ii) are often called bounded theories.

Theorem 3.20 (Parikh’s Theorem). If T is a polynomial-bounded theory
and ϕ(~x, y) is a bounded formula with all free variables displayed such that T ⊢
∀~x∃yϕ(~x, y), then there is a term t involving only variables in ~x such that T
proves ∀~x∃y ≤ tϕ(~x, y).

It follows from Exercise 3.18 that the bounding term t can be taken to be
an LA-term. In fact, Parikh’s Theorem can be generalized to say that if ϕ is a
bounded formula and T ⊢ ∃~yϕ, then there are LA-terms t1, ..., tk not involving
any variable in ~y or any variable not occurring free in ϕ such that T proves
∃y1 ≤ t1...∃yk ≤ tkϕ. This follows from the above remark, and the following
lemma.

Lemma 3.21. Let T be an extension of I∆0. Let z be a variable distinct from
y1, ..., yk and not occurring in ϕ. Then

T ⊢ ∃~yϕ↔ ∃z∃y1 ≤ z...∃yk ≤ z ϕ

Exercise 3.22. Give a careful proof of the above lemma, using the theorems of
I∆0 described in Example 3.9.

In section 3.3.3 we will show how to represent the relation y = 2x by a
bounded formula ϕexp . It follows immediately from Parikh’s Theorem that

I∆0 6⊢ ∀x∃yϕexp(x, y)

D
R

A
FT

40 CHAPTER 3. PEANO ARITHMETIC AND ITS SUBSYSTEMS

On the other hand PA easily proves the ∃yϕexp(x, y) by induction on x. There-
fore I∆0 is a proper sub-theory of PA.

Our proof of Parikh’s Theorem will be based on the Anchored LK Com-
pleteness Theorem with Equality (2.40). Let T be a polynomial-bounded the-
ory and ∀~x∃yϕ(~x, y) a theorem of T . We will look into an anchored proof of
∀~x∃yϕ(~x, y) and show that a term t (not involving y) can be constructed so
that ∀~x∃y ≤ tϕ(~x, y) is also a theorem of T . In order to apply the Anchored
LK Completeness Theorem (with Equality), we need to find an axiomatization
of T which is closed under substitution of terms for variables. Note that T is
already axiomatized by a set of bounded formulas (Definition 3.19). The desired
axiomatization of T is obtained by substituting terms for all the free variables.
We will consider the example where T is I∆0. The general case is similar.

Recall that the axioms for I∆0 consist of B1–B8 (page 34) and the ∆0-IND
scheme, which can be replaced by the Bounded Induction Scheme (3.2).

Definition 3.23 (ID0). ID0 is the set of all term substitution instances of
B1–B8 and the Bounded Induction Scheme, where now the terms contain only
“free” variables a, b, c,

Note that all formulas in ID0 are bounded.
For example (c · b) + 1 6= 0 is an instance of B1, and hence is in ID0. Also

a+ 0 = 0 + a ∧ ∀x < b(a+ x = x+ a ⊃ a+ (x+ 1) = (x+ 1) + a)

⊃ a+ b = b+ a

is an instance of (3.2) useful in proving the commutative law a + b = b + a by
induction on b, and is in ID0.

The following is an immediate consequence of the Anchored LK Complete-
ness Theorem (2.40) and Derivational Soundness of LK (2.24).

Theorem 3.24 (LK-ID0 Adequacy Theorem). Let A be an LA-formula
satisfying the LK constraint that only variables a, b, c, ... occur free and only
x, y, z, ... occur bound. Then I∆0 ⊢ A iff A has an anchored LK-ID0 proof.

Proof of Parikh’s Theorem. Suppose that T is a polynomial-bounded theory
which is axiomatized by a set of bounded axioms such that T ⊢ ∀~x∃yϕ(~x, y),
where ϕ(~x, y) is a bounded formula. Let T be the set of all term substitution
instances of the axioms of T . By arguing as above in the case T = I∆0, we
can assume that −→ ∃yϕ(~a, y) has an anchored LK-T proof π. Further we
may assume that π is in free variable normal form (Section 2.3.1). By the sub-
formula property of anchored proofs (2.41), every formula in every sequent of π
is either bounded, or a substitution instance of the endsequent ∃yϕ(~a, y). But in
fact the proof of the sub-formula property actually shows more: Every formula
in π is either bounded or it must be syntactically identical to ∃yϕ(~a, y), and in
the latter case it must occur in the consequent (right side) of a sequent. The
reason is that once an unbounded quantifier is introduced in π, the resulting
formula can never be altered by any rule, since cut formulas are restricted to

D
R

A
FT

3.2. PARIKH’S THEOREM 41

the bounded formulas occurring in T, and since no altered version of ∃yϕ(~a, y)
occurs in the endsequent. (We may assume that ∃yϕ(~a, y) is an unbounded
formula, since otherwise there is nothing to prove.)

We will convert π to an LK-T proof π′ of ∃y ≤ tϕ(y) for some term t
not containing y, by replacing each sequent S in π by a suitable sequent S ′,
sometimes with a short derivation D(S) of S′ inserted.

Here and in general we treat the cedents Γ and ∆ of a sequent Γ −→ ∆ as
multi-sets in which the order of formulas is irrelevant. In particular we ignore
instances of the exchange rule.

The conversion of a sequent S in π to S′, and the associated derivation
D(S), are defined by induction on the depth of S in π such that the following
is satisfied:

Induction Hypothesis: If S has no occurrence of ∃yϕ, then S′ = S. If S has
one or more occurrences of ∃yϕ, then S′ is a sequent which is the same as S
except all occurrences of ∃yϕ are replaced by a single occurrence of ∃y ≤ tϕ,
where the term t depends on S and the placement of S in π. Further t satisfies
the condition

Every variable in t occurs free in the original sequent S. (3.5)

Thus the endsequent of π′ has the form −→ ∃y ≤ tϕ, where every variable
in t occurs free in ∃yϕ.

In order to maintain the condition (3.5) we use our assumption that π is
in free variable normal form. Thus if the variable b occurs in t in the formula
∃y ≤ tϕ, so b occurs in S, then b cannot be eliminated from the descendants of
S except by the rule ∀-right or ∃-left. These rules require special attention in
the argument below.

We consider several cases, depending on the inference rule in π forming S,
and whether ∃yϕ is the principle formula of that rule.

Case I: S is the result of ∃-right applied to ϕ(s) for some term s, so the
inference has the form

Γ −→ ∆, ϕ(s)

Γ −→ ∆, ∃yϕ(y)
(3.6)

where S is the bottom sequent. Suppose first that ∆ has no occurrence of ∃yϕ.
Since ID0 proves s ≤ s there is a short LK-T derivation of

Γ −→ ∆, ∃y ≤ sϕ(y) (3.7)

from the top sequent. Let D(S) be that derivation and let S ′ be the sequent
(3.7).

If ∆ has one or more occurrence of ∃yϕ, then by the induction hypothesis
the top sequent S1 of (3.6) was converted to a sequent S′1 in which all of these
occurrences have been replaced by a single occurrence of the form ∃y ≤ tϕ. We
proceed as before, producing a sequent of the form

Γ −→ ∆′, ∃y ≤ tϕ, ∃y ≤ sϕ (3.8)

D
R

A
FT

42 CHAPTER 3. PEANO ARITHMETIC AND ITS SUBSYSTEMS

Since ID0 proves the two sequents −→ s ≤ s + t and −→ t ≤ s + t, it follows
that T proves

∃y ≤ sϕ −→ ∃y ≤ (s+ t)ϕ

and
∃y ≤ tϕ −→ ∃y ≤ (s+ t)ϕ

We can use these and (3.8) with two cuts and a contraction to obtain a
derivation of

Γ −→ ∆′, ∃y ≤ (s+ t)ϕ(y) (3.9)

Let D(S) be this derivation and let S′ be the resulting sequent (3.9).

Case II: S is the result of weakening-right, which introduces ∃yϕ. Thus the
inference has the form

Γ −→ ∆

Γ −→ ∆, ∃yϕ
(3.10)

where S is the bottom sequent. If ∆ does not contain ∃yϕ, then define S ′ to be

Γ −→ ∆, ∃y ≤ 0 ϕ

(introduced by weakening). If ∆ contains one or more occurrences of ∃yϕ,
then take S′ = S′1, where S1 is the top sequent of (3.10).

Case III: S is the result of ∀-right or ∃-left. We consider the case ∃-left.
The other case is similar and we leave it as an exercise. The new quantifier
introduced must be bounded, since all formulas in π except ∃yϕ are bounded,
and the latter must occur on the right. Thus the inference has the form

b ≤ r ∧ ψ(b),Γ −→ ∆

∃x ≤ rψ(x),Γ −→ ∆
(3.11)

where S is the bottom sequent. If ∆ has no occurrence of ∃yϕ, then define
S′ = S and let D(S) be the derivation (3.11). Otherwise, by the induction
hypothesis, the top sequent was converted to a sequent of the form

b ≤ r ∧ ψ(b),Γ −→ ∆′, ∃y ≤ s(b)ϕ(y) (3.12)

Note that b may appear on the succedent and thus violate the Restriction of
the ∃-left rule (page 16).

In order to apply the ∃-left rule (and continue to satisfy the condition (3.5)),
we replace the bounding term s(b) by an LA-term t that does not contain b.
This is possible since the functions of T are polynomially bounded in T . In
particular, by Exercise 3.18, we know that there are LA-terms r′, s′(b) such
that T proves both

r ≤ r′ and s(b) ≤ s′(b)
Let t = s′(r′). Then by the monotonicity of LA-terms, T proves b ≤ r −→
s(b) ≤ t. Thus T proves

b ≤ r, ∃y ≤ s(b)ϕ(y) −→ ∃y ≤ tϕ(y)

D
R

A
FT

3.3. CONSERVATIVE EXTENSIONS OF I∆0 43

(i.e., the above sequent has an LK-T derivation). From this and (3.12) applying
cut with cut formula ∃y ≤ s(b)ϕ we obtain

b ≤ r ∧ ψ(b),Γ −→ ∆′, ∃y ≤ tϕ(y)

where t does not contain b. We can now apply the ∃-left rule to obtain

∃x ≤ rψ(x),Γ −→ ∆′, ∃y ≤ tϕ(y) (3.13)

Let D(S) be this derivation and let S′ be the resulting sequent (3.13).

Case IV: S results from a rule with two parents. Note that if this rule is cut,
then the cut formula cannot be ∃yϕ, because π is anchored. The only difficulty in
converting S is that the two consequents ∆′ and ∆′′ of the parent sequents may
have been converted to consequents with different bounded formulas ∃y ≤ t1ϕ
and ∃y ≤ t2ϕ. In this case proceed as in the second part of Case I to combine
these two formulas to the single formula ∃y ≤ (t1 + t2)ϕ.

Case V: All remaining cases. The inference is of the form derive S from the
single sequent S1. Then take S′ to be the result of applying the same rule in the
same way to S′1, except in the case of contraction-right when the principle
formula is ∃yϕ. In this case take S′ = S′1. �

Exercise 3.25. Work out the sub-case ∀-right in Case III.

3.3 Conservative Extensions of I∆0

In this section we occasionally present simple model-theoretic arguments, and
the following standard definition from model theory is useful.

Definition 3.26 (Expansion of a Model). Let L1 ⊆ L2 be vocabularies and
let Mi be an Li structure for i = 1, 2. We say M2 is an expansion of M1 if
M1 and M2 have the same universe and the same interpretation for symbols
in L1.

3.3.1 Introducing New Function and Predicate Symbols

In the following discussion we assume that all predicate and function symbols
have a standard interpretation in the set N of natural numbers. A theory T
which extends I∆0 has defining axioms for each predicate and function symbol
in its vocabulary which ensure that they receive their standard interpretations
in a model of T which is an expansion of the standard model N. We often
use the same notation for both the function symbol and the function that it is
intended to represent. For example, the predicate symbol P might be Prime,
where Prime(x) is intended to mean that x is a prime number. Or f might be
LPD , where LPD(x) is intended to mean the least prime number dividing x (or
x if x ≤ 1).

D
R

A
FT

44 CHAPTER 3. PEANO ARITHMETIC AND ITS SUBSYSTEMS

Notation (unique existence) ∃!xϕ(x) stands for ∃x(ϕ(x) ∧ ∀y(ϕ(y) ⊃ x = y)),
where y is a new variable not appearing in ϕ(x).

Definition 3.27 (Definable Predicates and Functions). Let T be a theory
with vocabulary L, and let Φ be a set of L-formulas.
(a) We say that a predicate symbol P (~x) not in L is Φ-definable in T if there
is an L-formula ϕ(~x) in Φ such that

P (~x)↔ ϕ(~x) (3.14)

(b) We say that a function symbol f(~x) not in L is Φ-definable in T if there is
a formula ϕ(~x, y) in Φ such that

T ⊢ ∀~x∃!yϕ(~x, y), (3.15)

and that
y = f(~x)↔ ϕ(~x, y) (3.16)

We say that (3.14) is a defining axiom for P (~x) and (3.16) is a defining axiom
for f(~x). We say that a symbol is definable in T if it is Φ-definable in T for
some Φ.

Although the choice of ϕ in the above definition is not uniquely determined
by the predicate or function symbol, we will assume that a specific ϕ has been
chosen, so we will speak of the defining axiom for the symbol.

For example, the defining axiom for the predicate Prime(x) (in any theory
whose vocabulary contains LA) might be

Prime(x)↔ 1 < x ∧ ∀y < x∀z < x(y · z 6= x).

Note that ∆0 and Σ1 (Definition 3.7) are sets of LA-formulas. In general,
given a language L the sets ∆0(L) and Σ1(L) are defined as in Definition 3.7
but the formulas are from L.

Notation In Definition 3.27, if Φ = ∆0(L) (resp. Φ = Σ1(L)) then we some-
times omit mention of L and simply say that the symbols P, f are ∆0-definable
(resp. Σ1-definable) in T .

In the case of functions, the choice Φ = Σ1(L) plays a special role. A Σ1-
definable function in T is also called a provably total function in T . It turns out
that the provably total functions of IΣ1 are precisely the primitive recursive
functions and of S1

2 (see Section 3.5) the polytime functions. In Section 3.4 we
will show that the provably total functions of I∆0 are precisely the functions of
the Linear Time Hierarchy.

Exercise 3.28. Suppose that the functions f(x1, . . . , xm) and hi(x1, . . . , xn)
(for 1 ≤ i ≤ m) are Σ1-definable in a theory T . Show that the function
f(h1(~x), . . . , hm(~x)) (where ~x stands for x1, . . . , xn) is also Σ1-definable in T .
(In other words, show that Σ1-definable functions are closed under composition.)

D
R

A
FT

3.3. CONSERVATIVE EXTENSIONS OF I∆0 45

Definition 3.29 (Conservative Extension). Suppose that T1 and T2 are two
theories, where T1 ⊆ T2, and the vocabulary of T2 may contain function or
predicate symbols not in T1. We say T2 is a conservative extension of T1 if for
every formula A in the vocabulary of T1, if T2 ⊢ A then T1 ⊢ A.

Theorem 3.30 (Extension by Definition Theorem). If T2 results from T1
by expanding the vocabulary of T1 to include definable symbols, and by adding
the defining axioms for these symbols, then T2 is a conservative extension of T1.

Proof. We give a simple model-theoretic argument. Suppose that A is a formula
in the vocabulary of T1 and suppose that T2 ⊢ A. Let M1 be a model of T1.
We expand M1 to a model M2 of T2 by interpreting each new predicate and
function symbol so that its defining axiom (3.14) or (3.16) is satisfied. Notice
that this interpretation is uniquely determined by the defining axiom, and in
the case of a function symbol the provability condition (3.15) is needed (both
existence and uniqueness of y) in order to ensure that both directions of the
equivalence (3.16) hold.

Since M2 is a model of T2, it follows that M2 |= A, and hence M1 |= A.
SinceM1 is an arbitrary model of T1, it follows that T1 ⊢ A. �

Corollary 3.31. Let T be a theory and T0 = T ⊂ T1 ⊂ . . . be a sequence of
extensions of T where each Tn+1 is obtained by adding to Tn a definable symbol
(in the vocabulary of Tn) and its defining axiom. Let T∞ =

⋃
n≥0 Tn. Then T∞

is a conservative extension of T .

Exercise 3.32. Prove the corollary using the Extension by Definition Theorem
and the Compactness Theorem.

As an application of the Extension by Definition Theorem, we can conser-
vatively extend PA to include symbols for all the arithmetical predicates (i.e.,
predicates definable by LA-formulas). In fact, the extension of PA remains con-
servative even if we allow induction on formulas over the expanded vocabulary.

Similarly we can also obtain a conservative extension of I∆0 by adding to
it predicate symbols and their defining axioms for all arithmetical predicates.
However such a conservative extension of I∆0 no longer proves the induction
axiom scheme on bounded formulas over the expanded vocabulary. It does so if
we only add ∆0-definable symbols, and in fact we may add both ∆0-definable
predicate and function symbols. To show this, we start with the following
important application of Parikh’s Theorem.

Theorem 3.33 (Bounded Definability Theorem). Let T be a polynomial-
bounded theory. A function f(~x) (not in T) is Σ1-definable in T iff it has a
defining axiom

y = f(~x)↔ ϕ(~x, y)

where ϕ is a bounded formula with all free variables indicated, and there is an
LA-term t = t(~x) such that T proves ∀~x∃!y ≤ tϕ(~x, y).

D
R

A
FT

46 CHAPTER 3. PEANO ARITHMETIC AND ITS SUBSYSTEMS

Proof. The IF direction is immediate from Definition 3.27. The ONLY IF di-
rection follows from the discussion after Parikh’s Theorem (3.20). �

Corollary 3.34. If T is a polynomial-bounded theory, then a function f is
Σ1-definable in T iff f is ∆0-definable in T .

From the above theorem we see that the function 2x is not Σ1-definable
in any polynomial-bounded theory, even though we shall show in Section 3.3.3
that the relation (y = 2x) is ∆0-definable in I∆0. Since the function 2x is
Σ1-definable in PA, it follows that I∆0 (PA.

Lemma 3.35 (Conservative Extension Lemma). Suppose that T is a
polynomial-bounded theory and T + is the conservative extension of T obtained
by adding to T a ∆0-definable predicate or a Σ1-definable function symbol and
its defining axiom. Then T + is a polynomial-bounded theory and every bounded
formula ϕ+ in the vocabulary of T + can be translated into a bounded formula ϕ
in the vocabulary of T such that

T + ⊢ ϕ+ ↔ ϕ

The following corollary follows immediately from the lemma.

Corollary 3.36. Let T and T + be as in the Conservative Extension Lemma.
Let L and L+ denote the vocabulary of T and T +, respectively. Assume further
that T proves the ∆0(L)-IND axiom scheme. Then T + proves the ∆0(L+)-IND
axiom scheme.

Proof of the Conservative Extension Lemma. First, suppose that T + is obtained
from T by adding to it a ∆0-definable predicate symbol P and its defining axiom
(3.14). That T + is polynomial-bounded is immediate from Definition 3.19. Now
each bounded formula in the vocabulary of T + can be translated to a bounded
formula in the vocabulary of T simply by replacing each occurrence of a formula
of the form P (~t) by ϕ(~t) (see the Formula Replacement Theorem, 2.16). Note
that the defining axiom (3.14) becomes the valid formula ϕ(~x)↔ ϕ(~x).

Next suppose that T + is obtained from T by adding to it a Σ1-definable func-
tion symbol f and its defining axiom (3.16). That T + is polynomial bounded
follows from Theorem 3.33.

Start translating ϕ+ by replacing every bounded quantifier ∀x ≤ uψ by
∀x ≤ u′(x ≤ u ⊃ ψ), where u′ is obtained from u by replacing every occurrence
of every function symbol other than +, · by its bounding term in LA. Similarly
replace ∃x ≤ uψ by ∃x ≤ u′(x ≤ u ∧ ψ).

Now we may suppose by Theorem 3.33 that f has a bounded defining axiom

y = f(~x)↔ ϕ1(~x, y)

and f(~x) has an LA bounding term t(~x). Repeatedly remove occurrences of f
in an atomic formula θ(s(f(~u))) by replacing this with

∃y ≤ t(~u), ϕ1(~u, y) ∧ θ(s(y)) �

D
R

A
FT

3.3. CONSERVATIVE EXTENSIONS OF I∆0 47

Now we summarize the previous results.

Theorem 3.37 (Conservative Extension Theorem). Let T0 be a polynomial-
bounded theory over a vocabulary L0 which proves the ∆0(L0)-IND axioms. Let
T0 ⊂ T1 ⊂ T2 ⊂ ... be a sequence of extensions of T0 where each Ti+1 is obtained
from Ti by adding a Σ1-definable function symbol fi+1 (or a ∆0-definable pred-
icate symbol Pi+1) and its defining axiom. Let

T =
⋃

i≥0

Ti

Then T is a polynomial-bounded theory and is a conservative extension of T0.
Furthermore, if L is the language of T , then T proves the equivalence of each
∆0(L) formula with some ∆0(L0) formula, and T ⊢∆0(L)-IND.

Proof. First, we prove by induction on i that

1) Ti is a polynomial-bounded theory;

2) Ti is a conservative extension of T0; and

3) Ti proves that each ∆0(Li) formula is equivalent to some ∆0(L0) formula,
where Li is the vocabulary of Ti.

The induction step follows from the Conservative Extension Lemma.
It follows from the induction arguments above that T is a polynomial-

bounded theory, and that T proves the equivalence of each ∆0(L) formula with
some ∆0(L0) formula, and T ⊢ ∆0(L)-IND. It follows from Corollary 3.31
that T is a conservative extension of T0. �

3.3.2 I∆0: A Universal Conservative Extension of I∆0

Note This subsection is not needed for the remainder of this chapter, but it is
needed for later chapters.

We begin by introducing terminology that allows us to restate the Herbrand
Theorem (see Section 2.6).

A universal formula is a formula in prenex form (Definition 2.56) in which all
quantifiers are universal. Auniversal theory is a theory which can be axiomatized
by universal formulas. Note that by definition (3.1), a universal theory can be
equivalently axiomatized by a set of quantifier-free formulas, or by a set of
∀-sentences (Definition 2.46). We can now restate Form 2 of the Herbrand
Theorem (2.50) as follows.

Theorem 3.38 (Herbrand Theorem, Form 2). Let T be a universal the-
ory, and let ϕ(x1, . . . , xm, y) be a quantifier-free formula with all free variables
indicated such that

T ⊢ ∀x1 . . . ∀xm∃yϕ(~x, y). (3.17)

Then there exist finitely many terms t1(~x), . . . , tn(~x) such that

T ⊢ ∀x1 . . . ∀xm [ϕ(~x, t1(~x)) ∨ . . . ∨ ϕ(~x, tn(~x))]

D
R

A
FT

48 CHAPTER 3. PEANO ARITHMETIC AND ITS SUBSYSTEMS

Note that the theorem easily extends to the case where

T ⊢ ∀x1 . . . ∀xm∃y1 . . . ∃ykϕ(~x, ~y).

instead of (3.17), where ϕ(~x, ~y) is a quantifier-free formula.

Proof. As we have remarked earlier, T can be axiomatized by a set Γ of ∀-
sentences. From (3.17) it follows that

Γ ∪ {∃x1 . . .∃xm∀y¬ϕ(~x, y)} (3.18)

is unsatisfiable. Let c1, . . . , cm be new constant symbols. Then it is easy to
check that (3.18) is unsatisfiable if and only if

Γ ∪ {∀y¬ϕ(~c, y)}

is unsatisfiable. (We will need only the ONLY IF (=⇒) direction.)
Now by Form 1 (Theorem 2.49), there are terms t1(~c), . . . , tn(~c) such that

Γ ∪ {¬ϕ(~c, t1(~c)), . . . ,¬ϕ(~c, tn(~c))}

is unsatisfiable. (We can assume that n ≥ 1, since n = 0 implies that Γ is itself
unsatisfiable, and in that case the theorem is vacuously true.) Then it follows
easily that

T ⊢ ∀x1 . . . ∀xm [ϕ(~x, t1(~x)) ∨ . . . ∨ tn(~x))]�

As stated, the Herbrand Theorem applies only to universal theories. However
every theory has a universal conservative extension, which can be obtained by
introducing “Skolem functions”. The idea is that these functions explicitly
witness the existence of existentially quantified variables. Thus we can replace
each axiom (which contains ∃) of a theory T by a universal axiom.

Lemma 3.39. Suppose that ψ(~x) ≡ ∃yϕ(~x, y) is an axiom of a theory T . Let f
be a new function symbol, and let T ′ be the theory over the extended vocabulary
with the same set of axioms as T except that ψ(~x) is replaced by

ϕ(~x, f(~x))

Then T ′ is a conservative extension of T .

The new function f is called a Skolem function.

Exercise 3.40. Prove the above lemma by a simple model-theoretic argument
showing that every model of T can be expanded to a model of T ′. It may be help-
ful to assume that the language of T is countable, so by the Löwenheim/Skolem
Theorem (Theorem 2.42) we may restrict attention to countable models.

By the lemma, for each axiom of T we can successively eliminate the ex-
istential quantifiers, starting from the outermost quantifier, using the Skolem
functions. It follows that every theory has a universal conservative extension.

D
R

A
FT

3.3. CONSERVATIVE EXTENSIONS OF I∆0 49

For example, we can obtain a universal conservative extension of I∆0 by intro-
ducing Skolem functions for every instance of the ∆0-IND axiom scheme. Let
ϕ(z) be a ∆0 formula (possibly with other free variables ~x). Then the induction
scheme for ϕ(z) can be written as

∀~x∀z, ϕ(z) ∨ ¬ϕ(0) ∨ ∃y[ϕ(y) ∧ ¬ϕ(y + 1)]

Consider the simple case where ϕ is an open formula. The single Skolem function
(as a function of ~x, z) for the above formula is required to “witness” the existence
of y (in case such a y exists).

Although the Skolem functions witness the existence of existentially quan-
tified variables, it is not specified which values they take (and in general there
may be many different values). Here we can construct a universal conservative
extension of I∆0 by explicitly taking the smallest values of the witnesses if they
exist. Using the least number principle (Definition 3.13), these functions are
indeed definable in I∆0.

Let ϕ(z) be a formula (possibly with other free variables), and t a term.
Let ~x be the list of all variables of t and other free variables of ϕ (thus ~x may
contain z if t does). Let fϕ,t(~x) be the least y < t such that ϕ(y) holds, or t if
no such y exists. Then fϕ,t is total and can be defined as follows (we assume
that y, v do not appear in ~x):

y = fϕ,t(~x)↔ [y ≤ t ∧ (y < t ⊃ ϕ(y)) ∧ ∀v < y¬ϕ(v)] (3.19)

Note that (3.19) contains an implicit existential quantifier ∃v (consider the
direction ←). Our universal theory will contain the following equivalent axiom
instead:

f(~x) ≤ t ∧ [f(~x) < t ⊃ ϕ(f(~x))] ∧ [v < f(~x) ⊃ ¬ϕ(v)] (3.20)

(here f = fϕ,t).
Although the predecessor function pd(x) can be defined by a formula of the

form (3.20), we will use the following two recursive defining axioms instead.

D1′. pd(0) = 0 D1′′. x 6= 0 ⊃ pd(x) + 1 = x

Note that D1′′ implies D1 (see Example 3.9), and D1′ is needed to define
pd(0).

We are now ready to define the language L∆0 of the universal theory I∆0.
This language has a function symbol for every ∆0-definable function in I∆0.

Definition 3.41 (L∆0). Let L∆0 be the smallest set that satisfies

1) L∆0 includes LA ∪ {pd};
2) For each open L∆0 -formula ϕ(~x, z) and LA-term t(~x) there is a function

fϕ,t in L∆0 .

D
R

A
FT

50 CHAPTER 3. PEANO ARITHMETIC AND ITS SUBSYSTEMS

Note that L∆0 can be alternatively defined as follows. Let

L0 = LA ∪ {pd}
for n ≥ 0: Ln+1 = Ln ∪ {fϕ,t : ϕ is an open Ln-formula, t is an LA-term}

Then

L∆0 =
⋃

n≥0

Ln

Our universal theory I∆0 requires two more axioms in the style of 1-BASIC.

B8′. 0 ≤ x
B8′′. x < x+ 1

Definition 3.42 (I∆0). Let I∆0 be the theory over L∆0 with the following set
of axioms: B1, . . . ,B8,B8′,B8′′,D1′,D1′′ and (3.20) for each function fϕ,t of
L∆0 .

Thus I∆0 is a universal theory. Note that there is no induction scheme
among its axioms. Nevertheless we show below that I∆0 proves the ∆0-IND
axiom scheme, and hence I∆0 extends I∆0. From this it is easy to verify that
I∆0 is a polynomial-bounded theory.

Theorem 3.43. I∆0 is a conservative extension of I∆0.

To show that I∆0 extends I∆0 we show that it proves the ∆0-IND axiom
scheme. Note that if the functions of L∆0 receive their intended meaning, then
every bounded LA-formula is equivalent to an open L∆0 -formula. Therefore,
roughly speaking, the ∆0-MIN (and thus ∆0-IND) axiom scheme is satisfied
by considering the appropriate functions of L∆0 .

Lemma 3.44. For each ∆0(LA) formula ϕ, there is an open L∆0-formula ϕ′

such that I∆0 ⊢ ϕ↔ ϕ′.

Proof. We use structural induction on ϕ. The only interesting cases are for
bounded quantifiers. It suffices to consider the case when ϕ is ∃y ≤ tψ(y).
Then take ϕ′ to be ψ′(fψ,t(~x)). It is easy to check that I∆0 ⊢ ϕ ↔ ϕ′ using
(3.20). No properties of ≤ and < are needed for this implication except the
definition y < f(~x) stands for (y ≤ f(~x) ∧ y 6= f(~x)). �

Proof of Theorem 3.43. First we show that I∆0 is an extension of I∆0, i.e.,
∆0-IND is provable in I∆0.

By the above lemma, it suffices to show that I∆0 proves the Induction axiom
scheme for open L∆0 -formulas. Let ϕ(~x, z) be any open L∆0 -formula. We need
to show that (omitting ~x)

I∆0 ⊢ (ϕ(0) ∧ ¬ϕ(z)) ⊃ ∃y(ϕ(y) ∧ ¬ϕ(y + 1))

D
R

A
FT

3.3. CONSERVATIVE EXTENSIONS OF I∆0 51

Assuming (ϕ(0) ∧ ¬ϕ(z)), we show in I∆0 that (ϕ(y) ∧ ¬ϕ(y + 1)) holds for
y = pd(f¬ϕ,z(~x, z)), using (3.20). We need to be careful when arguing about
≤, because the properties O1–O9 and D1–D10 which we have been using for
reasoning in I∆0 require induction to prove.

First we rewrite (3.20) for the case f is f¬ϕ,z.

f(~x, z) ≤ z ∧ [f(~x, z) < z ⊃ ¬ϕ(f(~x, z))] ∧ [v < f(~x, z) ⊃ ϕ(v)] (3.21)

Now 0 < z by B8′ and our assumptions ϕ(0) and ¬ϕ(z), so f(~x, z) 6= 0 by
(3.21). Hence y + 1 = pd(f(~x, z)) + 1 = f(~x, z) by D1′′. Therefore ¬ϕ(y + 1)
by (3.21) and the assumption ¬ϕ(z).

To establish ϕ(y) it suffices by (3.21) to show y < f(~x, z). This holds because
f(~x, z) = y + 1 as shown above, and y < y + 1 by B8′′.

This completes the proof that I∆0 extends I∆0. Next, we show that I∆0

is conservative over I∆0. Let f1 = pd , f2, f3, . . . be an enumeration of L∆0 \
LA such that for n ≥ 1, fn+1 is defined using some LA-term t and (LA ∪
{f1, . . . , fn})-formula ϕ as in (3.20).

For n ≥ 0 let Ln denote LA ∪ {f1, . . . , fn}. Let T0 = I∆0, and for n ≥ 0 let
Tn+1 be the theory over Ln+1 which is obtained from Tn by adding the defining
axiom for fn+1 (in particular, T1 is axiomatized by I∆0 and D1′,D1′′). Then

T0 = I∆0 ⊂ T1 ⊂ T2 ⊂ . . . and I∆0 =
⋃

n≥0

Tn.

By Corollary 3.31, it suffices to show that for each n ≥ 0, fn+1 is definable in
Tn. In fact, we prove the following by induction on n ≥ 0:

1) Tn proves the ∆0(Ln)-IND axiom scheme;

2) fn+1 is ∆0(Ln)-definable in Tn.

Consider the induction step. Suppose that the hypothesis is true for n (n ≥ 0).
We prove it for n+1. By the induction hypothesis, Tn proves the ∆0(Ln)-IND
axiom scheme and ∆0(Ln)-defines fn+1. Therefore by Corollary 3.36, Tn+1

proves the ∆0(Ln+1)-IND axiom scheme. Consequently, Tn+1 also proves the
∆0(Ln+1)-MIN axiom scheme. The defining equation for fn+2 has the form
(3.20), and hence Tn+1 proves (3.19) where f is fn+2. Thus (3.19) is a defining
axiom which shows that fn+2 is ∆0(Ln+1)-definable in Tn+1. Here we use the
∆0(Ln+1)-MIN axiom scheme to prove ∃y in (3.15). �

An Alternative Proof of Parikh’s Theorem for I∆0

Now we will present an alternative proof of Parikh’s Theorem for I∆0 from
Herbrand Theorem applied to I∆0, using the fact that I∆0 is a conservative
extension of I∆0.

Note that in proving that I∆0 is conservative over I∆0 (see the proof of
Theorem 3.43), in the induction step we have used Corollary 3.36 (the case of

D
R

A
FT

52 CHAPTER 3. PEANO ARITHMETIC AND ITS SUBSYSTEMS

adding Σ1-definable function) to show that Tn proves the ∆0(Ln)-IND axiom
scheme. The proof of Corollary 3.36 (and of the Conservative Extension Lemma)
in turns relies on the Bounded Definability Theorem (3.33), which is proved
using Parikh’s Theorem. However, for I∆0, fn+1 is already ∆0-definable in Tn
(the induction step in the proof of Theorem 3.43). Therefore we have actually
used only a simple case of Corollary 3.36 (i.e., adding ∆0-definable functions).
Thus in fact Parikh’s Theorem is not necessary in proving Theorem 3.43.

Proof of Parikh’s Theorem. Suppose that ∀~x∃yϕ(~x, y) is a theorem of I∆0, where
ϕ is a bounded formula. We will show that there is an LA-term s such that

I∆0 ⊢ ∀~x∃y ≤ sϕ(~x, y)

By Lemma 3.44, there is an open L∆0 -formula ϕ′(~x, y) such that

I∆0 ⊢ ∀~x∀y(ϕ(~x, y)↔ ϕ′(~x, y))

Then since I∆0 extends I∆0, it follows that

I∆0 ⊢ ∀~x∃yϕ′(~x, y)

Now since I∆0 is a universal theory, by Form 2 of the Herbrand Theorem (3.38)
there are L∆0 -terms t1, . . . , tn such that

I∆0 ⊢ ∀~x[ϕ′(~x, t1(~x)) ∨ . . . ∨ ϕ′(~x, tn(~x))] (3.22)

Also since I∆0 is a polynomial-bounded theory, there is an LA-term s such that

I∆0 ⊢ ti(~x) < s(~x) for all i, 1 ≤ i ≤ n

Consequently,

I∆0 ⊢ ∀~x∃y < sϕ′(~x, y)

Hence

I∆0 ⊢ ∀~x∃y < sϕ(~x, y)

By the fact that I∆0 is conservative over I∆0 we have

I∆0 ⊢ ∀~x∃y < sϕ(~x, y)�

Note that we have proved more than a bound on the existential quantifier
∃y. In fact, (3.22) allows us to explicitly define a Skolem function y = f(~x),
using definition by cases. This idea will serve as a method for proving witnessing
theorems in future chapters.

D
R

A
FT

3.3. CONSERVATIVE EXTENSIONS OF I∆0 53

3.3.3 Defining y = 2x and BIT (i, x) in I∆0

In this subsection we show that the relation BIT (i, x) is ∆0-definable in I∆0,
where BIT (i, x) holds iff the i-th bit in the binary notation for x is 1. This
is useful particularly in Section 3.4 where we show that I∆0 characterizes the
Linear Time Hierarchy.

In order to define BIT we will show that the relation y = 2x is ∆0-definable
in I∆0. Note that on the other hand, by Parikh’s Theorem (3.20), the func-
tion f(x) = 2x is not Σ1-definable in I∆0, because it grows faster than any
polynomial.

Our method is to introduce a sequence of new function and predicate sym-
bols, and show that each can be ∆0-defined in I∆0 extended by the previous
symbols. These new symbols together with their defining axioms determine a
sequence of conservative extensions of I∆0, and according to the Conservative
Extension Theorem 3.37, bounded formulas using the new symbols are prov-
ably equivalent to bounded formulas in the vocabulary LA of I∆0, and hence
the induction scheme is available on bounded formulas with the new symbols.
Finally the bounded formula ϕexp(x, y) given in (3.25) defines (y = 2x), and the
bounded formula BIT (i, x) given in (3.26) defines the BIT predicate. These
formulas are provably equivalent to bounded formulas in I∆0, and I∆0 proves
the properties of their translations, such as those in Exercise 3.53.

We start by ∆0-defining the following functions in I∆0: x−· y, ⌊x/y⌋,
x mod y and ⌊√x⌋. We will show in detail that x−· y is ∆0-definable in I∆0. A
detailed proof for other functions is left as an exercise. It might be helpful to re-
visit the basic properties O1, . . . ,O9, D1, . . . ,D10 of I∆0 in Examples 3.8, 3.9.

1) Limited subtraction: The function x−· y = max{0, x − y} can be de-
fined by

z = x−· y ↔ [(y + z = x) ∨ (x ≤ y ∧ z = 0)]

In order to show that I∆0 can ∆0-define this function we must show that

I∆0 ⊢ ∀x∀y∃!zϕ(x, y, z)

where ϕ is the RHS of the above equivalence (see Definition 3.27(b)).

For the existence of z, by D2 we know that there is some z′ such that

x+ z′ = y ∨ y + z′ = x.

If y + z′ = x then simply take z = z′. Otherwise x + z′ = y, then by B8,
x ≤ x+ z′, hence x ≤ y, and thus we can take z = 0.

For the uniqueness of z, first suppose that x ≤ y. Then we have to show
that y + z = x ⊃ z = 0. Assume y + z = x. By B8, y ≤ y + z, hence
y ≤ x. Therefore x = y by B7. Now from x+ 0 = x (B3) and x+ z = x
we have z = 0, by O2 (Commutativity of +) and O6 (Cancellation law
for +).

Next, suppose that ¬(x ≤ y). Then y + z = x, and by O2 and O6,
y + z = x ∧ y + z′ = x ⊃ z = z′.

D
R

A
FT

54 CHAPTER 3. PEANO ARITHMETIC AND ITS SUBSYSTEMS

2) Division: The function x div y = ⌊x/y⌋ can be defined by

z = ⌊x/y⌋ ↔ [(y · z ≤ x ∧ x < y(z + 1)) ∨ (y = 0 ∧ z = 0)]

The existence of z is proved by induction on x. The uniqueness of z follows
from transitivity of ≤ (D4), Total Order (D5), and O5, D7.

3) Remainder: The function x mod y can be defined by

x mod y = x−· (y · ⌊x/y⌋)

Since x mod y is a composition of Σ1-definable functions, it is Σ1-definable
by Exercise 3.28. Hence it is ∆0-definable by Corollary 3.34.

4) Square root:

y = ⌊√x⌋ ↔ [y · y ≤ x ∧ x < (y + 1)(y + 1)]

The existence of y follows from the least number principle. The uniqueness
of y follows from Transitivity of ≤ (D4), Total Order (D5), and O5, D7.

Exercise 3.45. Show carefully that the functions x/y, x mod y and ⌊√x⌋ are
∆0-definable in I∆0.

Next we define the following relations x|y, Pow2 (x), Pow4 (x) and LenBit(y, x):

5) Divisibility: This relation is defined by

x|y ↔ ∃z ≤ y(x.z = y)

6) Powers of 2 and 4:

x is a power of 2 : Pow2 (x)↔ [x 6= 0 ∧ ∀y ≤ x((1 < y ∧ y|x) ⊃ 2|y)]
x is a power of 4 : Pow4 (x)↔ Pow2 (x) ∧ x mod 3 = 1

7) LenBit: We want the relation LenBit(2i, x) to hold iff the i-th bit in the
binary expansion of x is 1, where the least significant bit is bit 0. Although
we cannot yet define y = 2i, we can define

LenBit(y, x)↔ (⌊x/y⌋ mod 2 = 1)

Note that we intend to use LenBit(y, x) only when y is a power of 2, but
it is defined for all values of y.

Notation (∀2i) stands for “for all powers of 2”, i.e.,

(∀2i) A(2i) stands for ∀x (Pow2 (x) ⊃ A(x))

(∀2i ≤ t) A(2i) stands for ∀x ((Pow2 (x) ∧ x ≤ t) ⊃ A(x))

Same for (∃2i) and (∃2i ≤ t).

D
R

A
FT

3.3. CONSERVATIVE EXTENSIONS OF I∆0 55

Exercise 3.46. Show that the following are theorems of I∆0:

a) ∀xPow2 (x)↔ Pow2 (2x).

b) (∀2i)(∀2j)(2i < 2j ⊃ 2i|2j). (Hint: using strong induction (3.3).)

c) (∀2i)(∀2j ≤ 2i) Pow2 (2i/2j)).

d) (∀2i)(∀2j)(2i < 2j ⊃ 2 · 2i ≤ 2j).

e) (∀2i)(∀2j)Pow2 (2i · 2j).
f) (∀2i)(∃2j ≤ 2i) ((2j)2 = 2i ∨ 2(2j)2 = 2i)).

We also need the following function:

8) Greatest power of 2 less than or equal to x:

y = gp(x)↔ ((x = 0 ∧ y = 0) ∨ (Pow2 (y) ∧ y ≤ x ∧ (∀2i ≤ x) 2i ≤ y))

Exercise 3.47. Show that I∆0 can ∆0-define gp(x). (Hint: Use induction on
x.)

Exercise 3.48. Prove the following in I∆0:

a) x > 0 ⊃ (gp(x) ≤ x < 2gp(x)).

b) x > 0 ⊃ LenBit(gp(x), x).

c) y = x−· gp(x) ⊃ (∀2i ≤ y) (LenBit(2i, y)↔ LenBit(2i, x)).

It is a theorem of I∆0 that the binary representation of a number uniquely
determines the number. This theorem can be proved in I∆0 by using strong
induction (3.3) and part c) of the above exercise. Details are left as an exercise.

Theorem 3.49. I∆0 ⊢ ∀y∀x < y, (∃2i ≤ y)LenBit(2i, y) ∧ ¬LenBit(2i, x)

Exercise 3.50. Prove the above theorem.

Defining the Relation y = 2x

This is much more difficult to ∆0-define than any of the previous relations and
functions. A first attempt to define y = 2x might be to assert the existence
of a number s coding the sequence 〈20, 21, ..., 2x〉. The main difficulty in this
attempt is that the number of bits in s is Ω(|y|2) (where |y| is the number of
bits in y), and so s cannot be bounded by any I∆0 term in x and y.

We get around this by coding a much shorter sequence, of length |x| instead
of length x, of numbers of the form 2z. Suppose that x > 0, and (xk−1 . . . x0)2
is the binary representation of x (where xk−1 = 1), i.e.,

x =

k−1∑

i=0

xi2
i (and xk−1 = 1)

We start by coding the sequence 〈a1, a2, ..., ak〉, where ai consists of the first i
high-order bits of x, so ak = x. Then we code the sequence 〈b1, ..., bk〉, where
bi = 2ai , so y = bk.

D
R

A
FT

56 CHAPTER 3. PEANO ARITHMETIC AND ITS SUBSYSTEMS

We have (note that xk−1 = 1):

a1 = 1, b1 = 2

For 1 ≤ i < k: ai+1 = xk−i−1 + 2ai bi+1 = 2xk−i−1b2i
(3.23)

Note that ai < 2i and bi < 22i

for 1 ≤ i ≤ k.
We will code the sequences 〈a1, . . . , ak〉 and 〈b1, . . . , bk〉 by the numbers a

and b, respectively, such that ai and bi are represented by the bits 2i to 2i+1−1
of a and b, respectively. In order to extract ai and bi from a and b we use the
function

ext(u, z) = ⌊z/u⌋ mod u (3.24)

Thus if u = 22i

then ai = ext(u, a) and bi = ext(u, b). It is easy to see that the
function ext is ∆0-definable in I∆0.

Note that a, b < 22k+1

, and y ≥ 2k−1. Hence the numbers a and b can be
bounded by a, b < y4. Below we will explain how to express the condition that
a number has the form 22i

. Once this is done, we can express

y = 2x ↔ ϕexp(x, y)

where ϕexp ≡ (x = 0 ∧ y = 1) ∨ ∃a, b < y4ψexp(x, y, a, b)
(3.25)

and ψexp(x, y, a, b) is the formula stating that the following conditions (express-
ing the above recurrences) hold, for x > 0, y > 1:

1) ext(221

, a) = 1, and ext(221

, b) = 2

2) For all u, 221 ≤ u ≤ y of the form 22i

, either

(a) ext(u2, a) = 2ext(u, a) and ext(u2, b) = (ext(u, b))2, or
(b) ext(u2, a) = 1 + 2ext(u, a) and ext(u2, b) = 2(ext(u, b))2.

3) There is u ≤ y2 of the form 22i

such that ext(u, a) = x and ext(u, b) = y.

Note that condition (2)(a) holds if xk−i = 0, and condition (2)(b) holds
if xk−i = 1. The conditions do not need to mention xk−i explicitly, because
condition (3) ensures that ai = x for some i, so all bits of x must have been
chosen correctly up to this point.

It remains to express “x has the form 22i

”. First, the set of numbers of the
form

mℓ =
ℓ∑

i=0

22i

can be ∆0-defined by the formula

ϕp(x) ≡¬LenBit(1, x) ∧ LenBit(2, x)∧
∀2i ≤ x, 2 < 2i ⊃ (LenBit(2i, x)↔ (Pow4 (2i) ∧ LenBit(⌊

√
2i⌋, x)))

D
R

A
FT

3.3. CONSERVATIVE EXTENSIONS OF I∆0 57

From this we can ∆0-define numbers of the form x = 22i

as the powers of 2 for
which LenBit(x,mℓ) holds for some mℓ < 2x:

x is of form 22i

: PPow2 (x)↔ Pow2 (x) ∧ ∃m < 2x (ϕp(m) ∧ LenBit(x,m))

This completes our description of the defining axiom ϕexp(x, y) for the rela-
tion y = 2x. It remains to show that I∆0 proves some properties of this relation.
First we need to verify in I∆0 the properties of PPow2 .

Exercise 3.51. The following are theorems of I∆0:

a) PPow2 (z)↔ PPow2 (z2).

b) (PPow2 (z) ∧ PPow2 (z′) ∧ z < z′) ⊃ z2 ≤ z′.
c) (PPow2 (x) ∧ 4 ≤ x) ⊃ ⌊√x⌋2 = x.

We have noted earlier that ai < 2i and bi < 22i

. Here we need to show that
these are indeed provable in I∆0. We will need this fact in order to prove (in
I∆0) the correctness of our defining axiom ϕexp for the relation y = 2x (e.g.,
Exercise 3.53 c and d).

Exercise 3.52. Assuming (y > 1 ∧ ψexp(x, y, a, b)), show in I∆0 that

a) ∀u ≤ y2, (PPow2 (u) ∧ 4 ≤ u) ⊃ 1 + ext(u, a) < u.

b) ∀u ≤ y2, (PPow2 (u) ∧ 4 ≤ u) ⊃ 2ext(u, b) ≤ u.

Exercise 3.53. Show that I∆0 proves the following:

a) ∀x∀y, ϕexp(x, y) ⊃ Pow2 (y).

b) I∆0 ⊢ Pow2 (y) ⊃ ∃x < y ϕexp(x, y). (Hint: strong induction on y, using
Exercise 3.46 f.)

c) ϕexp(x, y1) ∧ ϕexp(x, y2) ⊃ y1 = y2.

d) ϕexp(x1, y) ∧ ϕexp(x2, y) ⊃ x1 = x2.

e) ϕexp(x+ 1, 2y)↔ ϕexp(x, y). (Hint: Look at the least significant 0 bit of x.)

f) ϕexp(x1, y1) ∧ ϕexp(x2, y2) ⊃ ϕexp(x1 + x2, y1 · y2) (Hint: Induction on y2.)

Although the function 2x is not ∆0-definable in I∆0, it is easy to see using
ϕexp (and useful to know) that the function

Exp(x, y) = min(2x, y)

is ∆0-definable in I∆0.

Exercise 3.54. The relation y = zx can be defined using the same techniques
that have been used to define the relation y = 2x. Here the sequence 〈b1, . . . , bk〉
needs to be modified.

a) Modify the recurrence in (3.23).

D
R

A
FT

58 CHAPTER 3. PEANO ARITHMETIC AND ITS SUBSYSTEMS

Each bi now may not fit in the bits 2i to 2i+1 − 1 of b, but it fits in a bigger
segment of b. Let ℓ be the least number such that

z ≤ 22ℓ

b) Show that for 1 ≤ i ≤ k, zbi ≤ 22ℓ+i

c) Show that the function lpp(z), which is the least number of the form 22i

that
is ≥ z, is ∆0-definable in I∆0.

d) Show that I∆0 ⊢ z > 1 ⊃ (z ≤ lpp(z) < z2).

e) What are the bounds on the values of the numbers a and b that respectively
code the sequences 〈a1, . . . , ak〉 and 〈b1, . . . , bk〉 ?

f) Give a formula that defines the relation y = zx by modifying the conditions
1–3.

The BIT Relation

Finally the relation BIT (i, x) can be defined as follows, where BIT (i, x) holds
iff the i-th bit (i.e., coefficient of 2i) of the binary notation for x is 1:

BIT (i, x)↔ ∃z ≤ x(z = 2i ∧ LenBit(z, x)) (3.26)

Exercise 3.55. Show that the Length function, |x| = ⌈log2(x + 1)⌉, is ∆0-
definable in I∆0.

3.4 I∆0 and the Linear Time Hierarchy

3.4.1 The Polynomial and Linear Time Hierarchies

An element of a complexity class such as P (polynomial time) is often taken to
be a language L, where L is a set of finite strings over some fixed finite alphabet
Σ. In the context of bounded arithmetic, it is convenient to consider elements of
P to be subsets of N, or more generally sets of relations over N, and in this case
it is assumed that numbers are presented in binary notation to the accepting
machine. In this context, the notation Σp

0 is sometimes used for polynomial
time. Thus Σp

0 is the set of all relations R(x1, ..., xk), k ≥ 1 over N such that
some polynomial time Turing machine MR, given input x1, ..., xk (k numbers in
binary notation separated by blanks) determines whether R(x1, ..., xk) holds.

The class Σp
i is the i-th level of the polynomial-time hierarchy. This can be

defined inductively by the recurrence

Σp
i+1 = NP(Σp

i)

where NP(Σp
i) is the set of relations accepted by a nondeterministic polynomial

time Turing machine which has access to an oracle in Σp
i .

D
R

A
FT

3.4. I∆0 AND THE LINEAR TIME HIERARCHY 59

Alternatively, Σp
i is the set of relations accepted by some alternating Turing

machine (ATM) in polynomial time, making at most i alternations, beginning
with an existential state. In any case,

Σp
1 = NP

We define the polynomial time hierarchy by

PH =

∞⋃

i=0

Σp
i

In the context of I∆0, we are interested in the Linear Time Hierarchy (LTH),
which is defined analogously to PH. We use LinTime and NLinTime to
denote time O(n) on a deterministic and nondeterministic multi-tape Turing
machine, respectively. Then

Σlin
0 = LinTime

and for i ≥ 0

Σlin
i+1 = NLinTime(Σlin

i) (3.27)

Alternatively, we can define Σlin
i to be the relations accepted in linear time on

an ATM with i alternations, beginning with an existential state. In either case,1

LTH =

∞⋃

i=0

Σlin
i

LinTime is not as robust a class as polynomial time; for example it is plausible
that a k + 1-tape deterministic linear time Turing machine can accept sets not
accepted by any k tape such machine, and linear time Random Access Machines
may accept sets not in LinTime. However it is not hard to see that NLinTime
is more robust, in the sense that every set in this class can be accepted by a two
tape nondeterministic linear time Turing machine.

3.4.2 Representability of LTH Relations

Recall the definition of definable predicates and functions (Definition 3.27). If
Φ is a class of L-formulas, T a theory over L, and R a Φ-definable relation
(over the natural numbers) in T , then we simply say that R is Φ-definable (or
Φ-representable).

Thus when Φ is a class of LA-formulas, a k-ary relation R over the natural
numbers is Φ-definable if there is a formula ϕ(x1, . . . , xk) ∈ Φ such that for all
(n1, . . . , nk) ∈ Nk,

(n1, . . . , nk) ∈ R iff N |= ϕ(n1, . . . , nk) (3.28)

1LTH is different from LH, the logtime-hierarchy discussed in Section 4.1

D
R

A
FT

60 CHAPTER 3. PEANO ARITHMETIC AND ITS SUBSYSTEMS

More generally, if Φ is a class of L-formulas for some language L extending LA,
then instead of N we will take the expansion of N where the extra symbols in L
have their intended meaning.

(Note that a relation R(~x) is sometimes called representable (or weakly rep-
resentable) in a theory T if there is some formula ϕ(~x) so that for all ~n ∈ N,

R(~n) iff T ⊢ ϕ(~n)

Our notation here is the special case where T = TA.)

For example, the class of Σ1-representable sets (i.e., unary relations) is pre-
cisely the class of r.e. sets. In the context of Buss’s Si2 hierarchy (Section 3.5),
NP relations are precisely the Σb

1-representable relations. (Σb
1 is defined for

the language LS2 of S2.) Here we show that the LTH relations are exactly the
∆0-representable relations.

Definition 3.56. ∆N
0 is the class of ∆0-representable relations.

For instance, we have shown that the relation BIT is in ∆N
0 ; so is the relation

Prime(x) (x is a prime number), because

Prime(x) ≡ 1 < x ∧ ∀y < x∀z < x(y · z 6= x)

Lemma 3.57. The relation Numones(x, y), asserting that y is the number of
one-bits in the binary notation for x, is in ∆N

0 .

Proof Sketch. We code a sequence 〈s0, s1, . . . , sn〉 of numbers si of at most ℓ
bits each using a number s such that bits iℓ to iℓ+ ℓ− 1 of s are the bits of si.
Then we can extract si from s using the equation

si = ⌊s/2iℓ⌋ mod 2ℓ

Our first attempt to define numones(x, y) might be to state the existence of a
sequence 〈s0, s1, . . . , sn〉, where n = |x| and si is the number of ones in the first
i bits of x. However the number coding this sequence has n logn bits, which is
too many.

We get around this problem using “Bennett’s Trick” [?], which is to state
the existence of a sparse subsequence of 〈s0, s1, . . . , sn〉 and assert that adjacent
pairs in the subsequence can be filled in. Thus

Numones(x, y)↔ ∃〈t0, . . . , t√n〉, t0 = 0 ∧ t√n = y ∧ ∀i < √n ∃〈u0, . . . , u√n〉
[u0 = ti ∧ u√n = ti+1 ∧ ∀j <

√
n (uj+1 = uj + FBIT (i

√
n+ j, x))]

where the function FBIT (i, x) is bit i of x. �

Theorem 3.58 (LTH Theorem). LTH = ∆N
0

D
R

A
FT

3.4. I∆0 AND THE LINEAR TIME HIERARCHY 61

Proof Sketch. First consider the inclusion LTH ⊆∆N
0 . The hard part here is to

show NLinTime ⊆∆N
0 . Once this is done we can easily show Σlin

i ⊆∆N
0 either

by using the recurrence in (3.27), or considering an ATM with i alternations.
(Note that on an input x ∈ N of length n, a linear time ATM can guess a binary
number y of length cn, and the ∆0 formula can use the bounded quantifier
∃y < xc+1.)

To show NLinTime ⊆∆N
0 we need to represent the computation of a non-

deterministic linear time Turing machine by a constant number k of strings
x1, . . . , xk of linear length. One string will code the sequence of states of the
computation, and for each tape there is a string coding the sequence of symbols
printed and head moves. In order to check that the computation is correctly en-
coded it is necessary to deduce the position of each tape head at each step of the
computation, from the sequence of head moves. This can be done by counting
the number of left shifts and of right shifts, using the relation Numones(x, y),
and subtracting. It is also necessary to determine the symbol appearing on a
given tape square at a given step, and this can be done by determining the last
time that the head printed a symbol on that square.

We prove the inclusion ∆N
0 ⊆ LTH by structural induction on ∆0 formulas.

The induction step is easy, since bounded quantifiers correspond to ∃ and ∀
states in an ATM. The only interesting case is one of the base cases: the atomic
formula x · y = z. To show that this relation R(x, y, z) is in LTH we use
Corollary 3.60 below which shows that L ⊆ LTH. (L is the class of relations
computable in logarithmic space using Turing machines. See Appendix A.1.1.)
It is not hard to see that using the school algorithm for multiplication the
relation x · y = z can be checked in space O(log n), and thus it is in L. �

Theorem 3.59 (Nepomnjaščij’s Theorem). Let ǫ be a rational number,
0 < ǫ < 1, and let a be a positive integer. Then

NTimeSpace(na, nǫ) ⊆ LTH

In the above, NTimeSpace(f(n), g(n)) consists of all relations accepted
simultaneously in time O(f(n)) and space O(g(n)) on a nondeterministic multi-
tape Turing machine.

Proof Idea. We use Bennett’s Trick, as in the proof of Lemma 3.57. Suppose
we want to show

NTimeSpace(n2, n0.6) ⊆ LTH

Let M be a nondeterministic TM running in time n2 and space n0.6. Then M
accepts an input x iff

∃~y(~y represents an accepting computation for x)

Here ~y = y1, ..., yn2 , where each yi is a string of length n0.6 representing a
configuration of M . The total length of ~y is |~y| = n2.6, which is too long for an
ATM to guess in linear time.

D
R

A
FT

62 CHAPTER 3. PEANO ARITHMETIC AND ITS SUBSYSTEMS

So we guess a vector ~z = z1, ..., zn representing every n-th string in ~y, so
now M accepts x iff

∃~z∀i < n∃~u(~u shows zi+1 follows from zi in n steps and zn is accepting)

Now the lengths of ~z and ~u are only n1.6, and we have made progress. Two
more iterations of this idea (one for the ∃~y, one for the ∃~u; increasing the
nesting depth of quantifiers to 7) will get the lengths of the quantified strings
below linear. �

For the following corollary, NL is the class of relations computable by non-
deterministic Turing machines in logarithmic space. See Appendix A.2.

Corollary 3.60. NL ⊆ LTH.

Proof. We use the fact that NL ⊆ NTimeSpace(nO(1), logn). �

Remark We know

L ⊆ LTH ⊆ PH ⊆ PSPACE

where no two adjacent inclusions are known to be proper, although we know
L ⊂ PSPACE by a simple diagonal argument.

Also LTH ⊆ LinSPACE ⊂ PSPACE, where the first inclusion is not
known to be proper. Finally P and LTH are thought to be incomparable, but
no proof is known. In fact it is difficult to find a natural example of a problem
in P which seems not to be in LTH.

3.4.3 Characterizing the LTH by I∆0

First note that LTH is a class of relations. The corresponding class of functions
is defined in terms of function graphs. Given a function f(~x), its graph Gf (~x, y)
is the relation

Gf (~x, y) ≡ (y = f(~x))

Definition 3.61 (FLTH). A function f : Nk → N is in FLTH precisely if its
graph Gf (~x, y) is in LTH and its length has at most linear growth, i.e.,

f(~x) = (x1 + ...+ xk)
O(1)

Theorem 3.62 (I∆0-Definability Theorem). A function is Σ1-definable in
I∆0 iff it is in FLTH.

Proof. The =⇒ direction follows from the Bounded Definability Theorem (3.33),
the above definition of LTH functions and the LTH Theorem (3.58).

D
R

A
FT

3.5. BUSS’S SI2 HIERARCHY: THE ROAD NOT TAKEN 63

For the ⇐= direction, suppose f(~x) is an LTH function. By definition the
graph (y = f(~x)) is an LTH relation, and hence by the LTH Theorem (3.58)
there is a ∆0-formula ϕ(~x, y) such that

y = f(~x)↔ ϕ(~x, y)

Further, by definition, |f(~x)| is linear bounded, so there is an LA-term t(~x) such
that

f(~x) ≤ t(~x) (3.29)

The sentence ∀~x∃!yϕ(~x, y) is true, but unfortunately there is no reason to believe
that it is provable in I∆0. We can solve the problem of proving uniqueness by
taking the least y satisfying ϕ(~x, y). In general, for any formula A(y), we define
Miny[A(y)](y) to mean that y is the least number satisfying A(y). Thus

Miny[A(y)](y) ≡def A(y) ∧ ∀z < y(¬A(z))

If A(y) is bounded, then we can apply the least number principle to A(y) to
obtain

I∆0 ⊢ ∃yA(y) ⊃ ∃!yMiny[A(y)](y) (3.30)

This solves the problem of proving uniqueness. To prove existence, we modify
ϕ and define

ψ(~x, y) ≡def (ϕ(~x, y) ∨ y = t(~x) + 1)

where t(~x) is the bounding term from (3.29). Now define

ϕ′(~x, y) ≡ Miny[ψ(~x, y)](~x, y)

Then ϕ′(~x, y) also represents the relation (y = f(~x)), and since trivially I∆0

proves ∃yψ(~x, y) we have by (3.30)

I∆0 ⊢ ∀~x∃!yϕ′(~x, y)�

3.5 Buss’s Si
2 Hierarchy: The Road Not Taken

Buss’s PhD thesis Bounded Arithmetic (published as a book in 1986, [?]) intro-
duced the hierarchies of bounded theories

S1
2 ⊆ T1

2 ⊆ S2
2 ⊆ T2

2 ⊆ ... ⊆ Si2 ⊆ Ti
2 ⊆ ...

These theories, whose definable functions are those in the polynomial hierarchy,
are of central importance in the area of bounded arithmetic.

Here we present a brief overview of the original theories Si2 and Ti
2, and

their union S2 = T2 =
⋃∞
i=1 Si2. The idea is to modify the theory I∆0 so that

the definable functions are those in the polynomial hierarchy as opposed to the
Linear Time Hierarchy, and more importantly to introduce the theory S1

2 whose
definable functions are precisely the polynomial time functions. In order to do
this, the underlying language is augmented to include the function symbol #,

D
R

A
FT

64 CHAPTER 3. PEANO ARITHMETIC AND ITS SUBSYSTEMS

whose intended interpretation is x#y = 2|x|·|y|. Thus terms in S2 represent
functions which grow at the rate of polynomial time functions, as opposed to
the linear-time growth rate of I∆0 terms. The full vocabulary for S2 is

LS2 = [0, S,+, ·,#, |x|, ⌊1
2
x⌋; =,≤]

(S is the Successor function, |x| is the length (of the binary representation) of
x).

Sharply bounded quantifiers have the form ∀x ≤ |t| or ∃x ≤ |t| (where x does
not occur in t). These are important because sharply bounded (as opposed to
just bounded) formulas represent polynomial time relations (and in fact TC0

relations). The syntactic class Σb
i (b for “bounded”) consists essentially of those

formulas with at most i blocks of bounded quantifiers beginning with ∃, with any
number of sharply bounded quantifiers of both kinds mixed in. The formulas
in Σb

1 represent precisely the NP relations, and more generally formulas in Σb
i

represent precisely the relations in the level Σp
i in the polynomial hierarchy.

In summary, bounded formulas in the language of S2 represent precisely the
relations in the polynomial hierarchy.

The axioms for Ti
2 consist of 32 ∀-sentences called BASIC which define the

symbols of LS2 , together with the Σb
i -IND scheme. The axioms for Si2 are the

same as those of Ti
2, except for Σb

i -IND is replaced by the Σb
i -PIND scheme:

[ϕ(0) ∧ ∀x(ϕ(⌊1
2
x⌋) ⊃ ϕ(x))] ⊃ ∀xϕ(x)

where ϕ(x) is any Σb
i formula. Note that this axiom scheme is true in N. Also

for i ≥ 1, Ti
2 proves the Σb

i -PIND axiom scheme, and Si+1
2 proves the Σb

i -IND
axiom scheme. (Thus for i ≥ 1, Si2 ⊆ Ti

2 ⊆ Si+1
2 .)

For i ≥ 1, the functions Σb
i -definable in Si2 are precisely those polytime

reducible to relations in Σp
i−1 (level i − 1 of the polynomial hierarchy). In

particular, the functions Σb
1-definable in S1

2 are precisely the polynomial time
functions.

Since S2 is a polynomial-bounded theory, Parikh’s Theorem (3.20) can be ap-
plied to show that all Σ1-definable functions in S2 are polynomial time reducible
to PH. To show that the Σ1-definable functions in S1

2 are polynomial-time
computable requires a more sophisticated “witnessing” argument introduced by
Buss. We shall present this argument later in the context of the two-sorted
first-order theory V1.

In the following chapters we will present two-sorted versions 〈Vi〉 of 〈Si2〉
and 〈TVi〉 of 〈Ti

2〉. With the exception of V0 and TV0 (which have no cor-
responding theories in the Si2 hierarchy), the two-sorted versions are essentially
equivalent to the originals, but are simpler and naturally represent complexity
classes on strings as opposed to numbers. Buss introduced versions of these
second-order theories in his thesis, and Razborov and Zambella [?] have con-
tributed to their presentation and development.

D
R

A
FT

3.6. NOTES 65

3.6 Notes

The main references for this chapter are [?, ?] and [?, pp 277–293].
Parikh’s Theorem originally appears in [?], and the proof there is based in

the Herbrand Theorem, and resembles our “Alternative Proof” given at the end
of Section 3.3.2. Buss [?] gives a proof based on cut elimination which is closer
to our first proof.

James Bennett [?] was the first to show that the relation y = zx can be de-
fined by ∆0 formulas. Hájek and Pudlák [?] give a different definition and show
how to prove its basic properties in I∆0, and give a history of such definitions
and proofs. Our treatment of the relations y = 2x and BIT (i, x) in Section 3.3.3
follows that of Buss in [?], simplified with an idea from earlier proofs.

Bennett’s Trick, described in the proof of Lemma 3.57, is due to Bennett [?]
Section 1.7, where it is used to show that the rudimentary functions are closed
under a form of bounded recursion on notation.

Theorem 3.58, stating LTH = ∆N
0 , is due to Wrathall [?]. Nepomnjaščij’s

Theorem 3.59 appears in [?].

D
R

A
FT

66 CHAPTER 3. PEANO ARITHMETIC AND ITS SUBSYSTEMS

D
R

A
FTChapter 4

Two-Sorted First-Order

Logic

In this chapter we introduce two-sorted first-order logic, an extension of the
(single-sorted) first-order logic that we have seen in the previous chapters. Our
motivation for this two-sorted logic comes from descriptive complexity theory,
where each object (a language or a relation) in a complexity class is described
by a logical formula of a certain kind. In fact each object corresponds to the
set of all finite models of the formula. In the two-sorted logic setting, each
object corresponds to an interpretation of a variable in the formula satisfying the
formula in the standard model. Here we also study the corresponding function
classes: Each class C is associated with a theory whose class of provably total
functions is exactly FC, the function class corresponding to C. Our theories are
also related to propositional proof systems by way of propositional translation,
a topic to be covered later in the book.

In the first part of this chapter we present a brief introduction to descriptive
complexity theory. (A comprehensive treatment can be found in [?].) Then we
introduce the two-sorted first-order logic, describe the two-sorted complexity
classes, and explain how relations in these classes are represented by certain
classes of formulas. We revisit the LTH theorem for two-sorted logic We present
the sequent calculus LK2, the two-sorted version of LK. Finally we show how
to interpret two-sorted logic into single-sorted logic.

4.1 Basic Descriptive Complexity Theory

In descriptive complexity theory, an object (e.g. a set of graphs) in a complexity
class is specified as the set of all finite models of a given formula. Here we
consider the case in which the object is a language L ⊆ Σ∗, where Σ = {0, 1},
and the formula is a formula of the first-order predicate calculus. We assume

67

D
R

A
FT

68 CHAPTER 4. TWO-SORTED FIRST-ORDER LOGIC

that the underlying vocabulary consists of

LFO = [0,max ;X,BIT ,≤,=], (4.1)

where 0, max are constants, X is a unary predicate symbol, and BIT , ≤, =
are binary predicate symbols. We consider finite LFO -structures M in which
the universe M = {0, .., n − 1} for some natural number n ≥ 1, and max is
interpreted by n − 1. The symbols 0, =, ≤, and BIT receive their standard
interpretations. (Recall that BIT (i, x) holds iff the i-th bit in the binary rep-
resentation of x is 1. In the previous chapter we showed how to define BIT in
I∆0, but note that here it is a primitive symbol in LFO .)

Thus the only symbol without a fixed interpretation is the unary predicate
symbol X , and to specify a structure it suffices to specify the tuple of truth
values 〈X(0), X(1), ..., X(n − 1)〉. By identifying ⊤ with 1 and ⊥ with 0, we
see that there is a natural bijection between the set of structures and the set of
nonempty binary strings {0, 1}+.

The class FO (First-Order) of languages describable by LFO formulas is
defined as follows. First, for each binary string X , we denote by M[X] the
structure which is specified by the binary string X . Then the language L(ϕ) as-
sociated with an LFO sentence ϕ is the set of strings whose associated structures
satisfy ϕ:

L(ϕ) =def {X ∈ {0, 1}+ | M[X] |= ϕ}.
Definition 4.1 (The Class FO).

FO = {L | L = L(ϕ) for some LFO -sentence ϕ}

For example, let Leven be the set of strings whose even positions (starting
from the right at position 0) have 1. Then Leven ∈ FO, since Leven = L(ϕ),
where

ϕ ≡ ∀y(¬BIT (0, y) ⊃ X(y)).

To give a more interesting example, we use the fact [?, page 14] that the
relation x + y = z can be expressed by a first-order formula ϕ+(x, y, z) in the
vocabulary LFO . Then the set PAL of binary palindromes is represented by the
sentence

∀x∀y, x+ y = max ⊃ (X(x)↔ X(y)).

Thus PAL ∈ FO.
Immerman showed that the class FO is the same as a uniform version of AC0

(see Appendix A.4.1). Originally AC0 was defined in its nonuniform version,
which we shall refer to as AC0/poly . A language in AC0/poly is specified
by a polynomial size bounded depth family 〈Cn〉 of Boolean circuits, where
each circuit Cn has n input bits, and is allowed to have ¬-gates, as well as
unbounded fan-in ∧-gates and ∨-gates. In the uniform version, the circuit Cn
must be specified in a uniform way; for example one could require that 〈Cn〉 is
in FO.

Immerman showed that this definition of uniform AC0 is robust, in the sense
that it has several quite different characterizations. For example, the logtime

D
R

A
FT

4.2. TWO-SORTED FIRST-ORDER LOGIC 69

hierarchy LH consists of all languages recognizable by an ATM (Alternating
Turing Machine) in time O(log n) with a constant number of alternations. Also
CRAM[1] consists of all languages recognizable in constant time on a so-called
Concurrent Random Access Machine. The following theorem is from [?, Corol-
lary 5.32].

Theorem 4.2.

FO = AC0 = CRAM[1] = LH.

Of course the nonuniform class AC0/poly contains non-computable sets, and
hence it properly contains the uniform class AC0. Nevertheless in 1983 Ajtai
(and independently Furst, Saxe, and Sipser) proved that even such a simple set
as PARITY (the set of all strings with an odd number of 1’s) is not in AC0/poly
(and hence not in FO).

On the positive side, we pointed out that the set PAL of palindromes is in
FO, and hence in AC0. If we code a triple 〈U, V,W 〉 of strings as a single string
in some reasonable way then it is easy to see using a carry look-ahead adder that
binary addition (the set 〈U, V, U +V 〉) is in AC0. Do not confuse this with the
result of [?, page 14] mentioned above that some first-order formula φ+(x, y, z)
represents x+y = z, since here x, y, z represent elements in the modelM, which
have nothing much to do with the input string X .

In fact PARITY is efficiently reducible to binary multiplication, so Ajtai’s
result implies that the set 〈U, V, U · V 〉 is not in AC0. In contrast, there is a
first-order formula in the vocabulary LFO which represents x ·y = z in standard
structures with universe M = {0, ..., n− 1}.

4.2 Two-Sorted First-Order Logic

4.2.1 Syntax

Our two-sorted first-order logic is an extension of the (single-sorted) first-order
logic introduced in Chapter 2. Here there are two kinds of variables: the vari-
ables x, y, z, ... of the first sort are called number variables, and are intended to
range over the natural numbers; and the variables X,Y, Z, ... of the second sort
are called set (or also string) variables, and are intended to range over finite
subsets of natural numbers (which represent binary strings). Also the function
and predicate symbols are now over both sorts.

Definition 4.3 (Two-Sorted First-Order Vocabularies). A two-sorted
first-order language (or just two-sorted language, or language, or vocabulary)
L is specified by a set of function symbols and predicate symbols, just as in the
case of a single-sorted language (Section 2.1), except that the functions and pred-
icates now can take arguments of both sorts, and there are two kinds of functions:
the number-valued functions (or just number functions) and the string-valued
functions (or just string functions).

D
R

A
FT

70 CHAPTER 4. TWO-SORTED FIRST-ORDER LOGIC

In particular, for each n,m ∈ N, there is a set of (n,m)-ary number function
symbols, a set of (n,m)-ary string function symbols, and a set of (n,m)-ary
predicate symbols. An (0, 0)-ary function symbol is called a constant symbol,
which can be either a number constant or a string constant.

We use f, g, h, . . . as meta-symbols for number function symbols; F,G,H, . . .
for string function symbols; and P,Q,R, . . . for predicate symbols.

For example, consider the following two-sorted extension of LA (Defini-
tion 2.3):

Definition 4.4. L2
A = [0, 1,+, ·, | | ; =1, =2,≤,∈].

Here the symbols 0, 1,+, ·, =1 and ≤ are from LA; they are function and
predicate symbols over the first sort (=1 corresponds to = of LA). The function
|X | (the “length of X”) is a number-valued function and is intended to denote
the least upper bound of the set X (roughly the length of the corresponding
string). The binary predicate ∈ takes a number and a set as arguments, and
is intended to denote set membership. Finally, =2 is the equality predicate for
the second-sort objects. We will write = for both =1 and =2, its exact meaning
will be clear from the context.

We will use the abbreviation

X(t) =def t ∈ X

where t is a number term (Definition 4.5 below). Thus we think of X(i) as the
i-th bit of the binary string X .

Note that in L2
A the function symbols +, · each has arity (2, 0), while | | has

arity (0, 1) and the predicate symbol ∈ has arity (1, 1).
For a two-sorted language L, the notions of L-terms and L-formulas general-

ize the corresponding notions in the single-sorted case (Definitions 2.1 and 2.2).
Here we have two kinds of terms: number terms and string terms. As before,
we will drop mention of L when it is not important, or clear from the context.

Definition 4.5 (L-Terms). Let L be a two-sorted vocabulary:

1) Every number variable is an L-number term.

2) Every string variable is an L-string term.

3) If f is an (n,m)-ary number function symbol of L, t1, . . . , tn are L-number
terms, and T1, . . . , Tm are L-string terms, then ft1 . . . tnT1 . . . Tm is an L-
number term.

4) If F is an (n,m)-ary string function symbol of L, and t1, . . . , tn and
T1, . . . , Tm are as above, then Ft1 . . . tnT1 . . . Tm is an L-string term.

Note that all constants in L are L-terms.
We often denote number terms by r, s, t, . . ., and string terms by S, T,
The formulas over a two-sorted language L are defined as in the single-sorted

case (Definition 2.2), with the addition of quantifiers over string variables. These
are called string quantifiers, and the quantifiers over number variables are called
number quantifiers. Also note that a predicate symbol in general may have
arguments from both sorts.

D
R

A
FT

4.2. TWO-SORTED FIRST-ORDER LOGIC 71

Definition 4.6 (L-Formulas). Let L be a two-sorted first-order language.
Then a two-sorted first-order formula in L (or L-formula, or just formula) are
defined inductively as follows:

1) If P is an (n,m)-ary predicate symbol of L, t1, . . . , tn are L-number terms
and T1, . . . , Tm are L-string terms, then Pt1 . . . tnT1 . . . Tm is an atomic
L-formula. Also, each of the logical constants ⊥, ⊤ is an atomic formula.

2) If ϕ, ψ are L-formulas, so are ¬ϕ, (ϕ ∧ ψ), and (ϕ ∨ ψ).

3) If ϕ is an L-formula, x is a number variable and X is a string variable,
then ∀xϕ, ∃xϕ, ∀Xϕ and ∃Xϕ are L-formulas.

We often denote formulas by ϕ, ψ,
Recall that in L2

A we write X(t) for t ∈ X .

Example 4.7 (L2
A-Terms and L2

A-Formulas).

1) The only string terms of L2
A are the string variables X,Y, Z,

2) The number terms of L2
A are obtained from the constants 0, 1, number

variables x, y, z, . . ., and the lengths of the string variables |X |, |Y |, |Z|, . . .
using the binary function symbols +, ·.

3) The only atomic formulas of L2
A are ⊥, ⊤ or those of the form s = t,

X = Y , s ≤ t and X(t) for string variables X,Y and number terms s, t.

4.2.2 Semantics

As for single-sorted first-order logic, the semantics of a two-sorted language is
given by structures and object assignments. Here the universe of a structure
contains two sorts of objects, one for the number variables and one for the string
variables. As in the single-sorted case, we also require that the predicate symbols
=1 and =2 must be interpreted as the true equality in the respective sort. The
following definition generalizes the notion of a (single-sorted) structure given in
Definition 2.6.

Definition 4.8 (Two-Sorted Structures). Let L be a two-sorted language.
Then an L-structureM consists of the following:

1) A pair of two nonempty sets U1 and U2, which together are called the
universe. Number (resp. string) variables in an L-formulas are intended
to range over U1 (resp. U2).

2) For each (n,m)-ary number function symbol f of L an associated function
fM : Un1 × Um2 → U1.

3) For each (n,m)-ary string function symbol F of L an associated function
FM : Un1 × Um2 → U2.

4) For each (n,m)-ary predicate symbol P of L an associated relation PM ⊆
Un1 × Um2 .

Thus, for our “base” language L2
A, an L2

A-structure with universe 〈U1, U2〉
contains the following interpretations of L2

A:

D
R

A
FT

72 CHAPTER 4. TWO-SORTED FIRST-ORDER LOGIC

• Elements 0M, 1M ∈ U1 to interpret 0 and 1, respectively;

• Binary functions +M, ·M : U1×U1 → U1 to interpret + and ·, respectively;

• A binary predicate ≤M⊆ U2
1 interpreting ≤;

• A function | |M : U2 → U1;

• A binary relation ∈M⊆ U1 × U2.

Note that in an L2
A-structureM as above, an element α ∈ U2 can be specified

by the pair (|α|, Sα), where Sα = {u ∈ U1|u ∈M α}. Technically many different
elements of U2 could be represented by the same such pair. However, if we
define an equivalence class on U2 by stating two elements are equivalent if they
have the same pair, then the structure and object assignment (see definition
below) obtained by passing to equivalence classes satisfies exactly the same
formulas as the original structure and object assignment. Therefore without
loss of generality, we assume that every element α of U2 is uniquely specified by
(|α|, Sα).

Example 4.9 (The Standard Two-Sorted Model N2). The standard model
N2 has U1 = N and U2 the set of finite subsets of N. The number part of the
structure is the standard single-sorted first-order structure N. The relation ∈
gets its usual interpretation (membership), and for each finite subset S ⊆ N, |S|
is interpreted as one plus the largest element in S, or 0 if S is empty.

As in the single-sorted case, the truth value of a formula in a structure is
defined based on the interpretations of free variables occurring in it. Here we
need to generalize the notion of an object assignment (Definition 2.7):

Definition 4.10 (Two-Sorted Object Assignment). A two-sorted object
assignment (or just an object assignment) σ for a two-sorted structure M is
a mapping from the number variables to U1 together with a mapping from the
string variables to U2.

Notation We will write σ(x) for the first-sort object assigned to the number
variable x by σ, and σ(X) for the second-sort object assigned to the string
variable X by σ. Also as in the single-sorted case, if x is a variable and m ∈ U1,
then the object assignment σ(m/x) is the same as σ except it maps x to m, and
if X is a variable and M ∈ U2, then the object assignment σ(M/X) is the same
as σ except it maps X to M .

Now the Basic Semantic Definition (2.8) and the notionM |= ϕ[σ] (Defini-
tion 2.9) generalize in the obvious way.

Definition 4.11 (Basic Semantic Definition, Two-Sorted Case). Let L
be a two-sorted first-order language, let M be an L-structure with universe
〈U1, U2〉, and let σ be an object assignment for M. Each L-number term t
is assigned an element tM[σ] in U1, and each L-string term T is assigned an el-
ement TM[σ] in U2, defined by structural induction on terms t and T , as follows
(refer to Definition 4.5 for the definition of L-term):

a) xM[σ] is σ(x), for each number variable x

D
R

A
FT

4.3. TWO-SORTED COMPLEXITY CLASSES 73

b) XM[σ] is σ(X), for each string variable X

c) (ft1 · · · tnT1 . . . Tm)M[σ] = fM(tM1 [σ], . . . , tMn [σ], TM
1 [σ], . . . , TM

m [σ])

d) (Ft1 · · · tnT1 . . . Tm)M[σ] = FM(tM1 [σ], . . . , tMn [σ], TM
1 [σ], . . . , TM

m [σ])

Definition 4.12. For ϕ an L-formula, the notion M |= ϕ[σ] (M satisfies ϕ
under σ) is defined by structural induction on formulas ϕ as follows (refer to
Definition 4.6 for the definition of a formula):

a) M |= ⊤ and M 6|= ⊥
b) M |= (Pt1 · · · tnT1 . . . Tm)[σ] iff 〈tM1 [σ], . . . , tMn [σ], TM

1 [σ], . . . , TM
m [σ]〉 ∈

PM

c1) If L contains =1, then M |= (s = t)[σ] iff sM[σ] = tM[σ]

c2) If L contains =2, then M |= (S = T)[σ] iff SM[σ] = TM[σ]

d) M |= ¬ϕ[σ] iff M 6|= ϕ[σ].

e) M |= (ϕ ∨ ψ)[σ] iff M |= ϕ[σ] or M |= ψ[σ].

f) M |= (ϕ ∧ ψ)[σ] iff M |= ϕ[σ] and M |= ψ[σ].

g1) M |= (∀xϕ)[σ] iff M |= ϕ[σ(m/x)] for all m ∈ U1

g2) M |= (∀Xϕ)[σ] iff M |= ϕ[σ(M/X)] for all M ∈ U2

h1) M |= (∃xϕ)[σ] iff M |= ϕ[σ(m/x)] for some m ∈ U1

h2) M |= (∃Xϕ)[σ] iff M |= ϕ[σ(M/X)] for some M ∈ U2

Note that items c1) and c2) in the definition ofM |= A[σ] follow from b) and
the fact that =M

1 and =M
2 are always the equality relations in the respective

sorts.
The notions of “M |= ϕ”, “logical consequence”, “validity”, etc., are defined

as before (Definition 2.11), and we do not repeat them here. Also, the Sub-
stitution Theorem (2.15) generalizes to the current context, and the Formula
Replacement Theorem (2.16) continues to hold, and we will not restate them.

4.3 Two-sorted Complexity Classes

4.3.1 Notation for Numbers and Finite Sets

In Section 3.4 we explained how to interpret an element of a complexity class,
such as P (polynomial time) and LTH (Linear Time Hierarchy) as a rela-
tion over N. In this context the numerical inputs x1, . . . , xk of a relation
R(x1, . . . , xk) are presented in binary to the accepting machine. In the two-
sorted context, however, the relations R(x1, . . . , xk, X1, . . . , Xm) in question
have arguments of both sorts, and now the numbers xi are presented to the
accepting machines using unary notation (n is represented by a string of n 1’s)
instead of binary. The elements Xi of the second sort are finite subsets of N,
and below we explain exactly how we represent them as binary strings for the
purpose of presenting them as inputs to the accepting machine. The intuitive
reason that we represent the numerical arguments in unary is that now they

D
R

A
FT

74 CHAPTER 4. TWO-SORTED FIRST-ORDER LOGIC

play an auxiliary role as indices to the string arguments, and hence their values
are comparable in size to the length of the string arguments.

Thus a numerical relation R(x) with no string argument is in two-sorted
polynomial time iff it is computed in time 2O(n) on some Turing machine, where
n is the binary length of the input x. In particular, the relation Prime(x) is
easily seen to be in this class, using a “brute force” algorithm that tries all
possible divisors between 1 and x.

The binary string representation of a finite subset of N is defined as follows.
Recall that we write S(i) for i ∈ S (for i ∈ N and S ⊆ N). Thus if we write 0
for ⊥ and 1 for ⊤, then we can use the binary string

w(S) = S(n)S(n− 1) . . . S(1)S(0) (4.2)

to interpret the finite nonempty subset S of N, where n is the largest member
of S. We define w(∅) to be the empty string. For example,

w({0, 2, 3}) = 1101

Thus w is an injective map from finite subsets of N to {0, 1}∗, but it is not
surjective, since the string w(S) begins with 1 for all nonempty S. Nevertheless
w(S) is a useful way to represent S as an input to a Turing machine or circuit.

Using the method just described of representing numbers and strings, we can
define two-sorted complexity classes as sets of relations. For example two-sorted
P consists of the set of all relations R(~x, ~X) which are accepted in polynomial
time by some deterministic Turing machine, where each numerical argument xi
is represented in unary as an input, and each subset argumentsXi is represented
as the string w(Xi) as an input. Similar definitions specify the two-sorted poly-
nomial hierarchy PH, and the two-sorted complexity classes AC0 and LTH.

4.3.2 Representation Theorems

Notation If ~T = T1, . . . Tn, is a sequence of string terms, then |~T | denotes the
sequence |T1|, . . . , |Tn| of number terms.

Bounded number quantifiers are defined as in the single-sorted case (Defini-
tion 3.6). To define bounded string quantifiers, we need the length function |X |
of L2

A.

Notation A two-sorted language L is always assumed to be an extension of
L2
A.

Definition 4.13 (Bounded Formulas). Let L be a two-sorted language. If
x is a number variable and X a string variable that do not occur in the L-
number term t, then ∃x ≤ tϕ stands for ∃x(x ≤ t ∧ ϕ), ∀x ≤ tϕ stands for
∀x(x ≤ t ⊃ ϕ), ∃X ≤ tϕ stands for ∃X(|X | ≤ t ∧ ϕ), and ∀X ≤ tϕ stands for
∀X(|X | ≤ t ⊃ ϕ). Quantifiers that occur in this form are said to be bounded,
and a bounded formula is one in which every quantifier is bounded.

D
R

A
FT

4.3. TWO-SORTED COMPLEXITY CLASSES 75

Notation ∃~x ≤ ~tϕ stands for ∃x1 ≤ t1 . . . ∃xk ≤ tkϕ for some k, where no xi
occurs in any tj (even if i < j). Similarly for ∀~x ≤ ~t, ∃ ~X ≤ ~t, and ∀ ~X ≤ ~t.

If the above convention is violated in the sense that xi occurs in tj for i < j,

and the terms ~t are L2
A-terms, then new bounding terms

−→
t′ in L2

A can be found
which satisfy the convention. For example ∃x1 ≤ t1∃x2 ≤ t2(x1)ϕ is equivalent
to

∃x1 ≤ t1∃x2 ≤ t2(t1)(x2 ≤ t2(x1) ∧ ϕ)

We will now define the following important classes of formulas.

Definition 4.14 (The Σ1
1(L), ΣB

i (L) and ΠB
i (L) Formulas). Let L ⊇ L2

A

be a two-sorted language. Then ΣB
0 (L) = ΠB

0 (L) is the set of L-formulas whose
only quantifiers are bounded number quantifiers (there can be free string vari-
ables). For i ≥ 0, ΣB

i+1(L) (resp. ΠB
i+1(L)) is the set of formulas of the form

∃ ~X ≤ ~tϕ(~X) (resp. ∀ ~X ≤ ~tϕ(~X)), where ϕ is a ΠB
i (L) formula (resp. a ΣB

i (L)

formula), and ~t is a sequence of L2
A-terms not involving any variable in ~X. Also,

a Σ1
1(L) formula is one of the form ∃ ~Xϕ, where ~X is a vector of zero or more

string variables, and ϕ is a ΣB
0 (L) formula.

We will drop mention of L when it is clear from the context. Thus

ΣB
0 ⊆ ΣB

1 ⊆ ΣB
2 ⊆ · · ·

ΣB
0 ⊆ΠB

1 ⊆ ΠB
2 ⊆ · · ·

and for i ≥ 0
ΣB
i ⊆ΠB

i+1 and ΠB
i ⊆ ΣB

i+1

Notice the “strict” requirements on ΣB
i (L) and ΠB

i (L): formulas of these
classes must be in prenex form, with no string quantifier occurs within the scope
of any number quantifier. For example, ΣB

1 (L2
A) is usually called strict Σ1,b

1 by
other authors. Also notice that the bounding terms ~t must be in the basic
language L2

A.
In Section 3.3.1 we discussed the definability of predicates (i.e., relations)

and functions in a single-sorted theory. In the case of relations, the notion is
purely semantic, and does not depend on the theory, but only the underlying
language and the standard model. The situation is the same for the two-sorted
case, and so we will define the notion of a relation R(~x, ~X) represented by a
formula, without reference to a theory. As in the single-sorted case, we assume
that each relation symbol R has a standard interpretation in an expansion of
the standard model, in this case N2, and formulas in the following definition are
interpreted in the same model.

Definition 4.15 (Representable/Definable Relations). Let L ⊇ L2
A be a

two-sorted vocabulary, and let ϕ be an L-formula. Then we say that ϕ(~x, ~X)

represents (or defines) a relation R(~x, ~X) if

R(~x, ~X)↔ ϕ(~x, ~X) (4.3)

D
R

A
FT

76 CHAPTER 4. TWO-SORTED FIRST-ORDER LOGIC

If Φ is a set of L-formulas, then we say that R(~x, ~X) is Φ-representable (or
Φ-definable) if it is represented by some ϕ ∈ Φ.

If we want to represent a language L ⊆ {0, 1}∗, then we need to consider
strings that do not necessarily begin with 1. Thus the relation RL(X) corre-
sponding to L is defined by

RL(X)↔ w′(X) ∈ L
where the string w′(X) is obtained from w(X) (4.2) by deleting the initial 1
(and w′(∅) is the empty string).

Example 4.16. The language PAL (page 68) of binary palindromes is repre-
sented by the formula

ϕPAL(X)↔ (|X | ≤ 1) ∨ ∀x, y < |X |, x+ y + 2 = |X | ⊃ (X(x)↔ X(y))

Two-sorted AC0 restricted to numerical relations R(~x) is exactly the same
as single-sorted LTH as defined in Section 3.4.1. Both classes can be defined
in terms of alternating Turing machines: AC0 requires log time and constant
alternations, and LTH requires linear time and constant alternations. But for
AC0, numbers are represented in unary notation, so the length n of an input
x is x, whereas for LTH, numbers are represented in binary, so the length n of
an input x is about log x. Since an ATM accesses its input tape using an index
register written in binary (and it can guess and verify the binary number), it
does not matter whether an input number is written in binary or unary.

Thus for numerical relations, the following representation theorem is the
same as the LTH Theorem 3.58 (LTH = ∆N

0). For string relations, it can be
considered a restatement of Theorem 4.2 (FO = AC0).

Theorem 4.17 (ΣB
0 Representation Theorem). A relation R(~x, ~X) is in

AC0 iff it is represented by some ΣB
0 formula ϕ(~x, ~X).

Proof. In light of the above discussion, the proof is essentially the same as for
Theorem 3.58. The string arguments pose no problem: Each Xi is represented
on the input tape of the ATM by the binary string w(Xi) whose bits can be

accessed in the formula ϕ(~x, ~X) by atomic formulas Xi(t) for suitable terms t.
�

Notation For X a finite subset of N, let bin(X) be the number whose binary
notation is w(X) (see (4.2)). Thus

bin(X) =
∑

i

X(i)2i (4.4)

where here we treat the predicate X(i) as a 0–1-valued function. Define the
relations R+ and R× by

R+(X,Y, Z)↔ bin(X) + bin(Y) = bin(Z)

R×(X,Y, Z)↔ bin(X) · bin(Y) = bin(Z)

D
R

A
FT

4.3. TWO-SORTED COMPLEXITY CLASSES 77

As mentioned earlier, PARITY is efficiently reducible to R×, and hence
R× is not in AC0, and cannot be represented by any ΣB

0 formula. However
R+ is in AC0. To represent it as a ΣB

0 formula, we first define the relation
Carry(i,X, Y) to mean that there is a carry into bit position i when computing
bin(X) + bin(Y). Then (using the idea behind a carry-lookahead adder)

Carry(i,X, Y)↔ ∃k < i, (X(k) ∧ Y (k)) ∧ ∀j < i[k < j ⊃ (X(j) ∨ Y (j))] (4.5)

Thus

R+(X,Y, Z)↔|Z| ≤ |X |+ |Y | ∧ ∀i < |X |+ |Y |,
Z(i)↔ (X(i)⊕ Y (i)⊕ Carry(i,X, Y))

where ⊕ represents exclusive or.
Note that the ΣB

0 Representation Theorem can be alternatively proved by
using the characterization AC0 = FO. Here we need the fact that

FO[BIT] = FO[PLUS ,TIMES]

i.e., the vocabulary LFO in (4.1) can be equivalently defined as

[0,max ,+, · ;X,≤,=],

Note also that in LFO we have only one “free” unary predicate symbol X ,
so technically speaking, LFO formulas can describe only unary relations (i.e.,
languages). In order to describe a k-ary relation, one way is to extend the vo-
cabulary LFO to include additional “free” unary predicates. Then Theorem 4.2
continues to hold. Now the ΣB

0 Representation Theorem can be proved by
translating any ΣB

0 formula ϕ into an FO formula ϕ′ that describes the relation
represented by ϕ, and vice versa.

We use ΣP
i to denote level i ≥ 1 of the two-sorted polynomial hierarchy. In

particular, ΣP
1 denotes two-sorted NP. Thus a relation R(~x, ~X) is in ΣP

i iff it
is accepted by some polynomial time ATM with at most i alternations, starting
with existential, using the input conventions described in Section 4.3.1.

Theorem 4.18 (ΣB
i and Σ1

1 Representation Theorem). For i ≥ 1, a

relation R(~x, ~X) is in ΣP
i iff it is represented by some ΣB

i formula. The relation
is recursively enumerable iff it is represented by some Σ1

1 formula.

Proof. We show that a relation R(~x, ~X) is in NP iff it is represented by a ΣB
1

formula. First suppose that R(~x, ~X) is accepted by a nondeterministic polytime
Turing machine M. Then the ΣB

1 formula that represents R has the form

∃Y ≤ t(~x, ~X) ϕ(~x, ~X, Y)

where Y codes an accepting computation of M on input 〈~x, ~X〉, t represents the
upper bound on the length of such computation, and ϕ is a ΣB

0 formula that
verifies the correctness of Y . Here the bounding term t exists by the assumption

D
R

A
FT

78 CHAPTER 4. TWO-SORTED FIRST-ORDER LOGIC

that M works in polynomial time, and the formula ϕ can be easily constructed
given the transition function of M.

On the other hand, suppose that R(~x, ~X) is represented by the ΣB
1 formula

∃~Y ≤ ~t(~x, ~X) ϕ(~x, ~X, ~Y)

Then the polytime NTM M that accepts R works as follows. On input 〈~x, ~X〉
M simply guesses the values of ~Y , and then verifies that ϕ(~x, ~X, ~Y) holds. The
verification can be easily done in polytime (it is in fact in AC0 as shown by the
ΣB

0 Representation Theorem). �

4.3.3 The LTH Revisited

Consider LTH (Linear Time Hierarchy, Section 3.4) as a two-sorted complexity
class. Here we can define the relations in this class by linearly bounded formulas,
a concept defined below.

Definition 4.19. A formula ϕ over L2
A is called a linearly bounded formula if

all of its quantifiers are bounded by terms not involving ·.

Theorem 4.20 (Two-Sorted LTH Theorem). A relation is in LTH if and
only if it is represented by some linearly bounded formula.

The proof of this theorem is similar to the proof of Theorem 3.58. Here the
(⇐=) direction is simpler: For the base case, we need to calculate the number
terms t(x1, . . . , xk, |X1|, . . . , |Xm|) in time linear in (

∑
xi +

∑ |Xj |), and this
is straightforward.

For the other direction, as in the proof of the single-sorted LTH Theorem,
the interesting part is to show that relations in NLinTime can be represented
by linearly bounded formulas. Here we do not need to define the relation y =
2x as in the single-sorted case, since the relation X(i) (which stands for i ∈
X) is already in our vocabulary. We still need to “count” the number of 1-
bits in a string, i.e., we need to define the two-sorted version of Numones:
Numones2(a, i,X) is true iff a is the number of 1-bits in the first i low-order
bits of X . Again, Numones2 can be defined using Bennett’s Trick.

Exercise 4.21. a) Define using linearly bounded formula the relation m =
⌈
√
i⌉.

b) Define using linearly bounded formula the relation “k = the number of 1-bits
in the substring X(im) . . . X(im+m− 1)”.

c) Now define Numones2(a, i,X) using linearly bounded formula.

Exercise 4.22. Complete the proof of the Two-Sorted LTH Theorem.

In [?], Zambella considers the subset of L2
A without the number function ·,

denoted here by L2−
A , and introduces the notion of linear formulas, which are

the bounded formulas in the language L2−
A . Then LTH is also characterized as

D
R

A
FT

4.4. THE PROOF SYSTEM LK2 79

the class of relations representable by linear formulas. In order to prove this
claim from the Two-Sorted LTH Theorem above, we need to show that the
relation x · y = z is definable by some linear formula.

Exercise 4.23. Define the relation x · y = z using a linear formula. (Hint:
First define the relation “z is a multiple of y”.)

We have shown how to define the relation y = 2x using ∆0 formula in
Section 3.3.3. Here it is much easier to define this relation using linearly bounded
formulas.

Exercise 4.24. Show how to express y = 2x using linearly bounded formula.
(Hint: Use Numones2 from Exercise 4.21.)

4.4 The Proof System LK2

Now we extend the sequent system LK (Section 2.3) to a system LK2 for a
two-sorted language L2. As for LK, here we introduce the free string variables
denoted by α, β, γ, . . ., and the bound string variables X,Y, Z, . . . in addition to
the free number variables denoted by a, b, c, . . ., and the bound number variables
denoted by x, y, z,

Also, in LK2 the terms (of both sorts) do not involve any bound variable,
and the formulas do not have any free occurrence of any bound variable.

The system LK2 includes all axioms and rules for LK as described in Sec-
tion 2.3, where the term t is a number term respecting our convention for free
and bound variables above. In addition LK2 has the following four rules intro-
ducing string quantifiers, here T is any string term that does not contain any
bound string variable X,Y, Z, . . .:

String ∀ introduction rules

left:
ϕ(T),Γ −→ ∆

∀Xϕ(X),Γ −→ ∆
right:

Γ −→ ∆, ϕ(β)

Γ −→ ∆, ∀Xϕ(X)

String ∃ introduction rules

left:
ϕ(β),Γ −→ ∆

∃Xϕ(X),Γ −→ ∆
right:

Γ −→ ∆, ϕ(T)

Γ −→ ∆, ∃Xϕ(X)

Restriction The free variable β must not occur in the conclusion of ∀-right
and ∃-left.

The notions of LK2 proofs and LK2 anchored proofs generalize the notion
of LK proofs and anchored LK proofs. Then the Derivational Soundness, the
Completeness Theorem (2.24), and the Anchored Completeness Theorem (2.29)
continue to hold for LK2 (without equality).

In general, when the vocabulary L does not contain either of the equality
predicate symbols, then the notion of LK2-Φ proof is defined as in Defini-
tion 2.22. In the sequel our two-sorted vocabularies will all contain both of the

D
R

A
FT

80 CHAPTER 4. TWO-SORTED FIRST-ORDER LOGIC

equality predicates, so we will restrict our attention to this case. Here we need
to generalize the Equality Axioms given in Definition 2.36. Recall that we write
= for both =1 and =2.

Definition 4.25 (LK2 Equality Axioms for L). Suppose that L is a two-
sorted vocabulary containing both =1 and =2. The LK2 Equality Axioms for L
consists of the following axioms. (We let Λ stand for

t1 = u1, . . . , tn = un, T1 = U1, . . . , Tm = Um

in E4′, E4′′ and E5′.) Here t, u, ti, ui are number terms, and T, U, Ti, Ui are
string terms.

E1′. −→ t = t

E1′′. −→ T = T

E2′. t = u −→ u = t

E2′′. T = U −→ U = T

E3′. t = u, u = v −→ t = v

E3′′. T = U,U = V −→ T = V

E4′. Λ −→ ft1 . . . tnT1 . . . Tm = fu1 . . . unU1 . . . Um for each f in L
E4′′. Λ −→ Ft1 . . . tnT1 . . . Tm = Fu1 . . . unU1 . . . Um for each F in L:
E5′. Λ, P t1 . . . tnT1 . . . Tm −→ Pu1 . . . unU1 . . . Um for each P in L (here P is

not =1 or =2).

Definition 4.26 (LK2-Φ Proofs). Suppose that L is a two-sorted vocabulary
containing both =1 and =2, and Φ is a set of L-formulas. Then an LK2-Φ
proof is an LK2-Ψ proof in the sense of Definition 2.22, where Ψ is Φ together
with all instances of the LK2 Equality Axioms E1′, E1′′, . . ., E4′, E4′′, E5′

for L. If Φ is empty, we simply refer to an LK2-proof (but allow E1′, . . . ,E5′

as axioms).

Recall that if ϕ is a formula with free variables a1, . . . , an, α1, . . . , αm, then
∀ϕ, the universal closure of ϕ, is the sentence

∀x1 . . . ∀xn∀X1 . . . ∀Xmϕ(x1/a1, . . . , xn/an, X1/α1, . . . , Xm/αm)

where x1, . . . , xn, X1, . . . , Xm is a list of new bound variables. Also recall that
if Φ is a set of formulas, then ∀Φ is the set of all sentences ∀ϕ, for ϕ ∈ Φ.

The following Soundness and Completeness Theorem for the two-sorted sys-
tem LK2 is the analogue of Theorem 2.38, and is proved in the same way.

Theorem 4.27 (Soundness and Completeness of LK2). For any set Φ of
formulas and sequent S,

∀Φ |= S iff S has an LK2-Φ proof

Below we will state the two-sorted analogue of the Anchored LK Complete-
ness Theorem and the Subformula Property of Anchored LK Proofs (Theo-
rems 2.40 and 2.41). They can be proved just as in the case of LK.

D
R

A
FT

4.4. THE PROOF SYSTEM LK2 81

Definition 4.28 (Anchored LK2 Proof). An LK2-Φ proof π is anchored
provided every cut formula in π is a formula in some non-logical axiom of π
(including possibly E1′,E1′′, . . . ,E5′).

Theorem 4.29 (Anchored LK2 Completeness). Suppose that Φ is a set of
formulas closed under substitution of terms for variables and that the sequent S
is a logical consequence of ∀Φ. Then there is an anchored LK2-Φ proof of S.

Theorem 4.30 (Subformula Property of Anchored LK2 Proofs). If π is
an anchored LK2-Φ proof of a sequent S, then every formula in every sequent
of π is a term substitution instance of a sub-formula of a formula either in S
or in a non-logical axiom of π (including E1′, . . . ,E4′′,E5′).

As in the case for LK where the Anchored LK Completeness Theorem is
used to prove the Compactness Theorem (Theorem 2.43), the above Anchored
LK2 Completeness Theorem can be used to prove the following (two-sorted)
Compactness Theorem.

Theorem 4.31 (Compactness Theorem). If Φ is an unsatisfiable set of
(two-sorted) formulas, then some finite subset of Φ is unsatisfiable.

(See also the three alternative forms in Theorem 1.16.)
Form 1 of the Herbrand Theorem (Theorem 2.49) can also be extended to the

two-sorted logic, with the set of (single-sorted) equality axioms EL now replaced
by the set of two-sorted equality axioms E1′, E1′′, . . ., E4′′, E5′ above. Below
we will state only Form 2 of the Herbrand Theorem for the two-sorted logics.
Note that it also follows from Form 1, just as in the single-sorted case.

A two-sorted theory (or just theory, when it is clear) is defined as in Def-
inition 3.1, where now it is understood that the underlying language L is a
two-sorted language. Also, a universal theory is a theory which can be ax-
iomatized by universal formulas, (i.e., formulas in prenex form, in which all
quantifiers are universal).

Theorem 4.32 (Herbrand Theorem for Two-Sorted Logic). a) Let T
be a universal (two-sorted) theory, and let ϕ(x1, . . . , xk, X1, . . . , Xm, Z) be a
quantifier-free formula with all free variables displayed such that

T ⊢ ∀x1 . . . ∀xk∀X1 . . . ∀Xm∃Zϕ(~x, ~X,Z).

Then there exist finitely many string terms T1(~x, ~X), . . . , Tn(~x, ~X) such that

T ⊢ ∀x1 . . . ∀xk∀X1 . . . ∀Xm [ϕ(~x, ~X, T1(~x, ~X)) ∨ . . . ∨ ϕ(~x, ~X, Tn(~x, ~X))]

b) Similarly, let the theory T be as above, and let ϕ(x1, . . . , xk, z,X1, . . . , Xm)
be a quantifier-free formula with all free variables displayed such that

T ⊢ ∀x1 . . . ∀xk∀X1 . . . ∀Xm∃zϕ(~x, z, ~X).

Then there exist finitely many number terms t1(~x, ~X), . . . , tn(~x, ~X) such that

T ⊢ ∀x1 . . .∀xk∀X1 . . .∀Xm [ϕ(~x, t1(~x, ~X), ~X) ∨ . . . ∨ ϕ(~x, tn(~x, ~X), ~X)]

D
R

A
FT

82 CHAPTER 4. TWO-SORTED FIRST-ORDER LOGIC

The theorem easily extends to the cases where

T ⊢ ∀~x∀ ~X∃Z1 . . . ∃Znϕ(~x, ~X, ~Z).

and

T ⊢ ∀~x∀ ~X∃z1 . . . ∃znϕ(~x, ~z, ~X).

4.4.1 Two-Sorted Free Variable Normal Form

The notion of free variable normal form (Section 2.3.1) generalizes naturally to
LK2 proofs, where now the term free variable refers to free variables of both
sorts. Again there is a simple procedure for putting any LK2 proof into free
variable normal form (with the same endsequent), provided that the underlying
language has constant symbols of both sorts. This procedure preserves the size
and shape of the proof, and takes an anchored LK2-Φ proof to an anchored
LK2-Φ proof, provided that the set Φ of formulas is closed under substitution
of terms for free variables.

In the case of L2
A, there is no string constant symbol, so we expand the

notion of a LK2-Φ proof over L2
A by allowing the constant symbol ∅ (for the

empty string) and assume that Φ contains the following axiom:

E. |∅| = 0

Adding this symbol and axiom to any theory T over L2
A we consider will

result in a conservative extension of T , since every model for T can trivially
be expanded to a model of T ∪ {E}. Now any LK2 proof over L2

A can be
transformed to one in free variable normal form with the same endsequent, and
similarly for LK2-Φ for suitable Φ.

4.5 Single-Sorted Logic Interpretation

In this section we will briefly discuss how the Compactness Theorem and Her-
brand Theorem in the two-sorted logic follow from the analogous results for the
single-sorted logic that we have seen in Chapter 2. This section is indepen-
dent with the rest of the book, and it is the approach that we follow to prove
the above theorems in Section 4.4 that will be useful in later chapters, not the
approach that we present here.

Although a two-sorted logic is a generalization of a single-sorted logic by
having one more sort, it can be interpreted as a single-sorted logic by merging
both sorts and using 2 extra unary predicate symbols to identify elements of
the 2 sorts.

More precisely, for each two-sorted vocabulary L, w.l.o.g., we can assume
that it does not contain the unary predicate symbols FS (for first sort) and
SS (for second sort). Let L1 = {FS, SS} ∪ L, where it is understood that the
functions and predicates in L1 take arguments from a single sort.

In addition, let ΦL be the set of L1-formulas which consists of

D
R

A
FT

4.5. SINGLE-SORTED LOGIC INTERPRETATION 83

1) ∀x, FS(x) ∨ SS(x).

2) For each function symbol f of L1 (where f has arity (n,m) in L) the
formula

∀~x∀~y, (FS(x1) ∧ . . .FS(xn) ∧ SS(y1) . . . ∧ SS(ym)) ⊃ FS(f(~x, ~y))

(If f is a number constant c, the above formula is just FS(c).)

3) For each function symbol F of L1 (where F has arity (n,m) in L) the
formula

∀~x∀~y, (FS(x1) ∧ . . .FS(xn) ∧ SS(y1) . . . ∧ SS(ym)) ⊃ SS(F (~x, ~y))

(If F is a string constant α, the above formula is just SS(α).)

4) For each predicate symbol P of L1 (where P has arity (n,m) in L) the
formula

∀~x∀~y, P (~x, ~y) ⊃ (FS(x1) ∧ . . .FS(xn) ∧ SS(y1) . . . ∧ SS(ym))

Lemma 4.33. For each nonempty two-sorted language L, the set ΦL is satis-
fiable.

Proof. The proof is straightforward: For an arbitrary (two-sorted) L-structure
M with universe 〈U1, U2〉, we construct a (single-sorted) L1-structureM1 that
has universe 〈U1, U2〉, FSM1 = U1, SSM1 = U2, and the same interpretation as
inM for each symbol of L. It is easy to verify thatM1 |= ΦL. �

It is also evident from the above proof that any model M1 of ΦL can be
interpreted as a two-sorted L-structureM.

Now we construct for each L-formula ϕ an L1-formula ϕ1 inductively as
follows.

1) If ϕ is an atomic sentence, then ϕ1 =def ϕ.

2) If ϕ ≡ ϕ1 ∧ ϕ2 (or ϕ ≡ ϕ1 ∨ ϕ2, or ϕ ≡ ¬ψ), then ϕ1 =def ϕ
1
1 ∧ ϕ1

2 (or
ϕ1 ≡ ϕ1

1 ∨ ϕ1
2, or ϕ1 ≡ ¬ψ1, respectively).

3) If ϕ ≡ ∃xψ(x), then ϕ1 =def ∃x(FS(x) ∧ ψ1(x)).

4) If ϕ ≡ ∀xψ(x), then ϕ1 =def ∀x(FS(x) ⊃ ψ1(x)).

5) If ϕ ≡ ∃Xψ(X), then ϕ1 =def ∃x(SS(x) ∧ ψ1(x)).

6) If ϕ ≡ ∀Xψ(X), then ϕ1 =def ∀x(SS(x) ⊃ ψ1(x)).

Note that when ϕ is a sentence, then ϕ1 is also a sentence.
For a set Ψ of L-formulas, let Ψ1 denote the set {ϕ1 : ϕ ∈ Ψ}. The lemma

above can strengthened as follows.

Theorem 4.34. A set Ψ of L-sentences ϕ is satisfiable iff the set of ΦL ∪ Ψ1

of L1-sentences is satisfiable.

D
R

A
FT

84 CHAPTER 4. TWO-SORTED FIRST-ORDER LOGIC

Notice that in the statement of the theorem, Ψ is a set of sentences. In
general, the theorem may not be true if Ψ is a set of formulas.

Proof. For simplicity, we will prove the theorem when Ψ is the set of a single
sentence ϕ. The proof for the general case is similar.

For the ONLY IF direction, for any model M of ϕ we construct a L1-
structure M1 as in the proof of Lemma 4.33. It can be proved by structural
induction on ϕ that M1 |= ϕ1. By the lemma, M1 |= ΦL. Hence M1 |=
ΦL ∪ {ϕ1}.

For the other direction, suppose thatM1 is a model for ΦL∪{ϕ1}. Construct
the two-sorted L-structure M from M1 as in the remark following the proof
of Lemma 4.33. Now we can prove by structural induction on ϕ that M is a
model for ϕ. Therefore ϕ is also satisfiable. �

Exercise 4.35. Prove the Compactness Theorem for the two-sorted logic (4.31)
from the Compactness Theorem for single-sorted logic (2.43).

Exercise 4.36. Prove the Herbrand Theorem for the two-sorted logic (4.32)
from Form 2 of the Herbrand Theorem for single-sorted logic (3.38).

4.6 Notes

The main reference for Section 4.1 is [?] Sections 1.1, 1.2, 5.5. Our two-sorted
language L2

A is from Zambella [?, ?].

D
R

A
FTChapter 5

The Theory V0 and AC0

In this chapter we introduce the family of two-sorted theories V0 ⊂ V1 ⊆ V2 ⊆
· · · . For i ≥ 1, Vi corresponds to Buss’s single-sorted theories Si2 (Section 3.5).
The theory V0 characterizes AC0 in the same way that I∆0 characterizes LTH.
Similarly V1 characterizes P, and in general for i > 1, Vi is related to the i-th
level of the polynomial time hierarchy.

Here we concentrate on the theory V0, which will serve as the base theory:
all two-sorted theories introduced in this book are extensions of V0. It is ax-
iomatized by the set 2-BASIC of the defining axioms for the symbols in L2

A,
together with ΣB

0 -COMP (the comprehension axiom scheme for ΣB
0 formu-

las). For i ≥ 1, Vi is the same as V0 except that ΣB
0 -COMP is replaced by

ΣB
i -COMP. We generalize Parikh’s Theorem, and show that it applies to each

of the theories Vi.
The main result of this chapter is that V0 characterizes AC0: The prov-

ably total functions in V0 are precisely the AC0 functions. The proof of this
characterization is somewhat more involved than the proof of the analogous
characterization of LTH by I∆0 (Theorem 3.62). The hard part here is the
Witnessing Theorem for V0, which is proved by analyzing anchored LK2-V0

proofs. We also give an alternative proof of the witnessing theorem based on

the universal conservative extension V
0

of V0, using the Herbrand Theorem.

5.1 Definition and Basic Properties of Vi

The set 2-BASIC of axioms is given in Figure 5.1. Recall that t < u stands for
(t ≤ u ∧ t 6= u).

Axioms B1, . . . ,B8 are taken from the axioms in 1-BASIC for I∆0, and
B9, . . . ,B12 are theorems of I∆0 (see Examples 3.8 and 3.9). Axioms L1 and
L2 characterize |X | to be one more than the largest element of X , or 0 if X is
empty. Axiom SE (extensionality) specifies that sets X and Y are the same if
they have the same elements. Note that the converse

X = Y ⊃ (|X | = |Y | ∧ ∀i < |X |(X(i)↔ Y (i)))

85

D
R

A
FT

86 CHAPTER 5. THE THEORY V0 AND AC0

B1. x+ 1 6= 0 B7. (x ≤ y ∧ y ≤ x) ⊃ x = y
B2. x+ 1 = y + 1 ⊃ x = y B8. x ≤ x+ y
B3. x+ 0 = x B9. 0 ≤ x
B4. x+ (y + 1) = (x+ y) + 1 B10. x ≤ y ∨ y ≤ x
B5. x · 0 = 0 B11. x ≤ y ↔ x < y + 1
B6. x · (y + 1) = (x · y) + x B12. x 6= 0 ⊃ ∃y ≤ x(y + 1 = x)
L1. X(y) ⊃ y < |X | L2. y + 1 = |X | ⊃ X(y)
SE. [|X | = |Y | ∧ ∀i < |X |(X(i)↔ Y (i))] ⊃ X = Y

Figure 5.1: 2-BASIC

is valid because in every L2
A-structure, =2 must be interpreted as true equality

over the strings.

Exercise 5.1. Using 2-BASIC, show that

a) ¬x < 0.

b) x < x+ 1.

c) 0 < x+ 1.

d) x < y ⊃ x+ 1 ≤ y. (Use B10, B11, B7.)

e) x < y ⊃ x+ 1 < y + 1.

Definition 5.2 (Comprehension Axiom). If Φ is a set of formulas, then
the comprehension axiom scheme for Φ, denoted by Φ-COMP, is the set of all
formulas

∃X ≤ y∀z < y(X(z)↔ ϕ(z)), (5.1)

where ϕ(z) is any formula in Φ, and X does not occur free in ϕ(z).

In the above definition ϕ(z) may have free variables of both sorts, in addition
to z. We are mainly interested in the cases in which Φ is one of the formula
classes ΣB

i .

Definition 5.3 (Vi). For i ≥ 0, the theory Vi has the vocabulary L2
A and is

axiomatized by 2-BASIC and ΣB
i -COMP.

Notation Since now there are two sorts of variables, there are two different
types of induction axioms: One is on numbers, and is defined as in Defini-
tion 3.4 (where now Φ is a set of two-sorted formulas), and one is on strings,
which we will discuss later. For this reason, we will speak of number induction
axioms and string induction axioms. Similarly, we will use the notion of number
minimization axioms, which is different from the string minimization axioms
(to be introduced later). For convenience we repeat the definitions of the axiom
schemes for numbers below.

Definition 5.4 (Number Induction Axiom). If Φ is a set of two-sorted
formulas, then Φ-IND axioms are the formulas

[ϕ(0) ∧ ∀x, ϕ(x) ⊃ ϕ(x + 1)] ⊃ ∀zϕ(z)

D
R

A
FT

5.1. DEFINITION AND BASIC PROPERTIES OF VI 87

where ϕ is a formula in Φ.

Definition 5.5 (Number Minimization and Maximization Axioms).
The number minimization axioms (or least number principle axioms) for a set
Φ of two-sorted formulas are denoted Φ-MIN and consist of the formulas

ϕ(y) ⊃ ∃x ≤ y, ϕ(x) ∧ ¬∃z < xϕ(z)

where ϕ is a formula in Φ. Similarly the number maximization axioms for Φ
are denoted Φ-MAX and consist of the formulas

ϕ(0) ⊃ ∃x ≤ y, ϕ(x) ∧ ¬∃z ≤ y(x < z ∧ ϕ(z))

where ϕ is a formula in Φ.

In the above definitions, ϕ(x) is permitted to have free variables of both
sorts, in addition to x.

Notice that all axioms of V0 hold in the standard model N2 (page 72). In
particular, all theorems of V0 about numbers are true in N. Indeed we will show
that V0 is a conservative extension of I∆0: all theorems of I∆0 are theorems
of V0, and all theorems of V0 over LA are theorems of I∆0.

For the first direction, note that the above axiomatization of V0 contains
no explicit induction axioms, so we need to show that it proves the number
induction axioms for the ∆0 formulas. In fact, we will show that it proves
ΣB

0 -IND by showing first that it proves the X-MIN axiom, where

X-MIN ≡ 0 < |X | ⊃ ∃x < |X |(X(x) ∧ ∀y < x ¬X(y))

Lemma 5.6. V0 ⊢ X-MIN.

Proof. We reason in V0: By ΣB
0 -COMP there is a set Y such that |Y | ≤ |X |

and for all z < |X |
Y (z)↔ ∀y ≤ z ¬X(y) (5.2)

Thus the set Y consists of the numbers smaller than every element in X . As-
suming 0 < |X |, we will show that |Y | is the least member of X . Intuitively,
this is because |Y | is the least number that is larger than any member of Y .
Formally, we need to show: (i) X(|Y |), and (ii) ∀y < |Y |¬X(y). Details are as
follows.

First suppose that Y is empty. Then |Y | = 0 by B12 and L2, hence (ii)
holds vacuously by Exercise 5.1 a. Also, X(0) holds, since otherwise Y (0) holds
by B7 and B9. Thus we have proved (i).

Now suppose that Y is not empty, i.e., Y (y) holds for some y. Then y < |Y |
by L1, and thus |Y | 6= 0 by Exercise 5.1 a. By B12, |Y | = z+1 for some z and
hence (Y (z) ∧ ¬Y (z + 1)) by L1 and L2. Hence by (5.2) we have

∀y ≤ z ¬X(y) ∧ ∃i ≤ z + 1 X(i)

It follows that i = z + 1 in the second conjunct, since if i < z + 1 then i ≤ z
by B11, which contradicts the first conjunct. This establishes (i) and (ii), since
i = z + 1 = |Y |. �

D
R

A
FT

88 CHAPTER 5. THE THEORY V0 AND AC0

Consider the following instance of ΣB
0 -IND:

X-IND ≡ [X(0) ∧ ∀y < z(X(y) ⊃ X(y + 1))] ⊃ X(z)

Corollary 5.7. V0 ⊢ X-IND.

Proof. We prove by contradiction. Assume ¬X-IND, then we have for some z:

X(0) ∧ ¬X(z) ∧ ∀y < z(X(y) ⊃ X(y + 1))

By ΣB
0 -COMP, there is a set Y with |Y | ≤ z + 1 such that

∀y < z + 1 (Y (y)↔ ¬X(y)).

Then Y (z) holds by Exercise 5.1 b, so 0 < |Y | by a and L1. By Y -MIN, Y
has a least element y0. Then y0 6= 0 because X(0), hence y0 = x0 + 1 for some
x0, by B12. But then we must have X(x0) and ¬X(x0 + 1), which contradicts
our assumption. �

Corollary 5.8. Let T be an extension of V0 and Φ be a set of formulas in
T . Suppose that T proves the Φ-COMP axiom scheme. Then T also proves
the Φ-IND axiom scheme, the Φ-MIN axiom scheme, and the Φ-MAX axiom
scheme.

Proof. We show that T proves the Φ-IND axiom scheme. This will show that
V0 proves ΣB

0 -IND, and hence extends I∆0 and proves the arithmetic prop-
erties in Examples 3.8 and 3.9. The proof for the Φ-MIN and Φ-MAX axiom
schemes is similar to that for Φ-IND, but easier since these properties are now
available.

Let ϕ(x) ∈ Φ. We need to show that

T ⊢ [ϕ(0) ∧ ∀y, ϕ(y) ⊃ ϕ(y + 1)] ⊃ ϕ(z)

Reasoning in V0, assume

ϕ(0) ∧ ∀y, ϕ(y) ⊃ ϕ(y + 1) (5.3)

By Φ-COMP, there exists X such that |X | ≤ z + 1 and

∀y < z + 1 (X(y)↔ ϕ(y)). (5.4)

By B11, Exercise 5.1 c,e and (5.3) we conclude from this

X(0) ∧ ∀y < z(X(y) ⊃ X(y + 1))

Finally X(z) follows from this and X-IND, and so ϕ(z) follows from (5.4) and
Exercise 5.1 b. �

D
R

A
FT

5.1. DEFINITION AND BASIC PROPERTIES OF VI 89

It follows from the corollary that for all i ≥ 0, Vi proves ΣB
i -IND, ΣB

i -MIN,
and ΣB

i -MAX.

Theorem 5.9. V0 is a conservative extension of I∆0.

Proof. The axioms for I∆0 consist of B1, . . . ,B8 and the ∆0-IND axioms.
Since B1, . . . ,B8 are also axioms of V0, and we have just shown that V0 proves
the ΣB

0 -IND axioms (which include the ∆0-IND axioms), it follows that V0

extends I∆0. To show that V0 is conservative over I∆0 (i.e. theorems of V0 in
the language of I∆0 are also theorems of I∆0), we prove the following lemma.

Lemma 5.10. Any model M for I∆0 can be expanded to a model M′ for V0,
where the “number” part of M′ is M.

Note that Theorem 5.9 follows immediately from the above lemma, because
if ϕ is in the language of I∆0, then the truth of ϕ in M′ depends only on the
truth of ϕ inM. (See the proof of the Extension by Definition Theorem 3.30.)
�

Proof of Lemma 5.10. Suppose that M is a model of I∆0 with universe M =
U1. Recall that I∆0 proves B1, . . . ,B12, soM satisfies these axioms. Accord-
ing to the semantics for L2

A (Section 4.2.2), to expand M to a model M′ for
V0 we must construct a suitable universe U2 whose elements are determined by
pairs (m,S), where S ⊆ M and m = |S|. In order to satisfy axioms L1 and
L2, if S ∈ U2 is empty, then |S| = 0, and if S is nonempty, then S must have a
largest element s and |S| = s+ 1. Since S ⊆ M and |S| is determined by S, it
follows that the extensionality axiom SE is satisfied.

The other requirement for U2 is that the ΣB
0 -COMP axioms must be sat-

isfied. We will construct U2 to consist of all bounded subsets of M defined by
∆0-formulas with parameters inM . We use the following conventional notation:
If ϕ(x) is a formula and c is an element in M , then ϕ(c) represents ϕ(x) with a
constant symbol (also denoted c) substituted for x in ϕ, where it is understood
that the symbol c is interpreted as the element c in M . If ϕ(x, ~y) is a formula

and c, ~d are elements of M , we use the notation

S(c, ϕ(x, ~d)) = {e ∈M |e < c andM satisfies ϕ(e, ~d)}.

Then we define

U2 = {S(c, ϕ(x, ~d)) | c, d1, ..., dk ∈M and ϕ(x, ~y) is a ∆0(LA) formula} (5.5)

We must show that every nonempty element S of U2 has a largest element,
so that |S| can be defined to satisfy L1 and L2. The largest element exists
because the differences between the upper bound c for S and elements of S have
a minimum element, by ∆0-MIN. Specifically, if S = S(c, ϕ(x, ~d)) is nonempty

and m is the least z satisfying ϕ(c−· 1−· z, ~d), then define |S| = ℓϕ(c, ~d) where

ℓϕ(c, ~d) = c−· m.

D
R

A
FT

90 CHAPTER 5. THE THEORY V0 AND AC0

Exercise 5.11. Show that for each ∆0 formula ϕ(x, ~y), the function ℓϕ(z, ~y)
(extended to have the value 0 when S(z, ϕ(x, ~y)) is empty) is provably total in
I∆0.

It remains to show that ΣB
0 -COMP holds inM′. This means that for every

ΣB
0 formula ψ(z, ~x, ~Y) (with all free variables indicated) and for every vector ~d

of elements ofM interpreting ~x and every vector ~S of elements in U2 interpreting
~Y and for every c ∈M , the set

T = {e ∈M | e < c andM′ |= ψ(e, ~d, ~S)} (5.6)

must be in U2. Suppose that

Si = S(ci, ϕi(u, ~di))

for some ∆0 formulas ϕi(x, ~yi). Let θ(z, ~x, ~y1, ~y2, ... , w1, w2, ...) be the result of

replacing every sub-formula of the form Yi(t) in ψ(z, x̄, ~Y) by (ϕi(t, ~yi)∧ t < wi)
and every occurrence of |Yi| by ℓϕi

(wi, ~yi). (We may assume that ψ has no
occurrence of =2 by replacing every equation X =2 Z by a ΣB

0 formula using
the extensionality axiom SE.) Finally let

T = S(c, θ(z, ~d, ~d1, ~d2, ... , c1, c2, ...)).

Then T satisfies (5.6). Since the functions ℓϕi
are Σ1-definable in I∆0, by the

Conservative Extension Lemma 3.35, θ can be transformed into an equivalent
∆0(LA) formula. Thus T ∈ U2. �

Exercise 5.12. Suppose that instead of defining U2 according to (5.5), we de-
fined U2 to consist of all subsets of M which have a largest element, together with
∅. Explain why the ΣB

0 -COMP axioms may not be satisfied in the resulting
structure 〈U1, U2〉.
Exercise 5.13. Suppose that we want to prove that V0 is conservative over
I∆0 by considering an anchored LK2 proof instead of the above model-theoretic
argument. Here we consider a small part of such an argument. Suppose that
ϕ is an I∆0 formula and π is an anchored LK2-V0 proof of −→ ϕ. Suppose
(to make things easy) that no formula in π contains a string quantifier. Show
explicitly how to convert π to an LK-I∆0 proof π′ of −→ ϕ.

Since according to Theorem 5.9 V0 extends I∆0, we will freely use the
results in Chapter 3 when reasoning in V0 in the sequel.

5.2 Two-Sorted Functions

Complexity classes of two-sorted relations were discussed in Section 4.3 Now
we associate with each two-sorted complexity class C of relations a two-sorted
function class FC. Two-sorted functions are either number functions or string
functions. A number function f(~x, ~Y) takes values in N, and a string function

F (~x, ~Y) takes finite subsets of N as values.

D
R

A
FT

5.2. TWO-SORTED FUNCTIONS 91

Definition 5.14. A function f or F is polynomially bounded (or p-bounded)

if there is a polynomial p(~x, ~y) such that f(~x, ~Y) ≤ p(~x, |~Y |) or |F (~x, ~Y)| ≤
p(~x, |~Y |).

All function complexity classes we consider here contain only p-bounded
functions.

A natural way of defining function classes is in terms of bit graph.

Definition 5.15 (Bit Graph). The bit graph BF of a string function F (~x, ~Y)
is defined by

BF (i, ~x, ~Y)↔ F (~x, ~Y)(i).

Definition 5.16 (Function Class). If C is a two-sorted complexity class of
relations, then the corresponding functions class FC consists of all p-bounded
number functions whose graphs are in C, together with all p-bounded string
functions whose bit graphs are in C.

In particular, the string functions in FAC0 are those p-bounded functions
whose bit graphs are in AC0.

The following characterization of FAC0 follows from the above definitions
and the ΣB

0 Representation Theorem (Theorem 4.17).

Corollary 5.17. A string function is in FAC0 if and only if it is p-bounded,
and its bit graph is represented by a ΣB

0 formula. The same holds for a number
function, with graph replacing bit graph.

An interesting example of a string function in FAC0 is binary addition. Note
that as in (4.4) we can treat a finite subset X ⊂ N as the natural number

bin(X) =
∑

i

X(i)2i

where we write 0 for ⊥ and 1 for ⊤. We will write X+Y for the string function
“binary addition”, so X + Y = bin(X) + bin(Y). Let Carry(i,X, Y) hold iff
there is a carry into bit position i when computing X+Y . Then Carry(i,X, Y)
is represented by the ΣB

0 formula given in (4.5).
The bit graph of X + Y can be defined as follows.

Example 5.18 (Bit Graph of String Addition). The bit graph of X+Y is

(X + Y)(i)↔ i < |X |+ |Y | ∧ [X(i)⊕ Y (i)⊕ Carry(i,X, Y)] (5.7)

where p⊕ q ≡ ((p ∧ ¬q) ∨ (¬p ∧ q)).

In general, the graph GF (~x, ~Y , Z) ≡ (Z = F (~x, ~Y)) of a string function

F (~x, ~Y) can be defined from its bit graph as follows:

GF (~x, ~Y , Z) ↔ ∀i (Z(i)↔ BF (i, ~x, ~Y))

D
R

A
FT

92 CHAPTER 5. THE THEORY V0 AND AC0

So if F is polynomially bounded and its bit graph is in AC0, then its graph
is also in AC0, because

GF (~x, ~Y , Z) ↔ |Z| ≤ t ∧ ∀i < t (Z(i)↔ BF (i, ~x, ~Y)) (5.8)

where t is the bound on the length of F .
As we noted earlier (Section 4.1), the relation R× is not in AC0, where

R×(X,Y, Z)↔ bin(X) · bin(Y) = bin(Z)

(because PARITY, which is not in AC0, is reducible to it). As a result, the bit
graph of (X × Y)(i) is not representable by any ΣB

0 formula, where X × Y =
bin(X) · bin(Y) is the string function “binary multiplication”.

If a string function F (X) is polynomially bounded, it is not enough to say
that its graph is an AC0 relation in order to ensure that F ∈ FAC0. For
example, let M be a fixed polynomial-time Turing machine, and define F (X)
to be a string coding the computation of M on input X . If the computation is
nicely encoded then F (X) is polynomially bounded and the graph Y = F (X)
is an AC0 relation, but if the Turing machine computes a function not in AC0

(such as the number of ones in X) then F 6∈ FAC0.
For the same reason that the numerical AC0 relations in the two-sorted

setting are precisely the LTH relations in the single-sorted setting (see the
proof of the ΣB

0 Representation Theorem, 4.17), number functions with no
string arguments are AC0 functions iff they are single-sorted LTH functions.

The nonuniform version of FAC0 consists of functions computable by bounded-
depth polynomial-size circuits, and it is clear from this definition that the class
is closed under composition. It is also clear that nonuniform AC0 is closed
under substitution of (nonuniform) AC0 functions for parameters. These are
some of the natural properties that also hold for uniform AC0 and FAC0.

Exercise 5.19. Show that a number function f(~x, ~X) is in FAC0 if and only
if

f(~x, ~X) = |F (~x, ~X)|
for some string function F (~x, ~X) in FAC0.

Theorem 5.20. a) The AC0 relations are closed under substitution of AC0

functions for variables.

b) The AC0 functions are closed under composition.

c) The AC0 functions are closed under definition by cases, i.e., if ϕ is an AC0

relation, g, h and G,H are functions in FAC0, then the functions f and
F defined by

f =

{
g if ϕ,
h otherwise

F =

{
G if ϕ,
H otherwise

are also in FAC0.

D
R

A
FT

5.2. TWO-SORTED FUNCTIONS 93

Proof. We will prove a) for the case of substituting a string function for a string
variable. The case of substituting a number function for a number variable is
left as an easy exercise. Part b) follows easily from part a). We leave part c)
as an exercise.

Suppose that R(~x, ~X, Y) is an AC0 relation and F (~x, ~X) an AC0 function.

We need to show that the relation Q(~x, ~X) ≡ R(~x, ~X, F (~x, ~X)) is also an AC0

relation, i.e., it is representable by some ΣB
0 formula.

By the ΣB
0 Representation Theorem (4.17) there is a ΣB

0 formula ϕ(~x, ~X, Y)
that represents R:

R(~x, ~X, Y)↔ ϕ(~x, ~X, Y)

By Corollary 5.17 there is a ΣB
0 formula θ(i, ~x, ~X) and a number term t(~x, ~X)

such that

F (~x, ~X)(i)↔ i < t(~x, ~X) ∧ θ(i, ~x, ~X). (5.9)

It follows from Exercise 5.19 that the relation z = |F (~x, ~X)| is represented by a
ΣB

0 formula η, so

z = |F (~x, ~X)| ↔ η(z, ~x, ~X) (5.10)

The ΣB
0 formula that represents the relationQ(~x, ~X) is obtained from ϕ(~x, ~X, Y)

by successively eliminating each occurrence of Y using (5.9) and (5.10) as fol-
lows.

First eliminate all atomic formulas of the form Y = Z (or Z = Y) in ϕ
by replacing them with equivalent formulas using the extensionality axiom SE.
Thus

Y = Z ↔ (|Y | = |Z|) ∧ ∀i < |Y |(Y (i)↔ Z(i))

Now Y can only occur in the form |Y | or Y (r), for some term r. Any occurrence

of |Y | in ϕ(~x, ~X, Y) must be in the context of an atomic formula ψ(~x, ~X, |Y |),
which we replace with

∃z ≤ t(~x, ~X) (η(z, ~x, ~X) ∧ ψ(~x, ~X, z)).

Finally we replace each occurrence of Y (r) in ϕ(~x, ~X, Y) by

r < t(~x, ~X) ∧ θ(r, ~x, ~X).

The result is a ΣB
0 formula which represents Q(~x, ~X). �

Exercise 5.21. Prove part a) of Theorem 5.20 for the case of substitution of
number functions for variables. Also prove parts b) and c) of the theorem.

D
R

A
FT

94 CHAPTER 5. THE THEORY V0 AND AC0

5.3 Parikh’s Theorem for Two-Sorted Logic

Recall (Section 3.2) that a term t(~x) is a bounding term for a function symbol
f in a single-sorted theory T if

T ⊢ ∀~x f(~x) ≤ t(~x)

For a two-sorted theory T whose vocabulary is an extension of L2
A, we say that

a number term t(~x, ~X) is a bounding term for a number function f in T if

T ⊢ ∀~x∀ ~X f(~x, ~X) ≤ t(~x, ~X)

Also, t(~x, ~X) is a bounding term for a string function F in T if

T ⊢ ∀~x∀ ~X |F (~x, ~X)| ≤ t(~x, ~X)

Definition 5.22. A number function or a string function is polynomially bounded
in T if it has a bounding term in the language L2

A.

Exercise 5.23. Let T be a two-sorted theory over the vocabulary L ⊇ L2
A.

Suppose that T extends I∆0. Show that if the functions of L are polynomially
bounded in T , then for each number term s(~x, ~X) and string term T (~x, ~X) of

L, there is an L2
A-number term t(~x, ~X) such that

T ⊢ ∀~x∀ ~X s(~x, ~X) ≤ t(~x, ~X) and T ⊢ ∀~x∀ ~X |T (~x, ~X)| ≤ t(~x, ~X)

Note that a bounded formula is one in which every quantifier (both string and
number quantifiers) is bounded. Recall the definition of a polynomial-bounded
single-sorted theory (Definition 3.19).

In two-sorted logic, a polynomial-bounded theory is required to extend V0.
The formal definition follows.

Definition 5.24 (Polynomial-Bounded Two-Sorted Theory). Let T be a
two-sorted theory over the vocabulary L. Then T is a polynomial-bounded the-
ory if (i) it extends V0; (ii) it can be axiomatized by a set of bounded formulas;
and (iii) each function f or F in L is polynomially bounded in T .

Note that each theory Vi, i ≥ 0, is a polynomial-bounded theory. In fact,
all two-sorted theories considered in this book are polynomial-bounded.

Theorem 5.25 (Parikh’s Theorem, Two-Sorted Case). Suppose that T
is a polynomial-bounded theory and ϕ(~x, ~y, ~X, ~Y) is a bounded formula with all
free variables indicated such that

T ⊢ ∀~x∀ ~X∃~y∃~Y ϕ(~x, ~y, ~X, ~Y) (5.11)

Then
T ⊢ ∀~x∀ ~X∃~y ≤ t∃~Y ≤ tϕ(~x, ~y, ~X, ~Y) (5.12)

for some L2
A-term t = t(~x, ~X) containing only the variables (~x, ~X).

D
R

A
FT

5.3. PARIKH’S THEOREM FOR TWO-SORTED LOGIC 95

It follows from Exercise 5.23 that the bounding term t can be taken to be a
term in L2

A.
It suffices to prove the following simple form of the above theorem.

Lemma 5.26. Suppose that T is a polynomial-bounded theory, and ϕ(z, ~x, ~X)
is a bounded formula with all free variables indicated such that

T ⊢ ∀~x∀ ~X∃zϕ(z, ~x, ~X)

Then
T ⊢ ∀~x∀ ~X∃z ≤ t(~x, ~X)ϕ(z, ~x, ~X)

for some term t(~x, ~X) with all variables indicated.

Proof of Parikh’s Theorem from Lemma 5.26. Define (omitting ~x and ~X)

ψ(z) ≡ ∃~y ≤ z∃~Y ≤ zϕ(~y, ~Y)

From the assumption (5.11) we conclude that T ⊢ ∃zψ(z), since we can take

z = y1 + ...+ yk + |Y1|+ ...+ |Yℓ|
Since ϕ is a bounded formula, ψ is also a bounded formula. By the lemma, we
conclude that T proves ∃z ≤ tψ(z), where the variables in t satisfy Parikh’s
Theorem. Thus (5.12) follows. �

Proof of Lemma 5.26. The proof is the same as the proof of Parikh’s Theorem
in the single-sorted logic (page 40), with minor modifications. Refer to Sec-
tion 4.4 for the system LK2. Here we consider an anchored LK2-T proof π of
∃zϕ(z,~a, ~α), where T is the set of all term substitution instances of axioms of
T (note that now we have both the substitution of number terms for number
variables and string terms for string variables). We assume that π is in free
variable normal form (see Section 4.4.1).

We convert π to a proof π′ by converting each sequent S in π into a sequent
S′ and providing an associated derivation D(S), where S′ and D(S) are defined
by induction on the depth of S in π so that the following is satisfied:

Induction Hypothesis: If S has no occurrence of ∃yϕ, then S′ = S. If S has
one or more occurrences of ∃yϕ, then S′ is a sequent which is the same as S
except all occurrences of ∃yϕ are replaced by a single occurrence of ∃y ≤ tϕ,
where t is an L2

A-number term that depends on S and the placement of S in π.
Further every variable in t occurs free in the original sequent S.

As discussed in Section 4.4.1, if the underlying vocabulary has no string
constant symbol (for example L2

A), then we allow the string constant ∅ to
occur in π, in order to assume that it is in free variable normal form. Thus
the bounding term t in the endsequent −→ ∃y ≤ tϕ may contain ∅. Since t is
an L2

A(∅)-term, each occurrence of ∅ is in the context |∅|, and hence can be
replaced by 0 using the axiom E: |∅| = 0.

The Cases I–V are supplemented to consider the four string quantifier rules,
which are treated in the same way as their LK counterparts. �

D
R

A
FT

96 CHAPTER 5. THE THEORY V0 AND AC0

5.4 Definability in V0

Recall the notion of Φ-definable single-sorted function (Definition 3.27). For
a two-sorted theory T , this notion is defined in the same way for functions of
each sort, and in particular T must be able to prove existence and uniqueness
of function values.

Definition 5.27 (Two-Sorted Definability). Let T be a theory with vocab-
ulary L ⊇ L2

A, and let Φ be a set of L-formulas. A number function f not in L
is Φ-definable in T if there is a formula ϕ(~x, y ~X) in Φ such that

T ⊢ ∀~x∀ ~X∃!yϕ(~x, y, ~X) (5.13)

and
y = f(~x, ~X)↔ ϕ(~x, y, ~X) (5.14)

A string function F not in L is Φ-definable in T if there is a formula ϕ(~x, ~X, Y)
in Φ such that

T ⊢ ∀~x∀ ~X∃!Y ϕ(~x, ~X, Y) (5.15)

and
Y = F (~x, ~X)↔ ϕ(~x, ~X, Y) (5.16)

Then (5.14) is a defining axiom for f and (5.16) is a defining axiom for F .
We say that f or F is definable in T if it is Φ-definable in T for some Φ.

The Extension by Definition Theorem (3.30) continues to hold. In particular,
adding a definable function symbol together with its defining axiom to a two-
sorted theory T results in a conservative extension of T .

If Φ is the set of all L2
A-formulas, then every arithmetical function (that is,

every function whose graph is represented by an L2
A-formula) is Φ-definable in

V0. To see this, suppose that F (~x, ~X) has defining axiom (5.16). Then the

graph of F is also defined by the following formula ϕ′(~x, ~X, Y):

(∃!Zϕ(~x, ~X,Z) ∧ ϕ(~x, ~X, Y)) ∨ (¬∃!Zϕ(~x, ~X,Z) ∧ Y = ∅)

Then (5.15) with ϕ′ for ϕ is trivially provable in V0.
We want to choose a standard class Φ of formulas such that the class of

Φ-definable functions in a theory T depends nicely on the proving power of T ,
so that various complexity classes can be characterized by fixing Φ and varying
T . In single-sorted logic, our choice for Φ was Σ1, and we defined the provably
total functions of T to be the Σ1-definable functions in T . Here our choice for Φ
is Σ1

1 (recall (Definition 4.14) that a Σ1
1 formula is a formula of the form ∃ ~Xϕ,

where ϕ is a ΣB
0 formula). The notion of a provably total function in two-sorted

logic is defined as follows.

Definition 5.28 (Provably Total Function). A function (which can be either
a number function or a string function) is said to be provably total in a theory
T iff it is Σ1

1-definable in T .

D
R

A
FT

5.4. DEFINABILITY IN V0 97

If T consists of all formulas of L2
A which are true in the standard model

N2, then the functions provably total in T are precisely all total functions com-
putable on a Turing machine. The idea here is that the existential string quan-
tifiers in a Σ1

1 formula can be used to code the computation of a Turing machine
computing the function. If T is a polynomially bounded theory, then both the
function values and the computation must be polynomially bounded. In fact,
the following result in a corollary of Parikh’s Theorem.

Corollary 5.29. Let T be a polynomial-bounded theory. Then all provably total
functions in T are polynomially bounded. A function is provably total in T iff
it is ΣB

1 -definable in T .

We will show that the provably total functions in V0 are precisely the func-
tions in FAC0, and in the next chapter we will show that the provably total
functions in V1 are precisely the polynomial time functions. Later we will give
similar characterizations of other complexity classes.

Exercise 5.30. Show that for any theory T whose vocabulary includes L2
A, the

provably total functions of T are closed under composition.

In two-sorted logic, for string functions we have the notion of a bit-definable
function in addition to that of a definable function.

Definition 5.31 (Bit-Definable Function). Let Φ be a set of L formulas

where L ⊇ L2
A. We say that a string function symbol F (~x, ~Y) not in L is Φ-bit-

definable from L if there is a formula ϕ(i, ~x, ~Y) in Φ and an L2
A-number term

t(~x, ~Y) such that the bit graph of F satisfies

F (~x, ~Y)(i)↔ i < t(~x, ~Y) ∧ ϕ(i, ~x, ~Y). (5.17)

We say that the formula on the RHS of (5.17) is a bit-defining axiom, or bit
definition, of F .

The choice of ϕ and t in the above definition is not uniquely determined by
F . However we will assume that a specific formula ϕ and a specific number
term t has been chosen, so we will speak of the bit-defining axiom, or the bit
definition, of F . Note also that such a F is polynomially bounded in T , and t
is a bounding term for F .

The following proposition follows easily from the above definition and Corol-
lary 5.17.

Proposition 5.32. A string function is ΣB
0 -bit-definable iff it is in FAC0.

Exercise 5.33. Let T be a theory which extends V0 and proves the bit-defining
axiom (5.17) for a string function F , where ϕ is a ΣB

0 formula. Show that there

is a ΣB
0 formula η(z, ~x, ~Y) such that T proves

z = |F (~x, ~Y)| ↔ η(z, ~x, ~Y)

D
R

A
FT

98 CHAPTER 5. THE THEORY V0 AND AC0

It is important to distinguish between a “definable function” and a “bit-
definable function”. In particular, if a theory T2 is obtained from a theory T1 by
adding a Φ-bit-definable function F together with its bit-defining axiom (5.17),
then in general we cannot conclude that T2 is a conservative extension of T1.
For example, it is easy to show that the string multiplication function X × Y
has a ΣB

1 bit definition. However, as we noted earlier, this function is not ΣB
1 -

definable in V0. The theory that results from adding this function together
with its ΣB

1 -bit-definition to V0 is not a conservative extension of V0.

To get definability, and hence conservativity, it suffices to assume that T1
proves a comprehension axiom scheme. The following definition is useful here
and in Chapter 6.

Definition 5.34 (ΣB
0 -Closure). Let Φ be a set of formulas over a language L

which extends L2
A. Then ΣB

0 (Φ) is the closure of Φ under the operations ¬,∧,∨
and bounded number quantification. That is, if ϕ and ψ are formulas in ΣB

0 (Φ)
and t is an L2

A-term not containing x, then the following formulas are also in
ΣB

0 (Φ): ¬ϕ, (ϕ ∧ ψ), (ϕ ∨ ψ), ∀x ≤ tϕ, and ∃x ≤ tϕ.

Lemma 5.35 (Extension by Bit-Definition Lemma). Let T be a theory
over L that contains V0, and Φ be a set of L-formulas such that Φ ⊇ ΣB

0 .
Suppose that T proves the Φ-COMP axiom scheme. Then any polynomially
bounded number function whose graph is Φ-representable, or a polynomially
bounded string function whose bit graph is Φ-representable, is ΣB

0 (Φ)-definable
in T .

Proof. Consider the case of a string function. Suppose that F is a polynomially
bounded string function with bit graph in Φ, so there are an L2

A-number term
t and a formula ϕ ∈ Φ such that

F (~x, ~Y)(i)↔ i < t(~x, ~Y) ∧ ϕ(i, ~x, ~Y)

As in (5.8), the graph GF of F can be defined as follows:

GF (~x, ~Y , Z) ≡ |Z| ≤ t ∧ ∀i < t (Z(i)↔ ϕ(i, ~x, ~Y)) (5.18)

Now since T proves the Φ-COMP, we have

T ⊢ ∀~x∀~Y ∃Z GF (~x, ~Y , Z) (5.19)

Also T proves that such Z is unique, by the extensionality axiom SE in 2-BASIC.
Since the formula GF (~x, ~Y , Z) is in ΣB

0 (Φ), it follows that F is ΣB
0 (Φ)-definable

in T .

Next consider the case of a number function. Let f be a polynomially
bounded number function whose graph is in Φ, so there are an L2

A-number
term t and a formula ϕ ∈ Φ such that

y = f(~x, ~X)↔ y < t(~x, ~X) ∧ ϕ(y, ~x, ~X)

D
R

A
FT

5.4. DEFINABILITY IN V0 99

By Corollary 5.8, T proves the Φ-MIN axiom scheme. Therefore f is definable
in T by using the following ΣB

0 (Φ) formula for its graph:

Gf (y, ~x, ~X) ≡ ∀z < y¬ϕ(z, ~x, ~X) ∧ y < t ⊃ ϕ(y, ~x, ~X) (5.20)

(i.e., y is the least number < t such that ϕ(y) holds, or t if no such y exists). �

In this lemma, if we take T = V0 and Φ = ΣB
0 , then (since ΣB

0 (ΣB
0) = ΣB

0)
we can apply Corollary 5.17 and Proposition 5.32 to obtain the following:

Corollary 5.36. Every function in FAC0 is ΣB
0 -definable in V0.

This result can be generalized, using the following definition.

Definition 5.37. 1 A string function is ΣB
0 -definable from a collection L of two-

sorted functions and relations if it is p-bounded and its bit graph is represented
by a ΣB

0 (L) formula. Similarly, a number function is ΣB
0 -definable from L if it

is p-bounded and its graph is represented by a ΣB
0 (L) formula.

This “semantic” notion of ΣB
0 -definability should not be confused with ΣB

0 -
definability in a theory (Definition 5.27), which involves provabililty. The next
result connects the two notions.

Corollary 5.38. Let T be a theory over L that contains V0, and suppose that
T proves the ΣB

0 (L)-COMP axiom scheme. Then a function which is ΣB
0 -

definable from L is ΣB
0 (L)-definable in T .

Later we will prove the Witnessing Theorem for V0, which says that any Σ1
1-

definable function of V0 is in FAC0. This will complete our characterization of
FAC0 by V0. (Compare this with Proposition 5.32, which characterizes FAC0

in terms of bit-definability, independent of any theory.)

Corollary 5.39. Suppose that the theory T proves ΣB
0 (L)-COMP, where L

is the vocabulary of T . Then the theory resulting from T by adding the ΣB
0 (L)-

defining axioms or the ΣB
0 (L)-bit-defining axioms for a collection of number

functions and string functions is a conservative extension of T .

The following result shows in particular that if we extend V0 by a sequence
of ΣB

0 defining axioms and bit-defining axioms, the resulting theory is not only
conservative over V0, it also proves the ΣB

0 (L)-COMP and ΣB
0 (L)-IND ax-

ioms, where L is the resulting vocabulary.

Lemma 5.40 (ΣB
0 -Transformation Lemma). Let T be a polynomial-bounded

theory which extends V0, and assume that the vocabulary L of T has the same
predicate symbols as L2

A. Suppose that for every number function f in L, T
proves a ΣB

0 (L2
A) defining axiom for f , and for every string function F in L,

T proves a ΣB
0 (L2

A) bit-defining axiom for F . Then for every ΣB
0 (L) formula

ϕ+ there is a ΣB
0 (L2

A) formula ϕ such that

T ⊢ ϕ+ ↔ ϕ

1This notion is important for our definition of AC
0 reduction, Definition 9.1.

D
R

A
FT

100 CHAPTER 5. THE THEORY V0 AND AC0

Proof. We may assume by the axiom SE that ϕ+ does not contain =2. We
proceed by induction on the maximum nesting depth of any function symbol
in ϕ+, where in defining nesting depth we only count functions which are in L
but not in L2

A. The base case is nesting depth 0, so ϕ+ is already a ΣB
0 (L2

A)
formula, and there is nothing to prove.

For the induction step, assume that ϕ+ has at least one occurrence of a
function not in L2

A. It suffices to consider the case in which ϕ+ is an atomic
formula. Since by assumption the only predicate symbols in L are those in L2

A,
the only predicate symbols we need consider are ǫ,=,≤. First consider the case
ǫ, so ϕ+ has the form F (~t, ~T)(s). Then by assumption T proves a bit definition
of the form

F (~x, ~X)(i) ↔ i < r(~x, ~X) ∧ ψ(i, ~x, ~X)

where r is an L2
A term and ψ is a ΣB

0 (L2
A) formula. Then T proves

ϕ+ ↔ s < r(~t, ~T) ∧ ψ(s,~t, ~T)

The RHS has nesting depth at most that of ϕ+ and ~t, ~T have smaller nesting
depth, and hence we have reduced the induction step to the case that ϕ+ has
the form ρ(~s) where ρ(~x) is an atomic formula over L2

A and each term si has

one of the forms f(~t, ~T), for f not in L2
A, or |F (~t, ~T)|. In either case, using

the defining axiom for f or Exercise 5.33, for each term si there is a ΣB
0 (L2

A)

formula ηi(z, ~x, ~X) and a bounding term ri(~x, ~X) of L2
A such that T proves

z = si ↔ (z < ri(~t, ~T) ∧ ηi(z,~t, ~T))

Hence (since ϕ+ is ρ(~s)), T proves

ϕ+ ↔ ∃~z < ~r(~t, ~T), ρ(~z) ∧
∧

i

ηi(zi,~t, ~T)

Thus we have reduced the nesting depth of ϕ+, and we can apply the induction
hypothesis. �

The following result is immediate from the preceding lemma, Definitions 5.37
and 5.16, and the ΣB

0 Representation Theorem 4.17.

Corollary 5.41 (FAC0 Closed under ΣB
0 -Definability). Every function

ΣB
0 -definable from a collection of FAC0 functions is in FAC0.

Below we give ΣB
0 -bit-definitions of the string functions ∅ (zero, or empty

string), S(X) (successor), X+Y and several other useful AC0 functions: Row ,
seq, left and right . Each of these functions is ΣB

0 -definable in V0, and the above
lemmas and corollaries apply.

Example 5.42 (∅, S,+). The string constant ∅ has bit defining axiom

∅(z)↔ z < 0

D
R

A
FT

5.4. DEFINABILITY IN V0 101

Binary successor S(X) has bit-defining axiom

S(X)(i) ↔ i ≤ |X | ∧ [(X(i) ∧ ∃j < i¬X(j)) ∨ (¬X(i) ∧ ∀j < iX(j))]

Recall from (5.7) that binary addition X+Y has the following bit-defining axiom:

(X + Y)(i)↔ i < |X |+ |Y | ∧ [X(i)⊕ Y (i)⊕ Carry(i,X, Y)]

where ⊕ is exclusive OR, and

Carry(i,X, Y) ≡ ∃k < i, (X(k) ∧ Y (k)) ∧ ∀j < i[k < j ⊃ (X(j) ∨ Y (j))]

Exercise 5.43. Let V0(∅, S,+) be V0 extended by ∅, S,+ and their bit-defining
axioms. Show that the following are theorems of V0(∅, S,+):

a) X + ∅ = X

b) X + S(Y) = S(X + Y)

c) X + Y = Y +X (Commutativity).

d) (X + Y) + Z = X + (Y + Z) (Associativity).
For Associativity, first show in V0(+) that

Carry(i, Y, Z)⊕Carry(i,X, Y +Z)↔ Carry(i,X, Y)⊕Carry(i,X+Y, Z).

Derive a stronger statement than this, and prove it by induction on i.

Example 5.44 (The Pairing Function). We define the pairing function
〈x, y〉 as the following term of I∆0:

〈x, y〉 =def (x+ y)(x+ y + 1) + 2y (5.21)

Exercise 5.45. Show using results in Section 3.1 that I∆0 proves 〈x, y〉 is a
one-one function. That is

I∆0 ⊢ 〈x1, y1〉 = 〈x2, y2〉 ⊃ x1 = x2 ∧ y1 = y2 (5.22)

(First show that the LHS implies x1 + y1 = x2 + y2.)

In general we can “pair” more than 2 numbers, e.g., define

〈x1, . . . , xk+1〉 = 〈〈x1, . . . , xk〉, xk+1〉

We will refer to the term 〈x1, . . . , xk+1〉 as a tupling function.

For any constant k ∈ N, k ≥ 2, we can use the tupling function to code a
k-dimensional bit array by a single string Z by defining

Notation

Z(x1, . . . , xk) =def Z(〈x1, . . . , xk〉) (5.23)

D
R

A
FT

102 CHAPTER 5. THE THEORY V0 AND AC0

Example 5.46 (The Projection Functions). Consider the (partial) projec-
tion functions:

y = left(x)↔ ∃z ≤ x (x = 〈y, z〉) z = right(x)↔ ∃y ≤ x (x = 〈y, z〉)
To make these functions total, we define

left(x) = right(x) = 0 if ¬Pair (x)

where
Pair (x) ≡ ∃y ≤ x∃z ≤ x (x = 〈y, z〉)

For constants n and k ≤ n, if x codes an n-tuple, then the k-th component 〈x〉nk
of x can be extracted using left and right , e.g.,

〈x〉32 = right(left(x))

Exercise 5.47. Let I∆0(left ,right) be the conservative extension of I∆0 result-
ing by adding the ∆0 defining axioms for left and right . Show that I∆0(left ,right)
proves the following properties of Pair and the projection functions:

a) ∀y∀zPair(〈y, z〉)
b) ∀x(Pair (x) ⊃ x = 〈left(x), right (x)〉)
c) x = 〈x1, x2〉 ⊃ (x1 = left(x) ∧ x2 = right(x))

Now we can generalize the ΣB
0 -comprehension axiom scheme to multiple

dimensions.

Definition 5.48 (Multiple Comprehension Axiom). If Φ is a set of formu-
las, then the multiple comprehension axiom scheme for Φ, denoted by Φ-MULTICOMP,
is the set of all formulas

∃X ≤ 〈y1, . . . , yk〉∀z1 < y1 . . . ∀zk < yk(X(z1, . . . , zk)↔ ϕ(z1, . . . , zk)) (5.24)

where k ≥ 2 and ϕ(z) is any formula in Φ which may contain other free vari-
ables, but not X.

Lemma 5.49 (Multiple Comprehension). Suppose that T ⊇ V0 is a theory
with vocabulary L which proves the ΣB

0 (L)-COMP axioms. Then T proves the
ΣB

0 (L)-MULTICOMP axioms.

Proof. For the caseL = L2
A we could work in the conservative extension T (left ,right)

and apply Lemma 5.40 to prove this. However for general L we use another
method.

For simplicity we prove the case k = 2. Define ψ(z) by

ψ(z) ≡ ∃z1 ≤ z∃z2 ≤ z, z = 〈z1, z2〉 ∧ ϕ(z1, z2)

Now by ΣB
0 -COMP,

T ⊢ ∃X ≤ 〈y1, y2〉∀z < 〈y1, y2〉, X(z)↔ ψ(z)

By Exercise 5.45, T proves that such X satisfies (5.24). �

D
R

A
FT

5.4. DEFINABILITY IN V0 103

Now we introduce the string function Row(x, Z) (or Z [x]) in FAC0 to rep-
resent row x of the binary array Z.

Definition 5.50 (Row and V0(Row)). The function Row(x, Z) (also denoted
Z [x]) has the bit-defining axiom

Row(x, Z)(i)↔ i < |Z| ∧ Z(x, i) (5.25)

V0(Row) is the extension of V0 obtained from V0 by adding to it the string
function Row and its ΣB

0 -bit-definition (5.25).

Note that by Corollary 5.39, V0(Row) is a conservative extension of V0.
The next result follows immediately from Lemma 5.40.

Lemma 5.51 (Row Elimination Lemma). For every ΣB
0 (Row) formula ϕ,

there is ΣB
0 formula ϕ′ such that V0(Row) ⊢ ϕ ↔ ϕ′. Hence V0(Row) proves

the ΣB
0 (Row)-COMP axiom scheme.

We can use Row to represent a tuple X1, ..., Xk of strings by a single string
Z, where Xi = Z [i]. The following result follows immediately from the Multiple
Comprehension Lemma.

Lemma 5.52. V0(Row) proves

∀X1...∀Xk∃Z ≤ t(X1 = Z [1] ∧ ... ∧Xk = Z [k]) (5.26)

where t = 〈k, |X1|+ ...+ |Xk|〉. �

Definition 5.53. A single-ΣB
1 (L) formula is one of the form ∃X ≤ tϕ, where

ϕ is ΣB
0 (L).

Exercise 5.54. Let T be a polynomial-bounded theory with vocabulary L such
that T extends V0(Row). Prove that for every ΣB

1 (L) formula ϕ there is a
single-ΣB

1 (L) formula ϕ′ such that T ⊢ ϕ↔ ϕ′.
Now use Lemma 5.51 to show that the same is true when T is V0 and L is

L2
A.

Just as we use a “two-dimensional” string Z(x, y) to code a sequence Z [0],
Z [1], . . . of strings, we use a similar idea to allow Z to code a sequence y0, y1, . . .
of numbers. Now yi is the smallest element of Z [i], or |Z| if Z [i] is empty. We
define an AC0 function seq(i, Z) (also denoted (Z)i) to extract yi.

Definition 5.55 (Coding a Bounded Sequence of Numbers). The number
function seq(x, Z) (also denoted (Z)x) has the defining axiom:

y = seq(x, Z)↔ (y < |Z| ∧ Z(x, y) ∧ ∀z < y¬Z(x, z))∨
(∀z < |Z|¬Z(x, z) ∧ y = |Z|)

It is easy to check that V0 proves the existence and uniqueness of y satisfying
the RHS of the above formula, and hence seq is ΣB

0 -definable in V0. As in the
case of Row , it follows from Lemma 5.40 that any ΣB

0 (seq) formula is provably
equivalent in V0(seq) to a ΣB

0 (L2
A) formula. (See also the AC0 Elimination

Lemma 5.73 for a more general result.)

D
R

A
FT

104 CHAPTER 5. THE THEORY V0 AND AC0

5.4.1 ∆1
1-Definable Predicates

Recall the notion of a Φ-definable (or Φ-representable) predicate symbol, where
Φ is a class of formulas (Definition 3.27). Recall also that we obtain a conserva-
tive extension of a theory T by adding to it a definable predicate symbol P and
its defining axiom. Below we define the notions of a “∆1

1(L)-definable predicate
symbol” and a “∆B

1 (L)-definable predicate symbol”. Note that here ∆1
1(L) and

∆B
1 (L) depend on the theory T , in contrast to Definition 3.27.

Definition 5.56 (∆1
1(L) and ∆B

1 (L) Definable Predicate). Let T be a
theory over the vocabulary L and P a predicate symbol not in L. We say that P
is ∆1

1(L)-definable (or simply ∆1
1-definable) in T if there are Σ1

1(L) formulas

ϕ(~x, ~Y) and ψ(~x, ~Y) such that

R(~x, ~Y)↔ ϕ(~x, ~Y), and T ⊢ ϕ(~x, ~Y)↔ ¬ψ(~x, ~Y). (5.27)

We say that P is ∆B
1 (L)-definable (or simply ∆B

1 -definable) in T if the formulas
ϕ and ψ above are ΣB

1 formulas.

The following exercise can be proved using Parikh’s Theorem.

Exercise 5.57. Show that if T is a polynomial-bounded theory, then a predicate
is ∆1

1-definable in T iff it is ∆B
1 -definable in T .

Definition 5.58 (Characteristic Function). The characteristic function of

a relation R(~x, ~X), denoted by fR(~x, ~X), is defined as follows:

fR(~x, ~X) =

{
1 if R(~x, ~X)
0 otherwise

We will show that FAC0 coincides with the class of provably total functions
in V0. It follows that AC0 relations are precisely the ∆1

1 definable relations in
V0. More generally we have the following theorem.

Theorem 5.59. If the language of a theory T includes L2
A, and a complexity

class C has the property that for all relations R, R ∈ C iff fR ∈ FC, and
the class of Σ1

1-definable functions in T coincides with FC, then the class of
∆1

1-definable relations in T coincides with C.

Proof. Assume the hypotheses of the theorem, and suppose that the relation
R(~x, ~X) is ∆1

1-definable in T . Then there are ΣB
0 formulas ϕ and ψ such that

R(~x, ~X)↔ ∃~Y ϕ(~x, ~X, ~Y)

and
T ⊢ (∃~Y ϕ(~x, ~X, ~Y)↔ ¬∃~Y ψ(~x, ~X, ~Y)) (5.28)

Thus the characteristic function fR(~x, ~X) of R satisfies

y = fR(~x, ~X)↔ θ(y, ~x, ~X) (5.29)

D
R

A
FT

5.5. THE WITNESSING THEOREM FOR V0 105

where

θ(y, ~x, ~X) ≡ ∃~Y ((y = 1 ∧ ϕ(~x, ~X, ~Y)) ∨ (y = 0 ∧ ψ(~x, ~X, ~Y)))

Then T proves ∃!yθ(y, ~x, ~X), where the existence of y and ~Y follows from the
← direction of (5.28) and the uniqueness of y follows from the → direction of
(5.28). Thus fR is Σ1

1-definable in T , so fR is in FC, and therefore R is in C.

Conversely, suppose that R(~x, ~X) is in C, so fR is in FC. Then fR is Σ1
1-

definable in T , so there is a Σ1
1 formula θ(y, ~x, ~X) such that (5.29) holds and

T ⊢ ∃!yθ(y, ~x, ~X)

Then R(~x, ~X)↔ ∃y(y 6= 0 ∧ θ(y, ~x, ~X)) and

T ⊢ ∃y(y 6= 0 ∧ θ(y, ~x, ~X))↔ ¬θ(0, ~x, ~X)

Since ∃y(y 6= 0 ∧ θ(y, ~x, ~X)) is equivalent to a Σ1
1 formula, it follows that R is

∆1
1-definable in T . �

5.5 The Witnessing Theorem for V0

Notation For a theory T and a list L of functions that are definable/bit-
definable in T , we denote by T (L) the theory T extended by the defining/bit-
defining axioms for the symbols in L.

Recall that number functions in FAC0 are ΣB
0 -definable in V0, and string

functions in FAC0 are ΣB
0 -bit-definable in V0 (see Proposition 5.32 and Corol-

lary 5.36). It follows from Corollary 5.39 that V0(L) is a conservative extension
of V0, for any collection L of FAC0 functions.

Our goal now is to prove the following theorem.

Theorem 5.60 (Witnessing Theorem for V0). Suppose that ϕ(~x, ~y, ~X, ~Y)
is a ΣB

0 formula such that

V0 ⊢ ∀~x∀ ~X∃~y∃~Y ϕ(~x, ~y, ~X, ~Y)

Then there are FAC0 functions f1, . . . , fk, F1, . . . , Fm so that

V0(f1, . . . , fk, F1, . . . , Fm) ⊢ ∀~x∀ ~Xϕ(~x, ~f(~x, ~X), ~X, ~F (~x, ~X))

The functions fi and Fj are called the witnessing functions, for yi and Yj ,
respectively.

We will prove the Witnessing Theorem for V0 in the next section. First, we
list some of its corollaries.

The next corollary follows from the above theorem and Corollary 5.36.

D
R

A
FT

106 CHAPTER 5. THE THEORY V0 AND AC0

Corollary 5.61 (Σ1
1-Definability Theorem for V0). A function is in FAC0

iff it is Σ1
1-definable in V0 iff it is ΣB

1 -definable in V0 iff it is ΣB
0 -definable in

V0.

Corollary 5.62. A relation is in AC0 iff it is ∆1
1 definable in V0 iff it is ∆B

1

definable in V0.

It follows from the ΣB
0 -Representation Theorem 4.17 that a relation is in

AC0 iff its characteristic function is in AC0. Therefore Corollary 5.62 follows
from the Σ1

1-Definability Theorem for V0 and Theorem 5.59. Alternatively, it
can be proved using the Witnessing Theorem for V0 as follows.

Proof. Since each AC0 relationR is represented by a ΣB
0 formula θ, it is obvious

that they are ∆B
1 (and hence ∆1

1) definable in V0: In (5.27) simply let ϕ be θ,
and ψ be ¬θ.

On the other hand, suppose that R is a ∆1
1-definable relation of V0. In

other words, there are ΣB
0 formulas ϕ(~x, ~X, ~Y) and ψ(~x, ~X, ~Y) so that

R(~x, ~X)↔ ∃~Y ϕ(~x, ~X, ~Y)

and V0 ⊢ ∃~Y ϕ(~x, ~X, ~Y)↔ ¬∃~Y ψ(~x, ~X, ~Y) (5.30)

In particular,
V0 ⊢ ∃~Y (ϕ(~x, ~X, ~Y) ∨ ψ(~x, ~X, ~Y))

By the Witnessing Theorem for V0, there are AC0 functions F1, . . . , Fk so that

V0(F1, . . . , Fk) ⊢ ∀~x∀ ~X(ϕ(~x, ~X, ~F (~x, ~X)) ∨ ψ(~x, ~X, ~F (~x, ~X))) (5.31)

We claim that V0(F1, . . . , Fk) proves

∀~x∀ ~X(∃~Y ϕ(~x, ~X, ~Y)↔ ϕ(~x, ~X, ~F (~x, ~X)))

The ← direction is trivial. The other direction follows from (5.30) and (5.31).

Consequently ϕ(~x, ~X, ~F (~x, ~X)) also represents R(~x, ~X). Here R is obtained

from the relation represented by ϕ(~x, ~X, ~Y) by substituting the AC0 functions
~F for ~Y . By Theorem 5.20 a, R is also an AC0 relation. �

5.5.1 Independence follows from the Witnessing Theorem

for V0

We can use the Witnessing Theorem to show the unprovability in V0 of ∃Z ϕ(Z)
by showing that no AC0 function can witness the quantifier ∃Z. Recall that
the relation PARITY (X) is defined by

PARITY (X)↔ the set X has an odd number of elements

Then a well known result in complexity theory states:

D
R

A
FT

5.5. THE WITNESSING THEOREM FOR V0 107

Proposition 5.63. PARITY 6∈ AC0.

First, it follows that the characteristic function parity(X) of PARITY (X) is
not in FAC0. Therefore parity is not Σ1

1-definable in V0. In the next chapter
we will show that parity is Σ1

1-definable in the theory V1. This will show that
V0 is a proper sub-theory of V1.

Now consider the ΣB
0 formula ϕparity(X,Y):

¬Y (0) ∧ ∀i < |X |(Y (i+ 1)↔ (X(i)⊕ Y (i))) (5.32)

where ⊕ is exclusive OR. Thus ϕparity(X,Y) asserts that for 0 ≤ i < |X |, bit
Y (i+ 1) is 1 iff the number of 1’s among bits X(0), ..., X(i) is odd. Define

ϕ(X) ≡ ∃Y ≤ (|X |+ 1) ϕparity(X,Y)

Then ∀Xϕ(X) is true in the standard model N2, but by the above proposition,
no function F (X) satisfying ∀Xϕparity(X,F (X)) can be in FAC0. Hence by
the Witnessing Theorem for V0,

V0 6⊢ ∀X∃Y ≤ (|X |+ 1) ϕparity(X,Y)

Note that this independence result does not follow from Parikh’s Theorem.

5.5.2 Proof of the Witnessing Theorem for V0

Recall the analogous statement in single-sorted logic for I∆0 (i.e., that a Σ1

theorem of I∆0 can be “witnessed” by a single-sorted LTH function) which
is proved in Theorem 3.62. There we use the Bounded Definability Theo-
rem 3.33 (which follows from Parikh’s Theorem) to show that the graph of
any Σ1-definable function of I∆0 is actually definable by a ∆0 formula, and
hence an LTH relation.

Unfortunately, a similar method does not work here. We can also use
Parikh’s Theorem to show that the graph of a Σ1

1-definable function of V0

is representable by a ΣB
1 formula. However this does not suffice, since there are

string functions whose graphs are in AC0 (i.e., representable by ΣB
0 formulas),

but which do not belong to FAC0. An example is the counting function whose
graph is given by the ΣB

0 formula δNUM (x,X, Y) (9.2).
Our first proof is by the Anchored LK2 Completeness Theorem 4.29. This

proof is important because the same method can be used to prove the witnessing
theorem for V1 (Theorem 6.28). Our second proof method (see Section 5.6.1)
is based on the Herbrand Theorem and does not work for V1.

We will prove the following simple form of the theorem, since it implies the
general form.

Lemma 5.64. Suppose that ϕ(~x, ~X, Y) is a ΣB
0 formula such that

V0 ⊢ ∀~x∀ ~X∃Zϕ(~x, ~X,Z)

Then there is an FAC0 function F so that

V0(F) ⊢ ∀~x∀ ~Xϕ(~x, ~X, F (~x, ~X))

D
R

A
FT

108 CHAPTER 5. THE THEORY V0 AND AC0

Proof of Theorem 5.60 from Lemma 5.64. The idea is to use the function Row
to encode the tuple 〈~y, ~Y 〉 by a single string variable Z, as in Lemma 5.52.
Then by the above lemma, Z is witnessed by an AC0 function F . The witness-
ing functions for y1, . . . , yk, Y1, . . . , Ym will then be extracted from F using the
function Row . Details are as follows.

Assume the hypothesis of the Witnessing Theorem for V0, i.e.,

V0 ⊢ ∀~x∀ ~X∃~y∃~Y ϕ(~x, ~y, ~X, ~Y)

for a ΣB
0 formula ϕ(~x, ~y, ~X, ~Y). Then since V0(Row) extends V0, we have also

V0(Row) ⊢ ∀~x∀ ~X∃~y∃~Y ϕ(~x, ~y, ~X, ~Y)

Note that

V0(Row) ⊢ ∀y1 . . . ∀yk∀Y1...∀Ym∃Z(
∧

1≤i≤k
|Z [i]| = yi ∧

∧

1≤j≤m
Z [k+j] = Yj)

(See also Lemma 5.52.) Thus

V0(Row) ⊢ ∀~x∀ ~X∃Z ϕ(~x, |Z [1]|, . . . , |Z [k]|, ~X,Z [k+1], . . . , Z [k+m])

i.e.,
V0(Row) ⊢ ∀~x∀ ~X∃Zψ(~x, ~X,Z)

where
ψ(~x, ~X,Z) ≡ ϕ(~x, |Z [1]|, . . . , |Z [k]|, ~X,Z [k+1], . . . , Z [k+m])

is a ΣB
0 (L2

A ∪ {Row}) formula.

Now by Lemma 5.51, there is a ΣB
0 (L2

A) formula ψ′(~x, ~X,Z) so that

V0(Row) ⊢ ∀~x∀ ~X∀Z(ψ(~x, ~X,Z)↔ ψ′(~x, ~X,Z))

As a result, since V0(Row) is conservative over V0, we also have

V0 ⊢ ∀~x∀ ~X∃Zψ′(~x, ~X,Z)

Applying Lemma 5.64, there is an AC0 function F so that

V0(F) ⊢ ∀~x∀ ~Xψ′(~x, ~X, F (~x, ~X))

Therefore
V0(Row , F) ⊢ ∀~x∀ ~Xψ(~x, ~X, F (~x, ~X))

i.e.,

V0(Row , F) ⊢ ∀~x∀ ~X ϕ(~x, |F [1]|, . . . , |F [k]|, ~X, F [k+1], . . . , F [k+m])

where we write F for F (~x, ~X).

D
R

A
FT

5.5. THE WITNESSING THEOREM FOR V0 109

Let fi(~x, ~X) = |(F (~x, ~X))[i]| for 1 ≤ i ≤ k and Fj(~x, ~X) = (F (~x, ~X))[k+j] for
1 ≤ j ≤ m and denote {f1, . . . , fk, F1, . . . , Fm} by L, we have

V0({Row , F} ∪ L) ⊢ ∀~x∀ ~X ϕ(~x, ~f , ~X, ~F)

By Corollary 5.39, V0({Row , F} ∪ L) is a conservative extension of V0(L).
Consequently,

V0(L) ⊢ ∀~x∀ ~X ϕ(~x, ~f , ~X, ~F)

�

The rest of this section is devoted to the proof of Lemma 5.64.

Proof of Lemma 5.64. The proof method is similar to that of Lemma 5.26 (for
Parikh’s Theorem). Suppose that ∃Zϕ(~a, ~α, Z) is a theorem of V0. By the
Anchored LK2 Completeness Theorem, there is an anchored LK2-T proof π of

−→ ∃Zϕ(~a, ~α, Z)

where T is the set of all term substitution instances of the axioms for V0. We
assume that π is in free variable normal form (see Section 4.4.1).

Note that all instances of the ΣB
0 -COMP axioms (5.1) are Σ1

1 formulas
(they are in fact ΣB

1 formulas). Since the endsequent of π is also a Σ1
1 formula,

by the Subformula Property (Theorem 4.30), all formulas in π are Σ1
1 formulas,

and in fact they contain at most one string quantifier ∃X in front. In particular,
every sequent in π has the form

∃X1θ1(X1), . . . ,∃Xmθm(Xm),Γ −→ ∆, ∃Y1ψ1(Y1), . . . ,∃Ynψn(Yn) (5.33)

for m,n ≥ 0, where θi and ψj and all formulas in Γ and ∆ are ΣB
0 .

We will prove by induction on the depth in π of a sequent S of the form
(5.33) that there are ΣB

0 -bit-definable string functions F1, ..., Fn (i.e., the wit-
nessing functions) such that there is a collection of ΣB

0 -bit-definable functions
L including F1, ..., Fn and an LK2-V0(L) proof of

S′ =def θ1(β1), . . . , θm(βm),Γ −→ ∆, ψ1(F1), . . . , ψn(Fn) (5.34)

where Fi stands for Fi(~a, ~α, ~β), and ~a, ~α is a list of exactly those variables with
free occurrences in S. (This list may be different for different sequents.) Here
β1, ..., βm are distinct new free variables corresponding to the bound variables
X1, ..., Xm, although the latter variables may not be distinct.

It follows that for the endsequent −→ ∃Zϕ(~a, ~α, Z) of π, there is a finite
collection L of FAC0 functions, and an F ∈ L so that

V0(L) ⊢ ϕ(~a, ~α, F (~a, ~α))

Note that by Corollary 5.39, V0(L) is a conservative extension of V0(F). Con-
sequently we have

V0(F) ⊢ ϕ(~a, ~α, F (~a, ~α))

D
R

A
FT

110 CHAPTER 5. THE THEORY V0 AND AC0

and we are done.
Our inductive proof has several cases, depending on whether S is a V0

axiom, or which rule is used to generate S. In each case we will introduce
suitable witnessing functions when required, and it is an easy exercise to check
that in each of the functions introduced has a ΣB

0 (L2
A)-bit-definition.

To show that the arguments ~a, ~α of previously-introduced witnessing func-
tions continue to include only those variables with free occurrences in the sequent
S, we use the fact that the proof π is in free variable normal form, and hence no
free variable is eliminated by any rule in the proof except ∀-right and ∃-left.
(We made a similar argument concerning the free variables in the bounding
terms t in the proof of Lemma 5.26).

In general we will show that S′ has an LK2-V0(L) proof not by constructing
the proof, but rather by arguing that the formula giving the semantics of S ′
(Definition 2.17) is provable in V0 from the bit-defining axioms of the functions
L, and invoking the LK2 Completeness Theorem. However in each case the
LK2-V0(L) proof is not hard to find.

Specifically, if we write (5.34) in the form

S′ = A1, ..., Ak −→ B1, ..., Bℓ

then we assert

V0(L) ⊢ ∀~x∀ ~X∀~Y [(A1 ∧ ... ∧Ak) ⊃ (B1 ∨ ... ∨Bℓ)] (5.35)

Case I: S is an axiom of V0. If the axiom only involves ΣB
0 formulas, then no

witnessing functions are needed. Otherwise S comes from a ΣB
0 -COMP axiom,

i.e.,
S =def −→ ∃X ≤ b∀z < b(X(z)↔ ψ(z, b,~a, ~α))

Then a function witnessing X has bit-defining axiom

F (b,~a, ~α)(z)↔ z < b ∧ ψ(z, b,~a, ~α)

Case II: S is obtained by an application of the rule string ∃-right. Then S is
the bottom of the inference

S1

S
=

Λ −→ Π, ψ(T)

Λ −→ Π, ∃Xψ(X)

where the string term T is either a variable γ or the constant ∅ introduced when
putting π in free variable normal form. In the former case, γ must have a free
occurrence in S, and we may witness the new quantifier ∃X by the function F
with bit-defining axiom

F (~a, γ, ~α, ~β)(z)↔ z < |γ| ∧ γ(z)

In the latter case T is ∅, and we define

F (~a, ~α, ~β)(z)↔ z < 0

D
R

A
FT

5.5. THE WITNESSING THEOREM FOR V0 111

Case III: S is obtained by an application of the rule string ∃-left. Then S is
the bottom of the inference

S1

S
=

θ(γ),Λ −→ Π

∃Xθ(X),Λ −→ Π

Note that γ cannot occur in S, by the restriction for this rule, but S ′ has a
new variable β′ available corresponding to ∃X (see (5.34)). No new witnessing

function is required. Each witnessing function Fj(~a, γ, ~α, ~β) for the top sequent
is replaced by the witnessing function

F ′
j(~a, ~α, β

′, ~β) = Fj(~a, β
′, ~α, ~β)

for S′.
Case IV: S is obtained by an application of the rule number ∃-right or
number ∀-left. No new witnessing functions are required.

Case V: S follows from an application of rule number ∃-left or number ∀-
right. We consider number ∃-left, since number ∀-right is similar. Then S
is the bottom sequent in the inference

S1

S
=
b ≤ t ∧ θ(b),Λ −→ Π

∃x ≤ tθ(x),Λ −→ Π

No new witnessing function is needed, but the free variable b is eliminated as
an argument to the existing witnessing functions, and it must be given a value.
We give it a value which satisfies the new existential quantifier, if one exists.
Thus define the FAC0 number function

g(~a, ~α) = min b ≤ t θ(b)

For each witnessing function Fj(b,~a, ~α, ~β) for the top sequent define the corre-
sponding witnessing function for the bottom sequent by

F ′
j(~a, ~α,

~β) = Fj(g(~a, ~α),~a, ~α, ~β)

Case VI: S is obtained by the cut rule. Then S is the bottom of the inference

S1 S2

S
=

Λ −→ Π, ψ ψ,Λ −→ Π

Λ −→ Π

Assume first that ψ is ΣB
0 . For i = 1, 2, let F i1(~a, ~α), . . . , F in(~a, ~α) be the wit-

nessing functions for Π in S′i. Then we define witnessing functions F1, . . . , Fn
for these formulas in the conclusion S′ by the bit-defining axioms

Fj(~a, ~α)(z)↔ ((¬ψ ∧ F 1
j (~a, ~α)(z)) ∨ (ψ ∧ F 2

j (~a, ~α)(z)))

Now assume that ψ is not ΣB
0 , so ψ has the form

ψ ≡ ∃Xθ(X) (5.36)

D
R

A
FT

112 CHAPTER 5. THE THEORY V0 AND AC0

where θ(X) is ΣB
0 . Let G(~a, ~α) be the witnessing function for ∃X in S′

1 and let
β be the variable in S′

2 corresponding to X . Let F 1
1 (~a, ~α), . . . , F 1

n(~a, ~α) be the
other witnessing functions for Π in S′1, and F 2

1 (~a, ~α, β), . . . , F 2
n(~a, ~α, β) be the

witnessing functions for Π in S′2. The corresponding witnessing function Fj in
S′ has defining axiom (replace . . . by ~a, ~α)

Fj(. . .)(z)↔ (¬θ(G(. . .)) ∧ F 1
j (. . .)(z)) ∨ (θ(G(. . .)) ∧ F 2

j (. . . , G(. . .))(z))

Exercise 5.65. Show correctness of this definition of F in the special case
where the cut formula ψ has the form (5.36), and Π has only one Σ1

1 formula,
by arguing that V0(L) can prove the semantic translation (5.35) of S′ from the
semantic translations of S′1 and S′2.

Case VII: S is obtained from an instance of the rule ∧-left or ∨-right. These
are both handled in the same manner. Consider ∧-right.

S1 S2

S
=

Λ −→ Π, A Λ −→ Π, B

Λ→ Π, (A ∧B)

Here, as in (5.33),

Λ =def ∃X1θ1(X1), . . . ,∃Xmθm(Xm),Γ

and Π =def ∆, ∃Y1ψ1(Y1), . . . ,∃Ynψn(Yn)

for m,n ≥ 0, where θi and ψj and all formulas in Γ and ∆ are ΣB
0 . Also, A and

B are ΣB
0 formulas.

Let F 1
j (~a, ~α) and F 2

j (~a, ~α) witness Yj in S′1 and S′2, respectively. Then we

define the witness Fj(~a, ~α) for Yj in S′ to be F 1
j (~a, ~α) or F 2

j (~a, ~α), depending

on whether F 1
j (~a, ~α) works as a witness. In particular (replace . . . by ~a, ~α):

Fj(. . .)(z) ↔ (ψj(Fj(. . .)) ∧ F 1
j (. . .)(z)) ∨ (¬ψj(Fj(. . .)) ∧ F 2

j (. . .)(z))

Case VIII: S is obtained by any of the other rules. Weakening is easy. There
is nothing to do for exchange and ¬ introduction. The contraction rules can be
derived from cut and exchanges. �

Exercise 5.66. Show that in the Cases V, VI, and VII above, the new func-
tions introduced have ΣB

0 (L2
A)-bit-definitions.

5.6 V
0
: Universal Conservative Extension of V0

Recall that a universal formula is a formula in prenex form in which all quanti-
fiers are universal, and a universal theory is a theory which can be axiomatized
by universal formulas. Recall also the universal single-sorted theory I∆0 intro-
duced in Section 3.3.2.

D
R

A
FT

5.6. V
0
: UNIVERSAL CONSERVATIVE EXTENSION OF V0 113

The universal theory V
0

extends I∆0, and is defined in the same way as

I∆0. Here we show that V
0

is a conservative extension of V0, and that this
gives us an alternative proof of the Witnessing Theorem for V0 by applying the

Herbrand Theorem 4.32 for V
0
.

The idea is to introduce number functions with universal defining axioms,
and string functions with universal bit-defining axioms, which are provably total
in V0. Thus we obtain a conservative extension of V0. Furthermore, the new
functions are defined in such a way that the axioms of V0 with existential quan-
tifiers (namely ΣB

0 -COMP and B12, SE) can be proved from other axioms,

and hence can be deduced from our set of universal axioms for V
0
.

We use the following notation. For any formula ϕ(z, ~x, ~X) and L2
A-term

t(~x, ~X), let Fϕ,t(~x, ~X) be the string function with bit definition

Fϕ,t(~x, ~X)(z)↔ z < t(~x, ~X) ∧ ϕ(z, ~x, ~X) (5.37)

Also, let fϕ,t(~x, ~X) be the number function defined as in (3.19) to be the least

y < t such that ϕ(y, ~x, ~X) holds, or t if no such y exists. Then fϕ,t has defining

axiom (we write f for fϕ,t, t for t(~x, ~X), and . . . for ~x, ~X):

f(. . .) ≤ t ∧ [f(. . .) < t ⊃ ϕ(f(. . .), . . .)] ∧ [v < f(. . .) ⊃ ¬ϕ(v, . . .)] (5.38)

Recall that the predecessor function pd has the defining axioms:

B12′. pd(0) = 0 B12′′. x 6= 0 ⊃ pd(x) + 1 = x (5.39)

(B12′ and B12′′ are called respectively D1′ and D2′′ in Section 3.3.2.)
In two-sorted logic, the extensionality axiom SE contains an implicit exis-

tential quantifier ∃i < |X |. Therefore we introduce the function fSE with the
defining axiom (5.38), where ϕ(z,X, Y) ≡ X(z) 6↔ Y (z), and t(X,Y) = |X |.
Intuitively, fSE(X,Y) is the smallest number < |X | that distinguishes X and
Y , and |X | if no such number exists.

fSE(X,Y) ≤ |X | ∧
fSE(X,Y) < |X | ⊃ (X(fSE(X,Y)) 6↔ Y (fSE(X,Y))) ∧
z < fSE(X,Y) ⊃ (X(z)↔ Y (z)).

(5.40)

Let SE′ be the following axiom

(|X | = |Y | ∧ fSE(X,Y) = |X |) ⊃ X = Y. (5.41)

The language LFAC0 is defined below. It contains a function symbol for
every AC0 function. Note that it extends L∆0 (Definition 3.41).

Definition 5.67. LFAC0 is the smallest set that satisfies

1) LFAC0 includes L2
A ∪ {pd , fSE}.

D
R

A
FT

114 CHAPTER 5. THE THEORY V0 AND AC0

2) For each open formula ϕ(z, ~x, ~X) over LFAC0 and term t = t(~x, ~X) of L2
A

there is a string function Fϕ,t and a number function fϕ,t in LFAC0 .

Definition 5.68. V
0

is the theory over LFAC0 with the following set of axioms:
B1-B11, L1, L2 (Figure 5.1), B12′ and B12′′ (5.39), (5.40), SE′ (5.41), and
(5.37) for each function Fϕ,t and (5.38) for each function fϕ,t of LFAC0 .

Thus V
0

extends I∆0. Also, the axioms for V
0

do not include any compre-

hension axiom. However, we will show that V
0

proves the ΣB
0 -COMP axiom

scheme, and hence V
0

extends V0.

Recall that an open formula is a formula without quantifier. The follow-
ing lemma can be proved by structural induction on ϕ in the same way as
Lemma 3.44.

Lemma 5.69. For every ΣB
0 (LFAC0) formula ϕ there is an open LFAC0-formula

ϕ+ such that V
0 ⊢ ϕ↔ ϕ+.

Lemma 5.70. V
0

proves the ΣB
0 (LFAC0)-COMP, ΣB

0 (LFAC0)-IND, and
ΣB

0 (LFAC0)-MIN axiom schemes.

Proof. For comprehension, we need to show, for each ΣB
0 (LFAC0) formula ϕ(z, ~x, ~X),

V
0 ⊢ ∃Z ≤ y∀z < y(Z(z)↔ ϕ(z, ~x, ~X))

Simply take Z = Fϕ,y(~x, ~X) and apply (5.37). For induction and minimization
we use Corollary 5.8. �

Theorem 5.71. The theory V
0

is a conservative extension of V0.

Proof. To show that V
0

extends V0, we need to verify that V
0

proves B12,

SE and ΣB
0 -COMP. First, B12 follows from B12′′. We prove SE in V

0
as

follows. Assume that

|X | = |Y | ∧ ∀z < |X |(X(z)↔ Y (z))

Then from (5.40) we have fSE(X,Y) = |X |. Hence by (5.41) we obtain X = Y .

That V
0

proves ΣB
0 -COMP follows from Lemma 5.70.

Now we show that V
0

is conservative over V0. Let

pd , fSE, . . . (5.42)

be an enumeration of LFAC0 such that the n-th function is defined or bit-defined
by an open formula using only the first (n − 1) functions. Let Ln denote the
union of L2

A and the set of the first n functions in the enumeration, and V0(Ln)

D
R

A
FT

5.6. V
0
: UNIVERSAL CONSERVATIVE EXTENSION OF V0 115

denote V0 together with the defining axioms or bit-defining axioms for the
functions of Ln (n ≥ 0). Then

V
0

=
⋃

n≥0

V0(Ln)

First we prove:

Claim For n ≥ 1, V0(Ln) satisfies the hypothesis of Lemma 5.40.

From Lemma 5.40 and the claim we have V0(Ln) proves the ΣB
0 (Ln)-COMP

axiom scheme. Therefore by Corollary 5.39 V0(Ln+1) is conservative over

V0(Ln). Then by Compactness Theorem, it follows that V
0

is also conser-
vative over V0. (See also Corollary 3.31.) It remains to prove the claim.

First note that V0(Ln) extends V0 for all n ≥ 1. Also LFAC0 has the same
predicates as L2

A. We will prove by induction on n that each string function in
Ln has a ΣB

0 (L2
A)-bit-defining axiom in V0(Ln), and each number function in

Ln has a ΣB
0 (L2

A)-defining axiom in V0(Ln), and thus establishing the claim.
For the base case, n = 1, by B12′ and B12′′ pd has a ΣB

0 (L2
A)-defining

axiom in V0, therefore V0(L1) (which is V0(pd)) satisfies the hypothesis of
Lemma 5.40.

For the induction step we need to show that the (n + 1)-st function fn+1

or Fn+1 in (5.42) has a ΣB
0 (L2

A)-defining axiom or a ΣB
0 (L2

A)-bit-defining ax-
iom in V0(Ln+1). By definition, the function fn+1/Fn+1 already has an open
defining/bit-defining axiom in the vocabulary Ln. From the induction hy-
pothesis, V0(Ln) satisfies the hypothesis of Lemma 5.40. Consequently the
defining/bit-defining axiom for fn+1/Fn+1 is provably equivalent in V0(Ln) to
a ΣB

0 (L2
A) formula. Hence V0(Ln+1) proves that fn+1/Fn+1 has a ΣB

0 (L2
A)

defining/bit-defining axiom, and this completes the proof of the claim. �

Inspection of the above proof shows that each number function of LFAC0 has
a ΣB

0 (L2
A)-defining axiom, and each string function of LFAC0 has a ΣB

0 (L2
A)-

bit-defining axiom.

Corollary 5.72. The LFAC0 functions are precisely the functions of FAC0.

Proof. By the above remark and the ΣB
0 -Representation Theorem 4.17, the

LFAC0 functions are in FAC0. The other inclusion follows from the ΣB
0 -

Representation Theorem 4.17 and Lemma 5.69. �

The next lemma follows from Lemma 5.40 and the claim in the above proof
of Theorem 5.71. It generalizes the Row Elimination Lemma 5.51.

Lemma 5.73 (FAC0 Elimination Lemma). Suppose that L ⊆ LFAC0 . Then
for every ΣB

0 (L) formula ϕ, there is a ΣB
0 (L2

A) formula ϕ′ so that V0(L) ⊢ ϕ↔
ϕ′.

D
R

A
FT

116 CHAPTER 5. THE THEORY V0 AND AC0

5.6.1 Alternative Proof of the Witnessing Theorem for V0

Here we show how to apply the Herbrand Theorem to V
0

to obtain a simple
proof of Theorem 5.60. For notational simplicity, we consider the case of a single
existential string quantifier, and prove Lemma 5.64.

Suppose that ϕ(~x, ~X,Z) is a ΣB
0 formula such that

V0 ⊢ ∀~x∀ ~X∃Z ϕ(~x, ~X,Z)

By Lemma 5.69 there is an open formula ϕ′ over LFAC0 such that V
0 ⊢ ϕ↔ ϕ′.

Since V
0

extends V0, we have

V
0 ⊢ ∀~x∀ ~X∃Z ϕ′(~x, ~X,Z)

Now V
0

is a universal theory, so by the Herbrand Theorem 4.32, there are terms

T1(~x, ~X), . . . , Tn(~x, ~X) of V
0

such that

V
0 ⊢ ∀~x∀ ~X[ϕ′(~x, ~X, T1(~x, ~X)) ∨ . . . ∨ ϕ′(~x, ~X, Tn(~x, ~X))]

Define F (~x, ~X) by cases as follows:

F (~x, ~X) =






T1(~x, ~X) if ϕ′(~x, ~X, T1(~x, ~X))
...

Tn−1(~x, ~X) if ϕ′(~x, ~X, Tn−1(~x, ~X))

Tn(~x, ~X) otherwise

It is easy to see that F (~x, ~X) has a bit definition (5.37), and hence is a function
in LFAC0 , and

V
0 ⊢ ∀~x∀ ~Xϕ′(~x, ~X, F (~x, ~X))

Now V
0 ⊢ ϕ ↔ ϕ′, and also the proof of Theorem 5.71 shows that V

0
is

conservative over V0(F) (the extension of V0 resulting by adding the defining
axioms for F). Hence

V0(F) ⊢ ∀~x∀ ~Xϕ(~x, ~X, F (~x, ~X))

as required. �

The above proof shows that adding true ΣB
0 axioms to a theory does not

increase the set of provably total functions in the theory. For example, let
TrueΣB

0 be the set of all ΣB
0 formulas which are true in the standard model

N2. Let V0(TrueΣB
0) be the result of adding TrueΣB

0 as axioms to V0, and

let V
0
(TrueΣB

0) be the result of adding TrueΣB
0 as axioms to V

0
. Then

V
0
(TrueΣB

0) is a conservative extension of V0(TrueΣB
0), and the above proof

goes through to show that the same class FAC0 of functions serve to witness
the Σ1

1 theorems of V0(TrueΣB
0). Thus we have shown

Corollary 5.74. The provably total functions in V0(TrueΣB
0) are precisely the

functions in FAC0.

D
R

A
FT

5.7. FINITE AXIOMATIZABILITY 117

5.7 Finite Axiomatizability

Theorem 5.75. V0 is finitely axiomatizable.

Proof. It suffices to show that all ΣB
0 -COMP axioms follow from finitely many

theorems of V0. Let 2-BASIC+ (or simply B+) denote the 2-BASIC axioms
(Fig. 5.1) along with the finitely many theorems of I∆0 (and hence of V0)
given in Examples 3.8 and 3.9 asserting that +, ·,≤ satisfy the properties of a
commutative discretely-ordered semi-ring.

We show more generally that both ΣB
0 -COMP and the multiple comprehen-

sion axioms (5.24) for all ΣB
0 formulas follow from B+ and finitely many such

comprehension instances. We use the notation ϕ[~a, ~Q](~x) to indicate that the

ΣB
0 formula ϕ can contain the free variables ~a, ~Q in addition to ~x = x1, ..., xk.

Then for k ≥ 1, COMPϕ(~a, ~Q,~b) denotes the comprehension formula

∃Y ≤ 〈b1, ..., bk〉∀x1 < b1...∀xk < bk(Y (~x)↔ ϕ(~x)) (5.43)

We will show that COMPϕ for the following 12 formulas ϕ will suffice.

ϕ1(x1, x2) ≡ x1 = x2

ϕ2(x1, x2, x3) ≡ x3 = x1

ϕ3(x1, x2, x3) ≡ x3 = x2

ϕ4[Q1, Q2](x1, x2) ≡ ∃y ≤ x1(Q1(x1, y) ∧Q2(y, x2))
ϕ5[a](x, y) ≡ y = a
ϕ6[Q1, Q2](x, y) ≡ ∃z1 ≤ y∃z2 ≤ y(Q1(x, z1) ∧Q2(x, z2) ∧ y = z1 + z2)
ϕ7[Q1, Q2](x, y) ≡ ∃z1 ≤ y∃z2 ≤ y(Q1(x, z1) ∧Q2(x, z2) ∧ y = z1 · z2)
ϕ8[Q1, Q2, c](x) ≡ ∃y1 ≤ c∃y2 ≤ c(Q1(x, y1) ∧Q2(x, y2) ∧ y1 ≤ y2)
ϕ9[X,Q, c](x) ≡ ∃y ≤ c(Q(x, y) ∧X(y))
ϕ10[Q](x) ≡ ¬Q(x)
ϕ11[Q1, Q2](x) ≡ Q1(x) ∧Q2(x)
ϕ12[Q, c](x) ≡ ∀y ≤ cQ(x, y)

In the following lemmas, we abbreviate COMPϕi
(...) by Ci.

Lemma 5.76. For each k ≥ 1 and 1 ≤ i ≤ k let

ψik(x1, . . . , xk, y) ≡ y = xi

Then B+, C1, C2, C3, C4 ⊢ COMPψik
.

Proof. We proceed by induction on k. For k = 1 we have ψ1,1 ↔ ϕ1(x1, y) and
for k = 2 we have ψ2,1 ↔ ϕ2(x1, x2, y) and ψ2,2 ↔ ϕ3(x1, x2, y). For k > 2,
recall 〈x1, ..., xk〉 = 〈〈x1, ..., xk−1〉, xk〉. Hence

B+, C3 ⊢ COMPψkk

For 1 ≤ i < k use C4 with Q1 defined by C2 and Q2 defined by COMPψi,k−1
.

�

D
R

A
FT

118 CHAPTER 5. THE THEORY V0 AND AC0

Lemma 5.77. Let ~x = x1, · · · , xk, k ≥ 1, be a list of variables and let t(~x) be a
term which in addition to possibly involving variables from ~x may involve other
variables ~a, ~Q. Let ψt[~a, ~Q](~x, y) ≡ y = t(~x). Then

B+, C1, ..., C7 ⊢ COMPψt
(~a, ~Q,~b, d)

Proof. By using algebraic theorems in B+ we may suppose that t(~x) is a sum

of monomials in x1, ..., xk, where the coefficients are terms involving ~a, ~Q. The
case t ≡ u, where u does not involve any xi is obtained from C5 with a ← u.
The cases t ≡ xi are obtained from Lemma 5.76. We then build monomials
using C7 repeatedly, and build the general case by repeated use of C6. �

Lemma 5.78. Let t1(~x), t2(~x) be terms with variables among ~x,~a, ~Q. Suppose

ψ1[~a, ~Q](~x) ≡ t1(~x) ≤ t2(~x)
ψ2[~a, ~Q,X](~x) ≡ X(t1(~x))

Then B+, C1, ..., C9 ⊢ COMPψi
, for i = 1, 2.

Proof. COMPψ1(~a, ~Q,
~b) follows from COMPϕ8(Q1, Q2, c, b) with for i = 1, 2,

Qi defined from COMPψti
in Lemma 5.77 with d← t1(~b) + t2(~b) + 1, so

∀~x <~b∀y < (t1(~b) + t2(~b) + 1) (Qi(~x, y)↔ y = ti(~x))

In COMPϕ8 we take c← t1(~b) + t2(~b) and b← 〈b1, ..., bk〉.
For COMPψ2(~a, ~Q,X,

~b) we use COMPϕ9(X,P, c, b) with c ← t1(~b) and
b← 〈b1, ..., bk〉 and P defined from Lemma 5.77 similarly to Q1 above. �

Now we can complete the proof of the theorem. Lemma 5.78 takes care of the
case when ϕ is an atomic formula, since equations t1(~x) = t2(~x) can be initially
replaced by t1(~x) ≤ t2(~x) ∧ t2(~x) ≤ t1(~x). Then by repeated applications of
COMPϕ10 and COMPϕ11 we handle the case in which ϕ is quantifier-free.

Now suppose ϕ(~x) ≡ ∀y ≤ t(~x)ψ(~x, y). We assume as an induction hypoth-
esis that we can define Q satisfying

∀~x <~b∀y < t(~b) + 1[Q(~x, y)↔ (y ≤ t(~x) ⊃ ψ(~x, y))]

Then COMPϕ(~b) follows from COMPϕ12(Q, c, b) with c ← t(~b) and b ←
〈b1, ..., bk〉. �

D
R

A
FT

5.8. NOTES 119

5.8 Notes

The system V0 we introduce in this chapter is essentially Σp
0-comp in [?], and

IΣ1,b
0 (without #) in [?]. Zambella [?] used R for FAC0 and called it the

class ofrudimentary functions. However there is danger here of confusion with
Smullyan’s rudimentary relations [?].

The set 2-BASIC is similar to the axioms for Zambella’s theory Θ in [?],
and forms the two-sorted analog of Buss’s single-sorted axioms BASIC [?]. It
is slightly different from that which are presented in [?] and [?].

The statement and proof of Theorem 5.60 (witnessing) are inspired by [?],
although our treatment here is simplified because we only witness formulas in
which all string quantifiers are in front.

The universal theory V
0

is taken from [?].
Theorem 5.75 (finite axiomatizability) is taken from Section 7 of [?].

D
R

A
FT

120 CHAPTER 5. THE THEORY V0 AND AC0

D
R

A
FTChapter 6

The Theory V1 and

Polynomial Time

In this chapter we show that the theory V1 characterizes P in the same way
that V0 characterizes AC0. This is stated in the Σ1

1-Definability Theorem for
V1: A function is Σ1

1-definable in V1 if and only if it is in FP. The “only if”
direction follows from the Witnessing Theorem for V1.

The theory of algorithms can viewed, to a large extent, as he study of poly-
nomial time functions. All polytime algorithms can be described in V1, and
experience has shown that proofs of their important properties can usually be
formalized in V1. (See Example 6.30, prime recognition, for an apparent excep-
tion.) Razborov [?] has shown how to formalize lower bound proofs for Boolean
complexity in V1.

In Chapter 8 we will introduce other theories for polynomial time, and com-
pare them with V1.

6.1 Induction Schemes in Vi

Recall (Definition 5.3) that Vi is axiomatized by 2-BASIC and ΣB
i -COMP,

where ΣB
i -COMP consists of all formulas of the form

∃X ≤ y∀z < y(X(z)↔ ϕ(z)), (6.1)

where ϕ(z) is a ΣB
i formula, and X does not occur free in ϕ(z).

The next result follows from Corollary 5.8.

Corollary 6.1. For i ≥ 0, Vi proves the ΣB
i -IND, ΣB

i -MIN, and ΣB
i -MAX

axiom schemes.

It turns out that Vi proves these schemes for a wider class of formulas than
just ΣB

i . To show this, we start with a partial generalization of the Multiple
Comprehension Lemma 5.49.

121

D
R

A
FT

122 CHAPTER 6. THE THEORY V1 AND POLYNOMIAL TIME

Lemma 6.2 (Multiple Comprehension Revisited). Let T be a theory
which extends V0and has vocabulary L, and suppose that either L = L2

A or
L includes the projection functions left and right . For each i ≥ 0, if T proves
the ΣB

i (L)-COMP axioms, then T proves the multiple comprehension axiom

∃X ≤ 〈~y〉∀~z < ~y(X(~z)↔ ϕ(~z)) (6.2)

(see (5.24)) for any k ≥ 2 and any ϕ ∈ ΣB
i (L). In particular, for all i ≥ 0, Vi

proves ΣB
i -MULTICOMP.

Proof. The method used to prove the earlier version, Lemma 5.49, does not
work here, because for i ≥ 1 the ΣB

i (L)-formulas are not closed under bounded
number quantification.

For notational simplicity we prove the case k = 2. First we consider the
case the L includes left and right . Assuming that ϕ(z1, z2) is in ΣB

i (L) and T
proves the ΣB

i (L)-COMP axioms it follows that T proves

∃X ≤ 〈y1, y2〉∀z < 〈y1, y2〉, X(z)↔ ϕ(left(z), right(z))

and (6.2) follows.
For the case L = L2

A, we work in the conservative extension T (left ,right) of
T . Note that the conclusion of Lemma 5.40 applies to transform a ΣB

i (left ,right)
formula ϕ+ to an equivalent ΣB

i formula ϕ, since a ΣB
i formula is just a ΣB

0

formula with a prefix of string quantifiers. Therefore if T proves the ΣB
i -COMP

axioms, it follows that T (left ,right) proves the ΣB
i (left , right)-COMP axioms.

�

The next result refers to the ΣB
0 -closure of a set of formulas (Definition 5.34).

Theorem 6.3. Let T be a theory over a vocabulary L which extends V0 and
proves the multiple comprehension axioms (6.2) for every k ≥ 1 and every ϕ in
some class Φ of L-formulas. Then T proves the ΣB

0 (Φ)-COMP axioms.

The following result is an immediate consequence of this theorem, Lemma 6.2,
and Corollary 5.8, since every ΠB

i formula is equivalent to a negated ΣB
i for-

mula.

Corollary 6.4. For i ≥ 0 let Φi be ΣB
0 (ΣB

i ∪ ΠB
i). Then Vi proves the

Φi-COMP, Φi-IND, Φi-MIN, and Φi-MAX axiom schemes.

Proof of Theorem 6.3. We prove the stronger assertion that T proves the mul-
tiple comprehension axioms (6.2) for ϕ ∈ ΣB

0 (Φ), by structural induction on
ϕ relative to Φ. We use the fact that T extends V0 and hence by Lemma 6.2
proves the multiple comprehension axioms for ΣB

0 -formulas.
The base case, ϕ ∈ Φ, holds by hypothesis. For the induction step, consider

the case that ϕ has the form ¬ψ. By the induction hypothesis T proves

∃Y ≤ 〈~y〉∀~z < ~y(Y (~z)↔ ψ(~z))

D
R

A
FT

6.2. CHARACTERIZING P BY V1 123

and by Lemma 6.2, T proves

∃X ≤ 〈~y〉∀~z < ~y(X(~z)↔ ¬Y (~z))

Thus T proves (6.2).
The cases ∧ and ∨ are similar. Finally we consider the case that ϕ(~z) has

the form ∀x ≤ tψ(x, ~z). By the induction hypothesis T proves

∃Y ≤ 〈t+ 1, ~y〉∀x ≤ t∀~z < ~y(Y (x, ~z)↔ ψ(x, ~z))

By Lemma 5.49 V0 proves

∃X ≤ 〈~y〉∀~z < ~y(X(~z)↔ ∀x ≤ tY (x, ~z))

Now (6.2) follows from these two formulas. �

6.2 Characterizing P by V1

The class (two-sorted) P consists of relations computable in polynomial time
by a deterministic Turing machine (i.e., polytime relations), and FP is the class
of functions computable in polynomial time by a deterministic Turing machine
(i.e., polytime functions). Alternatively (Definition 5.16) FP is the class of
the polynomially bounded number functions whose graphs are in P, and the
polynomially bounded string functions whose bit graphs are in P.

Recall that a number input to the accepting machine is represented as a
unary string, and a set input is represented as a binary string (page 74). (Thus
a purely numerical function f(~x) is in FP iff it is computed in time 2O(n), where
n is the length of the binary notation for its arguments.)

The following proposition follows easily from the definitions involved.

Proposition 6.5. a) A number function f(~x, ~X) is in FP iff there is a

string function F (~x, ~X) in FP so that f(~x, ~X) = |F (~x, ~X)|.
b) A relation is in P iff its characteristic function is in FP.

We will prove that the theory V1 characterizes P in the same way that V0

characterizes AC0:

Theorem 6.6 (Σ1
1-Definability Theorem for V1). A function is Σ1

1-definable
in V1 iff it is in FP.

The “if” direction is proved in Section 6.2.1. The “only-if” direction follows
immediately from the Witnessing Theorem for V1 (Theorem 6.28).

Note that V1 is a polynomial-bounded theory (Definition 5.24). The fol-
lowing corollary follows from the Σ1

1-Definability Theorem for V1 above, and
Parikh’s Theorem (see Corollary 5.29).

Corollary 6.7. A function is in FP iff it is ΣB
1 -definable in V1.

D
R

A
FT

124 CHAPTER 6. THE THEORY V1 AND POLYNOMIAL TIME

The next corollary follows from the results above and Theorem 5.59.

Corollary 6.8. A relation is in P iff it is is ∆1
1-definable in V1 iff it is ∆B

1 -
definable in V1.

Recall (Theorem 4.18) that the ΣB
1 formulas represent precisely the NP

relations, and hence by Definition 5.56 a relation is ∆B
1 definable in a theory

T iff T proves that the relation is in both NP and co-NP. Thus the above
corollary says that a relation is in P iff V1 proves that it is in NP ∩ co-NP.

Corollary 6.9. V1is a proper extension of V0.

Proof. There are relations (such as PARITY (X) — page 106) which are in P
but not in AC0. �

Exercise 6.10 (parity(X) in V1). Recall the formula ϕparity(X,Y) ((5.32)
on page 107). Show that the function parity(X), which is the characteristic
function of PARITY (page 106), is Σ1

1-definable in V1 by showing that

V1 ⊢ ∀X∃!Y ϕparity(X,Y)

Exercise 6.11 (String Multiplication in V1). Consider the string multipli-
cation function X ⊗ Y where

X × Y = Z ↔ bin(Z) = bin(X) · bin(Y)

(see (4.4) on page 76). Consider the the Σ1
1 defining axiom for X × Y in V1

that is based on the “school” algorithm for multiplying two numbers in binary.
First, we construct the table X ⊗ Y that has |Y | rows and whose ith row is
either 0, if Y (i) = 0 (i.e., ¬Y (i)), or a copy of X shifted by i bits, if Y (i) = 1.
Thus, X ⊗ Y can be defined by (see Definition 5.50 for row notation)

|X ⊗ Y | ≤ 〈|Y |, |X |+ |Y |〉∧
∀i < |Y |∀z < i+ |X |, (X ⊗ Y [i])(z)↔ (Y (i) ∧ ∃u ≤ z (u+ i = z ∧X(u)))

a) Let Z = X ⊗ Y . Show that V0 proves the existence and uniqueness of Z.

b) Show that V1 proves the existence and uniqueness of W , where

|W | ≤ 1 + 〈|Y |, |X |+ |Y |〉 ∧ |W [0]| = 0 ∧ ∀i < |Y |, W [i+1] = W [i] + Z [i]

(Hint: Use ΣB
1 -IND. For the bound on |W |, show that |W [i]| ≤ |X |+ i.)

c) Define X × Y in terms of X ⊗ Y . Conclude that the string multiplication
function is provably total in V1.

d) Recall string functions ∅, S and X + Y from Example 5.42. Show that
the following are theorems of V1(∅, S,+,×):

(i) X ×∅ = ∅.
(ii) X × S(Y) = (X × Y) +X.

D
R

A
FT

6.2. CHARACTERIZING P BY V1 125

It will follow from our discussion in Section 8.2 that V1(∅, S,+,×) proves
the string induction axiom scheme for ΣB

0 (∅, S,+,×) formulas (see Corollary
8.42 and Theorem 8.11). Consequently, V1(∅, S,+,×) proves the properties of
the string functions ∅, S,+ and × as listed in Example 3.8.

Exercise 6.12 (String Division and Remainder in V1). Consider the
string division function X ÷ Y = ⌊X/Y ⌋ and the string remainder function
Rem(X,Y) = X − Y × (X ÷ Y). These functions can be Σ1

1-defined in V1 by
the following steps. Suppose that Y ≤ X, and let z be such that z + |Y | = |X |.

a) Give a ΣB
0 -bit-definition for the table U , where the row U [i] of U is Y

“shifted” by i bits, for 0 ≤ i ≤ z.
b) Prove in V1 the existence and uniqueness of a table W such that

W [z] = X ∧ ∀i < z, ((W [i+1] < U [i+1] ⊃W [i] = W [i+1])∧
(U [i+1] ≤W [i+1] ⊃W [i] + U [i+1] = W [i+1]))

c) Define X ÷ Y and Rem(X,Y) using W .

d) Show in V1(+,×,÷,Rem) that

X = (Y × (X ÷ Y)) + Rem(X,Y)

6.2.1 The “if” Direction of Theorem 6.6

We will give two proofs of the fact that every polynomial time function is Σ1
1-

definable in V1. The first is based directly on Turing machine computations,
and the second is based on Cobham’s characterization of FP. We give the
second proof in more detail, since it provides the basis for the universal theory
VPV described in Chapter 8.

The key idea for the first proof is that the computation of a polytime Turing
machine M on a given input ~x, ~X can be encoded as a string of configurations
(see Definition 5.50 for notation)

Z = 〈Z [0], Z [1], . . . Z [m]〉

whose length is bounded by some polynomial in ~x, | ~X|, and whose existence we
need to prove in V1. The output of M can then be extracted from Z easily. The
defining axiom for the polytime function computed by M is the formula that
states the existence of such Z.

Exercise 6.13. Describe a method of coding Turing machine configurations by
strings, and show that for each Turing machine M working on input ~x, ~X there
are ΣB

0 -definable string functions in V0: InitM(~x, ~X), NextM(Z) and OutM(Z)
such that

• InitM(~x, ~X) is the initial configuration of M on input (~x, ~X);

D
R

A
FT

126 CHAPTER 6. THE THEORY V1 AND POLYNOMIAL TIME

• Z ′ = NextM(Z) if Z and Z ′ code two consecutive configurations of M, or
Z ′ = Z if Z codes a final configuration of M, or Z ′ = ∅ if Z does not code
a configuration of M.

• OutM(Z) is the tape contents of a configuration Z of M, or ∅ if Z does
not code a configuration of M.

Below we will use all three functions in the above exercise, as well as the
string function Row(z, Y) (Definition 5.50). Because these functions are ΣB

0 -
definable in V0, it follows from the FAC0 Elimination Lemma 5.73 that any
ΣB

0 (L2
A ∪ {Init ,Next ,Out ,Row}) formula can be transformed into a provably

equivalent ΣB
0 (L2

A) formula. Formally we will work in the conservative extension
of V1 consisting of V1 together with the defining axioms for these functions,
although we will continue to refer to this theory as simply V1. Thus each ΣB

0

(resp. ΣB
1) formula below with the new functions is provably equivalent to a

ΣB
0 (resp. ΣB

1) formula in the language of V1.

First Proof of the ⇐= Direction of Theorem 6.6. Consider the case of string func-
tions. (The case of number functions is similar.) Suppose that F (~x, ~X) is a

polytime function. Let M be a Turing machine which computes F (~x, ~X) in time

polynomial of ~x, | ~X|, and let t(~x, | ~X|) be a bound on the running time of M on

input ~x, ~X. We may assume that M halts with F (~x, ~X) equal to the contents of

its tape, so that OutM(Z) = F (~x, ~X) if Z codes the final configuration. Then

Y = F (~x, ~X)↔ ∃Z ≤ 〈t, t〉(ϕM(~x, ~X,Z) ∧ Y = OutM(Z [t])) (6.3)

where ϕM(~x, ~X,Z) is the formula

Z [0] = InitM(~x, ~X) ∧ ∀z < t Z [z+1] = NextM(Z [z])

We will show that the RHS of (6.3) is a defining axiom for F in V1, i.e.,

V1 ⊢ ∀~x∀ ~X∃!Y ∃Z ≤ 〈t, t〉(ϕM(~x, ~X,Z) ∧ Y = OutM(Z [t]))

For the uniqueness of Y , it suffices to verify that if Z1 and Z2 are two strings
satisfying

|Zk| ≤ 〈t, t〉 ∧ ϕM(~x, ~X,Zk)

(for k = 1, 2), then for all z,

z ≤ t ⊃ Z [z]
1 = Z

[z]
2 (6.4)

This follows in V1 using ΣB
0 -IND on the formula (6.4) with induction on z.

For the existence of Y , we need to show that V1 proves

∀~x∀ ~X∃Z ≤ 〈t, t〉 ϕM(~x, ~X,Z)

This formula can be proved in V1 by using number induction axiom (Corol-
lary 6.1) on b for the ΣB

1 formula

∃W ≤ 〈b, t〉, W [0] = InitM(~x, ~X) ∧ ∀z < bW [z+1] = NextM(W [z])

�

D
R

A
FT

6.2. CHARACTERIZING P BY V1 127

Exercise 6.14. Carry out details of the induction step in the proof of the above
formula.

An alternative proof for the above direction of Theorem 6.6 can be obtained
by using Cobham’s characterization of FP. To explain this, we need the notion
of limited recursion. First we introduce the AC0 string function Cut(x,X),
which is the initial segment of X and contains all elements of X that are < x.
It has the ΣB

0 -bit-defining axiom

Cut(x,X)(z)↔ z < x ∧X(z) (6.5)

Notation: We will sometimes write X<x for Cut(x,X).

Definition 6.15 (Limited Recursion). A string function F (y, ~x, ~X) is de-

fined by limited recursion from G(~x, ~X) and H(y, ~x, ~X,Z) iff

F (0, ~x, ~X) = G(~x, ~X) (6.6)

F (y + 1, ~x, ~X) = (H(y, ~x, ~X, F (y, ~x, ~X)))<t(y,~x,
~X) (6.7)

for some L2
A-term t representing a polynomial in y, ~x, | ~X|.

For two-sorted function classes, we can also define the notion of limited
recursion for a number function. However here we can just appeal to Proposi-
tion 6.5 a when we have to deal with number functions. A version of Cobham’s
characterization of FP is as follows.

Theorem 6.16 (Cobham’s Characterization of FP). A string function is
in FP iff it can be obtained from AC0 functions by finitely many applications
of composition and limited recursion.

Proof Sketch. The ⇐= direction follows from the fact that AC0 functions are
in FP, and that applying the operations composition and limited recursion to
functions in FP results in functions in FP.

For the =⇒ direction, the function F computed by a polytime Turing ma-
chine M can be defined from the AC0 functions InitM, NextM and OutM by
limited recursion and composition. In more detail, we can define a string func-
tion Conf M(y, ~x, ~X) to be the string coding the configuration of M on input

(~x, ~X) at time y. Then Conf M satisfies the recursion

Conf M(0, ~x, ~X) = InitM (~x, ~X)

Conf M(y + 1, ~x, ~X) = NextM(Conf M(y, ~x, ~X))

To turn this recursion into one fitting Definition 6.15 we apply Cut(t(y, ~x, ~X), . . .)
to the RHS of the second equation, for a suitable L2

A-term t bounding the run
time of M. Then

F (~x, ~X) = OutM(Conf M(t(~x, ~X), ~x, ~X))

�

D
R

A
FT

128 CHAPTER 6. THE THEORY V1 AND POLYNOMIAL TIME

6.2.2 Application of Cobham’s Theorem

Second proof of the ⇐= Direction of Theorem 6.6. We use Cobham’s Charac-
terization of FP to show that the polytime string functions are Σ1

1-definable in
V1. It follows from Proposition 6.5 that the polytime number functions are also
Σ1

1-definable in V1.
We proceed by induction on the number of applications of composition and

limited recursion needed to obtain F from AC0 functions. For the base case,
the AC0 functions are Σ1

1-definable in V0 (Corollary 5.61), hence also in V1.
For the induction step, we need to show that the Σ1

1-definable functions of V1

are closed under composition and limited recursion. The case of composition
is easily seen to hold for any theory T (see exercise 5.30). Hence it suffices to
prove the case of limited recursion.

Suppose that G(~x, ~X) and H(y, ~x, ~X,Z) are Σ1
1-definable functions in V1,

and F (y, ~x, ~X) is defined by limited recursion from G and H as in (6.6) and
(6.7) for some polynomial p. Then we can Σ1

1-define F by coding the sequence
of values F (0), F (1), . . . , F (y) as the rows W [0],W [1], . . . ,W [y] of a single array

W . Thus (omitting ~x, ~X):

Y = F (y)↔ ∃W, W [0] = G()∧
∀z < y W [z+1] = (H(z,W [z]))<t(z)∧
Y = W [y]

The RHS is not immediately equivalent to a Σ1
1 formula when the equations

involving G and H are replaced by Σ1
1 formulas using the defining axioms for G

and H . This is because of the number quantifier ∀z < y of the middle conjunct,
which is mixed in between the existential string quantifiers. We obtain a Σ1

1-
defining axiom for F from the RHS as follows:

By assumption, G and H have Σ1
1-defining axioms. Therefore there are ΣB

0

formulas ϕG and ϕH so that

W = G()↔ ∃~UϕG(~U,W), W = H(y, Z)↔ ∃~V ϕH(y, Z, ~V ,W)

and

V1 ⊢ ∃!W∃~UϕG(~U,W) (6.8)

V1 ⊢ ∀y∀Z∃!W∃~V ϕH(y, Z,~,W) (6.9)

The Σ1
1-defining axiom for F is obtained by using arrays ~V for which ~V [z] (row

z in the arrays ~V) codes the values of ~V needed to satisfy (6.9) when evaluating
H(z,W [z]).

Y = F (y)↔∃W∃~U∃~V , ϕG(~U,W [0])∧
∀z < y(ϕH(z,W [z], ~V [z], (W [z+1])<t(z)

)∧
Y = W [y]

(6.10)

D
R

A
FT

6.3. THE REPLACEMENT AXIOM SCHEME 129

Since the terms such as (W [z+1])<t(z) are easily seen to be ΣB
0 -bit-definable,

it follows from Lemma 5.73 that this defining axiom can be replaced by an
equivalent Σ1

1-formula (see the discussion following Exercise 6.13).

It is easy to see that V1 proves the uniqueness of Y by proving that if W1

and W2 satisfy (6.10), then for z ≤ y we have W
[z]
1 = W

[z]
2 . This is by number

induction on z ≤ y, and follows from the uniqueness of W in (6.8) and (6.9).

Now we show that V1proves the existence of Y satisfying the RHS of (6.10).
We start by noting that all of the initial string quantifiers can be bounded.
This follows from Parikh’s Theorem, using (6.8) and (6.9). Let ψ(y) be the
ΣB

1 -formula obtained from this bounded form of the RHS of (6.10), with the
final conjunct Y = W [y] deleted. Thus ψ(y) asserts the existence of an array

W = (W [0],W [1], . . . ,W [y])

whose rows are the successive values

F (0), F (1), . . . , F (y)

We show that V1 proves ψ(y) by induction on y. The base case follows from
(6.8): If W ′ satisfies the existential quantifier ∃W in (6.8), then W satisfying
ψ(y) can be defined using multiple comprehension (Lemma 6.2):

W (0, i)↔W ′(i)

For the induction step, the new values of W and ~V for y + 1 are obtained by
pasting together the previous values for y, together with values from (6.9) with
(y, Z) in ϕH replaced by (y,W [y]). The pasting is again defined using multiple
comprehension.

Hence V1 ⊢ ψ(y). From this it follows that V1 proves the existence of Y
satisfying the RHS of (6.10): just set Y = W [y]. Hence F (y) is Σ1

1-definable in
V1. �

6.3 The Replacement Axiom Scheme

Recall that the classes ΣB
i and ΠB

i consist of formulas in prenex form, whose
string quantifiers precede the number quantifiers. Below we define more general
classes.

Definition 6.17 (gΣB
i (L) and gΠB

i (L)). For a vocabulary L extending L2
A,

define

gΣB
0 (L) = gΠB

0 (L) = ΣB
0 (L)

For i ≥ 0, gΣB
i+1 is the closure of gΠB

i under ∧, ∨, ∀x ≤ t, ∃x ≤ t and ∃X ≤ t.
Similarly, gΠB

i+1 is the closure of gΣB
i under ∧, ∨, ∀x ≤ t, ∃x ≤ t and ∀X ≤ t.

D
R

A
FT

130 CHAPTER 6. THE THEORY V1 AND POLYNOMIAL TIME

As usual, we will drop mention of L when it is clear from context. Notice
that for i ≥ 0, ΣB

i ⊂ ΣB
0 (ΣB

i) ⊂ gΣB
i , and ΠB

i ⊂ ΣB
0 (ΠB

i) ⊂ gΠB
i . Also

ΣB
0 ⊂ gΣB

1 ⊂ gΣB
2 ⊂ . . . and ΣB

0 ⊂ gΠB
1 ⊂ gΠB

2 ⊂ . . .

For any formula ϕ+ in gΣB
i , there is a formula ϕ in ΣB

i so that in N2 we
have ϕ+ ↔ ϕ. In particular, when ϕ+ is a gΣB

1 formula of the form

∀x ≤ t∃X ≤ tψ(x,X)

where ψ is a ΣB
0 formula, then we can collect the values of X for x = 0, 1, . . . , t

into a single array Y whose rows Y [0], Y [1], . . . Y [t] are these successive values of
X . Thus we can take ϕ to be

∃Y ≤ 〈t, t〉∀x ≤ t(|Y [x]| ≤ t ∧ ψ(x, Y [x]))

In this case ϕ+ is a logical consequence of ϕ, and ϕ+ ⊃ ϕ is true in N2. In this
section we are concerned with the provability of formulas of the type ϕ+ ⊃ ϕ
in our theories. Consider the following axiom scheme.

Definition 6.18 (Replacement Axiom). For a set Φ of formulas over the
vocabulary L, the replacement axiom schemefor Φ, denoted by Φ-REPL, is the
set of all formulas (over L ∪ {Row}):

∀x ≤ b∃X ≤ c ϕ(x,X) ⊃ ∃Z ≤ 〈b, c〉 ∀x ≤ b, |Z [x]| ≤ c ∧ ϕ(x, Z [x]) (6.11)

where ϕ is in Φ.

Note that in (6.11) the LHS is a logical consequence of the RHS. Also (6.11)
is true in the expansion of the standard model N2, for any formula ϕ.

The function Row occurs on the RHS of (6.11), but by the Row Elimina-
tion Lemma 5.51 (or more generally the FAC0 Elimination Lemma 5.73), any
ΣB

0 (Row) formula is equivalent to a ΣB
0 (L2

A) formula. So in the context of the
theories with underlying vocabulary L2

A (such as Vi, or Ṽ1 below), we define
(6.11) to be the equivalent L2

A formula which is obtained by transforming every
atomic sub-formula containing Row into a ΣB

0 (L2
A) formula.

Notation When we say that a theory T with vocabulary L that proves a REPL
axiom scheme (e.g., ΣB

0 (L)-REPL), then either L2
A ∪ {Row} ⊆ L, or L = L2

A

and (6.11) is as above.

Recall that a single-ΣB
1 formula has the form ∃X ≤ tψ(X), where ψ is a

ΣB
0 formula.

Lemma 6.19. Suppose that T is a polynomial–bounded theory which proves
the ΣB

0 (L)-REPL axiom scheme, where L is the vocabulary of T (so either
L = L2

A, or L2
A ∪ {Row} ⊆ L). Then for each gΣB

1 (L) formula ϕ there is a
single-ΣB

1 (L) formula ϕ′ so that T ⊢ ϕ↔ ϕ′.

D
R

A
FT

6.3. THE REPLACEMENT AXIOM SCHEME 131

Proof. We prove by structural induction on the formula ϕ. For the base case,
if ϕ is a ΣB

0 (L) formula, then we can simply take ϕ′ ≡ ϕ.
For the induction step, consider the interesting case where ϕ has the form

∀x ≤ sθ(x), where θ is a gΣB
1 (L) formula but not a ΣB

0 (L) formula. By
the induction hypothesis, θ(x) is equivalent in T to a single-ΣB

1 (L) formula
∃X ≤ tψ(x,X), where ψ is a ΣB

0 (L) formula. In other words,

T ⊢ ϕ↔ ∀x ≤ s∃X ≤ tψ(x,X)

Now T proves ϕ is equivalent to a single-ΣB
1 (L) formula by ΣB

0 (L)-REPL.
The other cases for the induction step follow easily with the help of exercise

5.54, which shows that a prefix of several bounded string quantifiers can be
collapsed into a single one. �

In the next lemma we generalize the previous lemma. Part b follows easily
from a, and a can be proved by induction on i. The base case is proved in
Lemma 6.19. The induction step is similar to the base case.

Lemma 6.20. Let T be a polynomial–bounded theory with vocabulary L which
proves the ΠB

i (L)-REPL axiom scheme, for some i ≥ 0 (so either L = L2
A, or

L2
A ∪ {Row} ⊆ L). Then

a) For each gΣB
i+1(L) formula ϕ there is a ΣB

i+1(L) formula ϕ′ so that T ⊢
ϕ↔ ϕ′.

b) For each gΠB
i+1(L) formula ϕ there is a ΠB

i+1(L) formula ϕ′ so that T ⊢
ϕ↔ ϕ′.

Exercise 6.21. Prove the above lemma.

Exercise 6.22. Let T , L and i be as in Lemma 6.20 above. Show that T proves
the ΣB

i+1(L)-REPL axiom scheme.

The next lemma shows that V1 proves the ΣB
1 -REPL axiom scheme. It

is important to note that the analogous statement does not hold for V0: we
will prove later (see Section 8.5) that V0 does not prove the ΣB

0 -REPL axiom
scheme. Also, we will introduce the universal theory VPV which characterizes
P in the same way that V1 characterizes P, and we will show that it is unlikely
that VPV proves ΣB

1 -REPL.

Lemma 6.23. Let T be an extension of V0, where the vocabulary L of T is
either L2

A or L2
A∪{Row} ⊆ L). Suppose that T proves the ΣB

i+1(L)-IND axiom
scheme, for some i ≥ 0. Then T also proves the ΠB

i (L)-REPL axiom scheme.

Proof. Let ϕ be a ΠB
i (L) formula. We will show that T proves (6.11). Intu-

itively, the RHS of (6.11) is the formula which states the existence of an array
Z having b rows, whose x-th row Z [x] satisfies ϕ(x, Z [x]). We will prove by
number induction the existence of the initial segments of Z, and hence derive
the existence of Z.

D
R

A
FT

132 CHAPTER 6. THE THEORY V1 AND POLYNOMIAL TIME

Formally we need to make sure that the RHS of (6.11) is equivalent to a
ΣB
i+1(L) formula. First consider the case where i = 0, so ϕ is a ΣB

0 (L) formula.
Let

ψ(z) ≡ ∃Z ≤ 〈z, c〉∀x ≤ z (|Z [x]| ≤ c ∧ ϕ(x, Z [x]))

Then ψ(z) is a ΣB
1 (L) formula and the RHS of (6.11) is just ψ(b). Our task is

to show in T that ψ(z) holds for z ≤ b, assuming the LHS of (6.11). This is
proved in T by induction on z ≤ b. For the base case, ψ(0) follows from the
LHS of (6.11) by putting x = 0. The induction step follows from the induction
hypothesis and the LHS of (6.11), using ΣB

0 -COMP.
For the case where i ≥ 1, note that when ϕ is a ΠB

i (L) formula, the RHS of
(6.11) is not really a ΣB

i+1(L) formula. But it is equivalent (in T) to:

∃Z ≤ 〈b, c〉∀Y ≤ b (|Z [|Y |]| ≤ c ∧ ϕ(x, Z [|Y |]))

which is equivalent to a ΣB
i+1(L) formula. Let ψ be the equivalent ΣB

i+1(L)
formula, then we can use the same arguments as for the case i = 0. �

From Exercise 6.22, Lemma 6.23, Corollary 6.1, Corollary 6.4, and Lemma 6.19
we have:

Corollary 6.24. For i ≥ 1, the theory Vi proves the gΣB
i -REPL axiom

scheme. For each gΣB
1 formula ϕ, there is a single-ΣB

1 formula ϕ′ such that
V1 ⊢ ϕ↔ ϕ′. Also V1 proves ΣB

0 (gΣB
1 ∪ gΠB

1)-IND.

6.3.1 Extending V1 by Polytime Functions

By the Extension by Definition Theorem 3.30, if we extend V1 by a collection
L of its Σ1

1-definable functions (i.e., polytime functions), ∆1
1-definable predi-

cates (i.e., polytime predicates), and their defining axioms, then we obtain a
conservative extension V1(L) of V1. Here we want to show further that V1(L)
proves the ΣB

1 (L)-COMP axiom scheme. This is similar to the situation for
V0, where it follows from Corollary 5.39 and Lemma 5.40 that V0(L) is conser-
vative over V0, and it proves the ΣB

0 (L)-COMP axiom scheme for a collection
L of AC0 functions. Note that for the case of V0, the AC0 string functions are
ΣB

0 -bit-definable in V0.
Here it suffices to show that any ΣB

1 (L) formula is provably equivalent in
V1(L) to a ΣB

1 (L2
A) formula. We will prove this by structural induction on the

ΣB
1 (L) formula. For the induction step, we use Corollary 6.24 above. More

generally, we prove:

Lemma 6.25 (ΣB
1 -Transformation Lemma). Let T be a polynomial-bounded

theory over the vocabulary L ⊇ L2
A∪{Row}. Suppose that T proves ΣB

0 (L)-REPL.
Let T ′ be the extension of T which is obtained by adding to T a Σ1

1(L)-definable
function or a ∆1

1(L)-definable predicate, and its defining axiom, and L′ be the
vocabulary of T ′. Then

D
R

A
FT

6.3. THE REPLACEMENT AXIOM SCHEME 133

a) T ′ is conservative over T , and T ′ is polynomial-bounded;

b) For any ΣB
1 (L′) formula ϕ+, there is a ΣB

1 (L) formula ϕ so that T ′ ⊢
ϕ+ ↔ ϕ;

c) For any ΣB
0 (L′) formula ϕ+, there are a ΣB

1 (L) formula ϕ1 and a ΠB
1 (L)

formula ϕ2 so that T ′ ⊢ ϕ+ ↔ ϕ1, and T ⊢ ϕ1 ↔ ϕ2;

d) T ′ proves the ΣB
1 (L′)-REPL axiom scheme.

Indeed, by Exercise 5.54, the formulas ϕ and ϕ1 can be taken to be single-ΣB
1 (L)

formulas, and ϕ2 can be taken to be a single-ΠB
1 (L) formula.

Proof. For a, the conservativity of T ′ over T follows from the Extension by
Definition Theorem 3.30. Also, T ′ is polynomial-bounded because T is, and the
Σ1

1-definable functions of T are polynomially bounded (Corollary 5.29).
Part b follows from c, and d follows from c and Exercise 6.22 (for the case

i = 0). We prove c for the case of extending T by a Σ1
1-definable string function.

The case of adding a Σ1
1-definable number function or a ∆1

1-definable predicate
is similar, and is left as an exercise.

Let F be the Σ1
1(L)-definable function in T . Since T is a polynomial-

bounded theory, F is polynomially bounded in T , and is ΣB
1 (L)-definable in

T (Corollary 5.29). So there is a ΣB
1 (L) formula ϕF (~x, ~X, Y) such that

Y = F (~x, ~X)↔ ϕF (~x, ~X, Y) and T ⊢ ∀~x∀ ~X∃!Y ≤ tϕF (~x, ~X, Y) (6.12)

By Lemma 6.19, it suffices to prove a simpler statement, i.e., that there exist
a gΣB

1 (L) formula ϕ1 and a gΠB
1 (L) formula ϕ2 such that T ′ ⊢ ϕ+ ↔ ϕ1 and

T ⊢ ϕ1 ↔ ϕ2. We prove this by induction on the nesting depth of F in ϕ+. For
the base case, F does not occur in ϕ+, and there is nothing to prove. For the
induction step, first we prove:

Claim Suppose that for each atomic sub-formula ψ of ϕ+, there are a gΣB
1 (L)

formula ψ1 and a gΠB
1 (L) formula ψ2 so that T ′ ⊢ ψ+ ↔ ψ1 and T ⊢ ψ1 ↔ ψ2.

Then there are a gΣB
1 (L) formula ϕ1 and a gΠB

1 (L) formula ϕ2 so that T ′ ⊢
ϕ+ ↔ ϕ1 and T ⊢ ϕ1 ↔ ϕ2.

We prove the claim by structural induction on ϕ+. The base case holds
trivially. The induction step is immediate from definition of gΣB

1 (L) formulas
and the DeMorgan’s laws.

Now we return to the proof of the induction step for c. By the claim, it
suffices to consider the atomic formulas over L′. We can reduce the nesting
depth of F as follows. The maximum nesting depth of F is the depth of F in
(different) terms of the form F (~s, ~T), where ~s, ~T are terms with less nesting
depth of F . We will show how to eliminate one such term from ϕ+. In the
general case all such terms can be eliminated using the same method. Write ϕ+

as ϕ+(F (~s, ~T)). Then using (6.12) it is easy to see that (writing t for t(~s, ~T)):

T ′ ⊢ ϕ+(F (~s, ~T))↔ ∃Y ≤ t(ϕF (~s, ~T , Y) ∧ ϕ+(Y))

and

T ′ ⊢ ∃Y ≤ t(ϕF (~s, ~T , Y) ∧ ϕ+(Y))↔ ∀Y ≤ t(ϕF (~s, ~T , Y) ⊃ ϕ+(Y))

D
R

A
FT

134 CHAPTER 6. THE THEORY V1 AND POLYNOMIAL TIME

The last line has the form T ′ ⊢ ϕ′
1 ↔ ϕ′

2, where ϕ′
1 is equivalent to a ΣB

1 (L′)
formula and ϕ′

2 is equivalent to a ΠB
1 (L′) formula. Further ϕ′

1 and ϕ′
2 have less

nesting depth of F than ϕ+(F (~s, ~T)). By applying the induction hypothesis
to the atomic sub-formulas, we obtain a gΣB

1 (L) formula ϕ1 and a gΠB
1 (L)

formula ϕ2 that satisfy the induction step. �

Exercise 6.26. Prove Lemma 6.25 c for the cases of extending T by a Σ1
1-

definable number function and a ∆1
1-definable predicate.

Corollary 6.27. Suppose that T0 is a polynomial-bounded theory with vocabu-
lary L0 ⊇ L2

A ∪ {Row}, and that T0 proves the ΣB
0 (L0)-REPL axiom scheme.

Let T0 ⊂ T1 ⊂ T2 ⊂ . . . be a sequence of extensions of T0 where each Ti has
vocabulary Li and each Ti+1 is obtained from Ti by adding the defining axiom
for a Σ1

1(Li)-definable function or a ∆1
1(Li)-definable predicate. Let

T =
⋃

i≥0

Ti

Then T is a polynomial-bounded theory which is conservative over T0 and proves
the ΣB

1 (L)-REPL axiom scheme, where L is the vocabulary of T . Furthermore,
each function in L is Σ1

1(L0)-definable in T0, and each predicate in L is ∆1
1(L0)-

definable in T0. Finally each ΣB
1 (L) formula is provably equivalent in T to a

ΣB
1 (L0) formula.

The corollary is proved using Lemma 6.25 by proving by induction on i
that the analogous statement holds for each theory Ti. The conservativity of T
follows from the conservativity of each Ti by compactness.

The corollary can be applied to the case in which T0 = V1, since by Corol-
lary 6.24, V1 proves ΣB

1 -REPL, and we may assume that T1 is V1(Row). We
will use Corollary 6.27 for T0 = V1(Row) in Subsection 6.4.2 when we prove
the Witnessing Theorem for V1.

6.4 The Witnessing Theorem for V1

To prove the =⇒ direction of Theorem 6.6, i.e., every Σ1
1-definable function

in V1 is a polytime function, we prove the Witnessing Theorem for V1 below.
Recall that by the⇐= direction, each polytime function has a Σ1

1-defining axiom
in V1.

Theorem 6.28 (Witnessing Theorem for V1). Suppose that ϕ(~x, ~y, ~X, ~Y)
is a ΣB

0 formula, and that

V1 ⊢ ∀~x∀ ~X∃~y∃~Y ϕ(~x, ~y, ~X, ~Y)

Then there are polytime functions f1, . . . , fk, F1, . . . , Fm so that

V1(f1, . . . , fk, F1, . . . , Fm) ⊢ ∀~x∀ ~Xϕ(~x, ~f(~x, ~X), ~X, ~F (~x, ~X))

D
R

A
FT

6.4. THE WITNESSING THEOREM FOR V1 135

A more general witnessing statement follows from this theorem and Corol-
lary 6.27 and Lemma 6.19.

Corollary 6.29. Let T be a theory with vocabulary L which results from V1 by
a sequence of extensions by Σ1

1-definable functions and ∆1
1-definable predicates.

If

T ⊢ ∀~x∀ ~X∃Y ϕ(~x, ~X, Y)

where ϕ is in gΣB
1 (L) then there is a polytime function F such that

T (F) ⊢ ∀~x∀ ~Xϕ(~x, ~X, F (~x, ~X))

Example 6.30 (Prime Recognition). Any polynomial time prime recogni-
tion algorithm (such as the one by Agrawal et al [?]) gives a predicate Prime(X)
which according to Corollary 6.8 is ∆B

1 definable in V1. It follows by the Wit-
nessing Theorem that if V1 proves the correctness of the algorithm, then binary
integers can be factored in polynomial time. Here correctness means

Prime(X)↔ 2 ≤ |X | ∧ [∀Y ∀Z, Y × Z = X ⊃ (X = Y ∨X = Z)]

(Recall that Y × Z is Σ1
1 definable in V1, by Exercise 6.11). In fact, the right-

to-left direction of this correctness statement implies

∀X∃Y ∃Z, [Y × Z = X ∧X 6= Y ∧X 6= Z)] ∨ Prime(X) ∨ |X | < 2

Thus if V1(Prime,×) proves correctness then polynomial time witnessing func-
tions for Y and Z would provide proper factors for each nonprime X with
|X | ≥ 2.

Exercise 6.31 (Integer Factoring [?]). Show that V1 proves that every bi-
nary integer X greater than 1 can be represented as a product of primes. Use the
fact that V1 proves the ΣB

1 -MAX axioms (Corollary 5.8), where we are trying
to maximize k such that for some string Y = 〈Z1, . . . , Zk〉 with each Zi a binary
number ≥ 2,

∏
Zi = X. Explain why it does not follow from the Witnessing

Theorem for V1 that binary integers can be factored into primes in polynomial
time.

As in the proof of the Witnessing Theorem for V0 (Subsection 5.5.2), the
Witnessing Theorem for V1 follows from the following special case.

Lemma 6.32. Suppose that ϕ(~x, ~X, Y) is a ΣB
0 formula such that

V1 ⊢ ∀~x∀ ~X∃Y ϕ(~x, ~X, Y)

Then there is a polytime function F so that

V1(F) ⊢ ∀~x∀ ~Xϕ(~x, ~X, F (~x, ~X))

D
R

A
FT

136 CHAPTER 6. THE THEORY V1 AND POLYNOMIAL TIME

Our first attempt to prove the lemma would be to consider an anchored
LK2-V1 proof π of ∃Y ≤ t ϕ(~x, ~X, Y), and proceed as in the proof of Lemma 5.64.
In this case, however, a ΣB

1 -COMP axiom

∃X ≤ y∀z < y(X(z)↔ ϕ(z)) (6.13)

is not in general provably equivalent to a ΣB
1 formula, because of the clause

ϕ(z) ⊃ X(z). So the LK2-V1 proof π could contain formulas which are not Σ1
1.

To get around this difficulty, we begin by showing that V1 can be axiomatized
by ΣB

1 -IND and ΣB
0 -COMP instead of ΣB

1 -COMP. Consider the theory Ṽ1:

Definition 6.33. The theory Ṽ1 has vocabulary L2
A and has the axioms of V0

and the ΣB
1 -IND axiom scheme.

By Exercise 5.54, Ṽ1 can be axiomatized by V0 and the single-ΣB
1 -IND

axiom scheme.

Lemma 6.34. Ṽ1 proves the ΣB
1 -REPL axioms.

Proof. Corollary 6.24 states this for V1, and the only properties of V1 used in
the proof are that V1 extends V0 and proves the ΣB

1 -IND axioms. Hence the
same proof works for Ṽ1. �

Theorem 6.35. The theories V1 and Ṽ1 are the same.

Proof. By Corollary 6.1, V1 proves the ΣB
1 -IND axiom scheme. Therefore

Ṽ1 ⊆ V1. It remains to prove the other direction.
As noted earlier, (6.13) is not in general equivalent to a ΣB

1 formula, so we
cannot use ΣB

1 -IND directly on (6.13) to prove the existence ofX . We introduce
the number function numones(y,X), which is the number of elements of X that
are < y. Recall that seq(u, Z) = (Z)u is the AC0 function used for coding a
finite sequence of numbers (Definition 5.55). The function numones has the
defining axiom:

numones(y,X) = z ↔ z ≤ y ∧ ∃Z ≤ 1 + 〈y, y〉, (Z)0 = 0 ∧ (Z)y = z∧
∀u < y, (X(u) ⊃ (Z)u+1 = (Z)u + 1) ∧ (¬X(u) ⊃ (Z)u+1 = (Z)u) (6.14)

Here Z codes a sequence of (y + 1) number so that (Z)u = numones(u,X), for
u ≤ y.
Exercise 6.36. a) Show that (6.14) is a ΣB

1 definition of numones in Ṽ1,
i.e., show that Ṽ1 ⊢ ∀y∀X∃!zϕnumones(y, z,X), where ϕnumones (y, z,X)
is the RHS of (6.14).

b) Show that the following is a theorem of Ṽ1(numones).

∃x < y(X(x) ∧ ¬Y (x) ∧ ∀u < y, u 6= x ⊃ (X(u)↔ Y (u)))

⊃ numones(y,X) = numones(y, Y) + 1

D
R

A
FT

6.4. THE WITNESSING THEOREM FOR V1 137

Although (6.13) may not be ΣB
1 , the result of replacing ↔ by ⊃ is ΣB

1 .
Motivated by this, we define

η(y, Y) ≡ ∀z < y(Y (z) ⊃ ϕ(z))

Let X be the set satisfying the existential quantifier in (6.13). Then η(y, Y)
asserts Y ⊆ X .

Now consider the formula

ψ(w, y) ≡ ∃Y ≤ y, η(y, Y) ∧w = numones(y, Y)

For any w and Y that satisfy ψ(w, y), we have w ≤ numones(y,X), and Y = X
iff Y satisfies ψ(w0, y), where w0 is the maximal value for w. To formalize this
argument, we need the ΣB

1 -MAX axioms, which by Definition 5.5 have the
form

ϕ(0) ⊃ ∃x ≤ y, ϕ(x) ∧ ¬∃z ≤ y(x < z ∧ ϕ(z))

where ϕ(x) is ΣB
1 . These are provable in V1 by Corollary 6.1.

Exercise 6.37. Show that Ṽ1 proves the ΣB
1 -MAX axioms. Hint: Apply

ΣB
1 -IND to the formula ϕ′(x) given by

∃z ≤ y, x ≤ z ∧ ϕ(z)

Since numones is Σ1
1-definable in Ṽ1, it follows from Lemmas 6.24 and 6.25

that Ṽ1(numones) is a conservative over Ṽ1 and proves that every ΣB
1 (numones)-

formula is equivalent to some ΣB
1 -formula. Hence by Exercise 6.37, Ṽ1(numones)

proves the ΣB
1 -MAX(numones) axioms.

Now apply ΣB
1 -MAX for the case ϕ(w) is ψ(w, y). Arguing in Ṽ1, we have

ψ(0, y) (take Y to be the empty set), and hence there is a maximum w0 ≤ y
satisfying ψ(w0, y). We argued above that the set Y corresponding to w0 is
the set X satisfying (6.13), and this argument can be formalized in Ṽ1 using
Exercise 6.36. �

6.4.1 The Sequent System LK2-Ṽ1

We now convert Ṽ1 into an equivalent sequent system LK2-Ṽ1, which is defined
essentially as in Definition 4.26 (for Φ = Ṽ1), but now we replace the ΣB

1 -IND
axiom scheme by the ΣB

1 -IND inference rule. Recall that for LK2, terms do not
contain any bound variables x, y, z, . . . , X, Y, Z, . . ., and formulas do not contain
free occurrence of any bound variable, or bound occurrence of any free variable.

Definition 6.38 (The IND Rule). For a set Φ of formulas, the Φ-IND rule
consists of the inferences of the form

Γ, A(b) −→ A(b+ 1),∆

Γ, A(0) −→ A(t),∆
(6.15)

where A is a formula in Φ.
Restriction The variable b is called an eigenvariable and does not occur in the
bottom sequent.

D
R

A
FT

138 CHAPTER 6. THE THEORY V1 AND POLYNOMIAL TIME

Notation In general, we refer to an LK2 proof where the IND rule is allowed
as an LK2+IND proof.

In this chapter we are mainly interested in this rule for the case where Φ is
ΣB

1 .

Definition 6.39 (LK2-Ṽ1). The rules of LK2-Ṽ1 consist of the rules of LK2

(Section 4.4), together with the single-ΣB
1 -IND rule (6.15). The non-logical

axioms of LK2-Ṽ1 are sequents of the form −→ A, where A is any term substi-
tution instance of a ΣB

0 -COMP axiom or a 2-BASIC axiom (Figure 5.1) or
an LK2 equality axiom (Definition 4.25).

Thus the axioms of LK2-Ṽ1 are the same as those of LK2-V0.
The notion of an anchored LK2-Ṽ1 proof generalizes the notion of an an-

chored LK2 proof (Definition 4.28) to include the rule ΣB
1 -IND above. Note

that the axioms of LK2-Ṽ1 are closed under substitution of terms for free vari-
ables. More generally, we have:

Definition 6.40 (Anchored LK2 Proof with the IND Rule). An LK2

proof π where the rule Φ-IND is allowed, for some set Φ of formulas, is said
to be anchored provided that every cut formula in π occurs also either as a
formula in the non-logical axioms of π, or as one of the formulas A(0), A(t) in
an instance of the rule Φ-IND (6.15).

The following Exercise is to show the soundness of LK2+IND in general.
It follows that LK2-Ṽ1 is sound, in the sense that the sequents provable in
LK2-Ṽ1 are also provable in Ṽ1.

Exercise 6.41 (Soundness of LK2+IND). Let Ψ and Φ be sets of formulas.
Show that if A has an LK2-Ψ proof, where the Φ-IND rule is allowed, then A
is a theorem of the theory axiomatized by Ψ ∪ Φ-IND.

To prove the Witnessing Theorem for V1, we first prove that every theorem
of Ṽ1 has an anchored LK2-Ṽ1 proof. This is stated more generally as follows.

Theorem 6.42 (Anchored Completeness for LK2+IND). Let Ψ and Φ be
two sets of formulas over a vocabulary L, and suppose that Ψ includes formulas
which are the semantic equivalents of the equality axioms (Definition 4.25).
Suppose that T is the theory which is axiomatized by the set of axioms Ψ ∪
Φ-IND. Let Ψ′ and Φ′ be the closures of Ψ and Φ respectively under substitution
of terms for free variables. Then for any theorem A of T there is an anchored
LK2-Ψ′ proof of −→ A where instances of the Φ′-IND rule are allowed.

To apply this to Ṽ1 (and hence to V1, by Theorem 6.35) take T = Ṽ1,
Φ = ΣB

1 and Ψ = 2-BASIC ∪ΣB
0 -COMP.

Corollary 6.43. Every theorem of V1 has an anchored LK2-Ṽ1 proof.

Proof of Theorem 6.42. We refer to an anchored LK2+IND proof of the type
stated above simply as an anchored LK2-Ψ′ proof, with the understanding that

D
R

A
FT

6.4. THE WITNESSING THEOREM FOR V1 139

the Φ′-IND rule is allowed. We will show that if a sequent Γ −→ ∆ is a theorem
of T (in the sense that its semantic formula given in Definition 2.17 is a theorem
of T), then there is an anchored LK2-Ψ′ proof of Γ −→ ∆.

Recall the proof of the Completeness Lemma 2.25 and the Anchored LK
Completeness Theorem 2.29 (outlined in Exercise 2.30). Our proof here is by
the same method, i.e., for a sequent Γ −→ ∆ purportedly provable in T , we
try to find an anchored LK2-Ψ′ proof of Γ −→ ∆. Our procedure guarantees
that in the case where no such proof is found, then we will be able to define a
structure that satisfies T but does not satisfy Γ −→ ∆. Thus we can conclude
that Γ −→ ∆ is not provable in T .

We begin by listing all formulas, variables, and terms. In two-sorted logic,
there are two sorts of terms: number terms and string terms. So we enumerate
all quadruples 〈Ai, cj , tk, Tℓ〉, where Ai is an L-formula, cj is a free variable, tk
is an L-number term, and Tℓ is an L-string term. (The term tk contains only
free variables a, b, . . . , α, β,) The enumeration is such that each quadruple
〈Ai, cj , tk, Tℓ〉 occurs infinitely many times.

The proof π is constructed in stages. Initially π consists of just the sequent
Γ −→ ∆. At each stage we expand π by applying the IND rule and the rules
of LK2 in reverse. We follow the 3 steps listed in the proof of the Completeness
Lemma, with necessary modifications. The idea is that if this proof-building
procedure does not terminate, then the term modelM derived from it satisfies
T but not Γ −→ ∆. In particular, in this case the procedure produces an infinite
sequence of sequents Γn −→ ∆n (starting with Γ −→ ∆), and M is defined in
such a way that it satisfies every formula in the antecedents Γn, and falsifies
every formula in the succedents ∆n.

We modify the notion of an active sequent as follows.

Notation In the process of constructing π, a sequent is said to be active if it
is active as defined on page 20, and it cannot be derived from −→ B for some
B in Ψ′ using only the exchange and weakening rules.

We use one quadruple 〈Ai, cj , tk, Tℓ〉 of our enumeration in each stage. Here
are the details for the next stage in general.

Let 〈Ai, cj , tk, Tℓ〉 be the next quadruple in our enumeration. Call Ai the
active formula for this stage.

Step 1: If Ai is in Ψ′, then expand π at every active sequent Γ′ −→ ∆′ as
follows:

Ai,Γ
′ −→ ∆′

−→ Ai
========== weakening
Γ′ −→ ∆′, Ai

cut
Γ′ −→ ∆′

Step 2a: If Ai ∈ Φ and cj has one or more free occurrences in Ai, then we
incorporate an application of the IND rule for Ai. Let b be a new free variable
that does not occur in the proof so far, and let A(b) be the result of substituting

D
R

A
FT

140 CHAPTER 6. THE THEORY V1 AND POLYNOMIAL TIME

b for cj in Ai. For each active sequent Γ′ −→ ∆′ we expand π as follows:

Γ′ −→ ∆′, A(0)

A(tj),Γ
′ −→ ∆′

=================
A(tj),Γ

′, A(0) −→ ∆′
Γ′, A(b) −→ A(b + 1),∆′

Γ′, A(0) −→ A(tj),∆
′

==
Γ′, A(0) −→ ∆′

===
Γ′ −→ ∆′

Here the top-right inference is by the Φ-IND rule, and the three thick lines are
for the weakening, cut and exchange rules (with cut formulas A(0), A(tj)).

Step 2b: Proceed as in the Step 2 in the proof of the Anchored LK Complete-
ness Lemma 2.25. Here we use the string term Tk in our enumeration for the
string quantifiers, in addition to the number term tj which is for the number
quantifiers, just as in the mentioned proof.

Step 3: If there is no active sequent remaining in π, then exit from the algo-
rithm. Otherwise continue to the next stage.

It is easy to verify that if the above procedure terminates, then the resulting
proof π is an anchored LK2-Ψ′ proof of Γ −→ ∆. It remains to show that if the
procedure does not halt, then the sequent Γ −→ ∆ is not a logical consequence
of T . This is similar as for the Completeness Lemma 2.25, and is left as an
exercise. �

Exercise 6.44. Complete the proof of the Anchored Completeness Lemma for
LK2+IND above by constructing, in the case where the procedure does not
terminate, a term model M (see Definition 2.27) that satisfies T but not the
sequent Γ −→ ∆. The two equality relations =1 and =2 are not necessarily
interpreted as true equality in the term model, but by our assumption on Ψ
the equality axioms of Definition 4.25 are satisfied, so the equivalence classes
of terms form a true model. Also note that the occurrences of A(0) in the an-
tecedent of the construction for Step 2a disappear from the sequents above them,
so the term model must be defined in such a way that A(0) is not necessarily
satisfied. Show nevertheless that the Φ-IND axioms are satisfied.

Effectively we have shown that any LK2 proof with axioms from T can be
transformed into an anchored LK2+IND proof with axioms only from Ψ′. The
advantage of the latter type of LK proofs is that the cut formulas are now essen-
tially from Φ∪Ψ′, instead of the instances of Φ-IND∪Ψ. In the case of LK2-Ṽ1

proofs, the cut formulas are restricted to ΣB
1 formulas (indeed, single-ΣB

1 for-
mulas), while normally, an LK2 proof with axiom from Ṽ1 (Definition 2.22)
contains cut formulas which are in general not ΣB

1 . This property of LK2-Ṽ1

proofs is important for our proof of the Witnessing Theorem for V1 that we
present in the next subsection.

Proposition 6.45 (Subformula Property of LK2+IND). Suppose that Ψ
and Φ are sets of formulas, both of which are closed under substitution of terms

D
R

A
FT

6.4. THE WITNESSING THEOREM FOR V1 141

for free variables. Suppose that π is an anchored LK2-Ψ proof of S, where
the Φ-IND rule is allowed. Then every formula in every sequent of π is a
sub-formula of a formula in S or in Ψ ∪ Φ.

6.4.2 Proof of the Witnessing Theorem for V1

Now we prove the Witnessing Theorem for V1, using the same method as for
the proof of the Witnessing Theorem for V0 (Subsection 5.5.2). Here it suffices
to prove Lemma 6.32.

Suppose that ∃Zϕ(~a, ~α, Z) is a Σ1
1 theorem of V1, where ϕ is a ΣB

0 for-
mula. Then by the Anchored LK2-Ṽ1 Completeness Theorem 6.42, there is an
anchored LK2-Ṽ1 proof π of ∃Zϕ(~a, ~α, Z). We may assume that π is in free vari-
able normal form, where now Definition 2.21 is modified to allow applications of
the ΣB

1 -IND rule to eliminate a variable from a sequent (in addition to ∀-right
and ∃-left). By the Subformula Property of LK2-Ṽ1 (Proposition 6.45), the
formulas in π are Σ1

1 formulas, and in fact they are ΣB
0 formulas or single-Σ1

1

formulas. As a result, every sequent in π has the form (5.33):

∃X1θ1(X1), . . . ,∃Xmθm(Xm),Γ −→ ∆, ∃Y1ψ1(Y1), . . . ,∃Ynψn(Yn) (6.16)

for m,n ≥ 0, where θi and ψj and all formulas in Γ and ∆ are ΣB
0 .

We will prove by induction on the depth in π of a sequent S of the form
(6.16) that there is a finite collection of polytime functions

L = {F1, . . . , Fn, . . .}

so that V1(L) proves the (semantic equivalent of the) sequent

S′ =def θ1(β1), . . . , θm(βm),Γ −→ ∆, ψ1(F1), . . . , ψn(Fn) (6.17)

i.e., there is an LK2-V1(L) proof of S′. Here Fi stands for Fi(~a, ~α, ~β), and ~a, ~α
is a list of exactly those variables with free occurrences in S. (This list may be
different for different sequents.) Also β1, ..., βm are distinct new free variables
corresponding to the bound variables X1, ..., Xm, although the latter variables
may not be distinct.

We proceed as in the proof of the Witnessing Theorem for V0 in Subsec-
tion 5.5.2 by considering the cases where S is an axiom of LK2-Ṽ1 (i.e., an
axiom of V0), or S is generated using inference rules of LK2-Ṽ1. The case of
the non-logical axioms or the introduction rules for ¬,∧,∨ and bounded number
quantifiers are dealt with just as in Cases I – VIII in the proof for V0. Here
we will consider the only new case, i.e., the case of the ΣB

1 -IND rule. This is
the one that causes the introduction of non-AC0 witnessing functions.

Case IX: S is obtained by an application of the ΣB
1 -IND rule. Then S is the

bottom sequent of

S1

S
=

Λ, ∃X ≤ r(b)ψ(b,X) −→ ∃X ≤ r(b + 1)ψ(b+ 1, X),Π

Λ, ∃X ≤ r(0)ψ(0, X) −→ ∃X ≤ r(t)ψ(t,X),Π

D
R

A
FT

142 CHAPTER 6. THE THEORY V1 AND POLYNOMIAL TIME

where b does not occur in S, and ψ is ΣB
0 .

By the induction hypothesis for the top sequent S1, there is a finite collection
L of polytime functions, and a polytime function G(b, β) ∈ L (suppressing
arguments for the other variables present) such that V1(L) proves the sequent
S′

1, which is

Λ′, |β| ≤ r(b) ∧ ψ(b, β) −→ |G(b, β)| ≤ r(b + 1) ∧ ψ(b+ 1, G(b, β)),Π′ (6.18)

Note that by the variable restriction, b and β do not occur in Λ′, and can only
occur in Π′ as arguments to witnessing functions Fi(b, β).

We define the witness function Ĝ(t, β) for the formula ∃X ≤ r(t)ψ(t,X) in
the succedent of S by limited recursion (Definition 6.15) as follows:

Ĝ(0, β) = β (6.19)

Ĝ(z + 1, β) = (G(z, Ĝ(z, β)))<r(z+1) (6.20)

Since G is a polytime function, by Cobham’s Theorem 6.16, Ĝ is also a polytime
function.

Let F 1
1 (b, β), . . . , F 1

m(b, β) ∈ L be the witnessing functions in Π′. Consider
the sequent

Λ′, |Ĝ(b, β)| ≤ r(b) ∧ ψ(b, Ĝ(b, β)) −→
|Ĝ(b + 1, β)| ≤ r(b + 1) ∧ ψ(b+ 1, Ĝ(b+ 1, β)),Π′′ (6.21)

which is obtained from (6.18) by substituting Ĝ(b, β) for β, and writing Ĝ(b +
1, β) for G(b, Ĝ(b, β)) (using (6.20)). In particular, Π′′ is obtained from Π′ by
replacing each witnessing function F 1

i (b, β) for S1 by F 2
i (b, β), where

F 2
i (b, β) = F 1

i (b, Ĝ(b, β)) (1 ≤ i ≤ m)

Let L′ = L ∪ {Ĝ, F 2
1 , . . . , F

2
m}. Then since (6.18) is a theorem of LK2-V1(L),

(6.21) is a theorem of LK2-V1(L′). Note that (6.21) is of the form

Λ′, ρ(b, β) −→ ρ(b+ 1, β),Π′′ (6.22)

where
ρ(b, β) ≡ |Ĝ(b, β)| ≤ r(b) ∧ ψ(b, Ĝ(b, β))

Here ρ is a ΣB
0 (L′) formula.

Notice that in Π′′, b occurs (only) as an argument to F 2
i . So we cannot apply

the IND rule to (6.22). Moreover, b should not occur in our desired sequent S ′.
We remove b from Π′′ by introducing the number function h:

h(β) = min y < t ¬ρ(y + 1, β)

i.e., h has the ΣB
0 (L′)-defining axiom

h(β) = y ↔ y ≤ t ∧ (y = t ∨ ¬ρ(y + 1, β)) ∧ ∀z < yρ(z + 1, β) (6.23)

D
R

A
FT

6.5. NOTES 143

Then h is a polytime function, and can be defined from ρ(b, β) using limited
recursion. Define for each i, 1 ≤ i ≤ m,

Fi(β) = F 2
i (h(β), β)

Then Fi is a polytime function. Let Π′′′ be Π′′ with each witnessing function
F 2
i (b, β) replaced by Fi(β). Also define (by composition):

G∗(β) = Ĝ(t, β)

Now define S′ to be the sequent:

S′ = Λ′, |β| ≤ r(0) ∧ ψ(0, β) −→ |G∗(β)| ≤ r(t) ∧ ψ(t, G∗(β)),Π′′′ (6.24)

Then S′ is of the form (6.17). It remains to show that S′ is provable in
LK2-V1(L′′), where L′′ is L′ together with the new functions in S′, i.e., L′′ =
L′ ∪ {h, F1, . . . , Fm, G

∗}.
First, by (6.19) the sequent (6.24) is equivalent to

Λ′, ρ(0, β) −→ ρ(t, β),Π′′′ (6.25)

Then by replacing b in (6.22) with h(β), LK2-V1(L′′) proves

Λ′, ρ(h(β), β) −→ ρ(h(β) + 1, β),Π′′′ (6.26)

Next, by the definition of h (6.23), LK2-V1(L′′) proves the sequents

ρ(0, β) −→ ρ(h(β), β) and ρ(h(β) + 1, β) −→ ρ(t, β)

From this and (6.26), it follows that LK2-V1(L′′) proves (6.25), and hence
(6.24). �

6.5 Notes

Our theory V1 is essentially Zambella’s Theory Σp
1-comp in [?], and is a variation

of the theory V 1
1 in [?], which in turn is defined in the style of Buss’s second-

order theories [?]. It is a two-sorted version of Buss’s S1
2. Our ΣB

1 formulas
correspond to strict Σb

1 formulas, but this does not really matter, as shown in
Section 6.3.

The Σ1
1 Definability Theorem for V1 is essentially due to Buss [?] who proved

it for his first-order theory S1
2. The interesting part of Theorem 6.35, that Ṽ1

proves the ΣB
1 -COMP axioms, is essentially Theorem 1 in [?].

D
R

A
FT

144 CHAPTER 6. THE THEORY V1 AND POLYNOMIAL TIME

D
R

A
FTChapter 7

Propositional Translations

In Chapter 1 we presented Gentzen’s Propositional Calculus PK, and showed
that PK is sound and complete; i.e. a propositional formula is valid iff it is
provable in PK. In this chapter we introduce the general notion of propositional
proof system (or simply proof system) and study its complexity. In particular a
proof system is called polynomially bounded if there is a polynomial p(n) such
that for every n, every tautology of length n has a proof in the system of size
at most p(n). The question of existence (or nonexistence) of a polynomially
bounded proof system plays a central role in Theoretical Computer Science.

Each of the theories that we introduce is associated with a proof system.
Each ΣB

0 theorem in the theory can be translated into a family of tautolo-
gies which have polynomial size proofs in the corresponding proof system (the
propositional translation), showing that the proof system is sufficiently pow-
erful. On the other hand, the soundness of a proof system is provable in the
associated theory (the Reflection Principle), showing that the proof system is
not too powerful. In this chapter we will present the propositional translations
for V0 and V1. Here the corresponding proof systems are constant-depth Frege
(AC0-Frege), and extended Frege (eFrege).

We also generalize the propositional calculus to the quantified propositional
calculus (QPC), and introduce various proof systems, such as G⋆

1, for QPC. We
show that each ΣB

1 theorem of V1 can be translated into a family of valid QPC
formulas with polynomial size G⋆

1 proofs.

7.1 Propositional Proof Systems

Recall (Chapter 1) that a propositional formula is built from the logical con-
stants ⊥,⊤ (for False, True), the propositional variables (or atoms) p1, p2, . . .,
connectives ¬,∨,∧ and parentheses (,). Also, a tautology is a valid proposi-
tional formula (Definition 1.1). We assume that tautologies are coded as binary
strings (or more properly finite subsets of N) using some efficient encoding.

Definition 7.1. TAUT is the set of (strings coding) propositional tautologies.

145

D
R

A
FT

146 CHAPTER 7. PROPOSITIONAL TRANSLATIONS

A propositional proof system is a formal system for proving tautologies. An
example is the system PK introduced in Chapter 1, where a formal proof of a
formula A is tree of sequents, where the root is −→ A, the leaves are axioms,
and the sequent at each internal node follows from its parent sequent(s) by a
rule of inference. The soundness and completeness theorems state that TAUT
is exactly the set of formulas with formal PK proofs. Below we give a very
general definition of proof system, and then explain how to make PK fit this
definition.

Definition 7.2 (Propositional Proof System). A propositional proof sys-
tem (or simply a proof system) is a polytime, surjective (onto) function

F : {0, 1}∗ −→ TAUT

If F (X) = A, then we say that X is a proof of A in the system F .
The length of A is denoted |A|, and the length (or size) of the proof X is

denoted |X |. A proof system F is said to be polynomially bounded if there is
a polynomial p(n) such that for all tautologies A, there is a proof X of A in F
such that |X | ≤ p(|A|).

Informally, a proof system F is polynomially bounded if every tautology has
a short proof in F .

Example 7.3. PK can be treated as a proof system in the sense of Defini-
tion 7.2, because the function

PK(X) =

{
A if X codes a PK proof of −→ A

⊤ (True) otherwise

is a polytime function.

It is not known whether PK is polynomially bounded. In fact, the existence
of a polynomially bounded proof system is equivalent to the assertion that
NP = co-NP.

Theorem 7.4. There exists a polynomially bounded proof system iff NP =
co-NP.

Proof. Since TAUT is co-NP-complete, we have NP = co-NP iff TAUT ∈ NP.

(=⇒) Suppose that F is a polynomially bounded proof system. Then by defi-
nition, there is a polynomial p(n) such that

A ∈ TAUT ⇔ ∃X ≤ p(|A|)F (X) = A

This shows that TAUT ∈ NP: The witness for the membership of A in TAUT
is the proof X .

(⇐=) If TAUT ∈ NP, then there is a polytime relation R(Y,A), and a polyno-
mial p(n) such that

A ∈ TAUT ⇔ ∃Y ≤ p(|A|)R(Y,A)

D
R

A
FT

7.1. PROPOSITIONAL PROOF SYSTEMS 147

Define the proof system F by

F (X) =

{
A if X codes a pair 〈Y,A〉, and R(Y,A)

⊤ otherwise

Clearly F is a polynomially bounded proof system. �

The general feeling among complexity theorists is that NP 6= co-NP, so
the above theorem suggests that no proof system is polynomially bounded. In
fact some weak proof systems, including resolution and bounded depth Frege
systems (which is introduced below) have been proved to be not polynomially
bounded. However it seems to be very difficult to prove this for the system PK.
The system PK is p-equivalent (defined below) to a large class of proof systems,
called Frege systems, which includes many standard proof systems described
in logic text books. This adds interest to the problem of showing that PK is
not polynomially bounded.

Also because PK is p-equivalent to the Frege proof systems, we will continue
to work with PK, and will not define the Frege proof systems. Below we
introduce bPK (bounded depth PK) and ePK (extended PK). They belong
respectively to the families call bounded depth Frege and extended Frege.

Definition 7.5. A proof system F1 is said to p-simulate a proof system F2 if
there is a polytime function G such that F2(X) = F1(G(X)), for all X. Two
proof systems F1 and F2 are said to be p-equivalent if F1 p-simulates F2, and
vice versa.

Thus F1 p-simulates F2 if any given F2-proof X of a tautology A can be
transformed (by a polytime function G) into an F1-proof G(X) of A.

Exercise 7.6. a) Show that the relation on proof systems “F1 p-simulates
F2” is transitive and reflexive.

b) Show that if F1 p-simulates F2, and F2 is polynomially bounded, then F1

is also polynomially bounded.

7.1.1 Treelike vs Daglike Proof Systems

Proofs in the system PK are trees. This tree structure is potentially inefficient,
since each sequent in the proof can be used only once as a hypothesis for a rule,
and if it needs to be used again in another part of the proof, then it must be
rederived. This motivates allowing the proof structure to be a dag (directed
acyclic graph), since this allows each sequent to be used repeatedly to derive
others.

Definition 7.7 (Treelike vs Daglike). A proof system is treelike if the struc-
ture of each proof is required to be a tree. The system is daglike if a proof is
allowed to have the more general structure of a dag.

D
R

A
FT

148 CHAPTER 7. PROPOSITIONAL TRANSLATIONS

In general a proof, whether treelike or daglike, can be represented as a se-
quence if “lines”, where each line is the contents of some node in the proof.
Each line is either an axiom or it follows from an earlier line or earlier lines in
the proof (its parent or parents), and the line might be annotated to indicate
this information. The proof is a tree if each sequent is a parent of at most one
line.

The notions treelike and daglike can be used as adjectives to indicate different
version of a proof system. For example, treelike PK is the same as PK, but
daglike PK has the same axioms and rules as PK, but allows a proof to take
the form of a dag.

The next result shows that for PK the distinction is not important. (But it
is important for the system G⋆

1 defined later in this chapter.)

Theorem 7.8 ([?]). Treelike PK p-simulates daglike PK.

Proof. Recall that to each sequent S = A1, . . . , Ak −→ B1, . . . , Bℓ we associate
the formula AS which gives the meaning of S:

AS ≡ ¬A1 ∨ . . . ∨ ¬Ak ∨B1 ∨ . . . ∨Bℓ (7.1)

Here it is not important how we parenthesize AS (see Lemma 7.15). Also, there
is a treelike PK derivation, whose size is bounded by a polynomial in the size
of S, of S from the sequent −→ AS .

Suppose that π = S1, . . . ,Sn is a daglike PK proof. We show:

Claim The sequence

−→ AS1 ; −→ (AS1 ∧AS2); . . . ; −→ (AS1 ∧ . . . ∧ASn
); −→ ASn

can be augmented to a treelike PK proof whose size is bounded by a polynomial
in the length of π.

Again it is not important how the conjunctions AS1 ∧ . . . ∧ ASk
are paren-

thesized. The claim follows easily from the exercise below. �

Exercise 7.9. a) Show that the following sequents have polynomial size cut-
free PK proofs:

• −→ AS , where S is any axiom of PK.
• A ∧B −→ B, for any PK formulas A, B.
• A ∧B −→ A ∧B ∧B, for any PK formulas A, B.

b) Suppose that S is derived from S1 (and S2) by an inference rule of PK.
Show that the following sequents have polynomial size cut-free PK proofs,
for any formula A:

• A ∧AS1 −→ A ∧AS .
• A ∧AS1 ∧AS2 −→ A ∧AS .

D
R

A
FT

7.1. PROPOSITIONAL PROOF SYSTEMS 149

The next result wil be useful later in the chapter.

Lemma 7.10 (PK Replacement Lemma). Let A(p) and B be propositional
formulas, and let A(B) be the result of substituting B for p in A(p). Then for
all propositional formulas B1, B2, the sequent

(B1 ↔ B2) −→ (A(B1)↔ A(B2))

has a PK proof of size bounded by a polynomial in its endsequent.

Exercise 7.11. Prove the lemma, using structural induction on A(p).

7.1.2 The Pigeonhole Principle and Bounded Depth PK

To show that a proof system F is not polynomially bounded, it suffices to
exhibit a family of tautologies that requires F -proofs of super-polynomial size.
Similarly, to show that a proof system F2 does not p-simulate a proof system F1,
it suffices to show the existence of a family of tautologies that has polynomial
size F1-proofs, but requires super-polynomial size F2-proofs.

There is an important family of tautologies that formalizes the Pigeonhole
Principle, which states that if n + 1 pigeons are placed in n holes, then two
pigeons will wind up in the same hole. The principle is formulated using the
atoms

pi,j (for 0 ≤ i ≤ n, 0 ≤ j < n)

where pi,j is intended to mean that pigeon i gets placed in hole j. First, the
negation of the principle is expressed as an unsatisfiable propositional formula
¬PHPn+1

n , which is the conjunction of the following clauses:

(pi,0 ∨ ... ∨ pi,n−1), 0 ≤ i ≤ n (7.2)

(¬pi,j ∨ ¬pk,j), 0 ≤ i < k ≤ n, 0 ≤ j < n (7.3)

Here, (7.2) says that the pigeon i is placed in some hole, and (7.3) says that two
pigeons i and k are not placed in the same hole.

The Pigeonhole Principle itself is equivalent to the negation of ¬PHPn+1
n ,

which by applying DeMorgan’s laws, can be expressed as follows.

Definition 7.12 (PHPn+1
n). The propositional formula PHPn+1

n is defined to
be

(
∧

0≤i≤n

∨

0≤j<n
pi,j) ⊃

∨

0≤i<k≤n,0≤j<n
(pi,j ∧ pk,j) (7.4)

Define PHP = {PHPn+1
n : n ≥ 1}.

Thus for each n ≥ 1, PHPn+1
n is a tautology.

In 1985 Armen Haken proved an exponential lower bound on the length of
any Resolution refutation of ¬PHPn+1

n , one of the early important results in
propositional proof complexity. On the other hand, in 1987 Buss presented
polynomial size Frege proofs of PHPn+1

n . (Buss’s proofs are based on the fact

D
R

A
FT

150 CHAPTER 7. PROPOSITIONAL TRANSLATIONS

that there are propositional formulas Ak(p1, ..., pn) of size polynomial in n which
express the condition that at least k of p1, . . . , pn are true.) It follows that
Resolution does not p-simulate Frege. (While it is easy to show that Frege
p-simulates Resolution.)

In fact the family PHP does not have polynomial size proofs in a stronger
proof system called bounded depth Frege (also known as AC0-Frege). We will
define bPK, a representative from these systems. First, we formally define the
depth of a formula. Here we think of the connectives ∧,∨ as having arbitrary
fan-in.

Definition 7.13 (Depth of a Formula). The depth of a formula A is the
maximal number of times the connective changes in any path in the tree form
of A.

So in particular, the formula (p1∨ . . .∨pn) has depth 1, for any n, no matter
how the parentheses are inserted. The depth of each clause (7.2) is 2, and the
depth of the conjunction ¬PHPn+1

n is 3.

Definition 7.14 (Bounded Depth PK). For each constant d ∈ N we define
a d-PK proof to be a PK proof in which the cut formulas have depth at most d.
We define a bounded depth PK system (or just bPK) to be any system d-PK
for d ∈ N.

Sometimes the definition for a d-PK proof is taken to be that all formulas
in the proof have depth ≤ d. Our definition given above is more general: For
proving a formula of depth ≤ d, the two definitions are the same, but here we
allow d-PK proofs of any formula (not just formulas of depth ≤ d). Indeed, since
any tautology has a PK proof without using the cut rule (the PK Completeness
Theorem 1.8), it follows that d-PK is complete, for any d ≥ 0.

In general, we are not interested in the exact length of bounded depth PK
proofs, but only interested in the length up to the application of a polynomial.
Because of this and the next lemma, we will ignore how parentheses are placed
in a disjunction (A1 ∨ ... ∨An).
Lemma 7.15. If A is a formula of depth d which is some parenthesization of
(B1 ∨ ... ∨ Bn), and A′ is another such parenthesization, then there is a d-PK
proof of the sequent A −→ A′ consisting of O(n2) sequents, where each sequent
has length at most that of the sequent A −→ A′.

For example, we may have

A ≡ (B1 ∨ (B2 ∨B3)) ∨B4), A′ ≡ (B1 ∨ (B2 ∨ (B3 ∨B4)))

Proof. By repeated use of the rule ∨-left, it is easy to see that there is such a
d-PK proof of the sequent

A −→ B1, ..., Bn

Now repeated use of ∨-right (with exchanges) gives the desired d-PK proof. �

D
R

A
FT

7.2. TRANSLATING V0 TO BPK 151

In 1988 Ajtai proved that PHPn+1
n does not have polynomial size bounded

depth Frege proofs. This was strengthened by two groups a few years later to
prove the following exponential lower bound, which remains one of the strongest
lower bound results in propositional proof complexity.

Theorem 7.16 (Bounded Depth Lower Bound Theorem [?]). For every
d ∈ N, every d-PK proof of PHPn+1

n must have size at least

2n
ǫd

where ǫ = 1/6.

In view of Buss’s upper bound for PHPn+1
n , we have

Corollary 7.17. No bounded depth Frege system p-simulates any Frege sys-
tem.

The lower bound results in propositional proof complexity can be used to
obtain independence results in the theories of bounded arithmetic. We will
explain this in the next sections.

7.2 Translating V0 to bPK

In this section we give evidence that the propositional proof system bPK cor-
responds naturally to the theory V0. Intuitively a V0 proof of a ΣB

0 formula
is able to use concepts from the complexity class AC0. Recall from Subsec-
tion 4.1 that a language in nonuniform AC0 is specified by polynomial size
family of bounded depth formulas. Thus the lines in a polynomial size family
of bPK proofs express AC0 concepts.

7.2.1 Translating ΣB
0 Formulas

We begin by showing how to translate each ΣB
0 formula ϕ(~x, ~X) into a polyno-

mial size bounded depth family

‖ϕ(~x, ~X)‖ = {ϕ(~x, ~X)[~m;~n] : ~m,~n ∈ N}

of propositional calculus formulas, and then we show how to translate a V0

proof of a ΣB
0 formula into a polynomial size family of bPK proofs. Later

we will show how to translate in general a bounded two-sorted formula into a
polynomial size family of quantified propositional calculus. Here, the depth of
each formula in the family ‖ϕ(~x, ~X)‖ is bounded by a constant which depends
only on ϕ.

We first explain the translation for a ΣB
0 formula ϕ(X) which has a single

free (string) variable X . We introduce propositional variables pX0 , p
X
1 , . . ., where

pXi is intended to mean X(i). The translation has the property that for each
n ∈ N, ϕ(X)[n] is valid iff the formula ∀X(|X | = n ⊃ ϕ(X)) is true in the

D
R

A
FT

152 CHAPTER 7. PROPOSITIONAL TRANSLATIONS

standard model, where n is the n-th numeral. More generally, there is a one-
one correspondence between truth assignments satisfying ϕ(X)[n] and strings
X that satisfies ϕ(X) and |X | = n.

Notation We use val (t) for the numerical value of a term t, where t may have
numerical constants substituted for variables.

We define ϕ(X)[n] inductively as follows. For the base case, ϕ(X) is an
atomic formula. Consider the following possibilities.

• If ϕ(X) is X = X , then ϕ(X)[n] =def ⊤.

• If ϕ(X) is ⊤ or ⊥, then ϕ(X)[n] =def ϕ(X)

• If ϕ(X) is t(|X |) = u(|X |), then

ϕ(X)[n] =def

{
⊤ if val(t(n)) = val(u(n))

⊥ otherwise

• Similarly if ϕ(X) is t(|X |) ≤ (|X |).
• If ϕ(X) is X(t(|X |)), then we set j = val(t(n)). Define ϕ(X)[0] =def ⊥,

and for n ≥ 1:

ϕ(X)[n] =def





pXj if j < n− 1

⊤ if j = n− 1

⊥ if j > n− 1

For the induction step, ϕ(X) is built from smaller formulas using a propo-
sitional connective ∧,∨,¬, or a bounded number quantifier. For ∧,∨,¬ we
make the obvious definitions: If both ψ(X)[n] and η(X)[n] are not the logical
constants ⊥ or ⊤, then

ψ(X) ∧ η(X)[n] =def (ψ(X)[n] ∧ η(X)[n])

ψ(X) ∨ η(X)[n] =def (ψ(X)[n] ∨ η(X)[n])

¬ψ(X)[n] =def ¬ψ(X)[n]

Otherwise, if ψ(X)[n] (or η(X)[n]) is a logical constant ⊥ or ⊤, then we simplify
the above definitions in the obvious way, e.g.,

(⊤ ∧ η(X)[n]) is simplified to η(X)[n], (ψ(X)[n] ∧⊥) to ⊥,

etc.
For the case of bounded number quantifiers, ϕ(X) is ∃y ≤ t(|X |) ψ(y,X) or

∀y ≤ t(|X |) ψ(y,X). We define

(∃y ≤ t(|X |) ψ(y,X))[n] =def

m∨

i=0

ψ(i,X)[n]

(∀y ≤ t(|X |) ψ(y,X))[n] =def

m∧

i=0

ψ(i,X)[n]

D
R

A
FT

7.2. TRANSLATING V0 TO BPK 153

where m = val(t(n)), and recall that i is the i-th numeral. Also, if any of the
ψ(i,X)[n] is translated into ⊤ or ⊥, we simplify ϕ(X)[n] just as above.

Recall that s < t stands for s ≤ t ∧ s 6= t. For val (t(n)) ≥ 1 we have

(∃y < t(|X |) ψ(y,X))[n] ↔
m−1∨

i=0

ψ(i,X)[n]

(∀y < t(|X |) ψ(y,X))[n] ↔
m−1∧

i=0

ψ(i,X)[n]

In addition,

(∃y < 0 ψ(y,X))[n]↔ ⊥, (∀y < 0 ψ(y,X))[n]↔ ⊤

Recall that 〈x, y〉 is the pairing function, and we write X(x, y) for X(〈x, y〉).
We formulate the Pigeonhole Principle using a ΣB

0 (L2
A) formula PHP(y,X)

below. Here y stands for the number of holes, and X is intended to be a 2-
dimensional Boolean array, with X(i, j) holds iff pigeon i gets placed in hole j
(for 0 ≤ i ≤ y, 0 ≤ j < y).

Example 7.18 (Formulation of PHP in Two-Sorted Logic).

PHP(y,X) ≡ ∀i ≤ y∃j < yX(i, j) ⊃
∃i ≤ y∃k ≤ y∃j < y(i 6= k ∧X(i, j) ∧X(k, j)) (7.5)

Then for all 1 ≤ n ∈ N, PHP(n,X)[1 + 〈n, n− 1〉] is just PHPn+1
n (Defini-

tion 7.12).

In general, we can define the translation of a ΣB
0 (L2

A) formula ϕ(~x, ~X) (i.e.,
with multiple free variables of both sorts). Then for each string variable Xk

we associate a list of propositional variables pXk

0 , pXk

1 , . . ., and we give each free

number variable a numerical value. Thus the family ϕ(~x, ~X)[~m;~n] is defined so
that it is valid iff the formula

∀~x∀ ~X, (
∧
|Xk| = nk) ⊃ ϕ(~m, ~X)

is true in the standard model N2. Here for the base case we have to handle an

additional case, i.e., where ϕ(~x, ~X) ≡ Xi = Xk, where i 6= k. We reduce this
case to other cases by considering ϕ to be its equivalence given by the LHS of
the axiom SE (Figure 5.1):

|Xi| = |Xk| ∧ ∀x < |Xi|(Xi(x)↔ Xk(x))

Lemma 7.19. For every ΣB
0 (L2

A) formula ϕ(~x, ~X), there is a constant d ∈ N

and a polynomial p(~m,~n) such that for all ~m,~n ∈ N, the propositional formula

ϕ(~x, ~X)[~m;~n] has depth at most d and size at most p(~m,~n).

Proof. The proof is by structural induction on ϕ, and is straightforward. �

D
R

A
FT

154 CHAPTER 7. PROPOSITIONAL TRANSLATIONS

Now we come to the main result of this section:

Theorem 7.20 (V0 Translation Theorem). Suppose that ϕ(~x, ~X) is a ΣB
0

formula such that V0 ⊢ ∀~x∀ ~Xϕ(~x, ~X). Then the propositional family ‖ϕ(~x, ~X)‖
has polynomial size bounded depth PK proofs. That is, there are a constant d
and a polynomial p(~m,~n) such that for all 1 ≤ ~m,~n ∈ N, ϕ(~x, ~X)[~m;~n] has a
d-PK proof of size at most p(~m,~n).

In view of the Bounded Depth Lower Bound Theorem 7.16 above, we have:

Corollary 7.21 (Independence of PHP from V0). The true ΣB
0 formula

∀y∀X PHP(y,X) (see Example 7.18) is not a theorem of V0.

To prove the V0 Translation Theorem, the idea is to translate each sequent in
an LK2 proof of ϕ(~a, ~α) into a bPK sequent which has a short proof. The issue
here is that an LK2-V0 proof may contain ΣB

1 formulas (i.e., the ΣB
0 -COMP

axioms), whose translation we have not discussed. We introduce the theory Ṽ0

which plays the same role for V0 as Ṽ1 does for V1. In the next subsection we
define Ṽ0 and the associated sequent system LK2-Ṽ0 (an analogue of LK2-Ṽ1),
and use these to prove the V0 Translation Theorem.

7.2.2 Ṽ0 and LK2-Ṽ0

Definition 7.22. The theory Ṽ0 has vocabulary L2
A and is axiomatized by

2-BASIC and the ΣB
0 -IND axiom scheme.

Thus Ṽ0 is the same as V0, except the ΣB
0 -COMP axioms are replaced by

the ΣB
0 -IND axioms. By Corollary 5.8, V0 proves the ΣB

0 -IND axiom scheme,

hence Ṽ0 ⊆ V0.
Unlike the Ṽ1, V1 case, unfortunately V0 is not the same as Ṽ0, because

Ṽ0 does not prove the ΣB
0 -COMP axioms. To see this, expand the standard

(single-sorted) model N to a L2
A structure M by letting the string universe be

{∅}, where |∅| = 0. Then it is easy to see thatM is a model of Ṽ0, but not of
V0. Nevertheless, we can prove a weaker statement.

Definition 7.23 (Φ-Conservative Extension). Let Φ be a set of formulas
in the vocabulary L. Suppose that T is a theory over L, and T ′ is an extension
of T (the vocabulary of T ′ may contain function or predicate symbols not in L).
Then we say that T ′ is a Φ-conservative extension of T if for every formula
ϕ ∈ Φ, if T ′ ⊢ ϕ then T ⊢ ϕ.

So if Φ is the set of all L formulas, then T ′ is Φ-conservative over T precisely
when it is conservative over T . For the case of Ṽ0 and V0, we can take Φ to be
ΣB

0 .

Lemma 7.24. V0 is ΣB
0 -conservative over of Ṽ0.

By our definition of semantics (Subsection 4.2.2 and Section 2.2), this is

the same as saying that V0 is ∀ΣB
0 -conservative over Ṽ0, where ∀ΣB

0 is the
universal closure of ΣB

0 (Definition 2.23).

D
R

A
FT

7.2. TRANSLATING V0 TO BPK 155

Proof. We noted earlier that Ṽ0 ⊆ V0 (by Corollary 5.8). The proof that every

ΣB
0 theorem of V0 is also provable in Ṽ0 is like the proof that V0 is conservative

over I∆0 (Theorem 5.9). We use the following lemma, which is proved in the
same way as Lemma 5.10 (any model of I∆0 can be expanded to a model of
V0). In the present case, U ′

2 is defined as before in (5.5), except that now the
formula ϕ is allowed parameters from U2.

Lemma 7.25. Every model M = 〈U1, U2〉 for Ṽ0 can be extended to a model
M′ = 〈U ′

1, U
′
2〉 of V0, where U1 = U ′

1 and U2 ⊆ U ′
2.

It follows that if ϕ(~x, ~X) is a ΣB
0 formula with all free variables indicated,

and ~a are any elements in U1 and ~α are any elements in U2, then

M |= ϕ(~a, ~α) iff M′ |= ϕ(~a, ~α)

(The proof actually shows that V0 is Φ-conservative over Ṽ0 for a set Φ larger
than ΣB

0 , i.e., Φ contains formulas with unbounded number quantifiers and
without string quantifiers. But we do not need this fact here.) �

The sequent system LK2-Ṽ0 is analogous to LK2-Ṽ1:

Definition 7.26 (LK2-Ṽ0). The rules of LK2-Ṽ0 consist of the rules of LK2

(Section 4.4), together with the ΣB
0 -IND rule (Definition 6.38). The non-logical

axioms of LK2-Ṽ0 are sequents of the form −→ A, where A is any term sub-
stitution instance of a 2-BASIC axiom (Figure 5.1) or an LK2 equality axiom
(Definition 4.25).

Recall the notion of an anchored LK2-Ṽ0 proof from Definition 6.40, and
the Anchored Completeness Lemma for LK2+IND 6.42. We are now ready to
prove the V0 Translation Theorem.

7.2.3 Proof of the Translation Theorem for V0

By assumption, ϕ(~a, ~α) is a ΣB
0 theorem of V0. By the Anchored Completeness

Lemma for LK2+IND 6.42, there is an anchored LK2-Ṽ0 proof π of ϕ(~a, ~α).
We may assume that π is in free variable normal form, where (as in Subsec-
tion 6.4.2) we modify Definition 2.21 to allow the rule ΣB

0 -IND to eliminate a
variable. By the Subformula Property of LK2+IND (Proposition 6.45), every
formula in every sequent of π is ΣB

0 . So every sequent S in π has the form

ψ1(~b, ~β), . . . , ψk(~b, ~β) −→ η1(~b, ~β), . . . , ηℓ(~b, ~β)

where ψi, ηj are ΣB
0 formulas, and (~b, ~β) are all the free variables in S (which

may be different for different sequents). We will prove by induction on the
number of lines above this sequent in π that there are a constant d and a
polynomial p depending on π, such that the propositional sequent

S[~m;~n] =def . . . , ψi(~b, ~β)[~m;~n], . . . −→ . . . , ηj(~b, ~β)[~m;~n], . . .

D
R

A
FT

156 CHAPTER 7. PROPOSITIONAL TRANSLATIONS

has a d-PK proof of size at most p(~m,~n), for all ~m,~n ∈ N.

For the base case, S is a non-logical axiom of LK2-Ṽ0. Thus S is of the
form −→ η, where η is a term substitution instance of the 2-BASIC axioms,
or S is an instance of the Equality axioms (Definition 4.25). First, any string
variable X can occur in an instance of B1–B12 only in the context of a number
term |X |. Since these axioms are true in the standard model N2, they translate
into the propositional constant ⊤. Therefore if η is an instance of B1–B12,
then −→ η translates into an axiom of PK.

Instances of L1 and L2 translate into axioms of PK. Consider, for example,
an instance of L1:

η(~b, γ, ~β) ≡ γ(t) ⊃ t < |γ|
where ~b, ~β denote all (free) variables occurring in the L2

A-number term t =

t(~b, |γ|, |~β|). By definition, in order to get η(~b, γ, ~β)[~m;n, ~n], first we obtain the
formulas 




pγi ⊃ ⊤ if i < n− 1

⊤ ⊃ ⊤ if i = n− 1

⊥ ⊃ ⊥ if i > n− 1

where i = val (t(~m, n, ~n)). Simplifying these formulas results in

η(~b, γ, ~β)[~m;n, ~n] =def ⊤

By definition, any instance of the axiom SE translates into a formula of the
form A ⊃ A, where A is the translation of the LHS of SE. This tautology has
a short cut-free derivation PK.

Similar (and simple) arguments show that if S is an instance of any of the
Equality Axioms, then its S[~m;n, ~n] has a short d-PK proof, for some small
constant d. (This constant accounts for the fact that we translate X = Y using
the LHS of SE, which translates into a propositional formula of depth 3.)

For the induction step, we consider the rules of LK2-Ṽ0. Since all formulas
in π are ΣB

0 , the string quantifier rules are never applied. If S is obtained from
S1 (and S2) by one of the introduction rules for the connectives ∧, ∨ and ¬,
then we can apply the same rules to get the PK proof of S[~m;~n] from the PK
proof(s) of S1[~m;~n] (and S2[~m;~n]). No new cut is needed for this step.

For the case of the cut rule, the cut formula ψ(~b, ~β) is ΣB
0 , and since π is

in free variable normal form, no variable is eliminated by the rule. The corre-
sponding PK proof also uses the cut rule, where the cut formula is a propo-
sitional translation ψ(~b, ~β)[~m;~n] of this formula, which according Lemma 7.19
has bounded depth d independent of ~m,~n.

Consider the case of the number ∀-right. Suppose that the inference is

S1

S
=

Λ −→ Π, c ≤ t(~b, |~β|) ⊃ η(~b, c, ~β)

Λ −→ Π, ∀x ≤ t(~b, |~β|) η(~b, x, ~β)

where c does not occur in S. By the induction hypothesis, there are a constant
d ∈ N and a polynomial p(~m, i, ~n) so that for each 〈~m, i, ~n〉, there is a d-PK

D
R

A
FT

7.2. TRANSLATING V0 TO BPK 157

proof π[~m, i;~n] of size ≤ p(~m, i, ~n) of the sequent S1[~m, i;~n]:

Λ[~m;~n] −→ Π[~m;~n], (c ≤ t(~b, |~β|))[~m, i;~n] ⊃ η(~b, c, ~β)[~m, i;~n]

Note that c ≤ t(~b, |~β|)[~m, i;~n] is just ⊤ for i ≤ r, where r = val (t(~m,~n)). So for
i ≤ r, S1[~m, i;~n] is

Λ[~m;~n] −→ Π[~m;~n], η(~b, c, ~β)[~m, i;~n]

The sequent S translates into

S[~m;~n] =def Λ[~m;~n] −→ Π[~m;~n],

r∧

i=0

η(~b, i, ~β)[~m;~n]

Thus S[~m;~n] is obtained from S1[~m, i;~n] (for i = 0, 1, . . . , r) by the ∧-right rule.
No new instance of the cut rule is needed. This proof of S[~m;~n] has size slightly
more than the sum of the (m + 1) proofs π[~m, i;~n], and m is a polynomial in
~m,~n. Hence the resulting proof is bounded in size by a polynomial in ~m,~n.

The case ∃-left is similar, and the cases ∀-left, ∃-right are straightforward.
These are left as an exercise.

Exercise 7.27. Take care of the other number quantifier cases.

Finally we consider the case that S is obtained by the ΣB
0 -IND rule:

S1

S
=

Λ, ψ(c) −→ ψ(c+ 1),Π

Λ, ψ(0) −→ ψ(t),Π

where c does not occur in S, and we have suppressed all free variables except c
(here t is of the form t(~b, |~β|)). By the induction hypothesis, there are polynomial
size d-PK proofs π[~m, i;~n] of the propositional sequents

S1[~m, i;~n] =def Λ[~m;~n], ψ(c)[~m, i;~n] −→ ψ(c+ 1)[~m, i;~n],Π[~m;~n]

for some constant d ∈ N. Let r = val (t(~m,~n)). The sequent S translates into

S[~m;~n] =def Λ[~m;~n], ψ(0)[~m;~n] −→ ψ(r)[~m;~n],Π[~m;~n]

Now if r = 0 then S[~m;~n] is derived from the following axiom of PK simply by
weakening:

ψ(0)[~m;~n] −→ ψ(0)[~m;~n]

For r > 0, we combine these proofs π[~m, i;~n] for i = 0, 1, . . . , r − 1 by using
repeated cuts, with cut formulas ψ(i)[~m;~n], 1 ≤ i ≤ r − 1. By Lemma 7.19,
these formulas have depth bounded by a constant depending only on ψ. Also,
given that each π[~m, i;~n] has a polynomial bounded size, the proof π[~m;~n] is
easily shown to be bounded in size by some polynomial in ~m,~n. This completes
the proof of the Translation Theorem for V0. �

D
R

A
FT

158 CHAPTER 7. PROPOSITIONAL TRANSLATIONS

Note that the ΣB
0 -IND axioms are ΣB

0 . So in fact we could have defined

LK2-Ṽ0 to include the ΣB
0 -IND axiom scheme instead of the ΣB

0 -IND rule.
Here we can use the following version of the ΣB

0 -IND axiom:

(ϕ(0) ∧ ∀x < t(ϕ(x) ⊃ ϕ(x+ 1))) ⊃ ∀z ≤ tϕ(z) (7.6)

where t is any term not involving x or z, and ϕ is a ΣB
0 formula which may

contain other free variables.
In this way, the case of the ΣB

0 -IND rule in the induction step of the proof
above is replaced by two cases: One for the base case where the axiom is an
ΣB

0 -IND axiom, and one for the induction step, in the case of the cut rule where
the cut formula is an instance of the ΣB

0 -IND axioms. The latter is dealt with
just as any other instance of the cut rule. Handling the former is left as an
exercise.

Exercise 7.28. Show directly (without using Theorem 7.20) that the translation
of (7.6) above has polynomial size d-PK proofs, where d depends only on ϕ.

7.3 Quantified Propositional Calculus

Quantified Propositional Calculus (QPC) is an extension of the Propositional
Calculus (Chapter 1) which allows quantifiers over propositional variables. In
this section we will discuss the sequent system G which extends Gentzen’s
system PK by the introduction rules for the propositional quantifiers. There
are subsystems of G that relate to the first-order theories in the same way that
bPK relates to V0. Here we will show this relationship between V1 and the
subsystem G⋆

1 of G.
Formally, QPC formulas (or simply formulas) are built from

• propositional constants ⊤,⊥;

• free variables p, q, r, . . .;

• bound variables x, y, z, . . .;

• connectives ∧,∨,¬;
• quantifiers ∃, ∀;
• parentheses (,);

according to the following rules:

a) ⊤, ⊥, and p are atomic formulas, for any free variable p;

b) if ϕ and ψ are formulas, so are (ϕ ∧ ψ), (ϕ ∨ ψ), ¬ϕ;

c) if ϕ(p) is a formula, then ∀xϕ(x) and ∃xϕ(x) are formulas, for any free
variable p and bound variable x.

A QPC sentence (or just sentence) is a QPC formula with no occurrence of
a free variable.

D
R

A
FT

7.3. QUANTIFIED PROPOSITIONAL CALCULUS 159

Example 7.29. The following is a QPC formula:

∀x∃y[(¬y ∨ (¬x ∧ p)) ∧ (y ∨ x ∨ ¬p)] (7.7)

A truth assignment is an assignment of truth values F , T to the free variables.
The truth value of a QPC formula is defined inductively, much as in the case
of the Propositional Calculus. Here in the induction step, for the case of the
quantifiers we use the equivalences

∀xϕ(x)↔ (ϕ(⊥) ∧ ϕ(⊤)) and ∃xϕ(x)↔ (ϕ(⊥) ∨ ϕ(⊤))

A QPC formula is valid if it is true under all assignments. The notions of
satisfiability and logical consequence (Definition 1.1) generalize to QPC in the
obvious way. So, for example, the formula (7.7) is valid (choose y ↔ (¬x ∧ p)).

It is a standard result in complexity theory that the problem of determining
validity of a formula of QPC is PSPACE complete. Furthermore, it is natural
to define a language L ⊆ {0, 1}∗ to be in nonuniform PSPACE if there is a
polynomial size family 〈ϕn(~p)〉 of QPC formulas such that ϕn(p1, ..., pn) defines
the strings of length n in L. For this and other reasons, G (defined below) is
a natural choice for a QPC proof system corresponding to the complexity class
PSPACE. However if the number of quantifier alternations in a QPC formula
is limited by some constant k, then the validity problem for such formulas is in
the polynomial hierarchy.

Definition 7.30 (Σq
i and Πq

i). Σq
0 = Πq

0 is the class of quantifier-free formulas
of QPC. For i ≥ 0, Σq

i+1 (resp. Πq
i+1) is the set of all formulas which have

a prenex form where there are at most i alternations of quantifiers, with the
outermost quantifier being ∃ (resp. ∀) if there are exactly i alternations.

Thus

Σq
0 = Πq

0 ⊂ . . . ⊂ Σq
i ∩Πq

i ⊂ Σq
i ∪Πq

i ⊂ Σq
i+1 ∩Πq

i+1 ⊂ . . .
Also, checking the validity of a Σq

i (resp. Πq
i) sentence is Σp

i -complete (resp.
Πp
i -complete), for i ≥ 1. For i = 0, this problem is NC1-complete.

7.3.1 QPC Proof Systems

We generalize Definition 7.2 in the obvious way to define the notion of QPC
proof system where now F maps {0, 1}∗ onto the set of valid QPC formulas.
Since the validity problem for QPC formulas is complete for PSPACE, the
following result is proved in the same way as Theorem 7.4.

Theorem 7.31. There exists a polynomially bounded QPC proof system iff
NP = PSPACE.

The assertion NP = PSPACE is considerably more implausible than NP =
co-NP, but still the existence of a polynomially bounded QPC proof system is
open.

The notions p-simulate and p-equivalent from Definition 7.5 apply in the
obvious way to QPC proof systems.

D
R

A
FT

160 CHAPTER 7. PROPOSITIONAL TRANSLATIONS

7.3.2 The System G

The QPC proof system G is a sequent system which includes the axioms and
rules for PK, where now formulas are interpreted to be QPC formulas. It also
has the following four quantifier introduction rules:

∀ introduction rules:

A(B),Γ −→ ∆
∀-left

∀xA(x),Γ −→ ∆

Γ −→ ∆, A(p)
∀-right

Γ −→ ∆, ∀xA(x)

∃ introduction rules:

A(p),Γ −→ ∆
∃-left

∃xA(x),Γ −→ ∆

Γ −→ ∆, A(B)
∃-right

Γ −→ ∆, ∃xA(x)

Restriction In the rules ∀-right and ∃-left, p is a free variable called an
eigenvariable that must not occur in the bottom sequent. For the rules ∀-
left and ∃-right, the formula B is called the target formula and may be any
quantifier-free formula (with no bound variables).

Proofs in G are dags of sequents, which generalizes the treelike structure of
LK proofs (see Subsection 7.1.1).

Theorem 7.32 (Soundness and Completeness of G). A sequent of G is
valid iff it has a G proof. In fact, valid sequents have cut-free G proofs.

Proof. Soundness is easy: Provable sequents of G are valid because the axioms
of G are valid, and the rules preserve validity.

For completeness, we first point out that a valid quantifier-free sequent of
QPC has a cut-free G proof, by the PK Completeness Theorem 1.8. In general,
we prove the result by induction on the maximum quantifier depth of the formu-
las in the sequent (and then induction on the number of formulas in the sequent
of maximum quantifier depth). We have just proved the base case, where the
sequent is quantifier-free. For the induction step, the interesting cases are where
the sequent is of the form

∀xA(x),Γ −→ ∆ or Γ −→ ∆, ∃xA(x)

These two cases are dual. So consider the sequent

∀xA(x),Γ −→ ∆ (7.8)

We can reduce the quantifier depth in ∀xA(x) by showing that (7.8) is valid iff
the sequent

A(⊤), A(⊥),Γ −→ ∆ (7.9)

is valid. �

Exercise 7.33. Carry out the details in the induction step in the above proof
of the completeness of G.

D
R

A
FT

7.3. QUANTIFIED PROPOSITIONAL CALCULUS 161

The proof above shows that actually G remains complete when the target
formulas B in ∀-left and ∃-right are restricted to be in the set {⊤,⊥}. In fact,
the restricted system is p-equivalent to G. This can be shown with the help of
the following exercise.

Exercise 7.34. Show that the following sequents has cut-free G proofs of size
O(|A(B)|2), where A and B are any QPC formulas.

a) B,A(B) −→ A(⊤)

b) A(B) −→ A(⊥), B

c) B,A(⊤) −→ A(B)

d) A(⊥) −→ A(B), B

(Hint: Prove by structural induction on A for a and c simultaneously. Similarly
for b and d.)

Exercise 7.35 ([?]). Let KPG be the modification of G resulting from relaxing
the condition that the target formula B in the rules ∀-left and ∃-right must
be quantifier-free (so B is allowed to be any QPC formula). Show that G p-
simulates KPG. Show that the same holds even if G is restricted so that the
target formulas B in the rules ∀-left and ∃-right are restricted to be in the set
{⊤,⊥}. Use Exercise 7.34.

The original system G defined in [?] is actually KPG as defined in the above
exercise. Thus the original G and our G are p-equivalent.

The proof of completeness in Theorem 7.32 could yield proofs of doubly
exponential size. For example if the formula ∀xA(x) in (7.8) begins with k
universal quantifiers, then eliminating them all using (7.9) would yield 2k copies
of A, and the resulting valid sequent could require a proof exponential in its
length. We now prove a singly-exponential upper bound for G proofs which
allow cuts on atomic formulas.

We say that an occurrence of a symbol in a formula is positive (resp. negative)
if it is in the scope of an even (resp. odd) number of ¬’s.
Definition 7.36 (Sequent Length). An occurrence of a connective c in a
sequent Γ −→ ∆ is general if c is ∧ or ∀ and occurs positively in ∆ or negatively
in Γ, or if c is ∨ or ∃ and c occurs negatively in ∆ or positively in Γ. A
restricted occurrence is defined similarly, except ∆ and Γ are interchanged. For
a sequent S, |S|g (resp. |S|r) denotes the number of occurrences in S of general
connectives (resp. ¬’s and restricted connectives). Also |S| denotes the total
number of occurrences of symbols in S, counting variables p, q, r, . . . , x, y, z, . . .
as one symbol each.

Theorem 7.37. If S is a valid sequent in the language of G with n distinct
free variables, then S has a treelike G proof with O(|S|r2|S|g+n) sequents (not
counting weakenings and exchanges) in which all cut formulas are atomic and
each sequent in the proof has length O(|S|). If S is quantifier-free, or if all
quantifier occurrences in S are general, then the proof is cut-free and the bound
is improved to O(|S|r2|S|g).

D
R

A
FT

162 CHAPTER 7. PROPOSITIONAL TRANSLATIONS

Proof. Notation We say that a free variable p is determined in a sequent
A1, . . . , Ak −→ B1, . . . Bℓ if one of the formulas Ai or Bj is the atomic for-
mula p. A sequent is determined if all of its free variables are determined.

Note that if all free variables of a sequent are determined, then there is
at most one truth assignment to these free variables which fails to satisfy the
sequent.

Lemma 7.38. If S is a valid sequent with all of its free variables determined,
then S has a treelike G proof with O(|S|r2|S|g) sequents (not counting weaken-
ings and exchanges) in which all cut formulas are atomic and each sequent in
the proof has length O(|S|). If S is quantifier-free or if all quantifier occurrences
in S are general, then the same bound applies even if not all free variables in S
are determined, and further the proof is treelike and cut-free.

The second sentence of Theorem 7.37 follows immediately from the lemma.
We now prove the first sentence of the theorem from the lemma. Let F be the
set of free variables in S. For each of the 2n subsetsK of F let SK be the sequent
resulting from S by appending a list of the variables in K to the antecedent and
the variables in F − K to the consequent. For example if S = Γ −→ ∆ and
F = {p1, p2, p3} and K = {p2}, then SK is

p2,Γ −→ ∆, p1, p3

Each SK is valid and determined, and hence by the lemma has a proof with
O(|S|r2|S|g) sequents. Then S can be derived by combining these 2n proofs
with 2n−1 atomic cuts. �

Proof of Lemma 7.38. We use induction on the total number of connectives
∧,∨,¬, ∀, ∃ in S. The base case is immediate, since any valid sequent with no
such connectives is a subsequent of an axiom.

For the induction step, we have a case for each of the connectives ∧,∨,¬, ∀, ∃.
We consider a formula A occurring in the consequent: The argument for the
antecedent is dual. If A is of the form ¬B then S has the form Γ −→ ∆,¬B.
Let S′ be the sequent B,Γ −→ ∆. Then S′ is valid (and determined if S is)
and |S′|r = |S|r − 1, so the induction hypothesis applies and S can be derived
from S′ by the rule ¬-right. The case in which A has the form B∨C is similar,
using the rule ∨-right.

If S has the form Γ −→ ∆, (B ∧ C), then Γ −→ ∆, B and Γ −→ ∆, C are
each valid (and determined if S is) and have reduced |S|g, and S can be derived
by ∧-right from these two sequents.

Suppose that S is Γ −→ ∆, ∀xA(x). Then S′ = Γ −→ ∆, A(p) is valid,
where p is a new free variable. Further |S′|g = |S|g − 1 and S follows from S′

using ∀-right. This takes care of the second sentence in the lemma, but for
the first sentence there is the problem that S′ may not be determined, even
if S is. But each of the sequents p,Γ −→ ∆, A(p) and Γ −→ ∆, A(p), p is
valid and determined if S is, and by the induction hypothesis can be proved

D
R

A
FT

7.4. THE SYSTEMS GI AND G⋆
I 163

with O(|S|r2|S|g−1) sequents. Further S can be derived from these two sequents
with a cut on p and ∀-right, making a total of O(|S|r2|S|g + 2) = O(|S|r2|S|g)
sequents.

Finally consider the case in which S is Γ −→ ∆, ∃xA(x). Since the occur-
rence of ∃ is restricted, the second sentence of the lemma does not apply, so
we may assume that S is determined and valid. We claim that one of the two
sequents Γ −→ ∆, A(⊤) and Γ −→ ∆, A(⊥) is valid (they are both determined).
To see this, note that since S is determined there is at most one truth assign-
ment τ to the free variables of S that could falsify Γ −→ ∆. If no such τ exists,
we are done. Otherwise τ satisfies ∃xA(x), and hence τ satisfies either A(⊤) or
A(⊥). Hence we may apply the induction hypothesis to one of these sequents,
and obtain S using ∃-right. �

7.4 The Systems Gi and G⋆
i

Definition 7.39 (Gi and G⋆
i). For each i ≥ 0, Gi is the subsystem of G in

which cut formulas are restricted to Σq
i ∪Πq

i . The system G⋆
i is treelike Gi.

The following result is immediate from Theorem 7.37.

Corollary 7.40. Every valid QPC sequent has a G⋆
0 proof of size 2O(|S|).

Theorem 7.41. For i ≥ 0, G⋆
i+1 p-simulates Gi, when the theories are re-

stricted to proving Σq
i formulas. Treelike G p-simulates G.

Proof. The argument is similar to the proof of Theorem 7.8, except for the
quantifier rules ∀-right and ∃-left we can no longer argue that the conclusion
is a logical consequence of the hypotheses. However for each rule deriving a
sequent S from a sequent S1 we know that ∀AS is a logical consequence of
∀AS1 , where ∀B is the universal closure of B. Thus we replace the Claim in
the earlier proof by the arguing that if π = S1, . . . , Sn is a daglike G proof then

−→ ∀AS1 ; −→ (∀AS1 ∧ ∀AS2); . . . ; −→ (∀AS1 ∧ . . .∧ASn
); −→ ASn

(7.10)

can be augmented to a treelike G proof whose size is bounded by a polynomial
in the length of π, and in which cut formulas are restricted to subformulas of
formulas in the sequence. The theorem then follows from the fact if the all
formulas in the sequent S are in Σq

i ∪Πq
i then the formula ∀AS is in Πq

i+1.
Our new claim follows from Exercise 7.9 b), the fact that for every axiom S

of G, −→ ∀AS has an easy G⋆
0 proof, and the exercise below. �

Exercise 7.42. a) Suppose that if S is derived from S1 (and S2) by an in-
ference rule of G. Show that the following sequents have polynomial size
cut-free G proofs for any formula A. (For the PK rules it is helpful to
use Exercise 7.9 b).)

D
R

A
FT

164 CHAPTER 7. PROPOSITIONAL TRANSLATIONS

• A ∧ ∀AS1 −→ A ∧ ∀AS.
• A ∧ ∀AS1 ∧ ∀AS2 −→ A ∧ ∀AS.

b) Show that for every sequent S = Γ −→ ∆, the sequent

∀AS ,Γ −→ ∆

has a polynomial size cut-free treelike G proof.

The next result strengthens Theorem 7.41 for the case i = 0.

Theorem 7.43 ([?]). G⋆
0 p-simulates G0 restricted to proving prenex Σq

1 for-
mulas.

Proof Sketch. Note that the proof of Theorem 7.8 (treelike PK p-simulates
daglike PK) does not adapt to this case, because that argument requires cuts on
conjunctions of earlier lines in the proof, which now would involve quantifiers.

Instead, following [?], we argue that a form of Gentzen’s Midsequent Theo-
rem can be made to work in polynomial time. Let π be a G0 proof of a sequent

−→ ∃x1 . . . ∃xmC(~p, x1, . . . , xm) (7.11)

where C(~p, x1, . . . , xm) is quantifier-free. Since all cut formulas in π are quantifier-
free, it follows that every quantified formula in π is an ancestor of the conclusion,
and must occur on the RHS and must have the form

∃xk . . . ∃xmC(~p,B1 . . . Bk−1, xk, . . . , xm) (7.12)

for some quantifier-free formulas B1, . . . , Bk−1 and some k, 1 ≤ k ≤ m. Let us
call a formula a π-prototype if it is quantifier-free and is the auxiliary formula
in an ∃-right rule (so it is the quantifier-free parent of a formula of the form
(7.12), with k = m+ 1). Thus a π-prototype has the form C(~p,B1 . . . Bm).

The Herbrand π disjunction Sπ is the sequent

−→ A1, . . . , Ah

where A1, . . . , Ah is a list of all the π-prototypes. It turns out that Sπ is a valid
sequent, and in fact π can be transformed into a PK proof π′ of Sπ in polynomial
time. To form π′ from π, delete each quantified formula (i.e. each formula of
the form (7.12)) from π and add formulas from the list A1, . . . , Ah to the RHS
of each sequent so that each π-prototype is in the succedent of every sequent.
The result can be turned into a PK proof of Sπ by deleting applications of the
rule ∃-right, and adding weakenings, exchanges, and contractions.

We may assume that the PK proof π′ of Sπ is treelike, by Theorem 7.8.
Now π′ is easily augmented to a treelike proof of (7.11) using the rules ∃-right,
exchange and contraction. �

D
R

A
FT

7.4. THE SYSTEMS GI AND G⋆
I 165

The notion of free variable normal form (Definition 2.21) readily extends to
G proofs. In fact every treelike G proof can be easily transformed to one in
free variable normal form by renaming variables and substituting the constant
⊥ for some variables.

We now show that for G⋆
i we may as well assume that all cut formulas are

prenex Σq
i .

Theorem 7.44 ([?]). Let Ĝ⋆
i be G⋆

i with cut formulas restricted to prenex Σq
i

formulas. Then Ĝ⋆
i p-simulates G⋆

i .

Proof. Fix i ≥ 1. Let π be a G⋆
i proof. We may assume that π is in free variable

normal form.

Consider an application of the cut rule in π, with cut formula A.

Γ −→ ∆, A A,Γ −→ ∆

Γ −→ ∆

We may assume thatA is Σq
i , since ifA is Πq

i we can simply insert ¬-introduction
steps just before the cut so that the cut formula becomes ¬A. Our task is to
show that this cut on A can be replaced with a cut on A′, where A′ is some
prenex form of A. To do this we will replace the tree derivation of Γ −→ ∆, A
with a similar derivation of Γ −→ ∆, A′, and similarly replace the derivation of
A,Γ −→ ∆ by one of A′,Γ −→ ∆.

The proof of the Prenex Form Theorem 2.57 lists ten equivalences as follows:

(∀xB ∧ C)⇐⇒ ∀x(B ∧ C) (∀xB ∨ C)⇐⇒ ∀x(B ∨ C)

(C ∧ ∀xB)⇐⇒ ∀x(C ∧B) (C ∨ ∀xB)⇐⇒ ∀x(C ∨B)

(∃xB ∧ C)⇐⇒ ∃x(B ∧ C) (∃xB ∨ C)⇐⇒ ∃x(B ∨ C)

(C ∧ ∃xB)⇐⇒ ∃x(C ∧B) (C ∨ ∃xB)⇐⇒ ∃x(C ∨B)

¬∀xB ⇐⇒ ∃x¬B ¬∃xB ⇐⇒ ∀x¬B

(where x does not occur free in C).

To put a formula in prenex form (which is in the same class Σq
j or Πq

j with
the original formula), it suffices to successively transform a formula A(B(~x)) to
A(B′(~x)), where B ⇐⇒ B′ is one of the above equivalences and ~x is a list of
the variables in B which are bound by quantifiers in A.

Consider a derivation of Γ −→ ∆, A(B(~x)) or A(B(~x)),Γ −→ ∆ in π. If
we trace the ancestors of A(B(~x)) up through this derivation, each path either
ends when the ancestor is formed by a weakening, or it includes an occurrence
of B(~D), where ~D is the list of target formulas and eigenvariables used by the

quantifier introduction rules in forming A(B(~x)) from B(~D).

Thus it suffices to show, for each of the above equivalences B ⇐⇒ B′, how
to convert a derivation of Λ −→ Π, B to one of Λ −→ Π, B′ and a derivation of
B,Λ −→ Π to one of B′,Λ −→ Π. (In the application to the previous paragraph,

B would be B(~D), and B′ would be B′(~D).)

D
R

A
FT

166 CHAPTER 7. PROPOSITIONAL TRANSLATIONS

Consider, for example, converting a derivation of

Λ −→ Π,¬∀xC(x)

to one of

Λ −→ Π, ∃x¬C(x)

The ancestral paths of ¬∀xC(x) which do not end in weakening include ∀xC(x)
in the antecedent and then C(D) in the antecedent, for some target formula D.
Thus we have arrived at a sequent

C(D),Λ′ −→ Π′

We modify the derivation after this point by using ¬-right and ∃-right to obtain

Λ′ −→ Π′, ∃x¬C(x)

and continue the derivation as before, omitting the steps which formed ¬∀xC(x)
from C(D).

The argument is similar if ¬∀xC(x) is in the antecedent.
Now consider converting a derivation of

Λ −→ Π, ∀xC(x) ∧D

to a derivation of

Λ −→ Π, ∀x(C(x) ∧D)

The ancestral paths of ∀xC(x) ∧D which do not end in weakening split after
an ∧-right, where the left branch has a ∀-right step

Λ′ → Π′, C(p)

Λ′ → Π′, ∀xC(x)

We modify this by combining it with the right branch just after the split as
follows:

Λ′′ −→ Π′′, C(p) Λ′′ −→ Π′′, D

Λ′′ −→ Π′′, C(p) ∧D
Λ′′ −→ Π′′, ∀x(C(x) ∧D)

Here it is important that the original derivation be in free variable normal
form, both in order to insure that p does not occur in D, and to guarantee
that the variable restrictions continue to hold in the modified derivation of
Λ −→ Π, ∀x(C(x) ∧D).

The other cases are handled similarly. �

Unlike the situation for PK and G0, it seems unlikely that G⋆
1 p-simulates

G1. To explain why, we need the notion of witnessing for QPC proof systems.

D
R

A
FT

7.4. THE SYSTEMS GI AND G⋆
I 167

7.4.1 Extended Frege Systems and Witnessing in G⋆
1

In previous chapters we proved witnessing theorems which concern the complex-
ity of witnessing the leading existential quantifiers in a bounded L2

A formula,
given values for the free variables. The analogous witnessing problem for a QPC
formula is trivial, because there are only finitely many possible values for the
free variables. However the problem becomes interesting if we consider a family
of formulas, and include a proof of the formula as part of the input.

Theorem 7.45 (The Witnessing Theorem for G⋆
1). There is a polyno-

mial time function F (π, τ) which, given a G⋆
1 proof π of a formula of the form

∃~xA(~x, ~p) (where A(~x, ~p) is quantifier-free) and an assignment τ to ~p, returns
an extension τ ′ of τ such that τ ′ satisfies A(~x, ~p).

The problem of computing such τ ′ from τ without π is complete for PNP,
if we are required to say “no” if there is no witness. Hence it is clear that the
proof π provides helpful information. We will show in a later chapter that if π
is a G1 proof (as opposed to a G⋆

1 proof), then the problem becomes complete
for the search class PLS. Since it seems unlikely that PLS problems can all be
solved in polynomial time, it seems unlikely that G⋆

1 p-simulates G1.
We will prove the Witnessing Theorem for G⋆

1 by analyzing a closely-related
system ePK, a member of the class of extended Frege proof systems. In general,
a line in an extended Frege proof has the expressive power of a Boolean circuit,
and a problem in nonuniform P is presented by a polynomial size family of
Boolean circuits. The connection between the extended Frege proof systems
and P is thus analogous to that of the bounded depth Frege proof systems
(e.g., bPK) and AC0 that we have seen (Section 7.2), or that of the Frege
systems and NC1, as we discussed in the Preface.

Definition 7.46 (Extension Cedent). The sequence of formulas

Λ = e1 ↔ B1, e2 ↔ B2, ..., en ↔ Bn (7.13)

is an extension cedent provided that for i = 1, ..., n, the atom ei does not oc-
cur in any of the formulas B1, ..., Bi. The atoms e1, ..., en are called extension
variables.

Intuitively, we think of e1, ..., en as gates in a Boolean circuit, where the value
of ei is determined byBi together with the values of the earlier gates e1, . . . , ei−1.
In an ePK proof of an existential statement, some of these extension variables
are used to witness the existential quantifiers.

Definition 7.47 (ePK Proof). Let ∃~xA(~x, ~p) be a QPC formula with free
variables ~p such that A(~x, ~p) is quantifier-free. An ePK proof of ∃~xA(~x, ~p) is a
PK proof of any sequent of the form

Λ −→ A(~e1, ~p)

where Λ is an extension cedent (7.13) in which the extension variables ~e are
disjoint from ~p, ~e1 is a subset of ~e, and each Bi contains only variables among
~e, ~p.

D
R

A
FT

168 CHAPTER 7. PROPOSITIONAL TRANSLATIONS

This definition is interesting even in the case that the final formula is quantifier-
free. Then the extension variables are not used to witness quantifiers, but they
still may be useful in defining polynomial time concepts needed in the proof. As
far as we know, PK does not p-simulate ePK even when the latter is restricted
to proving quantifier-free formulas.

Theorem 7.48 (Kraj́ıček [?]). G⋆
1, restricted to proving prenex Σq

1 formulas,
is p-equivalent to ePK.

Before giving the proof, we show how the Witnessing Theorem for G⋆
1 follows

from this.

Proof of Theorem 7.45. Let π be a G⋆
1 proof of ∃~xA(~x, ~p), and let τ be an as-

signment to ~p, as in the statement of the Witnessing Theorem. By the preceding
theorem, we can transform π to an ePK proof of ∃~xA(~x, ~p); that is, a PK proof
of a sequent

e1 ↔ B1, e2 ↔ B2, ..., en ↔ Bn −→ A(~e1, ~p) (7.14)

Now given the the assignment τ to ~p, vaules for e1, e2, ..., en can be computed
successively by evaluating B1, ..., Bn, and these values define the desired exten-
sion τ ′ of τ which satisfies A(~x, ~p). �

Proof of Theorem 7.48. First we show that G⋆
1 p-simulates ePK. Let π be a

(treelike) ePK proof of ∃~xA(~x, ~p). Then π is a PK proof of a sequent of the
form (7.14). We show how to extend this PK proof to make a G⋆

1 proof of
∃~xA(~x, ~p). We start by repeated application of ∃-right to obtain a proof of

e1 ↔ B1, e2 ↔ B2, ..., en ↔ Bn −→ ∃~xA(~x, ~p) (7.15)

Now for each formula B there is a short PK proof of −→ (B ↔ B), and
with one application of ∃-right we obtain a short G⋆

1 proof of

−→ ∃x(x↔ B) (7.16)

Now apply ∃-left to (7.15) to change the formula (en ↔ Bn) to ∃x(x ↔ Bn).
(Note that en does not occur elsewhere in (7.15), so the variable restriction for
this rule is satisfied.) Now apply the cut rule to this and (7.16) to obtain

e1 ↔ B1, e2 ↔ B2, ..., en−1 ↔ Bn−1 −→ ∃~xA(~x, ~p)

Applying this process a total of n times we may eliminate each formula ei ↔ Bi
in (7.15) to obtain the desired G⋆

1 proof of size polynomial in the size of π.
Now we prove the converse. Let π be a G⋆

1 proof of −→ ∃~xA(~x, ~p). We may
assume that π is in free variable normal form, and by Theorem 7.44 we may
assume that all cut formulas in π are prenex Σq

1, so each sequent of π has the
form

S = . . . , ∃~xiαi(~xi, ~r), . . . ,Γ −→ ∆, . . . ,∃~yjβj(~yj , ~r), . . . (7.17)

D
R

A
FT

7.4. THE SYSTEMS GI AND G⋆
I 169

where all αi and βj as well as all formulas in Γ and ∆ are quantifier-free, and ~r
is precisely the list of the free variables occurring in S. Notice that ~r may have
variables not in ~p, which are used as eigenvariables for ∃-left.

We transform the proof π to an ePK proof π′ by transforming each such
sequent S to a corresponding quantifier-free sequent S′, and supplying a suitable

proof of S′. To describe S′, we first replace each vector ~xi of bound variables by

a distinct vector ~qi = qi1, . . . , q
i
ℓi

of new free variables, and similarly we replace
~yi by a new vector ~ei. None of these new variables should occur in π. Then

S′ = Λ, . . . , αi(~qi, ~r), ...,Γ −→ ∆, ..., βj(~ej , ~r), ..., (7.18)

where Λ is an extension cedent defining the extension variables . . . , ~ej ,
If S is the endsequent −→ ∃~xA(~x, ~p), then S′ has the form Λ −→ A(~e1, ~p),

so π′ is the desired ePK proof of ∃~xA(~x, ~p).
We define Λ and show that S′ has an ePK proof polynomial in the size of

the G⋆
1 proof of S, by induction on the depth of S in π.

For the base case, S is an axiom

∃~xα(~x,~r) −→ ∃~xα(~x,~r)

and S′ is easy to obtain.
For the induction step there is one case for each rule of G⋆

1.

Case I: Weakening and exchange are trivial, and contraction follows from cut.
The single parent rules ¬ and ∧-left and ∨-right are easy, since the principle
formulas are quantifier-free, and the same rule can be applied to form S′.

Case II: For the two parent rules ∧-right and ∨-left, the principle formulas
are quantifier-free, but we face the difficulty that the extension cedents Λ for the
two parents may give inconsistent definitions of the extension variables. This
is similar to the difficulty for Case VII in the proof of Lemma 5.64 for the
V0 witnessing theorem. There the witnessing functions for a formula in Π for
the two parents might be different. We solve the problem in a similar way, by
defining the extension variables to values that make them true when possible.

Specifically, consider the case of ∧-right, where for simplicity we assume
there is exactly one formula in the succedent beginning with existential quanti-
fiers (that formula cannot be C or D):

S1 S2

S
=

Γ −→ ∆, ∃~yβ(~y,
−→
r1), C Γ −→ ∆, ∃~yβ(~y,

−→
r2), D

Γ −→ ∆, ∃~yβ(~y,~r), (C ∧D)

where ~r is the union of the lists
−→
r1 ,
−→
r2 . By the induction hypothesis, we have

EPK proofs of the two sequents

S′
1 = Λ1,Γ

′ → ∆, β(~e,
−→
r1), C

and

S′
2 = Λ2,Γ

′ → ∆, β(~s,
−→
r2), D

D
R

A
FT

170 CHAPTER 7. PROPOSITIONAL TRANSLATIONS

where in the the second case we have changed the extension variables from ~e to
~s. Since π is treelike, we can assume that the ePK derivations of S′

1 and S′
2 are

disjoint, and hence we can change variable names in one proof without affecting
the other proof. Thus we may assume that the extension variables defined in
Λ1 and Λ2 are disjoint, and in particular ~e and ~s have no variable in common.
Thus the extension cedents Λ1 and Λ2 are consistent. Further we may assume

that the variables ~qi are the same in S′
1 and S′

2.
From S′

1 and S′
2 with ∧-right we obtain

Λ1,Λ2,Γ
′ → ∆, β(~e,~r), β(~s,~r), (C ∧D) (7.19)

Now we introduce new extension variables ~t, and introduce the extension for-
mulas

Ei =def [(β(~e,~r) ∧ ei) ∨ (¬β(~r, ~r) ∧ si)]
and define the extension cedent

Λ3 = t1 ↔ E1, t2 ↔ E2, ...

Then define

S′ = Λ1,Λ2,Λ3,Γ
′ → ∆, β(~t, ~r), (C ∧D)

One can show with the help of Lemma 7.10 that each of the sequents

Λ3, β(~e,~r)→ β(~t, ~r) (7.20)

Λ3, β(~s,~r)→ β(~t, ~r) (7.21)

has a short PK proof. Using these and (7.19) and two cuts we obtain a short
PK derivation of S′ from S1 and S2.

Case III: ∃-left is easy, since it just means changing the role of a free eigen-
variable r in S′

1 to the variable q in S′ corresponding to ∃x.
Case IV: Suppose S comes from S1 using ∃-right.

S1

S
=

Γ→ ∆, ∃~yβ(B, ~y,~r)

Γ→ ∆, ∃z∃~yβ(z, ~y, ~r)

Here the target formula B is quantifier-free, by definition of G. Since π is in free
variable normal form, no free variable can be eliminated by this rule, and so the
list ~r of free variables in S is the same as for S1. By the induction hypothesis,
we have an ePK derivation of

S′
1 = Λ,Γ′ → ∆′, β(B,~e,~r)

Let s be a new extension variable, and let

S′ = Λ, s↔ B, Γ′ → ∆′, β(s, ~e, ~r)

D
R

A
FT

7.5. TRANSLATING V1 TO G⋆
1 171

It follows from the PK Lemma 7.10 that S′ has a short PK derivation from S′
1.

Case V: Suppose S comes from S1, S2 by cut:

S1 S2

S3
=

Γ→ ∆, C C,Γ→ ∆

Γ→ ∆

Since π is in free variable normal form, every free variable in C also occurs in the
conclusion S3. Supppose first that the cut formula C is quantifier-free. Then
the only difficulty is that the extension cedents Λ for the two parents may give
inconsistent definitions of the extension variables witnessing quantifiers in ∆.
We handle this difficulty in the same way as for Case II above.

The case in which C has existential quantifiers is more complicated, since the
definitions of the new extension variables witnessing quantifiers in ∆ now depend
on witnesses for the quantifiers in C supplied by S′

1. These new definitions are
similar to the new witnessing functions defined for the case of cut (Case VI)
in the proof of Lemma 5.64 used to prove the V0 Witnessing Theorem. �

Exercise 7.49. Carry out the details of Case V in the above proof.

7.5 Translating V1 to G⋆
1

In this section we show that G⋆
1 is closely related to the theory V1. In fact, G⋆

1

can be considered a nonuniform version of the bounded fragment of V1.

7.5.1 Translating Bounded L2
A-Formulas

It is straightforward to extend the propositional translation of ΣB
0 (L2

A) formulas
(Section 7.2) to a translation of any bounded L2

A formula. Here every gΣB
i (resp.

gΠB
i) formula ϕ(~x, ~X), with all free variables indicated, translates into a family

of Σq
i (resp. Πq

i) formulas:

‖ϕ(~x, ~X)‖ = {ϕ(~x, ~X)[~m;~n] : ~m,~n ∈ N}

so that ϕ(~x, ~X)[~m;~n] is valid iff

N2 |= ∀ ~X, (
∧
| ~X | = ~n) ⊃ ϕ(~m, ~X)

The formula ϕ(~x, ~X)[~m;~n] has size bounded by a polynomial p(~m,~n) which

depends only on ϕ. The free propositional variables in ϕ(~x, ~X)[~m;~n] consist of
pXi

j , for 0 ≤ j < ni − 1 for each ni ≥ 2.

We define the translation of a bounded L2
A formula ϕ inductively, starting

with the ΣB
0 formulas, which is described in Section 7.2. For the induction step,

consider the case where ϕ(~x, ~X, Y) ≡ ∃Y ≤ tψ(~x, ~X, Y), where t is a number

term of the form t(~x, | ~X|). By the induction hypothesis, ψ(~x, ~X, Y)[~m;~n, k]

D
R

A
FT

172 CHAPTER 7. PROPOSITIONAL TRANSLATIONS

contains the free propositional variables pY0 , p
Y
1 , . . . for Y , in addition to pXi

j

(when k < 2, the list pY0 , . . . , p
Y
k−2 is empty). We drop mention of the pXi

j ,

and denote ψ(~x, ~X, Y)[~m;~n, k] by ψk(p
Y
0 , . . . , p

Y
k−2). (If k ≤ 1 then ψk does not

contain any of the variables pY0 , p
Y
1 ,) Define

ϕ(~x, ~X)[~m;~n] =def ∃pY0 . . . ∃pYr−2

r∨

k=0

ψk(p
Y
0 , . . . , p

Y
k−2) (7.22)

where r = val (t(~m,~n)). Here the free variables pYj become bound, and if r ≤ 1

then the list pY0 , . . . , p
Y
r−2 is empty. Also, if any of the formulas ψk(p

Y
0 , . . . , p

Y
k−2)

is a logical constant ⊥ or ⊤, then we simplify ϕ(~x, ~X)[~m;~n] in the obvious way.
The case where ϕ ≡ ∀Y ≤ tψ(Y) is similar:

∀Y ≤ tψ(~x, ~X, Y)[~m;~n] =def ∀pY0 . . . ∀pYr−2

r∧

k=0

ψk(p
Y
0 , . . . , p

Y
k−2) (7.23)

The cases of the Boolean connectives ∧, ∨, ¬ or the number quantifiers are the
same as for ΣB

0 formulas.

Proposition 7.50. For each i ≥ 0, if ϕ is a gΣB
i (resp. gΠB

i) formula, then
the formulas in ‖ϕ‖ are Σq

i (resp. Πq
i). There is a polynomial p(~m,~n) which

depends only on ϕ so that ϕ[~m;~n] has size ≤ p(~m,~n) for all ~m,~n ∈ N.

The connection between the theory V1 and the proof system G⋆
1 is as follows.

Theorem 7.51 (V1 Translation Theorem). For any bounded theorem ϕ(~x, ~X)
of V1, there is a polytime function F (~m,~n) such that F (~m,~n) is a G⋆

1 proof of

ϕ(~x, ~X)[~m;~n], for all ~m,~n ∈ N.

Proof. The proof is similar to that of the Translation Theorem for V0 7.20. By
Corollary 6.43, for every bounded theorem ϕ(~a, ~α) of V1 there is a (treelike)
anchored LK2-Ṽ1 proof π of −→ ϕ(~a, ~α). If we translate each sequent of π into
the corresponding QPC sequent, the result is close to a G⋆

1 proof. In particular,
since any cut formula in LK2-Ṽ1 is ΣB

1 , its translation is a Σq
1 formula, and

can be cut in G⋆
1.

Formally, we will prove by induction on the depth of a sequent S(~b, ~β) in π
that there is a polytime function F (~m,~n) such that F (~m,~n) is a G⋆

1 proof of
S[~m;~n]. For the base case, S is an axiom of LK2-Ṽ1. The simple axioms are
sequents of ΣB

0 formulas, and these are treated as in the proof of the Translation
Theorem for V0. The remaining axioms are instances of ΣB

0 -COMP, so

S = −→ ∃X ≤ t∀z < t(X(z)↔ η(z))

and η is a ΣB
0 formula. Let r = val(t). When r ≤ 1, it is easy to see that

S translates into a trivially valid sequent with a short G0 proof. Otherwise, if
r ≥ 2, then S[~m;~n] is the sequent (replace . . . by ~m;~n]):

−→ ∃pX0 . . . ∃pXr−2,

r∨

k=0

(

k−2∧

i=0

(pXi ↔ η(i)[. . .]) ∧ η(k − 1)[. . .] ∧
r−1∧

i=k

¬η(i)[. . .])

D
R

A
FT

7.5. TRANSLATING V1 TO G⋆
1 173

where the conjunct η(k − 1) is deleted when k = 0.

Exercise 7.52. Let A0, . . . , Aℓ be any PK formulas (ℓ ≥ 0). Show that the
sequent

−→
ℓ∨

j=−1

(Aj ∧
ℓ∧

i=j+1

¬Ai)

(where for j = −1 the conjunct Aj is deleted) has a polynomial size treelike
cut-free PK derivation.

We get S[~m;~n] by first using the above exercise for ℓ = r − 1 and Ai ≡
η(i)[~m;~n], then repeatedly applying the ∃-right rule. Thus S[~m;~n] has a poly-
nomial size cut-free G proof.

For the induction step, we consider all rules of LK2-Ṽ1. In each case, as-
sume that S is obtained from S1 (and S2). We will show that S[. . .] has short
G⋆

1 derivation from S1[. . .] (and S2[. . .]). It is obvious that the polytime func-
tion F (. . .) giving the G⋆

1 proof of S[. . .] can be constructed from the polytime
function(s) F1(. . .) for S1 (and F2(. . .) for S2).

All rules (including the IND rule) except for the string quantifier rules are
treated just as in the proof of the Translation Theorem for V0 (page 155),
although now the translation will require cuts on Σq

i formulas in general. We
consider the string ∃-introduction rules. The string ∀-introduction rules are
dual, and are left as an exercise.

Case string ∃-right: Suppose that S is obtained from S1 by the string ∃-right
rule. Note that in Ṽ1, the only string terms are string variables.

S1

S
=

Λ(γ) −→ Π(γ), |γ| ≤ t ∧ ψ(γ)

Λ(γ) −→ Π(γ), ∃Z ≤ t ψ(Z)

We suppress all free variables except for the principle variable γ. Note that
|γ| ≤ t[. . . , n] is either ⊤ or ⊥. Let r = val(t), then

S1[. . . , n] =def

{
Λ[. . . , n] −→ Π[. . . , n], ψ(γ)[. . . , n] if n ≤ r
Λ[. . . , n] −→ Π[. . . , n],⊥ if n > r

(7.24)

By definition (see (7.22)),

S[. . . , n] =def Λ[. . . , n] −→ Π[. . . , n], ∃pZ0 . . . ∃pZr−2

r∨

k=0

ψ(Z)[. . . , k]

Consider the interesting case where n ≤ r, First, by repeated applications
of the rules weakening and ∨-right, we obtain from S1[. . . , n]

Λ[. . . , n] −→ Π[. . . , n],

r∨

k=0

ψ(γ)[. . . , k]

Then we can derive S[. . . , n] using the rule ∃-right.

D
R

A
FT

174 CHAPTER 7. PROPOSITIONAL TRANSLATIONS

Case string ∃-left: Again, suppressing all other free variables:

S1

S
=
|γ| ≤ t ∧ ψ(γ),Λ −→ Π

∃Z ≤ t ψ(Z),Λ −→ Π

where γ does not occur in S, and ψ is ΣB
1 . Let r = val(t), then for n ≤ r,

S1[. . . , n] =def ψ(γ)[. . . , n],Λ[. . .] −→ Π[. . .] (7.25)

Also,

S[. . .] =def ∃pZ0 . . . ∃pZr−2

r∨

n=0

ψ(Z)[. . . , n], Λ[. . .] −→ Π[. . .]

Now if r = 0, then we are done. Otherwise, combine the sequents S1[. . . , n]
for n = 0, . . . , r by the rule ∨-left we obtain

r∨

n=0

ψ(γ)[. . . , n], Λ[. . .] −→ Π[. . .]

Thus we get S[. . .] by r − 1 applications of the ∃-left rule. �

Exercise 7.53. Carry out the cases for the string ∀-introduction rules.

7.6 Notes

Definitions 7.2, 7.5 and Theorem 7.4 are from [?]. Also, the fact that Frege
proof systems are p-equivalent is proved in [?].

The first propositional translation of an arithmetic theory is described in
[?]. The translation of ΣB

0 formulas given in Subsection 7.2.1 is from [?], and
both this and the V0 Translation Theorem 7.20 are based on the treatment of
I∆0(R) by Paris and Wilkie [?].

A proof system for the Quantified Propositional Calculus was introduced by
Dowd [?]. The system G and its subsystems Gi were introduced by Kraj́ıček
and Pudlák [?] (see also Section 4.6 of [?]). The original definition of G is what
we refer to as KPG in Exercise 7.35 and the original definition of Gi is KPG
restricted so that all formulas must be either Σq

i or Πq
i . Our definitions are due

to Morioka [?]. Theorem 7.37 is new.
The idea of G⋆

i (treelike Gi) is from [?], and the V1 Translation Theo-
rem 7.51 is adapted from a similar theorem for S1

2 also in [?]. Theorem 7.45 is
from [?].

D
R

A
FTChapter 8

Theories for Polynomial

Time and Beyond

Here we introduce several equivalent “minimal” theories for polynomial time,
and show that those with the basic vocabulary L2

A are finitely axiomatizable.
The theory V1 has the same ΣB

1 theorems as these minimal theories, but appar-
ently has more ΣB

2 theorems. We also introduce the TVi hierarchy and show
that TV0 is one of the minimal theories for polynomial time, while TV1 is asso-
ciated with the class PLS (Polynomial Local Search). Finally we show that our
two-sorted theories are “RSUV-isomorphic” to appropriate single-sorted theo-
ries.

8.1 The Theory VPV

In Chapter 6 we proved that the Σ1
1-definable functions of V1 are precisely the

polynomial time functions FP. However there is an (apparently) weaker theory,
TV0, which captures the same class of functions in the same way, and proves
the same ΣB

1 theorems as V1. (Apparently TV0 does not prove either the
ΣB

0 -REPL scheme or the ΣB
1 -COMP scheme, but these do not consist of ΣB

1

formulas.) We argue that this theory seems to be the “minimal” theory which
formalizes polynomial time reasoning.

To support the claim that TV0 is minimal, we first define an equivalent
universal theory VPV which contains function symbols for all functions in FP.
To argue that VPV is minimal, we take for granted that a minimal theory
for any complexity class containing the AC0 functions should contain the basic

theory V0 (Chapter 5) associated with AC0. Since the universal theory V
0

is a conservative extension of V0, we use V
0

as the starting point. To extend

V
0

to our polytime theory VPV, we simply add a function symbol and its
defining axiom for each way of defining a polytime function, using some standard
method of defining polytime functions. The method we choose is based on

175

D
R

A
FT

176 CHAPTER 8. THEORIES FOR POLYNOMIAL TIME AND BEYOND

Cobham’s Theorem 6.16. There are of course other ways of defining the polytime
functions, but the resulting theories turn out to be equivalent to VPV (at least
for standard methods of defining polytime functions).

The vocabulary LFP for VPV extends the vocabulary LFAC0 for V
0

(see
Section 5.6). The difference is that now we introduce new functions based on
Limited Recursion.

Following Definition 6.15, we can write the defining equations for a string
function F (y, ~x, ~X) defined by limited recursion from G(~x, ~X) and H(y, ~x, ~X,Z)
as

F (0, ~x, ~X) = G(~x, ~X) (8.1)

F (y + 1, ~x, ~X) = (H(y, ~x, ~X, F (y, ~x, ~X)))<t(y,~x,
~X) (8.2)

where now the bounding term t(y, ~x, ~X) is in L2
A.

Definition 8.1. The vocabulary LFP is the smallest set that satisfies

1) LFP includes L2
A ∪ {pd , fSE}.

2) For each open formula ϕ(z, ~x, ~X) over LFP and term t = t(~x, ~X) of L2
A

there is a string function Fϕ,t and a number function fϕ,t in LFP.

3) For each triple G,H, t, where G(~x, ~X) and H(y, ~x, ~X,Z) are functions in

LFP and t = t(y, ~x, ~X) is a term in L2
A, there is a function F = FG,H,t in

LFP with defining equations (8.1,8.2).

By Cobham’s Theorem, it is clear that semantically the functions of LFP

comprise the polytime functions.

We now define the theory VPV in the style of Definition 5.68 of V
0
.

Definition 8.2. VPV is the theory over LFP with the following set of axioms:
B1-B11, L1, L2 (Figure 5.1), B12′ and B12′′ (5.39), (5.40), SE′ (5.41), and
defining axioms (5.37) for each function Fϕ,t in LFP and defining axiom (5.38)
for each function fϕ,t in LFP and defining axioms (8.1,8.2) for each function
FG,H,t in LFP.

Thus VPV is a universal theory which extends V
0
. Every function intro-

duced in Definition 8.1 is explicitly bounded by a term in L2
A, and hence VPV

is a polynomial-bounded theory. Further it is easy to see, using the definitions
of Fϕ,t and fϕ,t, that the functions in LFP are closed under composition. Hence
by Cobham’s Theorem 6.16 the symbols in FP represent precisely the functions
in FP.

The following result can be proved by structural induction on ϕ in the same
way as Lemma 3.44 and Lemma 5.69.

Lemma 8.3. For every ΣB
0 (LFP) formula ϕ there is an open LFP-formula ϕ+

such that VPV ⊢ ϕ↔ ϕ+.

Next we state a general witnessing theorem for universal theories, which
applies to VPV.

D
R

A
FT

8.1. THE THEORY VPV 177

Theorem 8.4 (Witnessing). Let T be a universal polynomial-bounded the-
ory which extends V0, with vocabulary L, such that for every open formula
ϕ(z, ~x, ~X) over L and term t(~x, ~X) over L2

A there is a function Fϕ,t in L such
that

T ⊢ Fϕ,t(~x, ~X)(z)↔ z < t ∧ ϕ(z, ~x, ~X)

Then for every theorem of T of the form ∃Zϕ(~x, ~X,Z), where ϕ is an open
formula, there is a function F in L such that

T ⊢ ϕ(~x, ~X, F (~x, ~X))

Proof. The proof is based on the Herbrand Theorem, and is very similar to the
alternative proof of the witnessing theorem for V0 given in Section 5.6.1. This
proof defines the witnessing function F by cases, and in fact F has the form Fϕ,t
for suitable ϕ, t. By our assumption that T is polynomial-bounded, we know
that there is a bounding term t for Fϕ,t in L2

A (as opposed to L). �

Corollary 8.5 (Witnessing for VPV). Every Σ1
1(LFP) theorem of VPV is

witnessed in VPV by functions in LFP.

Proof. It is clear that VPV satisfies the hypotheses for the theory T in the
theorem. Although the theorem only states that formulas of the form ∃Zϕ
(where ϕ is quantier-free) can be witnessed, it is easy to generalize it to witness

an arbitrary Σ1
1(LFP) formula ∃~z∃~Zϕ. (See Lemma 5.64 and how it is used to

prove the witnessing theorem for V0.) �

This witnessing result immediately implies the following.

Corollary 8.6. Every function Σ1
1-definable in VPV is in FP.

Of course this holds whether we interpret Σ1
1-definable to mean Σ1

1(L2
A)-

definable, or more generally Σ1
1(LFP)-definable. The converse of the latter, that

every polytime function is Σ1
1(LFP)-definable in VPV, is obvious, since LFP

comprises the polytime functions. However we are interested in the stronger
converse, that every LFP-function is Σ1

1(L2
A)-definable in VPV. This is not

straightforward to prove, mainly because we do not have the ΣB
0 -REPL axioms

available in VPV. (See Section 6.3.1 for how we can proceed if ΣB
0 -REPL were

available.) One method would be to introduce the aggregate function F ∗ of a

function F , as we do in Section 9.2.3, to prove the analogous result for VTC
0
.

But here we take a different approach: Since V1 proves the ΣB
0 -REPL axioms

it is relatively easy to show that every LFP function is Σ1
1(L2

A)-definable in V1.
From this we use the fact that Σ1

1 theorems of V1 are witnessed in VPV to get
our desired result (Theorem 8.15).

The next result is proved in the same way as Lemma 5.70.

Lemma 8.7. VPV proves the ΣB
0 (LFP)-COMP, ΣB

0 (LFP)-IND, and
ΣB

0 (LFP)-MIN axiom schemes.

D
R

A
FT

178 CHAPTER 8. THEORIES FOR POLYNOMIAL TIME AND BEYOND

Definition 8.8 (∆B
i Formula). Let T be a theory over L ⊇ L2

A. We say
that a formula ϕ is ∆B

i (L) in T if there is a ΣB
i (L) formula ϕ1 and a ΠB

i (L)
formula ϕ2 such that T ⊢ ϕ↔ ϕ1 and T ⊢ ϕ↔ ϕ2.

Corollary 8.9. If ϕ is ∆B
1 (LFP) in VPV then VPV ⊢ ϕ↔ ϕ0 for some open

LFP-formula ϕ0.

Proof. Suppose that ϕ is ∆B
1 (LFP) in VPV, and let ϕ1 and ϕ2 be as in the

definition. Then using pairing functions we may assume that ϕ1 and ϕ2 each
have single string quantifiers, so for some ΣB

0 (LFP)-formulas ψ1, ψ2 we have

ϕ1 ≡ ∃Y ≤ t1ψ1(~x, ~X, Y)

ϕ2 ≡ ∀Z ≤ t2ψ2(~x, ~X,Z)

Since VPV ⊢ ϕ2 ⊃ ϕ1 we have

VPV ⊢ ∃Y ∃Z, ψ2(~x, ~X,Z) ⊃ ψ1(~x, ~X, Y)

By Corollary 8.5 there are FP-functions F and G such that

VPV ⊢ ψ2(~x, ~X, F (~x, ~X)) ⊃ ψ1(~x, ~X,G(~x, ~X))

Then VPV ⊢ ϕ ↔ ϕ0, where ϕ0 ≡ ψ1(~x, ~X,G(~x, ~X)). By Lemma 8.3 we may
assume ψ1 is an open LFP-formula, as required. �

8.1.1 Comparing VPV and V1

Here we prove that every L2
A-theorem of VPV is provable in V1. We also prove

a partial converse, that every Σ1
1 theorem of V1 is provable in VPV. Later we

show evidence that not all ΣB
2 theorems of V1 are provable in VPV.

We establish the first assertion by defining an extension V1(VPV) of both
V1 and VPV, and showing that it is conservative over V1. We establish the
partial converse by showing that every Σ1

1 theorem of V1 can be, provably in
VPV, witnessed by functions in LFP.

Definition 8.10. For i ≥ 1, the theory Vi(VPV) has vocabulary LFP, and
axioms the union of the axioms for Vi and for VPV.

Theorem 8.11. a) Every function in LFP is ΣB
1 -definable in V1.

b) Every ΣB
1 (LFP)-formula is provably equivalent in V1(VPV) to a ΣB

1 (L2
A)-

formula.

c) For i ≥ 1 ,Vi(VPV) is conservative over Vi.

Corollary 8.12. V1(VPV) proves the ΣB
1 (LFP)-COMP, ΣB

1 (LFP)-IND,
and ΣB

1 (LFP)-MIN axiom schemes.

D
R

A
FT

8.2. TV0 AND THE TVI HIERARCHY 179

Proof. The corollary follows immediately from part b) of the theorem, since V1

proves these schemes for ΣB
1 (L2

A)-formulas.
The Theorem follows from Corollary 6.27, where we take T0 to be V1(Row),

or Vi(Row) for part c) (we can get rid of the function Row by Lemma 5.51), and
the extensions T1, T2, . . . are introduced by successively adding the functions in
LFP and their defining axioms. The fact that the new function introduced in
Ti+1 is Σ1

1-definable in Ti (and even in T0) is proved in Section 6.2.2. �

Theorem 8.13. Every Σ1
1(LFP) theorem of V1(VPV) is witnessed in VPV

by functions in LFP.

Proof. A slight modification of the proof of the Witnessing Theorem for V1

given in Section 6.4.2 proves this theorem. Note that every witnessing function
introduced is in FP, and, noting that VPV proves ΣB

0 (LFP)-IND (by Lemma
8.7), we see that VPV proves the desired sequents. �

The following corollary is immediate from Theorem 8.13.

Corollary 8.14. VPV and V1(VPV) have the same Σ1
1(LFP) theorems.

In particular, every ΣB
1 theorem of V1 is provable in VPV. From this and

Corollary 8.6 and part a) of Theorem 8.11 we have the following:

Theorem 8.15 (Σ1
1-Definability Theorem for VPV). A function is Σ1

1(L2
A)-

definable in VPV iff it is in FP.

Finally, from Corollary 8.14 and part b) of Theorem 8.11 we have

Theorem 8.16. Every ΣB
1 (LFP)-formula is provably equivalent in VPV to a

ΣB
1 (L2

A)-formula.

8.2 TV0 and the TVi Hierarchy

The theory VPV has an infinite vocabulary LFP, and although it satisfies our
desire for a “minimal” theory for P in terms of proving power, we would like to
find an equivalent theory over the base vocabulary L2

A. We now introduce the
theory TV0, which satisfies this condition. This theory is the first in a hierarchy
of theories TVi, where for i > 0 TVi corresponds — in the sense of Section 8.7
— to Buss’s single-sorted theory Ti

2.
The theory TVi is the same as Vi, except instead of the ΣB

i -COMP axioms
we introduce the ΣB

i “string induction” axiom scheme. Here we view a string X
as the number

∑
iX(i)2i, and define the string zero ∅ (empty string) and string

successor function S(X) as in Example 5.42. Thus S(X) has ΣB
0 -bit definition

S(X)(i)↔ ϕbitS (i,X) (8.3)

where

ϕbitS (i,X) ≡ i ≤ |X | ∧ [(X(i) ∧ ∃j < i¬X(j)) ∨ (¬X(i) ∧ ∀j < iX(j))]

D
R

A
FT

180 CHAPTER 8. THEORIES FOR POLYNOMIAL TIME AND BEYOND

Definition 8.17 (String Induction Axiom). If Φ is a set of formulas, then
the string induction axiom scheme, denoted Φ-SIND, is the set of all formulas

[ϕ(∅) ∧ ∀X(ϕ(X) ⊃ ϕ(S(X))] ⊃ ϕ(Y) (8.4)

where ϕ(X) is in Φ, and may have free variables other than X.

Since we want the theories TVi to have underlying language L2
A, in case Φ

has vocabulary L2
A we will interpret (8.4) as a formula over L2

A, using the stan-
dard method of eliminating ΣB

0 -bit-definable function symbols (Lemma 5.40).

Definition 8.18. For i ≥ 0, TVi is the theory over L2
A with axioms those of

V0 together with the ΣB
i -SIND scheme.

Although the induction scheme (8.4) has an unbounded string quantifier, it
is easy to see that the theory TVi remains the same if that quantifier ∀X is
replaced by the bounded quantifier ∀X ≤ |Y | (see Exercise 3.16). Hence TVi

is a polynomial-bounded theory, axiomatized by ΣB
i+1-formulas.

Lemma 8.19. For i ≥ 0, TVi proves ΣB
i -IND.

Proof. We are to show that TVi proves

[ϕ(0) ∧ ∀x, ϕ(x) ⊃ ϕ(x + 1)] ⊃ ϕ(z)

where ϕ(x) is ΣB
i .

We need the following easily verified fact:

V0 ⊢ (|S(X)| = |X | ∨ |S(X)| = |X |+ 1) (8.5)

Reasoning in TVi, assume

[ϕ(0) ∧ ∀x, ϕ(x) ⊃ ϕ(x + 1)]

From this and (8.5) we conclude

[ψ(∅) ∧ ∀X, ψ(X) ⊃ ψ(S(X))]

where ψ(X) ≡ ϕ(|X |). Hence ψ(Xz) follows by ΣB
i -SIND, where Xz is a string

with length z. Hence ϕ(z). �

Theorem 8.20. For i ≥ 0, Vi ⊆ TVi.

Proof. We generalize Definition 6.33 to define Ṽi to be V0 + ΣB
i -IND. The

proof of Theorem 6.35 easily generalizes to show Vi = Ṽi. Hence the theorem
follows from Lemma 8.19. �

Just as Vi proves the number minimization and maximization axioms for
ΣB
i -formulas (Corollary 5.8), TVi proves the stronger string minimization and

maximization axioms for ΣB
i -formulas. First, we define the ordering relation

for strings.

D
R

A
FT

8.2. TV0 AND THE TVI HIERARCHY 181

Definition 8.21 (String Ordering). The string relation X ≤ Y has defining
axiom

X ≤ Y ↔ [X = Y ∨ (|X | ≤ |Y |∧
∃z ≤ |Y | (Y (z) ∧ ¬X(z) ∧ ∀u ≤ |Y |, z < u ⊃ (X(u) ⊃ Y (u))))] (8.6)

Often, our vocabularies do not contain extra relation symbols outside L2
A.

Thus, the syntactic formula X ≤ Y will be an abbreviation for the RHS of
Equation (8.6).

Exercise 8.22. Show that the following are theorems of V0:

a) X ≤ Y ∨ Y ≤ X (X ≤ Y is a total order).

b) X ≤ Y ∧ Y ≤ X) ⊃ X = Y (X ≤ Y is irreflexive).

c) ∅ ≤ X.

d) X ≤ Y ↔ X + Z ≤ Y + Z.

For a string term T , we define ∃X ≤ T ϕ(X) as an abbreviation for ∃X(X ≤
T ∧ϕ(X)). Similarly, ∀X ≤ T ϕ(X) is an abbreviation for ∀X(X ≤ T ⊃ ϕ(X)).
Note that the bounding term T is for the value of X , while the bounding term
t in ∃X ≤ t . . . or ∀X ≤ t . . . is for the length of X (Definition 4.13).

Definition 8.23 (String Minimization and Maximization Axioms). The
string minimization axiom scheme for Φ, denoted Φ-SMIN, is

ϕ(Y) ⊃ ∃X ≤ Y, ϕ(X) ∧ ¬∃Z < Xϕ(Z)

where ϕ is a formula in Φ. Similarly the string maximization axioms scheme
for Φ, denoted Φ-SMAX, is

ϕ(∅) ⊃ ∃X ≤ Y, ϕ(X) ∧ ¬∃Z ≤ Y (X < Z ∧ ϕ(Z))

where ϕ is a formula in Φ.

Theorem 8.24. For i ≥ 0, TVi proves the ΣB
i -SMIN and ΣB

i -SMAX ax-
ioms.

Proof. To prove ΣB
i -SMAX, let ϕ(X) be a ΣB

i -formula. Let ϕ′(X) be the
ΣB
i -formula obtained by taking a prenex form of

X ≤ Y ⊃ ∃U ≤ Y, X ≤ U ∧ ϕ(U)

Then the SMAX axiom for ϕ(X) follows from the SIND axiom (8.4) applied
to ϕ′(X).

The proof of ΣB
i -SMIN is similar, but uses the binary subtraction function

Z−· Y .

Exercise 8.25. Show that the limited substraction function for string Z −· Y
is ΣB

0 -bit-definable, where the intended meaning of Z−· Y is ∅ if Z ≤ Y , and
(Z−· Y) + Y = Z otherwise. �

D
R

A
FT

182 CHAPTER 8. THEORIES FOR POLYNOMIAL TIME AND BEYOND

We now concentrate on TV0.

Theorem 8.26. VPV is a conservative extension of TV0.

Before proving this theorem, we list some of its corollaries.

Corollary 8.27. For i ≥ 0, TVi(VPV) is a conservative extension of TVi.

Proof. For i = 0 this follows from Theorem 8.26. For i ≥ 1 we know V1 ⊆
TVi, and hence TVi ΣB

1 -defines all functions in LFP, and also TVi proves
ΣB

1 -REPL by Corollary 6.24. Therefore the corollary follows from Corollary
6.27. �

From Theorem 8.26 and Theorem 8.15 we conclude

Theorem 8.28 (Σ1
1-Definability Theorem for TV0). A function is Σ1

1-
definable in TV0 iff it is in FP.

From Theorem 8.26 and part c) of Theorem 8.11 we conclude TV0 ⊆ V1.
From this and Corollary 8.14 we have the following (recall the notion of a Φ-
conservative extension from Definition 7.23):

Corollary 8.29. V1 is ΣB
1 -conservative over TV0.

As remarked above, TV0 is axiomatized by ΣB
1 formulas (unlike V1).

The proof of Theorem 8.26 takes up the next two subsections. In short, to
show that VPV extends TV0, we indeed show that VPV proves the (contra-
positive of) ΣB

0 (LFP)-SIND by using the “binary search” function. To prove
conservativity we introduce the bit recursion axiom scheme, and prove Theorem
8.38 and Lemma 8.39.

8.2.1 TV0 ⊆ VPV

In this subsection we use the string addition function X + Y introduced in
Chapter 5 and use some of its simple properties stated in Exercise 5.43. We
also need the string relation X ≤ Y (Definition 8.21) and the string function
POW2 (x) defined below. The intended meaning of POW2 (x) is such that (see
Notation on page 76) bin(POW2 (x)) = 2x.

Example 8.30. The string function POW2 (x), also denoted by {x}, has bit
defining axiom

POW2 (x)(i)↔ i = x

Exercise 8.31. Show that V
0

proves the following:

X + POW2 (0) = S(X)

X < POW2 (|X |)
POW2 (i) + POW2 (i) = POW2 (i+ 1)

D
R

A
FT

8.2. TV0 AND THE TVI HIERARCHY 183

Now we prove the half of Theorem 8.26 stating that VPV is an extension
of TV0. For this it suffices to show that VPV proves the ΣB

0 -SIND-axioms.
In fact, we prove a slightly stronger result.

Lemma 8.32. VPV proves the ΣB
0 (LFP)-SIND-axioms.

Proof. By Lemma 8.3 we may assume that ϕ(X) in (8.4) is an open LFP-

formula. Let ~y, ~Y be a list of the parameters in ϕ(X). We use binary search to

define in VPV an LFP function G(~y, ~Y ,X) such that VPV proves

(ϕ(∅) ∧ ¬ϕ(X)) ⊃ ((ϕ(G(~y, ~Y ,X)) ∧ ¬ϕ(S(G(~y, ~Y ,X))) (8.7)

from which (8.4) follows immediately.
In more detail, we use the string functions X + Y and POW2 (x) and the

string relation X ≤ Y defined above.
In the following we suppress mention of the parameters ~y, ~Y .
Define the formula

ϕ′(X,Z) ≡ ϕ(Z) ∧ Z ≤ X
Now we use limited recursion (8.1,8.2) to define in VPV the binary search
function H(i,X), whose value is the left end of the interval [A,B] of length
POW2 (|X | −· i) satisfying ϕ′(X,A) ∧ ¬ϕ′(X,B). (Recall −· is limited subtrac-
tion, Section 3.3.3).

Let n = |X |.
H(0, X) = ∅

H(i+ 1, X) =

{
H(i,X) if ¬ϕ′(X,H(i,X) + POW2 (n−· (i+ 1)))

H(i,X) + POW2 (n−· (i+ 1)) otherwise

We can use |X | as a bounding term to limit this recursion. Now define

G(X) = H(|X |, X)

The following two formulas can be proved in VPV by induction on i (Lemma
8.7), using Exercises 5.43 and 8.31. The first formula justifies |X | as a length
bound for the recursion.

X 6= ∅ ⊃ (H(i,X) + POW2 (0)) ≤ X
(ϕ(∅) ∧ ¬ϕ(X) ∧ i ≤ n) ⊃ (ϕ′(X,H(i,X)) ∧ ¬ϕ′(X,H(i,X) + POW2 (n−· i)))
Then (8.7) follows from these two formulas and X+POW2 (0) = S(X) (Exercise
8.31). �

Recall the notion of a ∆B
i formula in a theory (Definition 8.8).

Definition 8.33. Let T be a theory with vocabulary L. Let AX denote any of
the axiom schemes COMP, IND, SIND, etc. We say that T proves ∆B

i -AX
if for any ∆B

i (L) formula ϕ in T , T proves the AX axiom for ϕ.

From Lemma 8.32 and Corollary 8.9 we have

Corollary 8.34. VPV proves ∆B
1 -SIND.

D
R

A
FT

184 CHAPTER 8. THEORIES FOR POLYNOMIAL TIME AND BEYOND

8.2.2 VPV is Conservative over TV0

In order to show that VPV is conservative over TV0, we introduce a bit-
recursion scheme and show that it is provable in TV0.

For each formula ϕ(i,X) (possibly with other free variables) we define a
formula ϕrec(y,X) which says that each bit i of X is defined in terms of the
preceding bits of X using ϕ. That is, using the notation X<i for Cut(i,X) (6.5)

ϕrec(y,X) ≡ ∀i < y(X(i)↔ ϕ(i,X<i))

In case ϕ(i,X) is an L2
A-formula we can interpret ϕrec(y,X) as an L2

A-formula by
eliminating occurrences of Cut(i,X) using the standard method of eliminating
ΣB

0 -bit-definable function symbols (Lemma 5.40).
If ϕ(i,X) is in ΣB

0 it is easy to see that V0 can use induction on y to prove
that the condition ϕrec(y,X) uniquely determines bits X(0), ..., X(y− 1) of X .

Definition 8.35. If Φ is a set of formulas, then the bit recursion axiom scheme,
denoted Φ-BIT-REC, is the set of formulas

∃Xϕrec(y,X) (8.8)

where ϕ(i,X) is in Φ, and may have free variables other than X.

We will show that the axiom scheme ΣB
0 -SIND in the definition of TV0

(Definition 8.18) can be replaced by ΣB
0 -BIT-REC. First, we show that

ΣB
0 -BIT-REC can be used to formalize the computation of polytime Turing

machines:

Theorem 8.36. Every function in FP is ΣB
1 -definable in V0+ΣB

0 -BIT-REC.

Proof. We refer to the proof in Section 6.2.1 that every function in FP is ΣB
1 -

definable in V1. It suffices to show that any polytime string function F (~x, ~X) is
ΣB

1 -definable in V0 + ΣB
0 -BIT-REC, since every number function in FP has

the form |F (~x, ~X)| for some F in FP (Proposition 6.5).

Let M be a polynomial time Turing machine which computes F (~x, ~X). Ac-

cording to Exercise 6.13 there are ΣB
0 -bit-definable functions InitM(~x, ~X), NextM(Z)

and OutM(Z) which describe the computation of M on input ~x, ~X by giving the
initial configuration, next configuration, and output of the computation. Our
goal is to find a ΣB

0 -formula ϕ(i, ~x, ~X,Z) such that ϕrec(i, ~x, ~X,Z) asserts that

the first i bits of Z are the first i bits of the computation of M on input ~x, ~X.
In order to do this, we will let Z code the computation as a concatenation
of the successive configurations of M, rather than our usual method of letting
Z [0], Z [1], · · · be the successive configurations. (The problem with our usual
method is that according to our definition of the pairing function (5.21), the
index for an element in row Z [i+1] can be less than the index of some element
in row Z [i].)

D
R

A
FT

8.2. TV0 AND THE TVI HIERARCHY 185

Definition 8.37 (The Substring Function). The string function Z[u, v] is
intended to code the substring Z(u), Z(u + 1), · · · , Z(v − 1) of Z. It has the
ΣB

0 -bit-defining axiom

Z[u, v](i)↔ i < v−· u ∧ Z(u+ i)

Let t = t(~x, ~X) be an L2
A-term bounding the run-time of M on input ~x, ~X. If

Z codes the computation of M on input ~x, ~X, then the successive configurations
of M form the sequence

Z[0, t], Z[t, 2t], · · · , Z[t2 − t, t2]

The i-th bit of Z is defined from the previous bits using the formula (suppressing

the arguments ~x, ~X)

ϕ(i, Z) ≡ (i < t ∧ InitM(~x, ~X)(i)) ∨
(t ≤ i ∧ NextM(Z[i−· t−· (i mod t), i−· (i mod t)])(i mod t))

Thus the computation of M on input ~x, ~X is the unique string Z of length t2

satisfying ϕrec(t2, Z).
Arguing in the conservative extension of V0 formed by adding the ΣB

0 -
definable functions above, we note that ϕ(i, Z) is provably equivalent to a ΣB

0 -
formula (Lemma 5.40).

The graph Y = F (~x, ~X) of F is given by the ΣB
1 -formula

α(~x, ~X, Y) ≡ ∃Z < t2, ϕrec(t2, Z) ∧ Y = OutM(Z[t2−· t, t2]) (8.9)

Now, V0 + ΣB
0 -BIT-REC proves ∃!Y α(~x, ~X, Y), so F is provably total in

V0 + ΣB
0 -BIT-REC. �

Theorem 8.38. TV0 proves the ΣB
0 -BIT-REC-scheme.

Proof. We use ΣB
0 -SMAX to prove the existence of X in (8.8). Informally,

imagine computing the bits X(0), . . . , X(y − 1) of X in that order. Suppose
that false negative is allowed, but there is no false positive. That is, we consider
strings Y that satisfy

∀i < y, Y (i) ⊃ ϕ(i, Y <i)

The idea is that the maximal string Y guaranteed by SMAX cannot have any
false negative bit, and thus must be the correct string.

To actually use the SMAX principle we need a twist in the above argument.
This is because we compute X in (8.8) from bit 0, while string comparison starts
with high order bits. Thus, let the string reversal function Rev(y,X) have bit-
defining axiom

Rev(y,X)(i)↔ i < y ∧X(y−· i−· 1)

where −· is limited substraction (Section 3.3.3). Then Rev(y,X) is the reverse
of the string X(0) . . .X(y − 1).

D
R

A
FT

186 CHAPTER 8. THEORIES FOR POLYNOMIAL TIME AND BEYOND

Let ϕ′(y, Y) be the formula

∀i < y, Rev(y, Y)(i) ⊃ ϕ(i, (Rev(y, Y))<i) (8.10)

We can tacitly assume that ϕ′(y, Y) is ΣB
0 (by Lemma 5.40). It is easy to see

that ϕ′(y,∅). Thus, by ΣB
0 -SMAX, there is a maximal string X ′ ≤ POW2 (y)

that satisfies (8.10). It is also easy to show (in V0) that X ′ in fact satisfies

∀i < y, Rev(y,X ′)(i)↔ ϕ(i, (Rev(y,X ′))<i)

As a result, the string X = Rev(y,X ′) satisfies (8.8). �

The previous two theorems show that all functions in FP are ΣB
1 -definable

in TV0. But in order to show that VPV is conservative over TV0 we must
show that every function in the vocabulary LFP is ΣB

1 -definable in TV0, and
these functions were introduced via Cobham’s Theorem rather than by Turing
machines. Since V0 + ΣB

0 -BIT-REC ⊆ TV0, the following lemma suffices.

Lemma 8.39. V0+ΣB
0 -BIT-REC+VPV is a conservative extension of V0+

ΣB
0 -BIT-REC. Every function in LFP is ΣB

1 -definable in V0+ΣB
0 -BIT-REC.

Proof. The functions in LFP can be introduced successively, each one either
by a ΣB

0 -bit-definition or by Limited Recursion, in terms of previously defined
functions. Thus V0+ΣB

0 -BIT-REC+VPV is the union of theories Ti satisfying

T0 ⊂ T1 ⊂ T2 ⊂ · · ·

where T0 is V0 + ΣB
0 -BIT-REC and for i > 0 each Ti is obtained from Ti−1

by adding the defining equation for one new function Fi (or fi). We show
by induction on i that each new string function Fi is ΣB

1 -definable in V0 +

ΣB
0 -BIT-REC by a formula αF (~x, ~X, Y) satisfying

Y = Fi(~x, ~X)↔ αFi
(~x, ~X, Y) (8.11)

Further αFi
(~x, ~X, Y) has the form

|Y | ≤ t ∧ (∃Z ≤ t, ϕrec
Fi

(t, ~x, ~X,Z) ∧ Y = OutFi
(~x, ~X,Z)) (8.12)

where t = t(~x, ~X) is a term and ϕFi
is a ΣB

0 -formula and OutFi
is a ΣB

0 -bit-
definable function. Also, Ti−1 together with (8.11) proves the original defining
axiom for Fi in Ti. (Similarly for number functions fi.)

This shows that each Ti is conservative over Ti−1, and hence
⋃ Ti is conser-

vative over V0 + ΣB
0 -BIT-REC.

The intuitive reason that the defining formula for Fi can have the form (8.12)
is that Fi is in FP and the proof of Theorem 8.36 shows that every such F is
ΣB

1 -definable by a formula of the form (8.9).
We will prove the induction step for the case that F = Fi is defined by

Limited Recursion, and leave the cases Fϕ,t and fϕ,t to the reader.

D
R

A
FT

8.2. TV0 AND THE TVI HIERARCHY 187

Thus suppose that the defining equations for F are (8.1) and (8.2), and as-

sume by the induction hypothesis that G(~x, ~X) and H(y, ~x, ~X,W) are definable

by formulas of the form (8.12). Then (suppressing ~x, ~X),

Y = G↔ (|Y | ≤ tG ∧ ∃Z ≤ tG, ϕrec
G (tG, Z) ∧ Y = OutG(Z)) (8.13)

and

Y = H(z, V) ↔ (|Y | ≤ tH(z, V) ∧
∃U ≤ tH(z, V), ϕrec

H (tH , z, V, U) ∧ Y = OutH(z, V, U)) (8.14)

We compute F (y) by computing the sequence

F (0), F (1), · · · , F (y)

To do this according to our formulas for computing G and H we can compute
the string W which is a concatenation of computations

W = (Z,F (0), U0, F (1), U1, F (2), · · · , Uy−1, F (y))

where F (0) = G and Z is a witness for (8.13):

|Z| ≤ tG ∧ Z(z)↔ ϕG(z, Z<z) and |F (0)| ≤ tG ∧ F (0) = OutG(Z)

and for j ≥ 0, F (j + 1) = H(j, F (j)) and Uj witnesses (8.14):

|Uj| ≤ tH(j, F (j)) ∧ Uj(z)↔ ϕH(z, j, F (j), U<zj) and

|F (j + 1)| ≤ tH(j, F (j)) ∧ F (j + 1) = OutH(j, F (j), Uj)

Observe that the above conditions for W essentially state that a bit x of W
can be computed from bits W (0), . . . ,W (x− 1). In more detail, the substrings
of W that encode Z and F (0) can be defined using (8.13), and those that encode
Uj and F (j + 1) can be defined using (8.14) from the preceeding substring that
encodes F (j).

For a formal argument, it is convenient to assume that each of the substrings
Z,F (0), U0, F (1), · · · of W has the same length t, by padding with 0’s if nec-
essary, for some L2

A term t big enough. Also, the following abbreviations are
useful in indexing a particular substring of the form F (j) or Uj of W in terms
of the index x for the x-th bit of W :

j(x) = ⌊x/(2t)⌋, x′ = x mod (2t), x′′ = x′−· t

Each bit W (x) of W can now be defined (from W<x) by first finding the sub-
string it belongs to (by looking at j(x) and x′), and then using the one of the
formulas (8.13) or (8.14) for the appropirate substrings. Details are left as an
exercise. �

D
R

A
FT

188 CHAPTER 8. THEORIES FOR POLYNOMIAL TIME AND BEYOND

Exercise 8.40. Give explicit ΣB
0 formula ϕF (x, y,W) for F . (Note that by

Lemma 5.40, it suffices to give a ΣB
0 (LFAC0) formula.) Verify that V0 proves

the recursion equations (8.1) and (8.2) for F .

Lemma 8.39 and Theorem 8.38 complete the proof of Theorem 8.26. These
two results together with Lemma 8.32 prove the following result.

Corollary 8.41. TV0 = V0 + ΣB
0 -BIT-REC.

The next result follows from Theorem 8.26 and Corollary 8.34.

Corollary 8.42. TV0 proves its ∆B
1 -SIND axioms. V1 proves its ∆B

1 -SIND
axioms.

Proof. The first sentence follows from Theorem 8.26 and Corollary 8.34. The
second sentence follows from the first, since by Corollary 8.29 any ΣB

1 -formula
that is ∆B

1 in V1 is also ∆B
1 in TV0. �

8.2.3 A Finite Axiomatization of TV0

In Chapter 9 we will describe a general method of defining a finitely axiomatized
L2
A-theory for a complexity class by extending V0 by a single axiom asserting

the existence of a computation for a problem complete for the class. Here we
show how to do this for the class P. The relevant problem is the Monotone
Circuit Value Problem MCVP. The resulting theory turns out to be TV0.

MCVP is the problem of deciding, given a monotone Boolean circuit and
its input, whether the output of the circuit is 1. The version we describe here
allows ∧ and ∨ gates to have arbitrary fan-in. Consider a layered, monotone
Boolean circuit C with (d + 1) layers and g gates on each layer. We need to
specify the type (either ∧ or ∨) of each gate, and the wires between the gates.
Suppose that layer 0 contains the inputs. To encode the gates on other layers,
there is a string variable G such that for 1 ≤ z ≤ d, G(z, x) holds if and only if
gate x on layer z is an ∧-gate (otherwise it is an ∨-gate). Also, the wires of C
are encoded by a 3-dimensional array E: 〈z, x, y〉 ∈ E iff the output of gate x
on layer z is connected to the input of gate y on layer z + 1. The inputs to C
are specified by a string variable I of length |I| ≤ g.

We will formalize the following polytime algorithm which computes the out-
put of C, given inputs I. It evaluates all gates of C using (d+1) loops: in loop z
it identifies all gates on layer z which output 1. In particular, loop 0 is to single
out the input gates with the value 1. Then in each subsequent loop (z + 1) the
algorithm identifies the following gates on layer (z + 1):

• ∨–gates that have at least one input which is identified in loop z;

• ∧–gates all of whose inputs are identified in loop z.

The formula δMCVP(g, d, E,G, I, Y) below formalizes this algorithm. The 2–
dimensional array Y is used to store the result of computation: For 1 ≤ z ≤ d,
row Y [z] contains the gates on layer z that output 1.

D
R

A
FT

8.2. TV0 AND THE TVI HIERARCHY 189

Definition 8.43. Define MCVP ≡ ∃Y δMCVP (g, d, E,G, I, Y), where δMCVP

is the formula

∀x < g∀z < d, (Y (0, x)↔ I(x))∧
[Y (z + 1, x)↔ (G(z + 1, x) ∧ ∀u < g, E(z, u, x) ⊃ Y (z, u))∨

(¬G(z + 1, x) ∧ ∃u < g, E(z, u, x) ∧ Y (z, u))] (8.15)

It is easy to see that MCVP is equivalent in V0 to the same axiom with |Y |
bounded by 〈d, g〉.
Theorem 8.44. TV0 = V0 + MCVP.

From this and Theorem 5.75 and Corollary 8.29, since MCVP is equivalent
in V0 to a ΣB

1 -formula, we have:

Corollary 8.45. TV0 is finitely axiomatizable. The ΣB
1 -consequences of TV0

and of V1are each finitely axiomatizable.

Proof of Theorem 8.44. To show V0 + MCVP ⊆ TV0, it suffices by Corollary
8.41 to show that V0 + ΣB

0 -BIT-REC proves MCVP . The axiom MCVP
is almost an instance of ΣB

0 -BIT-REC, but unfortunately using our pairing
function the indices of the elements in row z + 1 of the array Y are not all
bigger than the indices of row z. To fix this, one way is to concatenate the rows
of Y successively to form a string Z. Thus, since each row of Y has length ≤ g,
we can define Z so that

Y [z] = Z[zg, (z + 1)g]

Then (8.15) can be modified to give a definition for Z, and the existence of
Z follows from ΣB

0 -BIT-REC. Finally, Y is easily defined from Z in V0 by
ΣB

0 -COMP.
To prove the other direction, it suffices (also by Corollary 8.41) to show

that the ΣB
0 -BIT-REC axioms are provable in V0 + MCVP . Thus for each

ΣB
0 -formula ϕ(~w, y,X, ~W) we must show

V0 + MCVP ⊢ ∃X∀z < y, X(z)↔ ϕ(~w, z,X<z, ~W) (8.16)

We will show that V0 proves the existence of a monotone circuit C that com-
putes X by successively computing the bits X(0), . . . , X(y − 1) of X , and also
¬X(0), . . . ,¬X(y − 1). In order to compute X(z) and ¬X(z) we will use a
monotone subcircuit Cz whose input array I is

X(0),¬X(0), . . . , X(z − 1),¬X(z − 1) (8.17)

(When z = 0 this input array is replaced by the pair of constants 0, 1.) The

subcircuits Cz are specified by parameters g, d, E,G which depend on ~w, z, ~W ,
but not on X . The final row Y [d] in the computed values of Cz is almost the
same as its input I, except the values of X(z) and ¬X(z) have been computed
as ϕ(z,X<z) and ¬ϕ(z,X<z), and have been added. That is, Y [d] is

X(0),¬X(0), . . . , X(z − 1),¬X(z − 1), ϕ(z,X<z),¬ϕ(z,X<z)

D
R

A
FT

190 CHAPTER 8. THEORIES FOR POLYNOMIAL TIME AND BEYOND

Thus the final row of Cz serves as the input row of Cz+1. We show that V0

proves the existence of g, d, E,G, I satisfying these conditions. From this we can
show in V0 that the subcircuits Cz can be stacked one above the other to form
the sequence C0, C1, . . . , Cy−1 comprising the desired circuit C for computing
X .

Actually the final layer of C mixes in negated values of X(i):

X(0),¬X(0), . . . , X(y − 1),¬X(y − 1)

so we need a function to extract the positive elements. Thus we define the AC0

string function Ext by

Ext(y, Z)(i)↔ i < y ∧ Z(2i)

Using this we will establish (8.16) by showing

V0 ⊢ ∃g, d, E,G, I ∀Y ≤ 〈d, g〉, δMCVP (g, d, E,G, I, Y) ⊃
∀z < y(Ext(y, Y [d])(z)↔ ϕ(~w, z,Ext(y, Y [d])<z , ~W)) (8.18)

In constructing the subcircuits Cz we may assume that string equality Y = Z
has been removed from ϕ by using the V0 axiom SE and the equality axioms.
Further we can use De Morgan’s laws to push negations in so that in both ϕ and
¬ϕ negations appear only in front of atomic formulas. We proceed to construct
the subcircuits Cz by structural induction on the resulting formulas.

For the base case we consider the possible literals

s = t, s 6= t, s ≤ t, t < s, Z(t), ¬Z(t) (8.19)

The values of all variables except |X | making up each term t are precomputed

from the data ~w, z, ~W , so t = t(|X |) is known as a polynomial in |X | before
constructing Cz . In general, the value n of a term t is represented in a row of
Cz as an array Tt, which satisfies

Tt(i)↔ i = n, 0 ≤ i ≤ b

for some precomputed upper bound b on t. In case t is |X |, this array is com-
puted in Cz from the input (8.17) using the circuits

T|X|(i) ≡ X(i− 1) ∧
z−1∧

j=i

¬X(j)

where the first term X(i − 1) is omitted if i = 0. In general the sum s + t or
product st of two terms is easily computed from s and t using two rows of Cz.
For example

Tst(i) ≡
∨

i=jk

(Ts(j) ∧ Tt(k))

D
R

A
FT

8.3. THE THEORY V1-HORN 191

Using these ideas subcircuits Cz for the first four literals in (8.19) are easily
constructed. The cases Z(t) and ¬Z(t) are no problem when Z isX , since values
forX(i) and ¬X(i) are given as inputs (8.17) to Cz . We can simplify the cases in
which Z is a parameter variable W by preprocessing ϕ so that any occurrence of
the form W (t), where t contains |X |, is replaced by ∃x ≤ s(x = t∧W (x)), where
s is a term not involving |X | which is an upper bound for t (and similarly for
¬W (t)). Thus for literals W (t) and ¬W (t) we may assume that t is a constant
known “at compile time” and hence the truth value of W (t) is known. (The
truth values 0 and 1 can be computed by (X(0)∧¬X(0)) and (X(0)∨¬X(0)),
respectively.)

For the induction step, the cases ϕ is ϕ1 ∧ ϕ2 and ϕ is ϕ1 ∨ ϕ2 are easy. So
it remains to consider the bounded quantifier cases, say

ϕ(z,X) ≡ ∃x ≤ tψ(x, z,X) (8.20)

and replace ¬ϕ by ∀x ≤ t¬ψ(x, z,X). We may assume the bounding term t
in (8.20) does not contain |X | by replacing t by an upper bound s for t, and
adding the conjunct x ≤ t. Hence the value of t is known at compile time. By
the induction hypothesis, V0 proves the existence of subcircuits for ψ(x, z,X).
A circuit for ∃x ≤ tψ(x, z,X) can be constructed by placing circuits for each
of ψ(0, z,X), ψ(1, z,X), . . . , ψ(t, z,X) side by side so that these formulas are
evaluated in parallel. (The second layer for Cz can set up the expected inputs
for these circuits.) Then ϕ can be computed by a single ∨ gate from the outputs
of these circuits. Similarly for the case ∀x ≤ t.

This completes the description of the subcircuits Cz . Now V0 proves the sec-
ond line of (8.18) by induction on z, under the assumption δMCVP (g, d, E,G, I, Y),
where g, d, E,G, I are defined by our construction for the circuit C. �

8.3 The Theory V1-HORN

Here we treat the theory V1-HORN [?], which is the same as TV0 but pre-
sented with different axioms. The of ideal of V1-HORN comes from a theorem
of Grädel in descriptive complexity theory, characterizing the class P as the sets
of finite models of certain second-order formulas. We will formulate Grädel’s
theorem as a representation theorem over L2

A. We start with some definitions
and examples.

Definition 8.46. A Horn formula is a propositional formula in conjunctive
normal form such that each clause (i.e. conjunct) is a Horn clause, i.e. it
contains at most one positive occurrence of a variable.

Horn formulas are important because the satisfiability problem HornSat
(given a Horn formula, determine whether it is satisfiable) is complete for P. A
polytime algorithm for HornSat can be described as follows.

HornSat Algorithm: To test whether a given Horn formula A is satisfiable,
initialize a truth assignment τ by assigning ⊥ to each atom of A. Now repeat

D
R

A
FT

192 CHAPTER 8. THEORIES FOR POLYNOMIAL TIME AND BEYOND

the following until satisfiability is determined: If τ satisfies all clauses of A then
decide that A is satisfiable. Otherwise select a clause C of A not satisfied by τ .
If C has no positive occurrence of any atom then decide that A is unsatisfiable.
Otherwise C has a unique positive occurrence of some atom p, in which case
flip the value of τ on p from ⊥ to ⊤.

Exercise 8.47. Show that the above algorithm runs in polynomial time and
correctly determines whether a given Horn formula A is satisfiable.

The HornSat algorithm suggests that a Horn clause (p∨¬q1 ∨· · · ∨¬qk) can
be written as an assignment statement

p← (q1 ∧ · · · ∧ qk)

(In fact some logic-based programming languages such as Prolog use this idea.)
We now indicate why HornSat is complete for P. It suffices to show that

a known complete problem CVP (Circuit Value Problem) can be reduced to
HornSat. Given a Boolean circuit C with binary gates ∧,∨ and unary gates ¬,
and given a value v(x) ∈ {0, 1} for each input x to C, we want to find a Horn
formula A which is satisfiable iff C has output 1 for the given inputs v(x). The
formula A uses “double rail logic” to evaluate C: for each gate and each input
x of C the formula has two atoms x+ and x− asserting that the gate or input
is 1 or 0, respectively. For each such x, A has a Horn clause (¬x+ ∨ ¬x−) to
insure that not both atoms are true. For each input x, A has a unit clause x+

if v(x) = 1 and unit clause x− if v(x) = 0. For each gate in C, A has up to
three Horn clauses which assert that the output of the gate has the appropriate
value with respect to its inputs. For example, if x is the ∨ of inputs y, z, then
the clauses are

(x+ ← y+) ∧ (x+ ← z+) ∧ (x− ← (y− ∧ z−)) (8.21)

Finally A has the unit clause x+
out, where xout is the output gate.

It turns out that the collection of propositional Horn formulas that corre-
spond to a given polytime problem can be represented by single ΣB

1 formula as
follows.

Definition 8.48. A ΣB
1 -Horn formula is an L2

A-formula of the form

ϕ ≡ ∃Z1 · · · ∃Zk∀y1 ≤ t1 · · · ∀ym ≤ tmψ (8.22)

where k,m ≥ 0 and ψ is quantifier-free in conjunctive normal form and each
clause contains at most one positive occurrence of a literal of the form Zi(t).
No term of the form |Zi| may occur in ϕ, although ϕ may contain free string
variables X (and free number variables) with no restriction on occurrences of
|X |, and any clause of ψ may contain any number of positive (or negative)
literals of the form X(t).

We will show that ΣB
1 -Horn formulas represent polynomial time relations in

their free variables.

D
R

A
FT

8.3. THE THEORY V1-HORN 193

Example 8.49 (Parity(X)). This is a ΣB
1 -Horn-formula which holds iff the

string X contains an odd number of 1’s. Parity(X) encodes a dynamic-programming
algorithm for computing the parity of X: Zodd(i) is true (and Zeven(i) is false)
iff the prefix of X of length i contains an odd number of 1’s.

∃Zeven∃Zodd∀i < |X |
Zeven(0) ∧ ¬Zodd(0) ∧ Zodd(|X |)
∧ (¬Zeven(i+ 1) ∨ ¬Zodd(i+ 1))

∧ (¬Zeven(i) ∨ ¬X(i) ∨ Zodd(i+ 1)) ∧ (¬Zodd(i) ∨ ¬X(i) ∨ Zeven(i+ 1))

∧ (¬Zeven(i) ∨X(i) ∨ Zeven(i+ 1)) ∧ (¬Zodd(i) ∨X(i) ∨ Zodd(i+ 1))

Exercise 8.50. Prove that Parity(X) has the stated property.

In Section 4.3.2 we showed how the complexity classes AC0 and the members
ΣP
i of the polynomial hierarchy can be characterized by representation theorems

involving the formula classes ΣB
i . Now we state a similar theorem characterizing

P.

Theorem 8.51 (Grädel). A relation R(~x, ~X) is polynomial time iff it is rep-
resented by some ΣB

1 -Horn-formula.

Proof sketch. ⇐=: Suppose that the formula ϕ(~x, ~X) has the form (8.22). We

outline an algorithm that runs in time polynomial in (~x, | ~X|) which, given values

for ~x, ~X, determines whether ϕ(~x, ~X) holds (in the standard model). First

note that once values for ~x, ~X are given, the bounding terms ti = ti(~x, ~X)

can be evaluated to numbers bounded by polynomials in (~x, | ~X|). We expand
the quantifier prefix ∀y1 ≤ t1 · · · ∀ym ≤ tm by giving all possible m-tuples of
values (y1, · · · , ym) satisfying the bounding terms, and form the conjunction
Ψ(Z1, · · · , Zk) of all instances ψ(~y), as ~y ranges over all these tuples. (Note

that the number of such tuples is bounded by a polynomial in (~x, | ~X|).)
Then Ψ(Z1, · · · , Zk) can be made into a propositional conjunctive normal

form formula Ψ′ involving only literals of the form Zi(j) and ¬Zi(j) for specific
numbers j, since all terms and all other variables in ψ have been evaluated.
(Here it is important that we have disallowed occurrences of |Zi| in ϕ.) The
arguments j in Zi(j) and ¬Zi(j) are values of terms t, for each Zi(t) or ¬Zi(t)
that is a literal in the original formula ψ. Let B be an upper bound on the
possible values of j (so B is a polynomial in (~x, ~X)). Then Ψ′ is a Horn formula
whose propositional variables are all in the set {Zi(j) | i ≤ k, j ≤ B}. Thus
the problem of checking for the existence of Z1, · · · , Zk reduces to the polytime
HornSat problem of deciding whether Ψ′ is satisfiable.

=⇒: Let R(~x, ~X) be a polytime relation and let M be a deterministic polytime

Turing machine that recognizes R in time t(~x, ~X). By choosing t large enough,

the entire computation of M on input ~x, ~X can be represented (using the pairing
function) by an array Z(i, j) with t rows and columns, where the i-th row

D
R

A
FT

194 CHAPTER 8. THEORIES FOR POLYNOMIAL TIME AND BEYOND

specifies the tape configuration at time i. Thus R(~x, ~X) is represented by the
ΣB

1 -Horn-formula

∃Z∃Z̃∀i ≤ t∀j ≤ tψ(i, j, ~x, ~X,Z, Z̃)

Here the variable Z̃ is forced to be ¬Z in the same way that Zeven and Zodd are
forced to be complementary in the parity example above. The formula ψ satisfies
the conditions in Definition 8.48 and each clause specifies a local condition on
the computation. �

Definition 8.52. The theory V1-HORN has vocabulary L2
A and axioms those

of V0 together with ΣB
1 -Horn-COMP.

The original definition of V1-HORN in [?] was a little different. Recall that
V0 has axioms 2-BASIC together with ΣB

0 -COMP (Definition 5.3). The orig-
inal definition was essentially V1-HORN = 2-BASIC + ΣB

1 -Horn-COMP.
It was shown with some effort that V1-HORN proves ΣB

0 -COMP, so the two
definitions are equivalent.

The next theorem follows from results in [?].

Theorem 8.53. V1-HORN = TV0.

Proof sketch. V1-HORN ⊆ TV0: It suffices to show TV0 ⊢ ΣB
1 -Horn-COMP.

Since VPV is a conservative extension of TV0 (Theorem 8.26), it suffices to
show VPV ⊢ ΣB

1 -Horn-COMP. Since VPV ⊢ ΣB
0 (LFP)-COMP (Lemma 8.7),

it suffices to show that for every ΣB
1 -Horn-formula ϕ there is a ΣB

0 (LFP) for-
mula ϕ′ such that VPV ⊢ ϕ↔ ϕ′.

So let ϕ be a ΣB
1 -Horn-formula as in (8.22), where we write ψ(Z1, · · · , Zk)

simply as ψ, and let ~x, ~X be the free variables in ϕ. The idea is to find a
“witnessing function” Fi(~x, ~X) in LFP for each Zi such that VPV proves ϕ↔
ϕ′, where

ϕ′ ≡ ∀y1 ≤ t1 · · · ∀ym ≤ tmψ(F1(~x, ~X), · · ·Fk(~x, ~X))

To define Fi we refer to the direction ⇐= in the proof of Theorem 8.51. There
the algorithm to evaluate ϕ(~x, ~X) computes a propositional Horn formula Ψ′

whose propositional variables have the form Zi(j), and then applies the HornSat
algorithm to determine whether Ψ′ is satisfiable. This algorithm computes a
truth assignment τ to the atoms Zi(j) of Ψ′ such that Ψ′ is satisfiable iff τ

satisfies Ψ′. Thus it suffices to define the string Fi(~x, ~X) to be the array of
truth values that τ gives to Zi. That is, the the bit definition of each Fi is

Fi(~x, ~X)(j)↔ j ≤ B ∧ τ(Zi(j))

The algorithm outlined to compute Fi is clearly polytime and hence corresponds
to some function in FP. The missing details in the proof are to show that VPV
proves the correctness of the algorithm; i.e. VPV ⊢ ϕ ⊃ ϕ′.

D
R

A
FT

8.3. THE THEORY V1-HORN 195

TV0 ⊆ V1-HORN: By Theorem 8.44 it suffices to show that V1-HORN ⊢
MCVP . We indicated earlier (8.21) how propositional Horn clauses can be
used to evaluate circuit gates. Now we show how to use a ΣB

1 -Horn formula
to evaluate the circuit C described by parameters g, d, E,G with input I in
Definition 8.43. In essence, the new atoms x+, x−, etc. in (8.21) are encoded by
the (existentially quantified) string variables Z in the ΣB

1 -Horn formula. Note
that the algorithm outlined on page 192 is for circuits with binary gates, while
here the circuit may have unbounded fan-ins.

Thus, we want to define an array Z(z, x) (and its negation Z̃(z, x)) to eval-
uate gate x at layer z in C (denoted here simply by gate (z, x)). First, for the
input gates we have

Z(0, x)↔ I(x) and Z̃(0, x)↔ ¬I(x) (for x < g) (8.23)

Next, consider gate (z+1, x). Suppose that this is an ∨-gate, i.e., ¬G(z+1, x)
holds. Translating the first two conjuncts in (8.21) we get:

(¬G(z + 1, x) ∧E(z, y, x) ∧ Z(z, y)) ⊃ Z(z + 1, x)

Translating the last clause of (8.21) is more involved, since now the gate
(z + 1, x) may have unbounded fan-in. In fact, we formalize a simple algorithm
that runs through the inputs of gate (z + 1, x) to check if all of them are 0. We
use a string variable P — the meaning of P (z + 1, x, y) is that all gates (z, u)
which are input to (z + 1, x), where u < y, output 0. The formalization is as
follows:

¬G(z + 1, x) ⊃ P (z + 1, x, 0)

P (z + 1, x, y) ∧ ¬E(z, y, x) ⊃ P (z + 1, x, y + 1)

P (z + 1, x, y) ∧ Z̃(z, y) ⊃ P (z + 1, x, y + 1)

¬G(z + 1, x) ∧ P (z + 1, x, g) ⊃ Z̃(z + 1, x)

Let ψ∨ denote the set of the five clauses described above for the case where
the gate (z+ 1, x) is an ∨-gate. Also, let ψI be the set of clauses in (8.23). The
set ψ∧ of clauses for handling the case where (z + 1, x) is an ∧-gate is similar
to ψ∨, using an extra variable Q instead of P .

Exercise 8.54. Give the five clauses of ψ∧.

Now we can show in V0 that a string Y that is computed by

Y (z0, x0)↔ ∃Z∃Z̃∃P∃Q∀z < d∀x < g∀y < g,

(¬Z(z, x) ∨ ¬Z̃(z, x)) ∧ ψI ∧ ψ∧ ∧ ψ∨ ∧ Z(z0, x0) (8.24)

(for z0 ≤ d, x0 < g) satisfies δMCVP (g, d, E,G, I, Y). The following exercise is
helpful.

D
R

A
FT

196 CHAPTER 8. THEORIES FOR POLYNOMIAL TIME AND BEYOND

Exercise 8.55. Let the string variables Z, Z̃, P,Q satisfy the RHS of (8.24),
and Y ′ satisfy δMCVP (g, d, E,G, I, Y ′). Show — by (double) induction on z0
and x0 — that for z0 ≤ d, x0 < g,

¬Z(z0, x0) ⊃ ¬Y ′(z0, x0) and ¬Z̃(z0, x0) ⊃ Y ′(z0, x0)

Exercise 8.56. Prove by number induction that the string Y described above
satisfies the recursion in δMCVP (g, d, E,G, I, Y).

Finally, the existence of Y in MCVP follows from the existence of Y that sat-
isfies (8.24); the latter is by ΣB

1 -Horn-COMP. Notice that although the RHS
of (8.24) is a ΣB

1 -Horn formula, to get a proper instance of ΣB
1 -Horn-COMP

we need a slight modification, i.e.,

∃Y ≤ 〈g, d〉∀i < 〈g, d〉, Y (i)↔ ϕ(i)

where

ϕ(i) ≡ ∃Z∃Z̃∃P∃Q∀z < d∀x < g∀y < g∀z0 ≤ d∀x0 < g,

(¬Z(z, x) ∨ ¬Z̃(z, x)) ∧ ψI ∧ ψ∧ ∧ ψ∨ ∧ (i = 〈z0, x0〉 ⊃ Z(z0, x0))

This completes the proof that TV0 ⊆ V1-HORN. �

8.4 TV1 and Polynomial Local Search

It follows from Theorem 8.20 that V1 ⊆ TV1, and hence TV1 can ΣB
1 -define all

polynomial time functions. But there is no known nice characterization of the set
of all functions ΣB

1 -definable in TV1. There is however a nice characterization
of the set of all search problems ΣB

1 -definable in TV1.
A search problem is essentially a multivalued function, and the associated

computational problem is to find one of the possible values. Here we are con-
cerned with total search problems, which means that the set of possible values is
always nonempty. We present a search problem by its graph. The search prob-
lem is definable in a theory if the theory proves its totality. In the two-sorted
setting the set of possible values is a set of strings.

Definition 8.57. A search problem QR is a multivalued function with graph
R(~x, ~X,Z), so

QR(~x, ~X) = {Z | R(~x, ~X,Z)}
Here the arity of either or both of ~x, ~X may be zero. The search problem is total
if the set QR(~x, ~X) is non-empty for all ~x, ~X. The search problem is a function

problem if |QR(~x, ~X)| = 1 for all ~x, ~X. A function F (~x, ~X) solves QR if

F (~x, ~X) ∈ QR(~x, ~X)

for all ~x, ~X.

D
R

A
FT

8.4. TV1 AND POLYNOMIAL LOCAL SEARCH 197

Here we will be concerned only with total search problems. The following
notion of reduction preserves totality.

Definition 8.58. A search problem QR1 is many-one reducible to a search

problem QR2 , written QR1 ≤p QR2 , provided there are FAC0-functions ~f, ~F ,G

such that G(~x, ~X,Z) ∈ QR1(~x, ~X) for all Z ∈ QR2(
~f(~x, ~X), ~F (~x, ~X)).

We note that the usual definition states the weaker requirement that ~f, ~F ,G
are polytime functions. However experience shows that when reductions are
needed they can be made to meet our stronger requirement.

Exercise 8.59. Show that ≤p is a transitive relation. Also show that if QR1 ≤p
QR2 and QR2 is solvable by a polytime function, then QR1 is solvable by a
polytime function.

Local search is a method of finding a local maximum of a function by starting
at a point in the domain of the function, finding a neighbor of the point that
increases the value of the function, and continuing this process until no such
neighbor exists. Polynomial Local Search (PLS) formalizes this as a search
problem in case the function is polytime and suitable neighboring points can be
found in polynomial time.

Definition 8.60. A PLS problem Q is specified by the following:

1) A polytime relation ϕQ(~x, ~X,Z) and an L2
A-term t(~x, ~X) satisfying the

two conditions

ϕQ(~x, ~X,∅)

ϕQ(~x, ~X,Z) ⊃ |Z| ≤ t(~x, ~X)

({Z | ϕQ(~x, ~X,Z)} is the set of candidate solutions for problem instance

(~x, ~X).)

2) Polytime string functions PQ(~x, ~X,Z) and NQ(~x, ~X,Z) satisfying the two
conditions

ϕQ(~x, ~X,Z) ⊃ ϕQ(~x, ~X,NQ(~x, ~X,Z))

NQ(~x, ~X,Z) 6= Z ⊃ PQ(~x, ~X,Z) < PQ(~x, ~X,NQ(~x, ~X,Z))

(NQ is a heuristic for finding a neighbor of Z which increases the profit

PQ. NQ(~x, ~X,Z) = Z is taken to mean that Z is locally optimal.)

Then

Q(~x, ~X) = {Z | ϕQ(~x, ~X,Z) ∧NQ(~x, ~X,Z) = Z} (8.25)

The problem Q is an AC0-PLS problem if ϕQ, NQ, PQ are AC0-relations and
functions.

D
R

A
FT

198 CHAPTER 8. THEORIES FOR POLYNOMIAL TIME AND BEYOND

It is easy to see that a PLS problem is a total search problem. For fixed ~x, ~X,
the set of candidate solutions Z (those satisfying ϕQ(~x, ~X,Z)) is nonempty and

bounded. Thus given ~x, ~X, any candidate solution Z that maximizes the profit
PQ(~x, ~X,Z) is a member of Q(~x, ~X).

We will concentrate on a subclass of PLS called ITERATION, which is
complete for PLS.

Definition 8.61. An ITERATION problem Q = QF is specified by a poly-
time function F (~x, ~X,Z) and a bounding term t(~x, ~X). The graph relation R is

specified by a formula ψF (~x, ~X,Z) which is (suppressing the parameters ~x, ~X):

ψF (Z) ≡ Z = ∅ ∧ F (∅) = ∅ ∨
|Z| ≤ t ∧ Z < F (Z) ∧ [t < |F (Z)| ∨ F (F (Z)) ≤ F (Z)] (8.26)

Then
QF (~x, ~X) = {Z | ψF (~x, ~X,Z)} (8.27)

The problem QF is an AC0-ITERATION problem if F is an AC0-function.

To see that QF is a total search problem, note that the largest Z ≤ t such
that (Z = ∅ ∨ Z < F (Z)) is always a solution.

Lemma 8.62. Every ITERATION problem is a PLS problem.

Proof. Let QF be an ITERATION problem as above. Then QF can be spec-
ified as a PLS problem using the following definitions:

ϕQ(Z) ≡ |Z| ≤ t ∧ (Z = ∅ ∨ Z < F (Z))

PQ(Z) = Z

NQ(Z) =

{
F (Z) if |F (Z)| ≤ t and Z < F (Z) < F (F (Z))

Z otherwise

Then (8.27) follows from (8.25). Notice that if QF is an AC0-ITERATION
problem then the corresponding problem is an AC0-PLS problem. �

Theorem 8.63. Every PLS problem is many-one reducible to some ITERATION
problem. Every AC0-PLS problems is many-one reducible to some AC0-ITERATION
problem.

Proof. Let Q be a PLS problem and let t, ϕQ, PQ, NQ be as in Definition 8.60.
We give the following ΣB

0 -definition of the concatenation function X ∗z Y ,
which is the first z bits of X followed by Y :

(X ∗z Y)(i) ↔ i < z + |Y | ∧ [i < z ∧X(i) ∨ z ≤ i ∧ Y (i−· z)]

We wish to define an ITERATION problem QF with bounding term t′ whose
solutions yield solutions of Q. The idea is to let the domain of F consist of

D
R

A
FT

8.4. TV1 AND POLYNOMIAL LOCAL SEARCH 199

concatenations U ∗t V where U is a candidate solution for Q and V is its profit.
Note that if V1 < V2 then U1 ∗t V1 < U2 ∗t V2 for all U1, U2.

In the following we suppress the parameters ~x, ~X.
Let u = u(~x, ~X) be an L2

A-term large enough so that |PQ(NQ(Z))| ≤ u for
|Z| ≤ t. Then define

t′ = t+ u

and

F (U ∗t V) =

{
NQ(U) ∗t PQ(NQ(U)) if V = PQ(U) and ϕQ(U)

U ∗t V otherwise

The term t′ is chosen so that if U satisfies ϕQ(U) then |F (U ∗t PQ(U))| ≤ t′.
Here we redefine PQ so that PQ(∅) = ∅. Note that the result is a PLS

problem with the same solutions as the original problem.
Now suppose Z is a solution to the ITERATION problem QF . We show

how to obtain a solution G(Z) (= G(~x, ~X,Z)) to the original PLS problem Q.
We write Z = U ∗t V where U, V are uniquely determined by Z. Then from
(8.25), (8.27) and our definitions we see that G(U ∗t V) = NQ(U) is a solution
to Q.

Hence by Definition 8.58 we conclude Q ≤p QF , where ~f, ~F take ~x, ~X to

itself and G(~x, ~X,Z) = NQ(~x, ~X,Z<t(~x,
~X)). �

Definition 8.64. If S is a set of search problems, then C(S) is the set of search
problems many-one reducible to S.

Theorem 8.65.

C(ITERATION) = C(PLS) = C(AC0-ITERATION) = C(AC0-PLS)

Proof. The first and last equalities follow from the preceding definition and
theorem. The middle equality follows from these and Theorem 8.67 below. �

Definition 8.66. Let Q(~x, ~X) be a search problem with graph R(~x, ~X,Z). We

say that Q is Φ-definable in a theory T if there is a formula ψR(~x, ~X,Z) in Φ
such that

ψR(~x, ~X,Z) ⊃ R(~x, ~X,Z)

and
T ⊢ ∃ZψR(~x, ~X,Z)

Theorem 8.67. The following are equivalent for a search problem Q:

(a) Q is ΣB
1 -definable in TV1.

(b) Q is in C(PLS).

(c) Q is in C(AC0-PLS).

D
R

A
FT

200 CHAPTER 8. THEORIES FOR POLYNOMIAL TIME AND BEYOND

Proof. (a) =⇒ (c) follows from Theorem 8.68 below (Witnessing for TV1) and
Lemma 8.62. (c) =⇒ (b) is obvious. Hence it suffices to show (b) =⇒ (a).

By Theorems 8.63 and 8.16 and Corollary 8.27 it suffices to show that every
problem in C(ITERATION) is ΣB

1 (LFP)-definable in TV1(VPV). We start

by showing this for every ITERATION problem QF . Let ψF (~x, ~X,Z) be the
formula (8.26) defining QF . We may assume that F is an LFP-function, and
hence ψF is a ΣB

1 (LFP)-formula. Let

η(~x, ~X,Z) ≡ (Z = ∅ ∨ Z < F (~x, ~X,Z))

Then VPV proves η is equivalent to a ΣB
1 -formula (Theorem 8.16), and hence

by ΣB
1 -SMAX (Theorem 8.24), TV1(VPV) proves the existence of a largest

Z ≤ t satisfying η(Z). Thus TV1(VPV) proves that this Z satisfies ψF (Z).
This shows that every ITERATION problem is ΣB

1 (LFP)-definable in
TV1(VPV). Now suppose the search QR1 is many-one reducible to some

ITERATION problem QR2 . Define the formula ψR1(~x, ~X,Z) by (supressing

~x, ~X)

ψR1(Z) ≡ ∃W ≤ t(Z = G(W) ∧ ψR2(
~f, ~F ,W))

where t is the bounding term for QR2 and ψR2 is a ΣB
1 (LFP)-formula which

defines QR2 in TV1(VPV), and ~f, ~F ,G show QR1 ≤p QR2 according to Defi-
nition 8.58. Then ψR1 is equivalent to a ΣB

1 (LFP)-formula, and by Definition
8.58

ψR1(~x, ~X,Z) ⊃ R1(~x, ~X,Z)

Since by assumption TV1(VPV) proves ∃W ≤ uψR2(W) (where u is a bound-
ing term from Parikh’s Theorem) it follows that TV1(VPV) proves ∃ZψR1(Z),
as required. �

Theorem 8.68 (Witnessing Theorem for TV1). Suppose that ϕ(~x, ~X,Z)
is a Σ1

1-formula such that

TV1 ⊢ ∃Zϕ(~x, ~X,Z)

Then there is an AC0-ITERATION problem QF with graph ψF (~x, ~X,Z) from
(8.26) and an FAC0-function G such that

V
0 ⊢ ψF (~x, ~X,Z) ⊃ ϕ(~x, ~X,G(~x, ~X,Z))

Proof. By using pairing functions we may assume that ϕ is ΣB
0 . The proof is

similar to the proof of the Witnessing Theorem for V1 (Section 6.4). Thus we
define a sequent system LK2-TV1, which is the same as LK2-Ṽ1 except that
we replace the IND Rule by the single-ΣB

1 -SIND Rule, defined as follows:

Definition 8.69 (The SIND Rule). For a set Φ of formulas, the Φ-SIND
rule consists of the inferences of the form

Γ, A(δ) −→ A(S(δ)),∆

Γ, A(∅) −→ A(T),∆
(8.28)

D
R

A
FT

8.4. TV1 AND POLYNOMIAL LOCAL SEARCH 201

where A is a formula in Φ and T is a string term.
Restriction The variable δ is called an eigenvariable and does not occur in the
bottom sequent.

The proof that LK2-TV1 is a complete system for TV1 is the same as the
proof that LK2-Ṽ1 is a complete system for Ṽ1, with obvious modifications.
Further the proof of Theorem 6.42, Anchored Completeness for LK2+IND,
works for LK2-TV1, so every theorem of TV1 has an anchored LK2-TV1

proof.
Now we proceed as in the proof of the Witnessing Theorem for V1 (Section

6.4.2) and for V0 (Section 5.5.2), with appropriate changes.

Suppose that ∃Zϕ(~x, ~X,Z) is a Σ1
1-theorem of TV1, where ϕ is a ΣB

0 -
formula. Then there is an anchored LK2-TV1 proof π of −→ ∃Zϕ(~a, ~α, Z).
We may assume that π is in free variable normal form. By the Subformula
Property the formulas in π are Σ1

1 formulas, and in fact they are ΣB
0 formulas

or single-Σ1
1 formulas. As a result, every sequent in π has the form

S = ∃Xiθi(Xi)︸ ︷︷ ︸
i=1,...,m

,Γ −→ ∆, ∃Yjηj(Yj)︸ ︷︷ ︸
j=1,...,n

(8.29)

for m,n ≥ 0, where θi and ηj and all formulas in Γ and ∆ are ΣB
0 .

We will prove by induction on the depth in π of the sequent S that there
is an AC0-ITERATION problem QF with graph ψF and for 1 ≤ i ≤ n there

are LFAC0 -functions Gi such that V
0

proves (the semantic equivalent of) the
sequent

S′ = θi(βi)︸ ︷︷ ︸
i=1,...,m

,Γ, ψF (~a, ~α, ~β, γ) −→ ∆, ηj(Gj(~a, ~α, ~β, γ))︸ ︷︷ ︸
j=1,...,n

(8.30)

where ~a, ~α is a list of exactly those variables with free occurrences in S. (This
list may be different for different sequents.) Also β1, ..., βm are distinct new free
variables corresponding to the bound variables X1, ..., Xm, although the latter
variables may not be distinct. When S is the final sequent of π, note that Γ
and ∆ are empty, i = 0, j = 1, and ~β is empty, so the theorem follows.

Note that this induction hypothesis is the same as in the proof for V1 and
V0, except now each witnessing function Gj is allowed to take the argument γ,
which is a solution to the ITERATION problem QF . As before, the induction
step has a case for ΣB

0 -COMP and for each rule. The argument for ΣB
0 -COMP

is the same as for V0 (since the witnessing function Gj can ignore its argument
γ). The argument for each rule except ΣB

1 -SIND is similar to that for V0

(Section 5.5.2), and can be obtained using the following lemma, that shows how
two ITERATION problems can be combined into one.

Lemma 8.70 (Composition of ITERATION Problems). Suppose that

QF1 and QF2 are ITERATION problems with graphs ψF1(~x, ~X,U) and ψF2(~x, ~X,U, V).

Then there is an ITERATION problem QF with graph ψF (~x, ~X,Z) such that

D
R

A
FT

202 CHAPTER 8. THEORIES FOR POLYNOMIAL TIME AND BEYOND

F is ΣB
0 -bit-definable from F1, F2, and there are FAC0-functions G1(~x, ~X) and

G2(~x, ~X) such that (suppressing ~x, ~X)

V
0
(F1, F2, F) ⊢ ψF (Z) ⊃ ψF1(G1(Z)) ∧ ψF2(G1(Z), G2(Z))

Proof. Assume the hypotheses of the Lemma, and let t be the bounding term
for QF1 and let u be the bounding term for QF2 . Using the notation U ∗t V
in the proof of Theorem 8.63, we express the argument Z in F (~x, ~X,Z) in the
form

Z = U ∗t V ∗t+u δ
where δ is a binary string equal to 0,1,or 2. We abbreviate Z by

Z = U ∗ V ∗ δ

Then we define F by (suppressing ~x, ~X)

F (U∗V ∗δ) =





U ∗ V ∗ 2 if ψF1(U) ∧ ψF2(U, V) ∧ δ ≤ 1
else U ∗ F2(U, V) ∗ 1 if ψF1(U) ∧ |V | ≤ u ∧ V < F2(U, V) ∧ δ ≤ 1
else F1(U) ∗∅ ∗∅ if V = δ = ∅ ∧ |U | ≤ t ∧ U < F1(U)
else U ∗ V ∗ δ

Let the ITERATION problem QF have bounding term t+ u+ 2.
We claim that

V
0
(F1, F2, F) ⊢ ψF (U ∗ V ∗ δ) ⊃ δ = 2 ∧ ψF1(U) ∧ ψF2(U, V) (8.31)

To see this, note that by line 3 in the definition of F , F (∅) 6= ∅, since if
F1(∅) = ∅ then ψF1(∅), and hence one of the first two lines applies. Hence
assuming ψF (U ∗ V ∗ δ) we have by (8.26)

U ∗ V ∗ δ < F (U ∗ V ∗ δ) = F (F (U ∗ V ∗ δ))

From the definitions of ψF1 and ψF2 we see that this can only happen if line 1
applies in evaluating F (U ∗ V ∗ δ).

This establishes (8.31). To prove the lemma, we define

G1(U ∗ V ∗ δ) = U G2(U ∗ V ∗ δ) = V

We can make these definitions explicit by defining

G1(~x, ~X,Z) = Z<t G2(~x, ~X,Z) = Z[t, t+ u]

�

It remains to handle the case in which S is obtained by an application of the
ΣB

1 -SIND rule. Then S is the bottom sequent of

S1

S
=

Λ, ∃X ≤ r(δ)θ(δ,X) −→ ∃X ≤ r(S(δ))θ(S(δ), X),Π

Λ, ∃X ≤ r(∅)θ(∅, X) −→ ∃X ≤ r(T)θ(T,X),Π

D
R

A
FT

8.4. TV1 AND POLYNOMIAL LOCAL SEARCH 203

where δ does not occur in S and θ is ΣB
0 .

By the induction hypothesis for the top sequent S1 it follows that V
0

proves
a sequent S′1 of the form

S′1 = Λ′, η1, ψF (δ, β, γ) −→ η2,Π
′ (8.32)

where

η1 ≡ |β| ≤ r(δ) ∧ θ(δ, β) (8.33)

η2 ≡ |G(δ, β, γ)| ≤ r(S(δ)) ∧ θ(S(δ), G(δ, β, γ)) (8.34)

and ψF defines the graph of an AC0-ITERATION problem QF and G is an
LFAC0-function. Here δ, β, γ do not occur in Λ′, but they may occur in Π′ as
arguments to the witnessing functions Gj .

Our task is to use QF and G to find QF ′ and G′ to find a witness for

∃X ≤ r(T)θ(T,X), given a witness β0 for ∃X ≤ r(∅)θ(∅, X). We want V
0

to
prove the following sequent S′:

S′ = Λ′, ρ1, ψF ′(β0, γ
′) −→ ρ2,Π

′′ (8.35)

where

ρ1 ≡ |β0| ≤ r(∅) ∧ θ(∅, β0) (8.36)

ρ2 ≡ |G′(β0, γ
′)| ≤ r(T) ∧ θ(T,G′(β0, γ

′)) (8.37)

and Π′′ will be given later.
We will use the technique in the proof of Lemma 8.70 and assume that the

search variable γ′ for QF ′ has the form

γ′ = β ∗r(T) γ ∗r(T)+t δ

where β, γ, δ are as in (8.32), and t an upper bound for γ based on the bounding
term for QF . In the following we drop the subscripts to ∗ and write

γ′ = β∗γ∗δ

The idea is that QF ′ uses F and G to find witnesses β for successive string
values of δ = 1, 2, . . . , T knowing that β0 is a witness in case δ = ∅. QF ′ should
succeed under the assumption that (8.32) holds for all δ < T and all β, assuming
that the formulas in Λ′ are true and those in Π′ are false.

We define F ′(β0, β ∗γ ∗δ) by cases in such a way that if η1 holds, then it
continues to hold when F ′ is applied repeatedly, and progress is made toward
finding β′ such that θ(T, β′).

F ′(β0, β∗γ∗δ) =





G(δ, β, γ) ∗∅ ∗ S(δ) if η1 ∧ δ < T ∧ ψF (δ, β, γ)
else β ∗ F (β, δ, γ) ∗ δ if η1 ∧ δ < T ∧ γ < F (β, δ, γ)
else β0∗∅∗∅ if β = γ = δ = ∅

else β∗γ∗δ

D
R

A
FT

204 CHAPTER 8. THEORIES FOR POLYNOMIAL TIME AND BEYOND

We define the witness-extracting function G′(β0, γ
′) as follows:

G′(β0, β∗γ∗δ)) =

{
β0 if T = ∅

G(δ, β, γ) if T 6= ∅

The following Claim asserts that a witness for ∃Xθ(T,X) can be obtained from
a solution β∗γ∗δ to QF ′ , provided (8.32) holds with Λ′ true and Π′ false.

Claim: V
0

proves

T 6= ∅, ρ1, ψF ′(β0, β∗γ∗δ) −→ η1 ∧ ψF (δ, β, γ) ∧ (¬η2 ∨ ρ2)

Proof of Claim: We argue in V
0
. Assume T 6= ∅, ρ1, ψF ′(β0, β∗γ∗δ). By

ψF ′(β0, β∗γ∗δ) and (8.26) there are two possibilities. The first is that F ′(∅) = ∅.
But this is impossible, because if β = γ = δ = ∅ then either β0 6= ∅ and line 3
in the definition of F ′ applies, or β0 = ∅ and one of the first two lines applies
(by ρ1 and the definition of ψF).

Therefore the second possibility in the definition of ψF ′(β0, β∗γ∗δ) applies,
and we have

β∗γ∗δ < F ′(β∗γ∗δ) = F ′(F ′(β∗γ∗δ)) (8.38)

Analyzing the definition of F ′ and our assumptions (T 6= ∅, ρ1) shows that
the only way that (8.38) can hold is if line 1 in the definition of F ′ applies
when evaluating F ′(β∗γ∗δ). Thus η1 ∧ ψF (δ, β, γ). Also since line 1 applies, if
S(δ) < T then ¬η2, for otherwise line 1 or line 2 would apply when evaluating
F ′(F ′(β∗γ∗δ)), contradicting the second part of (8.38). This proves the Claim
in case S(δ) < T . Finally if S(δ) = T then η2 ⊃ ρ2, and the Claim follows.

To establish that V
0

proves (8.35) we need to specify Π′′ by giving values (in
terms of γ′) for the variables δ, β, γ which occur as arguments to the functions
Gj in Π′. Motivated by the Claim and (8.32) we define, for γ′ = β∗γ∗δ,

B(γ′) = β GA(γ′) = γ D(γ′) = δ

and define Π′′ to be the result of replacing β, γ, δ in Π′ by B(γ′), GA(γ′), D(γ′)
respectively.

The fact that V
0

proves (8.35) now follows from the Claim and by (8.32)
with β, γ, δ replaced by B(γ′), GA(γ′), D(γ′). (The case T = ∅ follows from
(T = ∅ ∧ ρ1) ⊃ ρ2, which holds by definition of G′.) �

8.5 KPT Witnessing

8.6 Vi and TVi for i ≥ 2

8.7 RSUV Isomorphism

Recall the hierarchies of single-sorted theories Si2 and Ti
2 (for i ≥ 1) from Section

3.5. In particular, S1
2 characterizes the class single-sorted P in much the same

D
R

A
FT

8.7. RSUV ISOMORPHISM 205

way as V1 characterizes the class (two-sorted) P (Theorem 6.6 and Corollary
6.8). Here we will show that each theory Si2 is essentially a single-sorted version
of Vi (for i ≥ 1), i.e., they are “RSUV isomorphic”, (The same is true for Ti

2

and TVi.)
This section is organized as follows. First we formally define Si2 and Ti

2.
Then in Section 8.7.2 we define the notion of an RSUV isomorphism as a bijec-
tion between classes of single-sorted and two-sorted models. These are associ-
ated with the syntactical translations of single-sorted and two-sorted formulas,
defined in Subsections 8.7.3 and 8.7.4. Finally we sketch a proof of the RSUV
isomorphism between S1

2 and V1.

8.7.1 The Theories Si
2 and Ti

2

For this subsection it might be helpful to revisit Sections 3.1 and 3.5, and
Subsection 4.3.2. Recall that the vocabulary for S1

2 is

LS2 = [0, S,+, ·,#, |x|, ⌊1
2
x⌋; =,≤]

where |x| is the length of the binary representation of x, and the function x#y =
2|x|·|y| provides the polynomial growth in length for the terms of LS2 .

The sharply bounded quantifiers are bounded quantifiers (Definition 3.6)
which are of the form ∃x ≤ |t| and ∀x ≤ |t|. The syntactic classes of bounded
formulas of LS2 are defined as follows.

Definition 8.71 (Bounded Formulas of LS2). ∆b
0 = Σb

0 = Πb
0 is the set of

formulas whose quantifiers are sharply bounded. For i ≥ 0, Σb
i+1 and Πb

i+1 are
the smallest sets of formulas that satisfy:

1) Πb
i ⊆ Σb

i+1, Σb
i ⊆ Πb

i+1.

2) If ϕ, ψ ∈ Σb
i+1 (or Πb

i+1), then so are ϕ ∧ ψ, ϕ ∨ ψ.

3) If ϕ ∈ Σb
i+1 (resp. ϕ ∈ Πb

i+1), then ¬ϕ ∈ Πb
i+1 (resp. ¬ϕ ∈ Σb

i+1).

4) If ϕ ∈ Σb
i+1 (resp. ϕ ∈ Πb

i+1), then ∃x ≤ t ϕ and ∀x ≤ |t| ϕ are in Σb
i+1

(resp. ∀x ≤ t ϕ and ∃x ≤ |t| ϕ are in Πb
i+1).

Notice that different from ΣB
i and ΠB

i (Definition 4.14), here the formulas
in Σb

i and Πb
i are not required to be in prenex form, and any bounded quantifier

can occur in the scope of a sharply bounded quantifier. Nevertheless, it can be
shown that for i ≥ 1, a single-sorted relation is in the (single-sorted) class ΣP

i

if and only if it is represented by a Σb
i formula. In particular, a single-sorted

relation is in NP if and only if it is represented by a Σb
1 formula. (See Definition

4.15 and the ΣB
i and Σ1

1 Representation Theorem 4.18.)
The set BASIC of the defining axioms for symbols in LS2 are given in

Figure 8.1. There 1 and 2 are the numerals S0 and SS0, respectively. Note
that BASIC is by no means optimal, i.e., it is possible to derive some of its
axioms from others. Here we are not concerned with its optimality.

Recall the definition of an induction scheme Φ-IND (Definition 3.4). For
formulas of LS2 there are other kinds of induction, namely length induction and
polynomially induction, which are defined below.

D
R

A
FT

206 CHAPTER 8. THEORIES FOR POLYNOMIAL TIME AND BEYOND

1. x ≤ y ⊃ Sx ≤ Sy 17. |x| = |y| ⊃ x#z = y#z
2. x 6= Sx 18. |x| = |u|+ |v| ⊃
3. 0 ≤ x x#y = (u#y) · (v#y)
4. (x ≤ y ∧ x 6= y)↔ Sx ≤ y 19. x ≤ x+ y
5. x 6= 0 ⊃ 2 · x 6= 0 20. x ≤ y ∧ x 6= y ⊃
6. x ≤ y ∨ y ≤ x S(2 · x) ≤ 2 · y ∧ S(2 · x) 6= 2 · y
7. (x ≤ y ∧ y ≤ x) ⊃ x = y 21. x+ y = y + y
8. (x ≤ y ∧ y ≤ z) ⊃ x ≤ z 22. x+ 0 = x
9. |0| = 0 23. x+ Sy = S(x+ y)
10. |S0| = S0 24. (x+ y) + z = x+ (y + z)
11. x 6= 0 ⊃ (|2 · x| = S(|x|)∧ 25. x+ y ≤ x+ z ↔ y ≤ z

|S(2 · x)| = S(|x|)) 26. x · 0 = 0
12. x ≤ y ⊃ |x| ≤ |y| 27. x · Sy = (x · y) + x
13. |x#y| = S(|x| · |y|) 28. x · y = y · x
14. 0#x = S0 29. x · (y + z) = (x · y) + (x · z)
15. x 6= 0 ⊃ (1#(2 · x) = 2 · (1#x) 30. 1 ≤ x ⊃ (x · y ≤ x · z ↔ y ≤ z)
∧ 1#S(2 · x)) = 2 · (1#x)) 31. x 6= 0 ⊃ |x| = S(|⌊ 12x⌋|)

16. x#y = y#x 32. x = ⌊ 12y⌋ ↔
(2 · x = y ∨ S(2 · x) = y)

Figure 8.1: BASIC

Definition 8.72 (LIND and PIND). Let L be a vocabulary which extends
LS2 , and Φ be a set of L-formulas. Then Φ-LIND is the set of formulas of the
form

[ϕ(0) ∧ ∀x, ϕ(x) ⊃ ϕ(x + 1)] ⊃ ∀zϕ(|z|) (8.39)

and Φ-PIND is the set of formulas of the form

[ϕ(0) ∧ ∀x, ϕ(⌊ 12x⌋) ⊃ ϕ(x)] ⊃ ∀zϕ(z) (8.40)

where ϕ is a formula in Φ, ϕ(x) is allowed to have free variables other than x.

Definition 8.73 (Si2 and Ti
2). For i ≥ 1, Si2 is the theory axiomatized by

BASIC and Σb
i -PIND; Ti

2 is the theory axiomatized by BASIC and Σb
i -IND.

We leave as an exercise the following interesting results:

Exercise 8.74. Show that for i ≥ 1:

a) Si2 can be axiomatized by BASIC together with Σb
i -LIND.

b) Si2 ⊆ Ti
2 ⊆ Si+1

2 .

S1
2 and V1 turn out to be essentially the same, as explained in the next

subsection.

D
R

A
FT

8.7. RSUV ISOMORPHISM 207

8.7.2 RSUV Isomorphism

Here we define the notion of RSUV isomorphism model-theoretically by defin-
ing the ♭ and ♯ mappings between single-sorted and two-sorted models. These
(semantic) mappings are associated with the syntactical translations between
of single-sorted and two-sorted formulas, to be defined in later sections.

Recall that BIT (i, x) is the relation which holds if and only if the i-th lower-
order bit in the binary representation of x is 1. It is left as an exercise to show
that this relation is definable in S1

2. It follows that S1
2(BIT) is a conservative

extension of S1
2.

Exercise 8.75. Show that BIT (i, x) is definable in S1
2, and that

S1
2(BIT) ⊢ ∀x∀y, x = y ↔ (|x| = |y| ∧ ∀i ≤ |x|, BIT (i, x)↔ BIT (i, y))

Now let M be a model of S1
2 with universe U . We can construct from

M a two-sorted L2
A-structure N as follows. First, expand M to include the

interpretation of BIT . The universe 〈U1, U2〉 of N is defined to be

U2 = U, and U1 = {|u| : u ∈ U}

The constants 0 and 1 are interpreted as 0 and S0 respectively (which are in U1,
by the axioms 9 and 10 of BASIC). The interpretations of the other symbols
of L2

A (except for ∈) in N are exactly as in M. (Note that by this definition,
| | is clearly a function from U2 to U1.) Finally ∈ is interpreted as

i ∈N x⇔ BIT (i, x) holds inM, for all i ∈ U1, x ∈ U2

Definition 8.76. For a modelM of S1
2, denote byM♯ the two-sorted structure

N obtained as described above.

Conversely, suppose that N is a model of V1 with universe 〈U1, U2〉. We
can construct from N a (single-sorted) LS2-structureM with universe U = U2

where each bounded set X in U2 is interpreted as the number bin(X) (see (4.4)):

bin(X) =
∑

i

X(i)2i

In order to interpret the symbols of LS2 in M, we need the fact that the func-
tions and predicates of LS2 when interpreted as taking string arguments are
respectively provably total and definable in V1.

In fact, by Exercise 6.11 the string multiplication function X × Y is Σ1
1-

definable in V1. Also, using the fact that BIT (i, x) is definable in I∆0 (Sub-
section 3.3.3) and that V0 is a conservative extension of I∆0 (Theorem 5.9),
we have BIT (i, x) is ΣB

0 -definable in V0:

Corollary 8.77. The relation BIT (i, x) is ΣB
0 -definable in V0.

Thus the string function |X |2 whose bit-graph is

|X |2(i)↔ (i ≤ |X | ∧ BIT (i, |X |))

D
R

A
FT

208 CHAPTER 8. THEORIES FOR POLYNOMIAL TIME AND BEYOND

is provably total in V0.
The string relation X ≤ Y is defined in Definition 8.21. The constant 0

is interpreted as the empty set ∅, which is defined in V0 by Exercise 5.43.
The successor and addition functions on strings are also definable in V0 (Exer-
cise 5.43). Finally, the functions X#Y and ⌊ 12X⌋ can be defined in V0 using
ΣB

0 -COMP as follows:

(X#Y)(z)↔ z = |X | · |Y |, ⌊ 12X⌋(z)↔ z ≤ |X | ∧ z + 1 ∈ X

Definition 8.78. For a model N of V1, let N ♭ denote the single-sorted LS2-
structureM constructed as above.

Formal definition of RSUV isomorphism is given below.

Definition 8.79 (RSUV Isomorphism). Let T1 be a single-sorted theory over
LS2 and T2 be a two-sorted theory over L2

A so that S1
2 ⊆ T1 and V1 ⊆ T2. Then

T1 and T2 are said to be RSUV isomorphic (denoted by T1
RSUV≃ T2) if (i) for

every model M of T1, M♯ |= T2, and (ii) for every model N of T2, N ♭ |= T1.

Note that we can loosen the restrictions that S1
2 ⊆ T1 and V1 ⊆ T2 by, for

example, imposing that BIT is definable in T1, and X × Y is definable in T2
(while maintaining that T1 extends a certain subtheory of S1

2, and T2 extends
V0). This allows us to speak of the RSUV isomorphism between subtheories of
S1

2 and V1. We will come back to this issue in Chapter 9.
The main result of this section is stated below.

Theorem 8.80. For i ≥ 1, Si2 and Vi are RSUV isomorphic, and Ti
2 and TVi

are RSUV isomorphic.

Associated with the ♯ and ♭ mappings defined above are respectively the ♭

and ♯ translations of formulas that we will introduce shortly. For example, one
direction of Theorem 8.80 (for i = 1) requires showing thatM♯ |= V1 for every
model M of S1

2(BIT). Thus we will translate syntactically an L2
A formula ϕ

into an LS2(BIT) formula ϕ♭ (the ♭ translation) so that

M♯ |= ∀ϕ if and only ifM |= ∀ϕ♭

(Recall that ∀ϕ is the universal closure of ϕ. See Definition 2.23.) Then we will
prove that S1

2(BIT) ⊢ ϕ♭ for each axiom ϕ of V1.
The ♯ translation is essentially the inverse of the ♭ translation. The RSUV

isomorphism between S1
2 and V1 is pictured below (Figure 8.2).

In the next two subsections we define the ♭ and ♯ translations. The proof of
Theorem 8.80 will be given in Subsection 8.7.5.

8.7.3 The ♯ Translation

The sharply bounded quantifiers in a bounded LS2 -formula are translated into
bounded number quantifiers, and other bounded quantifiers are translated into

D
R

A
FT

8.7. RSUV ISOMORPHISM 209

S1
2

RSUV≃ V1

M ⇀ M♯

ϕ♭ ↼ ϕ

N ♭ ↼ N
ψ ⇀ ψ♯

Figure 8.2: The RSUV isomorphism between S1
2 and V1.

bounded string quantifiers. In other words, a bound variable is translated into a
bound number variable if it is sharply bounded. (Note that the bounding term
of a bounded string quantifier bounds the length of the quantified variable, while
in single-sorted logic the bounding terms are for the values of the variables.)

It can be easily seen that simply translating bounded quantifiers as above
results in bounded (two-sorted) formulas over the vocabulary that extends L2

A

by allowing the functions (except 0) and predicates of LS2 to be two-sorted
functions and predicates whose arguments can be of either sort. For example,
there are formally four + functions: one with arity 〈2, 0〉, two with arity 〈1, 1〉
and one with arity 〈0, 2〉. Also, it is straightforward to determine the sorts to
which these functions belong. Thus x+Y and X+Y are string functions, while
|x| is a number function.

Notation Let L+ denote the extension of L2
A described above.

The functions of L+ can be shown to be Σb
1-definable in V1. In fact, the

number functions and most of the string functions of L+ (except for the string
multiplication function, or the multiplication functions of “mixed” sorts) are re-
spectively ΣB

0 -definable (in V0) and ΣB
0 -bit-definable. For example, the number

functions |x| and x#y are ΣB
0 -bit-definable due to the fact that the predicate

BIT (i, x) is ∆0-definable in I∆0 (Subsection 3.3.3). For the fact that the afore-
mentioned multiplication functions are ΣB

1 -definable in V1, see Exercise 6.11
and the discussion in the previous subsection about the ♭ mapping.

Now it follows from Corollary 6.27 and Corollary 6.24 that V1(L+) proves
both the gΣB

1 (L+)-COMP and gΣB
1 (L+)-IND axiom schemes.

Corollary 8.81. V1(L+) ⊢ gΣB
1 (L+)-IND.

Formally we define for each bounded LS2 formula ψ(~x, ~y) a bounded L+

formula ψ♯(~x, ~Y) (i.e., the subset ~y of the free variables of ψ is selected to be
translated into the free string variables of ψ♯) so that for every model N of V1,

N ♭ |= ∀~x∀~yψ(|~x|, ~y) if and only if N [L+] |= ∀~x∀~Y ψ♯(~x, ~Y)

(where N [L+] denote the expansion of N by the interpretations for L+). We
will focus on the case where all bounding terms of ψ are of the form t(~x, ~y) (i.e.,
they involve only the free variables of ψ). We need the following result whose
proof is left as an exercise.

D
R

A
FT

210 CHAPTER 8. THEORIES FOR POLYNOMIAL TIME AND BEYOND

Exercise 8.82. Let t(~x, ~y) be an LS2 term. Let T (~x, ~Y) be the L+ term obtained

from t(~x, ~y) by replacing the variables ~y by new string variables ~Y , and treating
the functions occurring in t as the corresponding functions of L+. Then there
is an L2

A term t′(~x, |~Y |) so that V1(L+) ⊢ |T (~x, ~Y)| ≤ t′(~x, |~Y |).
The formula ψ♯(~x, ~Y) is constructed inductively as follows. First if ψ(~x, ~y)

is an atomic formula, then ψ♯(~x, ~Y) is the atomic formula obtained from ψ(~x, ~y)

by translating the free variables ~y into free string variables ~Y , and translating
the symbols of LS2 into the appropriate symbols of L+.

Next, if ψ is ψ1 ∧ ψ2 (resp. ψ1 ∨ ψ2), then ψ♯ is ψ♯1 ∧ ψ♯2 (resp. ψ♯1 ∨ ψ♯2).
If ψ ≡ ¬ψ1, then ψ♯ is obtained from of ¬ψ♯1 by pushing the ¬ to the atomic
subformulas.

Now consider the case where ψ(~x, ~y) ≡ ∃z ≤ t ψ1(z, ~x, ~y). Let T (~x, ~Y) and

t′(~x, |~Y |) be as in Exercise 8.82. Then

ψ♯(~x, ~Y) ≡ ∃Z ≤ 1 + t′(~x, |~Y |), Z ≤ T (~x, ~Y) ∧ ψ♯1(Z, ~x, ~Y)

Finally suppose that ψ(~x, ~y) ≡ ∃z ≤ |t|ψ1(z, ~x, ~y). Then

ψ♯(~x, ~Y) ≡ ∃z ≤ t′(~x, |~Y |), z ≤ |T (~x, ~Y)| ∧ ψ♯1(z, ~x, ~Y)

The cases where ψ(~x, ~y) ≡ ∀z ≤ t ψ1(z, ~x, ~y) or ψ(~x, ~y) ≡ ∀z ≤ |t|ψ1(z, ~x, ~y)
are handled similarly. This completes our description of the ♯ translation. The
proof of its desired properties are left as an exercise.

Exercise 8.83. Let ψ(~x, ~y) be an L2
A-formula.

a) Show that if ψ is in Σb
i (resp. Πb

i) for some i ≥ 0, then ψ♯(~Y) is in
gΣB

i (L+) (resp. gΠB
i (L+)).

b) Let N be a model of V1. Show that

N ♭ |= ∀~x∀~yψ(|~x|, ~y) if and only if N [L+] |= ∀~x∀~Y ψ♯(~x, ~Y)

8.7.4 The ♭ Translation

The ♭ translation is essentially a syntactical counter-part of the ♯ mapping. In
general we will translate bounded string quantifiers into bounded quantifiers,
and bounded number quantifiers into sharply bounded quantifiers. Thus we
need to find the translation t′ for each bounding term t. This task is left as an
exercise (see also Exercise 8.82).

Exercise 8.84. Let t(~x, |~Y |) be an L2
A-term, and t1(~x, |~y|) be the LS2-term

obtained from t by replacing each the string variables ~Y by new variables ~y, and
replacing each occurrence of 1 by S0. Then there is an LS2-term t′(~x, ~y) so that
S1

2 ⊢ t1(|~x|, |~y|) ≤ |t′(~x, ~y)|.
We also need the following results, which follows from the fact that BIT is

Σb
1-definable in S1

2.

Notation Let L+
S2

stand for LS2 ∪ {BIT}.

D
R

A
FT

8.7. RSUV ISOMORPHISM 211

Exercise 8.85. Show that S1
2(BIT) proves both axiom schemes Σb

1(BIT)-LIND
and Σb

1(BIT)-IND.

As in the ♯ translation, we will consider only those formulas whose bounding
terms involve only the free variables. Thus suppose that ϕ(~x, ~Y) is such a

formula, i.e., all the bounding terms in ϕ are of the form t(~x, |~Y |) (with all
variables displayed). Then the L+

S2
formula ϕ♭(~x, ~y), which has the same set of

variables as that of ϕ (where each string variable Y is replaced by a new variable
y), satisfies

M♯ |= ∀~x∀~Y ϕ(~x, ~Y) if and only if M |= ∀~x∀~yϕ♭(|~x|, ~y)

for any model M of S1
2(BIT).

The formula ϕ♭(~x, ~y) is defined inductively as follows. First, if ϕ(~x, ~Y) is an
atomic formula, then let ϕ♭(~x, ~y) be obtained from ϕ(~x, ~y) by

• replacing each occurrence of 1 by S0,

• replacing each occurrence of Y (t) by BIT (t, Y), and

• replacing each occurrence of a string variable Y by the corresponding new
variable y.

For the induction step, if ϕ ≡ (ϕ1 ∧ ϕ2) (resp. (ϕ1 ∨ ϕ2), ¬ϕ1), then define
ϕ♭ ≡ (ϕ♭1 ∧ ϕ♭2) (resp. (ϕ♭1 ∨ ϕ♭2), ¬ϕ♭1).

Next consider the case where ϕ(~x, ~Y) ≡ ∃Z ≤ t(~x, |~Y |)ϕ1(~x, ~Y , Z). Let
t′(~x, ~y) be as in Exercise 8.84. Then

ϕ♭(~x, ~y) ≡ ∃z ≤ S0 + t′(~x, ~y), |z| ≤ t(~x, |~y|) ∧ ϕ♭1(~x, ~y, z)

Now consider the case where ϕ(~x, ~Y) ≡ ∃u ≤ t(~x, |~Y |)ϕ1(u, ~x, ~Y). Let
t′(~x, ~y) be as before. Then define

ϕ♭(~x, ~y) ≡ ∃u ≤ |t′(~x, ~y)|, u ≤ t(~x, |~y|) ∧ ϕ♭1(u, ~x, ~y)

The cases where ϕ(~x, ~Y) ≡ ∀Z ≤ t(~x, |~Y |)ϕ1(~x, ~Y , Z) or ϕ(~x, ~Y) ≡ ∀u ≤
t(~x, |~Y |)ϕ1(u, ~x, ~Y) are handled analogously. This completes our description of
the ♭ translation.

The desired properties of ϕ♭ can be proved by structural induction on ϕ.
Details are left as an exercise.

Exercise 8.86. Let ϕ(~x, ~Y) be an L2
A-formula.

a) Show that if ϕ is in ΣB
i (resp. ΠB

i) for some i ≥ 0, then ϕ♭(|~x|, ~y) is in
Σb
i(BIT) (resp. Πb

i(BIT)).

b) Let M be a model of S1
2(BIT). Show that

M♯ |= ∀~x∀~Y ϕ(~x, ~Y) if and only if M |= ∀~x∀~Y ϕ♭(|~x|, ~y)

D
R

A
FT

212 CHAPTER 8. THEORIES FOR POLYNOMIAL TIME AND BEYOND

8.7.5 The RSUV Isomorphism between Si
2 and Vi

In this subsection we discuss some issues related to the concept of RSUV iso-
morphism. Then we will sketch the proof of the RSUV isomorphism between
S1

2 and V1. The proof of the RSUV isomorphism between Si2 and Vi for i ≥ 2
is similar, and is left as an exercise.

First, the next theorem is useful in proving RSUV isomorphism.

Notation We will assume that the theories mentioned here are axiomatized by
set of formulas whose bounding terms do not contain any bound variable.

Theorem 8.87. Let T1 be a single-sorted theory over LS2 such that S1
2 ⊆ T1,

and T2 be a two-sorted theory over L2
A such that V1 ⊆ T2. Suppose that (i)

T1(BIT) ⊢ ϕ♭ for every axiom ϕ of T2, and (ii) T2(L+) ⊢ ψ♯ for every axiom ψ

of T1. Then T1
RSUV≃ T2.

Proof. We show that M♯ |= T2 for every model M of T1. The other half (that
N ♭ |= T1 for every model N of T2) is similar.

Thus suppose that M |= T1(BIT). Then by (i) we have M |= ϕ♭ for every
axiom ϕ of T2. By Exercise 8.86 b, it follows thatM♯ |= T2. �

Exercise 8.88. Show that S1
2(BIT) ⊢ ψ ↔ (ψ♯)♭ and V1(L+) ⊢ ϕ↔ (ϕ♭)♯ for

every bounded LS2 formula ψ and bounded L2
A formula ϕ.

Notice that it follows from Theorem 8.80 that if M is a model of S1
2, then

M♯ is a model of V1. Hence we can define (M♯)♭. Similarly, if N is a model
of V1, then (N ♭)♯ is well-defined. The ♯ and ♭ operations turn out to define a
bijection between isomorphism classes of models of S1

2 and V1, as shown in the
next corollary.

Corollary 8.89. Let T1 be a single-sorted theory that extends S1
2. Then (M♯)♭

and M are same for every model M of T1. Similarly, suppose that T2 is a
two-sorted theory that extends V1. Then (N ♭)♯ is isomorphic to N for every
model N of T2.
Proof Sketch. First, let M be a model of T1. Clearly M and (M♯)♭ have the
same universe. Indeed, the mappings

U(M) −→ U2(M♯) −→ U((M♯)♭)

are all identity maps. (Here U(M) and U((M♯)♭) denote respectively the uni-
verse of M and (M♯)♭, and U2(M♯) denotes the second-sort universe of M♯.)
So we need to show that the symbols of LS2 have the same interpretations in
M and (M♯)♭. This essentially follows from the fact that M♯ |= V1, the func-
tions and relations of L+ are definable in V1, and that the “extension axiom”
is provable in S1

2 (Exercise 8.75).
The second statement is proved similarly. (Here (N ♭)♯ and N might have

different first-sort universes, but they are isomorphic.) �

D
R

A
FT

8.7. RSUV ISOMORPHISM 213

The next corollary provides the converse of Theorem 8.87 above.

Corollary 8.90. Let T1 be a single-sorted theory over LS2 and T2 be a two-

sorted theory over L2
A such that T1

RSUV≃ T2. Then

(i) T1(BIT) ⊢ ϕ♭ for every axiom ϕ of T2, and

(ii) T2(L+) ⊢ ψ♯ for every axiom ψ of T1.

Proof. For (i), letM be a model of T1 and ϕ be an axiom of T2. ThenM♯ |= T2.
Therefore by Exercise 8.86 b, (M♯)♭ |= ϕ♭. Since (M♯)♭ and M are the same
structure (Corollary 8.89), it follows thatM |= ϕ♭. Hence T1 ⊢ ϕ♭.

(ii) is proved similarly using Exercise 8.83 b. �

Theorem 8.91. Suppose that T1 and T2 are RSUV isomorphic. Then T1 is
finitely axiomatizable if and only if T2 is.

Proof. Suppose that T1 is a finitely axiomatizable single-sorted theory. Note
that by the ΣB

1 -Transformation Lemma 6.25, for each L+ formula ϕ there is
an L2

A formula ϕ′ so that V1(L+) ⊢ ϕ ↔ ϕ′. We will use this notation in the
following definition. Let T denote the union of the following set

{(ψ♯)′ : ψ is an axiom of T1(BIT)}

and the set of the sentences of the form ∀~x∀~Y ∃!zϕ(~x, z, ~Y) or ∀~x∀~Y ∃!Zϕ(~x, Z, ~Y),
where ϕ the the formula in the defining axiom of a function symbol of L+.

We show that T2 can be axiomatized by T . First, let ψ be an axiom of T1.
By Corollary 8.90 (ii) above, T2(L+) ⊢ ψ♯. Consequently (since T2 extends V1,
and T2(L+) is conservative over T2) T2 ⊢ (ψ♯)′. The defining axioms for symbols
of L+ are in T2 because V1 ⊆ T2.

It remains to show that T ⊢ ϕ for each axiom ϕ of T2.
Claim For each modelN of T , there is a modelM of T1(BIT) so thatM♯ = N .

Let ϕ be an axiom of T2. Let N be any model of T , and letM be as in the
Claim. Since M |= T1(BIT) and T1(BIT) |= ϕ♭ we haveM |= ϕ♭. By Exercise
8.86 b we have N |= ϕ.

Finally, the Claim follows from part a of the exercise below and the fact
that T ⊢ (ψ♯)′ ↔ ψ♯ for every axiom ψ of T1. The latter follows from a careful
examination of the proof of part c of the ΣB

1 -Transformation Lemma 6.25. (Here
we do not require that T proves the Replacement axiom scheme.) �

Exercise 8.92. a) Suppose that T1 is a single-sorted theory that extends S1
2.

Show that for every two-sorted model N of the set {ψ♯ : ψ is an axiom of T1}
there is a model M of T1 so that M♯ = N .

b) Similarly, let T2 be a two-sorted theory that extends V1, and T ′
2 = {ϕ♭ :

ϕ is an axiom of T2}. Show that for every modelM of T ′
2 there is a model

N of T2 so that M = N ♭.

D
R

A
FT

214 CHAPTER 8. THEORIES FOR POLYNOMIAL TIME AND BEYOND

Proof sketch of S1
2

RSUV≃ V1. We need to show that V1(L+) proves the ♯ trans-
lations of the axioms in BASIC as well as Σb

1-LIND (see Exercise 8.74). The
former is straightforward and is left as an exercise.

Exercise 8.93. Show that V1(L+) proves the ♯ translations of the BASIC
axioms.

Now we consider the Σb
1-LIND axiom scheme. We will show that N satisfies

the ♯ translations of the following bounded length induction for Σb
1 formulas,

which logically imply Σb
1-LIND:

[ϕ(0) ∧ ∀x ≤ |z|, ϕ(x) ⊃ ϕ(x+ 1)] ⊃ ∀zϕ(|z|) (8.41)

(where ϕ is a Σb
1 formula).

Using Exercise 8.83 a it is easy to see that instances of (8.41) translate into
gΣB

1 (L+)-IND. Hence the conclusion follows from Corollary 8.81.
Now consider the next half of the RSUV isomorphism. By Theorem 6.35

it suffices to show that S1
2(BIT) satisfies the ♭ translations of the 2-BASIC

axioms and ΣB
1 -IND axioms. The latter translate into Σb

1(BIT)-LIND which
is provable in S1

2(BIT) by Exercise 8.85. Thus the following simple exercise
completes our proof of the RSUV isomorphism between S1

2 and V1. �

Exercise 8.94. Show that S1
2(BIT) proves the ♭ translation of the 2-BASIC

axioms.

Exercise 8.95. Complete the proof of Theorem 8.80 by showing that Si2
RSUV≃ Vi

for i ≥ 2.

8.8 Notes

The theory VPV defined in Section 8.1 is based on the single-sorted equational
theory PV [?]. The results in Section 8.1.1 were first proved in single-sorted
versions in Chapter 6 of [?].

In Section 8.2 the TVi hierarchy for i ≥ 1 is the two-sorted version of Buss’s
[?] Ti

2 hierarchy. The theory TV0 was introduced in [?] where the results of
Section 8.2 are outlined, except the presentation in Section 8.2.3 is new.

The theory V1-HORN was introduced in [?], where versions of the results
of Section 8.3 are proved.

The PLS problems were introduced in [?]. The results in Section 8.4 are
mostly two-sorted versions of results from [?]. However our Witnessing Theorem
8.68 is stronger than the one in [?], in that our witnessing function G is in the

small class FAC0, and the weak theory V
0
, as opposed to TV1, proves the

witnessing.
Buss [?] introduced the hierarchies S2, T2, and more generally, Sk, Tk (for

k ≥ 2). (The index k indicates the presence of the function #k, where #2 = #,
and x#k+1y = 2|x|#k|y|.) He also introduced the hierarchy U2,V2, where U1

2

D
R

A
FT

8.8. NOTES 215

and V1
2 capture PSPACE and EXPTIME, respectively. (The theories Vi

in this book is sometimes called Vi
1.) The equivalence between Sik+1 and Vi

k

was first realized in [?, ?]. The name “RSUV isomorphism” was introduced
by Takeuti in [?], where he also introduced the hierarchies Rk, and proved the
equivalences between Ri

k+1 and Ui
k and between Sik+1 and Vi

k. The S – V

equivalence was also proved in [?]. The syntactic translations ♭ and ♯ are called
interpretations in [?, ?] (the symbols ♭ and ♯ were introduced in [?]).

D
R

A
FT

216 CHAPTER 8. THEORIES FOR POLYNOMIAL TIME AND BEYOND

D
R

A
FTChapter 9

Theories for Small Classes

In this chapter we present subtheories of TV0 which are associated with several
subclasses of P. These classes include the sequence

AC0(p) (TC0 ⊆ NC1 ⊆ L ⊆NL ⊆NC ⊆ P

We present a generic method for developing the theories. As an accompanying
example, we will treat in detail the theory VTC0, which is associated with the
class TC0. In general, each class C has a complete (under AC0 reduction)
problem P . The associated theory VC is axiomatized by V0 and an axiom
that encodes a suitable algorithm that solves P . These theories are finitely
axiomatizable, because V0 is. To show that VC characterizes the corresponding

class, we introduce a universal theory VC in the style of V
0

(Section 5.6) and

show that it is a conservative extension of VC. As for I∆0 and V
0
, the idea is

to introduce function symbols for all functions in FC (see Definition 5.16). The
main task is to show that these functions are provably total in VC.

Our universal theories are “minimal” theories for the corresponding complex-
ity classes in the sense that the axioms consist of straightforward definitions for

the functions and predicates in the classes. For example, VTC
0

satisfies this
condition, and since it is a conservative extension of VTC0, the latter is also a
minimal theory for TC0.

The chapter is organized as follows. First, we define the notion of AC0

reduction. Then, in Section 9.2, we present the theory VTC0 and its universal

counterpart VTC
0
, and show that VTC

0
is a conservative extension of VTC0.

This proves the Definability Theorem for VTC0 (Corollary 9.10). We will in
fact prove general results which lead to establishing theories for other classes.
These theories will be presented in the following sections. Finally, in Section 9.7
we prove interesting recursion-theoretic characterization of several subclasses of
FL using the number recursion scheme.

217

D
R

A
FT

218 CHAPTER 9. THEORIES FOR SMALL CLASSES

9.1 AC0 Reductions

The classes that we consider in this chapter are nice in the sense that they
are closed under AC0 reductions in the Turing style (as opposed to the more
restricted many-one style). We will formalize this notion. The idea is (see for
example [?]) that a function F is AC0-reducible to a collection L of functions
if F can be computed by a uniform polynomial size constant depth family of
circuits which have unbounded fan-in gates computing functions from L, in
addition to Boolean gates. We will also show that in standard settings, the
FAC0 closure of a set of functions is the same as closure under composition and
a comprehension operator.

Recall that a function F (resp. f) is ΣB
0 -definable from L if it is polyno-

mially bounded, and its bit graph (resp. graph) is represented by a ΣB
0 (L)

formula (Definition 5.37). The following definition generalizes the notion of
ΣB

0 -definability.

Definition 9.1 (AC0 Reductions). We say that a string function F (resp.
a number function f) is AC0-reducible to L if there is a sequence of string
functions F1, . . . , Fn (n ≥ 0) such that

Fi is ΣB
0 -definable from L ∪ {F1, . . . , Fi−1}, for i = 1, . . . , n; (9.1)

and that F (resp. f) is ΣB
0 -definable from L ∪ {F1, . . . , Fn}. A relation R

is AC0-reducible to L if there is a sequence F1, . . . , Fn as above, and R is
represented by a ΣB

0 (L ∪ {F1, . . . , Fn}) formula.

If in the above definition L consists only of functions in FAC0, then a single
interation (n = 1) is enough to obtain any function in FAC0, and by Corollary
5.41 no more functions are obtained by further iterations. However, as we
shall see in the next section, if we start with a function such as numones, then
repeated iterations generate the complexity class TC0. As far as we know
there is no bound on the number of iterations needed, because (as far as we
know) there is no fixed d such that every member of TC0 can be defined by a
polynomial size family of circuits of depth d.

Definition 9.2 (FAC0 and AC0 Closure). For a language L, the FAC0

closure of L is the class of functions which are AC0-reducible to L. The AC0

closure of L is the class of relations which are AC0-reducible to L.
All complexity classes of interest here are closed under AC0 reductions,

because the corresponding function classes are closed under ΣB
0 -definability.

For the case of FAC0, this follows from Corollary 5.41.

Corollary 9.3. The FAC0 closure of FAC0 is FAC0. The AC0 closure of
AC0 is AC0.

For a complexity class C, recall that FC is the corresponding function class
(Definition 5.16). The following lemma is straightforward consequence of the
definitions involved.

D
R

A
FT

9.1. AC0 REDUCTIONS 219

Lemma 9.4. A complexity class C is the AC0 closure of a language L iff FC
is the FAC0 closure of L.

The composition of two functions is AC0 reducible to the functions. We
now define another operation which preserves AC0 reducibility and which will
be used together with composition to give a characterization of AC0 reducibility.
The new operation takes a number function and collects a bounded number of
its values in a set to form a string function.

Definition 9.5 (String Comprehension). For a number function f(x) (which
may contain other arguments), the string comprehension of f is the string func-
tion F (y) such that

F (y) = {f(x) : x ≤ y}
Note that if f is polynomially bounded, then so is F .
For example, recall that the ΣB

0 formula ϕparity(X,Y) (5.32) asserts that
for 0 ≤ i < |X |, bit Y (i+ 1) is 1 iff the number of 1’s among bits X(0), ..., X(i)
is odd. As a function of X , Y = F (|X |, X), where F is obtained from the
following function f by string comprehension:

f(x,X) =

{
x if x > 0 and the number of 1 bits in X(0), . . . , X(x− 1) is odd

0 otherwise

Theorem 9.6. Suppose that L is a class of polynomially bounded functions that
includes FAC0. Then a function is AC0-reducible to L iff it can be obtained
from L by finitely many applications of composition and string comprehension.

Proof. For the IF direction, it suffices to prove that a function obtained from
input functions by either of the operations composition or string comprehension
is ΣB

0 -definable from the input functions.
For composition, suppose

F (~x, ~X) = G(h1(~x, ~X), . . . , hk(~x, ~X), H1(~x, ~X), . . . , Hm(~x, ~X))

where G and h1, . . . , hk, H1, . . . , Hm are polynomially bounded. Then F is also
polynomially bounded, and its bit graph F (~x, ~X)(z) is represented by the open
formula

G(h1(~x, ~X), . . . , hk(~x, ~X), H1(~x, ~X), . . . , Hm(~x, ~X))(z)

(A similar argument works for a number function f .)
For string comprehension, suppose that f(x) is a polynomially bounded

number function. As noted before, the string comprehension F (y) of f is also
polynomially bounded, and it has bit graph

F (y)(z)↔ z < t ∧ ∃x ≤ y z = f(x)

where t is the bounding term for F . Hence F is also ΣB
0 -definable from f .

For the ONLY IF direction, it suffices to show that if L ⊇ FAC0 and F
(or f) is ΣB

0 -definable from L, then F (resp. f) can be obtained from L by
composition and string comprehension.

D
R

A
FT

220 CHAPTER 9. THEORIES FOR SMALL CLASSES

Claim : If L ⊇ FAC0 and ϕ(~z, ~X) is a ΣB
0 (L) formula, then the characteristic

function cϕ defined by

cϕ(~z, ~Z) =

{
1 if ϕ(~z, ~Z)
0 otherwise

can be obtained from L by composition.
The Claim is holds because cψ(~x, ~X) is in FAC0 for every ΣB

0 (L2
A)-formula

ψ, and (by structural induction on ϕ) it is clear that for every ΣB
0 (L)-formula

ϕ(~z, ~Z) there is a ΣB
0 (L2

A)-formula ψ(~x, ~X) such that

ϕ(~z, ~Z)↔ ψ(~s, ~T)

for some L-terms ~s and ~T . Hence

cϕ(~z, ~Z) = cψ(~s, ~T)

Now suppose that F is ΣB
0 -definable from L, so

F (~z, ~X)(x)↔ x < t ∧ ϕ(x, ~z, ~X)

where t = t(~z, ~X) is an L2
A term and ϕ is a ΣB

0 (L) formula.
Define the number function f by cases as follows:

f(x, ~z, ~X) =

{
x if ϕ(x, ~z, ~X)

t if ¬ϕ(x, ~z, ~X)

Then by the Claim, f can be obtained from L by composition as follows. Define
the FAC0 function g by

g(x, y, z, w) = x · y + z · w

Thus

f(x, ~z, ~X) = g(x, cϕ, t, c¬ϕ)

Now

F (~z, ~X) = Cut(t, G(t, ~z, ~X))

where G(y, ~z, ~X) is the string comprehension of f(x, ~z, ~X), and Cut (see (6.5)
on page 127) is the FAC0 function defined by

Cut(x,X)(z)↔ z < x ∧X(z)

It remains to show that if a number function f is ΣB
0 -definable from L then

f can be obtained from L by composition and string comprehension. Suppose
f satisfies

y = f(~z, ~X)↔ y < t ∧ ϕ(y, ~z, ~X)

D
R

A
FT

9.2. THE THEORY VTC0 221

where t = t(~z, ~X) is a L2
A term and ϕ is a ΣB

0 (L) formula. Use the Claim to

define cϕ(y, ~z, ~X) by composition from L, and define g by

g(x, ~z, ~X) = x · cϕ(x, ~z, ~X)

Then
f(~z, ~X) = |G(t, ~z, ~X)| −· 1

where G(y, ~z, ~X) is the string comprehension of g(x, ~z, ~X). �

9.2 The Theory VTC0

The class nonuniform TC0 (or TC0/poly) is defined similarly to nonuniform
AC0 (Section 4.1), but now the circuits may contain majority gates, i.e., gates
with unbounded fan-in, which output 1 if and only if the number of 1 inputs is
more than the number of 0 inputs. Thus, a language is in nonuniform TC0 if it
is accepted by a family of polynomial size, bounded depth circuits 〈Cn〉 of this
type. In the uniform version, the circuits are specified in a uniform way. We use
FO uniformity, i.e., 〈Cn〉 is required to be in FO, so TC0 refers to FO-uniform
TC0.

In this section we develop the theory VTC0, whose Σ1
1-definable functions

are precisely functions in FTC0. VTC0 is obtained from V0 by adding a for-
mula that formalizes a polytime computation of the counting function numones,
where numones(x,X) is the number of elements of X that are < x (page 136).
(Intuitively, majority gates can be equivalently replaced by counting gates, i.e.,
gates which output the number of 1 inputs.)

In order to show that the provably total functions of VTC0 are precisely

the TC0 functions, we introduce the universal theory VTC
0
, whose language

LFTC0 consists of all TC0 functions. The theory VTC
0

is developed in the style

of V
0

(Section 5.6), and the main task here is to show that VTC
0

is a conserva-
tive extension of VTC0 (see the alternative proof of the Witnessing Theorem for
V0 in Subsection 5.6.1). Because of the additional function numones, proving
this conservativity turns out to be more involved than proving the conservativ-

ity of V
0

over V0 (Theorem 5.71). We will prove the conservativity of this type
in a more general setting; the general conservativity result proved here enables
us to develop theories for a number of other classes in the subsequent sections.
At the end of this section, we will present a proof of the Pigeonhole Principle
in VTC0.

In Subsection 9.7.2, we will provide another characterization of FTC0 using
the number summation operation. It is possible to develop an universal theory
over LFTC0 using this operation in the style of VPV and use this universal
theory to obtain the desired characterization of TC0 by VTC0. It is also

possible to show that this universal theory is equivalent to VTC
0
. We will not

go into further detail here. 1

1OR SHOULD WE ?

D
R

A
FT

222 CHAPTER 9. THEORIES FOR SMALL CLASSES

9.2.1 TC0 and VTC0

As for AC0 (review Section 4.1), there are several equivalent ways of defining
uniform TC0. The descriptive characterization of TC0 is FO(M) (i.e., FO
augmented with the majority quantifier), or FO(COUNT) (i.e., FO with the
counting quantifier). Here we use the characterization of TC0 which is based
on the notion of AC0-reducibility defined in Section 9.1. In particular, we use
the fact that the function numones(x,X) (page 136) is complete for the class
TC0.

Definition 9.7. TC0 is the AC0 closure of numones. FTC0 is the FAC0

closure of numones.

The theory VTC0 is axiomatized by V0 together with the axiom NUMONES ,
which is essentially a ΣB

1 defining axiom for numones(x,X) (see formula (6.14)
on page 136).

Below we abbreviate part of the Σ1
1-defining axiom for numones (6.14) by

introducing the ΣB
0 formula δNUM (x,X, Y), which states that Y is a “counting

array” forX , i.e., for each z ≤ x, Y (z, y) holds if and only if numones(z,X) = y.
Recall that (Y)z denotes seq(z, Y), the z-th element of the bounded sequence
of numbers coded by Y (Definition 5.55).

δNUM (x,X, Y) ≡ (Y)0 = 0 ∧
∀z < x, (X(z) ⊃ (Y)z+1 = (Y)z + 1) ∧ (¬X(z) ⊃ (Y)z+1 = (Y)z) (9.2)

Definition 9.8 (VTC0). Let NUMONES denote ∀X∀x∃Y δNUM (x,X, Y). The
theory VTC0 is axiomatized by V0 and NUMONES.

In V0, NUMONES is equivalent to the same axiom with ∃Y replaced by the
bounded quantifier ∃Y ≤ 1 + 〈x, x〉. Hence, VTC0 is a polynomial-bounded
theory.

The following fact are easily verified.

Proposition 9.9. The function numones is provably total in VTC0. VTC0 ⊆
TV0. VTC0 is finitely axiomatizable.

Our goal for the rest of this section is to prove the following theorem:

Theorem 9.10 (Definability Theorem for VTC0). a) The Σ1
1-definable

(and ΣB
1 -definable) functions in VTC0 are precisely those in FTC0.

b) The ∆1
1-definable (and ∆B

1 -definable) predicates in VTC0 are precisely
those in TC0.

Corollary 9.11. VTC0 is a proper extension of V0. In fact, VTC0 is not
ΣB

0 -conservative over V0.

Proof. The first part follows from the theorem and the fact that the number
function parity(X), which is the parity of the total number of elements in X
(Subsection 5.5.1), is not in FAC0, but parity is in FTC0, since it can be easily

D
R

A
FT

9.2. THE THEORY VTC0 223

computed using numones. The second part of the theorem holds because VTC0

proves the Pigeonhole Principle (Subsection 9.2.6 below), while this principle is
not provable in V0 (Corollary 7.21). �

Outline of the Proof of the Definability Theorem for VTC0. For part a, the state-
ment for ΣB

1 -definable functions follows from that of Σ1
1-definable functions and

Parikh’s Theorem (see Corollary 5.29). Part b of the theorem follows from a
and Theorem 5.59. The proof of part a spans over Subsections 9.2.2 – 9.2.5
(Corollaries 9.24 and 9.25). �

9.2.2 The Theory VTC
0

For this subsection, it is useful to review the theory V
0

introduced in Section 5.6.

The theory VTC
0

is defined similarly to V
0
, with the addition of numones.

We first specify the vocabulary LFTC0 of VTC
0
. The purpose is that the

symbols in LFTC0 represent precisely the functions of FTC0 and that every
function of FTC0 has a quantifier-free defining axiom. Consider the following
quantifier-free defining axioms for numones:

numones(0, X) = 0 (9.3)

X(z) ⊃ numones(z + 1, X) = numones(z,X) + 1 (9.4)

¬X(z) ⊃ numones(z + 1, X) = numones(z,X). (9.5)

The language LFTC0 is defined in the same way as LFAC0 (Definition 5.67).
Recall the definitions of pd , fSE, Fϕ,t and fϕ,t from Section 5.6.

Definition 9.12. LFTC0 is the smallest set that satisfies

1) LFTC0 includes L2
A ∪ {pd , fSE,numones}

2) For each open formula ϕ(z, ~x, ~X) over LFTC0 and term t = t(~x, ~X) of L2
A,

there is a string function Fϕ,t and a number function fϕ,t in LFTC0 .

Definition 9.13. VTC
0

is the theory over LFTC0 with the following quantifier-
free axioms: B1–B11, L1, L2 (Figure 5.1), B12′, B12′′ (5.40), SE′ (5.41),
the defining axioms (9.3), (9.4) and (9.5) for numones, and (5.37) for each
function Fϕ,t and (5.38) for each function fϕ,t of LFTC0 .

Lemma 9.14. a) For every ΣB
0 (LFTC0) formula ϕ there is an open formula

ψ of LFTC0 such that VTC
0

proves (ϕ↔ ψ).

b) The functions in LFTC0 represent precisely FTC0. A relation is in TC0

if and only if it is represented by some open LFTC0 formula.

c) VTC
0

proves the ΣB
0 (LFTC0)-COMP axiom scheme.

D
R

A
FT

224 CHAPTER 9. THEORIES FOR SMALL CLASSES

Proof. Part a is proved in the same way as Lemma 3.44. (See also Lemma 5.69.)
Part b follows from a and Definition 9.7.
For c, let ϕ(z, ~x, ~Y) be a ΣB

0 (LFTC0) formula. By a, there is a quantifier-free

formula ψ so that VTC
0 ⊢ ϕ(z, ~x, ~Y) ↔ ψ(z, ~x, ~Y). The function Fψ,y (5.37)

satisfies
∀z < y Fψ,y(~x, ~Y)(z)↔ ψ(z, ~x, ~Y)

Therefore, the string X in the comprehension axiom (5.1) for ϕ can be taken to

be Fψ,y. In other words, VTC
0

proves the comprehension axiom for ϕ. �

Corollary 9.15. VTC
0

extends VTC0.

Proof. Lemma 9.14 c shows that VTC
0

extends V0. By Lemma 5.49, VTC
0

proves Multiple Comprehension for ΣB
0 (LFTC0) formulas. Using this axiom

scheme, VTC
0

proves

∃Y ≤ (〈x, x〉+ 1)∀z ≤ x∀y ≤ x (Y (z, y)↔ y = numones(z,X))

From the defining axioms (9.3), (9.4) and (9.5) for numones, we can show that

this Y satisfies δNUM (x,X, Y) (9.2). Consequently, VTC
0

proves NUMONES .
�

9.2.3 Aggregate Functions and Conservative Extensions

Now we set out to prove that VTC
0

is conservative over VTC0. Recall the

similar result that V
0

is conservative over V0 (Theorem 5.71), whose proof
relies essentially on the fact that every LFAC0 function has a ΣB

0 (L2
A) defining

axiom (Lemma 5.40). Unfortunately, the analog (i.e., every LFTC0 function has
a ΣB

0 (numones) defining axiom) does not appear to hold. This is because, in
general, an open formula of LFTC0 is not equivalent to a ΣB

0 (numones) formula,
for the same reason that a TC0 circuit involving nested threshold gates cannot
be made polynomially equivalent to a circuit with unnested threshold gates.

Hence we must work harder to prove that VTC
0

is conservative over VTC0.

Notice that VTC
0

is defined inductively, and since VTC
0

extends VTC0,

the starting point can be taken to be VTC0. In other words, VTC
0

is obtained
from VTC0 by a series of extensions. Our goal is to show that each succes-
sive extension is conservative over the preceeding one. It will then follow from

Corollary 3.31 that VTC
0

is a conservative extension of VTC0.
More formally, the inductive definition of LFTC0 (Definition 9.12) gives rise

to a sequence of vocabularies: L0 = L2
A, L1 = L2

A ∪ {pd , fSE,numones} and
each Ln+1 (for n ≥ 1) extends Ln by either fϕ,t or Fϕ,t, where ϕ is an open
formula over Ln, and t is a L2

A term. Let VTC0(Ln) be the extension of VTC0

obtained by adding the functions in Ln and their defining axioms. We will

D
R

A
FT

9.2. THE THEORY VTC0 225

show that VTC0(Ln+1) is conservative over VTC0(Ln) by showing that the
new function in Ln+1 is provably total in VTC0(Ln). Since this new function
is already ΣB

0 -definable from Ln (see Definition 5.37) — in fact, it is definable
from Ln by a quantifier-free formula — it suffices to show that

VTC0(Ln) ⊢ ΣB
0 (Ln)-COMP (9.6)

(see Corollary 5.38 and Corollary 5.39).
We will prove (9.6) by induction on n. It turns out that we need a slightly

stronger induction hypothesis, which is stated using the notion of aggregate
functions defined below. Informally, for a string funtion F (or a number function
f), the aggregate function of F (resp. f), denoted by F ⋆ (resp. f⋆), is the string
function that gathers different values of F (resp. f). Recall the functions Row
and seq from Section 5.4 (Definition 5.50 and Definition 5.55).

Definition 9.16 (Aggregate Function). Suppose that F (x1, . . . , xk, X1, . . . , Xn)
is a polynomially bounded string function, i.e., for some L2

A term t,

|F (~x, ~X)| ≤ t(~x, | ~X|)

Then F ⋆(b, Z1, . . . , Zk, X1, . . . , Xn) is the polynomially bounded string function
that satisfies

|F ⋆(b, ~Z, ~X)| ≤ 〈b, t(|~Z|, | ~X|)〉
and

F ⋆(b, ~Z, ~X)(w)↔ ∃u < b∃v < w, w = 〈u, v〉∧
F ((Z1)

u, . . . , (Zk)
u, X

[u]
1 , . . . , X [u]

n)(v) (9.7)

Similarly, suppose that f(x1, . . . , xk, X1, . . . , Xn) is a polynomially bounded
number function, i.e., for some L2

A term t,

f(~x, ~X) ≤ t(~x, | ~X|)

Then f⋆(b, ~Z, ~X) is the polynomially bounded string function that satisfies

|f⋆(b, ~Z, ~X)| ≤ 〈b, 1 + t〉

and

f⋆(b, ~Z, ~X)(w)↔ ∃u < b, w = 〈u, f((Z1)
u, . . . , (Zk)

u, X
[u]
1 , . . . , X [u]

n)〉 (9.8)

Notice that, by (9.7), for u < b,

F ⋆(b, ~Z, ~X)[u] = F ((Z1)
u, . . . , (Zk)

u, X
[u]
1 , . . . , X [u]

n)

Also, by (9.8), for u < b,

(f⋆(b, ~Z, ~X))u = f((Z1)
u, . . . , (Zk)

u, X
[u]
1 , . . . , X [u]

n)

D
R

A
FT

226 CHAPTER 9. THEORIES FOR SMALL CLASSES

Example 9.17 (numones⋆).

numones⋆(b, Z,X) = Y ↔ (|Y | ≤ 〈b, 1 + |X |〉∧
∀w < 〈b, 1 + |X |〉, Y (w)↔ ∃u < b, w = 〈u,numones((Z)u, X [u])〉) (9.9)

In Lemma 9.23, we will show that numones⋆ is provably total in VTC0.

The next lemma strengthens Corollary 5.38 when the underlying vocabulary
contains Row and seq (see also the Extension by Bit-Definition Lemma 5.35).
Its proof is left as an exercise.

Lemma 9.18. Suppose that the vocabulary L contains Row and seq, and that
T is a theory over L that extends V0 and proves the ΣB

0 (L)-COMP axiom
scheme. Suppose that a function F (or f) is ΣB

0 -definable from L. Then the
function F ⋆ (or f⋆) is ΣB

0 (L)-definable from L. In addition, F ⋆ (resp. f⋆) is
ΣB

0 (L)-definable, and hence provably total, in T .

Exercise 9.19. Prove the lemma.

Our goal now is to prove Theorem 9.21 below, which is important in the proof
(by induction) of (9.6). First we prove the next result, which gives sufficient
conditions for ΣB

0 (L)-COMP to continue to hold in a theory after the theory
is extended by a Σ1

1-definable function. Instead of Σ1
1-definable, we state this

theorem for the more general notion of definable function (Definition 5.27).

Theorem 9.20. Let T be an extension of V0 with vocabulary L, where L
contains the functions Row and seq. Suppose that T proves ΣB

0 (L)-COMP.
Let F be a definable string function of T such that the function F ⋆ is also
definable in T . Then T (F) proves ΣB

0 (L ∪ {F})-COMP. The same is true for
a number function f definable in T for which f⋆ is definable in T .

Proof. We will consider the case of extending L by a string function F . The
case where L is extended by a number function is handled similarly by using
number variables wi instead of the string variables Wi in the argument below.

First, since T proves ΣB
0 (L)-COMP, by Lemma 5.49 it proves the Multiple

Comprehension axioms for ΣB
0 (L) formulas.

Claim For any L-terms ~s, ~T that contain variables ~z, T (F) proves

∃Y ∀z1 < b1 . . . ∀zm < bmY
[~z] = F (~s, ~T) (9.10)

Proof of the Claim. Since T proves the Multiple Comprehension axiom scheme

for ΣB
0 (L) formulas, it proves the existence of ~X such that X

[~z]
j = Tj , for

1 ≤ j ≤ n. It also proves the existtence of Zi such that (Z)〈~z〉 = si, for

1 ≤ i ≤ k. Now the value of Y that satisfies (9.10) is just F ⋆(〈~b〉, ~Z, ~X). �

D
R

A
FT

9.2. THE THEORY VTC0 227

Let L′ = L∪{F}. We show by induction on the quantifier depth of a ΣB
0 (L′)

formula ψ that T (F) proves

∃Z ≤ 〈b1, . . . , bm〉∀z1 < b1 . . . ∀zm < bm, Z(~z)↔ ψ(~z) (9.11)

where ~z are all free number variables of ψ. It follows that T (F) ⊢ ΣB
0 (L′)-COMP.

For the base case, ψ is quantifier-free. The idea is to replace every occurrence
of a term F (~s, ~T) in ψ by a new string variable W which has the intended value

of F (~s, ~T). The resulting formula is ΣB
0 (L), and we can apply the hypothesis.

Formally, suppose that F (~s1, ~T1), . . . , F (~sk, ~Tk) are all occurrences of F in

ψ. Note that the terms ~si, ~Ti may contain ~z as well as nested occurrences of F .
Assume further that ~s1, ~T1 do not contain F , and for 1 < i ≤ k, any occurrence
of F in ~si, ~Ti must be of the form F (~sj , ~Tj), for some j < i. We proceed to
eliminate F from ψ by using its defining axiom.

Let W1, ...,Wk be new string variables. Let
−→
s′1 = ~s1,

−→
T ′

1 = ~T1, and for

2 ≤ i ≤ k, −→s′i and
−→
T ′
i be obtained from ~si and ~Ti respectively by replacing every

maximal occurrence of any F (~sj , ~Tj), for j < i, by W
[~z]
j . Thus F does not occur

in any
−→
s′i and

−→
T ′
i but for i ≥ 2,

−→
s′i and

−→
T ′
i may contain W1, . . . ,Wi−1.

By claim above, for 1 ≤ i ≤ k, T (F) proves the existence of Wi such that

∀z1 < b1 . . .∀zm < bm, W
[~z]
i = F (

−→
s′i ,
−→
T ′
i) (9.12)

Let ψ′(~z,W1, . . . ,Wk) be obtained from ψ(~z) by replacing each maximal occur-

rence of F (~si, ~Ti) by W
[~z]
i , for 1 ≤ i ≤ k. Then, by Multiple Comprehension for

ΣB
0 (L) and the fact that L contains Row ,

T ⊢ ∃Z ≤ 〈b1, . . . , bm〉∀z1 < b1 . . . ∀zm < bm, Z(~z)↔ ψ′(~z,W1, . . . ,Wk).

Such Z satisfies (9.11) when each Wi is defined by (9.12).
The induction step is straightforward. Consider for example the case ψ(~z) ≡

∀x < tλ(~z, x). By the induction hypothesis,

T (F) ⊢ ∃Z ′∀z1 < b1 . . . ∀zm < bm∀x < t, Z ′(~z, x)↔ λ(~z, x).

Now, by Lemma 5.49

V0 ⊢ ∃Z∀z1 < b1 . . . ∀zm < bm, Z(~z)↔ ∀x < tZ ′(~z, x).

Thus T (F) ⊢ ∃Z∀~z < ~bZ(~z)↔ ψ(~z). �

Now we extend the above theorem for the case where the new functions
F/f are actually provably total (i.e., Σ1

1-definable) in T . The most important
application of this strengthening is the proof of (9.6), which, as discussed before,
implies that VTC0 is conservative over VTC0.

Theorem 9.21. Let T be an extension of V0 with the vocabulary L, where L
contains Row and seq. Suppose that T and L satisfy

D
R

A
FT

228 CHAPTER 9. THEORIES FOR SMALL CLASSES

a) T proves the ΣB
0 (L)-COMP, and

b) For each ΣB
0 (L) formula θ there is a Σ1

1(L2
A) formula η such that T ⊢

θ ↔ η.

Let F (or f) be a provably total string function in T such that the function F ⋆

(or f⋆) is also provably total in T . Then a and b hold with T (F) (resp. T (f))
replacing T , and L ∪ {F} (resp. L ∪ {f}) replacing L.

In our applications of this theorem, the theory T is always polynomial-
bounded; therefore, the formula η in b can be taken to be ΣB

1 (L2
A) (as opposed to

Σ1
1(L2

A)). Furthermore, VTC
0
, as well as most of our other universal theories,

are obtained by inductively adding new functions Fn+1 or fn+1, which are ΣB
0 -

definable from the current language Ln. Corollary 5.38 and Lemma 9.18 now
become handy, since they show that F and F ⋆ (resp. f and f⋆) are provably
total in VTC0(Ln).

Proof of Theorem 9.21. We prove for the case of the string function F . The
case for the number function f is similar. First, T (F) and L∪{F} satisfy a by
Theorem 9.20. We show that they also satisfy b. Suppose that

θ ≡ Q1z1 < r1 . . .Qnzn < rnψ(~z)

is a ΣB
0 (L ∪ {F}) formula, where ψ is quantifier-free. Let ~si, ~Ti,

−→
s′i ,
−→
T ′
i and

ψ′(~z,W1, . . . ,Wk) be as described in the proof of Theorem 9.20. Define

θ′(W1, ...,Wk) ≡ Q1z1 < r1 . . .Qnzn < rnψ
′(~z,W1, ...,Wk).

For 1 ≤ i ≤ k let λi be the formula

∀z1 < b1 . . . ∀zm < bmϕ(
−→
s′i ,
−→
T ′
i ,W

[~z]
i)

Then, θ is equivalent in T (F) to

∃W1 . . . ∃Wk, ((
∧
λi) ∧ θ′(W1, . . . ,Wk))

By property b for T and L, we may replace the first conjunct in the scope of
the string quantifiers by a Σ1

1 formula, and thus obtain the required Σ1
1 formula

η in b for T (F) and L ∪ {F}. �

The next corollary summarizes our discussion so far.

Corollary 9.22. Suppose that T0 and L0 satisfy the hypotheses a and b of
Theorem 9.21. Let T0 ⊂ T1 ⊂ T2 ⊂ . . . be a sequence of extensions of T0, where
each Ti+1 is obtained from Ti by adding the defining axiom for a function F or
f that is ΣB

0 -definable from Li, the vocabulary of Ti. Let

T∞ =
⋃

i≥0

Ti

D
R

A
FT

9.2. THE THEORY VTC0 229

and let L∞ be the vocabulary of T∞. Then T∞ is a conservative extension of T0,
and the additional functions in T∞ are Σ1

1(L2
A)-definable in T0. Also T∞ and

L∞ satisfy the hypotheses a and b of Theorem 9.21.

Proof. First, by the hypothesis that T0 proves ΣB
0 (L0)-COMP, it is easy to

prove by induction on i, using Corollary 5.38, Lemma 9.18 and Theorem 9.21,
that Ti and Li satisfy the properties a, b of Theorem 9.21.

It then follows from Corollary 5.38 that the new function in Ti+1 is provably
total in Ti, and therefore Ti+1 is a conservative extension of Ti. As a result, T∞
is conservative over T0 (Corollary 3.31).

Finally, the graph of each function in T∞ has a ΣB
0 (Li) definition for some

i. This definition is provably equivalent in Ti to a Σ1
1(L2

A) formula, by the
property stated in b of Theorem 9.21. Consequently, every function in T∞ is
Σ1

1(L2
A)-definable in T0, since Ti is conservative over T0. �

9.2.4 The Conservativity of VTC
0

over VTC0

The theory VTC
0

is obtained from T0 = VTC0(numones ,Row , seq) by a se-
ries of extension just as described in Corollary 9.22. The final step of proving

the conservativity of VTC
0

over VTC0 is to show that T0 satisfies the hy-
potheses a and b of Theorem 9.21. For this we apply the same theorem for
T = VTC0(Row , seq, left , right). We need the following lemma.

Lemma 9.23. The function numones⋆ is Σ1
1-definable in VTC0(Row , seq).

Proof. It suffices to show that for any number term t(u) over L2
A ∪ {Row , seq},

VTC0(Row , seq) ⊢ ∃Y ∀u < b δNUM (t(u), X [u], Y [u])

To prove this, the idea is to construct Y using ΣB
0 (Row)-COMP from the

counting array Y ′ for a “big” string X ′, where X ′ is the concatenation of the
initial segments of the rows X [0], . . . , X [b−1] of X . Formally, let s be an L2

A

number term that dominates t(u), for all u < b. Let X ′ be defined by 2

X ′(us+ z)↔ z < t(u) ∧X [u](z), for z < s, u < b.

In other words, the bit string

X ′(us) . . . X ′(us+ t(u)− 1)

is a copy of
X [u](0) . . . X [u](t(u)− 1)

and X ′(us+ t(u)), . . . , X ′((u + 1)s− 1) are all 0. Therefore, for z ≤ t(u),

numones(z,X [u]) = numones(us+ z,X ′)− numones(us,X ′).
2USE SUBSTRING FUNCTION FROM CHAPTER 8 HERE

D
R

A
FT

230 CHAPTER 9. THEORIES FOR SMALL CLASSES

Let Y ′ be the counting array for X ′, i.e., Y ′(z, y) ↔ numones(z,X ′) = y.
Then,

Y [u](z, y)↔ y + numones(us,X ′) = numones(us+ z,X ′)

Hence,

Y [u](z, y)↔ ∃y1, y2 ≤ |X ′|, Y ′(us, y1) ∧ Y ′(us+ z, y2) ∧ y + y1 = y2

Consequently, Y exists in V0 by ΣB
0 Multiple Comprehension. �

The complete proof of the conservativity of VTC
0

over VTC0 is presented
in the next corollary.

Corollary 9.24. a) VTC
0

is a conservative extension of VTC0.

b) Every function in LFTC0 is Σ1
1(L2

A)-definable in VTC0.

Proof. Let T0 = VTC0(Row , seq,numones). It suffices to show that T0 satisfies

the hypotheses a, b of Theorem 9.21. Then VTC
0

is the theory T∞ obtained
from T0 as in Corollary 9.22. Consequently, both parts a and b of Corollary 9.24
follow from Corollary 9.22 and the fact that T0 is a conservative extension of
VTC0 (because the functions Row , seq and numones are definable in VTC0).

Now we show that T0 satisfies the hypotheses a and b of Theorem 9.21. Let
T = VTC0(Row , seq). Then T0 = T (numones). Since Row and seq are AC0

functions and T extends V0, T satisfies hypotheses a and b of Theorem 9.21
(see the FAC0 Elimination Lemma 5.73). Also, it follows from Lemma 9.23 that
numones⋆ (9.9) is Σ1

1-definable in T . Thus, by Theorem 9.21, T0 also satisfies
the hypotheses a, b there. �

The above corollary proves one direction of (part a of) the Definability Theo-
rem for VTC0 9.10. The other direction is the Witnessing Theorem for VTC0,
which is stated and proved in the next Subsection.

9.2.5 The Witnessing Theorem for VTC0

Recall that each string function F ∈ FTC0 has a defining axiom according
to our construction of LFTC0 (see Definition 9.12 and Lemma 9.14 b). In fact,
there is a finite sequence of FTC0 functions F1 = Row , . . . , Fn that are involved
in defining F . Let LF denote this sequence of functions (including F). Similar

to Corollary 9.24, for each F ∈ FTC0, VTC
0

is a conservative extension of the
theory VTC0(LF).

Corollary 9.25 (Witnessing Theorems for VTC0). For each theorem

∃~Y ϕ(~x, ~X, ~Y) of VTC0, where ϕ is ΣB
0 , there is a string function ~F ∈ FTC0

such that
VTC0(LF) ⊢ ϕ(~x, ~X, ~F (~x, ~X)).

D
R

A
FT

9.2. THE THEORY VTC0 231

Proof. This is an application of the Herbrand Theorem 4.32, using the fact that

ϕ is equivalent in V
0

to a quantifier-free LFAC0 formula (Lemma 5.69), and that
the symbols in LFTC0 represent precisely the functions of FTC0 (Lemma 9.14
b). The proof is similar to the proof of the second proof of Parikh’s Theorem
(page 52). �

9.2.6 Proving the Pigeonhole Principle in VTC0

In this subsection we present a proof of the Pigeonhole Principle (Subsection
7.1.2) in VTC0. From this and the independence of PHP from V0 (Corol-
lary 7.21), it follows that VTC0 is a proper extension of V0 (see the proof of
Corollary 9.11). (Although this also follows from the fact that numones is not
an AC0 function.) In the next chapter we will show that each ΣB

0 theorem of
VTC0 translates into a family of tautologies having polysize TC0-Frege proofs.
It will follow that the family PHP (Definition 7.12) has polysize TC0-Frege
proofs. This separates bPK from TC0-Frege. On the other hand, we will show
(Subsection 9.5.3) that VNC1 extends VTC0. Therefore PHP is provable in
VNC1. The Propositional Translation Theorem for VNC1 then allows us to
derive a theorem of Buss that PHP has polysize Frege proofs. This subsection
is independent of the remaining of this chapter.

Recall (Example 7.18) that PHP(a,X) is the following formula

∀x ≤ a∃y < aX(x, y) ⊃ ∃x ≤ a∃z ≤ a∃y < a(x 6= z ∧X(x, y) ∧X(z, y))

Theorem 9.26. VTC0 ⊢ PHP(a,X).

Proof. We will actually prove that VTC0 ⊢ PHP′(a,X), where PHP′(a,X)
is the formula

∀x ≤ a∃y < aX(y, x) ⊃ ∃x ≤ a∃z ≤ a∃y < a(x 6= z∧X(y, x)∧X(y, z)) (9.13)

This will show that VTC0 ⊢ PHP(a,X), since PHP(a,X) is just PHP′(a,Xt),
where Xt is the “transpose” of X :

Xt(y, z)↔ X(z, y) for y < a, z ≤ a

Intuitively, the premise of (9.13) implies that the total number of elements
in all a rows of X is at least (a + 1), because the union of these rows contains
all number that are ≤ a. We show that there is a row of X that has at least two
elements, which implies the conclusion of (9.13). Below, we will formalize the
argument that if every row of X contains at most one element, then the total
number of elements in all a rows X is at most a, which is a contradiction. We
need the following functions, all except the last one are in fact in FAC0:

• Union: X ∪ Y

(X ∪ Y)(z)↔ z < |X |+ |Y | ∧ (X(z) ∨ Y (z))

D
R

A
FT

232 CHAPTER 9. THEORIES FOR SMALL CLASSES

• Multiple Union: We interpretX as an array of a rows. Then MultUnion(a,X)
is the union of the rows X [x], for x < a:

MultUnion(a,X)(z)↔ z < |X | ∧ ∃x < aX [x](z)

• Concatenation: Suppose that X codes an array of a rows. Then the func-
tion Concat(a, b,X) is the concatenation of the initial segments bounded
by b of the rows X [x] of X , for x < a:

Concat(a, b,X)(bx+ y)↔ x < a ∧ y < b ∧X [x](y)

• Total Number of Bits in an Array: Again, X is viewed as coding an array
of a rows. Then totNum(a, b,X) is the total number of elements of the
initial segments (bounded by b) of the rows X [x] of X , for x < a:

totNum(a, b,X) = numones(ab,Concat(a, b,X))

Exercise 9.27. Show that the following are theorems of VTC
0
:

a) numones(b,X ∪ Y) ≤ numones(b,X) + numones(b, Y).

b) totNum(a+ 1, b,X) = totNum(a, b,X) + numones(b,X [a]).

c) numones(b,MultUnion(a,X)) ≤ totNum(a, b,X).

d) ∀x < a numones(b,X [x]) ≤ u ⊃ totNum(a, b,X) ≤ au.

Now the total number of elements that are ≤ a in all a rows of X is
totNum(a, a+ 1, X). Suppose, by way of contradiction, that

∀x < a numones(a+ 1, X [x]) ≤ 1

Then, by d of the exercise above, we have

totNum(a, a+ 1, X) ≤ a

It follows from c that

numones(a+ 1,MultUnion(a,X)) ≤ a

However, it is obvious that ∀z ≤ a MultUnion(a,X)(z). By a simple induction
argument, this implies

numones(a+ 1,MultUnion(a,X)) = a+ 1

a contradiction. �

D
R

A
FT

9.3. THEORIES FOR OTHER SUBCLASSES OF P 233

9.3 Theories for Other Subclasses of P

In this section, we show how to develop finitely axiomatizable theories for a
number of other uniform subclasses of P in the style of VTC0. Consider a
polytime function F , and let C be the class of two-sorted relations which are
AC0-reducible to F . The class FC (Definition 5.16) can be equivalently defined
as the FAC0 closure of F (Definition 9.2). In the case of TC0, F is essentially
the string function computing the “counting array” Y in (9.2) (page 222).

The theory VC defined in this section is similar to VTC0 in the sense that
VC is axiomatized by V0 together with a single axiom AXIOMF that formalizes
a polytime algorithm that computes F . To show that the functions in FC are
precisely the provably total functions of VC we will proceed just as in Section
9.2: here we will introduce the universal theory VC, whose vocabulary consists
precisely of functions of FC, and show that VC is a conservative extension of
VC.

As in the case of VTC0 and VTC
0
, the main task here is to show that

VC is conservative over C. We will use the results from Subsection 9.2.3. In
particular, we will need the aggregate function F ⋆ of F to be provably total in
VC. Thus, in general, AXIOMF is indeed a defining axiom for F ⋆ instead of
F .

Another instance of VC is the finite axiomatization of TV0 presented in
Subsection 8.2.3, where TV0 is shown to be equal to V0 + MCVP . In this
case, the function F can be viewed as the string function that evaluates the
gate values of a monotone circuit on a given input (a complete problem for P).
Notice that MCVP defines just F , but it possible to define the function F ⋆ in
V0 + MCVP . The same is true for VTC0 — we show in Lemma 9.23 that
numones⋆ is provably total in VTC0. In fact, for each class that we consider
in the following sections, the additional axiom is essentially a defining axiom
for F , and thus is simpler than the axiom AXIOMF defined in this section. In
each case, we are able to show that F ⋆ is definable in the corresponding theory.
Each proof is, however, rather ad hoc.

9.3.1 The Theories VC and VC

The quantifier-free defining axiom for F is obtained from Cobham’s recursion
theoretic characterization of the polytime functions (Theorem 6.16). The proof
of that theorem actually shows that each polytime function can be obtained
from AC0 functions by composition and at most one application of the limited
recursion operation (Definition 6.15). In each complexity class of interest it
turns out that a suitable function F complete for the class can be defined by
such a recursion of the form (e.g., Conf

M
in the proof of Theorem 6.16)

F (0, X) = Cut(t(0, |X |), Init(X)) (9.14)

F (x+ 1, X) = Cut(t(x+ 1, |X |),Next(x,X, F (x,X))) (9.15)

where Cut (6.5), Init(X) and Next(x,X, Y) are AC0 functions, t(x, y) is a
polynomial. (For example, F (x,X) is the configuration at time x of a polytime

D
R

A
FT

234 CHAPTER 9. THEORIES FOR SMALL CLASSES

Turing machine that solves some complete problem for a given class.) Notice
that the above defining axioms for F are quantifier-free in LFAC0 .

Now LFC and VC are defined in the same way as LFTC0 and VTC
0

(Def-
inition 9.12 and Definition 9.13). Recall the definitions of Fϕ,t and fϕ,t from
Section 5.6.

Definition 9.28 (LFC and VC). The language LFC is the smallest set that
satisfies

1) LFC includes LFAC0 ∪ {F}
2) For each open formula ϕ(z, ~x, ~X) over LFC and term t = t(~x, ~X) of L2

A,
there is a string function Fϕ,t and a number function fϕ,t in LFC.

The theory VC is the extension of V0 where the additional axioms include:
the defining axioms (9.14), (9.15) for F , and (5.37)/ (5.38) for each (new) func-
tion Fϕ,t/fϕ,t of LFC.

The next lemma is analogous to Lemma 9.14, and its proof is left as an
exercise.

Lemma 9.29. a) For every ΣB
0 (LFC) formula ϕ there is a quantifier-free

formula ψ of LFC such that VC ⊢ ϕ↔ ψ.

b) The functions in LFC represent precisely FC. A relation is in C if and
only if it is represented by some open LFC formula.

c) VC proves the ΣB
0 (LFC)-COMP axiom scheme.

Exercise 9.30. Prove the lemma.

Now we define AXIOMF . This axiom specifies the (polytime) computa-
tion of multiple (i.e., polynomially many) values of F (x,X). In particular, let
δF (a, b,X, Y) be the formula stating that Y encodes simultaneously the b re-
cursive computations of F (a,X [0]), . . . , F (a,X [b−1]): Y [u,x] = F (x,X [u]) for all
x ≤ a, u < b. More precisely,

δF (a, b,X, Y) ≡ ∀u < b, Y [u,0] = Cut(t(0, |X [u]|), Init(X [u])) ∧
∀x < a, Y [u,x+1] = Cut(t(x + 1, |X [u]|),Next(x,X [u], Y [u,x])) (9.16)

Here we do not introduce new functions Cut , Init , Next , but tacitly use their
ΣB

0 (L2
A) bit definitions instead (see the FAC0 Elimination Lemma 5.73).

Definition 9.31. Let AXIOMF be ∀a∀b∀X∃Y δF (a, b,X, Y). The theory VC
has vocabulary L2

A and is axiomatized by V0 and the axiom AXIOM F .

Again, AXIOM F is equivalent in V0 to the same axiom with |Y | bounded by
〈b, t(a, |X |)〉. Also, since V0 is finitely axiomatizable, so is VC. The following
proposition is immediate from definition.

Proposition 9.32. a) VC ⊆ TV0.

D
R

A
FT

9.3. THEORIES FOR OTHER SUBCLASSES OF P 235

b) The function F ⋆ is Σ1
1-definable in VC.

Corollary 9.33. a) VC is a conservative extension of VC.

b) Every function in LFC is Σ1
1(L2

A) definable in VC.

Proof. First we show that VC extends VC. Since VC proves ΣB
0 (LFC)-COMP

(Lemma 9.29 c), it also proves the Multiple Comprehension for ΣB
0 (LFC) for-

mulas (Lemma 5.49). Hence VC proves AXIOMF , i.e., VC extends VC.
The remaining parts of the corollary are proved in almost the same way

as Corollary 9.24. First, we apply Theorem 9.21, using the fact that F ⋆ is Σ1
1-

definable in VC(LFAC0) (Proposition 9.32 above). This shows that VC(LFAC0∪
{F}) is conservative over VC(LFAC0) and satisfies the hypotheses of Theorem
9.21. Next, we apply Corollary 9.22 for T0 = VC(LFAC0 ∪{F}) and T∞ = VC.
It follows from both steps that VC is conservative over VC(LFAC0) and every
function in LFC is Σ1

1(L2
A) definable in VC(LFAC0). Finally, the conclusions

follow from the fact that VC(LFAC0) is conservative over VC. �

Similar to the Witnessing Theorem for VTC0 9.25 we have:

Corollary 9.34 (Witnessing Theorem for VC). For each theorem ∃~Zϕ(~a, ~α, ~Z)

of VC, where ϕ is a ΣB
0 formula, there are functions ~F of LFC such that

VC ⊢ ∀~x∀ ~X ϕ(~x, ~X, ~F (~x, ~X)).

We summarize the characterization of C by VC in the next corollary.

Corollary 9.35 (Definability Theorem for VC). a) The Σ1
1-definable

(and ΣB
1 -definable) functions in VC are precisely those in LFC.

b) The ∆1
1-definable (and ∆B

1 -definable) predicates in VC are precisely those
in C.

9.3.2 The ΣB
0 Replacement Rule and Axiom in VC

In this subsection we discuss the ΣB
0 replacement rule. In general, if a theory T

admits this rule, then the string functions f⋆/F ⋆ are provably total in T , given
that f/F are provably total in T .

Definition 9.36 (Replacement Rule). Suppose that T is a theory over L,
where either L = L2

A or L2
A ∪ {Row} ⊆ L. Let Φ be a set of L-formulas. Then

T is said to admit the Φ replacement rule if whenever T proves

∀z < b∃Y ϕ(z, Y) (9.17)

for a formula ϕ ∈ Φ, ϕ may contain other free variables, then T also proves

∃Y ∀z < b ϕ(z, Y [z]) (9.18)

D
R

A
FT

236 CHAPTER 9. THEORIES FOR SMALL CLASSES

Note that T admits the Φ replacement rule whenever it proves the Φ-REPL
axiom scheme (Definition 6.18). In general the converse is not true. For example,
V0 admits the ΣB

0 replacement rule as shown in the lemma below, but it does
not proves ΣB

0 -REPL.
We are mainly interested in the case where Φ = ΣB

0 (L). Then a for theory T
which extends V0, “T admits the ΣB

0 (L) replacement rule” implies that f⋆/F ⋆

are also Σ1
1-definable in T , for Σ1

1-definable functions f/F . The converse is true
when T is a universal theory. We prove this for VC. It will follow also that
VC admits the ΣB

0 replacement rule.

Lemma 9.37. a) The theory VC admits the ΣB
0 (LFC) replacement rule.

b) VC admits the ΣB
0 replacement rule.

Proof. Part b follows from a and the fact that VC is a conservative extension
of VC. We prove a. Suppose that VC proves (9.17), where ϕ is a ΣB

0 (LFC)
formula. Then by the Witnessing Theorem for VC 9.34, there is a function
F (z) of LFC such that

VC ⊢ ϕ(z, F (z))

The existence of Y in (9.18) is witnessed by the function G(b), where G(b)[z] =
F (z), for z < b. The function G(b) has the ΣB

0 -bit-definition:

G(b)(z, u)↔ z < b ∧ u < t(z) ∧ F (z)(u)

where t is a bounding term for F (z). Thus VC also proves (9.18). �

9.4 Theories for AC0(m) and ACC

For each m ∈ N, m ≥ 2, the class nonuniform/uniform AC0(m) are defined
just as nonuniform/uniform TC0 but using the modulo m gates instead of the
majority gates. A modulo m gate has unbounded fan-in and outputs 1 if and
only if the total number of 1 inputs is exactly 1 modulo m.

In descriptive complexity, uniform AC0(m) (or just AC0(m)) can be char-
acterized using the mod(m) quantifier [?]. Here we define AC0(m) using the
number function modm(x,X), where

modm(x,X) = numones(x,X) mod m

Definition 9.38. AC0(m) is the class of relations that are AC0-reducible to
modm(x,X) and FAC0(m) is the class of functions which are AC0-reducible to
modm. Also,

ACC =
⋃

i≥2

AC0(m), FACC =
⋃

i≥2

FAC0(m)

D
R

A
FT

9.4. THEORIES FOR AC0(M) AND ACC 237

In this section we will define the theory V0(m) that characterizes AC0(m).
(Then VACC =

⋃
V0(m).) Following the discussion in Section 9.3, we will

first define the universal theory V
0
(m). Here, we use the following quantifier-

free defining axioms for modm (we identify the natural number m with the
corresponding numeral m):

modm(0, X) = 0 (9.19)

X(x) ∧modm(x,X) + 1 < m ⊃ modm(x+ 1, X) = modm(x,X) + 1 (9.20)

X(x) ∧modm(x,X) + 1 = m ⊃ modm(x+ 1, X) = 0 (9.21)

¬X(x) ⊃ modm(x+ 1, X) = modm(x,X) (9.22)

Definition 9.39. For each m ≥ 2, LFAC0(m) is the smallest set that satisfies

1) LFAC0(m) includes L2
A ∪ {pd , fSE,modm}

2) For each open formula ϕ(z, ~x, ~X) over LFAC0(m) and term t = t(~x, ~X)
of L2

A, there is a string function Fϕ,t and a number function fϕ,t (see
Equations (5.37) and (5.38) in Section 5.6) in LFAC0(m).

The universal theory V
0
(m) is axiomatized by the axioms B1–B11, L1, L2

(Figure 5.1), B12′, B12′′ (5.40), SE′ (5.41) and (9.19) – (9.22) Also, LFACC =⋃{LFAC0(m) | m ≥ 2}, and VACC =
⋃{V0

(m) | m ≥ 2}.

Proposition 9.40. The symbols in LFAC0(m) and LFACC represent precisely

the functions of FAC0(m) and FACC, respectively. A relation is in AC0(m)
or ACC if and only if it is represented by an open formula in LFAC0(m) or
LFACC, respectively.

For m ≥ 2, the theory V0(m) is defined using the formula δMODm
(x,X, Y),

which states that Y is a “counting modulo m” array for X :

δMODm
(x,X, Y) ≡ Y (0, 0) ∧ ∀z < x,

(X(z) ⊃ (Y)z+1 = ((Y)z + 1) mod m)) ∧ (¬X(z) ⊃ (Y)z+1 = (Y)z).

Since (y mod m) is an AC0 number function, δMODm
(x,X, Y) is equivalent

to a ΣB
0 (L2

A) formula (by FAC0 Elimination Lemma 5.73). Indeed, if ϕ(y) is a
ΣB

0 formula, we can take ϕ(y mod m) as an abbreviation for the ΣB
0 formula

∃r < m, ∃q ≤ y, y = qm+ r ∧ ϕ(r).

Definition 9.41. For each m ≥ 2, let MODm ≡ ∀X∀x∃Y δMODm
(x,X, Y).

Then V0(m) has vocabulary L2
A and is axiomatized by V0 and the axiom MODm.

Also, VACC =
⋃{V0(m) | m ≥ 2}.

Note that the string Y in MODm can be bounded by |Y | ≤ 1 + 〈x,m〉.
The next excercise is to show that mod⋆m is provably total in V0(m); it can

be proved in the same way as Lemma 9.23.

D
R

A
FT

238 CHAPTER 9. THEORIES FOR SMALL CLASSES

Exercise 9.42. Let T be V0(m) extended by the defining axioms for Row, seq,
left and right. Show that T proves the following general form of MODm (cf.
Lemma 9.23):

∃Y ∀u < b δMODm
(t(u), X [u], Y [u])

for any number term t(u) over L2
A ∪ {Row , seq , left , right}.

The characterization of AC0(m) by V0(m) is left as an exercise.

Exercise 9.43. For each m ≥ 2:

a) V
0
(m) is a conservative extension of V0(m).

b) The Σ1
1-definable (and ΣB

1 -definable) functions in V0(m) are precisely
those in FAC0(m).

c) The ∆1
1-definable (and ∆B

1 -definable) predicate in V0(m) are precisely
those in AC0(m).

Exercise 9.44. a) The Σ1
1-definable (and ΣB

1 -definable) functions of VACC
are precisely the functions in FACC. The ∆1

1-definable (and ∆B
1 -definable)

predicate of VACC are precisely the predicate in ACC.

b) If VACC is finitely axiomatizable, then ACC = AC0(m), for some m.

c) If VACC ⊢ NUMONES, then TC0 = AC0(m), for some m.

d) VACC is a conservative extension of VACC.

e) VACC ⊆ VTC0.

9.5 Theories for NCk and ACk

Recall the definition of AC0 using circuit families in Section 4.1. In general,
for k ≥ 0, FO-uniform ACk (or just ACk) is the class of problems decidable
using an FO-uniform family 〈Cn〉 of polynomial size Boolean circuits, where
each circuit Cn has n input bits and (logn)k depth, and the gates in Cn have
unbounded fan-in. The class FO-uniform NCk (or simply NCk) is defined the
same, but now the gates in Cn must have bounded fan-in. The correspond-
ing function classes FACk and FNCk are defined using circuits with multiple
outputs. Also,

NC =
⋃

k≥1

NCk =
⋃

k≥1

ACk, FNC =
⋃

k≥1

FNCk =
⋃

k≥1

FACk

Note that
NC0 (AC0 (NC1 ⊆ AC1 ⊆ NC2 ⊆ . . .

Note also that NC1 coincides with Alogtime, the class of languages com-
putable by alternating Turing machines in logarithmic time. Buss [?] shows
that the Boolean sentence value problem is complete for Alogtime. Here we
use the fact that the problem of evaluating a nicely encoded log-depth monotone
Boolean circuit — i.e. a “balanced” formula, given its input, is complete for
NC1 under AC0 reduction.

D
R

A
FT

9.5. THEORIES FOR NCK AND ACK 239

In general, for k ≥ 1, ACk is the class of relations which are AC0-reducible
to the Monotone Circuit Value Problem, where the circuit has unbounded fan-in
and depth bounded by (logn)k. Here, the circuit can be encoded as described
in Subsection 8.2.3. For k ≥ 2, NCk has the same characterization, but the
circuit has bounded fan-in.

Notice that the encoding of a circuit, as presented in Subsection 8.2.3, does
not explicitly specify the connection (i.e., “wires”) in the circuit. It is not known
whether a log-depth circuit can be evaluated in NC1 when it is so encoded.
Thus, it is not known whether the definition of VNCk for k ≥ 2 below will give
VNC1 if we simply replace k by 1.

This section is organized as follows. First we introduce the theory VNC1,
and then show that it extends the theory VTC0. Finally we present the theories
VACk, for k ≥ 1, and VNCk, for k ≥ 2.

9.5.1 The Theory VNC1

Consider a log depth, bounded fan-in, monotone Boolean circuit C whose un-
derlying graph is a binary tree. Then C can be encoded “nicely” as follows.
Suppose that C has (2a − 1) gates, where the a input gates are numbered
a, . . . , 2a − 1, and the output gate is numbered 1. Furthermore, the inputs to
an internal gate x (where x < a) are from gates numbered 2x and 2x+1. Thus,
to fully specify C we need only to specify the type of each internal gate. This
specification is given by a string variable G: if G(x) holds then gate x is an
∧-gate, otherwise it is an ∨-gate.

We formalize a polytime algorithm that computes the output of C, given
inputs I(0), . . . , I(a−1). We use the polytime algorithm presented in Subsection
8.2.3, but note that here the circuits is specified in a special way. In the following
formula, Y (x) is the value of gate x, for x < 2a. Define

δMFVP (a,G, I, Y) ≡ ∀x < a, Y (x+ a)↔ I(x) ∧ 0 < x ⊃
Y (x)↔ [(G(x) ∧ Y (2x) ∧ Y (2x+ 1)) ∨ (¬G(x) ∧ (Y (2x) ∨ Y (2x+ 1)))]

Figure 9.1 depicts a computation of (the bits of) Y for a = 6. Here the “inputs”
I(0), . . . , I(5) are assigned to Y (6), . . . , Y (11), respectively. Also Y (1), . . . , Y (5)
are computed by “gates” specified by G(1), . . . , G(5) (not shown).

Definition 9.45 (VNC1). Let

MFVP ≡ ∀a∀G∀I∃Y δMFVP (a,G, I, Y) (9.23)

The theory VNC1 has vocabulary L2
A and is axiomatized by V0 and the axiom

MFVP.

In V0, MFVP is equivalent to the same axiom with |Y | bounded by 2a.

In order to define the universal theory VNC
1

in the style of VTC
0
, we use

the function Fval that computes Y in the axiom MFVP .

D
R

A
FT

240 CHAPTER 9. THEORIES FOR SMALL CLASSES

Y (6) Y (7)

I(0) I(1)

Y (8) Y (9)

I(2) I(3)

Y (10) Y (11)

I(4) I(5)

Y (3) Y (4) Y (5)

Y (2)

Y (1)

Figure 9.1: Computing Y which satisfies δMFVP (a,G, I, Y) for a = 6

Exercise 9.46. Let Fval (x,G, I) be defined by

Fval (x,G, I) = Y ↔ |Y | ≤ 2a ∧ δMFVP (x,G, I, Y)

Give a quantifier-free defining axiom for Fval in the vocabulary LFAC0 .

The function Fval⋆ is Σ1
1-definable in VNC1 (Exercise 9.56). It follows

that VNC1 is precisely the theory VC as described in Subsection 9.3.1, where
F = Fval and C is the AC0 closure of Fval , i.e., C = NC1. We obtain:

Corollary 9.47. Let LFNC1 and VNC
1

be defined as in Definition 9.28 but
using Fval instead of F .

a) The functions in LFNC1 are precisely functions in FNC1. A relation is
in NC1 iff it is represented by a ΣB

0 (LFNC1) formula.

b) VNC
1

is a conservative extension of VNC1.

c) The Σ1
1-definable (and ΣB

1 -definable) functions in VNC1 are precisely
those in FNC1.

d) The ∆1
1-definable (and ∆B

1 -definable) predicate in VNC1 are precisely
those in NC1.

The theory VNC1 was first defined in [?, ?] as a two-sorted version of Arai’s
single-sorted theory AID [?]. It was defined to be axiomatized by V0 and the
axiom scheme ΣB

0 -TreeRec, which is the set of formulas of the form

∃Y ∀x < a,

(Y (x+ a)↔ ψ(x)) ∧ (0 < x ⊃ (Y (x)↔ ϕ(x)[Y (2x), Y (2x+ 1)])) (9.24)

where ψ(x) is a ΣB
0 formula, ϕ(x)[p, q] is a ΣB

0 formula which contains two
Boolean variables p and q, and Y does not occur in ψ and ϕ. We will show that
the two definitions of VNC1 are in fact equivalent.

START

D
R

A
FT

9.5. THEORIES FOR NCK AND ACK 241

Theorem 9.48. VNC1 can be alternatively axiomatized by V0 together with
the ΣB

0 -TreeRec axiom scheme.

Proof Sketch. First, it is easy to see that MFVP is an instance of the ΣB
0 -TreeRec

axiom scheme. Therefore it remains to show that VNC1 proves this axiom
scheme.

The idea is to construct a large tree (a′, G, I) so that from Fval (a′, G, I)
we can extract Y satisfying (9.24) using ΣB

0 -COMP. The key part of this
construction is to show that Y (x) can be computed uniformly using binary
subtrees of constant depth. Since the desired subtrees do not contain ¬-gates,
we will also construct subtrees that compute ¬Y (x).

Formally, there are in total 16 Boolean functions

β1, . . . , β8, β9 ≡ ¬β1, . . . , β16 ≡ ¬β8

in two variables p, q. Each βi can be computed by a binary and-or tree of depth
2 with inputs among 0, 1, p, q, ¬p, ¬q. For 1 ≤ i ≤ 16, let Xi be defined by

Xi(x)↔ (x < a ∧ ϕ(x)[p, q]↔ βi(p, q))

Then,

ϕ(x)[p, q]↔
16∨

i=1

(Xi(x) ∧ βi(p, q))

Consequently, ϕ(x)[p, q] can be computed by a binary and-or tree Tx of depth
7 whose inputs are 0, 1, p,¬p, q,¬q,Xi(x). Similarly ¬ϕ(x)[p, q] is computed by
a binary and-or tree T ′

x having the same depth and set of inputs. Our large
tree G has one copy of T1, and in general for each copy of Tx or T ′

x, there are
multiple copies of T2x, T2x+1, T

′
2x, T

′
2x+1 that supply the inputs Y (2x), Y (2x +

1),¬Y (2x),¬Y (2x + 1), and other trivial trees that provide inputs 0, 1, Xi(x)
(1 ≤ i ≤ 16). �

9.5.2 The Theories VNCk and VACk

In general, for k ≥ 1 to develop a theory for ACk we formalize the polytime al-
gorithm which solves the Monotone Circuit Value Problem just as in Subsection
8.2.3, but now the input circuit is required to have depth bounded by (log n)k.
(Recall that the function log x, or also |x|, is definable in I∆0, see Chapter 3.)
Recall the formula δMCVP in Definition 8.43. Now we require that d ≤ |a|k.
Also, for VNCk we need an extra condition on C, i.e., C has fan-in at most 2.
This is expressed by the following formula:

Fanin2 (a, d, E) ≡ ∀z < d∀x < a∃u1, u2 < a∀v < a, E(z, v, x) ⊃ v = u1 ∨ v = u2

Definition 9.49 (VACk and VNCk). For k ≥ 1 the theory VACk has vo-
cabulary L2

A ∪ {log} and is axiomatized by V0 and the axiom

∀a∀E∀G∀I∃Y δMCVP(a, |a|k, E,G, I, Y) (9.25)

D
R

A
FT

242 CHAPTER 9. THEORIES FOR SMALL CLASSES

For k ≥ 2 the theory VNCk has vocabulary L2
A ∪ {log} and is axiomatized by

V0 and the axiom

∀a∀E∀G∀I(Fanin2 (a, d, E) ⊃ ∃Y δMCVP (a, |a|k, E,G, I, Y)) (9.26)

Now let Cval (a, d, E,G, I) be the function that witnesses Y in (9.25) above.
The next exercise is to show that Cval⋆(a, |a|k, E,G, I) is Σ1

1-definable in VACk,
and for E such that Fanin2 (a, |a|k, E) holds, then it is Σ1

1-definable in VNCk.
This can be used to show the characterization of ACk/NCk by VACk/VNCk.

Exercise 9.50. Let t(u) be a number term over L2
A∪{Row , seq, left , right , log}.

a) For k ≥ 1 show that VACk(Row , seq, left , right , log) proves

∃Y ∀u < b δMCVP(t(u), |t(u)|k, E[u], G[u], I [u], Y [u])

b) For k ≥ 2 show that VNCk(Row , seq , left , right , log) proves

∀u < bFanin2 (t(u), |t(u)|k, E[u]) ⊃
∃Y ∀u < b δMCVP(t(u), |t(u)|k, E[u], G[u], I [u], Y [u])

It is straightforward that MFVP (9.23) is provable in the theory V0 extended
by the axiom (9.26) for k = 1. The exercise below is to show that we could have
obtained VNC1 just as other theories VNCk.

Exercise 9.51. Show that

VNC1(log) ⊢ Fanin2 (a, |a|, E) ⊃ ∃Y δMCVP(a, |a|, E,G, I, Y)

9.5.3 VTC0 ⊆ VNC1

In this subsection we show that VTC0 ⊆ VNC1. We have shown that VTC0

proves the Pigeonhole Principle in Subsection 9.2.6. Consequently VNC1 proves
PHP. In the next chapter we will show that ΣB

0 theorems of VNC1 translate
into family of tautologies having polysize Frege proofs. Thus we obtain as a
corollary a theorem of Buss [?] that the family PHP has polysize Frege proofs.

Theorem 9.52. VTC0 ⊆ VNC1.

Proof. We formalize the proof that the total number of bits in a string can be
computed in NC1, i.e., that numones is Σ1

1 definable in VNC1. Informally,
to count the number of bits in a string X of length n (i.e., numones(n,X)) we
can use the divide-and-conquer technique: Let ci+n = X(i) for 0 ≤ i < n (here
we use X(i) for the characteristic function of the relation i ∈ X). Also, for
1 ≤ i < n, ci = c2i + c2i+1. Then c1 = numones(n,X). (See Figure 9.2 for an
example.)

We need to formalize the computation of c1 in VNC1. In fact the next
theorem shows that we can formalize the same computation but for strings in

D
R

A
FT

9.5. THEORIES FOR NCK AND ACK 243

c6 c7 c8 c9 c10 c11

c3 c4 c5

c2

c1

Figure 9.2: Computing numones(6, X) in NC1

place of numbers and string addition in place of (number) addition. This is
more general since converting a number into its binary representation can be
done in V0 (Subsection 3.3.3). �

Theorem 9.53. VNC1 proves

∃Z∀x < a, Z [a+x] = I [x] ∧ x > 0 ⊃ Z [x] = Z [2x] + Z [2x+1]

This theorem can be proved by using the notion of ambiguous arithmetic
notation together with the generalization of Theorem 9.48 given in Theorem
9.55 below. Here we will formalize the another argument, from [?].

Proof. We compute Z [x] recursively as in Figure 9.2, but now the nodes contain
Z [x] instead of cx. We need to be careful here, for if we perform the string
addition Z [2x] + Z [2x+1] by AC0 circuits, then we will end up with an AC1

circuit. By the idea from [?], we encode each Z [x] by a pair of strings (C [x], S[x])
so that C [x]+S[x] = Z [x]. Essentially, C [x] contains the carries and S[x] contains
the bit-wise sums while adding C [2x], S[2x], C[2x+1], S[2x+1].

Formally we define NC0 string functions F1(X,Y, Z,W) and F2(X,Y, Z,W)
so that

X + Y + Z +W = F1(X,Y, Z,W) + F2(X,Y, Z,W)

First, we define for 0 ≤ z < |X |+ |Y |+ |Z|:

F ′
1(X,Y, Z)(z)↔X(z)⊕ Y (z)⊕ Z(z)

F ′
2(X,Y, Z)(0)↔⊥

F ′
2(X,Y, Z)(z + 1)↔((X(z) ∧ Y (z)) ∨ (X(z) ∧ Z(z)) ∨ (Y (z) ∧ Z(z)))

Then define

F1(X,Y, Z,W) = F ′
1(W,U, V), F2(X,Y, Z,W) = F ′

2(W,U, V)

where U = F ′
1(X,Y, Z) and V = F ′

2(X,Y, Z).

D
R

A
FT

244 CHAPTER 9. THEORIES FOR SMALL CLASSES

Lemma 9.54. V0 ⊢ F1(X,Y, Z,W) + F2(X,Y, Z,W) = X + Y + Z +W .

Proof Sketch. By Exercise 5.43, V0 proves basic properties of string addition.
Thus it suffices to show that

V0 ⊢ F ′
1(X,Y, Z) + F ′

2(X,Y, Z) = X + Y + Z (9.27)

For i = 1, 2, let F ′′
i (x,X, Y, Z) = F ′

i (Cut(x,X),Cut(x, Y),Cut(x, Z)) (see (6.5)
on page 127 for the definition of Cut). Then we can prove by induction on x
that

Cut(x,X) + Cut(x, Y) + Cut(x, Z) = F ′′
1 (x,X, Y, Z) + F ′′

2 (x,X, Y, Z)

Both the base case and the induction step require case analysis and are straight-
forward. From this we can easily get (9.27). �

It remains to show that VNC1 proves the existence of C and S such that

∀x < a, S[x+a] = I [x] ∧ C [x+a] = ∅ ∧ 0 < x ⊃
C [x] = F1(C

[2x], S[2x], C[2x+1], S[2x+1]) ∧ S[x] = F2(C
[2x], S[2x], C[2x+1], S[2x+1])

Notice that the bits C [x](z), S[x](z) are computed from

{C [2x](y), C[2x+1](y), S[2x](y), S[2x+1](y) : z − 2 ≤ y ≤ z}

(where implicitly C [2x](y) ≡ ⊥ if y < 0, etc.). This is not in the form of the
ΣB

0 -TreeRec axioms, so first we transform C, S by defining their transposition
C′ and S′:

C′[y](x)↔ C [x](y), S′[y](x)↔ S[x](y)

Then C′[z](x) and S′[z](x) are computed from

{C′[y](2x), C′[y](2x+ 1), S′[y](2x), S′[y](2x+ 1) : z − 2 ≤ y ≤ z}

Now the existence of C′ and S′ in VNC1 follows easily from Theorem 9.55
below. �

In the next theorem we show that VNC1 proves a generalization of the
ΣB

0 -TreeRec axiom scheme. Part a is the first step, but its proof technique can
be used again to prove b.

Theorem 9.55. a) Suppose that 2 ≤ k ∈ N, and ψ(x) and ϕ(x)[p0, . . . , pk−1]
are ΣB

0 formulas. Then VNC1 proves

∃Y, ∀x < ka a ≤ x ⊃ Y (x)↔ ψ(x)∧
∀x < aY (x)↔ ϕ(x)[Y (kx), . . . , Y (kx+ k − 1)] (9.28)

D
R

A
FT

9.5. THEORIES FOR NCK AND ACK 245

b) Suppose that 1 ≤ k, ℓ ∈ N, and ψi(x, y) and ϕi(x, y)[p1, q1, . . . , pkℓ, qkℓ] are
ΣB

0 formulas for 1 ≤ i ≤ k, where ~p, ~q are the Boolean variables. Then
VNC1 proves the existences of Z1, . . . , Zk such that

∀z < c∀x < a

k∧

i=1

(Z
[z]
i (x + a)↔ ψi(z, x) ∧ 0 < x ⊃ Z [z]

i (x)↔ ϕi(z, x)[. . .])

where [. . .] is the list of Z
[z+j]
i (2x), Z

[z+j]
i (2x + 1), 1 ≤ i ≤ k, 0 ≤ j < ℓ.

Also, Z
[z]
i (y) implicitly is ⊥ if z < 0.

Proof Sketch. a) We prove for the case k = 4. Similar arguments work for other
cases. Using Theorem 9.48 we will define a′, ψ′, ϕ′ so that from Y ′ that satisfies
(9.24) (page 240) for a′, ψ′ and ϕ′ we can obtain Y that satisfies (9.28) above.

Informally, consider Y in (9.28) as a tree whose nodes are labelled with Y (x),
x < |Y |, then Y has branching factor of 4 (since k = 4). Thus we need two
layers of the tree in (9.24) to simulate one layer of Y in (9.28).

Formally, we will define injective map f so that Y (x)↔ Y ′(f(x)). Since the
subtrees rooted at Y (1), Y (2) and Y (3) form a partition of Y , we define f so
that f(1) = 4, f(2) = 5 and f(3) = 6. (The subtrees rooted at Y ′(4), Y ′(5) and
Y ′(6) of the binary tree Y ′ are disjoint.)

We write ϕ(x)[p0, p1, p2, p3] in the form

ϕ1(x)[ϕ2(x)[p0, p1], ϕ3(x)[p2, p3]]

where ϕi is ΣB
0 with at most 2 Boolean variables, for 1 ≤ i ≤ 3. Define

ψ′(4m+1 + y) ≡ ψ(4m + y) for y < 3 · 4m

ϕ′(4m+1 + y)[p, q] ≡ ϕ1(4
m + y)[p, q] for y < 3 · 4m

ϕ′(2 · 4m+1 + 2y)[p, q] ≡ ϕ2(4
m + y)[p, q] for y < 3 · 4m/2

ϕ′(2 · 4m+1 + 2y + 1)[p, q] ≡ ϕ3(4
m + y)[p, q] for y < 3 · 4m/2

Let f be the mapping

f(4m + y) = 4m+1 + y for 0 ≤ y < 3 · 4m

By the results in Chapter 3, f is provably total in I∆0, and hence also V0.
Finally, let Y ′ satisfies (9.24) for a′ = f(a), ψ′ and ϕ′ above. Let Y be define

as Y (x)↔ Y ′(f(x)). It is easy to verify that Y satisfies (9.28).

b) The proof is similar to the proof of a. Consider for example k = 2, ℓ = 2.
Using part a (for k′ = 8), the idea is to construct a′ and ΣB

0 formulas ψ′(c, x)
and ϕ′(c, x)[p0, . . . , p7] so that from the set Y that satisfies (9.28) (for a′, ψ′ and
ϕ′) we can obtain Z1, Z2.

The idea is to define partial, onto maps f, g : N → N and h : N → {1, 2} so

that Y (x) ↔ Z
[g(x)]
h(x) (f(x)). (Then ψ′(c, x) ↔ ψh(x)(g(x), f(x)) and ϕ′(c, x) ↔

ϕh(x)(g(x), f(x)).) As in a, these maps can be computed easily using the binary
representation of x.

D
R

A
FT

246 CHAPTER 9. THEORIES FOR SMALL CLASSES

In particular, assume w.l.o.g. that c ≥ 1. Then the subtrees rooted at Y (c),
. . ., Y (3c − 1) of the octree Y ′ are disjoint. It suffices to define f , g and h so

that these subtrees are identical to the (overlapping) trees Z
[0]
1 , Z

[0]
2 , . . ., Z

[c−1]
1 ,

Z
[c−1]
2 . Thus we can have

f(c+ z) = 1, g(c+ z) = ⌊z/2⌋, h(c+ z) = 1 + (z mod 2)

for 0 ≤ z < 2c. Similarly, for 0 ≤ z < 2 ·8mc we can define f , g and h at 8mc+z
using the base 8 notation for z. �

Exercise 9.56. Using part b of Theorem 9.55, show that the function Fval⋆ is
Σ1

1-definable in VNC1.

9.6 Theories for NL and L

NL (resp. L) is the class of problems solvable in a nondeterministic (resp. deter-
ministic) Turing machine in space O(log n). An important result in complexity
theory is that NL is closed under complementation [?, ?]. This shows that NL
and FNL are closed under (Cook-Turing) AC0-reduction.

First, we present the theory VNL that characterizes NL in the same way
that VTC0 characterizes TC0. The theory VNL is an instance of VC obtained
by adding to V0 an axiom that formalizes a polytime algorithm for the problem
PATH defined below. Then we show that the relations in NL are precisely
those represented by Σ1

1-Krom formulas, a subclass of Σ1
1 (indeed, ΣB

1). We
also present the theory V1-KROM, and show that it is equivalent to VNL.
Finally we define VL, a theory which characterizes L and show that it is the
same as ΣB

0 -Rec [?].

9.6.1 The Theory VNL

We use the fact that NL is the class of the problems that are AC0-reducible to
the PATH problem. This is the problem of given a directed graph G and two
designated verteces s and t, deciding whether there is a path from s to t. The
complete function for NL that we use arises from the polytime algorithm which
solves PATH by inductively computing all verteces in G that have distance from
s at most 0, 1, . . . , n, where n is the number of verteces in G.

Formally, suppose that the verteces of G are numbered 0, . . . , (a−1) (a ≥ 1),
the designated vertex s is numbered 0, and that E is a 2-dimensional array
coding G: E(x, y) holds if and only if there is a directed edge from x to y in G
(for x, y < a). The function Conn(z, a, E) plays the role of F in the discussion
in Section 9.3, where Conn(z, a, E) is the set of all verteces of G that have
distance from 0 at most z.

Proposition 9.57. NL is the AC0 closure of Conn, FNL is the FAC0 closure
of Conn.

D
R

A
FT

9.6. THEORIES FOR NL AND L 247

To obtain the universal theory VNL, consider the following quantifier-free
defining axioms for Conn:

Conn(0, a, E) = {0} (9.29)

Conn(z + 1, a, E) =

Conn(z, a, E) ∪ {x < a | Conn(z, a, E) ∩ Nr(x, a, E) 6= ∅} (9.30)

Here ∪, ∩ and Nr are AC0 functions: X ∪ Y (resp. X ∩ Y) is the union (resp.
intersection) of the sets X and Y , and Nr(x, a, E) is the set of all neighbors y
of x, y < a, such that 〈y, x〉 ∈ E. Notice that these functions, together with the
string constants ∅ and {0}, are in FAC0. Therefore the above defining axioms
for Conn are quantifier-free formulas over LFAC0 .

Definition 9.58 (VNL). The vocabulary LFNL is defined just as LFC in Def-
inition 9.28, with Conn replacing F . The theory VNL has vocabulary LFNL

and is defined to be VC in that definition, with Conn (and its defining axioms
(9.29) and (9.30) above) and LFNL replacing respectively F and LFC.

Proposition 9.59. The functions in LFNL represents precisely the functions
of FNL. A relation is in NL if and only if it is representable by an open (and
therefore ΣB

0) formula of LFNL.

Now we define VNL. The additional axiom in VNL formalizes a compu-
tation of Conn , i.e., a polytime algorithm that solves PATH . In the formula
δCONN (a,E, Y) below, Y (z, x) holds if and only if there is a path from 0 to x
of length at most z, i.e., Y [z] = Conn(z, a, E). (See also δF in (9.16).)

δCONN (a,E, Y) ≡ Y (0, 0) ∧ ∀x < a(x 6= 0 ⊃ ¬Y (0, x)) ∧
∀z < a∀x < a, Y (z + 1, x)↔ (Y (z, x) ∨ ∃y < a, Y (z, y) ∧ E(y, x)). (9.31)

Definition 9.60 (The Theory VNL). Define CONN to be the formula
∀a∀E∃Y δCONN (a,E, Y). The theory VNL has vocabulary L2

A and is axioma-
tized by V0 together with the axiom CONN .

It is easy to see that V0 proves that CONN is equivalent to the same axiom
with |Y | bounded by (1 + 〈a, a〉). Hence VNL is a polynomial-bounded theory.
The following exercise is an analogue of Lemma 9.23. It shows that in VNL we
can simultaneously solve the PATH problem in multiple graphs, and it follows
that we can also check the connectivity in a graph.

Exercise 9.61. Show that for any L2
A∪{Row , seq, left , right} number term t(u),

VNL(Row , seq , left , right) ⊢ ∀b∀E∃Z∀u < b δCONN (t(u), E[u], Z [u]).

Deduce that the function Conn⋆ is provably total in VNL.

Corollary 9.62. VNL is a conservative extension of VNL. The class of Σ1
1-

definable (and ΣB
1 -definable) functions in VNL is precisely FNL. The class of

∆1
1-definable (and ∆B

1 -definable) predicates in VNL is precisely NL.

D
R

A
FT

248 CHAPTER 9. THEORIES FOR SMALL CLASSES

9.6.2 Representing NL by Σ1
1-Krom Formulas

In this subsection we present a characterization of NL relations by the subclass
Σ1

1-Krom of the Σ1
1 (indeed, ΣB

1) formulas. This is based on Grädel’s (second-
order) descriptive characterization of co-NL [?] (which is the same as NL by
Immerman-Szelepcsényi Theorem). This characterization of is derived from the
fact that the Satisfiability Problem for propositional Krom formulas (i.e., 2-CNF
formulas: formulas in conjunctive normal form where each clause contains at
most two literals) is complete for co-NL. First, we define the notion of a Krom
and a Σ1

1-Krom formula in bounded arithmetic.

Definition 9.63 (Krom and Σ1
1-Krom Formula). A ΣB

0 formula ϕ(~z, ~P)
(which may contain other free variables) is a Krom formula with respect to the

free variables ~P if it is a conjunction
∧m
i=1 Ci, where for 1 ≤ i ≤ m, Ci is a

disjunction of (i) at most two literals of the form Pj(~z) or ¬Pj(~z), and (ii) a

quantifier-free formula ψ(~z) which does not contain any of the variables ~P .
A Σ1

1-Krom formula is a ΣB
1 formula of the form:

∃P1 . . . ∃Pk∀z1 ≤ t1 . . . ∀zm ≤ tmϕ(~z, ~P) (9.32)

where ϕ(~z, ~P) is a Krom formula with respect to ~P .

Notice that ΣB
0 6⊆ Σ1

1-Krom, although we will show later (Theorem 9.67)
that for each ΣB

0 formula is equivalent (in the theory VNL) to a Σ1
1-Krom

formula.

Example 9.64 (Transitive Closure in Graphs). Suppose that a graph G
is coded by (a,E) as before (page 246). Then the formula ContainTC (a,E, P)
below states that P contains the transitive closure of G, i.e., if there is a path
from x to y in G, then P (x, y) holds:

ContainTC (a,E, P) ≡ ∀x < a∀y < a∀z < a

(E(x, y) ⊃ P (x, y)) ∧ (P (x, y) ∧ E(y, z) ⊃ P (x, z))

It is easy to see that ContainTC is equivalent to a quantifier-free Krom
formula w.r.t. P . The following formula, stating that there is no path from x1

to x2 in G, is equivalent to a Σ1
1-Krom formula:

ϕ¬Reach(x1, x2, a, E) ≡ ∃P, ContainTC (a,E, P) ∧ ¬P (x1, x2) (9.33)

The set Y that satisfies the comprehension for ϕ¬Reach:

|Y | ≤ a ∧ ∀y < a Y (y)↔ ϕ¬Reach(x, y, a, E)

is the set of all verteces that are not reachable from vertex x.

The result in descriptive complexity and Immerman-Szelepcsényi Theorem
give us:

D
R

A
FT

9.6. THEORIES FOR NL AND L 249

Theorem 9.65 (Σ1
1-Krom Representation Theorem). a) A relation is

in co-NL if and only if it is representable by a Σ1
1-Krom formula.

b) A relation is in NL if and only if it is representable by a Σ1
1-Krom for-

mula.

Proof Sketch. Part b follows from a and Immerman-Szelepcsényi Theorem A.14.
Part a can be proved as follows. For the IF direction, consider a relationR(~x, ~X)
that is represented by the Σ1

1-Krom formula given in (9.32). For given inputs

(~x, ~X), (~x, ~X) 6∈ R iff (9.32) is false, i.e., the following (polynomially long)
propositional 2-CNF formula is unsatifiable:

v1∧

z1=0

. . .

vm∧

zm=0

Az1,...,zm
(9.34)

where

• vi is the value of ti;

• Az1,...,zm
is the evaluation of ϕ(~z, ~P , ~x, ~X) using the given values of ~x, ~X

and ~z. We treat each atom Pi(~z) as a propositional variable. (Thus each
Az1,...,zm

is a 2-CNF formula, where each clause contains at most two
propositional variables Pi(~z), 1 ≤ i ≤ m.) Note that evaluating the ΣB

0

disjunct ψ in each clause Ci (as in Definition 9.63) can be done in AC0.

Assume w.l.o.g. that each clause in Az1,...,zm
contains exactly two variables from

Pi(~z). Then in general, (9.34) is unsatifiable iff its conjuncts contain a sequence
of the form:

ℓ0 ⊃ ℓ1, . . . , ℓk ⊃ ¬ℓ0
where ℓi are the literals in (9.34). The existence of such sequence can be checked
by a NTM working in logspace. Thus R ∈ co-NL.

For the ONLY IF direction, recall (Example 9.64) that the Σ1
1-Krom for-

mula ϕ¬Reach(x1, x2, a, E) states that in a graph encoded by 〈a,E〉, there is no
path from x1 to x2. Suppose that R is an co-NL relation. Let M be a polytime
logspace NTM that accepts inputs (~x, ~X) iff (~x, ~X) 6∈ R. The configurations of

M (without work tape content) form a polynomial (in ~x, | ~X |) size graph. As-
sume a suitable method of coding the configurations of M by numbers ≤ t, for
some polynomial t of (~x, | ~X|), then such graph can be encoded by 〈t, ϕM〉, where
ϕM is a ΣB

0 formula such that

ϕM(y, z, ~x, ~X) holds iff z is a next configuration of y

The Σ1
1-Krom formula that represents R is ϕ¬Reach(x1, x2, t, ϕM), where x1

and x2 are respectively the number terms coding the initial and accepting con-
figurations of M, and we have replaced E in (9.33) by ϕM. �

D
R

A
FT

250 CHAPTER 9. THEORIES FOR SMALL CLASSES

9.6.3 The Theory V1-KROM

The theory V1-KROM is developed in [?, ?] based on the characterization of
NL relations discussed above, and has been shown to characterize NL. In this
subsection we present V1-KROM, and outline a proof of V1-KROM = VNL.
It follows that V1-KROM is finitely axiomatizable.

Definition 9.66. The theory V1-KROM is axiomatized by 2-BASIC (Figure
5.1) and the comprehension axiom scheme over all Σ1

1-Krom formulas.

Although syntactically ΣB
0 6⊆ Σ1

1-Krom, we will show that V1-KROM
extends V0:

Lemma 9.67. V0 ⊆ V1-KROM.

Proof. First we prove:

Claim V1-KROM proves the multiple comprehension axioms (Lemma 5.49)
for quantifier-free formulas, i.e., V1-KROM proves

∃X ≤ 〈y1, . . . , yk〉∀z1 < y1 . . . ∀zk < yk(X(z1, . . . , zk)↔ ϕ(z1, . . . , zk)) (9.35)

for any quantifier-free formula ϕ.
Recall thatX(z1, . . . , zk) stands forX(〈z1, . . . , zk〉). A first attempt to prove

this claim might be that

V1-KROM ⊢ ∃X ≤ 〈~y〉∀z < 〈~y〉X(z)↔ ∃~z < ~y, z = 〈~z〉 ∧ ϕ(~z)

However ∃z1 < y1 . . . ∃zk < yk (. . .) is not a Σ1
1-Krom formula. Here (9.35) is

proved using the following instance of the Σ1
1-Krom-COMP:

∃X ≤ 〈~y〉∀z < 〈~y〉X(z)↔ (∃P∀~z < 〈~y〉, (P (~z)↔ ϕ(~z)) ∧ P (z))

Now we prove the lemma by showing that V1-KROM proves the multi-
ple comprehension axiom for any ΣB

0 formula ϕ. The proof is by structural
induction on ϕ. Assume w.l.o.g. that ϕ is in prenex form. The base case, ϕ
is a quantifier-free formula, follows from the claim above. For the induction
step, first consider the case where ϕ(~x) ↔ ∀~z < ~aψ(~x, ~z). By the induction
hypothesis for ψ,

V1-KROM ⊢ ∃X ′ ≤ 〈~y,~a〉∀~x < ~y∀~z < ~a, X(~x, ~z)↔ ψ(~x, ~z)

Now we can apply the comprehension axiom for the Σ1
1-Krom formula ∀~z <

~aX ′(~x, ~z).
Finally, the case where ϕ(~x)↔ ∃~z < ~aψ(~x, ~z) can be reduced to the previous

case using the fact that if Y satisfies the multiple comprehension for a formula
θ:

|Y | ≤ 〈~b〉 ∧ ∀~u < ~bY (~u)↔ θ(~u)

then Y ′ satisfies the multiple comprehension axiom for ¬θ, where Y ′ is obtained
from Y using multiple comprehension over the quantifier-free formula ¬Y (~z).
�

D
R

A
FT

9.6. THEORIES FOR NL AND L 251

It is interesting to note that each ΣB
0 formula is equivalent to a Σ1

1-Krom
formula. Moreover, this is provable in V0. We will outline a proof of the
following theorem.

Theorem 9.68. For each ΣB
0 formula ϕ, there is a Σ1

1-Krom formula ϕ′ so
that V0 ⊢ ϕ↔ ϕ′.

Proof. Suppose that

ϕ ≡ ∃x1 < a∀y1 < a∃x2 < a∀y2 < a . . .∃xk < a∀yk < aψ(x1, y1, . . . , xk, yk)

The Σ1
1-Krom formula ϕ′ states the existence of an array (of dimension (2k−1))

S(x1, y1, . . . , xk−1, yk−1, xk) which decribes a search for the witnesses x1, . . . , xk.
Thus we perform a depth-first-search for “true” nodes on the or-and tree which
results from ϕ by expanding the bounded quantifiers to finite disjunctions and
conjunctions (Figure 9.3). If a node is an ∨-node, then each of its childrens
is tried successively until a true one is found, in which case the search ends
for that node. If the node is an ∧-node, then all of its childrens are tested in
parallel using universal quantifier. Also, if we encounter a “false” child of an
∧-node, then we backtrack and continue to the next sibling of the parent of this
node (see (9.38) below). At the leaves the of the tree (which are ∧-nodes), we
backtrack when ψ is false (see (9.37)).

∨

∧ ∧ ∧

x1 = 0 x1 = a− 1• • •

∨ ∨

y1 = 0 y1 = a− 1• • •• • • • • •

• • • • • •
•••

•••
•••

Figure 9.3: The ∨-∧ tree

Notation Since all number quantifiers here are bounded by a, we simply write
∃x and ∀x for ∃x < a and ∀x < a, respectively.

Every ∧-node is specified by a tuple 〈x1, y1, . . . , yj−1, xj〉. For such a node,
the fact that our search visit that node is indicated by

∀yj . . . ∀yk−1S(x1, y1, . . . , yj−1, xj , yj , 0, yj+1, 0, . . . , 0, yk−1)

Also, the fact that at least one child of the ∨-node specified by 〈x1, y1, . . . , yj−1〉
is true is coded by

¬S(x1, y1, . . . , yj−1, xj , yj , a, 0, 0, . . . , 0)

D
R

A
FT

252 CHAPTER 9. THEORIES FOR SMALL CLASSES

Now let ψ′ be the Krom formula stating that S describes a successful search
which starts at the leftmost child of the root:

∀~x∀~y∀
−→
y′ , (S(0, y1, 0, y2, . . . , 0, yk−1, 0) ∧ ¬S(a, 0, 0, . . . , 0)∧ (9.36)

((S(x1, y1, . . . , xk) ∧ ¬ψ(x1, y1, . . . , xk, yk)) ⊃ S(x1, y1, . . . , xk + 1))∧ (9.37)

k−1∧

i=1

(S(x1, y1, . . . , xi, yi, a,~0) ⊃ S(x1, y1, . . . , xi + 1, y′i, 0, y
′
i+1, . . . , y

′
k, 0)))

(9.38)

The Σ1
1-Krom formula ϕ′ is defined to be ∃Sψ′. We will show that ϕ′ ↔ ϕ.

First we prove the direction ϕ′ ⊃ ϕ. Thus assume the existence of S. For
1 ≤ i ≤ k let

ρi(x1, y1, . . . , xi−1, yi−1) ≡ ∀
−→
y′ S(x1, . . . , yi−1, 0, y

′
i, 0, . . . , 0, y

′
k−1, 0)∧

¬∀
−→
y′ S(x1, . . . , yi−1, a, y

′
i, 0, . . . , 0, y

′
k−1, 0)

Exercise 9.69. Prove by induction on i, i = k, . . . , 1 that

ρi(x1, . . . , yi−1) ⊃ ∃xi∀yi . . . ∃xk∀yk ψ(x1, . . . , yk)

(Hint: You may need to use X-MIN, which is provable in V1-KROM by
Lemma 9.67 above.)

It follows that ϕ is true since (9.36) gives us ρ1().
Next we show that ϕ ⊃ ϕ′. Assume ϕ. We need to show the existence of a

set S that satisfies ϕ′. Define the functions f1(), f2(y1), . . ., fk(y1, . . . , yk−1) as
follows:

f1() = min{x1 : ∀y1 . . .∃xk∀yk ψ(x1, y1 . . . , xk, yk)}
f2(y1) = min{x2 : ∀y1 . . . ∃xk∀yk ψ(f1(), y1, x2, . . . , xk, yk)}

. . .

fk(y1, . . . , yk−1) = min{xk : ∀yk ψ(f1(), y1, f2(y1), . . . , yk−1, xk, yk)}

These functions are in FAC0 and hence are definable in V1-KROM because
V1-KROM extends V0. Now we define the set S. For a tuple 〈x1, y1, . . . , xk, yk〉,
let

i = min{j ≤ k : xj 6= fj(. . . , yj−1)}
Then

S(x1, y1, . . . , xk, yk) =

{
⊤ if xi ≤ fi(. . . , yi−1)

⊥ otherwise

The remaining of the proof is left as an exercise.

Exercise 9.70. Show that the set S defined above satisfies (9.36) – (9.38).

D
R

A
FT

9.6. THEORIES FOR NL AND L 253

�

The Σ1
1-Krom Representation Theorem shows that for every Σ1

1-Krom
formula ϕ, there is another Σ1

1-Krom formula ϕ′ so that ϕ ↔ ¬ϕ′ is true.
However, it is a significant task to show that such equivalence can be estab-
lished in V1-KROM. In fact, this requires formalizing the proof of Immerman-
Szelepcsényi Theorem in V1-KROM. We will not do this here, but note that
the fact that V1-KROM proves such equivalence shows that the NL relations
are ∆1

1-definable in V1-KROM, and that the FNL functions are Σ1
1-definable

in V1-KROM. Here these characterizations follow from Corollary 9.62 and the
next theorem.

Theorem 9.71 ([?]). V1-KROM = VNL.

Proof Sketch. First we show that VNL ⊆ V1-KROM. Since ΣB
0 ⊂ Σ1

1-Krom,
V1-KROM is an extension of V0. It remains to show that V1-KROM proves
the axiom CONN (Definition 9.60). The following claim follows from definitions
and the fact that V1-KROM extends V0:

Claim V1-KROM proves the multiple comprehension axiom scheme (Lemma
5.49) for Σ1

1-Krom formulas. For each Σ1
1-Krom formula ϕ, V1-KROM

proves the comprehension for ¬ϕ.

Recall that in the formula δCONN (a,E, Y) in (9.31), Y (z, x) holds iff in the
graph G coded by (a,E) there is a path from 0 to x of length ≤ z. The following
formula (which is equivalent to a Σ1

1-Krom formula) states that there is no path
from x1 to x2 in G of length ≤ z:

ϕ¬Dist (x1, x2, z, a, E) ≡ ∃P, ¬P (z, x2)∧P (0, x1)∧∀y < a(y 6= x1 ⊃ ¬P (0, y))

∧ ∀u < z∀x < a∀y < a(P (u, x) ∧ E(x, y) ⊃ P (u+ 1, y))

By the claim above, V1-KROM proves the existence of Y that encodes the
distances of all verteces in G from the vertex 0:

∀z < a∀x < a, Y (z, x)↔ ¬ϕ¬Dist (0, x, z, a, E)

Thus Y (z, x) holds iff the distance from 0 to x is at most z. Hence this set Y
also satisfies δCONN (a,E, Y) in (9.31).

Now we show that V1-KROM ⊆ VNL. Let ∃~P∀~z ≤ ~tϕ(~z, x, ~P) be a
Σ1

1-Krom formula (which may contain other free variables). We need to show
that

VNL ⊢ ∃X ≤ b∀x < b, X(x)↔ ∃~P∀~z ≤ ~tϕ(~z, x, ~P)

Essentially, the idea is to formalize in VNL the IF direction in the proof of
part a of the Σ1

1-Krom Representation Theorem 9.65. In other words, for each
value of x < a, we construct a graph Gx (coded by (t(x), E[x]) for some term t
and string variable E) whose verteces are labelled with the “literals” Pi(~x) and
¬Pi(~x), for ~x ≤ ~t. For literals ℓ1 and ℓ2, there is an edge from ℓ1 to ℓ2 if ℓ1 ⊃ ℓ2

D
R

A
FT

254 CHAPTER 9. THEORIES FOR SMALL CLASSES

occurs in the CNF formula (9.34). (We can assume that each clause in (9.34)
contains exactly two literals — duplicating the literals if necessary.)

Now ∃~P∀~z ≤ ~tϕ(~z, x, ~P) is false iff in Gx there is a path from some literal
ℓ to its negation ¬ℓ and a path from ¬ℓ to ℓ. Although CONN only specify
the verteces that are reachable from a single vertex 0, by Exercise 9.61, we can
check in VNL simultaneously if ¬ℓ is reachable from ℓ, for all literals ℓ. �

9.6.4 The Theory VL

The theory VL is obtained from the fact that the restriction of the PATH
problem to directed graphs with outdegree at most 1 is complete for L. We
will define VL and VL as discussed in Section 9.3, and point out that VL is
equivalent to the theory ΣB

0 -Rec from [?]. First, the function UniConn(z, a, E)
is defined to be the same as Conn(z, a, E) when (a,E) codes such a graph, and
the default value ∅ otherwise.

Proposition 9.72. L is the AC0 closure of UniConn, FL is the FAC0 closure
of UniConn.

(In Subsection 9.7.1 we prove a recursion characterization of FL which orig-
inated from [?].) Now we give the defining axiom for UniConn . First, the
following formula states that (a,E) codes a graph of outdegree ≤ 1:

OUT≤1(a,E) ≡ ∀x < a∃y < a∀z < aE(x, z) ⊃ y = z

Note that OUT≤1 is equivalent to a quantifier-free formula over LFAC0 . The
universal defining axioms for UniConn are (the quantifier-free equivalence over
LFAC0 of):

(¬OUT≤1(a,E) ∨ z = 0) ⊃ UniConn(z, a, E) = {0} (9.39)

OUT≤1(a,E) ⊃ UniConn(z + 1, a, E) =

UniConn(z, a, E) ∪ {x < a | UniConn(z, a, E) ∩Nr(x, a, E) 6= ∅} (9.40)

Definition 9.73 (VL). LFL is defined as LFC in Definition 9.28 with UniConn
replacing F . The theory VL is the instance of VC, defined using UniConn (with
defining axioms (9.39) and (9.40) above) and LFL instead of F and LFC.

Proposition 9.74. The functions in LFL represents precisely the functions of
FL. A relation is in L if and only if it is representable by an open (and therefore
ΣB

0) formula of LFL.

Definition 9.75 (The Theory VL). Define UniCONN to be the formula

∀a∀E, OUT≤1(a,E) ⊃ ∃Y δCONN (a,E, Y)

The theory VL has vocabulary L2
A and is axiomatized by V0 and UniCONN .

D
R

A
FT

9.6. THEORIES FOR NL AND L 255

The following exercise is analogous to Lemma 9.23, and is used to show that
VL is conservative over VL. It also shows that VL is an instance of VC that
characterizes L.

Exercise 9.76. Show that for any L2
A∪{Row , seq, left , right} number term t(u),

VL(Row , seq , left , right) proves

∀u < bOUT≤1(t(u), E[u]) ⊃ ∃Y ∀u < b δCONN (t(u), E[u], Y [u]).

Derive that the function UniConn⋆ is Σ1
1 definable in VL.

Corollary 9.77. VL is a conservative extension of VL. The class of Σ1
1-

definable (and ΣB
1 -definable) functions in VL is precisely FL. The class of

∆1
1-definable (and ∆B

1 -definable) predicates in VL is precisely L.

Zambella [?] introduced the theory ΣB
0 -Rec which is essentially V0 together

with the following axiom scheme:

∀x < a∃y < aϕ(x, y) ⊃ ∃Z, (Z)0 = 0 ∧ ∀x < aϕ((Z)x, (Z)x+1).

where ϕ is a ΣB
0 formula not involving Z.

Exercise 9.78. Show that VL is the same as ΣB
0 -Rec.

Theorem 9.79. VNC1 ⊆ VL.

Proof. It suffices to show that VL proves the MFVP axiom (9.23) on page 239.
Given a,G, I, we construct a graph encoded by (a′, E) so that the truth value of
Fval(a,G, I)(1) can be obtained from UniConn(a′, a′, E). (More generally, for
each x, 1 ≤ x < 2a we can construct a graph (t(x), E[x]) so that Fval(a,G, I)(x)
can be computed from UniConn(t(x), t(x), E[x]). Exercise 9.76 b can be used
to find Fval (a,G, I).)

The graph (a′, E) describes a depth-first traversal in the circuits G to verify
that it outputs ⊤. The verteces are

{0} ∪ {〈x, d, 0〉 : 1 ≤ x < 2a} ∪ {〈x, u, v〉 : 1 ≤ x < 2a, 0 ≤ v ≤ 1}

where d = 1 (down) and u = 2 (up) are used to to indicate direction of the
traversal, and v is the value of the evaluation of node x in the circuit. The
edges of this graph are specified by E as follows:

E(〈0, 0, 0〉, 〈1, d, 0〉) (note that 〈0, 0, 0〉 = 0)

E(〈x, d, 0〉, 〈2x, d, 0〉) for 1 ≤ x < a

E(〈x+ a, d, 0〉, 〈x + a, u, 0〉) if ¬I(x), for 0 ≤ x < a

E(〈x+ a, d, 0〉, 〈x + a, u, 1〉) if I(x), for 0 ≤ x < a

E(〈x, u, 1〉, 〈⌊x/2⌋, u, 1〉) for 1 ≤ x < a

E(〈2x, u, 0〉, 〈x, u, 0〉) if G(x) is an ∧-gate, for 1 ≤ x < a

E(〈2x, u, 0〉, 〈2x+ 1, d, 0〉) if G(x) is an ∨-gate, for 1 ≤ x < a

D
R

A
FT

256 CHAPTER 9. THEORIES FOR SMALL CLASSES

Let a′ = 〈2a− 1, 2, 1〉. It is easy to see that (a′, E) encodes a graph of outdegree
≤ 1. Now we can prove that if a node of G is visited then our traversal evaluates
it correctly:

ϕ(x, a,G, I) ≡ ∃zUniConn(z, a′, E)(〈x, d, 0〉) ⊃
(Fval (a,G, I)(x)↔ ∃z′UniConn(z′, a′, E)(〈x, u, 1〉))

To prove ∀x < 2aϕ(x, a,G, I), we prove ∀y ≤ (1+ |a|)ψ(y, a,G, I) by induction
on y, where

ψ(y, a,G, I) ≡ ∀x < 2a(|x| = 1 + |a| − y ⊃ ϕ(x, a,G, I))

Now from E(〈0, 0, 0〉, 〈1, d, 0〉) we have UniConn(1, a′, E)(〈1, d, 0〉). Then by
ϕ(1, a,G, I) we have Fval (a,G, I)(1)↔ ∃z′UniConn(z′, a′, E)(〈1, u, 1〉). �

9.7 The Number Recursion Operation

We define the number recursion operation which produces a new number func-
tion from existing number functions. This operation is similar to limited recur-
sion (but the latter defines new string functions from existing string functions —
Definition 6.15). It is useful in characterizing FL and a number of its subclasses.
For a class FC, the recursion-theoretic characterization that we present here can
be used to obtain universal extension of VC which is equivalent to VC. We
will not prove these equivalences here, but point out that each recursion scheme
can be proved in the corresponding theory VC.

Definition 9.80 (Number Recursion). A number function f(y, ~x, ~X) is ob-

tained by number recursion from g(~x, ~X) and h(y, z, ~x, ~X) if

f(0, ~x, ~X) = g(~x, ~X) (9.41)

f(y + 1, ~x, ~X) = h(y, f(y, ~x, ~X), ~x, ~X) (9.42)

If further f(y, ~x, ~X) ≤ t(y, ~x, ~X), then we also say that f is obtained by t-
bounded number recursion from g and h. In particular, if f is polynomially
bounded then we say that f is obtained from g and h by polynomial-bounded
number recursion.

In the following subsections, first we characterize FL using polynomial-
bounded number recursion. Then we define the number summation operation,
an special case of the number recursion operation, and show that FTC0 is closed
under this operation. In Subsection 9.7.3 we prove some properties of the k-
bounded number recursion operation which will be used in the characterizations
of FAC0(2) and FAC0(6) in Subsection 9.7.4. Finally we present an interesting
recursion theoretic characterization of FNC1 using 4-bounded number recur-
sion. This characterization of FNC1 is based on Barrington’s result that the
word problem for the permutation group S5 is complete for NC1.

D
R

A
FT

9.7. THE NUMBER RECURSION OPERATION 257

9.7.1 Lind’s Characterization of FL

We prove the two-sorted version of Lind’s characterization of FL, which is sim-
ilar to Cobham’s recursion characterization of FP.

Theorem 9.81 (Lind’s Characterization of FL). FL is the same as the
class of functions obtained from FAC0 by finitely many applications of compo-
sition, string comprehension, and polynomial-bounded number recursion.

Proof Sketch. The proof is similar to the proof of Cobham’s Characterization of
FP (Theorem 6.16). The ⊇ direction follows from the fact that FAC0 is con-
tained in FL, and that FL is closed under composition, string comprehension,
and polynomial-bounded number recursion.

For the ⊆ direction, it suffices to consider logspace polytime Turing ma-
chines. Let M be such a machine working on input ~x, ~X. Recall that since M

works in logspace, a configuration of M does not include the content of its input
tape. Assume a reasonable encoding of the configurations of M by numbers
which are > 0 (see also Exercise 6.13). There are a polynomial t(~x, | ~X|) bound-

ing the running time of M, and AC0 functions initM(~x, ~X) and nextM(z, ~x, ~X)
such that:

• initM(~x, ~X) is the initial configuration of M, initM(~x, ~X) ≤ t(~x, | ~X|);
• z′ = nextM(z, ~x, ~X) if z and z′ code two consecutive configuration of M,

or z′ = z if z codes a final configuration of M, or z′ = 0 if z does not code
a configuration of M.

Then the function conf
M

(y, ~x, ~X), which is the configuration of M at time y,
satisfies (9.41) and (9.42) with initM replacing g and conf M replacing h.

Suppose for example that M computes a string function F (~x, ~X), then the
bits of F can be computed by looking at the times when M writes to its output
tape.

Exercise 9.82. Define using composition and polynomial-bounded number re-
cursion from conf M(y, ~x, ~X) the function next writeM(y, ~x, ~X) which is the first
time y′ > y such that M writes at time y′. Use this to define the function
writeM(y, ~x, ~X) which is the time at which M performs the y-th write.

The bits F (~x, ~X)(y) can be extracted from conf M(writeM(y, ~x, ~X), ~x, ~X).
Now it is easy to see that F can be obtained from the above functions using
composition and string comprehension. �

9.7.2 Number Summation

The number summation operation is an instance of number recursion. In this
subsection we present a characterization of FTC0 using this operation.

D
R

A
FT

258 CHAPTER 9. THEORIES FOR SMALL CLASSES

Definition 9.83 (Number Summation). For a number function f(y, ~x, ~X),

define the number function sumf (y, ~x, ~X) by

sumf (y, ~x, ~X) =

y∑

z=0

f(z, ~x, ~X)

The function sumf is said to be defined from f by number summation, or just
summation.

Notice that sumf can be obtained from f by number recursion.

Theorem 9.84. A function is in FTC0 iff it is obtained from FAC0 functions
by finitely many application of composition, string comprehension, and number
summation.

Proof. For the ONLY IF direction, by Definition 9.7 and Theorem 9.6, we need
to show only that numones can be obtained by number summation from AC0

function. But this is clear, since

numones(x,X) =
x∑

y=0

X(y)

where we write 0 for ⊥ and 1 for ⊤.
For the other direction, also by Definition 9.7 and Theorem 9.6, it suffices to

show that if f(x) is a TC0 function, then the function sumf (y) is also in FTC0.
In fact we will show that sumf (x) is Σ1

1-definable in VTC0.
First, f⋆ is also a TC0 function, and is Σ1

1 definable in FTC0. By definition,

(f⋆(Z))u = f((Z)u), for u ≤ y

Let Z be such that (Z)u = u, for all u ≤ y. Let Y = f⋆(Z). Then

sumf (y) =
∑

x≤y
(Y)x

We calculate sumf (y) using numones. Let W be defined (using ΣB
0 -COMP)

such that
W (x|Y |+ v) holds iff x ≤ y, v < (Y)x

Then it is easy to verify that sumf (y) = numones((y + 1)|Y |,W). �

9.7.3 k-Bounded Number Recursion

In the next subsection we will present recursion theoretic characterizations of
FAC0(2), FAC0(6) and FNC1 using the k-bounded number recursion (Defini-
tion 9.80) for suitable k ∈ N. In this subsection we prove some properties of
this recursion scheme, which will be useful later. For a constant k ∈ N, suppose

D
R

A
FT

9.7. THE NUMBER RECURSION OPERATION 259

that the number function f is obtained from g and h using k-bounded number
recursion: f(x) ≤ k for all x, and

f(0) = g

f(x+ 1) = h(x, f(x)) for x ≥ 0

(f , g and h may contain other parameters). Without loss of generality, we may
assume that h(x, z) ≤ k for all x and z ≤ k. Write h(x, z) as hx(z), then f(x)
is just the composition

f(x) = hx−1 ◦ hx−2 ◦ . . . ◦ h0(g) (9.43)

Since f(x) ≤ k for all x, we are interested in the values of hx(z) for z ∈
{0, . . . , k}. Thus we will implicitly assume that the domain and range of hx are
{0, . . . , k}, i.e., hx is a function

hx : {0, . . . , k} → {0, . . . , k}

It is often easier to handle hx when it is a (k + 1)-permutations, i.e., hx is
surjective.

Notation For a fixed k ∈ N, we say that h(x, ·) is a (k + 1)-permutation (or
just permutation) if

hx : {0, . . . , k} → {0, . . . , k}
is onto for all x. Let (k+1)(k + 1) denote the set of all functions {0, . . . , k} →
{0, . . . , k}, and Sk ⊆ kk the set of all k-permutations. Also denote by Rngk(hx)
the “range” of hx in (k+1)(k + 1):

Rngk(hx) = {h(x, 0), . . . , h(x, k)}

If h is a k-permutation, and f is obtained from g and h using number recursion,
then we also say that f is obtained by number recursion from k-permutation.

Intuitively, we want to show that it suffices to apply the k-bounded number
recursion to functions g, h where h is a (k + 1)-permutation (Theorem 9.87
below). We need to establish a few technical results. First, Lemma 9.85 below
states that any application of the k-bounded number recursion where hx are
not (k + 1)-permutation, for all x, can be simulated by an application of the
(k − 1)-bounded number recursion.

Lemma 9.85. Let be h(x, z) be a function such that hx 6∈ Sk+1, for all x.
Suppose that k ≥ 1 and that f is obtained from g and h by k-bounded number
recursion. Then there are functions

• g′, h′ in the FAC0 closure of {g, h}, and

• f ′ obtained from g′ and h′ by (k − 1)-bounded number recursion,

such that f is in the FAC0 closure of f ′.

D
R

A
FT

260 CHAPTER 9. THEORIES FOR SMALL CLASSES

Proof. The intuition is that since hx 6∈ Sk+1 (for all x), we can compose each hx
with suitable functions to obtain a function h′x : {0, . . . , k−1} → {0, . . . , k−1}.
We formalize this argument as follows. Let ℓ(x) be the following function (so
that ℓ(x+1) be the minimal number which is not in the range of hx, for x ≥ 0):

ℓ(0) = y ↔ (g = 0 ∧ y = 1) ∨ (0 < g ∧ y = 0)

ℓ(x+ 1) = y ↔ ∀z ≤ k y 6= h(x, z) ∧ ∀v < y∃z ≤ k v = h(x, z)

Now Rngk(hx) ⊆ {0, . . . , k} \ {ℓ(x)}. We define the functions r(x, z) and
r−1(x, z) so that rx(z) = r(x, z) is a bijection between {0, . . . , k} \ {ℓ(x)} and
{0, . . . , k − 1}, and r−1

x (z) = r−1(x, z) is its inverse:

r(x, z) =






z if z < ℓ(x)

z − 1 if ℓ(x) < z ≤ k
k otherwise

r−1(x, z) =






z if z < ℓ(x)

z + 1 if ℓ(x) ≤ z < k

ℓ(x) if k ≤ z

Let

h′x(z) = rx+1 ◦ hx ◦ r−1
x (z)

Then it is easy to see that h′x ∈ kk, for all x. Let f ′(x) be defined as

f ′(0) = r(0, g)

f ′(x+ 1) = h′(x, f ′(x))

Then f ′(x) = r(x, f(x)) for all x ≥ 0. Hence f(x) = r−1(x, f ′(x)). �

The next lemma says that if h0 is not a (k+1)-permutation, then k-bounded
number recursion using h can be simulated by (k−1)-bounded number recursion
and number recursion using (k + 1)-permutation:

Lemma 9.86. Let k ≥ 1 and h(x, z) be a function such that h0 6∈ Sk+1. Suppose
that f is obtained from g and h by k-bounded number recursion. Then f can
also be obtained from g and h by taking FAC0 closure, (k− 1)-bounded number
recursion and number recursion using (k + 1)-permutations.

Proof Sketch. Since h0 is not a (k+1)-permutation, for each x ≥ 0 the range of
hx that is needed to compute f can be regarded as a proper subset of {0, . . . , k}.
The issue is to (uniformly) identify this subset, then we can use Lemma 9.85
above. Indeed, we will identify a number ℓ(x) ≤ k which can be removed from
the codomain of hx without changing the value of f .

Let m(x) be the function

m(x) = min{u ≤ x : hu 6∈ Sk+1}

Notice that 0 ≤ m(x) ≤ x for x ≥ 0. To define ℓ(x), first consider the case
where m(x) = x. Then we can simply take

ℓ(x) = min{y ≤ k : ¬∃z ≤ k hx(z) = y}

D
R

A
FT

9.7. THE NUMBER RECURSION OPERATION 261

For the case where m(x) < x, then hu are all (k + 1)-permutations, for m(x) <
u ≤ x. Thus the value of ℓ(x) can be obtained by number recursion using these
(k + 1)-permutations. Formally, define the (k + 1)-permutation

h′(x, u, z) =

{
h(u, z) if m(x) < u ≤ x
z other wise

Let ℓ′(x, u) be obtained by number recursion using (k + 1)-permutation:

ℓ′(x, 0) = min{y ≤ k : ¬∃z ≤ k hm(x)(z) = y}
ℓ′(x, u+ 1) = h′(x, u, ℓ′(x, u))

Now ℓ(x) = ℓ′(x, x) can be safely removed from the codomain of hx without
changing f . In other words, define

h′′(x, z) =

{
h(x, z) if h(x, z) 6= ℓ′(x, x)

min{y ≤ k : y 6= ℓ′(x, x)} otherwise

Then h′′x 6∈ Sk+1 for all x, and f is obtained from g and h′′ by number recursion.
The conclusion follows from Lemma 9.85 above. �

Now we state the main theorem of this subsection:

Theorem 9.87. Suppose that k ∈ N and f is obtained from g and h using
k-bounded number recursion. Then f can be obtained from g and h by taking
FAC0 closure and number recursion using (k + 1)-permutations.

Proof Sketch. We prove by induction on k. The base case (k = 0) is trivially
true. For the induction step, suppose that h is not a (k + 1)-permutation. The
idea is to identify the first point m where h is not a permutation. Then hx is a
(k + 1)-permutation for x ≤ m, and for x > m we can use Lemma 9.86 above
and the induction hypothesis. Formally, let

m(x) =

{
min{u ≤ x : hu 6∈ Sk+1} if ∃u ≤ x hu 6∈ Sk+1

x+ 1 otherwise

Let h′(x, u, z) be the (k + 1)-permutation:

h′(x, u, z) =

{
h(u, z) if u < m(x)

z otherwise

Let f ′(x, u) be defined as

f ′(x, 0) = g

f ′(x, u + 1) = h′(x, u, f ′(x, u))

D
R

A
FT

262 CHAPTER 9. THEORIES FOR SMALL CLASSES

Then f(u) = f ′(x, u) for u ≤ m(x). In particular, f(x) = f ′(x, x) if m(x) =
x+ 1.

For the case m(x) ≤ x, define

h′′(x, u, z) = h(m(x) + u, z), for u ≥ 0

Then h′′x,0 6∈ Sk+1. Let f ′′(x, u) be defined as

f ′′(x, 0) = f ′(x,m(x))

f ′′(x, u + 1) = h′′(x, u, f ′′(x, u))

Then f(u) = f ′′(x, u +m(x)) for u ≥ 0. In conclusion, we have

f(x) =

{
f ′(x, x) if m(x) = x+ 1

f ′′(x, x−m(x)) otherwise

Now since h′′x,0 6∈ Sk+1, by Lemma 9.86 and then the induction hypothesis, f ′′

can be defined from f ′ and h′′ by taking FAC0 closure and number recursion
using (k + 1)-permutation. �

9.7.4 FAC0(2), FAC0(6) and FNC1

This subsection is devoted to the proof of the following theorem.

Theorem 9.88. a) FAC0(2) is precisely the class of functions obtained from
FAC0 by finitely many applications of composition, string comprehension,
and 1-bounded number recursion.

b) FAC0(6) can be obtained from FAC0 by finitely many applications of
composition, string comprehension, and 2-bounded number recursion.

c) FAC0(6) is closed under 3-bounded number recursion.

d) FNC1 is closed under k-bounded number recursion, for any k ∈ N.

e) FNC1 can be obtained from FAC0 by finitely many applications of com-
position, string comprehension, and 4-bounded number recursion.

Proof. a) First we show that the functions in FAC0(2) can be obtained from
FAC0 by finitely many applications of composition, string comprehension, and
1-bounded number recursion. By Definition 9.38 (for m = 2) and Theorem
9.6, it suffices to show that mod2 can be obtained from FAC0 functions by
composition, string comprehension and 1-bounded number recursion. In fact,

mod2(0, X) = 0

mod2(y + 1, X) = (X(y) + mod2(y,X)) mod 2

For the other direction, we prove:

Claim If g and h are Σ1
1 definable in V0(2), and f is obtained from g and h

using 1-bounded number recursion, then f is also Σ1
1 definable in V0(2).

D
R

A
FT

9.7. THE NUMBER RECURSION OPERATION 263

To prove the claim, we will give a high level argument showing that if g and
h are FAC0(2) functions, then so is f . It is straightforward to formalize this
argument in V0(2), and hence the claim follows. Suppose that f(x) ≤ 1 for all
x, and

f(0) = g

f(x+ 1) = h(x, f(x))

We can assume w.l.o.g. that h(x, y) ≤ 1, for all x and y ≤ 1. We abuse the
notation a little by letting h(−1, 0) = h(−1, 1) = g. Then it is easy to check
that f(x) = 0 iff there is z, −1 ≤ z < x such that h(z, 0) = h(z, 1) and for all
u, z < u < x, h(u, 0) 6= h(u, 1), and either

• h(z, 0) = h(z, 1) = 0 and the number of u, z < u < x, such that h(u, 0) 6= 0
is even, or

• h(z, 0) = h(z, 1) = 1, and the number of u, z < u < x, such that h(u, 0) 6=
0 is odd.

b) As for the first direction of a, mod2 can be obtained from FAC0 functions by
1-bounded number recursion. Similarly, mod3 can be obtained from FAC0 func-
tion by 2-bounded number recursion. Using mod2 and mod3 it is easy to obtain
mod6. Thus by Definition 9.38 (for m = 6) and Theorem 9.6, every FAC0(6)
function can be obtained from FAC0 functions by finitely many applications of
composition, string comprehension, and 2-bounded number recursion.

c) First we prove an easier result that FAC0(6) is closed under 2-bounded
number recursion. By Theorem 9.87, it suffices to show that FAC0(6) is closed
under number recursion using 3-permutations. In other words:

Claim Suppose that g() and h(x, z) are in FAC0(6), g() ≤ 2 and hx ∈ S3 for
all x. Let f be obtained from g and h using number recursion. Then f is also
in FAC0(6).

Proof of the Claim. Write f(x) as in (9.43) (page 259):

f(x) = hx−1 ◦ hx−2 ◦ . . . ◦ h0(g)

Let A3 be the normal subgroup of S3 which consists of the even permutations,
and e be the identity of S3. Then S3 = 〈(0 1)〉A3, i.e., every element in S3 is
the product γ ◦ σ where γ ∈ {e, (0 1)} and σ ∈ A3. Thus we have

hu = γu ◦ σu

where γu ∈ {e, (0 1)} and σu ∈ A3, for all u. For u < x let

δu = γx−1 ◦ . . . ◦ γu

Notice that γu = (0 1)ǫu where ǫu ∈ {0, 1} for all u. Hence δu can be computed
in FAC0(2) by computing (ǫx−1 + . . .+ ǫu) mod 2.

D
R

A
FT

264 CHAPTER 9. THEORIES FOR SMALL CLASSES

Now it is easy to see that

f(x) = (

u=0∏

u=x−1

(δu ◦ σu ◦ δ−1
u)) ◦ δ0(g)

We compute ηu = δu ◦ σu ◦ δ−1
u simultaneously for all u < x. Here ηu ∈ A3, and

therefore is of the form

(0 1 2)ǫ
′

u

where ǫ′u ∈ {0, 1, 2}, for all u < x. As a result,
∏u=0
u=x−1 ηu can be computed in

FAC0(3) by computing (ǫ′x−1 + . . .+ ǫ′u) mod 3. This shows that f(x) can be

computed in FAC0(6). �

Now we prove c. Again by Theorem 9.87, it suffices to show that FAC0(6)
is closed under number recursion using 4-permutations. So let g() and h(x, z)
be in FAC0(6), g() ≤ 3 and hx ∈ S4 for all x. Let f be obtained from g and h
using number recursion. We claim that f is also in FAC0(6).

This claim is proved in two steps, each uses the same idea as the previous
claim. First, as before we reduce the computation of f(x) to the problem of

computing the product
∏u=0
u=x−1 ηu, where ηu ∈ A4 for all u. (A4 is the normal

subgroup of S4 which consists of all the even permutations.) Next, note that
A4 = 〈(0 1 2)〉V , where V ⊳ A4 is the Klein group,

V = 〈(0 1)(2 3), (0 2)(1 3)〉

Using this fact we reduce the above problem to the problem of

• computing γx−1 ◦ . . .◦γu for u < x, where γv ∈ 〈(0 1 2)〉 for all v < x, and

• computing ρx−1 ◦ . . . ◦ ρ0, where ρu ∈ V for all u < x.

The first product can be computed in FAC0(3) by letting γv = (0 1 2)ǫv (where
ǫv ∈ {0, 1, 2}) and computing (ǫx−1 + . . .+ ǫu) mod 3. The second product can
be computed in FAC0(2) since V is Abelian and its members have order ≤ 2.

d) Note that for a constant k ∈ N, any function h ∈ (k+1)(k+1) can be encoded
using at most (k + 1)2 bits, e.g., px,y is true iff h(x) = y, for x, y ≤ k. Hence
the composition h1 ◦ h2 can be done uniformly by a circuits of constant depth
and constant fanin (the constants depend on k).

Now suppose that g ≤ k and hx ∈ (k+1)(k+1) are NC1 functions, and that
f is obtained from g and h using number recursion. We need to show that f
is also in FNC1. Recall that to compute f(x) (for x ≥ 1) we need to compute
the composition

hx−1 ◦ . . . ◦ h0(g)

We implement the divide-and-conquer technique: Using the MFVP axiom, it
is easy to Σ1

1-define in VNC1(h) the function r(x, z) so that (write rx(z) for

D
R

A
FT

9.8. NOTES 265

r(x, z):

rx+u = hu for 0 ≤ u < x

ru = r2u ◦ r2u+1 for 0 < u < x

Then f(x) = r1(g). �

9.8 Notes

The string comprehension operation can be seen as a two-sorted version of the
concatenation recursion on notation (CRN) operation for single-sorted classes
[?].

An analogue of the ΣB
0 Representation Theorem 4.17 for TC0 using the

threshold quantifier in two-sorted logic can be found in [?]. It is shown that

TC0 is exactly the class of relations represented by ΣB,Th
0 formulas, where

ΣB,Th
0 is the class of formulas built in the same way as ΣB

0 , except now we
allow threshold quantifiers in addition to bounded number quantifiers.

The proof of VTC0 ⊆ VNC1 (Theorem 9.52) formalizes the arguments
from [?]. Another arguments that can be formalized is to use the so-called
ambiguous arithmetic notation. See for example [?] (CHECK: Section 5.4 or
5.5).

The theory V1-KROM is introduced in [?] and [?], and is shown to charac-
terize NL. The proof of Theorem 9.68 is a modification of the proofs from [?]
and [?] which use this result to show that V0 ⊆ V1-KROM (Lemma 9.67).

The Path problem is also known as the Reachability, or GAP problem.
Lind’s original characterization of FL [?] is stated for string functions. Our

number recursion in Subsection 9.7.1 corresponds to his log bounded recursion
on notation.

The results in Subsection 9.7.3 are essentially from [?]. Parts a and b of
Theorem 9.88 are two-sorted statement of the results from in [?]. Part e of that
theorem is proved using an idea from [?].

DISCUSS THEORIES FOR NL AND L FROM CLOTE AND TAKEUTI

D
R

A
FT

266 CHAPTER 9. THEORIES FOR SMALL CLASSES

D
R

A
FTChapter 10

Proof Systems for Small

Theories

267

D
R

A
FT

268 CHAPTER 10. PROOF SYSTEMS FOR SMALL THEORIES

D
R

A
FTAppendix A

Computation Models

In this Appendix, the functions f, g are used for functions from the natural
numbers to R≥0 = {x ∈ R : x ≥ 0}. We will use the following notations.

• g ∈ O(f) if there is a constant c > 0 so that g(n) ≤ cf(n) for all but
finitely many n.

• g ∈ Ω(f) if there is a constant c > 0 so that g(n) ≥ cf(n) for all but
finitely many n.

• logn stands for log2 n. When logn is required to be an integer, it is
understood that it takes the value ⌈log2 n⌉.

A.1 Deterministic Turing Machines

A k–tape deterministic Turing machine (DTM) consists of k two–way infinite
tapes and a finite state control. Each tape is divided into squares, each of
which holds a symbol from a finite alphabet Γ. Each tape also has a read/write
head that is connected to the control, and that scans the squares on the tape.
Depending on the state of the control and the symbols scanned, the machine
makes a move which consists of

1) printing a symbol on each tape;

2) moving each head left or right one square;

3) assuming a new state.

Definition A.1. For a natural number k ≥ 1, a k–tape DTM M is specified by
a tuple 〈Q,Σ, Γ, σ〉 where

1) Q is the finite set of states. There are 3 distinct designated states qinitial

(the initial state), qaccept and qreject (the states in which M halts).

2) Σ is the finite, non-empty set of input symbols.

3) Γ is the finite set of working symbols, Σ ⊂ Γ. It contains a special symbol
b/ (read “blank”), and b/ ∈ Γ \ Σ.

269

D
R

A
FT

270 APPENDIX A. COMPUTATION MODELS

4) σ is the transition funtion, i.e., a total function:

σ : ((Q \ {qaccept , qreject})× Γk)→ (Q× (Γ× {L,R})k)

If the current state is q, the current symbols being scanned are s1, . . . , sk,
and σ(q, ~s) = (q′, s′1, h1, . . . , s

′
k, hk), then q′ is the new state, ~s′ are the symbols

printed, and for 1 ≤ i ≤ k, the head of the ith tape will move one square to the
left or right depending on whether hi = L or hi = R.

On an input x (a finite string of Σ symbols) the machine M works as follows.
Initially, the input is given on tape 1, called the input tape, which is completely
blank everywhere else. Other tapes (i.e., the work tapes) are blank, and their
heads point to some squares. Also the input tape head is pointing to the leftmost
symbol of the input (if the input is the empty string, then the input tape will
be completely blank, and its head will point to some square). The control is
initially in state qinitial . Then M moves according to the transition function σ.

Convention For a multi-tape Turing machine, we require that the input tape
head is read–only. Also, unless specified otherwise, Turing machines are multi-
tape.

If M enters either qaccept or qreject then it halts. If M halts in qaccept we say
that it accepts the input x, if it halts in qreject then we say that it rejects x.
Note that it is possible that M never halts on some input. Let Σ∗ denote the
set of all finite strings of Σ symbols. We say that M accepts a language L ⊆ Σ∗

if M accepts input x ∈ Σ∗ iff x ∈ L. We let L(M) denote the language accepted
by M.

It is straightforward to extend the above definition to define Turing machine
that accepts a relation or computes a function of some fixed arity. For example,
to compute a partial function, if the function is defined on the input, the machine
will halt in qaccept with the function value on the tape. Here it might be practical
to introduce a distinct symbol # as a separator for the input arguments.

A configuration of M is a tuple 〈q, u1, v1, . . . , uk, vk〉 ∈ Q × (Γ∗ × Γ∗)k. The
intuition is that q is the current state of the control, uivi is the non-blank (but
possibly empty) content of the tape i, whose head is reading the first symbol
of vi. If both ui and vi are the empty string, then the head points to a blank
square. If only vi is the empty string then the head points to the left-most blank
symbol to the right of ui.

Formally we require that for each i, ui does not start with the blank symbol
b/, and vi does not end with b/. This is to make sure that the content of the
tape and the tape head position are uniquely represented by the pair 〈ui, vi〉.
Although we allow trailing b/ in ui or leading b/ in vi, in practice, for each
“meaningful” Turing machine the length of such blank segment are bounded by
some constant.

The computation of M on an input x is the (possibly infinite) sequence of con-
figurations of M, starting with the initial configuration 〈qinitial , ǫ, x, ǫ, ǫ, . . . , ǫ, ǫ〉,
where ǫ is the empty string, and each subsequent configuration is obtained from

D
R

A
FT

A.1. DETERMINISTIC TURING MACHINES 271

the previous one as specified by the transition function σ. Note that the se-
quence can contain at most one final configuration, i.e., a configuration of the
form 〈qaccept , . . .〉 or 〈qreject , . . .〉. The sequence contains a final configuration,
iff it is finite, iff M halts on x.

A.1.1 L, P, PSPACE and EXP

If a Turing machine M = 〈Q,Σ, Γ, σ〉 halts on input x, then the running time of M

on x, denoted by timeM(x), is the number of moves that M makes before halting
(i.e., the number of configurations in the computation of M on x). Otherwise
we let timeM(x) =∞.

Recall that L(M) denotes the language accepted by M. We say that M runs
in time f(n) if for all but finitely many x ∈ L(M), timeM(x) ≤ f(|x|), where |x|
denotes the length of x. In this case we also say that M accepts the language
L(M) in time f(n).

Definition A.2 (DTime). For a function f(n), define

DTime(f) = {L : there is a DTM accepting L in time f(n)}

In general, if f is at least linear, then the class DTime(f) is robust in the
following sense.

Theorem A.3 (Speed-up Theorem). For any ǫ > 0,

DTime(f) ⊆ DTime((1 + ǫ)n+ ǫf).

The classes of polynomial time and exponential time computable languages
are defined as follows.

Definition A.4 (P and EXP).

P =
⋃

k≥1

DTime(nk) EXP =
⋃

k≥1

DTime(2n
k

)

The working space of a (multi-tape) DTM M on input x, denoted by spaceM(x),
is the total number of squares on the work tapes that M visits at least once dur-
ing the computation. Note that it is possible that space

M
(x) = ∞, and also

that spaceM(x) can be finite even if M does not halt on x.
We say that M runs in space f(n) if for all but finitely many x ∈ L(M),

spaceM(x) ≤ f(|x|). In this case we also say that M accepts the language L(M)
in space f(n).

Definition A.5 (DSpace). For a function f(n), define

DSpace(f) = {L : there is a DTM accepting L in space f(n)}

Theorem A.6 (Tape Compression Theorem). For any ǫ > 0 and any
function f ,

DSpace(ǫf) = DSpace(f)

D
R

A
FT

272 APPENDIX A. COMPUTATION MODELS

The class of languages computable in polynomial space is defined as follows.

Definition A.7 (L and PSPACE).

L = DSpace(logn), PSPACE =
⋃

k≥1

DSpace(nk)

For a single–tape Turing machine, the working space is the total number
of squares visited by the tape head during the computation. The classes P,
PSPACE and EXP remain the same even if we restrict to single–tape DTMs.
This is due to the following Theorem.

Theorem A.8 (Multi–Tape Theorem). For each multi-tape Turing machine
M that runs in time t(n) and space s(n), there is a single–tape Turing machine
M′ that runs in time (t(n))2 and space max{n, s(n)} and accepts the same lan-
guage as M. There exists also a 2–tape Turing machine M′′ that works in space
s(n) and accepts L(M).

For the Time Hierarchy Theorem below we need the notion of time con-
structible functions. A function f(n) is time constructible if there is a Turing
machine M such that on all input x, the running time of M is exactly f(|x|).
We will be concerned only with time bounding functions that are constructible.

Theorem A.9 (Time Hierarchy Theorem). Suppose that f(n) is a function,
f(n) ≥ n, and g(n) is a time constructible function so that

lim
n→∞

inf
f(n) log f(n)

g(n)
= 0.

Then
DTime(g) \DTime(f) 6= ∅

It is easy to see that

L ⊆ P ⊆ PSPACE ⊆ EXP.

The Time Hierarchy Theorem shows that

DTime(n) (DTime(n2) (. . . and P (DTime(2ǫn)

for any ǫ > 0. Also, the Space Hierarchy Theorem (below) shows that L (

PSPACE. However, none of the 3 inclusions as shown above is known to be
proper.

A function f(n) is space constructible if there is Turing machine M such that
on all input x, the working space of M is exactly f(n). The space bounds that
we are interested in are all constructible.

Theorem A.10 (Space Hierarchy Theorem). Suppose that f(n) is a func-
tion and g(n) is a space constructible function so that

g(n) = Ω(logn) and lim
n→∞

inf
f(n)

g(n)
= 0.

Then
DSpace(g) \DSpace(f) 6= ∅

D
R

A
FT

A.2. NONDETERMINISTIC TURING MACHINES 273

A.2 Nondeterministic Turing Machines

Definition A.11. A k–tape nondeterministic Turing machine (NTM) is spec-
ified by a tuple 〈Q,Σ, Γ, σ〉 as in Definition A.1, with the modification that

σ : ((Q \ {qaccept , qreject})× Γk)→ P(Q× (Γ× {L,R})k)

where P(S) denotes the power set of the set S.

Here σ(q, s1, . . . , sk) is the (possibly empty) set of possible moves of M, given
that the current state is q and the symbols currently being scanned are ~s.

A computation of M on an input x is a (possibly infinite) sequence of config-
urations of M, starting with the initial configuration 〈qinitial , ǫ, x, ǫ, ǫ, . . . , ǫ, ǫ〉,
and each subsequent configuration is a configuration that can be obtained from
the previous one by one of the possible moves specified by σ. By definition,
each computation of M may contain at most one configuration of the form
〈qaccept , . . .〉 or 〈qreject , . . .〉. In the former case we say that it is an accepting
computation, and in the latter case we say that it is a rejecting computation.

We say that the NTM M accepts x is there is an accepting computation of
M on x. We say that M accepts x in time f(n) if there is such an accepting
computation of length (i.e., the length of the sequence of configurations) ≤
f(|x|), and M accepts x in space f(n) if there is an accepting computation such
that the number of squares visited at least once by the tape head of M is ≤ f(n).

As for DTMs, if for all but finitely many x ∈ L(M) the NTM M accepts x in
time/space f(n), we also say that M accepts the language L(M) in time/space
f(n).

Definition A.12 (NTime and NSpace). For a function f(n), define

NTime(f) = {L : there is a NTM accepting L in time f(n)}
NSpace(f) = {L : there is a NTM accepting L in space f(n)}

The Speed-up Theorem (A.3) and Tape Compression Theorem (A.6) con-
tinue to hold for NTMs.

Definition A.13 (NP and NL).

NP =
⋃

k≥1

NTime(nk), NL = NSpace(logn)

It is straightforward that

L ⊆ NL ⊆ P ⊆NP ⊆ PSPACE

However, resolving whether these are proper containments is a major open prob-
lem in Computer Science.

D
R

A
FT

274 APPENDIX A. COMPUTATION MODELS

For a class C of languages, we define co-C to be the class of the complements
of the languages in C. It is also easy to see that

P ⊆ co-NP ⊆ PSPACE

But the questions P
?
= co-NP, NP

?
= co-NP and co-NP

?
= PSPACE are

open.
For NL vs. co-NL we have an affirmative answer, due to Immerman and

Szelepcsényi:

Theorem A.14 (Immerman–Szelepcsényi Theorem). For any space con-
structible function f(n) ≥ log(n), NSpace(f) = co-NSpace(f).

The class of languages computable by NTMs in polynomial space is defined
similarly, but by Savitch’s Theorem (below), this is the same as PSPACE.

Theorem A.15 (Savitch’s Theorem). For any space constructible function
f(n) ≥ logn,

NSpace(f) ⊆ DSpace(f2)

Note that it also follows that NL (PSPACE.

A.3 Oracle Turing Machines

Let L be a language. An Oracle Turing machine (OTM) M with oracle L is
a Turing machine augmented with the ability to ask questions of the form “is
y ∈ L”. Formally, M has a designated write–only tape for the queries, called
the query tape. It also has 3 additional states, namely qquery , qYes and qNo . In
order to ask the question “is y ∈ L”, the machine writes the string y on the
query tape, and enter the state qquery . The next state of M is then either qYes

or qNo , depending on whether y ∈ L. Also the query tape is blanked out before
M makes the next move.

The running time of M on an input x is defined as before. Note that the
time it takes to write down the queries are counted. Thus an OTM running in
polynomial time cannot ask long (e.g., exponentially long) queries. Note also
that it takes only 1 move to get the answer from the oracle.

A nondeterministic oracle Turing machine (NOTM) is a generalization of
OTM where the transition function is a many–valued function. For a language
L, we denote by P(L) the class of languages accepted by some OTM running in
polynomial time with L as the oracle, and similarly NP(L) the class of languages
accepted by some NOTM running in polynomial time with L as the oracle. For
a class C of languages, define

P(C) =
⋃

L∈C

P(L) and NP(C) =
⋃

L∈C

NP(L)

Then the polynomial time hierarchy (PH) is defined as follows.

D
R

A
FT

A.4. ALTERNATING TURING MACHINES 275

Definition A.16 (PH). ∆p
0 = Σp

0 = Πp
0 = P. For i ≥ 0,

Σp
i+1 = NP(Σp

i), Πp
i+1 = co-Σp

i+1, ∆p
i+1 = P(Σp

i)

And

PH =
⋃

i≥0

Σp
i

It can be shown that PH ⊆ PSPACE, but the inclusion is not known to be
proper. Also, it is not known whether the polynomial time hierarchy collapses.

The Linear Time Hierarchy (LTH) is defined analogously to PH. Here
LinTime and NLinTime are the classes of languages accepted in linear time
by respectively multi-tape DTMs and NTMs.

Definition A.17 (LinTime and NLinTime).

LinTime = DTime(n), NLinTime = NTime(n),

The class LinTime is not as robust a class as P; for example it is plausible
that a (k + 1)–tape linear time DTM can accept a language not accepted by
any k–tape linear time DTM. However it is not hard to see that NLinTime is
more robust, in the sense that every language in this class can be accepted by
a 2–tape linear time NTM.

For a class C of languages, let NLinTime(C) be the class of languages
accepted by a linear time Oracle TM with oracle from C. Then the Linear
Time Hierarchy is defined as follows.

Definition A.18 (LTH).

Σlin
0 = LinTime, Σlin

i+1 = NLinTime(Σlin
i) for i ≥ 0, LTH =

⋃

i≥0

Σlin
i

Both PH and LTH can be alternatively defined using the notion of alter-
nating Turing machines, which we will define in the next Section.

A.4 Alternating Turing Machines

An alternating Turing machine (ATM) M is defined as in Definition A.11 for a
nondeterministic Turing machine, but now the finite set Q \ {qaccept , qreject} is
partitioned into 2 disjoint sets of states, namely the set of ∃ states and the set
of ∀ states.

If a configuration c2 of M can be obtained from c1 as specified by the transi-
tion function σ, we say that it is a successor configuration of c1. An existential
(resp. universal) configuration is a configuration of the form 〈q, . . .〉 where q is
an ∃-state (resp. a ∀-state).

We define the set of accepting configurations to be the smallest set of con-
figurations that satisfies:

D
R

A
FT

276 APPENDIX A. COMPUTATION MODELS

• a final configuration of the form 〈qaccept , ...〉 is an accepting configuration
(a final accepting configuration);

• an existential configuration is accepting iff at least one of its successor
configuration is accepting;

• a universal configuration is accepting iff all of its successor configurations
are accepting.

Now a computation of M on x is an accepting computation if it consists
only of accepting configurations of M. We say that an ATM M accepts x iff
it contains at least one accepting computation. Note that M accepts x iff the
initial configuration 〈qinitial , ǫ, x, ǫ, ǫ, . . . , ǫ, ǫ〉 is an accepting configuration of M.

If an ATM M accepts x then the running time timeM(x) of M on x is the
length of the shortest accepting computation of M on x, otherwise timeM(x) =
∞.

A.4.1 NC1 and AC0

Definition A.19 (AC0). DEFINE AC0 USING CIRCUIT CLASS, CHANG-
ING THIS DEFINITION MAY CHANGE DISCUSSION IN THE PROOF OF
ΣB

0 REPRESENTATION THEOREM.

Theorem A.20 (Alternative Definition of AC0). AC0 = LTH . . .

ALSO LANGUAGES VS. RELATIONS: CODING OR TUPLES INTO A
SINGLE STRING

ALSO FUNCTION CLASSES

A.5 Implementation of Multiplication

Suppose that we are to multiply two numbers x, y whose binary representations
are xn−1 . . . x0, yn−1 . . . y0. The “school algorithm” is to write down a matrix
which has n rows of the form 0 . . . 0xi,n−1 . . . xi,00 . . . 0 (n − i 0’s in the front,
i 0’s follow xi,0), for i = 0, . . . , n − 1, where xi,j = 0 if yi = 0, and xi,j = xj
otherwise. The next step is to add each column of this matrix, starting from
the right, remembering the carries.

This method seems not applicable if we are using alternating Turing ma-
chines with constant alternations, linear time, or when we are working within
“low” complexity classes, such as TC0. Since the ability to carry out multi-
plication using such limited resources is crucial in different discussions, we will
present a method which is applicable in these situations. The idea is to avoid
adding columns of the matrix one by one. As can be seen, it suffices to compute
the sum of n numbers, each has a binary representation of length n. We will
address this issue first.

D
R

A
FT

A.5. IMPLEMENTATION OF MULTIPLICATION 277

A.5.1 Adding n Numbers of Length n

Suppose that we are to compute the sum of n numbers, z = x0 + . . . + xn−1,
where the binary representation of xi is xi = xin−1 . . . x

i
0, for i = 0, . . . , n − 1.

Imagining that these numbers form the rows of an n × n matrix. We will
divide this matrix into 2m blocks, each has ℓ columns, where ℓ = ⌈2 logn⌉, and
m = ⌈n/(2ℓ)⌉. Informally, we will add the “odd” and “even” blocks separately,
and then add the two sums to get the result.

Formally, for i < n let

ui = xi(2m−1)ℓ−1 . . . x
i
(2m−2)ℓ 0 . . . 0︸ ︷︷ ︸

ℓ

. . . 0 . . . 0︸ ︷︷ ︸
ℓ

xiℓ−1 . . . x
i
0

vi = xi2mℓ−1 . . . x
i
(2m−1)ℓ 0 . . . 0︸ ︷︷ ︸

ℓ

. . . xi2ℓ−1 . . . x
i
ℓ 0 . . . 0︸ ︷︷ ︸

ℓ

then xi = ui + vi.
Let u =

∑n−1
i=0 u

i (sum of the “even” blocks), and v =
∑n−1

i=0 v
i (sum of the

“odd” blocks), then z = u+ v. The advantage of getting u, v separately is that
in calculating u and v, the sum of a non-zero block do not carry to the next
non-zero block. This property allows “fast, parallel” computation of u and v.

A.5.2 Multiplication in LTH

Now we will show that multiplication can be done in LTH by showing that
the relation z = x · y can be checked in LTH (to compute x · y in LTH, just
guess a value z and then perform the checking). We will unwind the algorithm
presented in A.5.1.

Suppose that the length of x and y are n. In this case, we will add n
numbers of length 2n, i.e., our matrix will have rows of the form xi2n−1 . . . x

i
0,

for i = 0, . . . , n− 1. We will use the block size ℓ = ⌈2 logn⌉, and there are 2m
blocks, where m = ⌈n/ℓ⌉. The values of ℓ and m can be guessed and checked in
time Ω(n).

Next, guess the values (in binary representation) of u and v. Note that the
lengths of u, v are bounded by 2n+ ℓ. Then, we have to check that u is the sum
of the “even” blocks, and v is the sum of the “odd” blocks. For symmetry, we
will just give an LTH algorithm to check for the correctness of u.

Let u = u2mℓ−1 . . . u0. We have to check that for each j < m,

u(2j+2)ℓ−1 . . . u2jℓ =
n−1∑

i=0

xi(2j+1)ℓ−1 . . . x
i
2jℓ. (A.1)

(I.e., entering universal states to check Equation A.1 for all j < m.) Equa-
tion A.1 can be checked using the usual addition algorithm, i.e., adding column
by column, with the carries from the previous ones. It can be carried out in
LTH as follows.

Guess ℓ “sums” sℓ−1, . . . , s0, each of length ℓ (i.e., entering ℓ2 existential
states). Each sk is intended to be the sum of the column k (i.e., x0

2jℓ+k +

D
R

A
FT

278 APPENDIX A. COMPUTATION MODELS

. . . + xn−1
2jℓ+k) and the appropriate bits of sk−1, . . . , s0. This can be checked by

entering universal states, checking that for each k ≥ 1:

sk = x0
2jℓ+k + . . .+ xn−1

2jℓ+k + sk−1
1 + . . .+ s0k. (A.2)

(s0 = 0.) The RHS of Equation A.2 is represented in unary string of length at
most n+ ℓ ≤ 2n. Its unary representation can be computed in time linear in n
(note that each xi2jℓ+k depends on yi and x2jℓ+k).

