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Preface 

This is a compact introduction to some of the principal topics of 
mathematical logic. [n the belief that beginners should be exposed to the 
easiest and most natural proofs, I have used free-swinging set-theoretic 
methods. The significance of a demand for constructive proofs can be 
evaluated only after a certain amount of experience with mathematical logic 
has been obtained. If we are to be expelled from 'Cantor's paradise' (as non­
constructive set theory was called by Hilbert), at least we should know what 
we are m1ssmg. 

The major changes in this new edition are the following. 
1. In Chapter 2, a section has been added on logic with empty domains, that 
is, on what happens when we allow interpretations with an empty domain. , 
2. [n Chapter 4, Section 4.6 has been extended to include an outline of an 
axiomatic set theory with urelements. 
3. The subjects of register machines and random access machines have been 
dropped from Section 5.5 Chapter 5. 
4. An appendix on second-order logic will give the reader an idea of the 
advantages and limitations of the systems of first-order logic used in 
Chapters 2-4, and will provide an introduction to an area of much current 
interest. 
5. The exposition has been further streamlined, more exercises have been 
added, and the bibliography has been revised and brought up to date. 

The material of the book can be covered in two semesters, but, for a one­
semester course, Chapters 1-3 are quite adequate (omitting, if hmried, 
Sections 1.5, 1.6 and 2.1 0-2.16). I have adopted the convention of prefixing 
a D to any section or exercise that will probably be difficult for a beginner, 
and an A to any section or exercise that presupposes familianity with a topic 
that has not been carefully explained in the text. Bibliographic references are 
given to the best source of information, which is not always the earliest 
paper; hence these references give no indication as to priority. \ 

I believe that the essential parts of the book can be read with ease by 
anyone with some experience in abstract mathematical thinking. There is, 
however, no specific prerequisite. 

This book owes an obvious debt to the standard works of Hilbert and 
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Bernays (1934; 1939), Kleene (1952), Rosser (1953) and Church (1956). I am 
grateful to many people for their help and would especially like to thank the 
following people for their valuable suggestions and criticism: Richard 
Butrick, James Buxton, Frank Cannonito, John Corcoran, Newton C.A. da 
Costa, Robert Cowen, Anil Gupta, Eric Hammer, Bill Hart, Stephen 
Hechler, Arnold Koslow, Byeong-deok Lee, Alex Orenstein, Dev K. Roy, 
Atsumi Shimojima and Frank Vlach. 

Elliott Mendelson 
August 1996 
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Introduction 

One of the popular definitions of logic is that it is the analysis of methods of 
reasoning. In studying these methods, logic is interested in the form rather 
than the content of the argument. For example, consider the two arguments: 

L All men are mortaL Socrates is a man. Hence, Socrates is mortal. 
2. All cats like fish. Silvy is a cat. Hence, Silvy likes fish. 

Both have the same form: AHA are B. Sis anA. Hence, Sis a B. The truth or 
falsity of the particular premisses and conclusions is of no concern to lo­
gicians. They want to know only whether the premisses imply the conclu­
sion. The systematic formalization and cataloguing of valid methods of 
reasoning are a main task of logicians. If the work uses mathematical 
techniques or if it is primalily devoted to the study of mathematical rea­
soning, then it may be called mathematical logic. We can nanow the domain 
of mathematical logic if we define its principal aim to be a precise and 
adequate understanding of the notion of mathematical proof 

Impeccable definitions have little value at the beginning of the study of a 
subject. The best way to find out what mathematical logic is about is to start 
doing it, and students are advised to begin reading the book even though (or 
especially if) they have qualms about the meaning and purpose of the 
subject. 

Although logic is basic to all other studies, its fundamental and appar­
ently self-evident character discouraged any deep logical investigations until 
the late 19th century. Then, under the impetus of the discovery of non­
Euclidean geometry and the desire to provide a rigorous foundation for 
calculus and higher analysis, interest in logic revived. This new interest, 
however, was still rather unenthusiastic until, around the turn of the cen­
tury, the mathematical world was shocked by the discovery of the paradoxes 
- that is, arguments that lead to contradictions. The most important 
paradoxes are described here. 

L. Russell's paradox (1902). By a set, we mean any collection of objects~ for 
example, the set of all even integers or the set of all saxophone players in 
Brooklyn. The objects that make up a set are called its members or 
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elements. Sets may themselves be members of sets; for example, the set of 
all sets of integers has sets as its members. Most sets are not members of 
themselves; the set of cats, for example, is not a member of itself because 
the set of cats is not a cat. However, there may be sets that do belong to 
themselves- for example, the set of all sets. Now, consider the set A of all 
those sets X such that X is not a member of X. Clearly, by definition, A is 
a member of A if and only if A is not a member of A. So, if A is a member 
of A, then A is also not a member of A; and if A is not a member of A, then 
A is a member of A. In any case, A is a member of A and A is not a member 
of A. 

2. Cantor's paradox (1899). This paradox involves the theory of cardinal 
numbers and may be skipped by those readers having no previous ac­
quaintance with that theory:._ Th~ cardinal number Y of a set Y is a 
measure of the size of the set; Y = Z if and only if Y is equinumerous with 
Z (that is, there is a one-one conespondence between Y and Z). We define 
Y ~Z to mean that Y is equinumerous with a subset of Z; by Y < Z we 
mean Y ~Z and Y =f. Z. Cantor proved that, if &(Y) is the set of all 
subsets of Y, then Y < &(Y). Let V be the universal set- that is, the~et of 
all sets. Now, &(V) is a subset of V; so it follows easily that ~(V) ~ V. On 
the other hand.!._ bt._ Cantor's _!heorem2... V < &(V). Bernstein's theorem 
asserts that, if Y ~Z and Z ~ Y, then Y = Z. Hence, V = &(V), contra­
dicting V < &( V). 

3. Burali-Forti's paradox (1897). This paradox is the analogue in the theory 
of ordinal numbers of Cantor's paradox and requires familiarity with 
ordinal number theory. Given any ordinal number, there is a still larger 
ordinal number. But the ordinal number determined by the set of all 
ordinal numbers is the largest ordinal number. ·-. 

4. The liar paradox. A man says, 'I am lying', If he is lying, then what he 
says is true and so he is not lying. If he is not lying, then what he says is 
true, and so he is lying. In any case, he is lying and he is not lying. t 

5. Richard's paradox (1905). Some phrases of the English language denote 
real numbers; for example, 'the ratio between the circumference and 
diameter of a circle' denotes the number n. All the phrases of the English 
language can be enumerated in a standard way: order all phrases that 
have k letters lexicographically (as in a dictionary) and then place all 
phrases with k letters before all phrases with a larger number of letters. 
Hence, all phrases of the English language that denote real numbers can 

tThe Cretan 'paradox', known in antiquity, is similar to the liar paradox. The 
Cretan philosopher Epimenides said, 'All Cretans are liars'. If what he said is true, 
then, since Epimenides is a Cretan, it must be false. Hence, what he said is false. 
Thus, there must be some Cretan who is not a liar. This is not logically impossible; so 
we do not have a genuine paradox. However, the fact that the utterance by Epi­
menides of that false sentence could imply the existence of some Cretan who is not a 
liar is rather unsettling. 
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be enurrter~ted merely by omitting all other phrases in the given standard 
enumeration. Call the nth real number in this enumeration the nth Ri­
chard number. Consider the phrase: 'the real number whose nth decimal 
place is 1 if the nth decimal place of the nth Richard number is not L, and 
whose nth decimal place is 2 if the nth decimal place of the nth Richard 
number is 1.' This phrase defines a Richard number - say, the kth Ri­
chard number; but, by its definition, it differs from the kth Richard 
number in the kth decimal place. 

6. Berry's paradox (1906). There are only a finite number of symbols (letters, 
punctuation signs, etc.) in the English language. Hence, there are only a 
finite number of English expressions that contain fewer than 200 occur­
rences of symbols (allowing repetitions). There are, therefore, only a finite 
number of positive integers that are denoted by an English expression 
containing fewer than 200 occurrences of symbols. Let k be the least 
positive integer that is not denoted by an English expression containing 
fewer than 200 occurrences of symbols. The italicized English phrase 
contains fewer than 200 occurrences of symbols and denotes the integer k. 

7. Grelling's paradox (1908). An adjective is called auto logical if the property 
denoted by the adjective holds for the adjective itself. An adjective is 
called heterological if the property denoted by the adjective does not 
apply to the adjective itself. For example, 'polysyllabic' and 'English' are 
autological, whereas 'monosyllabic' and .'French' are heterological. 
Consider the adjective 'heterological'. If 'heterological' is heterological, 
then it is not heterological. If 'heterological' is not heterological, then it is 
heterological. In either case, 'heterological' is both heterological and not 
heterological. 

8. Lob's paradox (1955). LetA be any sentence. Let B be the sentence: 'If this 
sentence is true, then A'. So, B asserts: 'IfB is true, then A'. Now consider 
the following argument: Assume B is true; then, by B, since B is true, A 
holds. This argument shows that, if B is true, then A. But this is exactly 
what B asserts. Hence, B is true. Therefore, by B, since B is true, A is true. 
Thus, every sentence is true. 

All of these paradoxes are genuine in the sense that they contain no 
obvious logical flaws. The logical paradoxes (1-3) involve only notions from 
the theory of sets, whereas the semantic paradoxes (4-8) also make use of 
concepts like 'denote', 'true' and 'adjective', which need not occur within 
our standard mathematical language. For this reason, the logical paradoxes 
are a much greater threat to a mathematician's peace of mind than the 
semantic paradoxes. 

Analysis of the paradoxes has led to various proposals for avoiding them. 
All of these proposals are restrictive in one way or another of the 'naive' 
concepts that enter into the derivation of the paradoxes. Russell noted the 
self-reference present in all the paradoxes and suggested that every object 
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must have a definite non-negative integer as its 'type'. Then an expression 'x 
is ·a member of the set y' is to be considered meaningful if and only if the 
type of y is one greater than the type of x. 

This approach, lmown as the theory of types and systematized and de­
veloped in Principia Mathematica Whitehead and Russell (1910-13), is 
successful in eliminating the known paradoxes,t but it is clumsy in practice 
and has certain other drawbacks as well. A different criticism of the logical 
paradoxes is aimed at their assumption that, for every property P(x), there 
exists a corresponding set of all objects x that satisfy P(x). If we reject this 
assumption, then the logical paradoxes are no longer derivable. t It is ne­
cessary, however, to provide new postulates that will enable us to prove the 
existence of those sets that are needed by the practising mathematician. The 
first such axiomatic set theory was invented by Zermelo (1908). In Chapter 4 
we shall present an axiomatic theory of sets that is a descendant of Zer­
melo's system (with some new twists given to it by von Neumann, R. Ro­
binson, Bernays, and Godel). There are also various hybrid theories 
combining some aspects of type theory and axiomatic set theory- for ex­
ample, Quine's system NF. 

A more radical interpretation of the paradoxes has been advocated by 
Brouwer and his intuitionist school (see Heyting, 1956). They refuse to 
accept the universality of certain basic logical laws, such as the law of 
excluded middle: P or not-P. Such a law, they claim, is true for finite sets, 
but it is invalid to extend it on a wholesale basis to all sets. Likewise, they 
say it is invalid to conclude that 'There exists an object x such that not-P(x)' 
follows from the negation of 'For all x, P(x)'; we are justified in asserting the 
existence of an object having a certain property only if we know an effective 
method for constructing (or finding) such an object. The paradoxes are not 
derivable (or even meaningful) if we obey the intuitionist ·.strictures, but so 
are many important theorems of everyday mathematics, and, for this rea­
son, intuitionism has found few converts among mathematicians. 

Whatever approach one takes to the paradoxes, it is necessary first to 
examine the language of logic and mathematics to see what symbols may be 
used, to determine the ways in which these symbols are put together to form 
terms, formulas, sentences and proofs, and to find out what can and cannot 
be proved if certain axioms and rules of inference are assumed. This is one of 
the tasks of mathematical logic, and, until it is done, there is no basis for 

tRussells's paradox, for example, depends on the existence of the set A of all sets 
that are not members of themselves. Because, according to the theory of types, it is 
meaningless to say that a set belongs to itself, there is no such set A. 

+Russell's paradox then proves that there is no set A of all sets that do not 
belong to themselves. The paradoxes of Cantor and Burali-Forti show that there is 
no universal set and no set that contains all ordinal numbers. The semantic para­
doxes cannot even be formulated, since they involve notions not expressible within 
the system. 
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compariflt rival foundations of logic and mathematics. The deep and de­
vastating resGlts ofGodel, Tarski, Church, Rosser, Kleene, and many others 
have been ample reward for the labour invested and have earned for 
mathematical logic its status as an independent branch of mathematics. 

For the absolute novice a summary will be given here of some of the basic 
notation, ideas, and results used in the text. The reader is urged to skip these 
explanations now and, if necessary, to refer to them later on. 

A set is a collection of objects.t The objects in the collection are called 
elements or members of the set. We shall write 'x E y' for the statement that 
x is a member of y. (Synonymous expressions are 'x belongs to y' and 'y 
contains x'.) The negation of 'x E y' will be written 'xtj:y'. 

By 'x c y' we mean that every member of x is also a mem her of y ( sy­
nonymously, that xis a subset of y, or that xis included in y). We shall write 
•t = s' to mean that t and s denote the same object. As usual, 't =/=- s' is the 
negation of't = s'. For sets x andy, we assume that x = y if and only if x c y 
andy c x - that is, if and only if x and y have the same members. A set x is 
called a proper subset of a set y, written 'x c y' if x C y but x f y. (The 
notation x ~ y is often used instead of x c y.) 

The union xU y of sets x andy is defined to be the set of all objects that are 
members ofx or y or both. Hence, xUx = x, xU y = y Ux, and (x Uy) Uz = 
xU (yUz). The intersection xny is the set of objects that x andy have in 
common. Therefore, xnx=x, xny=ynx, and (xny)nz=xn(ynz). 
Moreover, xn (yUz) = (xny) U (xnz) and xU (ynz) = (xUy) n (x Uz). 
The relative complement x - y is the set of members of x that are not 
members of y. We also postulate the existence of the empty set (or null set) 
0 - that is, a set that has no members at all. Then x n 0 = 0, x U 0 = x, 
x- 0 = x, 0 - x = f/J, and x- x = 0. Sets x and y are called disjoint if 
·xny= 0. 

Given any objects b1, ... , bk, the set that contains b1, •.. , bk as its only 
members is denoted {b1, ••. , bk}· In particular, {x,y} is a set having x andy 
as its only members and, if x f y, is called the unordered pair of x andy. The 
set {x,x} is identical with {x} and is called the unit set of x. Notice that 
{x,y} = {y,x}. By (bt, ... , bk) we mean the ordered k-tuple of b1 , ... , bk. The 
basic property of ordered k-tuples is that (b1, ... , bk) = (c1, ... , ck) if and 
only if b1 = q, b2 = c2, ... , bk = Ck· Thus, (bt, b2) = (b2, bt) if and only if 
b1 = b2. Ordered 2-tuples are called ordered pairs. The ordered )-tuple (b) is 
taken to be b itself. If X is a set and k is a positive integer, we denote by Xk 
the set of all ordered k-tuples (bt, ... , bk) of elements bt, ... , bk of X. In 

twhich collections of objects form sets will not be specified here. Care wil1 be 
exercised to avoid using any ideas or procedures that may lead to the paradoxes; all 
the results can be formalized in the axiomatic set theory of Chapter 4. The term 
'class' is sometimes used as a synonym for 'set', but it will be avoided here because it 
has a different meaning in Chapter 4. If a property P(x) does determine a set, that set 
is often denoted {xI P(x)}. 
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particular, X 1 is X itself. If Y and Z are sets, then by Y x Z we denote the set 
of all ordered pairs {y, z) such that y E Y and z E Z . Y .x Z is called the 
Cartesian product of Y and Z. 

Ann-place relation (or a relation with n arguments) on a set X is a subset 
of X"- that is, a set of ordered n-tuples of elements of X. For example, the 
3-place relation of betweenness for points on a line is the set of all 3-tuples 
(x, y, z) such that the point x lies between the points y and z. A 2-place 
relation is called a binary relation; for example, the binary relation of fa­
therhood on the set of human beings is the set of all ordered pairs (x,y) such 
that x andy are human beings and x is the father of y . A 1-place relation on 
X is a subset of X and is called a property on X . 

Given a binary relation R on a set X, the domain of R is defined to be the 
set of ally such that (y, z) E R for some z; the range of R is the set of all z 

such that (y,z) E R for some y; and the .field of R is the union of the domain 
and range of R. The inverse relation R- 1 of R is the set of all ordered pairs 
(y,z) such that (z,y) E R. For example, the domain of the relation< on the 
set m of non-negative integerst is m, its range is m- {0}, and the inverse of 
<is>. Notation: Very oftenxRy is written instead of (x,y) E R. Thus, in the 
example just given, we usually write x < y instead of (x, y) E <. 

A binary relation R is said to be reflexive if xRx for all x in the field of R; R 
is symmetric if xRy implies yRx; and R is transitive if xRy and yRz imply xRz. 
Examples: The relation ~ on the set of integers is reflexive and transitive 
but not symmetric. The relation 'having at least one parent in common' on 
the set of human beings is reflexive and symmetric, but not transitive. 

A binary relation that is reflexive, symmetric and transitive is called an 
equivalence relation. Examples of equivalence relations are: (I) the identity 
relation lx on a set X, consisting of all pairs (x,x). where x'·E X; (2) given a 
fixed positive integer n, the relation x y (mod n ), which holds when x andy 
are integers and x - y is divisible by n; (3) the congruence relation on the set 
of triangles in a plane; (4) the similarity relation on the set of triangles in a 
plane. Given an equivalence relation R whose field is X, and given any 
y E X, define [ y] as the set of all z in X such that yRz. Then [y] is called the 
R- equivalence class of y. Clearly, [uJ = [vJ if and only if uRv. Moreover, if 
[uJ f:- [v], then [uJ n [vJ = 0; that is, different R-equivalence classes have no 
elements in common. Hence, the set X is completely partitioned into the 
R-equivalence classes. In example (I) above, the equivalence classes are just 
the unit sets {x}, where x EX. In example (2), there are n equivalence 
classes, the kth equivalence class ( k = 0, 1, ... , n - 1) being the set of all 
integers that leave the remainder k upon division by n. 

A function f is a binary relation such that (x,y) E f and (x,z) E f imply 
y = z. Thus, for any element x of the domain of a function f, there is a 
unique y such that (x,y) E f; this unique y is denoted f(x). If x is in the 

t co will also be referred to as the set of natural numbers. 
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domain offrthenf(x) is said to be defined. A function/ with domain X and 
range y is said to be a function from X onto Y. Iff is a function from X onto 
a subset of Z, then f is said to be a function from X into Z. For example. if 
the domain off is the set of integers and f(x) = 2x for every integer x, then 
f is a function from the set of integers onto the set of even integers, and f is 
a function from the set of integers into the set of integers. A function whose 
domain consists of n-tuples is said to be a function of n arguments. A wtal 
function of n arguments on a set X is a function f whose domain is X". It is 
customary to writef(xt, ... ,xn) instead off((xt, . . . ,x")), and we refer to 
f(x1, ••• , x11 ) as the value off for the arguments x1 , ... , X11 • A partial function 
ofn arguments on-a set X is a function whose domain is a subset of xn. For 
example, ordinary division is a partial, but not total, function of two ar­
guments on the set of integers, since division by 0 is not defined. Iff is a 
function with domain X and range Y, then the restriction fz off to a set Z is 
the function f n (Z x Y). Then fz(u) = v if and only if u E Z and f(u) = v. 
The image of the set Z under the function f is the range of fz. The inverse 
image of a set W under the function f is the set of all u in the domain off 
such that f(u) E W. We say that f maps X onto (into) Y if X is a subset of 
the domain off and the image of X under f is (a subset of) Y. By ann-place 
operation (or operation with n arguments) on a set X we mean a function 
from X" into X. For example, ordinary addition is a binary (i.e., 2-place) 
operation on the set of natural numbers {0, 1,2, · · ·}. But ordinary sub­
traction is not a binary operation on the set of natural numbers. 

The composition fog (sometimes denoted fg) of functions f and g is the 
function such that (! o g)(x) = f(g(x)); (! o g)(x) is defined if and only if 
g(x) is defined and f(g(x)) is defined. For example, if g(x) =x2 and 
f(x) = x + 1 for every integer x, then (f o g)(x) = ~ + 1 and (go f)(x) = 

(x+ 1)2
. Also, if h(x) = -x for every real number x andf(x) =Vi for every 

non-negative real number x, then (f o h)(x) is defined only for x~O, and, for 
suchx, (f o h)(x) = .J=X. A function/ such thatf(x) = f(y) impliesx = y is 
called a 1-1 (one-one) function. For example, the identity relation Ix on a set 
X is a 1-1 function, since lx(Y) = y for every y EX; the function g with 
domain w, such that g(x) = 2x for every x E w, is 1-1; but the function h 
whose domain is the set of integers and such that h(x) = x2 for every integer 
xis not 1-1, since h( -1) = h(1). Notice that a function/ is 1-1 if and only if 
its inverse relation f-1 is a function. If the domain and range of a 1-1 
function/ are X andY, then/ is said to be a 1 - 1 (one-one) correspondence 
between X and Y; then 1· 1 is a 1-1 correspondence between Y and X, and 
(f-1 of) = lx and (f o .r-•) = ly. Iff is a 1-1 correspondence between X 
and Y and g is a 1-1 correspondence between Y and Z, then g of is a 1-1 
correspondence between X and Z. Sets X and Y are said to be equinumerous 
(written X rv Y) if and only if there is a l-1 correspondence between X and 
Y. Clearly, X rv X, X rv Y implies Y rv X, and X rv Y and Y rv Z implies 
X rv Z. It is somewhat harder to show that, if X rv Y1 C Y and Y rv X1 C X, 
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then X"' Y (see Bernstein's theorem in Chapter 4). If X"' Y, one says that 
X and Y have the same cardinal number, and if X is equinumerous with a 
subset of Y but Y is not equinumerous with a subset of X, one says that the 
cardinal number of X is smaller than the cardinal number of Y.t 

A set X is denumerable if it is equinumerous with the set of positive 
integers. A denumerable set is said to have cardinal number No, and any set 
equinumerous with the set of all subsets of a denumerable set is said to have 
the cardinal number 2No (or to have the power of the continuum). A set X is 
finite if it is empty or if it is equinumerous with the set { 1, 2, . .. , n} of all 
positive integers that are less than or equal to some positive integer n. A set 
that is not finite is said to be infinite. A set is countable if it is either finite or 
denumerable. Clearly, any subset of a denumerable set is countable. A 
denumerable sequence is a function s whose domain is the set of positive 
integers; one usually writes sn instead of s(n ). A finite sequence is a function 
whose domain is the empty set or { 1, 2, ... , n} for some positive integer n. 

Let P(x,y~, ... ,yk) be some relation on the set of non-negative integers. In 
particular, P may involve only the variable x and thus be a property. If 
P(O,y1, ••. ,yk) holds, and, if, for every n, P(n,y1, •.. ,Yk) implies 
P(n + 1,y1, •.. ,yk), thenP(x,y1, ... ,Yk) is true for all non-negative integers x 
(principle of mathematicalinduction). In applying this principle, one usually 
proves that, for every n, P(n,y1, ... ,yx) implies P(n + 1 ,y1, ... ,yk) by as­
suming P(n,y1, ••• ,yk) and then deducing P(n + 1,y1, ... ,yk); in the course 
of this deduction, P(n,y1, .•• ,yk) is called the inductive hypothesis. If the 
relation P actually involves variables Yl, . .. ,yk other than x, then the proof is 
said to proceed by induction on x. A similar induction principle holds for the 
set of integers greater than some fixed integer j. An example is: to prove by 
mathematical induction that the sum of the first n odd integers 
1 + 3 + 5 + ... + (2n- l) is H

2
, first show that 1 = 12 (that is, P(l)), and 

then, that if 1 + 3 + 5 + ... + (2n - 1) = n2
, then 1 + 3 + 5 + ... + (2n - 1) 

+(2n + 1) = (n + 1)2 (that is, if P(n) then P(n + 1)). From the principle of 
mathematical induction one can prove the principle of complete induction: If, 
for every non-negative integer x the assumption that P(u,y~, ... ,yk) is true 
for all u < x implies that P(x,yt, ... ,yk) holds, then, for all non-negative 
integers x, P(x,y1, ••• ,yk) is true, (Exercise: Show by complete induction 
that every integer greater than 1 is divisible by a prime number.) 

A partial order is a binary relation R such that R is transitive and, for 
every x in the field of R, xRx is false. If R is a partial order, then the relation 
R' that is the union of R and the set of all ordered pairs (x, x), where x is in 
the field of R, we shall call a reflexive partial order; in the literature, 'partial 
order' is used for either partial order or reflexive partial order. Notice that 

tOne can attempt to define the cardinal number of a set X as the collection [X] of 
all sets equinumerous with X. However, in certain axiomatic set theories, [X] does 
not exist, whereas in others [X) exists but is not a set. 
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(xRy and yKx) is impossible if R is a partial order, whereas (xRy and yRx) 
.implies x = y if R is a reflexive partial order. A (reflexive) total order is a 
(reflexive) partial order such that, for any x andy in the field of R, either 
x = y or xRy or yRx. Examples: (1) the relation < on the set of integers is a 
total order, whereas ~ is a reflexive total order; (2) the relation c on the set 
of all subsets of the set of positive integers is a partial order but not a total 
order, whereas the relation C is a reflexive partial order but not a reflexive 
total order. If B is a subset of the field of a binary relation R, then an element 
y of B is called an R-least element of B if yRz for every element z of B different 
fromy. A well-order (or a well-ordering relation) is a total order R such that 
every non-empty subset of the field of R has an R-least element. Examples: 
(1) the relation < on the set of non-negative integers is a well-order; (2) the 
relation < on the set of non-negative rational numbers is a total order but 
not a well-order; (3) the relation < on the set of integers is a total order but 
not a well-order. Associated with every well-order R having field X there is a 
complete induction principle: if P is a property such that, for any u in X, 
whenever all z in X such that zRu have the property P, then u has the 
property P, then it follows that all members of X have the property P. If the 
set X is infinite, a proof using this principle is called a proof by transfinite 
induction. One says that a set X can be well-ordered if there exists a well­
order whose field is X. An assumption that is useful in modern mathematics 
but about the validity of which there has been considerable controversy is 
the well-ordering principle: every set can be well-ordered. The well-ordering 
principle is equivalent (given the usual axioms of set theory) to the axiom of 
choice: for any set X of non-empty pairwise disjoint sets, there is a set Y 
(called a choice set) that contains exactly one element in common with each 
set in X. 

Let B be a non-empty set, fa function from B into B, and g a function 
fromB2 into B. Write x' for f(x) and x ny for g(x,y). Then (B,f, g) is called 
a Boolean algebra if B contains at least two elements and the following 
conditions are satisfied: 

1. x ny = y nx for all x andy in B 
2. (xny)nz=xn(ynz) for allx,y,zinB 
3. x ny' = znz' if and only if xny = x for all x,y, z in B. 

Let xU y stand for (x' n y')', and write x ~y for x n y = x. It is easily proved 
that z n z' = w n w' for any wand z in B; we denote the value of z n z' by 0. 
Let 1 stand for 0'. Then z U z' = 1 for all z in B. Note also that ~ is a 
reflexive partial order on B, and (B,/, U) is a Boolean algebra. (The symbols 
n, U, 0, 1 should not be confused with the corresponding symbols used in set 

I 

theory and arithmetic.) An ideal J in (B,f, g) is a non-empty subset of B 
such that (1) if x E J andy E J, then xU y E J, and (2) if x E J andy E B, 
thenx ny E J. Clearly, {0} andB are ideals. An ideal different fromB is called 
a proper ideal. A maximal ideal is a proper ideal that is included in no other 
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proper ideal. It can be shown that a proper ideal J is maximal if and only if, 
for any u in B, u E J or u' E J. From the axiom of choice it can be proved 
that every Boolean algebra contains a maximal ideal, or, equivalently, that 
every proper ideal is included in some maximal ideal. For example, let B be 
the set of all subsets of a set X; for Y E B, let Y' =X- Y, and for Y and Z in 
B, let Y n Z be the ordinary set-theoretic intersection of Y and Z. Then 
(B,' , n) is a Boolean algebra. The 0 of B is the empty set 0, and I is X. For 
each element u in X, the set Ju of all subsets of X that do not contain u is a 
maximal ideal. For a detailed study of Boolean algebras, see Sikorski (1960), 
Halmos (1963) and Mendelson (1970). 



The I:ropositional Calculus 

1.1 PROPOSITIONAL CONNECTIVES. TRUTH TABLES 

Sentences may be combined in various ways to form more complicated 
sentences. We shall consider only truth-functional combinations, in which 
the truth or falsity of the new sentence is determined by the truth or falsity 
of its component sentences. 

Negation is one of the simplest operations on sentences. Although a sen­
tence in a natural language may be negated in many ways, we shall adopt a 
uniform procedure: placing a sign for negation, the symbol•, in front of the 
entire sentence. Thus, if A is a sentence, then .,_A denotes the negation of A. 

The truth-functional character of negation is made apparent in the fol-
lowing truth table: A -.A 

T F 
F T 

When A is true, --.A is false; when A is false, --.A is true. We use T and F to 
denote the truth values true and false. 

Another common truth-functional operation is the conjunction: 'and'. The 
conjunction of sentences A and B will be designated by A 1\ B and has the 
following truth table: 

A B AI\B 
T T T 
F T F 
T F F 
F F F 

A 1\ B is true when and only when both A and B are true. A and B are called 
the conjuncts of A 1\ B. Note that there are four rows in the table, corre­
sponding ta the number of possible assignments of truth values to A and B. 

In natural languages, there are two distinct uses of 'or': the inclusive and 
the exclusive. According to the inclusive usage, 'A orB' means 'A orB or 
both', whereas according to the exclusive usage, the meaning is 'A orB, but 
not both'. We shall introduce a special sign, V, for the inclusive connective. 
Its truth table is as follows: 

1 
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A B AVB 
T T T 
F T T 
T F T 
F F F 

Thus, A V B is false when and only when both A and B are false. 'A V B' is 
called a disjunction, with the disjuncts A and B. 

Aiwther important truth-functional operation is the conditional: 'if A, 
then B'. Ordinary usage is unclear here. Surely, 'if A, then B' is false when 
the antecedent A is true and the consequent B is false. However, in other 
cases, there is no well-defined truth value. For example, the following sen­
tences would be considered neither true nor false: 

1. If 1 + 1 = 2, then Paris is the capital of France. 
2. If 1 + 1 # 2, then Paris is the capital of France. 
3. If 1 + 1 -=J 2, then Rome is the capital of France. 

Their meaning is unclear, since we are accustomed to the assertion of some 
sort of relationship (usually causal) between the antecedent and the con­
sequent. We shall make the convention that 'if A, then B' is false when and 
only when A is true and B is false. Thus, sentences 1-3 are assumed to be 
true. Let us denote 'if A, then B' by 'A =? B'. An expression 'A =? B' is called 
a conditional. Then =? has the following truth table: 

A B A=:-B 
T T T 
F T T 
T F F 
F F T '· 

This sharpening of the meaning of 'if A, then B' involves no conflict with 
ordinary usage, but rather only an extension of that usage.t 

A justification of the truth table for =? is the fact that we wish 'if A and B, 
then B' to be true in all cases. Thus, the case in which A and Bare true justifies 
the first line of our truth table for=?, since (A and B) and B are both true. If A is 

tThere is a common non~ truth-functional interpretation of'if A, thenB' connected 
with causal laws. The sentence 'if this piece of iron is placed in water at timet, then the 
iron will dissolve' is regarded as false even in the case that the piece of iron is not placed 
in water at time t - that is, even when the antecedent is false. Another non-truth­
functional usage occurs in so-called counterfactual conditionals, such as 'if Sir Walter 
Scott had not written any novels, then there would have been no War Between the 
States'. (This was Mark Twain's contention in Life on the Mississippi: 'Sir Walter had 
so large a hand in making Southern character, as it existed before the war, that he is in 
great measure responsible for the war'.) This sentence might be asserted to be false even 
though the antecedent is admittedly false. However, causal laws and counterfactual 
conditions seem not to be needed in mathematics and log~. For a clear treatment of 
conditionals and other connectives, see Quine (1951 ). (The quotation from Life on the 
Mississippi was brought to my attention by Professor J.C. Owings, Jr.) 
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false and B true, then (A and B) is false while B is true. This corresponds to the 
second line of the truth table. Finally, if A is false and B is false, (A and B) is false 
and B is false. This gives the fourth line of the table. Still more support for our 
definition comes from the meaning of statements such as 'for every x, if xis an 
odd positive ipteger, then XZ. is an odd positive integer'. This asserts that, for 
every x, the st'atement 'if xis an odd positive integer, then x2 is an odd positive 
integer' is true. Now we certainly do not want to consider cases in whichx is not 
an odd positive integer as counterexamples to our general assertion. This 
supports the second and fourth lines of our truth table. In addition, any case in 
which xis an odd positive integer and x 2 is an odd positive integer confirms our 
general assertion. This corresponds to the first line of the table. 

Let us denote 'A if and only if B' by 'A {:::} B'. Such an expression is called 
a biconditional. Clearly, A {:::} B is true when and only when A and B have the 
same truth value. lts truth table, therefore is: 

A B A'¢::}B 
T T T 
F T F 
T F F 
F F T 

The symbols •, 1\, V,:::::} and {::} will be called propositional connectives.t 
Any sentence built up by application of these connectives has a truth value 
that depends on the truth values of the constituent sentences. In order to 
make this dependence apparent, let us apply the name statement form to an 
expression built up from the statement letters A,B, C, and so on by appro­
priate applications of the propositional connectives. 

1. All statement letters (capital italic letters) and such letters with numerical 
subscriptst are statement forms. 

2. If PJJ and <'C are statement forms, then so are ( -,PJJ), ( ~ 1\ <'C), 
( ~ V <'C), ( PJJ =} <'C), and (PJJ {:::} <'C). 

3. Only those expressions are statement forms that are determined to be so 
by means of conditions 1 and 2.§ 

Some examples of statement forms are B, (·C2), (D3 1\ (•B)), 
(((•B1) V B2):::::} (At 1\ C2)), and (((-.A) <¢=?A){:::} (C:::::} (B V C))). 

twe have been avoiding and shall in the future avoid the use of quotation marks 
to form names whenever this is not likely to cause confusion. The given sentence 
should have quotation marks around each of the connectives. See Quine (1951, pp. 
23- 27). 

+For example, At,A2,A11,B3t, C2, .... 
§This can be rephrased as follows:~ is a statement form if and only if there is a 

finite sequence PJ1, ... , fJJ11 (n 2: 1) such that fYJ11 = ~ and, if 1 :::;;,i:::;;n, PJ; is either a 
statement letter or a negation, conjunction, disjunction, conditional or biconditional 
constructed from previous expressions in the sequence. Notice that we use script 
letters d, PJ, ~' ... to stand for arbitrary expressions, whereas italic letters are used 
as statement letters. 

13 
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For every assignment of truth values Tor F to the statement letters that 
occur in a statement form, there corresponds, by virtue of the truth tables 
for the propositional connectives, a truth value for the statement form. 
Thus, each statement form determines a truth function, which can be gra­
phically represented by a truth table for the statement form. For example, 
the statement form (((-.A) VB)=? C) has the following truth table: 

A B C (•A) ((-.A) VB) (((•A) VB)=> C) 
T T T F T T 
F T T T T T 
T F T F F T 
F F T T T T 
T T F F T F 
F T F T T F 
T F F F F T 
F F F T T F 

Each row represents an assignment of truth values to the statement letters 
A,B and C and the corresponding truth values assumed by the statement 
forms that appear in the construction of (((• A) VB)=? C). 

The truth table for ((A ¢:::} B) ::::> ( (·A) 1\ B)) is as follows: 

A B (A{::}B) (•A) ((-.A)/\B) ((A{::}B)=>((-d)/\B)) 
T T T F F F 
F T F T T T 
T F F F F T 
F F T T F F 

If there are n distinct letters in a statement form, then there are 211 possible 
assignments of truth values to the statement letters and, lienee, 211 rows in 
the truth table. 

A truth table can be abbreviated by writing only the full statement form, 
putting the truth values of the statement letters underneath all occurrences 
of these letters, and writing, step by step, the truth values of each component 
statement form under the principal connective of the formt. As an example, 
for ((A¢:::} B)=? ((•A) /\B)), we obtain: 

((A ~ B) => ((•A) 1\ B)) 
T T T F FT F T 
F F T T TF T T 
T F F T FT F F 
F T F F TF F F 

tThe principal connective of a statement form is the one that is applied last in 
constructing the form. 
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Exercises 

1.1 Write the truth table for the exclusive usage of 'or'. 
1.2 Construct truth tables for the statement forms ((A=? B) V (• A)) and 
((A::::> (B ==>_C)) ==> ((A==> B) =? (A =?C))). 
1.3 Write ab'lsreviated truth tables for ((A =?B) 1\ A) and ((A V (-.C)) {:::} B). 
1.4 Write the following sentences as statement forms, using statement letters 
to stand for the atomic sentences - that is, those sentences that are not built 
up out of other sentences. 

(a) [f Mr Jones is happy, Mrs Jones is not happy, and if Mr Jones is not 
happy, Mrs Jones is not happy. 

(b) Either Sam will come to the party and Max will not, or Sam will not 
come to the party and Max will enjoy himself. 

(c) A sufficient condition for x to be odd is that xis prime. 
(d) A necessary condition for a sequences to converge is that s be bounded. 
(e) A necessary and sufficient condition for the sheikh to be happy is that he 

has wine, women and song. 
(f) Fiorello goes to the movies only if a comedy is playing. 
(g) The bribe will be paid if and only if the goods are delivered. 
(h) If x is positive, x2 is positive. 
(i) Karpov will win the chess tournament unless Kasparov wins today. 

1.2 TAUTOLOGIES 

A truth function of n argwnents is defined to be a function of n arguments, 
the arguments and values of which are the truth values T or F. As we have 
seen, any statement form containing n distinct statement letters determines a 
corresponding truth function of n arguments. t 

tTo be precise, enumerate all statement letters as follows: A,B, . . . , 
Z;At,Bt, ... ,Z1;A2, ... ,. 1f a statement form contains the iph, •.. , i 11th statement let­
ters in this enumeration, where it < ... < i11 , then the corresponding truth function is 
to have x;p ... ,x;n, in that order, as its arguments, where x;i corresponds to the ifh 

statement letter. For example, (A=> B) generates the truth function 

XI X2 f(xt,X2) 
T T T 
F T T 
T F F 
F F T 

whereas (B =>A) generates the truth function 

Xt X2 g(x1,x2) 
T T T 
F T F 
T F T 
F F T 
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A statement form that is always true, no matter what the truth values of 
its statement letters may be, is called a tautology. A statement form is a 
tautology if and only if its corresponding truth function takes only the value 
T, or equivalently, if, in its truth table, the column under the statement form 
contains only Ts. An example of a tautology is (A V (---,A)), the so-called law 
of the excluded middle. Other simple examples are (• (A 1\ (---,A))), 
(A¢:? (_.,(---,A))), ((A /\B):::?- A) and (A:::?- (A VB)). 

[f}J is said to logically imply CC (or, synonymously, (([/ is a logical con­
sequence of [f}J) if and only if every truth assignment to the statement letters 
of [f}J and (([/ that makes [f}J true also makes (([/ true. For example, (A 1\ B) 
logically implies A, A logically implies (A VB), and (A 1\ (A :::?- B)) logically 
implies B. 

[f}J and (([/are said to be logically equivalent if and only if [l}J and (([/ receive 
the same truth value under every assignment of truth values to the statement 
letters of [l}J and(([/. For example, A and (•(---,A)) are logically equivalent, as 
are (A 1\ B) and (B /\A). 

PROPOSITION 1.1 

(a) [l}J logically implies (([/ if and only if ([f}J :::?- ((i!) is a tautology. 
(b) [l}J and (([/ are logically equivalent if and only if ([l}J ¢:? ((i!) is a tautology. 

Proof 

(a) (i) Assume [f}J logically implies (([/. Hence, every truth assignment that 
makes [l}J true also makes (([/ true. Thus, no truth asssignment makes [l}J 

true and (([/ false. Therefore, no truth assignment makes ( PlJ :::?- ((i!) false, 
that is, every truth assignment makes ( [l}J :::?- ~) true. In other words, 
([f}J :::?- ((i!) is a tautology. (ii) Assume ([l}J :::?- ((i!) is a tautology. Then, for 
every truth assignment, (PlJ :::?- ((i!) is true, and, therefore, it is not the case 
that [l}J is true and (([/ false. Hence, every truth assignment that makes PlJ 
true makes (([/ true, that is, PlJ logically implies (([/, 

(b) (PlJ ¢:? ((i!) is a tautology if and only if every truth assignment mal(es 
([l}J ¢:? ((i!) true, which is equivalent to saying that every truth assignment 
gives [l}J and (([/ the same truth value, that is, PlJ and (([/ are logically 
equivalent. 

By means of a truth table, we have an effective procedure for determining 
whether a statement form is a tautology. Hence, by Proposition 1.1, we have 
effective procedures for determining whether a given statement form logi­
cally implies another given statement form and whether two given statement 
forms are logically equivalent. 

To see whether a statement form is a tautology, there is another method 
that is often shorter than the construction of a truth table. 
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Examples 
1. Determine whether ((A {:::} ( ( •B) V C)) =} ( (·A) =} B)) is a tautology. 

Assume that the statement form 

sometimes is F (line 1). Then (A {::} ( (A <=> ( (---,B) v C)) => ( (---,A) ==> B)) 
((•B) V C)) ~sTand ((-.A)=} B) is F 
F (line 2). Since ((•A) =}B) is F, 
(.A) is T and B is F (line 3). Since 
(.A) is T, A is F (line 4). Since A is F 
F and (A <=> (( •B) V C)) is T, 
( (·B) V C) is F (line 5). Since 
((•B) V C) is F, (•B) and Care F 
(line 6). Since (·B) is F, B is T (line 
7). But B is both T and F (lines 7 
and 3). Hence, it is impossible for 
the form to be false. 

T 

F 
T 

F 
F 

T 
F 

2. Determine whether ((A=} (B V C)) V (A=} B)) is a tautology. 
Assume that the form is F (line 1 ). 

F 
F 

Then (A=} (B V C)) and (A==} B) are F 
(line 2). Since (A =}B) Is F, A is T and B is ((A=> (B v C)) v (A=> B)) 

F (line 3). Since (A=} (B V C)) is F, A is T F F F 
and (B v C) is F (line 4). Since (B V C) is T F 
F, B and C are F (line 5). Thus, when A is T 
T, B is F, and C is F, the form is F . 
Therefore, it is not a tautology. 

F 
F F 

Exercises 

1.5 Determine whether the following are tautologies. 

(a) (((A =}B) :::::>B) =}B) (f) (A=} (B =} (B =}A))) 
(b) (((A=} B)=} B)=} A) (g) ((A /\B)=} (A V C)) 
(c) (((A=} B)=} A) =}A) (h) ((A <=>B) <=:> (A{::} (B {:::}A))) 
(d) (((B =}C)=} (A=} B))=} (A=} B)) (i) ((A=} B) V (B =}A)) 
(e) ((A V (•(B 1\ C)))=} ((A{:::} C) VB)) U) ((-.(A=} B))=} A) 

1.6 Determine whether the following pairs are logically equivalent. 

(a) ((A=} B)=} A) and A 
(b) (A{=> B) and ((A==} B) 1\ (B =}A)) 
(c) ((•A) VB) and ((•B) VA) 
(d) ( •(A {:::} B)) and (A {::} (·B)) 
(e) (A V (B <=:>C)) and ((A VB) {:::} (A V C)) 
(f) (A=} (B {:::}C)) and ((A=} B){:::} (A=} C)) 
(g) (A 1\ (B d C)) and ((A /\B){:::} (A 1\ C)) 

1 
2 
3 
4 
5 
6 
7 

1 
2 
3 
4 
5 
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1.7 Prove: 

(a) (A::::? B) is logically equivalent to ((-,A) VB). 
(b) (A::::? B) is logically equivalent to (-,(A 1\ (•B))). 
1.8 Prove that f!lJ is logically equivalent to Cfi if and only if ~ logically 
implies Cfi and Cfi logically implies ~. 
1.9 Show that~ and Cfi are logically equivalent if and only if, in their truth 
tables, the columns under ~ and Cfi are the same. 
1.10 Prove that ~ and Cfi are logically equivalent if and only if ( ·~) and 
( -,Cfi) are logically equivalent. 
1.11 Which of the following statement forms are logically implied by 
(A 1\B)? 
(a) A (d) ((-,A) VB) 
(b) B (e) ((•B)::::? A) 
(c) (A VB) (f) (A {::}B) 
1.12 Repeat Exercise 1.11 with (A 1\ B) 
(•(A::::? B)), respectively. 

(g) (A=* B) 
(h)((~)::::?(~)) 
(i) (A 1\ (-,B)) 

replaced by (A ::::? B) 

1.13 Repeat Exercise 1.11 with (A 1\ B) replaced by (A VB). 

and by 

1.14 Repeat Exercise 1.11 with (A 1\ B) replaced by (A {::}B) and by 
(-,(A {::} B)), respectively. 

A statement form that is false for all possible truth values of its statement 
letters is said to be contradictory. Its truth table has only Fs in the column 
under the statement form. One example is (A{::} ( ~)): 

A (-.A) (A{::}(-.A)) 
T F F 
F T F 

Another is (A 1\ (~)). 
Notice that a statement form ~ is a tautology if and only if ( -,~) is 

contradictory, and vice versa. 
A sentence (in some natural language like English or in a formal theory) t 

that arises from a tautology by the substitution of sentences for all the 
statement letters, with occurrences of the same statement letter being re­
placed by the same sentence, is said to be logically true (according to the 
propositional calculus). Such a sentence may be said to be true by virtue of 
its truth-functional structure alone. An example is the English sentence, 'If it 
is raining or it is snowing, and it is not snowing, then it is raining', which 
arises by substitution from the tautology ( ((A VB) 1\ (-.B)) ~A). A sen­
tence that comes from a contradictory statement form by means of sub­
stitution is said to be logical(v false (according to the propositional calculus). 

Now let us prove a few general facts about tautologies. 

tBy a formal theory we mean an artificial language in which the notions of 
meaningful expressions, axioms and rules of inference are precisely described (see page 
34). 
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pROPOSITION 1.2 

If{$ and (f!lJ ==? ~) are tautologies, then so is~. 

Proof 

Assume that {$ and (r$ ==? ~) are tautologies. If~ took the value F for some 
assignment of truth values to the statement letters of{$ and~, then, since f1}J 

is a tautology, f1}J would take the value T and, therefore, (r$ =::> ~) would 
have the value F for that assignment. This contradicts the assumption that 
(r$ ==?~)is a tautology. Hence,~ never takes the value F. 

PROPOSITION 1.3 

If !T is a tautology containing as statement letters At, A2, .•• ,A11 , and f1}J 

arises from !Y by substituting statement forms 9\, !/2, .•. , Yn for 
A1, A2 , ••• ,A11 , respectively, then f!lJ is a tautology; that is, substitution in a 
tautology yields a tautology. 

Example 
Let !T be ((At 1\Az) ==?At), let Yt be (B V C) and let Yz be (C 1\ D). Then f1}J 

is (((B V C) 1\ (C /\D))==? (B v C)). 

Proof 

Assume that§' is a tautology. For any assignment of truth values to the 
statement letters in f1}J, the forms !7 t, ... , !711 have truth values Xt, ... , x11 

(where each X 11 is T or F). If we assign the values Xt, ... ,x11 to At, ... ,A,, 
respectively, then the resulting truth value of !Y is the truth value of f1}J for 
the given assignment of truth values. Since !Y is a tautology, this truth value 
must beT. Thus, f1}J always takes the value T. 

PROPOSITION 1.4 

If ~1 arises from fl}Jt by substitution of~ for one or more occurrences of fl}J, 

then ((fl}J {::}~) ==? (fl}Jt {::} ~t)) is a tautology. Hence, if f1}J and~ are logi­
cally equivalent, then so are P4t and ~ 1. 

Example 
Let fl}Jt be (CV D), let f1}J be C, and let ~ be (-{·•C)). Then ~t is 
((-.(-.C)) V D)'. Since C and (..,(..,C)) are logically equivalent, (C v D) and 
((-.(-.C)) V D) are also logically equivalent. 
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Proof 

Consider any assignment of truth values to the statement letters. If~ and ~ 
have opposite truth values under this assignment, then (~ {::} CC) takes the 
value F, and, hence, ((~ {::} CC) => (~I {::} CCI)) is T. If ~ and CC take the 
same truth values, then so do ~~ and CC1, since CCL differs from ~~ only in 
containing CC in some places where ~~ contains ~- Therefore, in this case, 
(~ {::} CC) is T, (~1 {::} CCt) is T, and, thus, ((~ {::} CC) => (g{/1 {::}CCI)) is T. 

Parentheses 

It is profitable at this point to agree on some conventions to avoid the use of 
so many parentheses in writing formulas. This will make the reading of 
complicated expressions easier. 

First, we may omit the outer pair of parentheses of a statement form. (In 
the case of statement letters, there is no outer pair of parentheses.) 

Second, we arbitrarily establish the following decreasing order of strength 
of the connectives: .. , /\, V, =>, {::}. Now we shall explain a step-by-step 
process for restoring parentheses to an expression obtained by eliminating 
some or all parentheses from a statement form. Find the leftmost occurrence 
of the strongest connective that has not yet been processed. 

(i) If the connective is..., and it precedes a statement form ~. restore left 
and right parentheses to obtain ( ... ~) . 

(ii) If the connective is a binary connective C and it is preceded by a 
statement form f!4 and followed by a statement form !?J, restore left and 
right parentheses to obtain (~ C !?J). 

(iii) If neither (i) nor (ii) holds, ignore the connective temporarily and find 
the leftmost occurrence of the strongest of the remaining unprocessed 
connectives and repeat (i)--(iii) for that connective. 

Examples 
Parentheses are restored to the expression in the first line of each of the 
following in the steps shown: 

1. A {::} ( •B) v C => A 
A {::} (( --,B) V C) =>A 
A <=> (((-,B) V C) =>A) 
(A {=} (((•B) V C) => A)) 

2. A => -,B => C 
A=> (-,B)=> C 
(A => (--,B)) => C 
((A => (-,B))=> C) 

3. B =>-,-,A 
B -==> --.(-·A) 

'· 



:JJ;, ==> (-{-·A)) 
~(B =} (•(.A))) 

4~ A v ·(B =} A VB) 
A. V ·(~t=} (A VB)) 
A v ( ·(B :::? (A VB))) 
-{4 v (•(B =}(A VB)))) 
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Not every form can be represented without the use of parentheses. For 
,example, parentheses cannot be further el~min~ted from A~- (B =}C), since 
ji -::::;. B =} C stands for ((A=} B)=} C). LikeWise, the remammg parentheses 
-~unnot be removed from •(A VB) or from A 1\ (B =} C). 

,Exercises 
~:?-::~= 

•~:15 Eliminate as many parentheses as possible from the following forms. 

"(,() ( (B :::? (·A)) 1\ C) 
:{b) (A V (B V C)) 
'(c) (((A 1\ (•B)) 1\ C) V D) 
'(d) ((B V (•C)) V (A 1\ B)) 

(e) ((A{::} B){::} (•(C V D))) 
(f) ((•(•(•(B V C)))){::} (B {::}C)) 
(g) (•((•(•(B V C))){::} (B ¢;>C))) 
(h) ((((A =}B) =} (C =}D)) 1\ (.A)) V C) 

.;tl6 Restore parentheses to the following forms. 

(a) CV ·A 1\B 
(b) B =} •••A 1\ C 

(c) C =} •(A ·f\ B =} C) 1\ A {::} B 
(d) C =}A=} A¢;> ·A VB 

1.17 Determine whether the following expressions are abbreviations of 
fitatement forms and, if so, restore all parentheses. 

(a) ••A ¢;>A{::} B v C 
(b) •(•A {::}A)¢;> B V C 
~(c) •(A=}B) VCV D=}B 

(d) A{::} (.A VB)=} (A 1\ (B V C))) 
(e) .A VB v C 1\ D {::}A 1\ .A 
(f) ((A=} B 1\ (CV D) 1\ (A V D)) 

1.18 If we write -.fl}J instead of ( -,fl}J), =} fl}Jqf instead of (fl}J =} qj) , f\fl}Jqf 

-instead of (fl}J 1\ qj), yfl}Jqf instead of (fl}J v qf), and{::} fl}Jqf instead of (fl}J {::} qf), 

=then there is no need for parentheses. For example, ((•A) 1\ (B =} (•D))), 
which is ordinarily abbreviated as -.A 1\ (B =} ·D), becomes 1\ -.A :::::? B•D. 
This way of writing forms is called Polish notation. 

(a) Write ((C =} (•A)) VB) and (C v ((B 1\ (.n)) =*C)) in this notation. 
(b) [f we count =}, 1\, V, and {::} each as + 1, each statement letter as -1 and 

-, as 0, prove that an expression f!lJ in this parenthesis-free notation is a 
statement form if and only if (i) the sum of the symbols of f1}J is -1 and 
(ii) the sum of the symbols in any proper initial segment of f1}J is non­
negative. (If an expression f1}J can be written in the form qf:!J, where 
q; f= f1}J, then q; is called a proper initial segment of f1}J .) 

(c) Write the statement forms of Exercise 1.15 in Polish notation. 
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i . 

(d) Determine whether the following expressions are statement forms in 
Polish notation. If so, write the statement forms in the standard way. 

(i) -.-=::?ABC V AB-.C (iii) VA V-,A-.BC A VAC V -.C-.A 
(ii) =?=? AB -=::?-=::? BC ==:;.. -.AC (iv) V A B A BBB 

1.19 Determine whether each of the following is a tautology, is contra­
dictory, or neither. 

(a) B {::} (BV B) 
(b) ((A -=::?B) A B) -=::?A 
(c) (-.A) -=::? (A A B) 
(d) (A-=::? B)-=::? ((B -=::? C)-=::? (A-=::? C)) 
(e) (A{::} -.B) -=::?A VB 

(f) A A (-.(A VB)) 
(g) (A -=::? B) ¢? ( (-.A) VB) 
(h) (A -=::? B) {::} -.(A A (-.B)) 
(i) (B {::} (B-=::? A)) -=::?A 
G) A A -.A -=::? B 

1.20 If A and B are true and Cis false, what are the truth values of the 
following statement forms? 

(a) AV C 
(b) AAC 
(c) -.A A -.c 
(d) A¢? -.B V C 

(e) B V -.C -=::? A 
(f) (B VA) * (B-=::? -.C) 
(g) (B * -.A) {::} (A {::} C) 
(h) (B-=::? A) -=::? ((A~ -.C)-=::? (-.C-=::? B)) 

1.21 If A-=::? B is T, what can be deduced about the truth values of the 
following? 

(a) A V C-=::? B V C 
(b) A A C -=::? B 1\ C 
(c) -.A AB {::}A VB 

1.22 What further truth values can be deduced from those shown? 

(a) -.A V (A-=::? B) (c) (-.A VB) =:;.. (A -=::? -.C) 
F F 

(b) • (A AB) {::}-.A-=::? -.B (d)(A {::}B) {::} ( C::::} -.A) 
T F T 

1.23 If A{::} B is F, what can be deduced about the truth values of the 
following? 

(a) A AB (b) A VB (c) A==:;.. B (d) A A C {::} B A C 

1.24 Repeat Exercise 1.23, but assume that A {::} B is T. 
1.25 What further truth values can be deduced from those given? 

(a) (A 1\B) {=}(A VB) 
FF 

(b) (A-=::? -.B) =?(C-=::? B) 
F 

1.26 (a) Apply Proposition 1.3 when !!/is At =}At V A2 , 9'1 isB A D, and 
!1'2 is -.B. 

(b) Apply Proposition 1.4 when @ 1 is (B-=::? C) AD, B?l is B-=::? C, and ~ is 

• BVC. 
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!i.lo/ 'Show that each statement form in column I is logically equivalent to 
the form next to it in column II. 

1 -"I 

(a) A => (B => C) 
(-~) A 1\ (B V C) 
-(c) A V (B 1\ C) 
(d) (A 1\ B) V -.B 
(e) (A VB) 1\ -.B 
(0 A=> B 
(g) A <r>r B 
'(h) (A {:}B) {:} C 
\). A{=} B ( -

oY -)(A {:} B) 
(k) -.(A VB) 
(-1) -,(A 1\ B) 
(n1.) A v (A 1\B) 
(n) A 1\ (A VB) 
_(o) A 1\ B 
{p) A VB 
(q) (A /\B) 1\ C 
(r) (A VB) V C 

11 
(A 1\B) => C 
(A 1\ B) V (A 1\ C) (Distributive law) 
(A VB) 1\ (A V C) (Distributive law) 
AV•B 

-.B => ---,A (Law of the contrapositive) 
B {:}A (Biconditional commutativity) 
A {:} (B {:} C) (Biconditional associativity) 
(A 1\ B) V (-.A 1\ -,B) 
A{:} -.B 
(-.A) 1\ (-.B) 
(-.A) V (-.B) 
A 
A 
B 1\A 
EVA 
A 1\ (B 1\ C) 
AV (BVC) 

(De Morgan's law) 
(De Morgan's law) 

(Commutativity of conjunction) 
(Commutativity of disjunction) 
(Associativity of conjunction) 
(Associativity of disjunction) 

L28 Show the logical equivalence of the following pairs. 

(a) !T 1\ {$ and t$, where !!T is a tautology. 
tb) !TV{$ and !T, where !Tis a tautology. 
(c) /F 11...~ and ff, where :F is contradictory. 
(d) !F v {$and t$, where !F is contradictory. 

l.29 

(a) Show the logical equivalence of -.(A=> B) and A 1\ -.B. 
(b) Show the logical equivalence of -.{A {:}B) and (A 1\ -.B) V (-.A 1\ B). 
(c) For each of the following statement forms, find a statement form that is 

logically equivalent to its negation and in which negation signs apply 
only to statement letters. 

(i) A => (B {:} ·C) 
(ii) •A V (B => C) 

Oii) A 1\ (B V ·C) 

1.30 (Duality) 

"1\ (a) If r$ is a statement form involving only -., 1\, and V, and {J}/ results from 
g(J by replacing each 1\ by v and each V by /\, show that {$ is a tautology 
if and only if -.[1}/ is a tautology. Then prove that, if{$=> t:C is a tau-
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I. 

tology, then so is ~' ::::} f!J', and if f!J {::} ~ is a tautology, then so is 
f4' {::} ~'. (Here~ is also assumed to involve only •, 1\ and V.) 

(b) Among the logical equivalences in Exercise 1.27, derive (c) from (b), (e) 
from (d), (I) from (k), (p) from (o), and (r) from (q). 

(c) [f pg is a statement form involving only •, 1\ and v, and f4* results from 
f!J by interchanging 1\ and V and replacing every statement letter by its 
negation, show that~* is logically equivalent to ,pg_ Find a statement 
form that is logically equivalent to the negation of (A v B v C) 
1\( -.A v ·B v D), in which ...., applies only to statement letters. 

1.31 

(a) Prove that a statement form that contains{::} as its only connective is a 
tautology if and only if each statement letter occurs an even number of 
times. 

(b) Prove that a statement form that contains • and {::} as its only con­
nectives is a tautology if and only if---, and each statement letter occur an 
even number of times. 

1.32 (Shannon, 1938) An electric circuit containing only on- off switches 
(when a switch is on, it passes current; otherwise it does not) can be re­
presented by a diagram in which, next to each switch, we put a letter re­
presenting a necessary and sufficient condition for the switch to be on (see 
Figure 1.1 ). The condition that a current flows through this network can be 
given by the statement form (A 1\ B) v ( C 1\ -.A) . A statement form re­
presentating the circuit shown in Figure 1.2 is (A 1\ B) v ( ( C v A) 1\ -,JJ), 
which is logically equivalent to each of the following forms by virtue of the 
indicated logical equivalence of Exercise 1.27. 

((A /\B) V (C VA)) 1\ ((A /\B) V --.B) 
((A /\B) V (C v A)) 1\ (A v -.B) 
((A 1\ B) V (A v C)) 1\ (A v --.B) 
(((A /\B) VA) V C) 1\ (A V -.B) 

(A v C) 1\ (A V --.B) 
A v (C 1\ --.B) 

(c) 
(d) 
(p) 
(r) 

(p), (m) 
(c) 

Hence, the given circuit is equivalent to the simpler circuit shown in Fig­
ure 1.3. (Two circuits are said to be equivalent if current flows through one if 
and only if it flows through the other. and one circuit is simpler if it contains 
fewer switches.) 

Figure. 1.1 
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.-----A '------- 8\'-------. 

Figure. 1.2 

~--------A'-------------. 

L...------- C '--------, B ...__ __ __. 

Figure. 1.3 

---+----, C '----- A "--------+--

Figure. 1.4 

..------ B '------ C '---------, 

---+---- A\..._ __ -, B'-'--- C "---------t--

Figure. 1.5 

Figure. 1.6 

(a) Find simpler equivalent circuits for those shown in Figures 1.4, 1.5 and 
1.6. 

(b) Assume that each of the three members of a committee votes yes on a 
proposal by pressing a button. Devise as simple a circuit as you can that 
will allow current to pass when and only when at least two of the 
members vote in the affirmative. 
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(c) We wish a light to be controlled by two different wall switches in a room 
in such a way that flicking either one of these switches will turn the light 
on if it is off and turn it off if it is on. Construct a simple circuit to do the 
required job. 

1.33 Determine whether the following arguments are logically correct by 
representing each sentence as a statement form and checking whether the 
conclusion is logically implied by the conjunction of the assumptions. (To 
do this, assign T to each assumption and F to the conclusion, and determine 
whether a contradiction results.) 

(a) If Jones is a communist, Jones is an atheist. Jones is an atheist. 
Therefore, Jones is a communist. 

(b) [f the temperature and air pressure remained constant, there was no 
rain. The temperature did remain constant. Therefore, if there was rain, 
then the air pressure did not remain constant. 

(c) [f Gorton wins the election, then taxes will increase if the deficit will 
remain high. If Gorton wins the election, the deficit will remain high. 
Therefore, if Gorton wins the election, taxes will increase. 

(d) [fthe number x ends it1 0, it is divisible by 5. x does not end in 0. Hence, 
x is not divisible by 5. 

(e) [f the number x ends in 0, it is divisible by 5. x is not divisible by 5. 
Hence, x does not end in 0. 

(f) If a = 0 or b = 0, then ab = 0. But ab f= 0. Hence, a f= 0 and b f= 0. 
(g) A sufficient condition for f to be integrable is that g be bounded. A 

necessary condition for h to be continuous is that f is integrable. Hence, 
if g is bounded or h is continuous, then f is integrabl,~. 

(h) Smith cannot both be a running star and Sll?-oke cigarettes. Smith is not 
a running star. Therefore, Smith smokes cigarettes. 

(i) If Jones drove the car, Smith is innocent. If Brown fired the gun, then 
Smith is not innocent. Hence, if Brown fired the gun, then Jones did not 
drive the car. 

1.34 Which of the following sets of statement forms are satisfiable, in the 
sense that there is an assignment of truth values to the statement letters that 
makes all the forms in the set true? 

(a) A~ B 
B~C 

C v D {::} ·B 
(b) -, (•B v A) 

A v ·C) 
B~ -,C 

(c) D ==} B 
AV•B 
•(D 1\ A) 

,, D 
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,1.<35 Check each of the following sets of statements for consistency by re­
prese~ting the sentence~ ~ statem~nt forms and then testing their con­
ltinction to see whether It IS contradictory. 

(a) Either the witness was intimidated or, if Doherty committed suicide, a 
note was found. If the witness was intimidated, then Doherty did not 
commit suicide. [f a note was found, then Doherty committed suicide. 

(b) The contract is satisfied if and only if the building is completed by 30 
November. The building is completed by 30 November if and only if the 
electrical subcontractor completes his work by 10 November. The bank 
loses money if and only if the contract is not satisfied. Yet the electrical 
subcontractor completes his work by 10 November if and only if the 
bank loses money. 

t.3 ADEQUATE SETS OF CONNECTIVES 

Every statement form containing 11 statement letters generates a corre­
sponding truth function of 11 arguments. The arguments and values of the 
function are T or F. Logically equivalent forms generate the same truth 
function. A natural question is whether all truth functions are so generated. 

PROPOSITION 1.5 

Every truth function is generated by a statement form involving the con­
nectives --., 1\ and v. 

Proof 
( 

(Refer to Examples I and 2 below for clarification.) Let f(x1, ••• , { 11 ) be a 
truth function. Clearly f can be represented by a truth table of 211 rows, 
where each row represents some assignment of truth values to the variables 
x1, ... , x11 , followed by the corresponding value of f(xt, ... , x,). If 
1 ~i~211, let C; be the conjunction Vll\ Vi A ... 1\ U!, w~ere U} is A1 if, in 
the ith row of the truth table, x1 takes the value T, and UJ is --,AJ if x1 takes 
the value Fin that row. Let D be the disjunction of all those C;s such that f 
has the value T for the ith row of the truth table. (If there are no such rows, 
then f always tal<es the value F, and we let D be A 1 1\ -.A 1, which satisfies the 
theorem.) Notice that D involves only--., 1\ and v. To see that D has f as its 
corresronding truth function, let there be given an assignment of truth 
values to the statement letters A1, ••• , A,, and assume that the corrre­
ponding assignment to the variables x1, ••• , x11 is row k of the truth table for 
f. Then Ck has the value T for this assignment, whereas every other C; has 
the value F. Iff has the value T for row k, then Ck is a disjunct of D. Hence, 
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D would also have the value T for this assignment. Iff has the value F for 
row k, then Ck is not a disjunct of D and all the disjuncts take the value F for 
this assignment. Therefore, D would also have the value F. Thus, D gen­
erates the truth function f. 

Examples 

1. 
Xi X2 f(xt,X2) 
T T F 
F T T 
T F T 
F F T 

Dis ( • At 1\ A2) V (At 1\ -.Az) V (-.At 1\ ·Az). 

2. 
XI X2 X3 g(xt,X2 1 X3) 
T T T T 
F T T F 
T F T T 
F F T T 
T T F F 
F T F F 
T F F F 
F F F T 

Dis (At 1\ Az /\A3) V (At 1\ -.A.z /\A3) v (-.At 1\ -.A2 /\ A3) 

v (-.At 1\ -.A.2 A •A3). 

Exercise 

1.36 Find statement forms in the connectives -., 1\ and v that have the 
following truth functions. 

XI X2 XJ f(xt,X2,X3) g(xt , X2 , X3) lz(Xt ,x2,X3) 

T T T T T F 
F T T T T T 
T F T T T F 
F F T F F F 
T T F F T T 
F T F F F T 
T F F F T F 
F F F T F T 

COROLLARY 1.6 

Every truth function can be generated by a statement form containing as 
connectives only 1\ and •, or only v and •, or only => and '· 
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Pr~of, 

No~tj_ce that fJJ v tfi is }?gically equivalent to -{-. ~ 1\ -.tfi). Hen~e, b~ the 
se~ohd part of Proposition 1.4, a~y statement form m /\? v and --. IS lo?1cally 
cqL;tvalent t0 a statement form m only 1\ and ..., [obtained by replacmg all 
expressions &J v tfi by --.(·~ 1\ •rti!]- The othe~ parts of the corollary are 
.-·n11Jar consequences of the following tautologies: 
~· !!JJ 1\ C(f {::} -, ( -,!!Jj v -,l{J') 

PJJ v l{5 {::} ( -,,C#} =} l{J') 

!!JJ 1\ l{5 {::} •(PJJ =} .~l) 

We have just seen that there are certain pairs of connectives- for ex­
'iimple, 1\ and -.-in terms of which all truth functions are definable. It turns 
·out that there is a single connective, ! (joint denial), that will do the same 
job. Its truth table is: 

A B 
T T 
F T 
T F 
F F 

AlB 
F 
F 
F 
T 

d J·B is true when and only when neither A nor B is true. Clearly, 
, A {::} (A ! A) and (A 1\ B) {::} ((A ! A) ! (B ! B)) are tautologies. Hence, the 

.adequacy of ! for the construction of all truth functions follows from 
t~·orollary 1.6. 

:Another connective, I (alternative denial), is also adequate for this pur-
p9se. Its truth table is 

A B A IB 
T T F 
F T T 
T F T 
F F T 

A::l B is true when and only when not both A and B are true. The adequacy of 
I ' follows from the tautologies ·A {::} (A I A) and (A v B) {::} ((A I A) I 

''{B. I B)). 

:",PROPOSITION 1.7 

-;;, 

The only binary conn~ctives that alone are adequate for the construction of 
all truth functions are ! and 1-

.Proof 
~.- .-.-~:~· 

Assume that h(A,B) is an adequate connective. Now, if h(T.T) were T, then 
any statement form built up using h alone would take the value T when all 
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its statement letters take the value T. Hence, ·A would not be definable in 
terms of h. So, h{T,T) = F. Likewise, h(F,F) = T . Thus, we have the partial 
truth table 

A B h(A,B) 
T T F 
F T 
T F 
F F T 

If the second and third entries in the last column are F, ForT, T, then his! 
or 1. If they are F, T, then h(A, B) {:::} ·B is a tautology; and if they are T, F, 
then h(A, B) {:::} -.A is a tautology. In both cases, h would be definable in 
terms of'· But • is not adequate by itself because the only truth functions 
of one variable definable from it are the identity function and negation itself, 
whereas the truth function that is always T would not be definable. 

Exercises 

1.37 Prove that each of the pairs==?, v and •, {:::} is not alone adequate to 
express all truth functions. 

1.38 
(a) Prove that A V B can be expressed in terms of =} alone. 
(b) Prove that A A B cannot be expressed in terms of ==? alone. 
(c) Prove that A{:::} B cannot be expressed in terms of==? alone. 

1.39 Show that any two of the connectives {/\, ==?, {:::}} serve to define the 
remmmng one. 
1.40 With one variable A, there are four truth functions: 

A -.A AV -.A A/\-.A -· 

T F T F 
F T T F 

(a) With two variable A and B, how many truth functions are there ? 
(b) How many truth functions of n variables are there ? 

1.41 Show that the truth function h determined by (A VB)==? .c generates 
all truth functions. 
1.42 By a literal we mean a statement letter or a negation of a statement 
letter. A statement form is said to be in disjunctive normal form ( dnf) if it is 
a disjunction consisting of one or more disjuncts, each of which is a 
conjunction of one or more literals - for example, (A 1\ B) v (tA 1\ C), 
(A 1\ B 1\ ·A) v (C 1\ ·B) v (A 1\ ·C), A, A 1\ B, and A v (B v C). A form is 
in conjunctive normal form ( cnf) if it is a conjunction of one or more conjuncts, 
each of which is a disjunction of one or more literals - for example, 
(B V C)/\(A v B), (B V ·C) 1\ (A V D), A 1\ (B VA) 1\ (•B v A), A v -.B, AI\ 
B,A. Note that our terminology considers a literal to be a (degenerate) con­
junction and a (degenerate) disjunction. 
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(') The proof of Proposition 1.5 shows that every statement form !?JJ is 
£l logically equivalent to one in disjunctive normal form. By applying this 

result to -,!!IJ, prove that #J is also logically equivalent to a form in 
conjunctive normal form. 

(b) Find logically equivalent dnfs and cnfs for -.(A :::} B) V (-.A 1\ C) and 
A¢:? ((B 1\ -.A) v C). [Hint: Instead of relying on Proposition 1.5, it is 
usually easier to use Exercise 1.27(b) and (c).] 

(c) A dnf (cnf) is called full if no disjunct (conjunct) contains two occur-
- rences of literals with the same letter and if a letter that occurs in one 

disjunct (conjunct) also occurs in all the others. For example, 
(A 1\ -.A /\B) v (A /\B), (B 1\ B 1\ C) v (B 1\ C) and (B A C) v B are not 
full~ whereas (A 1\ B 1\ -.C) V (A 1\ B 1\ C) V (A 1\ -.B 1\ -.C) and (A 1\ -.B) 
V(B 1\ A) are full dnfs. 
(i) Find full dnfs and cnfs logically equivalent to (A 1\ B) v -.A and 

·(A:::} B) v (-.A 1\ C). 
(ii) Prove that every non-contradictory (non-tautologous) statement 

form !?JJ is logically equivalent to a full dnf (cnf) <{},and, if<{} contains 
exactly n letters, then #J is a tautology (is contradictory) if and only 
if rc has 2" disjuncts (conjuncts). 

(d) For each of the following, find a logically equivalent dnf (cnf), and then 
find a logically equivalent full dnf (cnf), 
(i) (A v B) 1\ ( -.B V C) (iii) (A 1\ ·B) v (A 1\ C) 

(ii) -.A v (B :::!> -.C) (iv) (A VB) ¢:? -.C 
(e) Construct statement forms in---, and A (respectively, in---, and v or in ---, 

and :::} ) l~gically equivalent to the statement forms in (d). 

-• .43 A statement form is said to be satisfiable if it is true for some as­
signment of truth values to its statement letters. The problem of determining 
the satisfiability of an arbitrary cnf plays an important role in the theory of 
computational complexity; it is an example of a so-called ..,'V&-complete 
problem (see Garey and Johnson, 1978). 

(a) Show that !?JJ is satisfiable if and only if -,!?JJ is not a tautology . 
.(b) Determine whether the following are satisfiable: 

(i) (A v B) 1\ (-.A VB V C) 1\ (-.A V -.B v -.C) 
(ii) ((A:::} B) v C)¢:? (-.B 1\ (A v C)) 

Jc) Given a disjunction ~ of four or more literals: L 1 v L2 V ... V L11 , let 
C1, ... , C11_ 2 be statement letters that do not occur in~, and construct 
the cnf C: 

(L1 V L2 V CI) 1\ (•CI v L3 V C2) 1\ (•C2 V L4 V C3) 1\ ... 

1\ (-.C,I-3 V Ln-1 V C11-2) 1\ (•Cn-2 V L11 V -.CI) 

Show that ,any truth assignment satisfying ~ can be extended to a truth 
assignment satisfying C and, conversely, any truth assignment satisfying 
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C is an extension of a truth assignment satisfying f!J. (This permits the 
reduction of the problem of satisfying cnfs to the corresponding pro­
blem for cnfs with each conjunct containing at most three literals.) 

(d) For a disjunction f!J of three literals L1 V L2 v L 3 , show that a form that 
has the properties of C in (c) cannot be constructed, with C a cnf in 
which each conjunct contains at most two literals (R. Cowen). 

1.44 (Resolution) Let &J l?e a cnf and let C be a statement letter. If C is a 
disjunct of a disjunction f»1 in ~ and •C is a disjunct of another disjunction­
{1)2 in gg, then a non-empty disjunction obtained by eliminating C from ~1 
and •C from {1)2 and forming the disjunction of the remaining literals~ 
(dropping repetitions) is said to be obtained from [Jg by resolution on C. For!' 
example, if~ is 

(A V -.C V -.B) A (-.A V D V -.B) A ( C v D VA), 

the first and third conjuncts yield A v •B v D by resolution on C. In addi­
tion, the first and second conjuncts yield ·C v •B v D by resolution on A, 
and the second and third conjuncts yield D v •B v C by resolution on A. I(' 
we conjoin to f!lJ any new disjunctions obtained by resolution on aU vari­
ables, and if we apply the same procedure to the new cnf and keep on 
iterating this operation, the process must eventually stop, and the final result 
is denoted Pl/e,;(&J). In the example, £1ic,;(!J8) is: 

(A V -.C V -.B) A {-.A V D V -.B) A ( C V D VA) A ( -,C V -.B V D) 

A~V~V0A~V~VmA~V~) 

(Notice that we have not been careful about specifying the order in which 
conjuncts or disjuncts are written, since any two arrangements will be lo­
gically equivalent.) 

(a) Find 24e,;(&J) when f!lJ is each of the following: 
(i) (A V •B) 1\ B 
(ii) (A V B v C) 1\ (A V ·B V C) 

(iii) (A V C) 1\ (.A v B) 1\ (A V •C) 1\ (·A v •B) 

(b) Show that~ logically implies ?/ic,;(§g). 
(c) If [!lJ is a cnf, let &Jc be the cnf obtained from @J by deleting those 

conjuncts that contain Cor •C. Let rc(36') be the cnf that is the con­
junction of f!/Jc and all those disjunctions obtained from f!lJ by resolution 
on C. For example, if @J is the cnf in the example above, then rc(f!IJ) is 
(-,A v D V ·B) 1\ (A V ·B V D) . Prove that, if rc ( r!J) is sa tisfia bl e, then so 
is !YJ. (R. Cowen) 

(d) A cnf {J/J is said to be a blatant contradiction if it contains some letter C 
and its negation -.Can conjuncts. An example of a blatant contradiction 
is (A v B) 1\ B 1\ ( C v D) A •B. Prove that if f!J is unsatisfiable, then 
£1iM(@J) is a blatant contradiction. [Hint: Use induction on the number n 
of letters that occur in~. In the induction step, use (c).] 
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(e)_ .~rove that [!)) is unsatisfiable if and only if ~c<J(P!J) is a blatant contra­

diction. 

i21_5.Let iJJ and f!J be statement forms such that [!)):::} !!2 is a tautology. 

(a} If {ifi aiid f!J have no. statement letters in common, show that either [!)) is 
' contradictory or f!J ts a tautology. 

:(f:>) (Craig's int~Jpolation theorem) If PlJ and .f!g have the statement lett.ers 
· · · Bt, ... , B11 m common, prove that there ts a statement form ((1 havmg 

8
1

, ••• , B11 as its only statement letters such that[!)) :::} t:6 and t:6:::} f2l are 
tautologies. 

:(c) Solve the special case of (b) in which PlJ is (B1 :::} A) 1\ (A :::} 82 ) and f!J is 
_ _ (Bt 1\ C) :::} (B2 1\ C). 
;1~46 
(a) A certain country is inhabited only by truth-tellers (people who always 

tell the truth) and liars (people who always lie). Moreover, the in­
habitants will respond only to yes or no questions. A tourist comes to a 
fork in a road where one branch leads to the capital and the other does 
not. There is no sign indicating which branch to take, but there is a 
_native standing at the fork. What yes or no question should the tourist 
ask in order to determine which branch to take? [Hint: Let A stand for 
'You are a truth-teller' and let B stand for 'The left-hand branch leads to 
the capital'. Construct, by means of a suitable truth table, a statement 
form involving A and B such that the native's answer to the question as 
to whether this statement form is true will be yes when and only when B 
is true.] 

:(b) In a certain country, there are three kinds of people: workers (who 
always tell the truth), businessmen (who always lie), and students (who 
sometimes tell the truth and sometimes lie). At a fork in the road, one 
branch leads to the capital. A worker, a businessman and a student are 
standing at the side of the road but are not identifiable in any obvious 
way. By asking two yes or no questions, find out which fork leads to the 
capital (Each question may be addressed to any of the three.) 

More puzzles of this kind may be found in Smullyan (1978, chap. 3; 1985, 
tchaps 2, 4-8) . 

.. h4 AN AXIOM SYSTEM FOR THE PROPOSITIONAL CALCULUS 

Truth tables enable us to answer many of the significant questions con­
:ceming the tluth-functional connectives, such as whether a given statement 
-form is a tautology, is contradictory, or neither, and whether it logically 
4mplies or is logically equivalent to some other given statement form. The 
·more complex parts of logic we shall treat later cannot be handled by truth 
tables or by any other similar effective procedure. Consequently, another 

' 

33 
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approach, by means of formal axiomatic theories, will have to be tried. 
Although, as we have seen, the propositional calculus surrenders completely 
to the truth table method, it will be instructive to illustrate the axiomatic 
method in this simple branch of logic. 

A formal theory Y is defined when the following conditions are satisfied: 

I. A countable set of symbols is given as the symbols of yt. A finite se­
quence of symbols of Y -is called an expression of !/'. 

2. There is a subset of the set of expressions of Y called the set of well­
formed formulas (wfs) of !/'. There is usually an effective procedure to 
determine whether a given expression is a wf. 

3. There is a set of wfs called the set of axioms of!/'. Most often, one can 
effectively decide whether a given wf is an axiom; in such a case, Y is 
called an axiomatic theory. 

4. There is a finite set Rt, ... , R,, of relations among wfs, called rules of 
inference. For each R;, there is a unique positive integer j such that, for 
every set of j wfs and each wf fJ8, one can effectively decide whether the 
given j wfs are in the relation Ri to f!fi, and, if so, !fi is said to follow from 
or to be a direct consequence of the given wfs by virtue of Rj. 

A proof in Y is a sequence .%>1, ... , {!gk of wfs such that. for each i, either 
.@i is an axiom of Y or .@i is a direct consequence of some of the preceding 
wfs in the sequence by virtue of one of the rules of inference of !/'. 

A theorem of Y is a wf rJ8 of Y such that rJ8 is the last wf of some proof in 
!/'. Such a proof is called a proof of fJB in!/'. 

Even if Y is axiomatic - that is, if there is an effective procedure for 
checking any given wf to see whether it is an axiom- the notion of 'theorem' 
is no1 necessarily effective since, in general, there is no effective procedure 
for detetmining, given any wf rJ8, whether there is a proof of rJ8. A theory for 
which there is such an effective procedure is said to be decidable; otherwise, 
the theory is said to be undecidable. 

From an intuitive standpoint, a decidable theory is one for which a 
machine can be devised to test wfs for theoremhood, whereas, for an un­
decidable theory, ingenuity is required to determine whether wfs are theo­
rems. 

A wf C(J is said to be a consequence in Y of a set of r of wfs if and only if 
there is a sequence g81, ..• , ~k of wfs such that C(J is gek and, for each i, 
either .%>1 is an axiom or.%>; is in 1, or rJ8i is a direct consequence by some rule 

tThese 'symbols' may be thought of as arbitrary objects rather than just lin­
guistic objects. This will become absolutely necessary when we deal with theories 
with uncountably many symbols in Section 2.12. 

+An example of a rule of inference will be the rule modus ponens (MP): ((1 follows 
from ~ and fJlJ =}- ((1. According to our precise definition, this rule is the relation 
consisting of all ordered triples ( fJlJ, ~ =}- ((/}, ((1 ) , where ~ and ((1 are arbitrary wfs 
of the formal system. 
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<)[inference of some of the preceding wfs in the sequence. Such a sequence is 
;C£l'tled a proof(or deduction) oJCff from r. The members ofr are called the 
:1;;.potheses or premisses of the proof. We use r f- Cff as an abbreviation for 'Cff 
,j~,,~ ·conseq1ience of r·. In order to avoid confusion when dealing with more 
~ih;m one theory, we write r 1--y Cff, adding the subscript Y to indicate the 
~theory in question. 

If r is a finite set {£.1, ... , YC'm}, we write Yf1, ... , YC'm I- Cff instead of 
.f.J'l., ... , ff-111} I- t:(J. If r is th~ empt.y s~t ~, then_ 0 I- Cff if_ and only if Cff is a 
:iJ1corem. It is customary to om1t the s1gn 0 and s1mply wnte I- Cff. Thus, I- Cff 
. is another way of asserting that Cff is a theorem. 
··< The following are simple properties of the notion of consequence: 

1. If r c 11 and r I- Cff, then /11-- Cff. 
·:z. r f- '(}if and only if there is a finite subset 11 of r such that /11-- Cff. 
3. If /11-- Cff, and for each go in 11, r I-@, then r I- Cff. 

Assertion 1 represents the fact that if Cff is provable from a set r of pre­
t'nisses, then, if we add still more premisses, Cff is still provable. Half of 2 
Jol1ows from 1. The other half is obvious when we notice that any proof of Cff 
from ruses only a finite number of premisses from r. Proposition 3 is also 
quite simple: if Cf1 is provable from premisses in 11, and each premiss in 11 is 
provable from premisses in r, then Cfj is provable from premisses in r. 

We now introduce a formal axiomatic theory L for the propositional 
~~Jculus. 

1. The symbols of L are •, ~, (,),and the letters Ai with positive integers 
i as subscripts: A1, A2, A3, .... The symbols -, and ::::} are called pri­
mitive connectives, and the letters A; are called statement letters. 

:b (a) All statement letters are wfs. 
(b) If go and Cff are wfs, then so are ( ·~) and (go ~ Cf/). t 

Thus, a wf of L is just a statement form built up from the statement 
letters A; by means of the connectives -, and ~. 

3. If 9J, Cff and £!2 are wfs of L, then the following are axioms of L: 
(AI) (go* (Cff *go)) 
(A2) ((go* (Cff ~ £!2)) * ((go* Cf/) * (go~ £!2))) 
(A3) ( ( ( ·Cff) ~ ( ·~)) * ( ( ( •Cf/) * 38) ~ Cf/)) 

4. The only rule of inference of L is modus ponens: Cff is a direct con­
sequence of 88 and (@::::} Cf/). We shall abbreviate applications of this 
rule by MP.t 

We shall use our conventions for eliminating parentheses. 

tTo be precise, we should add the so called extremal clause: (c) An expression is 
.a. wf if and only if it can be shown to be a wf on the basis of clauses {a) and (b). This 
can be made rigorous using as a model the definition in footnote § on page 13. 

tA common English synonym for modus ponens is the detachment rule. 
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Notice that the infinite set of axioms of L is given by means of three 
axiom schemas (Al)-(A3), with each schema standing for an infinite number 
of axioms. One can easily check for any given wf whether or not it is an 
axiom; therefore, L is axiomatic. In setting up the system L , it is our in­
tention to obtain as theorems precisely the class of all tautologies. 

We introduce other connectives by definition: 

(Dl) (.@ 1\ CC) for--.(~=?: -.CC) 
(Dl) (38 V ~) for ( -.~) * CC 
(D3) (18 {:} CC) for (Y8 * CC) 1\ (CC * ~) 
The meaning of (Dl), for example, is that, for any wfs f!4 and~.'(~ 1\ ~·is 
an abbreviation for'-.(.%>* -.CC)'. 

LEMMA 1.8 f--L {!g * #1 for all wfs ~-

Prooti 

We shaH construct a proof in L of Y8 * ~-

l. ( ~ ::::} ( ( ~ ~ 18) ::::} ~)) ::::} 
( ( £16' ::::} ( ~ ::::> 38) ) ::::} ( &8 ::::} _%>) ) 

2. f!4 ::::} ( ( f!4 ::::} #1) ::::} 38) 
3. ( i8 ::::} ( ~ ::::} Y8)) ::::} ( [$ ::::} ~) 

4. ~ ::::} ( ~ ::::} ~) 

Instance of axiom schema (A2) 

Axiom schema (Al) 
From l and 2 by MP 
Axiom schema (AI) 

tThe word 'proof' is used in two distinct senses. First, it has a precise meaning 
defined above as a certain kind of finite sequence of wfs of L. However, in another 
sense, it also designates certain sequences of the English language (supplemented by 
various technical terms) that are supposed to serve as an argument justifying some 
assertion about the language L (or other formal theories). In general, the language 
we are studying (in this case, L) is called the ohject language, while the language in 
which we formulate and prove statements about the object language is called the 
metalanguage. The metalanguage might also be formalized and made the subject of 
study, which we would carry out in a metametalanguage, and so on. However, we 
shall use the English language as our (unformalized) metalanguage, although, for a 
substantial part of this book, we use only a mathematically weak portion of the 
English language. The contrast between object language and metalanguage is also 
present in the study of a foreign language; for example, in a Sanskrit class, Sanskrit is 
the object language, while the metalanguage, the language we use, is English. The 
distinction between proof and metaproof (i.e., a proof in the metalanguage) leads to a 
distinction between theorems of the object language and metatheorems of the me­
talanguage. To avoid confusion, we generally use 'proposition' instead of 'me­
tatheorem'. The word 'metamathematics' refers to the study of logical and 
mathematical object languages; sometimes the word is restricted to those investiga­
tions that use what appear to the metamathematician to be constructive (or so-called 
finitary) methods. 
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From 3 and 4 by MPt 

Exercise 
;,.. 

1.41 Prove: 
(a) 1-t ( ---,:!J ~ £!11) ~ ~ 
(b) :J8 ~ <&, ~ ~ ~ 1- L !!lJ ~ f0 
(c) :18 =* (~ =? E0) 1- L ~ =? (~ =? fil) 
(d) ~L (--.~ ~ ---,gb') ~ ([16' ~ ~) 

In mathematical arguments, one often proves a statement Clf on the as­
:-.umption of some other statement &J and then concludes that 'if flJJ, then ~· 
};:-true. lbis procedure is justified for the system L by the following theorem. 

-I'ROPOSITION 1.9 (DEDUCTION THEOREM)l 

'If"'[ -is a set of wfs and fl8 and ~ are wfs, and r, fl8 1- ~, then r I- &J =? 'C. In 
P'!;ticular, if~~~. then~ fl8 ~ ~ (Herbrand, 1930). 

-Proof 
.... > 

oLct <'Cr' ... , ~II be a proof of~ form ru{ ~}.where ((ill is Clf. Let us prove, by 
-inc.fuction on j, that r ~ ~ =? ~j for 1 ~j~n. First of all, ~1 must be either 
in I.o; or an axiom of Lor~ itself. By axiom schema (AI), ~1 =? (86' =? ~1) is 
aJ'i axiom. Hence, in the first two cases, by MP, r 1- fiB =? ~~- For the third 
t:ltse, when ~~ is !!J, we have ~ ~ =? ~~ by Lemma 1.8, and, therefore, 
-r·-t- !J::::::} ~1 . This takes care of the case j = L Assmne now that 
T;J:~::::} ~k for all k < j. Either ~j is an axiom, or ~j is in r, or ~j is !!J, or 
.P) follows by modus ponens from some ~e and~,!) where£< j, 111 < j, and 
/t:,rhas the form ~ e =? ~j. In the first three cases, r 1- fl8 =? ~j as in the case 
/= 1 above. In the last case, we have, by inductive hypothesis, r ~ !!J =? ~e 

;:fWd r 1- f5JJ =? (~t ~ ~j)· But, by axiom schema (A2), ~ (~ =? (~e ~ ~j)) 
:::?~({~=?~e) ~ (~ =? ~j)). Hence, by MP, r ~ (1JJ =?~e) =? (@ =? ~j), 

'!H)d, again by MP, r 1- 86' =? ~j- Thus, the proof by induction is complete. 
--the case j = n is the desired result. [Notice that, given a deduction ofC(J from 
::t and f!iJ, the proof just given enables us to construct a deduction of~ =? ~ 

tThe reader should not be discouraged by the apparently unmotivated step l of 
~:~he_proof. As in most proofs, we actually begin with the desired result,~==?~. and 
lthen look for an appropriate axiom that may lead by MP to that result. A mixture of 
;ingenuity and experimentation leads to a suitable instance of axiom (A2). 
" tFor the remainder of the chapter, unless something is said to the contrary, we 

~~hall omit the subscript L in 1-L. In addition, we shall use r, :YJ 1- rr1 to stand for 
''Fu{.?8} I- C(J. In general, we let r, :YJ~, ... , ~II I- C(j stand for ru{@J, ... ' 9JII} I- rri. 
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from r. Also note that axiom schema (A3) was not used in proving the-­
deduction theorem.] 

COROLLARY 1.10 

(a) ~ =? ~' ~ :::::> ~ I- &.1 =7- g 
(b) pg =9- (~ * .@), ~I- pg =9- qJ 

Proof 
For part (a): 

1.&.1:=>~ 

2. (/} =9- ~ 

Hyp (abbreviation for 'hypothesis') 
Hyp 

3. PJ 
4. ~ 
5. qJ 

Hyp 
1, 3, MP 
2, 4,MP 

Thus, :!IJ ==> ~' ~ ==> qJ, !YJ I- 92. So, by the deduction theorem, 
&.1 * (/}' ~ =? .@ I- []I) =9- qJ. 

To prove (b), use the deduction theorem. 

LEMMA 1.11 

For any wfs !!JJ and ~. the following wfs are theorems of L. 

(a) -,-.[]1) =? &.1 
(b) !!JJ :::} -,-,&J 

(c) -.&,] =9- ( &.1 =9- ~) 

(d) ( .~ =9- -,&.J) =9- ( PJ =9- ~) 

Proof 

(a) I- -, -,f!IJ ==> !!JJ 

(e) (&.1 ==> ~) =? (·~ ==> -,&.J) 
(f) &.J -==? ( ·~ -==? -. ( &.J -==? ~)) 
(g) ( &.1 -==? ~) =9- ( (-,[]I) -==? ~) =? ~) 

1. ( -..~ =? -.-,&J) ==> ( ( -,&.J ==> -,&.J) ==> &J) Axiom (A3) 
2. -,PJ ==> -,PJ Lemma 1. 8 t 
3. ( -.PJ ==> _,,f!!J) => &.J 1, 2, Corollary 1.1 O(b) 
4. -,-.:]8 ==> (·-~ ==> -,-,&J) Axiom (AI) 
5. -.-,[]1) ==> &.J 3, 4, Corollary 1.1 O(a) 

tJnstead of writing a complete proof of -.!IJ => -.!!JJ, we simply cite Lemma 1.8. 
In this way, we indicate how the proof of -.-.!!JJ =::::;> !!lJ could be written if we wished to 
take the time and space to do so. This is, of course, nothing more than the ordinary 
application of previously proved theorems. 



-_-_A_N_A_x_I_o_M_s_v_s_TE_ M_F_o_R_ T_H_E_P_R_o_P_o_siT_I_o_N_A_L_c_A_L_c_u_L_u_s _ ____jl I 39 

(b) h· !iJ ::::} .,-,£!8 
. 1. (...,-,-, 1d ::::} -, 36') ::::} 

( ( -,-,-,~ ::::} &B) ::::} -,-,~) 
2. -,--,"'_p&J ::::} -,(//j 

3. ( ...,-,-,P4 ::::} pg) ::::} -, -,P4 
4. 36' ::::} ( -,-,-,q] ::::} P4) 
5. f!lJ ::::} -,-,q] 

(c) r- .~ ::::} ( q] ::::} ~) 
. l. -,~ 

2. ;J(J 

3. lJJ ::::} ( -,~ ::::} :18) 
4. -,f!IJ ::::} ( -,~ ::::} -.P4) 
5. -,£C ::::} P4 
6. -,~ ::::} -,P4 
7. ( .~ ::::} -.P4) ::::} ( ( -,~ ::::} P4) ::::} ~) 
8. ( -,~ ::::} :Y.J) ::::} ~ 
9. ~ 
10. -,:Y.J, :18 1- ~ 
11. -,@ r- P4 ::::} ~ 
12. r- -,fllj ::::} ( q] ::::} ~) 

{d) r- ( -,~ ::::} -.P4) ::::} ( P4 ::::} ~) 
I . ...,~ ::::> -,:Y.J 
2. ( -,~ ::::} ·P4) ::::} ( ( -,~ ::::} ~) ::::} ~) 
3. .rt4 ::::} ( ·~ ::::} P4) 
4. ( -,~ ::::} f!)J) =} ~ 

5 . f!)J ::::} ~ 

6. -,~ =} -,.@ 1- P4 ::::} ~ 
7. r- ( -.~ ::::} -.:Y.i) ==> ( :Y.J ::::} CC) 

(e) 1- ( f!)J ==> ~) ==> ( .~ ::::} -.~) 
l.:Y.i::::}~ 

2. -,-,{!4 ::::} q] 

3. -,-,P4 ::::} ~ 
4. ~ ::::} -,-,~ 
5. -,-,~ ::::} -,-,~ 
6. ( -,-,q] ::::} -,-,~) ::::} ( -,~ ::::} -,:Y.J) 
7. -,~ ::::} -,~ 
8. ~ ::::} ~ 1- -,~ =} -,[!J 

9. 1- ( q] ::::} ~) ::::} ( -,~ ::::} -,q]) 

(f) 1- f!4 ==> ( -.re ==> ..., ( P4 ==> ~)) . 

Axiom (A3) 

Part (a) 
l, 2, MP 
Axiom (AI) 
3, 4, Corollary 1.1 O(a) 

Hyp 
Hyp 
Axiom (AI) 
Axiom (AI) 
2, 3,MP 
I, 4,MP 
Axiom (A3) 
6, 7, MP 
5, 8, MP 
I-9 
10, Deduction theorem 
II, Deduction theorem 

Hyp 
Axiom (A3) 
Axiom (Al) 
I, 2, MP 
3, 4, Corollary l.IO(a) 
1-5 
6, deduction theorem 

Hyp 
Part (a) 
1, 2, Corollary l.IO(a) 
Part (b) 
3, 4, Corollary l.IO(a) 
Part (d) 
5, 6, MP 
1- 7 
8, deduction theorem 

Clearly, f!J, f!J ::::} ~ 1- ~ by MP. Hence, 1- P4 ::::> ( ( :18 ::::> ~) ::::> ~)) by 
two uses of the deduction theorem. Now, by (e), 1- ((P4::::} ~) 
::::} ~) =? (-.~::::} -.(f!J::::} ~)). Hence, by Corollary l.IO(a), 
1- :18 ::::} ( -,~ =} -, ( [!J ::::} ~)) . 

(g) 1- ( ~ ::::} ~) =* ( ( -.P4 ==> CC) ==> ~) 
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l.~::::>C(/ 

2. -,&.J ~ C(/ 

3. ( 88 => C(!) :=;. ( -,C(/ =? -.99) 
4. -,C(/ =? -,:fg 

5. ( -.1A ==> C(!) => ( -,C(/ =? -,-,~) 
6. -,C(/ ==> -,-,glj 

7. ( -,C(/ ==> -,-,PJJ) => ( ( -,cg ::::? -.88) => C(!) 
8. ( -,C(/ ==> ·99) => C(/ 

9. C(/ 

1 0. 88 => C(/' -,99 => C(/ I- (fj 

11. glJ => C(/ I- ( -,glj :=;. C(!) => C(/ 

12. I- ( :Jg => C(!) :=;. (( -.99 => C(!) => C(!) 

Exercises 

Hyp 
Hyp 
Part (e) 
1, 3, MP 
Part (e) 
2, 5, MP 
Axiom (A3) 
6, 7, MP 
4, 8, MP 
1-9 
10, deduction theorem 
11, deduction theorem 

1.48 Show that the following wfs are theorems of L. 

(a) !?lJ => (:Jg V C:C) 
(b) 88 => (C(! v 88) 
(c) C(/ v glJ => !?lJ v C(/ 

(d) f11J A C(! => ~ 

(e) 99 A C(! => C(! 
(f) (99 =? ~) => ((C(! :=;. ~) => (&J v ~ :=;. .@)) 
(g) ((&J =? C(!) => PlJ) => &J 
(h) 99 ==> (C(! => (88 A C(!)) 

1.49 Exhibit a complete proof in L of Lemma l.ll(c). [Hint: Apply the 
procedure used in the proof of the deduction theorem to the demonstration 
given earlier of Lemma l.ll(c).] Greater fondness for the deduction theorem 
will result if the reader tries to prove all of Lemma 1.11 without using the 
deduction theorem. 

It is our purpose to show that a wf of L is a theorem of L if and only if it 
is a tautology. Half of this is very easy. 

PROPOSITION 1.12 

Every theorem of L is a tautology. 

Proof 

As an exercise, verify that all the axioms of L are tautologies. By Proposi­
tion 1.2, modus ponens leads from tautologies to other tautologies. Hence, 
every theorem of L is a tautology. 

The following lemma is to be used in the proof that every tautology is a 
theorem of L. 
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Lcf<~ be a wf and let B1, ... , Bk be the statement letters that occur in f!JJ. 
F r a givert-assignment of truth values to Bt, ... , Bk, let B} be B1 if B1 takes 

1 ~ value T; and let ~ be ---.B1 if B1 takes the value F. Let f!lJ' be ~ if {!g takes 
. ~~:~"'',l:llue T under the assignment, and let !!A' be-,~ if £1 takes the value F . 

. I B' 1-.'W · Then B ll · · · ' k · 
>For example, let !JJ be--.( -.A2 ~As)- Then for each row of the truth table 

A2 As -.( -.A2 => As) 
T T F 
F T F 
T F F 
F F T 

Len1ma 1.13 asserts a corresponding deducibility relation. For instance, 
cori·esponding to the third row there is A2, -.As 1- -.-.( -.A2 ~As), and to the 
t.~nltth row, -.A2, -.As 1- -.( -.A2 ~As)-

Proof 
.,; 

;' be proof is by induction on the number n of occurrences of-, and :::::7 in ~. 
(We assume 1/J written without abbreviations.) lf 11 = 0, :!8 is just a statement 
letter B1, and then the lemma reduces to Bt r- Bt and -.Bt 1- -.B1• Assume 
110\v that the lemma holds for all j < 11. 

Case 1. 1/J is -.CC. Then CC has fewer than n occurrences of--. and ::::}. 
Subcase la. Let CC take the value T under the given truth value assign­

'ineilt. Then &a takes the value F. So, CC' is CC and &a' is -.PJJ. By the inductive 
hypothesis applied to ct, we have B~, ... , BJ. 1- CC. Then, by Lemma l.ll(b) 
a11~ MP, B~, ... , Bk 1- -.-.CC. But -.-.CC is #J'. 

$ubcase 1 b. Let CC take the value F. Then ~takes the value T. So, rrl' is -.CC 
1md {!// is ~. By inductive hypothesis, B'1, •.. , Bk 1- -.CC. But -.CC is &J'. 

Case 2. !!lJ is CC ::::} !?IJ. Then CC and !?1J have fewer occurrences of -, and ::::} 
than fQ. So, by inductive hypothesis, s;, ... , Bk 1- C€' and Bi, ... , Bk 1- £21'. 

Subcase 2a. CC takes the value F. Then f!lJ takes the value T. So, CC' is -, Cfi 
a11d f!lJ' is &a. Hence, B; , ... , Bk 1- -, CC. By Lemma 1.11 (c) and MP, 
~i, ... , B~ 1- CC => !?IJ. But CC ::::} !?IJ is lA'. 

· Subcase 2b. !?IJ takes the value T. Then 1/J takes the value T. So, f»' is !?}) 

•tind P/J is 1/J. Hence, B;, ... , Bk 1- !?IJ. Then, by axiom (Al) and MP, 
~B[ 1 • .. , Bk 1- CC * !?IJ. But CC ::::} !?IJ is &a'. 

Subcase 2c. CC takes the value T and !?}) takes the value F. Then~ takes 
~he value F. So, CC' is CC, !?IJ' is -.!?/J, and ~is -.~. Therefore, Bi, ... , Bk 1- rl 
\~nd U., ... , Bk 1- -,g. Hence, by Lemma 1.11 (f) and MP, B'1, .•• , Bk 
ir· •( cc * !?/J). But -.( cc ~ !?/J) is fffl'. 
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PROPOSITION 1.14 (COMPLETENESS THEOREM) 

If a wf r!lJ of L is a tautology, then it is a theorem of L. 

Proof 

(Kalmar, 1935) Assume f!!J is a tautology, and let B1, ... , Bk be the state .. , 
ment letters in f!JJ. For any truth value assignment to B1, ... , Bb we have, by; 
Lemma 1.13, B~, ... , Bk 1- f!4. (:Y.J' is f!4 because :Y.J always takes the value T.):; 
Hence, when B~ is given the value T, we obtain B~, ... , Bk _1, Bk I- :Y.J, and, 
when Bk is given the value F, we obtain B~, . . . , Bk-t, --.Bk 1- f!4. So, by the-: 
deduction theorem, B~, ... , B~_1 1- Bk ~ f!4 and B~, ... , B~_ 1 1- --.Bk * PJ. 
Then by Lemma l.ll(g) and MP, B~, ... , Bk-l 1- @.Similarly, Bk-1 may be 
chosen to be T or F and, again applying the deduction theorem, Lemma 
1.11 (g) and MP, we can eliminate Bk-l just as we eliminated Bk. After k such 
steps, we finally obtain 1- f!IJ. 

COROLLARY 1.15 

If CC is an expression involving the signs -., =}, /\, V and {::} that is an 
abbreviation for a wf f!4 of L, then CC is a tautology if and only if f!IJ is a 
theorem of L. 

Proof 

In definitions (D 1) -(D3), the abbreviating fo1mulas replace wfs to which 
they are logically equivalent. Hence, by Proposition 1.4, ~ and l(}' are lo­
gically equivalent, and l(}' is a tautology if and only if [jJ is a tautology. The 
corollary now follows from Propositions 1.12 and 1.14. 

COROLLARY 1.16 

The system L is consistent; that is, there is no wf r!lJ such that both f!4 and 
--,{!4 are theorems of L. 

Proof 

By Proposition 1.12, every theorem of L is a tautology. The negation of a 
tautology cannot be a tautology and, therefore, it is impossible for both #1 
and -.#1 to be theorems of L. 

Notice that L is consistent if and only if not all wfs of L are theorems. In 
fact, if L is consistent, then there are wfs that are not theorems (e.g., the 
negations of theorems). On the other hand, by Lemma l.ll(c), 
1- L --.[!4 ~ (r!lJ ~ CC), and so, if L were inconsistent, that is, if some wf f!4 and 
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its~·negation -.!!8 were provable, then by MP any wf Cf! would be provable. 
(Tllis equival~nce ~olds for any theor~ that has modus pon~ns as. a rule of 
inference and m whtch Lemma l.ll(c) ts provable.) A theory m whtch not all 
\Vf~ are the~)l·ems is said to be absolutely consistent, and this definition is 

-arP!~cable e\ren to theories that do not contain a negation sign. 

~~jercise 

+1.50-.Let f!JJ be a statement form that is not a tautology. Let L + be the formal 
,theory obtained from L by adding as new axioms all wfs obtainable from !JJ 
~by. substituting arbitrary statement forms for the statement letters in fg, with 
~:t'fi~ same form being substituted for all occurrences of a statement letter. 
~Show that L + is inconsistent. 
•;. 

"'h$ INDEPENDENCE. MANY-VALUED LOGICS 
I 

-A subset Y of the set of axioms of a theory is said to be independent if some 
wf:in y cannot be proved by means of the rules of inference from the set of 
i:tl1ose axioms not in Y. 
~--~· -

:f?ROPOSITION 1.17 
--... · 

j~ach of the axiom schemes (Al}-(A3) is independent. 

Proof 

To'·prove the independence of axiom schema (Al ), consider the following 
lables: 

A -,A_ A B A='fB 
0 1 0 0 0 
1 l 1 0 2 
2 0 2 0 0 

0 1 2 
1 1 2 
2 1 0 
0 2 2 
1 2 0 
2 2 0 

For any assignment of the values 0, l and 2 to the statement letters of a wf 
:!J, these tables detennine a corresponding value of !!8. If f!8 always takes the 
value 0, f!8 is called select. Modus ponens preserves selectness, since it is easy 
to check that, if f!8 and §J :::> Cf! are select, so is Cf!. One can also verify that all 
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instances of axiom schemas (A2) and (A3) are select. Hence, any wf deri~ 
vable from (A2) and (A3) by modus ponens is select. Howev~1 
A 1 * (A2 =?At), which is an instance of (AI), is not select, since it takes the 
value 2 when At is 1 and A2 is 2. 

To prove the independence of axiom schema (A2), consider the following 
tables: 

.A -.A A B A='?B 
0 1 0 0 0 
1 0 1 0 0 
2 1 2 0 0 

0 1 2 
1 1 2 
2 1 0 
0 2 1 
1 2 0 
2 2 0 

Let us call a wf that always takes the value 0 according to these tables: 
grotesque. Modus ponens preserves grotesqueness and it is easy to vetify~­

that all instances of (AI) and (A3) are grotesque. However, the instanc~­
(A1 =? (A2 =? A3)) =?((At =? A2) =? (A1 ::::> A3)) of (A2) takes the value 2 
when A1 is 0, A2 is 0, and A3 is 1 and, therefore, is not grotesque. 

The following argument proves the independence of (A3). Let us call a wf 
f!JJ super if the wf h(f!JJ) obtained by erasing all negation signs in f!JJ is a 
tautology. Each instance of axiom schemas (AI) and (A2) is super. Also, 
modus ponens preserves the property of being super; for if h ( f!JJ =? ~) and~' 
h(Jli) are tautologies, then h(CC) is a tautology. (Just nqte that h(f!JJ =?~)is 
h(f!JJ) =? h(~) and use Proposition 1.2.) Hence, every wf f!jJ derivable from 
(AI) and (A2) by modus ponens is super. But h((.A.t =? .A.1) => 
((-.At =?At)=? A1)) is (At =?At)=? ((A1 =?At)=? At), which is not a 
tautology. Therefore, (-.At ==>-.At) =? ((-.At =?At)=? At), an instance of 
(A3), is not super and is thereby not derivable from (AI) and (A2) by modus 
ponens. 

The idea used in the proof of the independence of axiom schemas (AI) 
and (A2) may be generalized to the notion of a many-valued logic. Select a 
positive integer n, call the numbers 0, 1, ... , n truth values, and choose a 
number m such that O~m < n. The numbers 0, 1, ... , m are called desig­
nated values. Take a finite number of •truth tables' representing functions 
from sets of the form {0, 1, ... , n }k into {0, 1, ... , n }. For each truth table, 
introduces a sign, called the corresponding connective. Using these con­
nectives and statement letters, we may construct 'statement forms', and 
every such statement form containing j distinct letters detetmines a 'truth 
function' from {0, 1, ... , n}j into {0, 1, .. . , n}. A statement form whose 
corresponding truth function takes only designated values is said to be 
exceptional. The numbers m and n and the basic truth tables are said to 
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deflhe a (finite) many-valued logic M. A formal theory involving statement 

1 tters and the connectives ofM is said to be suitable forM if and only if the 
t~eorems of the theory coincide with the exceptional statement forms of M. 
All these TJ,otions obviously can be generalized to the case of an infinite 

1
untber of truth values. If n = 1 and m = 0 and the truth tables are those 

1 ivefi for ---. and => in section 1.1, then the corresponding two-valued logic is 
~at studied in this chapter. The exceptional wfs in this case were called 
tautologies. The system L is suitable for this logic, as proved in Propositions 
I. i 2 and 1.14. In the proofs of the independence of axiom schemas (A 1) and 
(AQ), two three-valued logics were used. 

' . 'Exercises 

151 Prove the independence of axiom schema (A3) by constructing ap­
;p;opriate 't1uth tables· for -. and :::::>. 
LS~ {McKinsey and Tarski, 1948) Consider the axiomatic theory Pin which 

'then~ is exactly one binary connective *, the only rule of inference is modus 
p~nens (that is, Cfl follows from f!4 and f!4 * Cfl), and the axioms are all wfs of 
-th~ form PlJ * :!JJ. Show that P is not suitable for any (finite) many-valued 

:fogic. 
-l.:S3 For any (finite) many-valued logic M, prove that there is an axiomatic 
-theory suitable for M. 

Further information about many-valued logics can be found in Rosser 
aiid Turquette (1952), Rescher (1969), Bole and Borowik (1992) and Mal­
inowski (1993). 

J'~6- 01HER AXIOMATIZATIONS 

1\:lthough the axiom system Lis quite simple, there are many other systems 
fihitt would do as well. We can use, instead of-, and =::?, any collection of 
'prhhitive connectives as long as these are adequate for the definition of all 
,other truth-functional connectives. 
::E~,;; ,...-;... 

:"!Jxamples 
~~1;;1 : V and-, are the primitive conectives. We use f!4 ==> Cfl as an abbreviation 

for -.PJ) V Cfl. We have four axiom schemas: (I) f!4 V f!4 =::? ~; (2) 
fJi ==> PJJ V Cfl; (3) rJJ V Cfl => Cfl V :!1J; and (4) (Cfl => 2£1) => (PJJ V Cfl => 
PJJ V £0). The only rule of inference is modus ponens. Here and below we 
use the usual rules for eliminating parentheses. This system is developed 
in Hilbert and Ackermann (1950). 

-;;L2: 1\ and • are the primitive connectives. f!4 => Cfl is an abbreviation for 
•(fli 1\ ·Cfl). There are three axiom schemas: (1) PlJ =::? (f!4 1\ f!4) ; 



46 ) L_l _______ T_H_E_P_R_o_P_o_s_IT_I_o_N_A_L_c_A_L_c _u_L_u_s _ _ ____ ] 

(2) 99 A Cf/ '* ffJ; and (3) (99 =? Cf/) ~ ( -.(Cf/ A !0) '*--.(~A ffJ) ). Modus 
ponens is the only rule of inference. Consult Rosser (1953) for a detailed 
study. 

L3: This is just like our original system L except that, instead of the axiom 
schemas (Al)-(A3), we have three specific axioms: (l) A1 '* (A2 '*At); 
(2) (AI ::? (A2 =* A3)) =*((AI => A2) =* (A1 =* A2)); and (3) (-.A2:::} 
-.A 1) => ((•A2 =?A1) =?A2). In addition to modus ponens, we have a 
substitution rule: we may substitute any wf for all occurrences of a 
statement letter in a given wf. 

L 4 : The primitive connectives are~, 1\, V and--.. Modus ponens is the only 
rule, and we have ten axiom schemas: (1) ~ => (Cf/ '* &6'); (2) (99:::} 
(Cf/ ~ !0)) =* ((99::? Cf/) ==? (99 =* ~)); (3) 991\ Cf/ => 99; (4) ~A Cf/ => CC; 
(5) 99 '* (Cf/ '* (99 A Cf/)); (6) 99 => (99 V Cf/); (7) Cf/ '* (99 V Cf/); (8) (PJ:::} 
!0) ~ ((Cf/ '* !0) '* (f!4 V Cf/ '* ~)); (9) (99 '* CC) ::? ((99 ==? -.Cf/) '* •ffJ); 
and (10) --,-,f!4 '* 99. This system is discussed in Kleene (1952). 

Axiomatizations can be found for the propositional calculus that contain 
only one axiom schema. For example, if • and ::? are the primitive con­
nectives and modus ponens the only rule of inference, then the axiom 
schema 

[(( (~:::? <6) :::? ( -.E2 ==? -.C)) * E2) =? ff] * [(ff ==? !$) * (C * ~)] 
is sufficient (Meredith, 1953). Another single-axiom formulation, due to 
Nicod (1917), uses only alternative denial I . Its rule of inference is: f7J 
follows from ~ I (CC I !0) and 99, and its axiom schema is 

(~I(CCIE2)) I {ftCI(CIC)] I [(ffiCC)I((~Iff)l(galff))]} 
Further information, including historical background, may be found in 
Church (1956) and in a paper by Lukasiewicz and Tarski in Tarski (1956, IV). 

Exercises 

1.54 (Hilbert and Ackermann, 1950) Prove the following results about the 
theory L1. 
(a) ~ ==? Cf/ 1- L 1 ~ V 99 =* f0 V Cf/ 
(b) 1- L 1 (99 =* Cfl) ==? ((~ =* ~) =* (f0 => Cf/)) 
(c) ~ ==? 99, 99 '* Cf/ 1- L 1 ~ => Cfl 
(d) 1- L 1 99 :::::> !lJ (i.e., 1- L

1 
-.99 V 99) 

(e) I- L 1 99 V ,99 
(f) I- L 1 99 =* --,-,99 
(g) I- L1 --,99 ==? ({f) ~ Cf/) 
(h) I- L 199 V (Cf/V ~) =* ((Cf/V (99V !0)) V 99) 
(i) I- L 1 (Cf/ V (99 V f0)) V 99 =* Cfl V (99 V f0) 
G) I- Ll 99 v (Cf/ v ~) '* cc v (99 v ~) 
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(k} 1- Lr (@ :=:> (CC * 22)) * (CC :=:> (PJ :=:> 22)) 
(I') 1- 'L, ( ~ => #J) ==> ( ( g$ =} <'C) :=:> ( !0 :=:> <'C)) 
(Ill)~:::::} (0' ==> 22), !?J ==> <'C I- L11/J :=:> (88 :=:> !0) 
(n) .~ * (~ ==> 22), ~ * CC f- L, PJ :=:> !0 
(o) If r, ~~-- Lt <'C, then r 1- L, [?J :=:> cc (deduction theorem) 

(p) :tJ -::4 !iJ, ~~ =} go :- Ll ~ 
(q) J- L,PJ if and only tf PJ IS a tautology. 
_1:ss'- (Rosser, 1953) Prove the following facts about the theory L2 . 

(tl-) :lJ -::4 <'C, ~ =} 22 1- L2 -.( -.22 1\ go) 
(b) 1- L2 • ('.@ 1\ @) 
. (C) 1- L2 -,-,@ :=:> 1lJ 
<:d) r- L2 -.(pg A CC) * (CC * -.PJ) 
1 ~ > r- L2 P4 * .,,YJ 
Th 1- L2 (.o/1 * CC) ==> C -.cc * -.PJ) 
~(g) ,,qg * -.cc 1-- L2 cc * PJ 
}h) g8 :::::} ~ f- L2 ~ 1\ ?lJ => <'C 1\ 22 
~(i) g)=? <'C, <'C :=:> !?2, f?2 =} $I- L2@ :=:> $ 

~u· .) t- PJ * &J " L2 
Jk) 1- L21/J 1\ <'C =} <'C 1\ go 
-(1) ~ :::::> <'C, <'C :=:> f?2 f- L/JO :=:> !0 
::( m) £J ==> CC, !?2 :=:> lff 1- L2 t?J 1\ !?2 :=:> CC 1\ ~ 

(n) CC :=:> !?2 1- L2 1/J 1\ CC * 1/J 1\ 22 
-( 0) 1- L

2 
(go :=:> ( <'C ==> 22)) :=:> ( ( !?J 1\ <'C) =} fiJ) 

-( p) f- L2 ( ( 1/J 1\ <'C) ==> f?2 ) =} ( [?J :=:> ( <'C =} !0)) 
.(q) @ ==> <'C, 88 => (<'C :=:> 22) 1- L 2@ :=:> !?2 
·(r) 1- L2PJ :=:> (<'C :=:> pg 1\ <'C) 
(s) !- L21/J :=:> (<'C * PJ) 
(t) If r, [?J 1- L2 CC, then r 1- L21/J:::::} cc (deduction theorem) 
( U) 1- L

2 
( --,@ => @) :=:> [?J 

(v) 1/J ==> <fi, -.1/J * CC 1- L2 CC 
(w) t- L

2
1/J if and only if PJ is a tautology. 

1.56 Show that the theory L3 has the same theorems as the theory L. 
1.57 (Kleene, 1952) Derive the following facts about the theory L4. 

(a) 1- L.:PJ * gs 
(b) If r, [?J 1- L4 <'C, then r 1- L41/J => cc (deduction theorem) 
(c) PJ * CC, CC * !?2 1- L41/J * !?2 
(d) 1- L4 ( &J * CC) ==> ( -.cc ==> , PJ) 
(e) 1/J, -.1/J f- L 4 CC 
(f) 1- L4&J :=:> --,-,1/J 
(g) !- L4 -,@ ==> ( 1/J :=:> <'C) 
Jh) 1- L.: [?J :=:> ( .cc * --, ( [?J :=:> <'C)) 
(i) f- L4 .,go ==> ( • <'C =} -.( 1lJ V <'C)) 
0) 1- L4 ( --,<(j ==> !J9) => ( ( <'C :=:> !?J) =} PJ) 
(k) 1- L4 1/J if and only if PJ is a tautology. 
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1.58D Consider the following axiomatization of the propositional calculu~ 
.P (due to Lukasiewicz) . .P has the same wfs as our system L. Its only rule 
of inference is modus ponens. Its axiom schemas are: 

(a) ( -,{!.8 ::::} ~) '* r!8 
(b) ~::::? ( -,{!.8::::? ~) 
(c) (#.1 ~ ~) ~ ((~::::? 2ii) ::::} (fR::::? £0)) 

Prove that a wf r!8 of .P is provable in .P if and only if f!JJ is a tautology. 
[Hint: Show that L and .P have the same theorems. However, remembe·r 
that none of the results proved about L (such as Propositions 1.8-1.13) 
automatically carries over to .P. In particular, the deduction theorem is not 
available until it is proved for .P.] 
1.59 Show that axiom schema (A3) of L can be replaced by the schema 
( --~ ::::? -.~) ~ (~::::? r!8) without altering the class of theorems. 
1.60 If axiom schema (10) of L4 is replaced by the schema .(10)': 
-,{!.8::::} (~::::? ~), then the new system L1 is called the intuitionistic propd~ 
sitional calculus. t Prove the following results about L1. 
(a) Consider an (n + I )-valued logic with these connectives: -.~is 0 when@ 

is n, and otherwise it is n; ~ 1\ {(5 has the maximum of the values of flJ 
and Cfi, whereas r!8 V ~ has the minimum of these values; and f!JJ ::::? ~ is 0 
if f!JJ has a value not less than that of~, and otherwise it has the same 
value as ~. If we take 0 as the only designated value, all theorems of~ 
are exceptional. 

(b) A 1 V -.A1 and -.-.A1 ~At are not theorems of L1. 

(c) For any m, the wf 

(A1 ¢:> A2) V ... V (AI {::}Am) V (A2 {::} A3) V . . . 

V (A2 {::}Am) V .. . V (Am-I ¢=> Am) 

is not a theorem of L1 
(d) (Godel, 1933) L1 is not suitable for any finite many-valued logic. 
(e) (i) If r, {!.81-- L

1 
~. then r f- L,{!.8::::} ~(deduction theorem) 

(ii) ~ ~ ~' ~::::? f2 I- L1{!.8::::? f2 
(iii) I- L

1 
{!.8 ::::} -,-,{!.8 

(iv) I- L, (f!JJ ~ ~) ::::? ( --~ ::::? -..rjg) 
(v) I- L

1 
f!JJ ::::? ( -.{!.8 ::::? ~) 

(vi) 1- L, -.-.( -.-.{!.8 ~ /iJ) 
(vii) -.-.(~ ~ {(5), -,-.{!.81-- Lr -,-,~ 

tThe principal origin of intuitionistic logic was L.E.J. Brouwer's belief that 
classical logic is wrong. According to Brouwer, PlJ V Cfl is proved only when a proof of 
PlJ or a proof of rc has been found. As a consequence, various tautologies, such as 
~ V -.PJJ, are not generally acceptable. For further information, consult Brouwer 
(1976), Heyting (1956), Kleene (1952), Troelstra (1969), and Dummett (1977). Ja8-
kowski (1936) showed that L1 is suitable for a many-valued logic with denumerably 
many values. 
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(viii) [- Lt -r-.-.r!J :::::> ~f!J . 
-o ,. L 1~ . .?iJ if and only 1f ~IS a tautology. 

_ -'~' .,Y.J if and only if -.~ is a tautology. 
l> H:·,.~ has A and -. as its only connectives, then I- L, Pll if and only if f!JJ 

.. J ' 
i~,a ta-atology. 

( .61"\ Let .18 and C(! be in ~he rela~ion R if ~nd only iff-- Lf!JJ {:::} C(l. Show that R 

1 
an<,equivalence relatiOn. GIVen eqmvalence classes [~] and [C(!J, let 

i[r6·.] = [~ V ce], [J6']n(C(!] =[~A C(!], and [Pll] = [-.~j. Show that the 
v--tuiv<.ilence classes under R form a Bo*olean al?ebra with respect to n, u 
nd ,~"called the Lindenbaum algebra L determined by L. The element 0 of 

L.. j~;·the equivalence class consisting of all contradictions (i.e., negations of 
rautologies). The unit element 1 of L'~' is the equivalence class consisting of 
:rll wt1tologies. Notice that I- L!$ =* C(! if and only if[~]~ [C(!] in L *, and that 
· L·~-,¢:> <(f if and only if [36'] = [C(!]. Show that a Boolean function f (built up 
rrm1l. v;;\:riables, 0, and 1, using u, nand -)is equal to the constant function 
1 ;11-__ all Boolean algebras if and only if I- Lf#, where J# is obtained from f 
hv changing u, n, - , 0 and 1 to V, A, -., A1 A -.A1, and A 1 v .....A1, re-

~J;eeti'vely. 



2 Quantification Theory 

2.1 QUANTIFIERS 

There are various kinds of logical inference that cannot be justified on the 
basis of the propositional calculus; for example: 

I. Any fliend of Martin is a friend of John. 
Peter is not John's friend. 
Hence, Peter is not Martin's friend. 

2. All human beings are ·rational. 
Some animals are human beings. 
Hence, some animals are rational. 

3. The successor of an even integer is odd. 
2 is an even integer. 
Hence, the successor of 2 is odd. 

The correctness of these inferences rests not only upon the meanings of the 
truth-functional connectives, but also upon the meaning of such expressions 
as 'any', 'all' and 'some', and other linguistic constructions. 

In order to make the structure of complex sentences more transparent, it 
is convenient to introduce special notation to represent frequently occuning 
expressions. If P(x) asserts that x has the property P, then (Vx)P(x) means 
that property P holds for all x or, in other words, that everything has the 
property P. On the other hand, (3x)P(x) means that some x has the property 
P - that is, that there is at least one object having the property P. In 
(Vx)P(x), '(Vx)' is called a universal quantifier; in (3x)P(x), '(3x)' is called an 
existential quantifier. The study of quantifiers and related concepts is the 
principal subject of this chapter. 

Examples 
1'. Inference 1 above can be represented symbolically: 

('v'x)(F(x, m) ==> F(x,j)) 
-.F(p,j) 

-.F(p,m) 
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Here, F(x,y) means that x is a friend of y, while m,j and p denote 
Martin, John, and Peter, respectively. 

2'. Inference 2 becomes: 

(Vx)(H(x) ~ R(x)) 
(3x)(A(x) 1\ H(x)) 

(3x)(A(x) 1\R(x)) 
Here, H, Rand A designate the properties of being human, rational, and 
an animal, respectively. 

3'. Inference 3 can be symbolized as follows: 

(Vx)(I(x) 1\ E(x) ~ D(s(x))) 

I(b) 1\E(b) 

D(s(b)) 
Here, 1, E and D designate respectively the properties of being an integer, 
even and odd; s(x) denotes the successor of x; and b denotes the integer 2. 

Notice that the validity of these inferences does not depend upon the 
particular meanings of F,m,j,p,H, R,A,l,E,D,s and b. 

Just as statement forms were used to indicate logical structure dependent 
upon the logical connectives, so also the form of inferences involving 
quantifiers, such as inferences l -3, can be represented abstractly, as in 
1'- 3'. For this purpose, we shall use commas, _parentheses, the symbols -, 
and ~ of the propositional calculus, the universal quantifier symbol V, and 
the following groups of symbols: 

Individual variables: x~, x2 , ..• , x,n .. . 
Individual constants: a1, a2, ... ,an , .. . 
Predicate letters: AJ; (n and k are any positive integers) 
Function letters: ff/ (n and k are any positive· integers) 

The positive integer n that is a superscript of a predicate letter A'£ or of a 
function letter ft' indicates the number of arguments, whereas the subscript 
k is just an indexing nmnber to distinguish different predicate or function 
letters with the same number of arguments.t 

In the preceding examples, x plays the role of an individual variable; 
m,j,p and b play the role of individual constants; F is a binary predicate 
letter (i.e., a predicate letter with two arguments); H, R,A,I, E and D are 
monadic predicate letters (i.e., predicate letters with one argument); and s is 
a function letter with one argument. 

The function letters applied to the variables and individual constants 
generate the terms: 

tFor example, in arithmetic both addition and multiplication take two argu­
ments. So, we would use one function letter, say fl, for addition, and a different 
function letter, say /f, for multiplication. 
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l. Variables and individual constants are terms. 
2. If f!c' is a function letter and t1, t2, ... , t, are terms, then ft' (t1, t2, ... , t11 ) is 

a term. 
3. An expression is a term only if it can be shown to be a term on the basis 

of conditions 1 and 2. 

Terms correspond to what in ordinary languages are nouns and noun 
phrases- for example, 'two', 'two plus three', and 'two plus x'. 

The predicate letters applied to terms yield the atomic formulas; that is, if 
AZ is a predicate letter and t1, t2, ... , t, are tenns, then AJ:.(tt, t2, ... , t11 ) is an 
atomic formula. 

The well-formed formulas (wfs) of quantification theory are defined as 
follows: 

1. Every atomic formula is a wf. 
2. If :!ll and~ are wfs andy is a variable, then(---.~), (_%l =*~),and ((Vy)~) 

are wfs. 
3. An expression is a wf only if it can be shown to be a wf on the basis of 

conditions 1 and 2. 

In ((Vy)_%l), '_%l' is called the scope of the quantifier '('v'y)'. Notice that !!4 need 
not contain the variable y. In that case, we understand ((Vy)!!J) to mean the 
same thing as~-

The expressions ( !!4 1\ ~), ( f!lJ V ~), and ( :!ll '¢:? ~ are defined as in system 
L (see page 36). [twas unnecessary for us to use the symbol 3 as a primitive 
symbol because we can define existential quantification as follows: 

((3x)~) stands for (•((Vx)(•~))) 

This definition is faithful to the meaning of the quantifiers: !!J(x) is true for 
some x if and only if it is not the case that !!J(x) is false for all x. t 

Parentheses 

The same conventions as made in Chapter 1 (page 20) about the omission of 
parentheses are made here, with the additional convention that quantifiers 
('v'y) and (3y) rank in strength between •, 1\, V and ~, {:}. 

Examples 
Parentheses are restored in the following steps. 

1. (Vxi)AHxt) ~ Ai(x2,x1) 
(('v'xt)A~(x1 )) ~ Ai(x2,x1) 
((('v'xt)A~ (xt)) =* Af(x2,xi)) 

twe could have taken 3 as primitive and then defined ( (\fx )~) as an ab­
breviation for (•((3x)(-.::J61))), since 86'(x) is true for allx if and only if it is not the 
case that ~(x) is false for some x . 
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2. (Vxi )A~ (xi) V Ai(x2, xl) 
(Vxi)(A}(xt) V Ai(x2,XI)) 
((\lxi)(Al(xi)) V Ai(x2,xt))) 

3. (Vxt)(3x2)Ai(xi,X2) 
(\lxi) ( (3x2)Ai(xi, x2)) 
( (Vxi )( (3x2)Ar(xi, x2))) 

Exercises 

2.1 Restore parentheses to the following. 
(a) (Vxi)A: (xi) 1\---, Al (x2) 
(b) (\lx2)AHx2) {::} AHx2) 
(c) (\lx2)(3xi)Ai(xt,X2) 
(d) (Vxi )(\lx3)(\lx4)A~ (xi) =*A~ (x2) 1\---, A~ (xi) 
(e) (3xi)(\Ix2)(3x3)A~ (xt) V (3x2)-,(\lx3)Ai(x3,x2) 
(f) (\lx2)--.A~(xt) =* AfCxi,XI,x2) V (\lxi)A~(xi) 
(g) --.(\lxi)Al(xi) ~ (::lx2)A~(x2) =* Ai(xi,X2) I\Al(x2) 
2.2 Eliminate parentheses from the following wfs as far as is possible. 
(a) (((Vxi)(AHxi) ~ Al (xi))) V ((3xi)Al(xi))) 
(b) ((-.((::Jx2)(Al(x2) V AHai)))) {:}Al(x2)) 
(c) (((Vxi)(--.(-.A~(a3)))) =* (A:(xi) ~A:(x2))) 

An occurrence of a variable x is said to be bound in a wf f!.8 if either it is 
the occurrence of x in a quantifier '(Vx)' in f!.8 or it lies within the scope of a 
quantifier '(\lx)' in [1}). Otherwise, the occurrence is said to be free in PJ. 

Examples 
t. Ar(xi, x2) 
2. Ai(xhx2) =* (Vxi)Al (xi) 
3. (Vxi)(Ai(x1,x2) =* (\lxi)A~(xi)) 
4. (3xi )Ar(xi, x2) 

In Example 1, the single occurrence of XI is free. In Example 2, the first 
occurrence of x1 is free, but the second and third occurrences are bound. In 
Example 3, all occurrences of XI are bound, and in Example 4 both oc­
currences of XI are bound. (Remember that (3x1 )Ai(x1 ,x2) is an abbrevia­
tion of -.(\lxi )-.A i(x~, x2).) In all four wfs, every occurrence of x2 is free. 
Notice that, as in Example 2, a variable may have both free and bound 
occurrences in the same wf. Also observe that an occurrence of a variable 
may be bound in some wf f!.8 but free in a subformula of f!.8. For example, the 
first occurrence of XI is free in the wf of Example 2 but bound in the larger 
wf of Example 3. 

A variable is said to be fi·ee (bound) in a wf PJ if it has a free (bound) 
occurrence in f!.8. Thus, a variable may be both free and bound in the same 
wf; for example, XI is free and bound in the wf of Example 2. 



54 I L_I ________ Q_ U_ A_NT_IF_I_C_A_T_I_O_N_T_H_EO_R_Y _____ ___ ] 

Exercises 

2.3 Pick out the free and bound occurrences of variables in the following 
wfs. 
(a) (Vx3)(((Vxt)Af(xt ,x2)) => Ay(x3, at)) 
(b) (Vx2)Ar(x3,x2) => (Vx3)Af(x3,x2) 
(c) ((Vx2)(3xt)Ai(xl, x2,/f(xi, x2))) V --,(\fxt)Aicx2,Jl (xi)) 
2.4 Indicate the free and bound occurrences of all variables in the wfs of 
Exercises 2.1 and 2.2. 
2.5 Indicate the free and bound variables in the wfs of Exercises 2.1-2.3. 

We shall often indicate that some of the variables x; , ... , x; are free 
I k 

variables in a wf f1iJ by writing f1iJ as fJiJ(x; , ... , x; ) . This does not mean that 
I k 

f1iJ contains these variables as free variables, nor does it mean that f1iJ does 
not contain other free variables. This notation is convenient because we can 
then agree to write as f1iJ(t1, ..• , tk) the result of substituting in f1iJ the terms 
t1, ... , tk for all free occurrences (if any) of x;

1 
, ••• , x;", respectively. 

If f1iJ is a wf and t is a term, then t is .said to be .Fee for x; in f1iJ if no free 
occurrence of x; in f1iJ lies within the scope of any quantifier (\fxj ), where Xj is 
a variable in t. This con~ept oft being free for xi in a wf 9.3'(x;) will have 
certain technical applications later on. It means that, if t is substituted for all 
free occurrences (if any) of x; in fJiJ(x;), no occurrence of a variable in t 

becomes a bound occurrence in fJiJ(t). 

Examples 
1. The term x2 is free for x1 inAf(xt), butx2 is not free for x1 in (Vx2)AHxt). 
2. The term f 1

2(xt, x3) is free for x1 in (Vx2)Ar(x1, x2) => A~Jxt) but is not free 
2 1 . for Xt in (3x3)(Vx2)A1 (x1, x2) => A1 (xi). 

The following facts are obvious. 

1. A term that contains no variables is free for any variable in any wf. 
2. A term tis free for any variable in f1iJ if none of the variables oft is bound 

in fJiJ. 
3. x; is free for x; in any wf. 
4. Any term is free for x; in~ if f1iJ contains no free occurrences of x;. 

Exercises 

2.6 Is the term j;_l(x1, x2) free for x1 in the following wfs? 
(a) Ai(x11 x2) ==> (\fx2)Al(xz) 
(b) ((Vx2)Ar(x2,at)) v (3x2)Ai(xt,x2) 
(c) (Vxt)Af(xl, x2) 
(d) (Vx2)Af(x1, x2) 
(e) (Vx2)At(x2) :9 Af(xt,x2) 
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2.7 Justify facts 1-4 above. 

When English sentences are translated into formulas, certain general 
guidelines will be useful: 

1. A sentence of the form 'All As are Bs' becomes ('v'x)(A(x) :::::> B(x) ). For 
example, Every mathematician loves music is translated as 
('v'x)(M(x) =? L(x)), where M(x) means x is a mathematician and L(x) 
means x l011es music. 

2. A sentence of the form 'Some As are Bs' becomes (3x)(A(x) 1\B(x)). For 
example, Some New Yorkers are friendly becomes (3x)(N(x) 1\F(x)), 
where N(x) means xis a Net-v Yorker and F(x) means xis friendly. 

3. A sentence of the form 'No As are Bs' becomes ('v'x)(A(x) :::::> -.B(x)).t For 
example, No philosopher understands politics becomes ('v'x)(P(x) 
:::::> -.U(x)), where P(x) means x is a philosopher and U(x) means x un­
derstands politics. 

Let us consider a more complicated example: Some people respect ev­
eryone. This can be translated as (3x)(P(x) 1\ ('v'y)(P(y) =? R(x,y))), where 
P(x) means xis a person and R(x,y) means x respects y. 

Notice that, in informal discussions, to make formulas easier to read we 
may use lower-case letters u, v, x,y,z instead of our official notation x; for 
individual variables, capital letters A, B, C, ... instead of our official notation 
A% for predicate Letters, lower-case letters J, g, h, ... instead of our official 
notation fk' for function letters, and lower-case letters a, b, c, ... instead of 
our official notation a; for individual constants. 

Exercises 

2.8 Translate the following sentences into wfs. 
(a) Anyone who is persistent can learn logic. 
(b) No politician is honest. 
(c) Not all birds can fly. 
(d) All birds cannot fly. 
(e) x is transcendental only if it is irrational. 
(f) Seniors date only juniors. 
(g) If anyone can solve the problem, Hilary can. 
(h) Nobody loves a loser. 
(i) NQbody in the statistics class is smarter than everyone in the logic class. 
G) John hates all people who do not hate themselves. 
(k) Everyone loves somebody and no one loves everybody, or somebody 

loves everybody and someone loves nobody. 
(1) You can fool some of the people all of the time, and you can fool all the 

people some of the time, but you can't fool all the people all the time. 

t As we shall see later, this is equivalent to -{3x)(A(x) 1\ B(x)). 



56 I ~~ _____________ Q_u_A_N_T_I_F_Ic_A_T_Io_N __ TH_E_o_R_Y _____________ ~] 

(m) Any sets that have the same members are equal. 
(n) Anyone who knows Julia loves her. 
( o) There is no set belonging to precisely those sets that do not belong to 

themselves. 
(p) There is no barber who shaves precisely those men who do not shave 

themselves. 
2.9 Translate the following into everyday English. Note that everyday 
English does not use variables. 
(a) (\fx)(M(x) 1\ (\fy)•W(x, _y) :=> U(x)), where M(x) means x is a man, 

W(x,y) means x is married toy, and U(x) means x is unhappy. 
(b) (\fx)(V(x) AP(x) =} A(x,b)), where V(x) means xis an even integer, P(x) 

means x is a prime integer, A(x,y) means x = y, and b denotes 2. 
(c) -{3y)(I(y) A (\fx)(I(x) :=> L(x,y))), where I(y) means y is an integer and 

L(x,y) means x~y. 
(d) In the following wfs, AHx) means x is a person and Af(x,y) means x 

hates y. 
(i) (::lx) (A: (x) 1\ (\fy)(A} ( y) :=> Ai{x,y))) 
(ii) (\fx)(A}(x) =} (\fy)(Al(y) =}Af(x,y))) 
(iii)(3x)(A{(x) A (\fy)(Al(y) :=> (Af(x,y){=}Af(y,y)))) 

(e) (\fx)(H(x) :=> (3y)(3z)(•A(y,z) 1\ (\fu)(P(u,x) {::} (A(u,y) VA (u,z))))), 
where H(x) means xis a person, A(u, v) means 'u = v', and P(u,x) means 
u is a parent ofx. 

2.2 FIRST-ORDER LANGUAGES AND THEIR INTERPRETATIONS. 
SATISFIABILITY AND TRUTH. MODELS 

Well-formed formulas have meaning only when an interpretation is given 
for the symbols. We usually are interested in interpreting wfs whose symbols 
come from a specific language. For that reason, we shall define the notion of 
a first-order language. t 

tThe adjective 'first-order' is used to distinguish the languages we shall study 
here from those in which there are predicates having other predicates or functions as 
arguments or in which predicate quantifiers or function quantifiers are permitted. or 
both. Most mathematical theories can be formalized within first-order languages, 
although there may be a loss of some of the intuitive content of those theories. 
Second-order languages are discussed in the appendix on second-order logic. Ex­
amples of higher-order languages are studied also in Godel (1931), Tarski (1933), 
Church (1940). Hasenjaeger and Scholz (1961) and Van Bentham and Doets (1983). 
Differences between first-order and higher-order theories are examined in Corcoran 
(1980). 
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DEFINITION 

A first-order language .9? contains the following symbols. 

(a) The propositional connectives ..., and =>, and the universal quantifier 
symbol V. 

(b) Punctuation marks: the left parenthesis(, the right parenthesis), and the 
comma.t 

(c) Denumerably many individual variables x1, x2 , . .•. 

(d) A finite or denUinerable, possibly empty, set of function letters. 
(e) A finite or denumerable, possibly empty, set of individual constants. 
(f) A non-empty set of predicate letters. 
By a term of .9? we mean a term whose symbols are symbols of .9?. 
By a wf of .9? we mean a wf whose symbols are symbols of .9?. 

Thus, in a language !£; some or all of the function letters and individual 
constants may be absent, and some (but not all) of the predicate letters may 
be absent.! The individual constants, function letters and predicate letters of 
a language .9? are called the non-logical constants of .9?. Languages are 
designed in accordance with the subject matter we wish to study. A language 
for arithmetic might contain function letters for addition and multiplication 
and a predicate letter for equality, whereas a language for geometry is likely 
to have predicate letters for equality and the notions of point and line but no 
function letters at all. 

DEFINITION 

Let .9? be a first-order language. An interpretation M of .9? consists of the 
following ingredients. 

(a) A non-empty set D, called the domain of the interpretation. 
(b) For each predicate letter A'j of .2?, an assignment of ann-place relation 

(A'j)M in D. 
(c) Por each function letter fj' of 2?. an assignment of ann-place operation 

(fj1)M in D (that is, a function from IY1 into D). 
(d) For each individual constant a; of 2?, an assignment of some fixed 

element (a;)M of D. 

Given such an interpretation, variables are thought of as ranging over the 
set D, and --.,::::::? and quantifiers are given their usual meaning. Remember 
that an n-place relation in D can be thought of as a subset of D11

• the set of all 

tThe punctuation marks are not strictly necessary; they can be avoided by 
redefining the notions of term and wf. However, their use makes it easier to read and 
comprehend formulas. 

lJf there were no predicate letters, there would be no wfs. 
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n-tuples of elements of D. For example, if Dis the set of human beings, then 
the relation 'father of' can be identified with the set of all ordered pairs (x,y) 
such that x is the father of y. 

For a given interpretation of a language !l?, a wf of !l? without free 
variables (called a closed Hi or a sentence) represents a propostion that is 
true or false, whereas a wf with free variables may be satisfied (i.e., true) for 
some values in the domain and not satisfied (i.e., false) for the others. 

Examples 
Consider the following wfs: 

1. Af(xi, x2) 
2. ('ixz)Ay(xt,X2) 
3. (3xl)(\fx2)Af(xt,X2) 

Let us take as domain the set of all positive integers and interpret Af(y, z) as 
y ~z. Then wf 1 represents the expression 'x1 ~x2', which is satisfied by all 
the ordered pairs (a, b) of positive integers such that a~ b. Wf 2 represents 
the expression 'For all positive integers x2 , x1 ~x2 ,'t which is satisfied only 
by the integer 1. Wf 3 is a true sentence asserting that there is a smallest 
positive integer. If we were to take as domain the set of all integers, then wf 3 
would be false. 

Exercises 

2.10 For the following wfs and for the given interpretations, indicate for 
what values the wfs are satisfied (if they contain free variables) or whether 
they are true or false (if they are closed wfs) . 
(i) Af(.A2(xl,x2),at) 
(ii) Ay(x1,x2) ::::} Ay(x2,xt) 
(iii) ('ixt)(Vx2)(\fx3)(Ay(xl,x2) I\Af(x2,x3)::::} Ay(xi ,x3)) 
(a) The domain is the set of positive integers, Ay(y,z) is y~z, f 1

2(y,z) is 
y · z, and a 1 is 2. 

(b) The domain is the set of integers, Ay(y,z) is y = z,f?(y,z) is y + z, and 
at is 0. 

(c) The domain is the set of all sets of integers, Ay(y,z) if y C z, f 1
2(y,z) is 

y n z, and a1 is the empty set 0. 
2.11 Describe in everyday English the assertions determined by the fol­
lowing wfs and interpretations. 
(a) (Vx)(Vy)(Ay(x,y)::::} (3z)(AHz) 1\Ay(x,z) 1\Ay(z,y))), where the domain 

Dis the set of real numbers, Ay(x,y) means x < y, and A~ (z) means z is a 
rational number. 

lin ordinary English, one would say 'xt is less than or equal to all positive 
integers'. 
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(b) ('v'x)(AHx) * (3y)(A1(y) 1\Af(y,x))), where Dis the set of all days and 
people, Af(x) means x is a day, A1(y) means y is a sucker, and Af(y, x) 
means y is born on day x. 

(c) ('v'x)('v'y)(A~(x) 1\A~ (y) =* A1(f{(x,y))), where Dis the set of integers, 
A: (x) means x is odd, A1(x) means x is even, and f[(x,y) denotes x + y. 

(d) For the following wfs, Dis the set of all people and Ay(u, v) means u 
loves v. 

(i) (3x)('v'y)(Af(x,y) 
(ii) (Vy)(3x)Ar(x, y) 
(iii) (3x)('v'y)(('v'z)(Af(y,z) :9 Ar(x,y)) 
(iv) (3x)('v'y)oAi(x,y) 

The concepts of satisfiability and truth are intuitively clear, but, following 
Tarski (1936), we also can provide a rigorous definition. Such a definition is 
necessary for carrying out precise proofs of many metamathematical results. 

Satisfiability will be the fundamental notion, on the basis of which the 
notion of truth will be defined. Moreover, instead of talking about the 
n-tuples of objects that satisfy a wf that has n free variables, it is much more 
convenient from a technical standpoint to deal uniformly with denumerable 
sequences. What we have in mind is that a denumerable sequence 
s = (s1, s2 , s3 , ••• ) is to be thought of as satisfying a wf flJJ that has 
Xj

1
, xh ... , Xj

11 
as free variables (where j1 < j2 < ... < j 11 ) if the n-tuple 

(sjp sh, ... , sjJ satisfies flJJ in the usual sense. For example, a denumerable 
sequence (s1,s2,s3 , ... ) of objects in the domain of an interpretation M will 
turn out to satisfy the wf Af(x2 , x5) if and only if the ordered pair, (s2, s5 ) is in 
the relation (Af)M assigned to the predicate letter Ai by the interpretation M. 

Let M be an interpretation of a language .P and let D be the domain of 
M. Let L be the set of all denumerable sequences of elements of D. For a wf 
r!IJ of.!£', we shall define what it means for a sequences= (s1, s2, ... ) in L to 
satisfy !?8 in M. As a preliminary step, for a givens in L we shall define a 
functions* that assigns to each term t of .P an element s*(t) in D. 

1. If tis a variable xh let s*(t) be sj. 
2. If tis an individual constant ah then s*(t) is the interpretation (aj)M of 

this constant. 
3. If ff/ is a function letter, (/k')M is the corresponding operation in D, and 

ft , ... , tn are terms, then 

s* (fi/ {!I, ... , ln)) = (fl')M (s*(ti ), ... , s*(tn)) 

Intuitively, s* (t) is the element of D obtained by substituting, for each j, a 
name of Sj for all occurrences of x1 in t and then performing the operations 
of the interpretation corresponding to the function letters oft. For instance, 
if tis Jf(x3,f1

2(x1, ad) and if the interpretation has the set of integers as its 
domain, ff and / 1

2 are interpreted as ordinary multiplication and addition, 
respectively, and a1 is interpreted as 2, then, for any sequences= (s1, s2, ... ) 

59 



60 I .._I ________ Q_U_A_NT_IF_I_C_A_T_I_O_N_T_H_E_O_R_Y ________ ] 

of integers, s*(t) is the integer s3 · (s1 + 2). This is really nothing more than 
the ordinary way of reading mathematical expressions. 

Now we proceed to the definition of satisfaction, which will be an in­
ductive definition. 

l. If !YJ is an atomic wf Ak(ti, ... , t,z) and (Ak)M is the corresponding 
n-place relation of the interpretation, then a sequence s = (s1 , s2 , •. . ) 

satisfies pg if and only if (Ak)M(s*(tt), ... ,s*(tn))- that is. if then-tuple 
(s*(tt), ... ,s*(t,)) is in the relation (Ak)M.t 

2. s satisfies ---, ~ if and only if s does not satisfy &J. 
3. s satisfies f!lJ :::::> C€ if and only if s does not satisfy f!lJ or s satisfies C€. 
4. s satisfies (Vxi )!J8 if and only if every sequence that differs from s in at 

most the ith component satisfies !J8.t 

Intuitively, a sequences = (s1, s2, ... ) satisfies a wf fJ8 if and only if, when, 
for each i, we replace all free occurrences of xi (if any) in !YJ by a symbol 
representing sil the resulting proposition is true under the given interpreta­
tion. 

Now we can define the notions of truth and falsity of wfs for a given 
interpretation. 

DEFINITIONS 

1. A wf f!lJ is true for the interpretation M (written FM jg) if and only if every 
sequence in L satisfies ~. 

2. !YJ is said to be false for 1vl if and only if no sequence in L satisfies !YJ. 
3. An interpretation M is said to be a model for a set r of wfs if and only if 

every wf in r is true for M. 

The plausibility of our definition of truth will be strengthened by the fact 
that we can derive all of the following expected properties 1-XI of the 
notions of truth, falsity and satisfaction. Proofs that are not explicitly given 
are left to the reader (or may be found in the answer to Exercise 2.12). Most 

tFor example, if the domain of the interpretation is the set of real numbers. the 
interpretation of Ai is the relation ::::; , and the interpretation of fl is the function e"\ 
then a sequences= (s1, s2, ... ) of rea] numbers satisfies Ai(fl (x2), xs) if and only if 
&'2 ::::;s5 . If the domain is the set of integers, the interpretation of Af(x,y, u, v) is 
x·v=u·y, and the interpretation ofa1 is 3, then a sequence s=(s1,s2, ... ) of 
integers satisfies Ai(x3,al,XI,X3) if and only if (s3)2 = 3s1. 

tin other words, a sequences= (s1,s2, ... ,s;, .. . ) satisfies (Vx;)f!4 if and only if, 
for every element c of the domain, the sequence (s1,s2, ... ,c, . .. ) satisfies~- Here, 
(s1,s2, ... ,c, ... ) denotes the sequence obtained from (s1,s2, ... ,s;, . .. ) by replacing 
the ith components; by c. Note also that, if s satisfies (Vx; )!!4, then, as a special case, s 
satisfies !J. 
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of the resuhs are also obvious if one wishes to use only the ordinary intuitive 
understanding of the notions of truth, falsity and satisfaction. 

(I) (a) flJJ is false for an interpretation M if and only if -,gg is true forM. 
(b) !!4 is true for M if and only if -,f!J is false for M. 

(II) It is not the case that both FM !!4 and FM -,f?4; that is, no wf can be 
both true and false for M. 

(III) If FM flJJ and FM ~ =? ct', then FM f!J. 
(IV) !!4 ==> ct' is false for M if and only if FM !!4 and FM ·ct'. 
(V)t Consider an interpretation M with dmnain D. 

(a) A sequence s satisfies fJ8 1\ ct' if and only if s satisfies fJ8 and s 
satisfies ((5. 

(b) s satisfies !?4 V ct' if and only if s satisfies !?4 or s satifies ((5. 

(c) s satisfies &J <=:? ((5 if and only if s satisfies both ~ and ct' or s 
satisfies neither !!4 nor ct'. 

(d) s satisfies (3xi)f!J if and only if there is a sequences' that differs 
from s in at most the ith component such that s' satisfies~- (In 
other words s = ( s1, s2, ... , si, ... ) satisfies (3x; ).?8 if and only if 
there is an element c in the domain D such that the sequence 
(s1, s2, ... , c, ... ) satisfies f!.8.) 

(VI) FM !!4 if and only if FM (\fxi).?8. We can extend this result in the 
following way. By the closure! of flJJ we mean the closed wf obtained 
from !!4 by prefixing in universal quantifiers those variables, in order 
of descending subscripts, that are free in ~- If~ has no free vari­
ables, the closure of fJ8 is defined to be .?8 itself. For example, if !!4 is 
Ar(x2, xs) :::::> •(3x2)Af(xl, x2, x3), its closure is (\fxs)(\fx3)(\fx2) 
(\fx1 )!!4. It follows from (VI) that a wf .?8 is true if and only if its 
closure is true. 

(VII) Every instance of a tautology is true for any interpretation. (An 
instance of a statement form is a wf obtained from the statement 
form by substituting wfs for all statement letters, with all occurrences 
of the same statement letter being replaced by the same wf. Thus, an 
instance of A1 ==> •A2 V A1 is Al(x2) ==> (--.(\fxi)At(xt)) V A:(x2).) To 
prove (VIn, show that all instances of the axioms of the system L are 
true and then use (III) and Proposition 1.14. 

(VIII) If the free variables (if any) of a wf !!4 occur in the list xi1 , ••• , xi" and 
if the sequences s and s' have the same components in the 
i 1 th, ... , ikth places, then s satisfies fJ8 if and only if s' satisfies fJ8 
[Hint: Use induction on the number of connectives and quantifiers in 
!$. First prove this lemma: If the variables in a term t occur in the list 
x;1 , ••• , x;", and if s and s' have the same components in the 

fRemember that PIJ 1\ 1'6', PlJ V 1'6', PIJ {:::} 1'6' and (3x;)PI1 are abbreviations for 
--.(31J =* --.1'6'), --.f!J =? 1'6', (PIJ =? 1'6') 1\ (1'6' =* PIJ) and --.(\:lx;)--.BIJ, respectively. 

t A better term for closure would be universal closure. 
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i 1th, ... , ikth places, then s*(t) = (s')*(t). In particular, if t contains 
no variables at all, s*(t) = (s')*(t) for any sequences sands'.] 

Although, by (VIII), a particular wf &J with k free variables is essentially 
satisfied or not only by k-tuples, rather than by denumerable sequences, it is 
more convenient for a general treatment of satisfaction to deal with infinite 
rather than finite sequences. If we were to define satisfaction using finite 
sequences, conditions 3 and 4 of the definition of satisfaction would become 
much more complicated. 

Let x;1 , ••• , xh be k distinct variables in order of increasing subscripts. Let 
~(xh, ... , xh) be a wf that has x;1 , ••• , xh as its only free variables. The set of 
k-tuples (b1, · · ·, bk) of elements of the domain D such that any sequence 
with bt, · · ·, bk in its i 1 th, ... , ikth places, respectively, satisfies :?4(x;1 , ••• ,xtk) 
is called the relation (or propertyt) of the interpretation defined by !11. Ex­
tending our terminology, we shall say that every k-tuple (b1, ••. , bk) in this 
relation satisfies ~(xit, ... , x1*) in the interpretation M; this will be written 
FM ~[b1 , ••. , bk]. This extended notion of satisfaction corresponds to the 
original intuitive notion. 

Examples 
1. If the domain D of M is the set of human beings, A;(x,y) is interpreted 

as x is a brother of y, and A~(x,y) is interpreted as x is a parent of y, 
then the binary relation on D corresponding to the wf ~(x1 , x2) : 

(3x3)(Af(xi,x3) /\A~(x3,x2)) is the relation of unclehood. FM ~[b,c] 
when and only when b is an uncle of c. 

2. If the domain is the set of positive integers, Af is interpreted as=, f? is 
interpreted as multiplication, and a 1 is interpreted a§ 1, then the wf 
8:3'(x!): 

-.Ai(xl, ai) 1\ (\fx2)( (::lx3)Ai(x1 ,Jf(x2,x3)) '* Af(x2,xi) V Af(x2, at)) 

determines the property of being a prime number. Thus FM J8[k] if and 
only if k is a prime number. 

(IX) If f!lJ is a closed wf of a language£, then, for any interpretation M, 
either FM f!lJ or FM ,pg - that is, either f1!J is true for M or ~ is false 
for M. [Hint: Use (VIII).] Of course, f!lJ may be true for some in­
terpretations and false for others. (As an example, consider A: (at). If 
M is an interpretation whose domain is the set of positive integers, A~ 
is interpreted as the property of being a prime, and the interpretation 
of a, is 2, then At{a1) is true. If we change the interpretation by 
interpreting a 1 as 4, then A: (a1) becomes false.) 

If f!lJ is not closed- that is, if f!lJ contains free variables· - f!lJ may be neither 
true nor false for some interpretation. For example, if f!lJ is A;(x1, x2 ) and we 
consider an interpretation in which the domain is the set of integers and 

t A property is defined when k = 1 . 

.... 
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Artv, z) is interpreted as y < z, then fJ8 is satisfied by only those sequences 
s = (s1, s2 , .•. ) of integers in which s1 < s2. Hence, 80 is neither true nor false 
for this interpretation. On the other hand, there are wfs that are not closed 
but that nevertheless are true or false for every interpretation. A simple 
example is the wf Al(x1) V -.Af{x1), which is true for every interpretation. 

(X) Assume tis free for x; in f18(x;). Then (Vx,-)86'(x;) * 8U(t) is true for all 
interpretations. 

The proof of (X) is based upon the following lemmas. 

LEMMA 1 

If t and u are terms, s is a sequence in I:, t' results from t by replacing all 
occurrences of x; by u, and s results from s by replacing the ith component 
of s by s*(u), then s*(t') = (s')*(t). [Hint: Use induction on the length of t.t] 

LEMMA2 

Lett be free for x; in 8U(x;). Then: 

(a) A sequences= (s1,s2, ... ) satisfies f18(t) if·and only if the sequences', 
obtained from s by substituting s*(t) for s; in the ith place, satisfies 
8U(x;). [Hint: Use induction on the number of occurrences of con­
nectives and quantifiers in 8U(x;), applying Lemma 1.] 

(b) If (Vx;).%'(x;) is satisfied by the sequences, then f18(t) also is satisfied by s. 

(XI) If &1 does not contain x; free, then (Vx;)(80 ==> <'6') ==> (f18 =? (Vx;)<'6') is 
true for all interpretations. 

Proof 

Assume (XI) is not correct. Then (V'x;)(.%' :::::> <'6') =? (80 * (Vx;)<'6') is not true 
for some interpretation. By condition 3 of the definition of satisfication, 
there is a sequence s such that s satisfies (Vx;) ( 86' ::::> <'6') and s does not satisfy 
fJ8 ::::> (\fxi)<'6'. From the latter and condition 3, s satisfies fJ8 and s does not 
satisfy (Vx; )<'6'. Hence, by condition 4, there is a sequence s', differing from s 
in at most the ith place, such that s' does not satisfy <'6'. Since xi is free in 
neither (Vx;) ( ~ :::::> <'6') nor 86', and since s satisfies both of these wfs, it follows 
by (VIII) that s' also satisfies both (\fx1)(f18 * <'6') and f18. Since s' satisfies 

tThe length of an expression is the number of occurrences of symbols in the 
expression. 
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(\fxi)(P8 => Y5), it follows by condition 4 that s' satisfies P8 ::::} Y5. Since s' 
satisfies P8 => C(! and P4, condition 3 implies that s' satisfies rt', which con­
tradicts the fact that s' does not satisfy Y5. Hence, (XI) is established. 

Exercises 

2.12 Verify (I) {X). 
2.13 Prove that a closed wf P8 is true forM if and only if fJ!I is satisfied by 
some sequences in I:. (Remember that I: is the set of denumerable sequences 
of elements in the domain of M.) 
2.14 Find the properties or relations determined by the following wfs and 
interpretations. 
(a) [(3u)Af(f1

2(x, u),y)] 1\ [(3v)At(ft2(x, v),z)], where the domain Dis the set 
of integers, Af is =, and fl is multiplication. 

(b) Here, D is the set of non-negative integers, Af is=, a1 denotes 0, !;_2 is 
addition, and fi is multiplication. 
(i) [(3z)( •At(z, a1) A Ay(ft2(x, z),y))] 
(ii) (3y)Ay(x,ff(y,y)) 

(c) (3x3)Af(ft2(x17 x3),x2), where Dis the set of positive integers. Ay is =, 
and f? is multiplication, 

(d) A:Cxl) A (\fx2)-.At(x1,x2), where Dis the set of all living people, A~(x) 
means x is a man and Af(x,y) means x is married toy. 

(e) (i) (3xt)(3x2)(At(xt, X3) AAt(x2, X4) 1\ A~(Xt,X2)) 
(ii) (3x3)(Ai(xl, x3) 1\ Ay(x3,x2)) 
where D is the set of all people, At(x,y) means x is a parent of y, and 
A~(x,y) means x andy are siblings. 

(f) (\fx3)((3x4)(AiU12(x4,x3),xt) A (3x4)(AyU[(x4,X3),x2))::::} Ai(x3,at)), 
where D is the set of positive integers, Af is =,f1

2 is multiplication, and 
a1 denotes 1. 

(g) -.Af(x2, xt) A (3y)(Af(y, xt) 1\ A~(x2,y)), 
where D is the set of all people, Ai(u, v) means u is a parent of v, and 
A~(u, v) means u is a wife of v. 

2.15 For each of the following sentences and interpretations, write a 
translation into ordinary English and determine its truth or falsity. 
(a) The domain Dis the set of non-negative integers, Ay is=, fl is addi­

tion, fi is multiplication, a 1 denotes 0 and a2 denotes l. 
(i) (\fx)(3y)(Af(x,J?(y, y)) V Af(x,f1

2(f1
2(y,y), a2))) 

(ii) (\fx)(\fy)(Ai(ff(x,y), a!) ::::} Af(x, a!) V At(y, at)) 
(iii) (3y)Af(ft2(y,y),a2) 

(b) Here, Dis the set of integers, Af is =, and f? is addition. 
(i) (\fx1) (\fx2)At(f1

2(xt, X2),/;_2(x2, Xt)) 
(ii) (\fxt)(\fx2) (\fx3)Ay(f1

2 (x1 ,J;_2(x2, x3)),f1
2(ft2(xt, x2), X3)) 

(iii) (\fxt)(\fx2)(3x3)At(f1
2(Xt, X3), X2) 
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(c) The wfs are the same as in part (b). but the domain is the set of positive 
integers, Af is =, and fi2 (x,y) is xY. 

(d) The domain is the set of rational numbers, Ai is =, A~ is <,fl is 
multiplication, fl(x) is x+ 1, and a1 denotes 0. 
(i) (3x)Af(h2 (x, x), fi1 (f/ (aJ ))) 
(ii) (\fx)(Vy)(A~(x,y) =* (3z)(A~(x,z) AAHz,y))) 
(iii) (Vx)(•AICx,at) ~ (3y)AfUf(x,y),J/(at))) 

(e) The domain is the set of non-negative integers, Ar(u, v) means u~v, and 
A~(u, v, w) means u + v = w. 
(i) (Vx)(Vy)(Vz)(Af(x,y,z) * Ai(y,x,z)) 
(ii) (\fx)(\fy)(Af(x,x,y) ~ Ar(x,y)) 
(iii) (Vx)(Vy)(Af(x,y) =* Af(x,x,y)) 
(iv) (3x)(Vy)Af(x,y,y) 
(v) (3y) (Vx)Ai(x,y) 
(vi) (Vx)(\fy)(Ai(x,y) {::} (3z)Af(x,z,y)) 

(f) The domain is the set of natural numbers, AICu, v) means u = v, 
f 1

2 (u, v) = u + v, and /f(u, v) = u · v 
(Vx) (3y) (3z)Ai(x,ff Uf(y, y) ,/f (z, z))) 

DEFINITIONS 

A wf &J is said to be logically valid if and only if &J is true for every 
interpretatiqn. t 

88 is said to be satisfiable if and only if there is an interpretation for which 
88 is satisfied by at least one sequence. 

It is obvious that @J is logically valid if and only if -.!!4 is not satisfiable, 
and &J is satisfiable if and only if -,@] is not logically valid. 

If 88 is a closed wf, then we know that f!lJ is either true or false for any 
given interpretation; that is, &J is satisfied by all sequences or by none. 
Therefore, if f!J is closed, then @J is satisfiable if and only if 88 is true for some 
interpretation. 

A set r of wfs is said to be satisfiable if and only if there is an inter­
pretation in which there is a sequence that satisfies every wf of r. 

It is impossible for both a wf &J and its negation ·~ to be logically valid. 
For if @J is true for an interpretation, then ,f!JJ is false for that interpretation. 

We say that @] is contradictory if and only if @J is false for every inter­
pretation, or, equivalently, if and only if ·88 is logically valid. 

88 is said to logically imply~ if and only if, in every interpretation, every 
sequence that satisfies 88 also satisfies ~. More generally, ~ is said to be a 

tThe mathematician and philosopher G. W. Leibniz (1646-1716) gave a similar 
definition: ~ is logically valid if and only if $ is true in all 'possible worlds'. 
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logical consequence of a set r of wfs if and only if, in every interpretation, 
every sequence that satisfies every wf in r also satisfies CC. 

f!)J and CC are said to be logically equivalent if and only if they logically 
imply each other. 

The following assertions are easy consequences of these definitions. 

l. f!J logically implies CC if and only if f!JJ :::::} CC is logically valid. 
2. f!J and CC are logically equivalent if and only if f!JJ {::} CC is logically valid. 
3. If f!)J logically implies CC and f!JJ is true in a given interpretation, then so is Cfi. 
4. IfCC is a logical consequence of a set r ofwfs and all wfs in rare true in a 

given interpretation, then so is CC. 

Exercise 2.16 

Prove assertions 1-4. 

Examples 
1. Every instance of a tautology is logically valid (VII). 
2. If tis free for x in f!JJ(x), then (\fx)f!JJ(x) :::::} f!JJ(t) is logically valid (X). 
3. If f!JJ does not contain x free, then (\fx) ( fJ8 :::::> CC) :::::} ( f!JJ ====> (\ix )<:C) is logi~ 

cally valid (XI). 
4. f!)J is logically valid if and only if (\fy1) ••• (\fy11 )f!JJ is logically valid (VI). 
5. The wf (\fx2)(3x1)AI{x17 x2) ====> (3xt)(\fx2)Af(x1,x2) is not logically valid. 

As a counterexample, let the domain D be the set of integers and let 
Af(y, z) mean y < z. Then (\fx2)(3xi)AI{xl, x2) is true but (3x!)(Vx2) 
Af(xl, x2) is false. 

Exercises 

2.17 Show that the following wfs are not logically valid. 
(a) [(\fx1)Al(xi) :::::> (\fx!)Ai{xl)]:::::} [(\fxi)(A}(x1) :::::}Ai{xi))] 
(b) [(\fxi)(AHxi) VA~(xt))] :::::> [((\fxt)A~(xt)) V (\fx1)A1{xi)] 
2.18 Show that the following wfs are logically valid. t 
(a) f!JJ(t) :::::> (3x1)f!JJ(x;) if t is free for x; in f!JJ(xi) 
(b) (\ix; )f!J :::::> (3x; )f!JJ 
(c) (\ix;) (\fxj )f!JJ :::::} (\fxj) (\ix; )f!JJ 
(d) (\ix;)f!JJ {::} -.(3x;)•f!JJ 
(e) (\ix;)(f!JJ ====><:C) :::::> ((\ix;)f!JJ ====> (\ix;)CC) 
(f) ( (\ix; )f!JJ) A (\ix; )CC {::} (\fx;) ( f!JJ A CC) 
(g) ( (\fx; )f!JJ) V (\ix; )CC =? (\ix;) ( f!JJ V ~) 
(h) (3x1)(3xj)f!JJ {::} (3xj)(3x;)f!JJ 

tAt this point, one can use intuitive arguments or one can use the rigorous 
definitions of satisfaction and truth, as in the argument above for (XI). Later on, we 
shall discover another method for showing logical validity. 
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(i) (3xi)(\fxj)88 => (\fxj)(3xi)88 
2.19 (a) If PJJ is a closed wf} show that 881ogically implies ~if and only if~ 

is true for every interpretation for which PJJ is true. 
(b) Although, by (VI), (\fx1)AHxJ) is true whenever Al(xi) is true, 

find an interpretation for which A} (xi) => (\fxt)A}(xi) is not 
true. (Hence, the hypothesis that PJJ is a closed wf is essential 
in (a).) 

2.20 Prove that, if the free variables of PJJ are Yl, . . . , y11 , then PJJ is satisfiable 
if and only if (3yi) ... (3y")PJJ is satisfiable. 
2.21 Produce counterexamples to show that the following wfs are not 
logically valid (that is, in each case, find an interpretation for which the wf is 
not true). 
(a) [(\fx)(\fy)(\fz)(Af(x,y) 1\AI(y,z) => Ai(x,z)) A (\fx)-.Ai(x,x)] 

;:::} (3x)(\fy)-.Ai(x,y) 

(b) (\fx)(3y)A1{x,y) => (3y)Ai(y,y) 

(c) (3x)(3y)Ai{x,y) => (3y)Ar(y,y) 

(d) [(3x)AHx) ~ (3x)A1{x)] => (\fx)(A~(x) ~ A1(x)) 

(e) (3x)(Al (x) => Ai(x)) => ((3x)A~ (x) ;:::} (3x)A1(x)) 

(f) [(\fx)(\fy)(Af(x,y) => Af(y,x)) 1\ (\fx)(\fy)(\fz)(AI(x,y) 1\Ai(y,z) 

::::> AI(x,z))] => (\fx)Af(x,x) 

(g)D (3x)(\fy)(At(x,y) 1\ -.Af(y,x) =? [AI{x,x) ~ A1(y,y)]) 

(h) (\fx)(\fy)(\fz)(Af(x,x) 1\ (Ai(x,z);:::} Af(x,y) V Af(y,z))) 

;:::} (3y)(\fz)Af(y,z) 

(i) (3x)(\fy)(3z)((Ar(y,z);:::} Af(x,z)) ==;> (Af(x,x) => At(y,x))) 
2.22 By introducing appropriate notation, write the sentences of each of 
the following arguments as wfs and determine whether the argument is 
correct, that is, determine whether the conclusion is logically implied by the 
conjunction of the premisses 
(a) All scientists are neurotic. No vegetarians are neurotic. Therefore, no 

vegetarians are scientists. 
(b) All men are animals. Some animals are carnivorous. Therefore, some 

men are carmvorous. 
(c) Some geniuses are celibate. Some students are not celibate. Therefore, 

some students are not geniuses. 
(d) Any barber in Jonesville shaves exactly those men in Jonesville who do 

not shave themselves. Hence, there is no barber in Jonesville. 
(e) For any numbers x,y,z, if x > y andy> z, then x > z. x >xis false for 

all numbers x. Therefore, for any numbers x and y, if x > y, then it is 
not the case that y > x. 
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(f) No student in the statistics class is smarter than every student in the 
logic class. Hence, some student in the logic class is smarter than every 
student in the statistics class. 

(g) Everyone who is sane can understand mathematics. None of Hegel's 
sons can understand mathematics. No madmen are fit to vote. Hence 

' none of Hegel's sons is fit to vote. 
(h) For every set x, there is a set y such that the cardinality of y is greater 

than the cardinality of x. If x is included in y, the cardinality of xis not 
greater than the cardinality of y. Every set is included in V. Hence, Vis 
not a set. 

(i) For all positive integers x,x~x. For all positive integers x,y,z, if x~y 
and y~z, then x~z. For all positive integers x andy, x~y or y~x. 
Therefore, there is a positive integer y such that, for all positive integers 
x,y~x. 

U) For any integers x,y,z, if x > y andy> z, then x > z. x >xis false for 
all integers x. Therefore, for any integers x andy, if x > y, then it is not 
the case that y > x. 

2.23 Determine whether the following sets of \vfs are compatible - that is, 
whether their conjunction is satisfiable. 
(a) (3x)(3y)A1(x,y) 

(Vx)(Vy)(3z)(AICx, z) A AT(z,y)) 
(b) (Vx)(3y)Af(y,x) 

(Vx)(Vy)(AICx,y) ::::} --.AICy,x)) 
(Vx)(Vy)(Vz)(Ai(x,y) 1\Ai(y,z) ::::} Ai(x,z)) 

(c) All unicorns are animals. 
No unicorns are animals. 

2.24 Determine whether the following wfs are logically valid. 
(a) --.(3y)(Vx)(Ar(x,y) {::} -.AHx,x)) 
(b) [(3x)Al (x) =? (3x)Ai(x)] ::::} (3x)(Al (x) => Ai(x)) 
(c) (3x)(AHx) => (Vy)A}(y)) 
(d) (Vx)(AHx) V Ai{x))::::} (((Vx)At(x)) V (3x)Ai(x)) 
(e) (3x)(3y)(AI(x,y)::::} (Vz)Af(z,y)) 
(f) (3x)(3y)(A: (x) => Ai(y)) => (3x)(A~ (x) ::::} Ai(x)) 
(g) (Vx)(AHx) => A1(x)) =? --.(Vx)(A~ (x) ::::} -.Ai{x)) 
(h) (3x)Af(x,x)::::} (3x)(3y)Ar(x,y) 

2.25 Exhibit a logically valid wf that is not an instance of a tautology. 
However, show that any logically valid open wf (that is, a wf without 
quantifiers) must be an instance of a tautology. 

2.26 (a) Find a satisfiable closed wf that is not true in any interpretation 
whose domain has only one member. 

(b) Find a satisfiable closed wf that is not true in any interpretation 
whose domain has fewer than three members. 
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,,2.3 FIRST-ORDER THEORIES 

ln the case of the propositional calculus, the method of truth tables provides 
t·;n effective test as to whether any given statement form is a tautology . 
. ,However, there does not seem to be any effective process for determining 
whether a given wf is logically valid, since, in general, one has to check the 
truth of a wf for interpretations with arbitrarily large finite or infinite do­
mains. In fact. we shall see later that, according to a plausible definition of 
'effective', it may actually be proved that there is no effective way to test for 
logical validity. The axiomatic method, which was a luxury in the study of 
the propositiona1 calculus, thus appears to be a necessity in the study of wfs 
involving quantifiers, t and we therefore turn now to the consideration of 
first-order theories. 

Let 2 be a first -order language. A first-order theory in the language 2 will 
be a formal theory K whose symbols and wfs are the symbols and wfs of 2 
and whose axioms and rules of inference are specified in the following way.+ 

The axioms of K are divided into two classes: the logical axioms and the 
proper (or non-logical) axioms. 

LOGICAL AXIOMS 

If £18, t:t' and !2 are wfs of 2, then the following are logical axioms of K: 

(A 1) flJJ => ( t:t' => flJJ) 
( A2) ( £18 ==? ( t:t' ==> g;)) ==? ( ( [l}J ==> rt') ::::} ( [l}J ==> g;)) 
(A3) ( · <'t' => •flJJ) * ( ( ·<'t' ==> 88) ::::} ct') 
(A4) ('v'x;)flJJ(x;) ::::} flJJ(t) if flJJ(x;) is a wf of 2 and tis a term of 2 that is 

free for xi in flJJ(x;). Note here that t may be identical with x; so that 
all wfs ('v'x; )flJJ ::::} [l}J are axioms by virtue of axiom (A4). 

(A5) (\fx1)(flJJ ==> rt') ::::} (flJJ ==> (\fx1)t:t') if 88 contains no free occurrences of 
X;. 

IThere is still another reason for a formal axiomatic approach. Concepts and 
propositions that involve the notion of interpretation and related ideas such as truth 
and model are often called semantical to distinguish them from syntactical concepts, 
which refer to simple relations among symbols and expressions of precise formal 
languages. Since semantical notions are set-theoretic in character, and since set 
theory, because of the paradoxes. is considered a rather shaky foundation for the 
study of mathematical logic, many logicians consider a syntactical approach, con­
sisting of a study of formal axiomatic theories using only rather weak number­
theoretic methods, to be much safer. For further discussions, see the pioneering study 
on semantics by Tarski (1936), as well as Kleene (1952), Church (1956) and Hilbert 
and Bernays (1934). 

tThe reader might wish to review the definition of formal themy in Section 1.4. 
We shall use the terminology (proof, theorem, consequence, axiomatic, 1- f!lJ etc.) and 
notation (r 1- !!4, 1- f!IJ) introduced there. 
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PROPER AXIOMS 

These cannot be specified, since they vary from theory to theory. A first. 
order theory in which there are no proper axioms is called a first-order 
predicate calculus. 

RULES OF INFERENCE 

The rules of inference of any first-order theory are: 

1. Modus ponens: CC follows from f1JJ and f1JJ => <'C. 
2. Generalization: (Vx;)PJJ follows from PJJ. 

We shall use the abbreviations MP and Gen, respectively, to indicate ap­
plications of these rules. 

DEFINITION 

Let K be a first-order theory in the language .P. By a model of K we mean 
an interpretation of .P for which all the axioms of K are true. 

By (III) and (VI) on page 61, if the rules of modus ponens and gen­
eralization are applied to wfs that are true for a given interpretation, then 
the results of these applications are also true. Hence every theorem of K is 
true in every model of K. 

As we shall see, the logical axioms are so designed that the logical con­
sequences (in the sense defined on pages 65-6) of the closu.res of the axioms 
of K are precisely the theorems of K. In particular, if K is a first-order 
predicate calculus, it turns out that the theorems of K are just those wfs ofK 
that are logically valid. 

Some explanation is needed for the restrictions in axiom schemas (A4) 
and (A5). In the case of (A4), if t were not free for x; in PJJ(x;), the following 
unpleasant result would arise: let PJJ(x1) be -,(\fx2)Ay(x1 ,x2) and Lett be x2. 
Notice that t is not free for x1 in PJJ(x1). Consider the following pseudo­
instance of axiom (A4): 

(V) (\lxi)(-'('v'x2)Ai(x.,x2)) ===> -.(\lx2)Ar(x2,x2) 

Now take as interpretation any domain with at least two members and let 
At stand for the identity relation. Then the antecedent of (\7) is true and the 
consequent false. Thus, (\7) is false for this interpretation. 

In the case of axiom (A5), relaxation of the restriction that xi not be free 
in f1JJ would lead to the following disaster. Let f!lJ and CC both be A~ (x1 ). Thus, 
x1 is free in f!JJ. Consider the following pseudo-instance of axiom (A5): 

(VV) (\lxi)(A~(xi) :::::> A~(xi)) :::::> (A~(xi) :::::> (\lxi)A:(xi)) 

•• 
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The antecedent of (VV) is logically valid. Now take as domain the set of 
integers and let AHx) mean that xis even. Then (\fx1)A} (xi) is false. So, any 
sequences= (s1,s2, .. . ) for which St is even does not satisfy the consequent 
of (V'V').t Hence, (VV) is not true for this interpretation. 

Examples of first-order theories 
1. Partial order. Let the language .!£ have a single predicate letter A~ and no 

function letters and individual constants. We shall write x; < x1 instead of 
A~(x;,xj)· The theory K has two proper axioms. 
(a) (Vxt)(-. x1 < xl) (irreflexivity) 
(b) (\fxl) (\fx2) (\fx3) (XI < X2 1\ X2 < X3 =* XI < X3) (transitivity) 

A model of the theory is called a partially ordered structure. 

2. Group theory. Let the language .!£ have one predicate letter AI, one 
function letter ~2, and one individual constant a I . To conform with or­
dinary notation, we shall write t = s instead of Ai(t, s) , t + s instead of 
fi2(t,s), and 0 instead of a1• The proper axioms ofK are: 

(a) (Vxl)(Vx2)(\fx3)(xi + (x2 + x3) = (xi + x2) + x3) 
(b) (Vxl)(O +xt = Xt) 
(c) (Vxt)(3x2)(x2 +x1 = 0) 
(d) (Vxl) (xi = xi) 
{e) (\fxl) (\fx2) (xi = X2 ::::} X2 = XI) 
(f) (\fx1) (\fx2) (\fx3) (xl = X2 1\ X2 = X3 =* Xl = X3) 
(g) (\fxi)(\fx2)(\fx3)(x2 = X3 * 

XI + X2 = X] + X3 1\ X2 + X] = X3 +X]) 

(associativity) 
(identity) 
(inverse) 

(reflexivity of =) 
(symmetry of =) 

(transitivity of =) 

(substitutivity of =) 

A model for this theory, in which the interpretation of = is the identity 
relation, is called a group. A group is said to be abelian if, in addition, the wf 
(\fxi)(\fx2) (x1 + x2 = x2 + xt) is true. 

The theories of partial order and of groups are both axiomatic. In gen­
eral, any theory with a finite number of proper axioms is axiomatic, since it 
is obvious that one can effectively decide whether any given wf is a logical 
aXIom. 

2.4 PROPERTIES OF FffiST-ORDER THEORIES 

All the results in this section refer to an arbitrary first-order theory K. 
Instead of writing 1-K rJ8 ~ we shall sometimes simply write 1- ~. Moreover, 
we shall refer to fin~t-order theories simply as theories, unless something is 
said to the contrary. 

tsuch a sequence would satisfy A~ (xi), since s1 is even, but would not satisfy 
(\lxi)A}(xi), since no sequence satisfies (\lxi)A~ (xt). 
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PROPOSITION 2.1 

Every wf &8 of K that is an instance of a tautology is a theorem of K, and it 
may be proved using only axioms (AI )-(A3) and MP. 

Proof 

&8 arises from a tautology !Y by substitution. By Proposition 1.14, there is a 
proof of !Yin L. In such a proof, make the same substitution of wfs of K for 
statement letters as were used in obtaining &8 from :Y, and, for all statement 
letters in the proof that do not occur in !Y, substitute an arbitrary wf of K. 
Then the resulting sequence of wfs is a proof of &8, and this proof uses only 
axiom schemes (Al} (A3) and MP. 

The application of Proposition 2.1 in a proof will be indicated by writing 
'Tautology'. 

PROPOSITION 2.2 

Every theorem of a first-order predicate calculus is logically valid. 

Proof 

Axioms (A 1 )- (A3) are logically valid by property (VII) of the notion of 
truth (see page 61), and axioms (A4) and (A5) are logically valid by prop­
erties (X) and (XI). By properties (III) and (VI), the rules of inference MP 
and Gen preserve logical validity. Hence, every theorem'-of a predicate 
calculus is logically valid. 

Example 
The wf (V'x2)(3xt)Af(xt, x2) => (3xt)(V'x2)Af(xt, x2) is not a theorem of any 
first-order predicate calculus, since it is not logically valid (by Example 5, 
p. 66). 

DEFINITION 

A theory K is consistent if no wf fJ8 and its negation -,f18 are both provable in 
K. A theory is inconsistent if it is not consistent. 

COROLLARY 2.3 

Any first-order predicate calculus is consistent. 
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Proof 

If a wf f!JJ and its negation -,f!JJ were both theorems of a first-order predicate 
calculus, then, by Proposition 2.2. both f!8 and -,!!JJ would be logically valid, 
which is impossible. 

Notice that, in an inconsistent theory K, every wf C(l of K is provable in 
K. In fact, assume that f!/1 and -,[]8 are both provable in K. Since the wf 
f!J :::::? ( -,f!JJ :::::? C(l) is an instance of a tautology, that wf is, by Proposition 2.1, 
provable inK. Then two applications of MP would yield I- C(/. 

It follows from this remark that, if some wf of a theory K is not a 
theorem of K, then K is consistent. 

The deduction theorem (Proposition 1.9) for the propositional calculus 
cannot be carried over without modification to first-order theories. For 
example, for any wf f!lJ, f!lJ 1--K (Vxt)!!lJ, but it is not always the case that 
~K f!JJ => (Vxt)f!lJ. Consider a domain containing at least two elements c and 
d. Let K be a predicate calculus and let f!JJ be AHxt). Interpret A} as a 
property that holds only for c. Then A{(x1) is satisfied by any sequence 
s = (st, s2, .. . ) in which s1 = c, but (\/xl)A} (xi) is satisfied by no sequence at 
all. Hence, A}(xi) => (Vxt)Al{xt) is not true in this interpretation, and so it is 
not logically valid. Therefore, by Proposition 2.2, A{(xi) => (\/xi)AHxt) is 
not a theorem of K. 

A modified, but still useful, form of the de_duction theorem may be de­
rived, however. Let fJ8 be a wf in a set r of wfs and assume that we are given 
a deduction .@I' ... '.@11 from r, together with justification for each step in 
the deduction. We shall say that .@i depends upon fJ8 in this proof if and 
only if: 

(1) .@; is fJ8 and the justification for .@; is that it belongs to r, or 
(2) .@; is justified as a direct consequence by MP or Gen of some preceding 

wfs of the sequence, where at least one of these preceding wfs depends 
upon f!/1. 

Example 
f!JJ, (\lx1 )f!lJ => C(/ I- (\/xi )C(I 

(.@t) fJ8 Hyp 
(.@2) (\/xt):J8 (.@I), Gen 
( .@3) (\/xi ):J8 => rc H yp 
(.@4) C(l (.@2), (.@3), MP 
(.@s) (\/xi)C(; (.@4),Gen 

Here, (.@t) depends upon f!JJ, (.@2) depends upon f!/1, (.@3) depends upon 
(Vxi):J8 => C(l, (.@4) depends upon f!/1 and (Vxt)f!/J => C(/, and (.@s) depends 
upon rJ8 and (\/xi )f!ll => C(/. 
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PROPOSITION 2.4 

If Cfl does not depend upon fJ8 in a deduction showing that r, fJ8 I- Cfl, then 
r 1- Cfl. 

Proof 

Let 221 • • ·, 2211 be a deduction of Cfl from r and f?J, in which Cfl does not 
depend upon f?J. (In this deduction, !»11 is Cfl.) As an inductive hypothesis, let 
us assume that the proposition is true for all deductions of length less than n. 
If Cfl belongs to r or is an axiom, then r 1- Cfl. If Cfl is a direct consequence of 
one or two preceding wfs by Gen or MP, then, since Cfl does not depend 
upon (18, neither do these preceding wfs. By the inductive hypothesis, these 
preceding wfs are deducible from r alone. Consequently, so is Cfl. 

PROPOSITION 2.5 (DEDUCTION THEOREM) 

Assume that, in some deduction showing that r, fJ8 I- Cfl, no application of 
Gen to a wf that depends upon fJ8 has as its quantified variable a free 
variable of f18. The r I- fJ8 => Cfl. 

Proof 

Let 221) ... , 22n be a deduction of~ from rand f?J. satisfying the assumption 
of our proposition. (In this deduction, 2211 is~-) Let us show by induction 
that r I- .fJB => 22; for each i~n. If 221 is an axion1 or belongs tor, then 
r 1- fJ8 ::::> !»;, since 22; => (f18 => 22;) is an axiom. If ~; is f?J, then 
r 1- :!4 => 22;, since, by Proposition 2.1, 1- fJ8 => f?J:· If there exist j and k less 
than i such that 22k is 22j => f!JJ;, then, by inductive hypothesis, r 1- fJ8 => !!Jj 
and r 1- :!4 => (22i => f!JJ;). Now, by axiom (A2), 1- (f18 => (!!Ji => f!JJ,-)) 
=> ((f?J => 22j) => (f?J => 22;)). Hence, by MP twice, r I- fJ8 => 22;. Finally, 
suppose that there is some j < i such that 22; is (Yxk)!»j. By the inductive 
hypothesis, r 1- fJ8 => 22j, and, by the hypothesis of the theorem, either !?Jj 
does not depend upon fJ8 or Xk is not a free variable of f?J. If 22i does not 
depend upon f?J, then, by Proposition 2.4, r I- !!Ji and, consequently, by 
Gen, r 1- (Yxk)f!JJi. Thus, r 1- !»;. Now, by axiom (Al), I- f!JJ; => (:!4 => f!JJ;). 
So, r 1- f?J => 22; by MP. If, on the other hand, xk is not a free variable of@, 
then, by axiom (A5), 1- (Yxk)(f18 => 22i) => (:!4 => (Yxk)f!JJi)· Since r 1- fB => 
221, we have, by Gen, r 1- (Yxk)(f18 => f!JJi ), and so, by MP, r 1- fJ8 => (Yxk)221; 
that is, r 1- fJ8 => !!};. This completes the induction, and our proposition is 
just the special case i = n. 

The hypothesis of Proposition 2.5 is rather cun1bersome; the following 
weaker corollaries often prove to be more useful. 
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COROLLARY 2.6 

If a deduction showing that r, fJlJ r CC involves no application of Gen of 
which the quantified variables is free in !J1, then r r fJlJ::::;.. CC. 

COROLLARY 2.7 

If fJlJ is a closed wf and r, fJlJ r CC, then r r fJlJ ::::;.. CC. 

EXTENSION OF PROPOSITIONS 2.4-2. 7 

In Propositions 2.4-2. 7, the following additional conclusion can be drawn 
from the proofs. The new proof ofr r fJlJ::::;.. CC (in Proposition 2.4, ofr r CC) 
involves an application of Gen to a wf depending upon a wf $ of r only if 
there is an application of Gen in the given proof of r, fJlJ r CC that involves 
the same quantified variable and is applied to a wfthat depends upon$. (In 
the proof of Proposition 2.5, one should observe that !!2j depends upon a 
premiss $ of r in the original proof if and only if f!J ::::;.. !!2 i depends upon $ 

in the new proof.) 
This supplementary conclusion will be useful when we wish to apply the 

deduction theorem several times in a row to a given deduction- for ex­
ample, to obtain r r !!2 ::::;.. ( fJlJ ::::;.. CC) from r, !!2 ~ fJlJ r ~; from now on, it is to 
be considered an integral part of the statements of Propositions 2.4-2. 7. 

Example 
r (Vx1 )(\lx2 )f!lJ ::::;.. (Vx2 )(Vxi)f!lJ 

Proof 

1. (Vxt )(Vx2)f!lJ Hyp 
2. (Vxt)(Vx2)f!lJ ::::;.. (Vx2)f!lJ (A4) 
3. (Vx2)f!lJ 1, 2, MP 
4. (Vx2)f!lJ::::;.. fJlJ (A4) 
5. fJlJ 3, 4, MP 
6. (Vx1 )f!lJ 5, Gen 
7. (Vx2)(Vx1 )f!lJ 6, Gen 

Thus, by 1-7, we have (Vxi)(Vx2)f!lJ r (Vx2)(Vx1)f!lJ, where, in the deduction, 
no application of Gen has as a quantified vatiable a free variable of 
(Vx1)(Vx2)f!lJ. Hence, by Corollary 2.6, r (Vxt)(Vx2)f!lJ::::;.. (Vx2)(Vxt)f!lJ. 

Exercises 

2.27 Derive the following theorems. 
(a) r (Vx) ( fJlJ ::::;.. ~) => ( (Vx )f!lJ ::::;.. (Vx )~) 
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(b) ~ (\fx)(~ =} ~) =} ((3x)~ ==> (3x)~) 
(c) ~ (Yx)(.18 1\ ~) {::} ((Yx).18) 1\ (\fx)~ 
(d) r (Yyt) .. . ('v'Yn ).18 ==> .18 
(e) ~ -.(Yx).@ ==> (3x)-.PJ 
2.28D Let K be a first-order theory and let J(# be an axiomatic theory 
having the following axioms: 
(a) (Yy1) ... (Yy11)~, where .18 is any axiom of K and YI, ... ,y11 (n~O) are 

any variables (none at all when n = 0); 
(b) (V:Yl) ... (V:Yn) ( .18 => ~) =} [ (Yyt) .. -(Yy, ).18 ==> (V:Yl ) ... (V:Yn )l(ff] where fJ8 

and~ are any wfs and YI . .. ,y, are any variables. 

Moreover,!(# has modus ponens as its only rule of inference. Show that J(# 

has the same theorems as K. Thus, at the expense of adding more axioms, 
the generalization rule can be dispensed with. 

2.29 Carry out the proof of the Extension of Propositions 2.4-2.7 above. 

2.5 ADDITIONAL METATHEOREMS AND DERIVED RULES 

For the sake of smoothness in working with particular theories later, we 
shall introduce various techniques for constructing proofs. In this section it 
is assumed that we are dealing with an arbitray theory K. 

Often one wants to obtain .18(t) from (Yx).18(x), where tis a term free for x 
in .@(x). This is allowed by the following derived rule. 

PARTICULARIZATION RULE A4 

If tis free for x in .18(x), then (Yx).18(x) ~ ~(t).t 

Proof 

From (Yx)Y6'(x) and the instance (Vx)~(x) ==> .18(t) of axiom (A4), we obtain 
~(t) by modus ponens. 

Since xis free for x in ~(x), a special case of rule A4 is: (Vx).@ ~ f:!J. 
There is another very useful derived rule, which is essentially the con­

trapositive of rule A4. 

tFrom a strict point of view, (Vx)9.S'(x) f- f!l/(t) states a fact about derivability. 
Rule A4 should be taken to mean that, if (Vx )9.3'(x) occurs as a step in a proof, we 
may write ~(t) as a later step (if tis free for x in f!l/(x)). As in this case, we shall often 
state a derived rule in the form of the corresponding derivability result that justifies 
the rule. 
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EXISTENTIAL RULE E4 

Let t be a term that is free for x in a wf fJ?J(x, t), and let fJ?J(t, t) arise from 
fJa(x, t) by replacing all free occurrences of x by t. (.@(x, t) may or may not 
contain occurrences oft.) Then, fJ?J(t, t) 1- (3x)fJ?J(x, t). 

Proof 

It suffices to show that I- [J8(t, t):::;::} (3x).@(x, t). But, by axiom (A4), 
1- (Vx)-.Ba(x, t) :::;::} -.Ba(t, !). Hence, by the tautology (A :::;::} -,J3) ~ (B =:} -.A) 
and MP, 1- Ba(t, t):::;::} -{v'x)-.fJ?J(x, t), which, in abbreviated form, is I- &a(t, t) 
==? (3x).@(x, t). 

A special case of rule E4 is Ba(t) I- (3x)fJ?J(x), whenever t is free for x in 
fJa(x). In particular, when t is x itself, fJ?J(x) 1- (3x)fJ?J(x). 

Example 
..._ (Vx)[J8 =:} (3x).@ 

I. (Vx )fJ?J 
2 . .@ 

3. (3x).@ 
4. (Vx).@ I- (3x).@ 
5. I- (Vx)fJ?J ===> (3x)@ 

Hyp 
1, rule A4 
2, rule E4 
1---3 
1---4, Corol~ary 2.6 

The following derived rules are extremely useful. 

Negation elimination: --,-,fJ?J I- fJ?J 
Negation introduction: .@I---,-,.@ 
Conjunction elimination: fJ?J 1\ ~ I- fJ?J 

fJ?J/\~1--~ 
--, (.@ 1\ ~) 1- -,.@ v --,~ 

Conjunction introduction: fJ?J, ~I- [J8 1\ ~ 

Disjunction elimination: fJ?J V ~' -,fJ?J I-~ 
[J8 v ~' -,~ 1- fJ?J 
-.(.@ v l&) I- -,fJ?J 1\ --,~) 

fJ?J ===> ~' ~ ===> ~,fJ?J v ~I-~ 
Disjunction introduction: fJ?J I- fJ?J V ~ 

~1--fJ?JV~ 

Conditional elimination: fJ?J => ~'-,~I- -,[}8 

fJ?J ===> --,~' ~ I- --,[J8 

--,fJ?J :::;::} ~' -,~ I- [J8 
-,fJ?J ==? .. ~' ~ I- rJ8 
-.(.@ :::;::} ~) I- fJ?J 
-, (.@ :::;::} ~) I- --,~ 

Conditional introduction: ~, --,~ I- -.( f!J :::;::} ~) 
Conditional contrapositive: fJ?J :::;::} ~ I- -,~ :::;::} --,fJ?J 
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-l(i :::? -,@ I- f!J ==} 15 

Biconditional elimination: f!J {::} 15, f!J I- ((;f f!J {::} ((;f, -,f!J I- -.((;f 
f!J {::} ((;j' ((;j I- f!J f!J {::} 15' -, ((;j 1- -,f!J 
f!J {::} ((;j 1- f!J :::? 15 &I {::} 15 I- 15 :::? f!J 

Biconditional introduction: Pfi:::? ((;f, 15 ==;. f!J I- f!J {::} 15 
Biconditional negation: f!J {::} ((;f I- -,f!J {::} -.15 

-,pg {::} -.15 I- f!J {::} qj 

Proof by contradiction: If a proof of r, -,f!J I- 15 1\ -.15 involves no applica­
tion of Gen using a variable free in f!J, then r 1- fJ?J. (Similarly, one obtains 
r I- -,,glj from r' !!J I- 15 1\ -,({;j.) 

Exercises 

2.30 Justify the derived rules listed above. 
2.31 Prove the following. 
(a) I- (\fx)(\fy)Ar(x, y) ~ (\fx)Ar(x, x) 
(b) 1- ((Vx)BB] V ((Vx)15] :::? (Vx)(f!J V 15) 
(c) I- -.(3x)f!J:::? (Vx)-.88 
(d) I- (\fx) .98 :::? (Vx) ( .98 V 15) 
(e) 1-- (Vx)(Vy)(Ar(x,y) ==;. -.Ar(y,x)) ==;. (Vx)-.Ai(x,x) 
(f) I- [(3x)f!J ::::} (Vx)15] ==;. (Vx)(BB ::::} 15) 
(g) 1- (Vx) ( f!J V 15) ==;. [ (Vx )r!J] V (3x )15 
(h) 1-- (Vx)(Af(x,x) :::? (3y)Ar(x,y)) 
(i) I- (\fx) ( f!J ::::} rt) :::? [ (\fx )-.15 :::? (Vx )-.f!J] 
(j) I- (3y)[At(y) :::? (\fy)At(y)] 
(k} 1- (Vx).%':::? (\fx)(f!J V 15) 
(I) I- [(Vx)(\fy)(f!J(x,y) ==;. f!J(y,x)) 1\ (\fx)(Vy)(Vz)(!!J(x,y)l\ 

~(y,z):::? f!J(x,z))J => (\fx)(Vy)(r!J(x,y) ==;. f!J(x,x)). 
2.32 Assume that f!J and 15 are wfs and that xis not free in f!J. Prove the 
following. 
(a) I- f!J ==;. (\fx)f!J 
(b) I- f!J ~ (3x)f!J 
(c) I- ( f!J :::? (Vx )((;f) {::} (\fx) ( f!J :::? 15) 
(d) 1- ((3x)15:::? f!J) {::} (\fx)(((;f:::? f!J) 

We need a derived rule that will allow us to replace a part 15 of a wf &I by 
a wf that is provably equivalent to 15. For this purpose, we first must prove 
the following auxiliary result. 

LEMMA2.8 

For any wfs f!J and 15, I- (\fx)(f!J {::} 15) ~ ((\fx)f!J <=? (\fx)15). 
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Proof 

i. ('v'x) ( 91 {::} ~) 
2. (\fx)P-8 
3. -~ {::} ~ 
4. ~ 
5. ({j 

6. ('v'x)~ 
7. ('v'x)(PJ {::} ~), (\fx)P-8 r ('v'x)~ 
8. ('v'x)(PJ {::} ~) r ('v'x)PJ =} ('v'x)~ 
9. ('v'x)(B.f {::} ~) r (Vx)~ ==;. (\fx)P-8 

to. ('v'x)(.o/.J {::} ~) r (Vx)PJ {::} (Vx)~ 
tl. r (Vx)(PJ {::} ~) ==> ((Vx)PJ {::} ('v'x)~) 

PROPOSITION 2.9 

Hyp 
Hyp 
1, rule A4 
2, rule A4 
3, 4, biconditional elimination 
5, Gen 
1-6 
1-7, Corollary 2.6 
Proof like that of 8 
8, 9, Bioconditional introduction 
1-10, Corollary 2.6 

If ~ is a subformula of P-8, PJ' is the result of replacing zero or more oc­
currences of~ in P-8 by a wf ~'and every free variable of~ or~ that is also 
a bound variable of P-8 occurs in the list Y1, ... ,yh then: 

(a) r [(\fy1) ... (Vyk)(~ {::} ~)) ==> (91 {::} f18') (Equivalence theorem) 
(b) Ifr ~{::}~'then r P-8 {::} PJ' (Replacement-theorem) 
(c) If r ~ {::} ~ and r B.f, then r r18' 

Example 
(a) r ('v'x)(A}(x) {::} (A!{x)) ==> [(3x)AUx) {::} (3x) AHx)] 

Proof 

(a) We use induction on the number of connectives and quantifiers in 91. 
Note that, if zero occurrences are replaced, r18' is P-8 and the wf to be proved 
is an instance of the tautology A ==> (B {::}B). Note also that, if~ is identical 
with ~ and this occurrence of~ is replaced by !!2, the wf to be proved, 
[(Vy1) ..• (Vyk)(~ <=* ~)] =? (PJ {::} PJ'), is derivable by Exercise 2.27(d). 
Thus, we may assume that ~is a proper part of P-8 and that at least one 
occurrence of~ is replaced. Our inductive hypothesis is that the result holds 
for all wfs with fewer connectives and quantifiers than rJ8. 

Case 1. P-8 is an atomic wf. Then ~ cannot be a proper part of 91. 
Case 2. P-8 is -.t&'. Let PJ' be ·t&''. By inductive hypothesis, I- [(VYI) ... (Vyk) 

(({i {::} ~)] ==> (t&' ¢? t&''). Hence, by a suitable instance of the tautology 
(C ==>(A{::} B))=? (C ==>(-.A{::} -.B)) and MP, we obtain r [(VYI) . . . (V.Yk) 
(~ {::} ~)] ==> (PJ {::} PJ'). 
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Case 3. r!J is C:::::} !F. Let ~' be C':::::} ff'. By inductive hypothesis 

) 

f- [(Vyt) ... (V.Yk)(~ {::} 221)] =:> (C {::} C') and f- [(Vyt) ... (V.Yk)(0' {::} 221)] => (§ 
{::} ff'). Using a suitable instance of the tautology 

(A'* (B {::} C)) 1\ (A'* (D {:}E))'* (A~ ((B '* D){:} (C '*E)]) 

we obtain f- [(Vy1) ..• (\fyk) (~ {::} 221)] :::::} (!!8 {::} r!J'). 
Case 4. ~ is (Vx)C. Let !!8' be (Vx)cff'. By inductive hypothesis, 

f- [(Vy1) ... (Vyk)(~ {::} 221)] :::::} ( C {::} C'). Now, x does not occur free in 
(VYI) ... (V.Yk)(~ {::} 221) because, if it did, it would be free in ~ or 221 and, 
since it is bound in P8, it would be one of yt, ... ,yk and it would not be free 
in (Vy1) .•. (Vyk)(~ {::} 221). Hence, using axiom (A5), we obtain f- (VYI) .. . 
(\f.Yk)(~ {::} 221) => (\fx)(C {::} C'). However, by Lemma 2.8, f- (Vx)(~ {::} ~.,) 
:::::} ((Vx)C {::} (Vx)cff'). Then, by a suitable tautology and MP, f- [(Vy1) 

... (V.Yk)(~ {::} 221)] :::::} (!!8 {::} !!8'). 
(b) From f- ~ {::} 221, by several applications of Gen, we obtain 

f- (VYI) ... (Vyk)(~ {::} 221). Then, by (a) and MP, f- ~ {::} ~'. 
(c) Use part (b) and biconditional elimination. 

Exercises 

2.33 Prove the following: 
(a) f- (3.x)-.!!8 {::} -,(\fx)!!8 
(b) t- (Vx)!!8 {::} -.(3.x)•f!8 
(c) f- (3x)(!!8:::::} ·(~ V 221)) :::::} (3.x)(!!8 =>-.~A--,.@) 
(d) f- (\fx)(3y)(!!8:::::} ~) {::} (Vx)(3y)(-.!!8 v ~) 
(e) 1- (Vx)(!!8:::::} ,c6') {::} -.(3x)(!!8 A~) 
2.34 Show by a counterexample that we cannot omit the quantifiers 
(Vyt) ... (Vyk) in Proposition 2.9(a). 
2.35 If~ is obtained from !!8 by erasing all quantifiers (Vx) or (3.x) whose 
scope does not contain x free, prove that f- !!8 {::} ~-

2.36 For each wf r!J below, find a wf ~such that f- ~ {::} -.!!8 and negation 
signs in ~ apply only to atomic wfs. 
(a) (\fx)(\fy)(3z)Af(x,y,z) 
(b) (Ve)(e > 0 =:> (3~)(~ > 0 A (Vx)(lx- cl < ~:::} lf(x)- f(c)l <e)) 
(c) (Ve)(e > 0:::::} (3n)(Vm)(m > n:::::} lam- bl <e)) 
2.37 Let fJB be a wf that does not contain :::::} and {::}. Exchange universal 
and existential quantifiers and exchange A and V. The result !!8* is called the 
dual of f!J. 
(a) ln any predicate calculus, prove the following. 

(i) f- f!J if and only if f- -.!!8* 
(ii) f- f!J => ~ if and only if f- ~* ==;> !!8*. 
(iii) f- !!8 {::} ~ if and only if f- !!8* {::} ~. 
(iv) f- (3x)(!!8 V ~) {::} [((3x)!!8) V (3.x)~]. [Hint: Use Exercise 2.27(c).] 
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:(b) Show that the duality results of part (a), (i) -(iii), do not hold for ar­
bitrary theories. 

-'2.6 RULE C 

It is very common in mathematics to reason in the following way. Assume 
that we have proved a wf of the form (3x)Gd(x). Then we say, let b be an 
,'Object such that @(b). We continue the proof, finally arriving at a formula 
that does not involve the arbitrarily chosen element b. 

For example, let us say that we wish to show that 
(3x)(Gd(x)::::? ~(x)), (Vx)&S(x) r (3x)~(x). 

l. (3x)(&S(x) ==? ~(x)) 
2. (Vx)YO(x) 
3. &S(b) ==>~(b) for some b 
4. Gd(b) 
5. ~(b) 
6. (3x)~(x) 

Hyp 
Hyp 
1 
2, rule A4 
3, 4, MP 
5. rule E4 

Such a proof seems to be perfectly legitimate on an intuitive basis. In fact, 
we can achieve the same result without making an arbitrary choice of an 
element b as in step 3. This can be done as follows: 

1. (Vx)Gd(x) 
2. (Vx)-.~(x) 
3. Gd(x) 
4. -.~(x) 
5. -.(~(x) ==> ~(x)) 
6. (Vx)-.(Gd(x) ::::? ~(x)) 
7. (Vx)Gd(x), (Vx)-.~(x) r 

(Vx)-.(&S(x)::::? ~(x)) 
8. (Vx)Gd(x) 1- (Vx)-.~(x) 

::::? (Vx)-.(~(x)::::? ~(x)) 
9. (Vx)Gd(x) 1- -.(Vx)-.(Gd(x) 

::::? ~(x)) ==> -.(Vx)-.~(x) 
10. (Vx)Gd(x) 1- (3x)(~(x) ==> 

~(x))::::? (3x)~(x) 
11. (3x)(Gd(x) ==> ~(x) ), 

(Vx)Gd(x) 1- (3x)~(x) 

Hyp 
Hyp 
1, rule A4 
2, rule A4 
3, 4, conditional introduction 
5, Gen 

1- 6 

L- 7, corollary 2.6 

8. contrapositive 

Abbreviation of 9 

10, MP 

In general, any wf that can be proved using a finite number of arbitrary 
choices can also be proved without such acts of choice. We shall call the rule 
that permits us to go from (3x )Gd(x) to (J)J( b), rule C ('C' for 'choice'). More 
precisely, a rule C deduction in a first-order theory K is defined in the 
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follOWing manner: r rc g8 if and Only if there iS a sequence OfWfS _@1,' · ·, f7J
11 

such that .@11 is g8 and the following four conditions hold: 

1. For each i < n, either 
(a) .@;is an axiom of K, or 
(b) .@i is in r, or 
(c) .@i follows by MP or Gen from preceding wfs in the sequence, or 
(d) there is a preceding wf (3x)~(x) such that .@i is ~(d), where dis a new 

individual constant (rule C). 
2. As axioms in condition l(a), we also can use all logical axioms that 

involve the new individual constants already introduced in the sequence 
by applications of rule C. 

3. No application of Gen is made using a variable that is free in some 
(3x)~(x) to which rule C has been previously applied. 

4. g8 contains none of the new individual constants introduced in the se­
quence in any application of rule C. 

A word should be said about the reason for including condition 3. If an 
application of rule C to a wf (3.x)~(x) yields ~(d), then the object referred to 
by d may depend on the values of the free variables in (3x)~(x). So that one 
object may not satisfy ~(x) for all values of the free variables in (3x)~(x). 
For example, without clause 3, we could proceed as follows: 

1. (Yx)(3y)Ai(x,y) 
2. (3y)Ai(x,y) 
3. Ai{x, d) 
4. (Vx)Ar(x, d) 
5. (3y)(Yx)Ai(x,y) 

Hyp 
l, rule A4 
2, rule C 
3, Gen 
4, tule E4 

'· 

However, there is an interpretation for which (\lx)(3y)Ai(x,y) is true but 
(3y)(Vx)Ai(x,y) is false. Take the domain to be the set of integers and let 
Ar(x,y) mean that X < y. 

PROPOSITION 2.10 

If r 1--c g8, then r r g8, Moreover, fron1 the following proof it is easy to 
verify that, if there is an application of Gen in the new proof of~ from r 
using a certain variable and applied to a wf depending upon a certain wf of 
r, then there was such an application of Gen in the original proof. t 

trhe first formulation of a version of rule C similar to that given here seems to 
be due to Rosser (1953) . 

•• 
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Proof 

Let (3.YI)~I (YI ), ... , (3.Yk)~k(J1c) be the wfs in order of occurrence to which 
rule C is applied in the proof of r f-c f!8, and let d1, ... , dk be the corre-
sponding new individual constants. Then r, ~~ (d1), ... , ~k(dk) 1- f!8. Now, 
by condition 3 of the definition above, Corollary 2.6 is applicable, yielding 
r, ~1 (dt), ... , ~k-t(dk-I) f- ~k(dk) ==> fJ8. We replace dk everywhere by a 
variable z that does not occur in the proof. 
Then 

r, ~I (dt), · · ·, ~k-1 (dk_t) 1- ~k(z) => fJa 

and, by Gen, 

r, ~l (dt), ... , ~k-1 (dk-1) 1- (Vz)(<t'k(z) => P-a) 

Hence, by Exercise 2.32(d), 

r, ~1 (dt), ... , ~k-1 (dk-d 1- (3J'k)~kU'k) => P4 

But, 

Hence, by MP, 

r, ~1 (dl), ... , ~k-I (dk-d 1- P4 

Repeating this argument, we can eliminate ~k-I (dk-I), ... , ~~ (d1) one after 
the other, finally obtaining r 1- f!8. . 

Example 
1- (Vx)(@(x) ==> ~(x)) ==> ((3x)fJ8(x) ==> (3x)~(x)) 

1. (Vx)(f!8x) ==> ~(x)) 
2. (3x)f!8(x) 
3. fJ8(d) 
4. fJ8( d) :::::} ~(d) 
5. ~(d) 
6. (3x)~(x) 
7. (Vx)(fJ8(x) :::::> ~(x)), (3x)fJ8(x) 1-c (3xY~(x) 
8. (Vx)(.%'(x) ::::> ~(x)), (3x)@(x) f- (3x)~(x) 
9. (Vx)(f!8(x) ::::> ~(x)) f- (3x)fJ8(x) ==> (3x)~(x) 

10. f- (Vx)(fJ8(x) ==> ~(x)) ==> ((3x)fJ8(x) ::::> (3x)~(x)) 

Exercises 

Hyp 
Hyp 
2, rule C 
1, rule A4 
3, 4, MP 
5, rule E4 
1-6 
7, Proposition 2.10 
1 - 8, corollary 2.6 
1- 9, corollary 2.6 

Use rule C and Proposition 2.10 to prove Exercises 2.38-2.45. 

2.38 1- (3x)f!8(x) ==> ~(x)) ==> ((Vx)fJ8(x) ==> (3x)~(x)) 
2.39 1- -.(3y)(Vx)(Ai(x,y) {::} -.At(x,x)) 
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2.40 I- f(Vx)(A} (x) ==? Al{x) V Aj(x)) A •(Vx)(A}(x) ==> Ai{x))] 

==> (3x)(A~ (x) AAj(x)) 
2.41 I- ((3.-r).%'(x)] A [(Vx)~(x)] =* (3x)(.%'(x) A ~(x)) 
2.42 I- (3x)~(x) ==? (3x)(rJ8(x) V ~(x)) 
2.43 I- (3x)(3y)&J(x,y) {:} (3y)(3x)rJ8(x,y) 
2.44 I- (3x)(\fy).%'(x,y) ==> (\fy)(3x)rJ8(x,y) 
2.45 I- (3x)(~(x) A ~(x)):::::} ((3x).@(x)) A (3x)~(x) 
2.46 What is wrong with the following alleged derivations? 
(a) 1. (3x).@(x) Hyp 

2. i!JJ( d) I, rule C 
3. (3x)~(x) Hyp 
4. ~(d) 3, rule C 
5. ~(d) 1\ ~(d) 2, 4. conjunction introduction 
6. (3x)(~(x) A ~(x)) 5, rule E4 
7. (3x)g&(x), (3x)~(x) 

I- (3x)(pg(x) A ~(x)) 
(b) 1. (3x)(!8(x) ==> ~(x)) 

2. (3x)rJ8(x) 
3. ~(d) ==> ~(d) 
4. ~(d) 
5. ~(d) 
6. (3x)ce(x) 
7. (3x)(38(x) => ~(x)), 

(3x)9S'(x) I- (3x)~(x) 

2.7 COMPLETENESS THEOREMS 

1-6, Proposition 2.10 
Hyp 
Hyp 
I, rule C 
2, rule C 
3, 4, MP 
5, rule E4 

l-6, Proposition 2.10 

We intend to show that the theorems of a first-order predicate calculus K are 
precisely the same as the logically valid wfs ofK. Half of this result was proved 
in Proposition 2.2. The other half will follow from a much more general 
proposition established later. First we must prove a few preliminary lemmas. 

If x; and xi are distinct, then g&(xi) and &.J(xj) are said to be similar if and 
only if xi is free for x; in ~(xi) and .?4(x;) has no free occurrences of xi. It is 
assumed here that ~(xj) arises from BB(x;) by substituting xi for all free 
occurrences ofx;. It is easy to see that, if ~(x;) and ~(xi) are similar, thenx; 
is free for xi in !!li(xi) and rJ8(xi) has no free occurrences of x;. Thus, if rJ8(x;) 
and tJ.J (xi) are similar, then fJ (xi) and .@ ( x;) are similar. In tui ti vely, {]8 (xi) 
and @(xi) are similar if and only if -~(x;) and .?4(xi) are the same except that 
~(x;) has free occurrences ofx; in exactly those places where rJ8(xj) has free 
occurrences of Xj· 

Example 
(\fx3)[Ai{xt,x3) V A}(xi)] and (\fx3)[Ai(x2,x3) V Al(x2)] are similar. 
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LEMMA 2.11 

If g,B(x;) and {]8(xj) are similar, then I- (V'x;){J8(x;) {::} (\/xi){J8(xi)· 

Proof 

1- (Vx;).@(x;) :::::> @(xj) by axiom (A4). Then, by Gen, I- (Vxj)((Vx;)~(x;) 
:::::> .?J~(xj)), and so, by axiom (A5) and MP, I- (Vx;){J8(x;) :::::> (\fxj){J8(xj)· Si­
milarly, I- (\fxj){J8(xi) :::::> (\/x;){J8(x;). Hence, by biconditional introduction, 
1-- (V'x; ){]8(x;) {:::} (\fxj ){]8(xj ). 

Exercises 

2.47 If .%'(x;) and {]8(xj) are similar, prove that I- (3x;)@(x;) {::} (3xj).@(xj)· 
2.48 Change of bound variables. If {]8(x) is similar to BB(y), (Vx){]8(x) is a 
subformula of~, and~' is the result of replacing one or more occurrences of 
(Vx)BB(x) in~ by (\fy){J8(y), prove that I-~{::}~'. 

LEMMA 2.12 

If a closed wf -..@ of a theory K is not provable in K, and if K' is the theory 
obtained from K by adding {]8 as a new axiom, then K' is consistent. 

Proof 

Assume K' inconsistent. Then, for some wf ~, 1--K' ~ and 1--K' ~~- Now, 
1--K' ~ :::::> ( ~~ :::::> -.{18) by Proposition 2.1. So, by two applications of MP, 
f-K' -.{]8. Now, any use of {]8 as an axiom in a proof inK' can be regarded as 
a hypothesis in a proof inK. Hence, {]8 1--K -.{]8. Since {]8 is closed, we have 
1--K f18 :::::> -..@ by Corollary 2. 7. However, by Proposition 2.1, 
1-K (~ :::::> -..?J') :::::> -.,%'. Therefore, by MP, 1--K -.{]8, contradicting our hy­
pothesis. 

Exercise 

2.49 If a closed wf {]8 of a theory K is not provable inK, and if K' is the 
theory obtained from K by adding -,go as a new axiom, then K' is consistent. 

LEMMA 2.13 

The set of expressions of a language 2 is denumerable. Hence, the same is 
true of the set of terms, the set of wfs and the set of closed wfs. 
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Proof 

First assign a distinct positive integer g(u) to each symbol u as follows: 
g(() = 3, g()) = 5, g(,) = 7, g( •) = 9, g(~) = 11, g(V) = 13, g(xk)::::: 
13 + 8k, g(ak) = 7 + 8k, g(f!/) = 1 + 8(211 3k), and g(AZ) = 3 + 8(2n3k). 
Then, to an expression uoui ... u,. associate the number 2g(uo) 3g(ut) ... pf.(ur), 

where Pi is the jth prime number, starting with Po= 2. (Example: the 
number of AHx2) is 2513352975 .) We can enumerate all expressions in 
the order of their associated numbers; so, the set of expressions is denu­
merable. 

If we can effectively tel1 whether any given symbol is a symbol off£, then 
this enumeration can be effectively carried out, and, in addition, we can 
effectively decide whether any given number is the number of an expression 
off£. The same holds true for terms, wfs and closed wfs. If a theory Kin 
the language f£ is axiomatic, that is, if we can effectively decide whether 
any given wf is an axiom of K, then we can effectively enumerate the 
theorems of K in the following manner. Starting with a list consisting of the 
first axiom of K in the enumeration just specified, add to the list all the 
direct consequences of this axiom by MP and by Gen used only once and 
with XI as quantified variable. Add the second axiom to this new list and 
write all new direct consequences by MP and Gen of the wfs in this aug­
mented list, with Gen used only once and with XI and x2 as quantified 
variables. If at the kth step we add the kth axiom and apply MP and Gen to 
the wfs in the new list (with Gen applied only once for each of the variables 
XI, ... , xk), we eventually obtain in this manner all theorems of K. However, 
in contradistinction to the case of expressions, terms, wfs and closed wfs, it 
turns out that there are axiomatic theories K for which we cannot tell in 
advance whether any given wf of K will eventually appear in the list of 
theorems. 

DEFINITIONS 

(i) A theory K is said to be complete if, for every closed wf -~ of K, either 
1-K rJ8 or 1-K ~~-

(ii) A theory K' is said to be an extension of a theory K if every theorem of 
K is a theorem of K'. (We also say in such a case that K is a subtheory 
ofK'.) 

PROPOSITION 2.14 (LINDENBAUM'S LEMMA) 

If K is a consistent theory, then there is a consistent, complete extension 
ofK. 
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Proof 

Let I?J1, rJ82, ... be an enumeration of all closed wfs of the language of K, by 
Lemma 2.13. Define a sequence 1o, 11, 12, . . . of theories in the following way. 
Jo is K. Assume 1, is defined, with n ;?;:0. If it is not the case that 1-J, -,~n+l· 

then let 1n+I be obtained from 1, by adding 36'n+l as an additional axiom. On 
the other hand, if 1-J, -.PJ,+h let 1,+1 = 1n. Let J be the theory obtained by 
taking as axioms all the axioms of all the J;s. Clearly, J;+t is an extension of 

J. and 1 is an extension of all the J;s including J0 = K. To show that J is ,, 
consistent, it suffices to prove that every J; is consistent because a proof of a 
contradiction in J, involving as it does only a finite number of axioms, is also 
a proof of a contradition in some J;. We prove the consistency of the 1;s, by 
induction. By hypothesis, Jo = K is consistent. Assume that 1; is consistent. 
If J;+1 = J;, then J;+t is consistent. If J, -=J 1;+1, and therefore, by the defi­
nition of Ji+I, -,~i+l is not provable in J;, then, by Lemma 2.12, Ji+1 is also 
consistent. So, we have proved that all the J;s are consistent and, therefore, 
that J is consistent. To prove the completeness of 1, let C(f be any closed wf of 
K. Then C(f = ~J+l for somej;?;:O. Now, either 1--Jj -.36'1+1 or l--1,+1 ~J+I, since, 
if it is not the case that l-1j -,PJJ+l, then rJaj+I is added as an axiom in JJ+l· 
Therefore, either 1-J --,~ i+ l or l--1 rJ8 j+ 1· Thus, J is complete. 

Note that even if one can effectively determine whether any wf is an 
axiom of K, it may not be possible to do the same with (or even to enu­
merate effectively) the axioms of J; that is, J may not be axiomatic even if K 
is. This is due to the possibility of not being able to determine. at each step. 
whether or not -,~n+l is provable in 111 • 

Exercises 

2.49 Show that a theory K is complete if and only if, for any closed wfs rJ8 
and CfJ of K, if 1--K rJ8 V f(i, then 1-K ~ or 1-K C(f. 

2.50° Prove that every consistent decidable theory has a consistent. decid­
able, complete extension. 

DEFINITIONS 

1. A closed term is a term without variables. 
2. A theory K is a scapegoat theory if, for any wf ~(x) that has x as its only 

free variable, there is a closed term t such that 

1--K (3x) -d3)(x) * ---.~(t) 

LEMMA 2.15 

Every consistent theory K has a consistent extension K' such that K' is a 
scapegoat theory and K' contains denumerably many closed terms. 
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Proof 

Add to the symbols of K a denumerable set {b1,b2, ... } of new individual 
constants. Call this new theory Ko. Its axioms are those of K plus those 
logical axioms that involve the symbols of K and the new constants. ~ is 
consistent. For, if not, there is a proof in K0 of a wf f!J 1\ -.~. Replace each 
b; appearing in this proof by a variable that does not appear in the proof. 
This transforms axioms into axioms and preserves the correctness of the 
applications of the rules of inference. The final wf in the proof is still a 
contradiction, but now the proof does not involve any of the b;s and 
therefore is a proof inK. This contradicts the consistency of K. Hence, Ku 
is consistent. 

By Lemma 2.13, let F1(x;1 ), F2(x;2 ), . .. ,Fk(x;k), . .. be an enumeration of 
all wfs of K0 that have one free variable. Choose a sequence bh, bh, ... of 
some of the new individual constants such that each b1k is not contained in 
any of the wfs F1(x11 ), •• • ,Fk(x;k) and such that bik is different from each of 
bJ,, ... , bik_,. Consider the wf 

Let K11 be the theory obtained by adding (S1), ... , (Sn) to the axioms ofK0, 

and let K.:x:- be the theory obtained by adding all the (S; )s as axioms to I{o. 
Any proof inK~ contains only a finite number of the (S;)s and, therefore, 
will also be a proof in some K11 • Hence, if all the K11 s are consistent, so is 
K 00 • To demonstrate that all the K11s are consistent, proceed by induction. 
We know that K0 is consistent. Assume that K,_1 is consistent but that K11 is 
inconsistent (n;:::: 1). Then, as we know, any wf is provable in K 11 (by the 
tautology -.A ==:> (A ::::} B), Proposition 2.1 and MP). In particular, 
1-K" -.(811 ). Hence, (S11 ) I-K,_1 -.(S,,). Since (S11 ) is closed, we have, by Cor­
ollary 2.7, I-K

11
_ 1 (Sn)::::} -.(Sn)· But, by the tautology (A::::=:> •A) :::}--.A, 

Proposition 2.1 and MP, we then have I-K
11

_ 1 -.(S11); that is, 
1--K,_, -.[(3x1,, )-.F11 (x1,) ::::} -.F,,(b1, )]. Now, by conditional elimination, we 
obtain I-K

11
_ 1 (3x1..)-.F,,(x;..) and I-K,_1 -.-.F11(b1..), and then, by negation 

elimination, I- K 1F,,(b1,). From the latter and the fact that b1, does not occur 
in (So), ... , (S11-t), we conclude I-K,,_1 Fn(x,.), where Xr is a variable that does 
not occur in the proof of F,,(bi,). (Simply replace in the proof all occurrences 
of b1, by x,..) By Gen, I-K,,_1 (\fxr) F,,(x,.), and then, by Lemma 2.11 and 
biconditional elimination, 1-K,,_, (\fx1..)F,,(x1..). (We use the fact that F,,(x,.) 
and F,,(x;,.) are similar.) But we already have 1--K,,_, (3x;, )-.F,,(x1,), which is an 
abbreviation of 1--K,,_, -.(Vx; .. )-.-.F,,(x1,.), whence, by the replacement theorem, 
1--K,,_, -.(Vx1,)F,1(x;,.), contradicting the hypothesis that K11_ 1 is consistent. 
Hence, K11 must also be consistent. Thus Koo is consistent, it is an extension 
of K, and it is clearly a scapegoat theory. 

,_. 
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LEMMA 2.16 

Let J be a consistent, complete scapegoat theory. Then J has a model M 
whose domain is the set D of closed terms of J. 

Proof 

For any individual constant a; of J, let (a;)M = a;. For any function letter fJ: 
of J and for any closed terms tl, ... t11 of J, let (!J:)M(t~, ... ,t11 ) = 

.r(t1, •.. , t11 ). (Notice thatfk(tl, .... tn) is a closed term. Hence,~ft)M is an 
,~ary operation on D.) For any predicate letter A'k of J, let (Af:) consist of 
all n-tuples (tt, ... , tn) of closed terms t1, ... , t11 of J such that 
h AZ(t1 , ••• , tn)- It now suffices to show that, for any closed wf CfJ of J: 

( 0) FM ((j if and only if h re 

(If this is established and fjj is any axiom of J, let CC be the closure of f!J. By 
Gen, \-1 Cfi. By (D), FM Cfi. By (VI) on page 61, FM .@.Hence, M would be a 
model of J.) The proof of (D) is by induction on the number r of con­
nectives and quantifiers in Cfi. Assume that (D) holds for all closed wfs with 
fewer than r connectives and quantifiers. 

Case 1. CfJ is a closed atomic wf Ai:(t1 , . • • , t11 ). Then (D) is a direct con­
sequence of the definition of (Ak)M. 

Case 2. CfJ is -.~. If CfJ is true for M, then E!t> is false for M and so, by 
inductive hypothesis, not-1-1 ~- Since J is complete and f!2 is closed, 1-1 -,f!t­
that is, \-1 Cfi. Conversely, ifCfi is not true forM, then~ is true forM. Hence, 
h ~- Since J is consistent, not-\-1 -.~, that is, not-\-1 Cfi. 

Case 3. CfJ is~::::}~- Since CfJ is closed, so are~ and~- If((J is false forM, 
then~ is true and~ is false. Hence, by inductive hypothesis, \-1 ~and not­
h ~- By the completeness of J, \-1 --,~. Therefore, by an instance of the 
tautology D ::::} ( --,£ =:;. -.(D =:;. E)) and two applications of MP, 
h -.(~ ==> ~), that is, \-1 -.Cfi, and so, by the consistency of J, not-\-1 Cfi. 
Conversely, if not-1-1 Cfi, then, by the completeness of J, \-1 -.Cfi, that is, 
h-.(~~~). By conditional elimination, \-1 !.0 and 1-1 -.~. Hence, by (D) 
for~'~ is true forM. By the consistency of J, not-\-1 ~and, therefore, by 
(D) for~'~ is false forM. Thus, since~ is true forM and~ is false forM, 
rtJ is false for M. 

Case 4. CfJ is (Vxm)~. 
Case 4a. ~ is a closed wf. By inductive hypothesis, FM ~ if and only 

if \-1 f2. By Exercise 2.32(a), \-1 ~ {:} (Vx111 )~. So, 1-1 [!/? if and only if 
1-1 (Vxm )~, by biconditional elimination. Moreover, FM ~ if and only 
if FM (Vxm)~ by property (VI) on page 61. Hence, FM CfJ if and only if 
1-J Cfi. 

Case 4b. ~is not a closed wf. Since CfJ is closed,~ has x111 as its only free 
variable, say ~ is F(xm)- Then CfJ is (\fxm)F(xm). 
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(i) Assume FM ~ and not-1--J ~- By the completeness of J, l--1 -.11, that is-• 
1--1 -{Vxm)F(xm). Then, by Exercise 2.33(a) and biconditional elimina-
tion, 1--1 (3xm)-.F(xm). Since J is a scapegoat theory, 1--1 -.F(t) for some 
closed term t of J. But 1=M Cfi, that is, FM ('v'xm)F(x111 ). Since 
(\fx111)F(x111 ) =? F(t) is true forM by property (X) on page 63, FM F(t). 
Hence, by (D) for F(t), l--1 F(t). This contradicts the consistency of J. 
Thus, if FM Cfd, then, l--1 Cfi. 

(ii) Assume 1--1 ~ and not-I=M ~. Thus, 

By (##), some sequence of elements of the domain D does not satisfy 
(\fxm)F(xm)· Hence, some sequences does not satisfy F(x,J Lett be the ith 
component of s. Notice that s*(u) = u for all closed terms u of J (by the 
definition of (a;)M and (fk')M). Observe also that F(t) has fewer connectives 
and quantifiers than Cfi and, therefore, the inductive hypothesis applies to 
F(t), that is, (D) holds for F(t). Hence, by Lemma 2(a) on page 63, s does 
not satisfy F(t). So, F(t) is false forM. But, by(#) and rule A4, r--1 F(t), and 
so, by (D) for F(t), FM F(t). This contradiction shows that, if l--1 Cfi, then 
FM Cfd. 

Now we can prove the fundamental theorem of quantification theory. 
By a denumerable model we mean a model in which the domain is de­
numerable. 

PROPOSITION 2.11t 

Every consistent theory K has a denumerable model. 

Proof 

By Lemma 2.15, 1( has a consistent extension K' such that K' is a scapegoat 
theory and has denumerably many closed terms. By Lindenbaum's lemma, 
1(' has a consistent, complete extension J that has the same symbols at K'. 
Hence, J is also a scapegoat theory. By Lemma 2.16, J has a model M whose 
domain is the denumerable set of closed terms of J. Since J is an extension of 
1(, M is a denumerable model of K. 

tThe proof given here is essentially due to Henkin (1949), as simplified by 
Hasenjaeger (1953). The result was orjginally proved by G6del (1930). Other proofs 
have been published by Rasiowa and Sikorski (1951; 1952) and Beth (1951), using 
(Boolean) algebraic and topological methods, respectively. Still other proofs may be 
found in Hintikka (1955a, b) and in Beth (1959). 
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COROLLARY 2.18 

:)\.ny logically valid wf ~ of a theory K is a theorem of K. 

proof 

We need consider only closed wfs ~' since a wf !?2J is logically valid if and 
only if its closure is logically valid, and !?2 is provable in K if and only if its 
closure is provable in K. So, let ~ be a logically valid closed wf of K. 
Assume that not-1-K ~.By Lemma 2.12, if we add-.~ as a new axiom to K, 
the new theory K' is consistent. Hence, by Proposition 2.17, K' has a model 
M. Since --,(!JJ is an axiom of K', -.~ is true for M. But, since ~ is logically 
valid, f!)J is true for M. Hence, ~ is both true and false for M, which is 
impossible (by (II) on page 61 ). Thus, ~ must be a theorem of K. 

COROLLARY 2.19. (GODEL'S COMPLETENESS THEOREM, 1930) 

In any predicate calculus, the theorems are precisely the logically valid wfs. 

Proof 

This follows from Proposition 2.2 and Corollary 2.18. (Godel's original 
proof runs along quite different lines. For other proofs, see Beth (1951), 
Dreben (1952), Hintikka (1955a, b) and Rasiowa and Sikorski (1951; 1952).} 

COROLLARY 2.20 

Let K be any theory. 

(a) A wf r!1J is true in every denumerable model of K if and only if 1--K f!)J. 

(b) If, in every model ofK, every sequence that satisfies all wfs in a set r of 
wfs also satisfies a Wf f!)J, then r 1-K ~. 

(c) If a wf ~ of K is a logical consequence of a set r of wfs of K, then 
r 1--K f!)J. 

(d) If a wf ~of K is a logical consequence of a wf ~of K, then~ 1--K f!)J. 

Proof 

(a) We may assume f!)J is closed. If not-1-K ~, then the theory 
K' = K + { -.93'} is consistent.t Hence, by Proposition 2.17, K' has a 
denumerable model M. However,-.~, being an axiom ofK', is true for 

tu K is a theory and 8 is a set of wfs of K, then K + 8 denotes the theory 
obtained from K by adding the wfs of 8 as axioms. 
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M. By hypothesis, since M is a denumerable model of K, ~ is true for 
M. Therefore, -~ is true and false forM, which is impossible. 

(b) Consider the theory K + r . By the hypothesis, f!lJ is true for every model 
of this theory. Hence, by (a). ~ K+r &J. So, r 1-K !J. 

Part (c) is a consequence of (b), and part (d) is a special case of (c). 

Corollaries 2.18- 2.20 show that the 'syntactical' approach to quantifi­
cation theory by means of first-order theories is equivalent to the 'seman­
tical' approach through the notions of interpretations, models, logical 
validity, and so on. For the propositional calculus, Corollary 1.15 demon­
strated the analogous equivalence between the semantical notion (tautology) 
and the syntactical notion (theorem of L). Notice also that, in the propo­
sitional calculus, the completeness of the system L (see Proposition 1.14) led 
to a solution of the decision problem. However, for first-order theories, we 
cannot obtain a decision procedure for logical validity or, equivalently, for 
provability in first-order predicate calculi. We shall prove this and related 
results in Section 3.6. 

COROLLARY 2.21. (SKOLEM-LOWENHEIM THEOREM, 1920, 1915) 

Any theory that has a model has a denumerable model. 

Proof 

If K has a model, then K is consistent, since no wf can be both true and false 
for the same model M. Hence, by Proposition 2.17, J( has a denumerable 
model. 

The following stronger consequence of Proposition 2.17 is derivable. 

COROLLARY 2.22A 

For any cardinal number m;;:d~0 , any consistent theory K has a model of 
cardinality rn. 

Proof 

By Proposition 2.17, we know that K has a denumerable model. Therefore, 
it suffices to prove the following lemma. 

LEMMA 

If m and n are two cardinal numbers such that m ~ n and if K has a model of 
cardinality m, then K has a model of cardinality n. 
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Proof 

Let M be a model of 1( with domain D of cardinality m. Let D' be a set of 
cardinality n that contains D. Extend the model M to an interpretation M' 
that has D' as domain in the following way. Let c be a fixed element of D. 
We stipulate that the elements of D'- D behave like c. For example, if B'} is 
the interpretation in M of the predicate letter A') and (Bj)' is the new in­
terpretation in M', then for any d1, ... , dn in D', (Bj)' holds for ( d1, ... , d") if 
and only if Bj holds for (uh ... , U11 ), where u1 = d; if d; E D and u; = c if 
eft ED'- D. The interpretation of the function letters is extended in an 
analogous way, and the individual constants have the same interpretations 
as in M. It is an easy exercise to show, by induction on the number of 
connectives and quantifiers in a wf :7J, that PJJ is true for M' if and only if it is 
true forM. Hence, M' is a model of 1( of cardinality n. 

Exercises 

2.51 For any theory K, if r ~K -~ and each wf in r is true for a model M 
of K, show that f!lJ is true for M. 
2.52 If a wf r!lJ without quantifiers is provable in a predicate calculus, prove 
that ~ is an instance of a tautology and, hence, by Proposition 2.1, has a 
proof without quantifiers using only axioms (Al)-(A3) and MP. [Hint: if r!lJ 
were not a tautology, one could construct an interpretation, having the set 
of terms that occur in f!lJ as its domain, for which f!lJ is not true, contradicting 
Proposition 2.2.] Note that this implies the consistency of the predicate 
calculus and also provides a decision procedure for the provability of wfs 
without quantifiers. 
2.53 Show that ~K ~ if and only if there is a wf ~ that is the closure of the 
conjunction of some axioms of K such that rt:::} !!lJ is logically valid. 
2.54 Compactness. If all finite subsets of the set of axioms of a theory K 
have models, prove that K has a modeL 
2.55 (a) For any wf ~. prove that there is only a finite number of inter­

pretations of r!lJ on a given domain of finite cardinality k. 
(b) For any wf f!ll, prove that there is an effective way of determining 

whether !18 is true for all interpretations with domain of some fixed 
cardinality k. 

(c) Let a wf f!lJ be called k-valid if it is true for all interpretations that 
have a domain of k elements. Call [J/J precisely k-valid if it is k-valid 
but not (k + 1 )-valid. Show that (k + I )-validity implies k-validity 
and give an example of a wf that is precisely k-valid. (See Hilbert 
and Bernays (1934, § 4-5) and Wajsberg (1933).) 

2.56 Show that the following wf is true for all finite domains but is false 
for some infinite domain. 
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(\lx)(\ly)(\lz)[Ai(x,x) 1\ (AI(x,y) 1\AI(y,z) => Af(x,z)) 1\ (Ai(x,y) VAf(y,x))] 

=> (3y)(\lx)AI(Y, x) 
2.57 Prove that there is no theory K_ whose models are exactly the inter­
pretations with finite domains. 
2.58 Let f!lJ be any wf that contains no quantifiers, function letters, or 
individual constants. 
(a) Show that a closed prenex wf (\fxl) .. . (\fx11 )(3y1) •• • (3y111 )2D, with m ~0 

and n ~ 1, is logically valid if and only if it is true for every inter~ 
pretation with a domain of n objects. 

(b) Prove that a closed prenex wf (::Jy1) ... (3y111 )f1lJ is logically valid if and 
only if it is true for all interpretations with a domain of one element. 

(c) Show that there is an effective procedure to determine the logical va~ 
lidity of all wfs of the forms given in (a) and (b). 

2.59 Let K_1 and K.2 be theories in the same language .P. Assume that any 
interpretation M of .2? is a model of K1 if and only if M is not a model of 
K_2. Prove that I(1 and I(2 are finitely axiomatizable, that is, there are finite 
sets of sentences rand 11 such that, for any sentence :!JJ, ~K1 f:RJ if and only if 
r I- f:RJ, and I-K

2 
_.Jg if and only if 11 f- :Y.J. t 

2.60 A set r of sentences is called an independent axiomatization of a 
theory I( if (a) all sentences in r are theorems of K, (b) r I- £1 for every 
theorem f:RJ of I(, and (c) for every sentence Ctf of r, it is not the case that 
r- {Ctf} f- Ctf t. Prove that every theory 1( has an independent axiomatiza­
tion. 
2.61A If, for some cardinal m~~0, a wf ~is true for every interpretation of 
cardinality m, prove that f!lJ is logically valid. 
2.62A If a wf £1 is true for all interpretations of cardinality rn prove that fB is 
true for all interpretations of cardinality less than or equal to m. 
2.63 (a) Prove that a theory K is a scapegoat theory if and only if, for any 

wf f:Ri(x) with x as its only free variable, there is a closed term t such 
that f-K (3x)~(x) =* f!IJ(t). 

(b) Prove that a theory K is a scapegoat theory if and only if, for any 
wf 18(x) with x as its only free variable such that f-K (3x)!B(x), 
there is a closed term t such that f-K f!8(t). 

(c) Prove that no predicate calculus is a scapegoat theory. 

2.8 FIRST-ORDER THEORIES WITH EQUALITY 

Let K be a theory that has as one of its predicate letters Af. Let us write t = s 
as an abbreviation for Ai(t, s), and t 1- s as an abbreviation for ·Ai(t, s). 

tHere, an expression r 1-- i)g, without any subscript attached to 1--, means that f!J 
is derivable from r using only logical axioms, that is within the predicate calculus. 
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-Then J(_ is called a first-order themJI with equality (or simply a theory with 
equality) if the following are theorems of l(: 

(A6) (\ixi )xi =XI (reflexivity of equality) 
(A7) x = y ::::> (~(x,x) ::::> ~(x,y)) (substitutivity of equality) 

'where x andy are any variables, 36'(x,x) is any wf, and J6'(x,y) arises from 
.@(x,x) by replacing some, but not necessarily all, free occurrences ofx by y, 
with the proviso thaty is free for x in 26'(x,x). Thus, Jg(x,y) may or may not 
contain free occurrences of x. 

The numbering (A6) and (A7) is a continuation of the numbering of the 
logical axioms. 

PROPOSITION 2.23 

[n any theory with equality, 

(a) I- t = t for any term t; 
(b) I- t = s ::::> s = t for any terms t and s; 

(c) I-t= s ::::> (s = r ::::> t = r) for any terms t,s and r. 

Proof 

(a) By (A6), I- (\fxi) XI =XI. Hence, by rule A4, I- t = t. 
(b) Let x andy be variables no1 occurring in tors. Letting ~(x,x) be x = x 

and fg(x,y) bey= x in schema (A7), I- x = y ::::> (x = x ::::> y = x) . But, 
by (a), I- x = x. So, by an instance of the tautology (A ::::} (B ::::> C)) 
::::> (B ::::> (A ::::> C)) and two applications of MP, we have I- x = y 
::::> y = x. Two applications of Gen yield I- (\ix)(\iy)(x = y::::} y = x), 
and then two applications of rule A4 give I-t= s ::::> s = t. 

(c) Let x,y and z be three variables not occurring in t, s, or r. Letting 
~(y,y) bey= z and fg(y,x) be x = z in (A 7), with x and y inter­
changed, we obtain I- y = x ::::> (y = z ::::> x = z). But, by (b), 
I- x = y ::::> y = x. Hence, using an instance of the tautology 
(A::::} B)::::> ((B ::::>C)::::> (A::::} C)) and two applications of MP, we 
obtain I- x = y ::::> (y = z::::} x = z). By three applications of Gen, 
I- (\ix)(\iy)(\iz)(x = y ::::> (y = z ==? x = z)), and then, by three uses of 
rule A4, I- t = s ==? (s = r ::::> t = r). 

Exercises 

2.64 Show that (A6) and (A 7) are true for any interpretation M in which 
(Ai)M is the identity relation on the domain of the interpretation. 
2.65 Prove the following in any theory with equality. 



96~ L-_______________ Q_U_A_N __ T_IF_I_C_A_T_IO __ N_T_H_E_O __ R_Y ______________ =:· 
(a) I- (\fx)(a3'(x) <¢=> (3y)(x = y 1\ ~(y))) if y does not occur in M(x) 
(b) I- (\fx)(.?8(x) {::?- (\fy)(x = y => ~(y))) if y does not occur in ~(x) 
(c) I- (\fx)(3y) x = y 
(d) I- x = y => f(x) = f(y), where f is any function letter of one argument 
(e) I- 36'(x) 1\ x = y => ~(y), if y is free for x in ~(x) 
(f) I- .@(x) 1\ -,.~(y) ::::? x-# y, if y is free for x in .@(x) 

We can reduce schema (A7) to a few simpler cases. 

PROPOSITION 2.24 

Let K be a theory for which (A6) holds and (A 7) holds for all atomic wfs 
~(x, x) in which there are no individual constants. Then K is a theory with 
equality, that is, (A7) holds for all wfs .?$(x,x). 

Proof 

We must prove (A7) for· all wfs 36'(x,x). It holds for atomic wfs by as­
sumption. Note that we have the results of Proposition 2.23, since its proof 
used (A 7) only with aton:.ic wfs without individual constants. Note also that 
we have (A7) for all atomic wfs .@(x,x). For if ,g6(x,x) contains individual 
constants, we can replace those individual constants by new variables, ob­
taining a wf 36'*(x,x) without individual constants. By hypothesis, the cor­
responding instance of (A 7) with J5>*(x,x) is a theorem; we can then apply 
Gen with respect to the new variables, and finally apply rule A4 one or more 
times to obtain (A7) with respect to pg(x,x). 

Proceeding by induction on the number n of connectiv·es and quantifiers 
in pg(x,x), we assume that (A7) holds for all k < n. 

Case 1. .@(x,x) is ,c~(x,x). By inductive hypothesis, we have 
I- y = x => (~(x,y) => ~(x,x)), since ~(x,x) arises from ~(x,y) by replacing 
some occurrences of y by x. Hence, by Proposition 2.23(b ), instances of the 
tautologies (A =>B) => ( -,f!IJ => -,A) and (A=> B) => ((B => C) => (A=> C)) 
and MP, we obtain I- x = y =:} (.@(x,x) => pg(x,y)). 

Case 2. pg(x,x) is ~(x,x) =:} !0(x,x). By inductive hypothesis and Pro­
position 2.23(b), I- x = y => (~(x,y) => ~(x,x)) and I- x = y => (9(x,x) 
=> .@(x,y)). Hence, by the tautology (A=:} (C1 =>C))=> [(A=> (D => Dt)) 
=>(A=:} ((C =>D)=> (C1 => DI)))], we have I- x = y => (.@(x,x) => .J8(x,y)). 

Case 3. ~(x,x) is (\fz)~(x,x,z). By inductive hypothesis, I- x = y => 
(CC(x,x,z) => ~(x,y,z)). Now, by Gen and axiom (A5), I- x = y =:} 

(\lz)(~(x, x, z) => CC(x,y, z)). By Exercise 2.27(a), I- (\fz) (~(x,x,z) => ~(x,y,z)) 
=> [(\fz)tG'(x, x, z) =:} (\fz)~(x,y, z)J, and so, by the tautology (A=> B) =:} 

((B =>C) => (A =>C)), I- x = y => (.J8(x,x) => .J8(x,y)). 

The instances of (A 7) can be still further reduced. 
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RROPOSITION 2.25 

Let J( be a theory in which (A6) holds and the following are true. 

(a) Schema (A7) holds for all atomic wfs J.f(x,x) such that no function 
letters or individual constants occur in .?8(x,x) and 88(x,y) comes from 
~(x,x) by replacing exactly one occurrence of x by y. 

/'11 ( ) - {'11 ( ) h . Jn . f . (b) f- x = y :::::} J j Zt, ... , Zn - J j WI, ... , w, , w ere j 1s any unctiOn 
letter of I(, ZI, ... , Z11 are variables, and /}'(wt, ... , w 11 ) arises from 
!J'(zi, ... ,z11 ) by replacing exactly one occurrence of x by y. 

Then I( is a theory with equality. 

Proof 

By repeated application, our assumptions can be extended to replacements 
of more than one occurrence of x by y. Also, Proposition 2.23 is still deri­
vable. By Proposition 2.24, it suffices to prove (A 7) for only atomic wfs 
without individual constants. But, hypothesis (a) enables us easily to prove 

1- (Yt = Zt 1\ ... 1\yn = z,) => (~(Yt,· .. ,y,) => ~(zt, ... ,zn)) 

for all variables Yt, ... ,yn, zi, ... ,zn and any atomic wf 93'(yi, ... ,yn) 
without function letters or individual constants. Hence, it suffices to show: 

(*) If t(x,x) is a term without individual constants and t(x,y) comes from 
t(x,x) by replacing some occurrences of x by y, then f- x = y =:} t(x,x) 
= t(x,y).t 

But ( *) can be proved, using hypothesis (b), by induction on the number of 
function letters in t(x,x)~ and we leave this as an exercise. 

[tis easy to see from Proposition 2.25 that, when the language of I( has 
only finitely many predicate and function letters, it is only necessary to 
verify (A 7) for a finite list of special cases (in fact, n wfs for each A'} and n 
wfs for each J}'). 

Exercises 

2.66 Let KI be a theory whose language has only = as a predicate letter 
and no function letters or individual constants. Let its proper axioms be 
(\ixi) XI =XI, (\fxi)(\ix2)(xi =X2 ::::}X2 =xi) and (\fxi)(\ix2)(\fx3)(x1 =x2 
=> (x2 = X3 ::::} XI = x3)). Show that KI is a theory with equality. [Hint: It 

tThe reader can clarify how ( *) is applied by using it to prove the following 
instance of (A7): 1- x = y => (AUfl(x)) => A~(fl(Y))). Let t(x,x) be fl(x) and let 
t(x,y) be J/(y). 
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suffices to prove that f- x1 = X3 ==> (x1 = x2 => X3 = x2) and f- x2 = x 3 
=> (xt = x2 => Xt = x3).] l(l is called the pure first-order theory of equality. 
2.67 Let K2 be a theory whose language has only = and < as predicate 
letters and no function letters or individual constants. Let K2 have the 
following proper axioms. 
(a) (Vxt) XI = Xt 

(b) (Vx1)(Vx2)(xl = X2 =?- X2 = Xt) 
(c) (Vxt)(Vx2)('v'x3)(x1 = X2 ~ (x2 = X3 =} Xt = X3)) 
(d) (VxJ)(3x2)(3x3)(Xt < X2 A X3 < Xt) 
(e) (Vx1)(Vx2)(\lx3)(x1 < X2 AX2 < X3 => XJ < X3) 
(f) ('v'xt)(Vx2)(xi = X2 ==>-, Xt < X2) 
(g) (Vx1)(Vx2)(xi < X2 V Xt = X2 V X2 <xi) 

(h) (Vxt)(Vx2)(xi < X2 => (:::lx3)(xi < X3 AX3 < X2)) 

Using Proposition 2.25, show that K2 is a theory with equality. 1(2 is called 
the theory of densely ordered sets with neither first nor last element. 

2.68 Let K be any theory with equality. Prove the following. 
(a) f- Xt = Yl A ... 1\ Xn = Yn => t(xt, ... ,xn) = t( Yi, ... ,yn), where 

t(y1, ... ,y,) arises from the term t(x1, ... ,xn) by substitution of 
Yl, ... , )111 for XI, ... , X11 , respectively. 

(b) f-x1 =ytA ... Axn=Yn=> (P4(xl,···,xn)~M(yt,···,Yn)), where 
~(Yt, ... ,y11 ) is obtained by substituting YI, ... ,y11 for one or more 
occurrences of XI, ... , X11 , respectively, in the wf ~(x~, ... , x,), and 
Y1, ... ,Yn are free for Xt, ... ,x", respectively, in the wf P4(xt, ... ,x11 ). 

Examples. 
(In the literature, 'elementary' is sometimes used instead of 'first-order'.) 

1. Elementary theory G of groups: predicate letter=, function letter f?, and 
individual constant a1• We abbreviate/(- (t,s) by t + s and a 1 by 0. The 
proper axioms are the following. 
(a) Xt + (x2 +x3) =(xi +x2) +x3 
(b) Xt + 0 = Xt 
(c) (Vxt)(3x2)XI + X2 = 0 
(d) Xt = Xt 
(e) Xt = X2 => X2 = Xt 
(f) XJ = X2 =?- (x2 = X3 =} XI = X3) 
(g) XI = X2 =} (XI + X3 = X2 + X3 A X3 + Xi = X3 + X2) 
That G is a theory with equality follows easily from Proposition 2.25. If 
one adds to the axioms the following wf: 
(h) Xt +x2 = x2 +xt 

the new theory is called the elementa1)1 theory of abelian groups. 
2. Elemental)! them)! F of fields: predicate letter =, function letters f? and 

ff, and individual constants a1 and a2. Abbreviate ff(t,s) by 
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t + s, f}(t, s) by t · s, and a I and a2 by 0 and 1. As proper axioms, take 
(a)- (h) of Example 1 plus the following. 
(i) XI = X2 =:} (XI · X3 = X2 · X3 1\ X3 ·X) = X3 · X2) 
(j) XI · (x2 · X3) = (XI · X2) · X3 

(k) Xl · (x2 + X3) = (XI · X2) + (XI · X3) 
(I) XI · X2 = X2 ·XI 

(m) XI · 1 =XI 

(n) XI -# 0 :::::} (::lx2) XI · x2 = I 
(o) 0-# 1 
F is a theory with equality. Axioms (a)-(m) define the elementary theory 
Rc of commutative rings with unit. If we add to F the predicate letter A~, 
abbreviate A~(t,s) by t < s, and add axioms (e), (f) and (g) of 
Exercise 2.67, as well as XJ < x2 =:}XI +x3 < x2 +x3 and 
XI < x2 1\ 0 < X3 =:}XI · X3 < x2 · X3, then the new theory F < is called the 
elementary theory of ordered fields. 

Exercise 

2.69 (a) What fonnulas must be derived in order to use Proposition 2.25 to 
conclude that the theory G of Example 1 is a theory with equality? 

(b) Show that the axioms ( d)-(f) of equality mentioned in Example 1 
can be replaced by (d) and 
(f'): Xt = X2 ==} (x3 = X2 =:}XI = X3). 

One often encounters theories K in which= may be defined; that is, there 
is a wf t&"(x,y) with two free variables x andy, such that, if we abbreviate 
~(t,s) by t = s, then axioms (A6) and (A7) are provable inK. We make the 
convention that, if t and s are terms that are not free for x andy, respec­
tively, in t&"(x,y), then, by suitable changes of bound variables (see Exercise 
2.48), we replace t&"(x,y) by a logically equivalent wf t&"*(x,y) such that t and s 
are free for x and y, respectively, in t&"*(x,y); then t = s is to be the ab­
breviation of t&"* (t, s). Proposition 2.23 and analogues of Propositions 2.24 
and 2.25 hold for such theories. There is no harm in extending the term 
theory 1vith equality to cover such theories. 

In theories with equality it is possible to define in the following way 
phrases that use the expression 'There exists one and only one x such 
that. . .'. 

DEFINITION 

(3Ix)28(x) for (3x)P4(x) 1\ (\fx)(\fy)(.?8(x) 1\ P4(y) =:} x = y) 
In this definition, the new variable y is assumed to be the first variable that 
does not occur in :?8(x). A similar convention is to be made in all other 
definitions where new variables are introduced. 
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Exercise 

2.70 In any theory with equality, prove the following. 
(a) r- (Vx)(3IJ') x = y 
(b) 1- (3 1x)~(x) <=? (3x)(Vy)(x = y <=? ~(y)) 
(c) r- (\ix)(~(x) <* C(?(x)) => [(3tx)J6'(x) {:} (31x)C(?(x)J 
(d) r- (31x)(~ V ~) => ((3tx).cJ61) V (3tx)C(? 
(e) ~ (3 1x)~(x) <=? (3x)(~(x) A (Vy)(~(y) => y = x)) 

In any model for a theory K with equality, the relation E in the model 
corresponding to the predicate letter = is an equivalence relation (by Pro­
position 2.23). If this relation E is the identity relation in the domain of the 
model, then the model is said to be normal. 

Any model M forK can be contracted to a normal model M* forK by 
taking the domain D* of M* to be the set of equivalence classes determined 
by the relationE in the domain D ofM. For a predicate letter Aj and for any 
equivalence classes [bd, ... , [b11] in D* determined by elements b1, ... , b11 in 
D, we let (Aj)M* hold for ((btJ, ... , [b11J) if and only if (Aj)M holds for 
(b1, .•. , b11 ). Notice that it makes no difference which representatives 
b1, •.. , b11 we select in the given equivalence classes because, from (A7), 
~ Xt = Yll\ ... I\ Xn = Yn =?- (Aj(xb ... ,xn) <=?Aj(yl, ... ,Yn)). Likewise, for 
any function letter f}' and any equivalence classes [bt], ... , [b11 ] in D*, let 
(!J')M• ([bd, ... , [b11]) = [(Jf)M (bt, ... , b,,)]. Again note that this is in­
dependent of the choice of the representatives b1 , ••• , b11 , since, from (A 7), 
we can prove r- Xt = Yl 1\ ... 1\Xn = Yn => fp(xl, ... ,xn) = f~1 (Yt, . .. ,yn). 
For any individual constant ai let (ai)M• = [(ai)MJ. The reladon E* corre­
sponding to =in the model M* is the identity relation in D*: E*([bt], [b2]) if 
and only if E(b1, b2), that is, if and only if [bt) .,__ [b2]. Now one can easily 
prove by induction the following lemma: If s = (b1, b2, ... ) is a denumerable 
sequence of elements of D, and s' = ([bt], [b2], ... ) is the corresponding se­
quence of equivalence classes, then a wf f!lJ is satisfied by sin M if and only if 
~is satisfied by s' in M*. lt follows that, for any wf ~' :!8 is true forM if and 
only if~ is true forM*. Hence, because M is a model ofl(, M* is a normal 
model ofK. 

PROPOSITION 2.26 (EXTENSION OF PROPOSITION 2.17) 

(Godel, 1930) Any consistent theory with equality K has a finite or denu­
merable normal model. 

Proof 

By Proposition 2.17, K has a denumerable model M. Hence, the contraction 
of M to a normal model yields a finite or denumerable normal model M* 
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because the set of equivalence classes in a denumerable set Dis either finite 
or denumerable. 

COROLLARY 2.27 (EXTENSION OF THE SKOLEM-LOWENHEIM 
THEOREM) 

Any theory with equality K_ that has an infinite normal model M has a 
denumerable normal model. 

Proof 

Add to K the denumerably many new individual constants b1, b2, . . . together 
with the axioms bi -# bj for i -# j. Then the new theory K' is consistent. If K' 
were inconsistent, there would be a proof in K' of a contradiction C(} 1\ -tfi, 
where we may assume that C(} is a wf of K. But this proof uses only a finite 
number of the new axioms: b;1 -# bj1 , ••• , b;,-# bj, · Now, M can be extended 
to a model M# of K plus the axioms b;1 -# b j 1 , ••• , b;" f b j,; in fact, since M is 
an infinite normal model, we can choose interpretations of h;1 , bh, ... , b;", bj, , 
so that the wfs b;1 -=I- bj1 , ••• , bi, -# bj, are true. But, since ~ 1\ -,C(} is derivable 
from these wfs and the axioms of K, it would follow that~ 1\ --.~is true for 
M#, which is impossible. Hence, K' must be consistent. Now, by Proposi­
tion 2.26, l(' has a finite or denumerable normal model N. But, since, for 
if j, the wfs b; -# bj are axioms of l(', they are true for N. Thus, the 
elements in the domain ofN that are the interpretations of b1 , b2, ... must be 
distinct. which implies that the domain of N is infinite and, therefore, de­
numerable. 

Exercises 

2.71 We define (:311x)g6J(x) by induction on n ~ 1. The case 11 = 1 has al­
ready been taken care of. Let (:311+1x)~(x) stand for 
(:3y)(.16'(y) l\(311x)(x-# y A ~(x))). 
(a) Show that (:311x)28(x) asserts that there are exactly n objects for which :YJ 

holds, in the sense that in any normal model for (:311x)g6J(x) there are 
exactly n objects for which the property corresponding to .@(x) holds. 

(b) (i) For each positive integer n, write a closed wf :!J11 such that :!IJ,1 is 
true in a normal model when and only when that model contains at 
least n elements. 

(ii) Prove that the theory l(, whose axioms are those of the pure theory 
of equality 1(1 (see Exercise 2.66), plus the axioms !?41, !!82, .. . , is 
not finitely axiomatizable, that is, there is no theory K' with a finite 
number of axioms such that K and K' have the same theorems. 
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(iii) For a normal model, state in ordinary English the meaning of 

... ~11+1· 
(c) Let n be a positive integer and consider the wf ( t&"11 ) (311x)x = x. Let 1

11 

be the theory K1 + { t&"11 }, where K1 is the pure theory of equality. 
(i) Show that a normal model M is a model of L,, if and only if there 

are exactly n elements in the domain of M. 
(ii) Define a procedure for determining whether any given sentence is a 

theorem of L11 and show that Ln is a complete theory. 
2.72 (a) Prove that, if a theory with equality K has arbitrarily large finite 

normal models, then it has a denumerable normal model. 
(b) Prove that there is no theory with equality whose normal models 

are precisely all finite normal interpretations. 
2.73 Prove that any predicate calculus with equality is consistent. (A 
predicate calculus with equality is assumed to have (Al)-(A7) as its only 
axioms.) 
2.74D Prove the independence of axioms (Al)- (A7) in any predicate cal­
culus with equality. 
2.75 Iff!& is a wfthat does not contain the= symbol and !lJ is provable in a 
predicate calculus with equality K, show that ~ is provable inK_ without 
using (A6) or (A 7). 
2. 76D Show that = can be defined in any theory whose language has only a 
finite number of predicate letters and no function letters. 
2.77 (a)AFind a non-normal model of the elementary theory of groups G. 

(b) Show that any model M of a theory with equality K can be ex­
tended to a non-normal model of K. [Hint: Use the argument in 
the proof of the lemma within the proof of Corollary 2.22.] 

2.78 Let !lJ be a wf of a theory with equality. Show that ~is true in every 
normal model of Kif and only if r--K ~. 
2.79 Write the following as wfs of a theory with equality. 
(a) There are at least three moons of Jupiter. 
(b) At most two people know everyone in the class. 
2.80 If P(u) means u is a person, G(u, v) means u is a grandparent of v, and 
u = v means that u and v are identical, translate the following wf into or­
dinary English: 

(\ix)(P(x) =}(3xl)(3x2)(3.Y3){3.Y4)(xi -=/- X21\Xi =/=- X3 /\Xi =/= X41\ 

x2 -=/-x31\X2 =f-x41\X3 =f-x41\ G(xi:x) 1\ G(x2,x) 1\ G(x3,x)/\ 

G(x4,x) 1\ ('v'y)(G(y,x) =} y =Xi Vy = X2 Vy = X3 Vy = X4))) 

2.81 Consider the wf 

(*) ('v'x)('v'y)(3z)(z =f- x 1\ z =f- y 1\A(z)). 

Show that ( *) is true in a normal model M of a theory with equality if and 
only if there exist in the domain of M at least three things having property 
A(z). 
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,~.82 Let the language 2 have the four predicate letters =, P , S and L. 
·Read u = vas u and v are identical, P(u) as u is a point, S(u) as u is a line, and 
,L(u, v) as u lies on v. Let the theory of equality ((} of planar incidence geo­
meli)J have, in addition to axioms (Al)-(A7), the following non-logical 
axioms. 

(1) P(x) =} -,S(x) 
(2) L(x, y) * P(x) 1\ S( y) 
(3) S(x) =} (3y)(3z)(y #- z 1\L(y,x) 1\L(z,x)) 
(4) P(x) 1\ P(y) 1\ xI- y =} (3tz)(S(z) 1\ L(x. z) 1\ L(y, z)) 
(5) (3x)(3y)(3z)(P(x) 1\P(y) 1\P(z) 1\ -.ce'(x,y,z)) 

where ce'(x,y, z) is the wf (3u)(S(u) 1\ L(x, u) 1\ L(y, u) 1\ L(z, u)), which is 
read as x, y, z are collinear. 

(a) Translate (1)-(5) into ordinary geometric language. 
(b) Prove r-(JJ (Vu)(Vv) (S(u) 1\ S(v) 1\ u f:- v =} (Vx)(Vy) (L(x, u) 1\ L(x, v)l\ 

L( y, u) 1\ L(y, v) ::::} x = y)), and translate this theorem into ordinary 
geometric language. 

(c) Let R(u, v) stand for S(u) 1\ S(v) 1\ •(3w)(L(w, u) 1\ L(w, v)). Read 
R(u, v) as u and v are distinct parallel lines. 
(i) Prove: hG R(u, v) ::::} u I- v 
(ii) Show that there exists a normal model of <G with a finite domain in 

which the following sentence is true: 

('v'x)('v'y)(S(x) 1\P(y) 1\ •L(y,x) => (31z)(L(y,z) 1\R(z,x))) 

(d) Show that there exists a model of <Gin which the following sentence is 
true: 

(\ix)(\iy)(S(x) 1\ S(y) 1\ xi= y => ·R(x,y)) 

2.9 DEFINITIONS OF NEW FUNCTION LETTERS 
AND INDIVIDUAL CONSTANTS 

In mathematics, once we have proved, for any y 1, . • . ,y11 , the existence of a 
unique object u that has a property 96'(u,y1 , ..• ,y11), we often introduce a 
new function letter f(Yt, ... ,y11 ) such that !!&(f(y~, . . . ,y,,),y1, ••• ,y,,) holds 
for all YI, ... ,y11 • In cases where we have proved the existence of a unique 
object u that satisfies a wf JJ(u) and flJ(u) contains u as its only free variable, 
then we introduce a new individual constant b such that f!!J( b) holds. It is 
generally acknowledged that such definitions, though convenient, add 
nothing really new to the theory. This can be made precise in the following 
manner. 
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PROPOSITION 2.28 

Let K be a theory with equality. Assume that f-K (3tu)86'(u,yl, ... ,y11 ). Let 
K# be the theory with equality obtained by adding to K a new function letter 
f of n arguments and the proper axiom gg( f ( Yl, ... , y,), Yl, ... , Yn), t as well 
as all instances of axioms (Al)-(A 7) that involve f. Then there is an effective 
transformation mapping each wf C(J of J(_# into a wf C(J# of K such that: 

(a) Iff does not occur in C(J, then C(J# is C(J. 

(b) (•C(J}# is •(C(J#). 
(c) (C(J =?- ~)# is qj# =} ~#. 
(d) ((Vx)C(}))# is (Vx)(C(J#). 
(e) 1-K# (C(J <==? qj#). 
(f) If 1-K# C(J, then f-K qj#_ 

Hence, if C(j does not contain I and f-K# rc, then 1-K C(J. 

Proof 

By a simplef-term we mean an expressionf(t1 , ..• , t,) in which t1, ... , t11 are 
terms that do not contain f. Given an atomic wf C(J of K#, let C(J* be the 
result of replacing the leftmost occurrence of a simple termf(tt, ... , tn) in Cfi 
by the first variable v not in rc or [l}J. Call the wf (3v)([l}J( v, t1, •.• , t11 ) 1\ rc*) 
the /-transform of C(J. If C(J does not contain J, then let C(J be its own /­
transform. Clearly, f-K# (3v)(gg(v, t1, ... , t11 ) 1\ C(J*) <==? C(J, (Here, we use 
f-K (3tu)~(u,yi, ... ,yn) and the axiom 86'(/(yt, ... ,yn),yt, ... ,Yn) of K#.) 
Since the f- transform C(J' of C(J contains one less f than C(J and f-K# C(J' <==? C(J, if 
we take successive /-transforms, eventually we obtain a wf(f;J# that does not 
contain f and such that f-K# qj# <==? C(J. Call C(J# the f-less transform of rc. 
Extend the definition to all wfs ofK# by letting(·~)# be·(~#),(~=?- <f)# 
be ~# =?- g#, and ((Vx)~)# be (Vx)~#. Properties (a)-(e) of Proposition 
2.28 are then obvious. To prove property (f), it suffices, by property (e), to 
show that, if C(J does not contain f and f-K# C(J, then f-K# C(J. We may assume 
that rc is a closed wf, since a wf and its closure are deducible from each 
other. 

Assume that M is a model of K .. Let M 1 be the normal model obtained by 
contracting M. We know that a wf is true for M if and only if it is true for 
M 1. Since f-K (3tu)86'(u,yl, ... ,y11 ), then, for any bt, ... ,b11 in the domain of 
M 1, there is a uniquecin thedomainofMt such that ~M1 .'.?b'[c,bt, ... ,b,,]. If 
we define / 1 (b1, •.. , b11 ) to be c, then, taking fi to be the interpretation of the 
function letter/, we obtain from M1 a model M# of J(#_ For the logical 
axioms of J(# (including the equality axioms of J(#) are true in any normal 

tn is better to take this axiom in the form ('v'u)(u = f(y1, ... ,y11 ) 

==> 9.S'(u,y1, ... ,y11 )), since f(yt, ... ,Yn) might not be free for u in .W(u,y1, . .. ,y,). 
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interpretation, and the axiom :18(/( Yl, ... ,yn),J'J, ... ,yn) also holds in M# 
by virtue of the definition of fi. Since the other proper axioms of J(# do not 
contain .f and since they are true for Mt, they are also true forM#. But 
~K# CC. Therefore, CC is true forM# , but since CC does not contain/, CC is true 
for M 1 and hence also for M. Thus, ~- is true for every model of K. 
Therefore, by Corollary 2.20(a), 1-K CC. (In the case where 1-K (31u)£'8(u) and 
!J(u) contains only u as a free variable, we form J(# by adding a new 
individual constant band the axiom Y.5'(b). Then the analogue of Proposition 
2.28 follows from practically the same proof as the one just given.) 

Exercise 

2.83 Find the /-less transforms of the following wfs. 

(a) (\fx)(3y)(AHx,y,f(x,J'l, ... ,yn)) => f(y,x, ... ,x) = x) 
(b) A}(f(Yt, ·. · ,J'n-t,f(J't, · · · ,y,))) 1\ (3x)Ai(x,f(Yt, · ·. ,y,)) 

Note that Proposition 2.28 also applies when we have introduced several 
new symbols /1, ... ,f,, because we can assume that we have added each f; to 
the theory already obtained by the addition of / 1 , ... ,/;_ 1; then m successive 
applications of Proposition 2.28 are necessary. The resulting wf CC# ofK can 
be considered an (/1, .•• ,.f,,)-free transform of CC into the language of l(. 

Examples 
1. In the elementary theory G of groups, one can prove (31y) x + y = 0. 

Then introduce a new function f of one argument. abbreviate f(t) by 
( - t), and add the new axiom x + ( -x) = 0. By Proposition 2.28, we now 
are not able to prove any wf of G that we could not prove before. Thus, 
the definition of ( -t) adds no really new power to the original theory. 

2. In the elementary theory F of fields, one can prove that 
(31y)((x =I= 0 1\x · y = 1) V (x = 0 andy= 0)). We then introduce a new 
function letter g of one argument, abbreviate g(t) by t- 1, and add the 
axiom (x =1= 0 1\x · x-1 = 1) V (x = 0 and x- 1 = 0), from which one can 
prove x =I= 0 => x · x-1 = 1. 

From Proposition 2.28 we can see that, in theories with equality, only 
predicate letters are needed; function letters and individual constants are 
dispensable. If J]' is a function letter, we can replace it by a new predicate 
letter Ak+l if we add the axiom (3tu)Ak+l (u,y1, ... ,Yn)· An individual con­
stant is to be replaced by a new predicate letter A1 if we add the axiom 
(3lu)Ak(u). 

Example 
In the elementary theory G of groups, we can replace + and 0 by predicate 
letters A~ and A~ if we add the axioms (\fx1)(\fx2) (31x3)Ai(x1,x2,X3) and 
(31x1 )A~ (x1 ), and if we replace axioms (a), (b), (c) and (g) by the following: 
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(a') Al(x2,x3, u) I\A~(x1, u, v) I\Ai(x1,x2, w) I\A~(w,x3,y) ==} v = y 
(b') A1(y) 1\AHx,y,z) ==>z =x 
(c') (3y)(Vu)(Vv)(A~ (u) 1\ A~(x,y, v) :::::> v = u) 
(g') [x1 =X21\Aj(x1,y,z) I\Ai(x2,y, u) 1\AI(Y,XI, v) /\Ai(JJ,X2, w)] 

=}z=ul\v=w 

Notice that the proof of Proposition 2.28 is highly non-constructive, since 
it uses semantical notions (model, truth) and is based upon Corollary 
2.20(a), which was proved in a non-constructive way. Constructive syntac­
tical proofs have been given for Proposition 2.28 (see Kleene, 1952, § 74), 
but, in general, they are quite complex. 

Descriptive phrases of the kind 'the u such that P4( u, y1 , ••• , Yn )' are very 
common in ordinary language and in mathematics. Such phrases are called 
definite descriptions. We let zu(pg(u,y1, ... ,y11 )) denote the unique object u 
such that P4( u, y1, ••• , y,) if there is such a unique object. If there is no such 
unique object, either we may let 1U(P4(u,y1, ... ,y11 )) stand for some fixed 
object, or we may consider it meaningless. (For example, we may say that 
the phrases 'the present king of France' and "the smallest integer' are 
meaningless or we may arbitrarily make the convention that they denote 0.) 
There are various ways ofincorporating these 1-terms in formalized theories, 
but since in most cases the same results are obtained by using new function 
letters or individual constants as above, and since they all lead to theorems 
similar to Proposition 2.28, we shall not discuss them any further here. For 
details, see Hilbert and Bernays (1934) and Rosser (1939; 1953). 

2.10 PRENEX NORMAL FORMS 

A wf (Q1yi)-... (Q,,y11 )P4, where each (Q;,Y;) is either (Vy;) or (3y;),y; is dif­
ferent from )j for i f=. j, and ~ contains no quantifiers, is said to be in prenex 
normal form. (We include the case n = 0, when there are no quantifiers at 
all.) We shalJ prove that, for every wf, we can construct an equivalent prenex 
normal form. 

LEMMA 2.29 

[n any theory, if y is not free in f72, and C(](x) and C(J(y) are similar, then the 
following hold. 

(a) t- ((Vx)C(J(x) ==} f72) {:} (3y)(C(J(y) ==} f72) 
(b) t- ((3x)C(J(x) ==} f72) {:} (Vy)(C(J(y) ==} f72) 
{c) 1- (f72 =} (Vx)~(x)) {:} (Vy)(f72 ==} C(J(y)) 
(d) t- (~ =} (3x)C(J(x)) {:} (3y)(f72 ==} C(J(y)) 
(e) t- •(Vx)C(J {:} (:Jx)•C(] 
{f) 1- •(3x)C(J {:} (Vx)•C(] 
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~proof 

,for part (a): 

1. (VxY{f(x) => !.0 
2. -,(3y)(C{f(y) => !») 
3. -,--.(Vy)•(C{f( y) => !.0) 
4. (Vy)-.(C{f(y) => !.0) 
5. (Vy)(C{f(y) 1\ --.!.0) 
6. "C(y) 1\ --,!_0 

7. C{f(y) 
8. (Vy)C{f(y) 
9. (Vx)C{f(x) 

10. !» 
11. -,f» 
12. !.0 1\ -,f» 
13. (Vx)C{f(x) => !», 

--.(3y)(C{f(y) => !») ~ !.01\ --,!_0 

14. (Vx)CC(x) => !.0 
~ (3y)(C{f(y) => !») 

15. ~ (Vx)C{f(x) => !.0 
=> (3y)(~(y) => !») 

Hyp 
Hyp 
2, abbreviation 
3, negation elimination 
4, tautology, Proposition 2.9(c) 
5, rule A4 
6, conjunction elimination 
7, Gen 
8, Lemma 2.11, biconditional 

elimination 
l, 9, MP 
6, conjunction elimination 
10, 11, conjunction introduction 

1- -12 

1 -13, proof by contradiction 

1-14, Corollary 2.6 

The converse is proven in the following manner. 

l. (3y)(C{f(y) => !.0) 
2. (Vx)~(x) 
3. "C( b) => !.0 
4. "C(b) 
5. !» 
6. (3y(~(y) => !»), 

(Vx)~(x) ~c !.0 
7. (3y) ( C{f( y) => !»), 

(Vx)~(x) ~ !.0 
8. ~ (3y)(C{f(y) ::::} !.0) 

=> ( (Vx)C{f(x) => !.0) 

Hyp 
Hyp 
1, rule C 
2, rule A4 
3, 4, MP 

1-5 

6, Proposition 2.10 

1-7, Corollary 2.6 twice 

Part (a) follows from the two proofs above by biconditional introduction. 
Parts (b)-(f) are proved easily and left as an exercise. (Part (f) is trivial. and 
(e) appeared as Exercise 2.33(a); (c) and (d) follow easily from (b) and (a), 
respectively.) 

Lemma 2.29 allows us to move interior quantifiers to the front of a wf. 
This is the essential process in the proof of the following proposition. 
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PROPOSITION 2.30 

There is an effective procedure for transfonning any wf £1 into a wf ~ in 
prenex normal form such that I- :18 {::? CfJ. 

Proof 

We describe the procedure by induction on the number k of occurrences of 
connectives and quantifiers in f!lJ. (By Exercise 2.32(a, b), we may assume 
that the quantified variables in the prefix that we shall obtain are distinct.) If 
k = 0, then let ~ be f!lJ itself. Assume that we can find a corresponding ~for 
all wfs with k < n, and assume that :!J has n occurrences of connectives and 
quantifiers. 

Case 1. If f!lJ is ~~, then, by inductive hypothesis, we can construct a 
wf cff in prenex normal form such that 1- !?2 {:::} cff. Hence, 1- -,.@ {:::} ---,cff by 
biconditional negation. Thus, 1- :!J {:::} -.cff, and, by applying parts (e) and 
(f) of Lemma 2.29 and the replacement theorem (Proposition 2.9(b)), we 
can find a wf ~ in prenex normal form such that 1- ,cff {:::} ~- Hence, 
1- gg {::? rtf. 

Case 2. If :!.8 is ~:::::} cff, then, by inductive hypothesis, we can find wfs .@1 
and cff1 in prenex normal form such that 1- .@ {:::} !:01 and 1- cff {:::} cff1• Hence, 
by a suitable tautology and MP, 1- (!:0 :::::> cff) {:::} (~1 ==? cff1), that is, 
1- !lJ {:::} (~1 ==? cffi). Now, applying parts (a)-(d) of Lemma 2.29 and the 
replacement theorem, we can move the quantifiers in the prefixes of !?21 and 
cff 1 to the front, obtaining a wf ~ in prenex normal form such that 
I- :!.8 {::? ~. 

Case 3. If #J is (\fx)!?2, then, by inductive hypothesis, there is a wf !:01 in 
prenex normal form such that 1- !?2 {:::} ~1; hence, I- #J {:::} (Vx)£if1 by Gen, 
Lemma 2.8, and MP. But (\fx)2J1 is in prenex normal form. 

Examples 
1. Let #J be (\fx)(AHx) :::::> (Vy)(Ai(x,y) :::::> •(\fz)A~(y,z))). By part (e) of 

Lemma 2.29: (Vx)(A~(x) =} (Vy)[A~(x,y) =} (3z)·A~(y,z)]). 
By part (d): (\fx)(A~ (x) =} (Vy)(3u)[Ai(x,y) ==? ·A~(y, u)J). 
By part (c): (\fx)(\fv)(A~ (x) =? (3u)[A~(x, v) =} ·A~(v, u)]). 
By part (d): (Vx)(Vv)(3w)(A~(x) =} (A~(x, v) =} ·A~(v, w))). 
Changing bound variables: (\fx)(\fy)(3z)(A~(x)=} (Ai(x,y) =} ·A~(y,z))). 

2. Let~ be Ay(x,y) =} (3y)[Al(y) ==? ([(3x)A~(x)] ==? Ai(y))]. 
By part (b): Ai(x,y) =} (3y)(A~(y) =} (\fu)[A}(u) =} Ai(y)]). 
By part (c): Af(x,y) =} (3y)(Vv)(A~(y) =} [A}(v) =} Ai(y)]). 
By part (d): (3w)(Af(x,y) =} (\fv)[Al(w) =} (A~(v) =}Ai(w))]). 
By part (c): (3w)(\fz)(Af(x,y) =} [A~ (w) =} (A~ (z) =} A~(w))]). 
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:.Exercise 

2.84 Find prenex normal forms equivalent to the following wfs. 
(a) [(Vx)(A} (x) ==} Ai(x,y))] ==} ([(3y)A} (y)] ==} (3z)AT(J', z)) 
(b) (3x)Ai(x,y) ==} (A\ (x) ==} -{3u)Ai(x, u)) 

A predicate calculus in which there are no function letters or individual 
constants and in which, for any positive integer n, there are infiitely many 
predicate letters with n arguments, will be called a pure predicate calculus. 
For pure predicate calculi we can find a very simple prenex normal form 
theorem. A wf in prenex normal form such that all existential quantifiers (if 
any) precede all universal quantifiers (if any) is said to be in Slwlem normal 
form . 

PROPOSITION 2.31 

In a pure predicate calculus, there is an effective procedure assigning to each 
wf :?J another wf !/ in Skolem normal form such that 1-- f!8 if and only if 1- !/ 
(or, equivalently, by Godel's completeness theorem, such that f!8 is logically 
valid if and only if !/ is logically valid). 

Proof 

First we may assume that f!8 is a closed wf, since a wf is provable if and only 
if its closure is provable. By Proposition 2.30 we may also assume that f1lJ is 
in prenex normal form. Let the rank r of f!8 be the number of universal 
quantifiers in f1lJ that precede existential quantifiers. By induction on the 
rank, we shall describe the process for finding Skolem normal forms. 
Clearly, when the rank is 0, we already have the Skolem normal form. Let us 
assume that we can construct Skolem normal forms when the rank is less 
than r, and let r be the rank of f!8. {!8 can be written as follows: 
(3yl) ... (3yn )(\fu)~(YI, ... ,yn, u), where ~(YI, ... ,yn, u) has only 
y1, ..• ,y,,, u as its free variables. Let A'J+1 be the first predicate letter of n + 1 
arguments that does not occur in f!8. Construct the wf 

(@t) (3yt) ... (3yn )([(\iu)(C6'( Yt, ... 1Yn, u) =} A;+t ( J't, ... ,y,, u) )) 

=} (\iu )Aj+1 
( y., ... , y,, u)) 

Let us show that 1-- f!)J if and only if 1-- f!81• Assume 1-- f!81. In the proof of f1lj1, 

replace all occurrences ofA'J+1(z1, • •• ,z11 ,w) by ~(z1 , ••. ,z,,w)), where C(/f* 

is obtained from~ by replacing all bound variables having free occurrences 
in the proof by new variables not occurring in the proof. The result is a 
proof of 
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(3yi) ... (3y11)( ( (\lu)('(t( YI, . .. ,yn, u) =? W*( YI, ... y,, u))) 

=? (\lu) '(5* ( YI, · .. , Yn, u)) 

(l{?* was used instead of l{? so that applications of axiom (A4) would remain 
applications of the same axiom.) Now, by changing the bound variables 
back again, we see that 

1- (3yi) ... (3y,,) [(\lu)(r&( Yl, ... ,y,u) ==> l6'( Yl, . .. , Yn, u)) 

==> (\lu)'(t( YI, ... ,yn, u)] 

Since f- (\fu)(CC(yl, ... ,y11 , u) :::::}- ~(y1, ... ,y11 , u)), we obtain, by the re­
placement theorem, f- (3y1) .•. (3y")(\fu)l{?(y1, ... ,y11 , u), that is, 1- YJ. 
Conversely, assume that f- PA. By rule C, we obtain (\fu)l{?(b1, ..• , b11 , u). 
But, f- (\fu)!» => ((\fu)(.@ => &')::::} (\fu)&') (see Exercise 2.27 (a)) for any 
wfs .@ and &'. Hence, 1-c (Vu)(l{f(bt, ... , b,0 u) => Aj+1 (b1, ... , b,, u)) => 
(\fu)Aj+l (b 1, ... ,b11 ,u). So, by rule E4, f-c(3y1) ... (3yn) ([(\fu)(l{?(b1, 

... b11 , u) => Aj+ 1 
( y~, ... , y,, u))] => (\f u )A;+ 1 

( Yt. ... , Yn, u)), that is, f-c :!81. 

By Proposition 2.10, 1- .981. A prenex normal forn1 of f!l11 has the form 
fJ?Jz: (3yt) ... (3y11 )(3u)(Qtzl) .. . (Qszs)(Vv)~, where~ has no quantifiers and 
(Q1,z1) ... (Qszs) is the prefix of l{i. [In deriving the prenex normal form, 
first, by Lemma 2.29(a), we pull out the first (Vu), which changes to (3u); 
then we pull out of the firSt conditional the quantifiers in the prefix of rtJ. By 
Lemma 2.29(a, b), this exchanges existential and universal quantifiers, but 
then we again pull these out of the second conditional of f!B 1, which brings 
the prefix back to its original form. Finally, by Lemma 2.29(c), we bring the 
second (\fu) out to the prefix, changing it to a new quantifier (Vv).] Clearly, 
fl12 has rank one less than the rank of r!4 and, by Proposition 2.30, 
1- PJJ1 {:::} fJ?Jz. But, f- r!4 if and only if 1- PJJ1. Hence, f- PJJ if and only iff- fJ8z. By 
inductive hypothesis, we can find a Skolem normal form for !YJz, which is 
also a Skolem normal form for PJJ. 

Example 

1?8 :(\lx)(\ly)(3z)'(t(x,y.z), where '(5 contains no quantifiers 

.@d\lx)((\ly)(3z)'(t(x,y,z) =>A](x)) ==> (\lx)A](x), where A) is not in '(5'. 

We obtain the prenex normal form of J.3'1: 

(3x)([(\ly)(3z)'(t(x,y,z) ==> A}(x)] ==> (\lx)Aj(x)) 

(3x)( (3y)[(3z)'(t(x,y, z) ==> AJ (x)] ==> (\lx)A) (x)) 

(3x)((3y)(\lz)['(t(x,y,z) =>A)(x)] ==> (\lx)Aj(x)) 

(3.x)(\ly)[(\lz)(<t(x,y, z) ==>A{ (x)) :::? (\lx)Al (x)] 
(3x)(\ly)(3z)(['(t(x,y,z) =>Aj(x)] ==> (\lx)Aj(x)) 

(3x)(\ly)(3z)(\lv)[('(t(x,y,z) ==> A)(x)) ==> A)(v)] 

2.29(a) 

2.29(a) 

2.29(b) 

2.29(b) 
2.29(a) 

2.29(c) 
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We repeat this process again: Let .@(x,y,z, v) be (rc(x,y,z) ==? Aj(x)) 
:::? Aj(v). Let A~ not occur in~- Form: 

(3x)([(\iy)[(3z)(\iv)(~(x,y,z, v)) => A~(x,y)]] => (\iy)A~(x,y)) 

(3x)(3y)[[(3z)(\iv)(!:c.(x,y,z, v)) => Ai(x,y)] => (\iy)A~(x,y)] 

(3x)(3y)(3z)(Vv)([22(x,y,z, v) => A~(x,y)] => (\iy)A~(x,y)) 

(3x)(3y)(3z)(\iv)(\iw)([~(x,y,z, v) => A~(x,y)] => Ai(x, w)) 

Thus, a Skolem normal form of gg is: 

2.29(a) 

2.29(a,b) 

2.29(c) 

(3x)(3y)(3z)(\iv)(\iw)([((~(x,y,z) => Aj(x)) => Aj(v)) => A~(x,y)] => A~(x, w)) 

Exercises 

2.85 Find Skolem normal forms for the following wfs. 
(a) -{3x)Ai (x) ==} (\fu)(3y)(Vx)Aj(u,x,y) 
(b) (\fx)(:3y)(\fu)(:3v)Ai(x,y, u, v) 
2.86 Show that there is an effective procedure that gives, for each wf :!IJ of a 
pure predicate calculus, another wf .@ of this calculus of the form 
(Vyi) ... (Vyn)(:3z1) ••• (:3z111 )~, such that rcis quantifier-free, n, m ;?:0, and flJ is 
satisfiable if and only if~ is satisfiable. [Hint: Apply Proposition 2.31 to --,pg_] 
2.87 Find a Skolem normal form Y for (\fx)(:3y)Ai(x,y) and show that it is 
not the case that r- Y {::} (\fx)(:3y)Ai(x,y). Hence, a Skolem normal form for 
a wf PlJ is not necessarily logically equivalent to f4, in contradistinction to the 
prenex normal form given by Proposition 2.30. 

2.11 ISOMORPHISM OF INTERPRETATIONS. 
CATEGORICITY OF THEORIES 

We shall say that an interpretation M of some language .2! is isommphic 
with an interpretation M* of .2! if and only if there is a one -one corres­
pondence g (called an isomorphism) of the domain D ofM with the domain 
D* of M* such that: 

1. For any predicate letter A'J of .2! and for any b1, . .. , b" In 
D, ~M Aj [b1, . .. , b11] if and only if ~M* Aj [g( b1 ), ... , g(b11)]. 

2. For any function letter f}' of .2! and for any b1, ... , b11 m 
D, g((fj')M(bl, ... , bn)) = (/j')M* (g(b1), · .. , g(bn)). 

3. For any individual constant aj of .2!,g((aj)M) = (aj)M'. 
The notation M ~ M* will be used to indicate that M is isomorphic with 
M*. Notice that, if M ~ M*, then the domains of M and M* must be of 
the same cardinality. 
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PROPOSITION 2.32 

If g is an isomorphism of M with M*, then: 

(a) for any wf fJ8 of .2?, any sequence s = (b1, b2, .. . ) of elements of 
the domain D of M, and the corresponding sequence g(s)::::: 
(g(b!), g(b2 ), •. . ), s satisfies r!J in M if and only if g(s) satisfies 28 in M*; 

(b) hence, ~M (!}J if and only if ~M* {/g. 

Proof 

Part (b) follows directly from part (a). The proof of part (a) is by induction 
on the number of connectives and quantifiers in !14 and is left as an exercise. 

From the definition of isomorphic interpretations and Proposition 2.32 
we see that isomorphic interpretations have the same 'structure' and, thus, 
differ in no essential way. 

Exercises 

2.88 Prove that, if M is an interpretation with domain D and D* is a set 
that has the same cardinality as D, then one can define an interpretation M* 
with domain D* such that M is isomorphic with M *. 
2.89 Prove the following: (a) M is isomorphic with M. (b) If Mt is iso­
morphic with M2 , then Mz is isomorphic with M1. (c) If M 1 is isomorphic 
with M2 and M2 is isomorphic with M 3 , then M 1 is isomorphic with M3 . 

A theory with equality K is said to be m- categorical, where m is a 
cardinal number, if and only if: any two normal models of K of cardinality 
m are isomorphic; and K has at least one normal model of cardinality m (see 
Los, 1954c). 

Examples 
1. Let K 2 be the pure theory of equ~lity Kt (see page 98) to which has been 

added axiom (E2): (3xt)(3x2)(xt =/:- x2 1\ (\fx3) (x3 =XI V X3 = x2)). Then 
K 2 is 2-categorical. Every normal model of K 2 has exactly two elements. 
More generally, define (En) to be: 

(3xt) ... (3xn) ( 1\ Xt ~ Xj A (\ly)( y = Xt V ... V y = x~~)) 
1 ,;;i<j,;;ll 

where /\1 ~i<j~n xi =/:- Xj is the conjunction of all wfs x; =F Xj with 
1 ~i <j~n. Then, if K11 is obtained from K 1 by adding (En) as an 
axiom, K" is n-categorical, and every normal model of K 11 has exactly n 
elements. 

2. The theory K2 (see page 98) of densely ordered sets with neither first nor 
last element is ~o-categorical (see Kamke, 1950, p. 71: every denumer-

I. 
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able normal model of K 2 is isomorphic with the model consisting of the 
set of rational numbers under their natural ordeling). But one can prove 
that K 2 is not m-categorical for any m different from N0 . 

Exercises 

2.90A Find a theory with equality that is not No-categorical but is m-ca­
tegorical for all m > No. [Hint: Consider the theory Gc of abelian groups 
(see page 98). For each integer n, let ny stand for the term ( y + y) + ... + y 
consisting of the sum ofn ys. Add to Gc the axioms (86'11 ): (Vx)(31y)(ny = x) 
for all n ~ 2. The new theory is the theory of uniquely divisible abelian 
groups. Its normal models are essentially vector spaces over the field of 
rational numbers. However, any two vector spaces over the rational num­
bers of the same non-denumerable cardinality are isomorphic, and there are 
denumerable vector spaces over the rational numbers that are not iso­
morphic (see Bourbaki, 1947).] 
2.91A Find a theory with equality that is m- categorical for all infinite 
cardinals m. [Hint: Add to the theory Gc of abelian groups the axiom 
(\fx1)(2x1 = 0). The normal models of this theory are just the vector spaces 
over the field of integers modulo 2. Any two such vector spaces of the same 
cardinality are isomorphic (see Bourbaki, 1947).] 
2.92 Show that the theorems of the theory K'1 in Example 1 above are 
precisely the set of all wfs of K 11 that are true in all normal models of 
cardinality n. 
2.93A Find two non-isomorphic densely ordered sets of cardinality 2~0 with 
neither first nor last element. (This shows that the theory K2 of Example 2 is 
not 2N° - categorical.) 

Is there a theory with equality that is m-categorical for some non­
countable cardinal m but not n-categorical for some other non-countable 
cardinal n? In Example 2 we found a theory that is only N0-categolical; in 
Exercise 2.90 we found a theory that ism- categorical for all infinite m > N0 

but not No-categotical, and in Exercise 2.91, a theory that ism-categorical 
for all infinite m. The elementary theory G of groups is not m-categorical 
for any infinite m. The problem is whether these four cases exhaust all the 
possibilities. That this is so was proved by Morley (1965). 

2.12 GENERALIZED FIRST -ORDER THEORIES. 
COMPLETENESS AND DECIDABILITYt 

If, in the definition of the notion of first-order language, we allow a non­
countable number of predicate letters, function letters, and individual 

tpresupposed in parts of this section is a slender acquaintance with ordinal and 
cardinal numbers (see Chapter 4; or Kamke, 1950; or Sierpinski, 1958). 
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constants, we arrive at the notion of a generalized first-order language. The_:~ 
notions of inte1pretation and model extend in an obvious way to a gen­
eralized first-order language. A generalized first-order themy in such a lan­
guage is obtained by taking as proper axioms any set of wfs of the language. 
Ordinary first-order theories are special cases of generalized first-order 
theories. The reader may easily check that all the results for first-order 
theories, through Lemma 2.12, hold also for generalized first-order theories 
without any changes in the proofs. Lemma 2.13 becomes Lemma 2.13': if the 
set of symbols of a generalized theory K has cardinality No:, then the set of 
expressions of K also can be well-ordered and has cardinality ~a· (First, fix a 
well-ordering of the symbols of K.. Second, order the expressions by their 
length, which is some positive integer, and then stipulate that if e1 and e2 are 
two distinct expressions of the same length k) amd j is the first place in which 
they differ, then e1 precedes e2 if the jth symbol of e1 precedes the jth 
symbol of e2 according to the given well-ordering of the symbols of K.) 
Now, under the san1e assumption as for Lemma 2.13', Lindenbaum's 
Lemnm 2.14' can be proved for generalized theories much as before, except 
that all the enumerations (of the wfs P4i and of the theories J;) are transfinite, 
and the proof that 1 is consistent and complete uses transfinite induction. 
The analogue of Henkin's Proposition 2.17 runs as follows. 

PROPOSITION 2.33 

If the set of symbols of a consistent generalized theory K has cardinality No:, 
then K has a model of cardinality ~a· 

Proof 

The original proof of Lemma 2.15 is modified in the following way. Add ~o: 
new individual constants b1, b2, ... , b;", ... . As before, the new theory I(o is 
consistent. LetF1(x;,), ... ,F}.(xh), ... (}. < wa) be a sequence consisting of all 
wfs of ~ with exactly one free variable. Let (S;J be the sentence 
(3x;J•FHx1;.) =? oF;"(b1J, where the sequence bj.,bjz, ... b1;_, ... of distinct 
individual constants is chosen so that bJ;. does not occur in Fp(xip) for /3~) .. 
The new theory K00 , obtained by adding all the wfs (S;.) as axioms, is proved 
to be consistent by a transfinite induction analogous to the inductive proof 
in Lemma 2.15. Koo is a scapegoat theory that is an extension of l{ and 
contains ~a closed terms. By the extended Lindenbaum Lemma 2.14', Koo 
can be extended to a consistent, complete scapegoat theory J with ~a closed 
terms. The same proof as in Lemma 2.16 provides a model M of 1 of 
cardinality ~(.(· 
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COROLLARY 2.34 

(a) If the set of symbols of a consistent generalized theory with equality K. 
has cardinality 'N(t, then K has a normal model of cardinality less than 
or equal to 'N(t. 

(b) If, in addition, K has an infinite normal model (or if K has arbitrarily 
large finite normal models), then K has a normal model of any car­
dinality ~p;;?!: 'N(t. 

(c) [n particular, ifK is an ordinary theory with equality (i.e., 'N(t =~)and 
K has an infinite normal model (or if K has arbitrarily large finite 
nmmal models), then K has a normal model of any cardinality 
'NtJ (/3 ;;?!: 0). 

Proof 

(a) The model guaranteed by Proposition 2.33 can be contracted to a normal 
model consisting of equivalence classes in a set of cardinality 'N:x. Such a set 
of equivalence classes has cardinality less than or equal to 'N(t. 

(b) Assume t-t13 ;;?!: 'N(t. Let b1, b2 , ... be a set of new individual constants of 
cardinality 'Np, and add the axioms b;. :f. b1l for A f=. Jl. As in the proof of 
Corollary 2.27, this new theory is consistent and so, by (a), has a normal 
model of cardinality less than or equal to Np (since the new theory has 'Np 
new symbols). But. because of the axioms b;. f=. b11 , the normal model has 
exactly 'Np elements. 

(c) This is a special case of (b). 

Exercise 

2.94 If the set of symbols of a predicate calculus with equality K has 
cardinality 'N(t, prove that there is an extension K' of K (with the same 
symbols asK) such that K' has normal model of cardinality 'N(t, but K' has 
no normal model of cardinality less than 'N(t. 

From Lemma 2.12 and Corollary 2.34(a, b), it follows easily that, if a 
generalized theory with equality K has 'N(t symbols, is 'N13-categolical for 
some f3;;?!: (J., and has no finite models, then K is complete, in the sense that, 
for any closed wf !J8, either 1--K rJ8 or 1-K ,go (Vaught, 1954). If not -1--K P/J and 
not-1-K --,!J8, then the theories K' = K + { ·~} and K'' = K + { !J8} are 
consistent by Lemma 2.12, and so, by Corollary 2.34(a), there are normal 
models M' and M" of K' and K", respectively, of cardinality less than or 
equal to 'N(t. Since K has no finite models, M' and M" are infinite. Hence, by 
Corollary 2.34(b), there are normal models N' and N" of K' and K'', re­
spectively, of cardinality 'Np. By the 'Np-categoricity of K, N' and N" must be 
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isomorphic. But, since -,Pfi is true in N' and pg is true in N", this is impossible 
by Proposition 2.32(b). Therefore, either 1-K f!8 or 1--K -,pg, 

In particular, if K is an ordinary theory with equality that has no finite 
models and is 'N13-categorical for some f3 ~ 0, then K is complete. As an 
example, consider the theory K2 of densely ordered sets with neither first nor 
last element (see page 98). K2 has no finite models and is 'N0-cateogrical. 

If an ordinary theory K is axiomatic (i.e., one can effectively decide 
whether any wf is an axiom) and complete, then K is decidable, that is, there 
is an effective procedure to determine whether any given wf is a theorem. To 
see this, remember (see page 86) that if a theory is axiomatic, one can 
effectively enumerate the theorems. Any wf !lJ is provable if and only if its 
closure is provable. Hence, we may confine our attention to closed wfs PJ. 
Since K. is complete, either {!g is a theorem or -,:!Jj is a theorem, and 

' therefore, one or the other will eventually turn up in our enumeration of 
theorems. This provides an effective test for theoremhood. Notice, that if K 
is inconsistent, then every wf is a theorem and there is an obvious decision 
procedure; if K. is consistent, then not both [lg and -,fig can show up as 
theorems and we need only wait until one or the other appears. 

If an ordinary axiomatic theory with equality K has no finite models and 
is 'N13-categorical for son1~ /3~0, then, by what we have proved, K is de­
cidable. In particular, the theory K2 discussed above is decidable. 

In certain cases, there is a more direct method of proving completeness or 
decidability. Let us take as an example the theory 1{2 of densely ordered sets 
with neither first nor last element. Langford (1927) has given the following 
procedure for K 2. Consider any closed wf fig, By proposition 2.30, we can 
assume that pg is in prenex normal form (Q1 Yl) ... (Q11 y11)~, where~ con­
tains no quantifiers. If (Q11y,) is ('v'y11), replace ('v'y,)~ by' •(3y,)·~- In all 
cases, then, we have, at the right side of the wf, (3y11)f0, where !0 has no 
quantifiers. Any negation x # y can be replaced by x < y V y < x, and 
•(x < y) can be replaced by x = y V y < x. Hence, all negation signs can be 
eliminated from f0. We can now put f0 into disjunctive normal form, that is, a 
disjunction of conjunctions of atomic wfs (see Exercise 1.42). Now 
(3y11 )(q,J V f212 V ... V !0k) isequivalentto (::iy11)f01 V (3y11 ) £02 V ... V (3y11 )f0k. 
Consider each (3y11 )fz.; separately. !0i is a conjunction of atomic wfs of the 
fotm t <sand t = s. If ~i does not contain y11 , just erase (3y11 ). Note that, if 
a wf fff does not contain }'11 , then (3y1,)(C 1\ ff) may be replaced by 
fff 1\ (3y11 )ff. Hence, we are reduced to the consideration of (3y11)§, where 
§'is a conjunction of atomic wfs of the form t <sort= s, each of which 
contains y,. Now, if one of the conjuncts is Yn = z for some z different from 
y11 , then replace in.¥ all occurrences of y11 by z and erase (3y11 ). If we have 
Yn = Yn alone, then just erase (3y,). If we have y11 = Yn as one conjunct 
among others, then erase Yn = y11 • If §' has a conjunct Yn < y11 , then replace 
all of (3yn)§ by Yn < Yn· If ff consists of Yn < Zn 1\ ... 1\ Yn < Zj 

1\ut < }'11 1\ ... 1\ U111 < y11 , then replace (3y11)ff by the conjunction of all the 
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-wfs u; < zp for 1 ~ i ~ m and 1 ~p ~}. If all the us or all the zps are missing, 
:replace (3yn).?F by Yn = Yn· This exhausts all possibilities and, in every case, 
we have replaced (3y11 )2F by a wf containing no quantifiers, that is, we have 
-eliminated the quantifier (3yn)· We are left with (QtYI) ... (Qn-lYn-I)ql, 
where qr contains no quantifiers. Now we apply the same procedure suc­
cessively to (Qn- 1Yn-d, ... , (QtYt ). Finally we are left with a wf without 
quantifiers. built up of wfs of the form x = x and x < x. If we replace x = x 
by x = x =? x = x and x < x by •(x = x =? x = x), the result is either an 
instance of a tautology or the negation of such an instance. Hence, by 
Proposition 2.1, either the result or its negation is provable. Now, one can 
easily check that all the replacements we have made in this whole reduction 
procedure applied to~ have been replacements of wfs Yr by other wfs U/1 
such that 1--K Yf {:::} U!t. Hence, by the replacement theorem, if our final result 
Jl is provable, then so is the original wf @, and, if --,Yf. is provable, then so is 
-.PlJ. Thus, K2 is complete and decidable. 

The method used in this proof, the successive elimination of existential 
quantifiers, has been applied to other theories. It yields a decision procedure 
(see Hilbert and Bernays, 1934, § 5) for the pure theory of equality Kt (see 
page 98). It has been applied by Tarski (1951) to prove the completeness and 
decidability of elementary algebra (i.e., of the theory of real-closed fields; see 
van der Waerden, 1949) and by Szmielew (1955) to prove the decidability of 
the theory Gc of abelian groups. 

Exercises 

2.95 (Henkin, 1955) If an ordinary theory with equality K is finitely ax­
ionlatizable and Nr..:-categorical for some o:, prove that K is decidable. 
2.96 (a) Prove the decidability of the pure theory K 1 of equality. 

(b) Give an example of a theory with equality that is Na-categorical 
for some o:, but is incomplete. 

Mathematical applications 

l. Let F be the elementary theory of fields (see page 98). We let n stand for 
the term 1 + 1 + ... + 1, consisting of the sum of n ls. Then the assertion 
that a field has characteristic p can be expressed by the wf ~P: p = 0. A field 
has characteristic 0 if and only if it does not have characteristic p for any 
prime p. Then for any closed wf !!8 ofF that is true for all fields of char­
acteristic 0, there is a prime number q such that !!8 is true for all fields of 
characteristic greater than or equal to q. To see this, notice that, if F0 is 
obtained from F by adding as axioms ·~2, ·~3 , ... , --.~P' ... (for all primes 
p), the normal models of F0 are the fields of characteristic 0. Hence, by 
Exercise 2.77, 1--Fo f/J. But then, for some finite set of new axioms 
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I 2 II I 2 II 

prime greater than all q1 , ••• , q", In every field of characteristic greater than 
or equal to q, the wfs •<6'q

1
, •<6'q

2
, ••• , •<6-'q" are true; hence, ~ is also true. 

(Other applications in algebra may be found in A. Robinson (1951) and 
Cherlin (1976).) 

2. A graph may be considered as a set with a symmetric binary relationR 
(i.e., the relation that holds between two vertices if and only if they are 
connected by an edge). Call a graph k-colourable if and only if the graph can 
be divided into k disjoint (possibly empty) sets such that no two elements in 
the same set are in the relation R. (Intuitively, these sets correspond to k 
colours, each colour being painted on the points in the corresponding set~ 
with the proviso that two points connected by an edge are painted different 
colours.) Notice that any subgraph of a k-colourable graph is k-colourable. 
Now we can show that, if every finite subgraph of a graph q; is k-colourable, 
and if C§ can be well-ordered, then the whole graph ~ is k-colourable. To 
prove this, construct the following generalized theory with equality K (Beth, 
1953). There are two binary predicate letters, Ai(=) and A~ (corresponding 
to the relation R on ~); there are k monadic predicate letters Af, ... ,A} 
(corresponding to the k subsets into which we hope to divide the graph); and 
there are individual constants ac, one for each element c of the graph~- As 
proper axioms, in addition to the usual assumptions (A6) and (A 7), we have 
the following wfs: 

(I) -.A~(x,x) (irreflexivity of R) 
(II) A~(x,y) =:? A~(y,x) (symmetry of R) 
(III) (\fx)(A:Cx) V AJ(x) V . . . V AUx)) (division into k classes) 
(IV) (\fx)-.(Al(x) 1\A}(x)), for 1 ~i < j~k (disjointness of the k 

· classes) 
(V) (\fx)(Vy)(Af(x) 1\A{(y) =:? -.A~(x,y)) for 1 ~i~k(two elements ofthe 

same class are not in the relation R) 
(VI) ab -=/= ac, for any two distinct elements b and c of q} 

(VII) A~(ab, ac), if R(b, c) holds in q} 

Now, any finite set of these axioms involves only a finite number of the 
individual constants ac1 , ••• , ac", and since the corresponding sub graph 
{ c1, ••. , c11 } is, by assumption, k-colourable, the given finite set of axioms 
has a model and is, therefore, consistent. Since any finite set of axioms is 
consistent, K is consistent. By Corollary 2.34(a), K has a normal model of 
cardinality less than or equal to the cardinality of C§. This model is a k­
colourable graph and, by (VI)-(VII), has C§ as a subgraph. Hence C§ is also k­
colourable. (Compare this proof with a standard mathematical proof of the 
same result by Bruijn and Erdos (1951). Generally, use of the method above 
replaces complicated applications of Tychonoff's theoren1 or Konig's Un­
endlichkeits lemma.) 
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Exercises 

2.97A (Los, 1954b) A group B is said to be orderable if there exists a binary 
relation R on B that totally orders B such that, if xRy, then (x + z)R(y + z) 
and ( z + x )R (z + y). Show, by a method similar to that used in Example 2 
above, that a group B is orderable if and only if every finitely generated 
subgroup is orderable (if we assume that the set B can be well-ordered). 
2.98A Set up a theory for algebraically closed fields of characteristic p ( ~ 0) 
by adding to the theory F of fields the new axioms P,,, where P,, states that 
every non-constant polynomial of degree n has a root, as well as axioms that 
determine the characteristic. Show that every wf of F that holds for one 
algebraically closed field of characteristic 0 holds for all of them. [Hint: This 
theory is ~p-categorical for fi > 0, is axiomatizable, and has no finite 
models. See A. Robinson (1952).] 
2.99 By ordinary mathematical reasoning, solve the .finite marriage problem. 
Given a finite set M of m men and a set N of women such that each man 
knows only a finite number of women and, for 1 ~k~m, any subset of M 
having k elements knows at least k women of N (i.e., there are at least k 
women inN who know at least one of the k given men), then it is possible to 
marry (monogamously) all the men of M to women inN so that every man is 
married to a women whom he knows. [Hint (Hahnos and Vaughn, 1950): 
m = 1 is trival. Form > l, use induction, considering the cases: (I) for all k 
with l ~k < m, every set of k men knows at least k + 1 women; and (II) for 
some k with l ~k < m, there is a set of k men knowing exactly k women.] 
Extend this result to the infinite case~ that is, when M is infinite and well­
orderable and the assumptions above hold for all finite k. [Hint: Construct 
an appropriate generalized theory with equality, analogous to that in Ex­
ample 2 above, and use Corollary 2.34(a).] 
2.100 Prove that there is no generalized theory with equality K, having one 
predicate letter < in addition to =, such that the normal models of K are 
exactly those normal interpretations in which the interpretation of< is a 
well-ordering of the domain of the interpretation. 

Let fJB be a wf in prenex normal form. If flJJ is not closed, form its closure 
instead. Suppose, for example, flJJ is (3yi) ('v)-2 )(\f.Y3) (3y4) (3y5) (\fy6) 
~(Yt ,J'2,y3,Y4,Y5,y6), where ~contains no quantifiers. Erase (:::Jy1) and re­
place Yl in ~ by a new individual constant b1: (\fy2)(\fy3)(3y4)(3y5)(\fy6) 
~(b1 ,J-2,)'3, Y4,J's,y6). Erase (\fy2) and (\fJ'3), obtaining (3y4)(3ys)(\fy6) 
~(b1 ,yz,J'3,J'4,J'5,Y6)· Now erase (:::ly4) and replace Y4 in~ by g(Yz,J'3), where 
g is a new function letter: (3y5)(\fy6)~(bi,)~,y3, g(1-2,Y3),ys,y6)· Erase (3ys) 
and replace Ys by h(J2,YJ), where h is another new function letter: (\fy6) 
~(bi,Yz,y3, g(yz,Y3), h(yz,y3),y6)· Finally, erase (\fy6). The resulting wf 
~(bi,J'2,J'3, g(yz,y3), h(y2,y3),y6) contains no quantifiers and will be denoted 
by :J8*. Thus, by introducing new function letters and individual constants, 
we can eliminate the quantifiers from a wf. 
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Examples 
1. If !?4 is (\fy1 )(3yz)(\f.Y3)(\fy4)(3ys )~(Yt ,)'2, y3,y4, Ys), where ~is quantifier~ 

free, then M* is of the form ~(Yt, g(yl),y3,y4, h(YI ,y3,y4)). 
2. lf ~is (3yl)(3J~)(\fy3)(\fy4)(3ys)~(Yt,Y2,Y3,Y4,Ys), where~ is quantifier~ 

free, then [!J* is of the form ~(b,c,y3,Y4,g(y3 ,y4)). 

Notice that !Yl* 1- !JJ, since we can put the quantifiers back by applications 
of Gen and rule E4. (To be more precise, in the process of obtaining :?JJ*, we 
drop all quantifiers and, for each existentially quantified variable Yt. we 
substitute a term g(zt, ... ,zk), where g is a new function letter and ZI, ... ,zk 

are the variables that were universally quantified in the prefix preceding 
(3y;). If there are no such variables ZI , ... , Zk, we replace y; by a new in­
dividual constant.) 

PROPOSITION 2.35 (SECOND e-THEOREM) 

(Rasiowa, 1956; Hilbert and Bernays, 1939) Let K be a generalized theory. 
Replace each axiom ~ of K. by [!J*. (The new function letters and individual 
constants introduced fo1 one axiom are to be different- from those in~ 
troduced for another axiom.) Let K* be the generalized theory with the 
proper axioms 18*. Then: 

(a) If~ is a wf of l{ and 1-K* ~. then 1-K ~-
(b) K is consistent if and only if K* is consistent. 

Proof 

(a) Let~ be a wf of K such that 1-K- ~- Consider the ordinary theory 1{0 

whose axioms !Y/1, ... , [!J, are such that [!Jr, ... , [!J: are the axioms used in 
the proof of ~. Let K o* be the theory whose axioms are !?41', ... , [!J;. Hence 
I-Ko• ~-Assume that M is a denumerable model ofl{0

• We may assume that 
the domain of M is the-set P of positive integers (see Exercise 2.88). Let M be 
any axiom of K 0

• For example, suppose that !?4 has the form 
(3yt)(\fn)(\ly3)(3y4)~(YI,)'2,Y3,Y4), where~ is quantifier-free. @* has the 
form ~(b,y2,y3 , g(n,y3)). Extend the model M step by step in the following 
way (noting that the domain always remains P); since !?4 is true for M, 
(3yl)(\lyz)(\ly3)(3y4)~(YI,Yz,y3,Y4) is true forM. Let the interpretation b* of 
b be the least positive integer YI such that (\fyz)(\ly3)(3y4)~(y1 ,y2 ,y3,Y4) is 
true forM. Hence, (3Y4)~(b,yz,Y3,y4) is true in this extended model. For 
any positive integers Y2 and y3, let the interpretation of g(J?,y3) be the least 
positive integer Y4 such that ~(b,y2,y3,y4) is true in the extended model. 
Hence, ~(b,yz,y3 , g(y2,y3)) is true in the extended model. If we do this for aU 
the axioms !lJ of l{ o, we obtain a model M* of K o* . Since I-Ko* ~, ~ is hue 

,, 
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for M*. Since M* differs from M only in having interpretations of the new 
individual constants and function letters, and since~ does not contain any 
of those symbols, 92 is true for M . Thus, ~ is true in every denumerable 
model ofK0

• Hence, f-Kc 92, by Corollary 2.20(a). Since the axioms ofKo are 
axioms of K, we have f-K 92. (For a constructive proof of an equivalent 
result, see Hilbert and Bernays (1939).) 

b) Clearly, K* is an extension of K, since !!ll* f- @. Hence, if K* is con­
sistent, so is K. Conversely, assume K is consistent. Let 92 be any wf of K. If 
K* is inconsistent, f-K· 92 1\ ,g_ By (a), f-K 92 1\ -,g, contradicting the 
consistency of K. 

Let us use the term generalized completeness theorem for the proposition 
that every consistent generalized theory has a modeL If we assume that every 
set can be well-ordered (or, equivalently, the axiom of choice), then the 
generalized completeness theorem is a consequence of Proposition 2.33. 

By the maximal ideal theorem (MI) we mean the proposition that every 
proper ideal of a Boolean algebra can be extended to a maximal ideai.t This 
is equivalent to the Boolean representation theorem, which states that every 
Boolean algebra is isomorphic to a Boolean algebra of sets. (Compare Stone 
(1936). For the theory of Boolean algebt·as, see Sikorski (1960) or Men­
delson (1970).) The usual proofs of the MI theorem use the axiom of choice, 
but it is a remarkable fact that the MI theorem is equivalent to the gen­
eralized completeness theorem, and this equivalence can be proved without 
using the axiom of choice. 

PROPOSITION 2.36 

(Los, l954a; Rasiowa and Sikorski, 1951; 1952) The generalized complete­
ness theorem is equivalent to the maximal ideal theorem. 

Proof 
.. 

(a) Assume the generalized completeness theorem. Let B be a Boolean al-
gebra. Construct a generalized theory with equality K having the binary 
function letters U and n, the singulary function letter fl [we denote fl (t) by 
t], predicate letters = and A L and, for each element b in B, an individual 
constant ab. By the complete description of B, we mean the following 
sentences: (i) ab -::/:- ac if b and care distinct elements of B; (ii) ab U ac =ad if 
b, c, d are elements of B such that b U c = d in B; (iii) ab n ac = ae if b, c, e 
are elements of b such that b n c = e in B; and (iv) lib = ac if b and c are 
elements of B such that b = c in B, where b denotes the complement of b. A..l;} 

tsince {0} is a proper ideal of a Boolean algebra, this implies (and is implied by) 
the proposition that every Boolean algebra has a maximal ideal. 
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axioms of I{ we take a set of axioms for a Boolean algebra, axioms (A6) and 
(A7) for equality, the complete description of B, and axioms asserting that 
A} determines a maximal ideal (i.e., AHxnx), AUx) 1\At(y) =::;.Al(xuy), 
A}(x) =::;.A}(x ny), Al(x) V AHx), and ·Afex Ux)). Now K is consistent, for, 
if there were a proof in K of a contradiction, this proof would contain only 
a finite number of the symbols ab, ac, .. . ---say, Gb1 , ••• , ab". The elements 
bt, ... , b11 generate a finite subalgebra B' of B. Every finite Boolean algebra 
clearly has a maximal ideal. Hence, B' is a model for the wfs that occur in 
the proof of the contradiction, and therefore the contradiction is true in B' 

' which is impossible. Thus, K is consistent and, by the generalized com. 
pleteness theorem, K has a model. That model can be contracted to a 
normal model of l{, which is a Boolean algebra A with a maximal ideal I. 
Since the complete description of B is included in the axioms of K, B is a 
subalgebra of A, and then In B is a maximal ideal in B. 

(b) Assume the maximal ideal theorem. Let K be a consistent generalized 
theory. For each axion1 ~of K, form the wf ~* obtained by constructing a 
prenex normal form for gg and then eliminating the quantifiers through the 
addition of new individual constants and function letters (see the example 
preceding the proof of Proposition 2.35). Let J(# be a new theory having the 
wfs gg*, plus all instances of tautologies, as its axioms, such that its wfs 
contain no quantifiers and its ru1es of inference are modus ponens and a ru1e 
of substitution for variables (namely, substitution of terms for variables). 
Now, K# is consistent, since the theorems of K# are also theorems of the 
consistent K* of Proposition 2.35. Let B be the Lindenbaum algebra de­
termined by K# (i.e., for any wfs r-t and g}, let r-t Eq £2 mean that 
1-K# r-t {::} g}; Eq is an equivalence relation; let [r-t] be the equivalence class of 
r-t; define [r.t] U [g}] = [r-t V g}], [r-t] n [g}) = [r-t 1\ g}], [r-tJ = f-,r-tJ; under these 
operations, the set of equivalence classes is a Boolean algebra, called the 
Lindenbaum algebra of J(#). By the maximal ideal theorem, let I be a 
maximal ideal in B. Define a model M of K # having the set of terms of l(# 
as its domain; the individual constants and function letters are their own 
interpretations, and, for any predicate letter A), we say that AJ(tt, ... , t11 ) is 
true in M if and only if [Aj(tt, ... , tn)] is not in I. One can show easily that a 
wf r-t of K# is true in M if and only if [r-t] is not in I. But, for any theorem g} 

of K#, [g}] = 1, which is not in I. Hence, M is a model for K#. For any 
axiom ~ of K, every substitution instance of ~* (y1, ... , y11 ) is a theorem in 
K#; therefore, ~"'(y1, ... ,Yn) is true for ally1, ... ,y11 in the model. It follows 
easily, by reversing the process through which f!JJ* arose from gg, that f!lJ is 
true in the model. Hence, M is a model for K. 

The maximal ideal theorem (and, therefore, also the generalized com­
pleteness theorem) turns out to be strictly weaker than the axiom of choice 
(see Halpern, 1964). 
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Exercise 

2.101 Show that the generalized completeness theorem implies that every 
set can be totally ordered (and, therefore, that the axiom of choice holds for 
any set of non-empty disjoint finite sets). 

The natural algebraic structures corresponding to the propositional cal­
culus are Boolean algebras (see Exercise 1.60, and Rosenbloom, 1950, 
chaps 1 and 2). For first-order theories, the presence of quantifiers in­
troduces more algebraic structure. For example, if K is a first-order theory, 
then, in the corresponding Lindenbaum algebra B, [(3x).?J(x)] = :E1[.?J(t)], 
where 1:1 indicates the least upper bound in B, and t ranges over all terms of 
K that are free for x in .?J(x). Two types of algebraic structure have been 
proposed to serve as algebraic counterparts of quantification theory. The 
first, cylindrical algebras, have been studied extensively by Tarski, 
Thompson, Henkin, Monk and others (see Henkin, Monk and Tarski, 
1971). The other approach is the theory of polyadic algebras, invented and 
developed by Halmos (1962). 

2.13 ELEMENTARY EQUIVALENCE. ELEMENTARY EXTENSIONS 

Two interpretations M1 and Mz of a generalized first-order language .2! are 
said to be elementarily equivalent (written M 1 = M2) if the sentences of .2! 
true for M 1 are the same as the sentences true for M2 . Intuitively, M1 M 2 

if and only if M 1 and M 2 cannot be distinguished by means of the language 
fi'. Of course, since .2! is a generalized first-order language, .2! may have 
non-denumerably many symbols. 

Clearly, (1) M - M; (2) if M1 - M 2, then M2 M1; (3) if M1 = M2 and 
M2 = M3, then M1 - M3. 

Two models of a complete theory K must be elementarily equivalent, 
since the sentences true in these models are precisely the sentences provable 
inK. This applies, for example, to any two densely ordered sets without :first 
or last elements (see page 116). 

We already know, by Proposition 2.32(b), that isomorphic models are 
elementarily equivalent. The converse, however, is not ttue. Consider, for 
example, any complete theory K that has an infinite normal model. By 
Corollary 2.34(b), K has normal models of any infinite cardinality ~a:· If we 
take two normal models of K of different cardinality, they are elementarily 
equivalent but not isomorphic. A concrete example is the complete theory 
K2 of densely ordered sets that have neither first nor last element. The 
rational numbers and the real numbers, under their natural orderings, are 
elementarily equivalent non-isomorphic models of K 2 . 

123 
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Exercises 

2.102 Let K 00, the theory of infinite sets, consist of the pure theory K 1 of 
equality plus the axioms f!l111 , where :!J11 asserts that there are at least 11 
elements. Show that any two models ofKoo are elementarily equivalent (see 
Exercises 2.66 and 2.96(a)). 
2.103° If M1 and M2 are elementarily equivalent normal models and M1 is 
finite, prove that M 1 and M2 are isomorphic. 
2.104 Let K be a theory with equality having ~cr. symbols. 
(a) Prove that there are at most 2N,. models of K, no two of which are 

elementalily equivalent. 
(b) Prove that there are at most 2N.1 mutually non-isomorphic models of!( 

of cardinality ~p, where y is the maximum of ex and {J. 
2.105 Let M be any infinite normal model of a theory with equality K 
having ~lj symbols. Prove that, for any cm·dina] ~Y ~ ~o:. there is a normal 
model M* of K of cardinality ~o: such that M - M*. 

A model M2 of a language .!l' is said to be an extension of a model M 1 of 
.!l' (written M 1 C M 2)t if the following conditions hold: 

1. The domain D1 of M1 is a subset of the domain D2 of M2 . 

2. For any individual constant c of .!l', cM2 = cM1 , where cM2 and cM1 are 
the interpretations of c in M2 and M 1. 

3. For any function letter fj1 of .!l' and any b1, .. . , bn m D, 
(f_t)M2 (bl, ... ,b,~) = (IT)M1(hi, ... ,bn)· 

4. For any predicate letter Aj of .!l' and any b1, • • • , h11 in D, 
f= M1Aj[b1, ... , bn] if and only if FM2 Aj[bl, ... , b,J 

When M 1 c M 2 , one also says that Mt is a substructure (or submodel) ofM2• 

Examples 
1. If If contains only the predicate letters= and <, then the set of rational 

numbers under its natural ordering is an extension of the set of integers 
under its natural ordering. 

2. If .!l' is the language of field theory (with the predicate letter =, function 
letters + and x, and individual constants 0 and l). then the field of real 
numbers is an extension of the field of rational numbers, the field of 
rational numbers is an extension of the ring of integers, and the ring of 
integers is an extension of the 'semiring' of non-negative integers. For 
any fields F 1 and F 2, F 1 C F2 if and only if F1 is a subfield of F 2 in the 
usual algebraic sense. 

tThe reader will have no occasion to confuse this use of~ with that for the 
inclusion relation. 
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~Exercises 

~-2.106 Prove: 
:(a) M c M; 
i:(b) if M1 c M2 and M2 c M3, then M1 c M3; 
(c) If M1 c M 2 and M2 C M1, then M1 = M2. 

;,a.to7 Assume Mt c M2. 
_·(a) Let t$(x1, ... ,xn) be a wf of the form (\lyl) . . . ('iym)~(xt, .. . xn, 

y1 ... ,ym), where~ is quantifier-free. Show that, for any b1, . .. , b, in 
the domain of M1, if FM2 f3S[bl, ... ,b,], then FM1 gg[bl, ... ,b,]. In 
particular, any sentence (\lyl) ... ('iy111 )~(y1 ••• ,y,), where ~ is quan­
tifier-free, is true in M1 if it is true in M2. 

(b) Let f3S(x1, ... ,x,) be a wf of the form (3yi) ... (3YmY~(x1, ... x11 , 

y1, ... ,ym), where ~is quantifier-free. Show that, for any b1, ... , b11 in 
the domain of M1, if FM1 f39[bl, ... , bn],then FM2 IJ61[bt, . .. , bn]· In 
particular, any sentence (3yt) ... (3}111 ) ~(Yt ... ,ym), where ~ is quan­
tifier-free, is true in M2 if it is true in M1. 

2.108 (a) Let K be the predicate calculus of the language of field theory. 
Find a model M of K and a non-empty subset X of the domain 
D of M such that there is no substructure of M having domain 
X. 

(b) If K is a predicate calculus with no individual constants or 
function letters, show that, if M is a model of K and X is a subset 
of the domain D of M, then there is one and only one sub­
structure of M having domain X. 

(c) Let K be any predicate calculus. Let M be any model of K and 
let X be any subset of the domain D of M. Let Y be the inter­
section of the domains of all submodels M* of M such that X is a 
subset of the domain DM· of M*. Show that there is one and only 
one submodel of M having domain Y. (This submodel is called 
the submodel generated by X.) 

A somewhat stronger relation between interpretations than 'extension' is 
useful in model theory. Let M 1 and M2 be models of some language!!!. We 
say that M2 is an elementary extension of Mt (written M1 ~e M2) if 
(1) M 1 C M2 and (2) for any wf f3S(y1 ••• ,y11 ) of !I! and for any bt, ... , b17 in 
the domain Dt of M1, FM1 88[bt, ... , bn] if and only if FM2 @[bt, ... , b11]. (In 
particular, for any sentence fJ9 of!!!, fJ9 is true for M1 if and only if fJ9 is true 
for M2.) When Mt ~eM2, we shall also say that M1 is an elementary sub­
structure (or elementary submodel) of M2. 

It is obvious that, if Mt ~eM2, then M 1 C M2 and M1 M 2 . The con-
verse is not true, as the following example shows. Let G be the elementary 
theory of groups (see page 98). G has the predicate letter=, 
function letter +, and individual constant 0. Let I be the group of integers 
and E the group of even integers. Then E C I and I rv E. (The function g 



126 I L'----~---------Q_U __ A_N_T_IF_I_C_A_T_I_O_N_T_H __ EO __ R_Y ______________ _j 
such that g(x) = 2-r for all x in I is an isomorphisn1 of I with E .) Consider the 
wf ~(y): (3x)(x + x = y). Then FI 86'[2J, but not-f=£ 86'[2]. Thus, I is not an-­
elementary extension of E. (This exan1ple shows the stronger result that even 
assuming Mt C M2 and M1 rv M2 does not imply Mt ~eM2. ) 

The following theorem provides an easy method for showing that 
Mt ~eM2. 

PROPOSITION 2.37 (Tarski and Vaught, 1957) 

Let M1 C M2 . Assume the following condition: 

($) For every wf M(xJ, .. . xk) of the form (3y)~(xi, .. . xk,Y) and for all 

b1, . .. , bk in the domain D1 of Mt, if FM2 M[bt, ... , bk], 
then there is some din D1 such that FM2 ~[b1, . . . , bk, dJ. 

Then Mt ~eM2. 

Proof 

Let us prove: 

( *) I=M, ~[bt, ... , bk] if and only if FM2 ~[bt, ... , bk] for any wf 

~(x,, ... ,xk) and any b1, ... ,bk inD1• 

The proof is by induction on the number m of connectives and quantifiers in 
!?2 . If m = 0, then (*) follows from clause 4 of the definition of Mt C M2. 

Now assume that ( *) holds true for all wfs having fewer than m connectives 
and quantifiers. 

Case I. !?2 is •iff. By inductive hypothesis, FM1 iff[bt, ... , bk] if and only if 
FM2 iff[bt, ... , bk] · Using the fact that not - FM1 iff[bt, ... , bk] if and only if 
FM1 · iff[bt, ... , bk], and similarly for M 2, we obtain ( * ). 

Case 2. !?2 is iff =* !F. By inductive hypothesis, FM1 iff[b1, .•. , bk] if and 
only if FM2 iff[bt, ... , bk] and similarly for !F. ( *) then follows easily. 

Case 3. !?2 is (3y)iff(xt, .. . x,,y). By inductive hypothesis, 

( **) FM1 C[bt, -.. , bk, dJ if and only if FM2 C[b1, .. . , bk, dJ, 
for any b,, . . . , bk,d in Dt. 

Case 3a. Assume FM1 (3y)iff(xt, .. . xk,Y)[bt, . .. ,bk] for some b1, ••• ,bk in 
Dt. Then f:M1 iff[bt, ... , bk, d] for some d in Dt- So, by ( ** ), 
FM2 iff[bt, ... , bk! d]. Hence, FM2 (3y)iff(xl, .. . xk,y)[bt, ... , bk]· 

Case 3b. Assume FM2 (3y)iff(xt, .. . xk,Y)[bt, ... ,bk] for some b1, ••• ,bk in 
D 1. By assumption ($), there exists d in D 1 such that FM2 iff[bt, ... , bk, d]. 
Hence, by ( ** ), FM1 iff[bt, ... , bk! d] and therefore FM, (3y)C(xt, ... XkJY) 
[bt' ... 'bk]. 

'· 
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This completes the induction proof, since any wf is logically equivalent to 
a wf that can be built up from atomic wfs by forming negations, condi­
tionals and existential quantifications. 

Exercises 

2.109 Prove: 

(a) M~eM; 
(b) if M1 ~eM2 and M2 ~eM3, then M1 ~eM3; 
(c) if M1 ~eM and M2 ~eM and M1 ~ M2, then M1 ~eM2. 

2.110 Let K be the theory of totally ordered sets with equality (axioms 
(a)-( c) and (e)-(g) of Exercise 2.67). Let M 1 and M2 be the models for K 
with domains the set of positive integers and the set of non-negative integers, 
respectively (under their natural orderings in both cases). Prove that 
M1 c M2 and M1 ~ M2, but M1 ~eM2. 

Let M be an interpretation of a language .2?. Extend .2? to a language .2?* 
by adding a new individual constant aa for every member d of the domain of 
M. We can extend M to an interpretation of .2?* by taking d as the inter­
pretation of aa. By the diagram of M we mean the set of all true sentences of 
M of the forms Aj (aap ... , aa,.), -.Aj(aap ... , aa,.), and fP (aa]l ... , aa,.) = aa,,. 
In particular, aa1 =f. aa2 belongs to the diagram_if d1 =f. d2. By the complete 
diagram of M we mean the set of all sentences of .2?*' that are true forM. 

Clearly, any model M# of the complete diagram of M determines an 
elementary extension M## of M,t and vice versa. 

Exercise 

2.111 (a) Let M 1 be a denumerable normal model of an ordinary theory K 
with equality such that every element of the domain of M 1 is the 
interpretation of some closed term of K. 
(i) Show that, if M1 C M2 and M1 ~ M2, then M1 ~eM2. 
(ii) Prove that there is a denumerable normal elementary ex­

tension M3 of M1 such that M1 and M3 are not isomorphic. 
(b) Let K be a predicate calculus with equality having two function 

letters + and x and two individual constants 0 and 1. Let M be 
the standard model of arithmetic with domain the set of natural 
numbers, and +, x, 0 and I having their ordinary meaning. 
Prove that M has a denumerable normal elementary extension 
that is not isomorphic to M, that is, there is a denumerable 
nonstandard model of arithmetic. 

tThe elementary extension M## of M is obtained from M# by forgetting about 
the interpretations of the ads. 
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PROPOSITION 2.38 (UPWARD SKOLEM-LOWENHEIM-TARSIH 
THEOREM) 

Let K be a theory with equality having ~o: symbols, and let M be a nonnai 
model of K with domain of cardinality Np. Let y be the maximum of o: and p. 
Then, for any b?:y, there is a model M* of cardinality N15 such that M f:: M* 
and M~eM*. 

Proof 

Add to the complete diagram of M a set of cardinality Nc5 of new individual 
constants b,, together with axioms b, =f. bp for distinct 1: and p and axiotns 
b, =f. aa for all individual constants ad corresponding to members d of the 
domain of M. This new theory K# is consistent, since M can be used as a 
n1odel for any finite number of axioms of K#. (If b,1 , •• • , br~; , ad,, ... , aa, are 
the new individual constants in these axioms, interpret b-r1 , ••• , b-r~; as distinct 
elements of the domain of M different from d1, ... , dm.) Hence, by Corollary 
2.34 (a), K# has a no1mal model M# of cardinality ~c'i such that M C M#, 
M =/=- M#, and M~eM#. 

PROPOSITION 2.39 (DOWNWARD SKOLEM-LOWENHEIM­
TARSKJ THEOREM) 

Let K be a theory having No: symbols, and let M be a model of K with 
domain of cardinality N1 ?: No:. Assume A is a subset of the domain D of M 
having cardinality n, and assume N13 is such that ~Y?: ~If~ max(~o:' n). Then 
there is an elementary submodel M* of M of cardinality ~/3 and with domain 
D* including A. 

Proof 

Since n ~ ~P ~ ~y, we can add ~/3 elements of D to A to obtain a larger set B 
of cardinality ~/3· Consider any subset C of D having cardinality ~P· For 
every wf ~(Yt, ... ,y11 ,z) of K, and any e1, ... ,e11 in C such that 
FM (3z).%'(Yl, ... ,y," z)[e1, . . . , en], add to C the first element d of D (with 
respect to some fixed well-ordering of D) such that FM (3z).%'[eh ... , e11 , d] . 
Denote the so-enlarged set by c#. Since K has ~o: symbols, there are NC( wfs. 
Since ~a~ ~13• there are at most N13 new elements in c# and, therefore, the 
cardinality of c# is Np. Form by induction a sequence of sets C0 , C1, ... by 
setting Co = B and Cn+ 1 = eft. Let D* = UnEw C,. Then the cardinality of D* 
is Np. In addition, D* is closed under all the functions (fj')M. (Assume 
d1, ... , d11 in D*. We may assume dt, ... , d11 in Ck for some k. Now 
FM (3z)(fj'(xt, ... ,x,) = z)[d1, ... , d,]. Hence, (/]')M(d1, ... , d,), being the 



ULTRAPOWERS. NON-STANDARD ANALYSIS 
-L---------------------------------------~ 
,:first and only member d of D such that FM {!J1(Xt, ... ,xn) = z)[dt, ... , dn, d], 
,-must belong to cf! = ck+I ~ D* .) Similarly, all interpretations (aj)M of in­
~dividual constants are in Y. Hence, D* determines a substructure M* of M. 
--To show that M* ~eM, consider any wf .%'(y1, .. . ,yn,z) and any d1, .. . , d,1 in 
:v* such that FM (3z).?J(yi,···,Yn,z)[dt, ... ,d,,]. There exists Ck such that 
-'(ft, ... , d11 are in Ck. Let d be the first element of D such that 
FM .?J[dt, ... ,dn,d]. Then dE ct = ck+l c Y. So, by the Tarski-Vaught 
theorenl (Proposition 2.37) M* ~eM. 

2.14 ULTRAPOWERS. NON-STANDARD ANALYSIS 

By afiltert on a non-empty set A we mean a set:#' of subsets of A such that: 

l. AE!F 
2. B E !F 1\ C E !F :::::} B n C E !F 
3. BE!F/\BCC::::}CE!F 

Examples 
Let B C A. The set§" 8 = { C I B C C C A} is a filter on A. !F B consists of all 
subsets of A that include B. Any filter of the form !F B is called a principal 
filter. In particular, !FA ={A} and §'0 = :?J(A) are principal filters. The filter 
&'(A) is said to be improper and every other filter is said to be proper. 

Exercises 

2.112 Show that a filter§' on A is proper if and only if 0 ¢:_ !F. 
2.113 Show that a filter !F on A is a principal filter if and only if the 
intersection of all sets in !F is a member of !F. 
2.114 Prove that every finite filter is a principal filter. In particular, any 
filter on a finite set A is a principal filter. 
2.115 Let A be infinite and let !F be the set of all subsets of A that are 
complements of finite sets: !F = {CI(3W)(C =A- W 1\ Fin(W)}, where 
Fin(W) means that W is finite. Show that !F is a non-principal filter on A. 
2.116 Assume A has cardinality 'Np. Let 'Na ~ 'Np. Let !F be the set of all 
subsets of A whose complements have cardinality < 'Na. Show that !F is a 
non-principal filter on A. 
2.117 A collection C§ of sets is said to have the finite intersection property if 
Bt nB2 n ... nBk-=/=- 0 for any sets B 1,B2 , •.• ,Bk inC§. If C§ is a collection of 

tThe notion of a filter is related to that of an ideal. A subset§ of &l(A) is a filter 
on A if and only if the set'§= {A-BIB E ff} of complements of sets in ff is an 
ideal in the Boolean algebra Y'(A). Remember that g!J(A) denotes the set of all subsets 
of A. 

129 
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subsets of A having the finite intersection property and :Yt is the set of all 
finite intersections B 1 n B2 n ... n Bk of sets in C§, show that 
!F = {DI(3C)(B E :R 1\ C CD~ A)} is a proper filter on A. 

DEFINITION 

A filter !F on a set A is called an ultrafilter on A if§ is a maximal proper 
filter on A, that is, !F is a proper filter on A and there is no proper filter t:§ on 
A such that§ c t:§. 

Example . 
Let dE A. The principal filter !Fa = {B)d E B 1\ B C A} is an ultrafilter on A. 
Assume that t:§ is a filter on A such that §a C C§. Let C E C§- ff a. Then 
C C A and d ¢:. C. Hence, dE A- C. Thus, A-CE !Fa c t:§. Since'!} is a 
filter and C and A-Care both inC§, then 0 = C n (A- C) E C§. Hence, C§ is 
not a proper filter. 

Exercises 

2.118 Let !F be a proper filter on A and assume that B C A and A - B ¢:.!F. 
Prove that there is a proper filter ff' :::) !F such that B E ff' . 
2.119 Let !F be a proper filter on A. Prove that !F is an ultrafilter on A if 
and only if, for every B C A, either B E !F or A - B E !F. 
2.120 Let ff be a proper filter on A. Show. that !F is an ultrafilter on A if and 
only if, for all B and C in §'>(A), if B ¢:. ff and C ¢:. ff, then B U C ¢:. :F. 
2.121 (a) Show that every principal ultrafilter on A is of the form 

:Fa= {B(d E B 1\B C A} for some din A. 
(b) Show that a non-principal ultrafilter on A contains no finite sets. 

2.122 Let :F be a filter on A and let§ be the corresponding ideal: BE§ if 
and only if A- B E ff. Prove that§ is an ultrafilter on A if and only if .ff is 
a maximal ideal. 
2.123 Let X be a chain of proper filters on A, that is, for any B and C in X, 
eithr B C Cor C C B. Prove that the union UX = {ai(3B)(B EX 1\ a E B)} 
is a proper filter on A, and B C UX for all B in X. 

PROPOSITION 2.40 (ULTRAFILTER THEOREM) 

Every proper filter :F on a set A can be extended to an ultrafilter on At 

twe assume the generalized completeness theorem. 
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tproof 

-Let ff be a proper filter on A. Let .§ be the corresponding proper ideal: 
)3 E.§ if and only if A-BE ff. By Proposition 2.36, every ideal can be 
extended to a maximal ideal. In particular,.§ can be extended to a maximal 
ideal .Yf. If we let U/t = {BIA- BE Yl'}, then U/t is easily seen to be an ul­
trafilter and ff CUlt. 

Alternatively, the existence of an ultrafilter including ff can be proved 
easily on the basis of Zotn's lemma. (In fact, consider the set X of all proper 
filters ff' such that ff C ff'. X is partially ordered by C, and any c-chain in 
X has an upper bound in X, namely, by Exercise 2.123, the union of all 
filters in the chain. Hence, by Zorn's lemma, there is a maximal element ff* 
inX, which is the required ultrafilter.) However, Zorn's lemma is equivalent 
to the axiom of choice, which is a stronger assumption than the generalized 
completeness theorem. 

COROLLARY 2.41 

If A is an infinite set, there exists a non-principal ultrafilter on A. 

Proof 

Let ff be the filter on A consisting of all complements A- B of finite 
subsets B of A (see Exercise 2.115). By Proposition 2.40, there is an ul­
trafilter 0/t =>!F. Assume U/t is a principal ultrafilter. By Exercise 2.12l(a), 
OJ/= !Fa for some dE A. Then A- {d} E ff C U/1 . Also, {d} E U/1. Hence, 
0 = { d} n (A - { d}) E U/t, contradicting the fact that an ultrafilter is 
proper. 

Reduced direct products 

We shall now study an important way of constructing models. Let K be any 
predicate calculus with equality. Let J be a non-empty set and, for each j in 
J, let M; be some normal model of K. In other words, consider a function F 
assigning to each j in J some normal model. We denote F(J) by Mj. 

Let ff be a filter on J. For each j in J, let Dj denote the domain of the 
model Mj. By the Cartesian product DjEJDj we mean the set of all functions 
f with domain J such that fU) E Dj for all j in J. Iff E DjEJDj, we shall 
refer tofU) as the jth component of f. Let us define a binary relation =:Fin 
lljEJDj as follows: 

f =-'~' g if and only if {ji/U) = gU)} E ~ 

If we think of the sets in ff as being 'large' sets, then, borrowing a phrase 
from measure theory, we read f =-~gas 'fU) = gU) almost everywhere'. 
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It is easy to see that =g; is an equivalence relation: (1) f = .¥ f; (2) if 

f =y g then g =J f; (3) iff=.¥ g and g =ff h, then f =g; h. For the proof 
of (3), observe that {jlfU) = gU)} n {jlgU) = hU)} C {JlfU) = hU)}. If 
{jlfU) = gU)} and {jlgU) = hU)} are in :7', then so is their intersection 
and, therefore, also {jlfU) = hU)}. 

On the basis of the equivalence relation =."F, we can divide ITjEJDj into 
equivalence classes: for any fin ITjEJDj. we define its equivalence class f :F as 
{glf =y; g}. Clearly, {l) f E f:F; {2) !:F = h:F if and only iff = g; h; and (3) 
if fF ::f. h.o;;, then f ;y; n hy; = 0. We denote the set of equivalence classes 1~ 
by ITjEJDj/ :F. Intuitively, ITjEJDj/ :7' is obtained from ITjEJDj by identifying 
(or merging) elements of ITjEJDj that are equal almost everywhere. 

Now we shall define a model M of K with domain ITjEJDj/ :F. 

1. Let c be any individual constant of K and let cj be the interpretation of c 
in Mj. Then the interpretation of c in M will be fg;, where f is the 
function such that JU) = Cj for all j in J. We denote f by {cj}jEJ' 

2. Let f£' be any function letter of K and let A% be any predicate letter ofK. 
Their interpretations (fnM and (A%)M are defined in the following 
manner. Let (gl):T, ... , (g11 ).¥ be any members of ITjEJDjj!F. 

(a) (fl/)M((gl).¥, ... , (g,J_¥) = h_F, where hU) = (ff/)Mi(gl U), . .. , 9nU)) for 
all j in J. 

(b) (Ak)M((g1)y;, ... , (gn).¥ ) holds if and only if 

{jj FMi A%[gl U), · · · '9nU)]} E :7'. 

Intuitively, Cfk')M is calculated componentwise, and (Ai:)M holds if and only 
if Ai: holds in almost all components. Definitions (a) and (b) have to be 
shown to be independent of the choice of the representatives 91, ... , g11 in 
the equivalence classes (g1 )_¥, ... , (gn)_¥: if 91 = g; gi , ... , 9n = g; g;, and 
h*U) = (f~')M;(giU), .. . , g~U)), then (i) hg; =ff h'lF and (ii) {jl FMj Ak[91 U), 
... , YnU)]} E !F if and only if {jj FMi Ak[giU), ... , g~U)]} E :7'. 

Part (i) follows from the inclusion 

{jlg1(j) = g1(i)} n .. · n {jlgn(j) = g~(j)} ~ 
{jl(fk')M1 (gi (j), · · ·, Qn(j)) = (fk')Mi(gi(j), · · ·, g~(j))} 

Part (ii) follows from the inclusions: 

and 

{jlgi(j) = gi(i)} n ... n {jlgn(j) = g~(j)} ~ 

{jl FMi A%[gi (j), ... , gn(j)] if and only if FMj A%[gi(i), ... , g;,(i)]} 

UII=Mj AZ[gl (j), ... 'gn(j)]} n {JI FMj A%[gl (j), . .. l QnV)] if and 

only if I=M
1 
A~[gi(i), ... , g~(j)] C {JI FMi A;;[gi(i), ... , g;,(i)]} 

In the case of the equality relation =, which is an abbreviation for Ai, 
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(Ai)M(gg-,hy) if and only if VI FM, Ai[gU),hU)]} E !F 

if and only if {jlgU) = hU)} E ~ 

if and only if g =g; h 

that is, if and only if 9.? = h.<F· Hence, the interpretation (Ai)M is the 
identity relation and the model M is normal. 

The model M just defined will be denoted lljEJMjl ff and will be called a 
reduced direct product. When !F is an ultrafilter, ITjEJMjl s;;- is called an 
ultraproduct. When !F is an ultrafilter and al1 the Mjs are the same model N, 
then ITjEJMji!F is denoted NJ I!F and is called an ultrapower. 

Examples 
1. Choose a fixed element r of the index set J, and let !F be the principal 

ultrafilter !!1',. = {Bir E B 1\ B C J}. Then. for any j, gin TijEJDj,f =y- g if 
and only if {jlfU) = gU)} E !!1', that is, if and only if f(r) = g(r). Hence, 
a member of ITjEJDj I !F consists of all f in ITjEJDj that have the same rth 
component. For any predicate letter A% ofK and any 91, ... , g11 in ITjEJDj, 
FM AJ:[(gi)g;, ... , (g,).?] if and only if {jj f= MjAk[Yl U), .. . , YnU)]} E !F, 
that is, if and only if FMr A~[gl U) , ... , g11U)]. Hence, it is easy to verify 
that the function q;: ITjEJDjl » ~ D,., defined by q;(g37) = g(r) is an 
isomorphism oflljEJMjlg-; with M,.. Thus, when !F is a principal ultra­
filter, the ultraproduct ITjEJMji!F is essentially the same as one of its 
components and yields nothing new. 

2. Lets;;- be the filter {J}. Then, for any J, gin njEJDhf =;y g if and only if 
{jlfU) = gU)} E !!1', that is, if and only if JU) = gU) for all j in J, or if 
and only iff= g. Thus, every member of ll;EJDjlff is a singleton {g} 
for some gin njEJDj. Moreover, (f£1)M ((g1) 37 , ... , (g11 ).¥) = {g }, where g 
is such that gU)=(f"£')M1 (9tU), ... ,gnU)) for all j in J. Also, 
FM Ai:[(gi).¥, ... , (gn).?] if and only if FMj AZ[gl U), ... , g,U)] for all j in 
J. Hence, ITjEJMjl _.y; is, in this case, essentially the same as the ordinary 
'direct product' ITjEJMh in which the operations and relations are de­
fined componentwise. 

3. Let g-; be the improper filter PP(J). Then, for any f, gin ITjEJDh f =.? g if 
and only if UIJU) = gU)} E ff, that is, if and only if {jlfU) = 

gU)} E PP(J). Thus, f =.? g for all f and g, and ITjEJDji!F consists of 
only one element. For any predicate letter A~, FM A~[fy;, ... , f.y:-] if and 
only if {J FMj Ai;[fU), ... ,fU)])} E PP(J); that is, every atomic wfis true. 

The basic theorem on ultraproducts is due to Los (1955b). 

PROPOSITION 2.42 (LOS'S THEOREM) 

Let !F be an ultrafilter on a set J and let M = IIjEJ M j I% be an ultra product. 
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(a) Lets= ((gt)§, (g2).:¥, .. . ) be a denumerable sequence of elements o.f 
njEJDjj§. For each j in J, let Sj be the denumerable sequence' 
(g1 U), Y2U), ... ) in DJ· Then, for any wf !111 of K, s satisfies !111 in M if" 
and only if {jjsj satisfies !11 in Mj} E § . 

(b) For any sentence !/J of K, PJJ is true in llJEJ Mi/ § if and only if ' 
{Jl FM, PJJ} E §. (fhus, (b) asserts that a sentence PJJ is true in an 
ultra product if and only if it is true in almost all components.) 

Proof 

(a) We shall use induction on the number m of connectives and quantifiers in 
~- We can reduce the case m = 0 to the following subcases:t (i) 
A%(x;1 , ••• ,x;J; (ii) xc = f!c'(x;1 , ••• ,x;J; and (iii) xe = ak. For subcase (i), 8 
satisfies A%(x;" ... ,x;,) if and only if FM Aj;[(g;,)_¥", ... , (g;,,)y;], which is 
equivalent to {JI FMj Ai:[g;, U), ... , g;,U)]} E §; that is {JI SJ satisfies 
A~ (x;P ... ,xi,) in M1} E ff. Subcases (ii) and (iii) are handled in similar 
fashion. 

Now, let us assume the result holds for all wfs that have fewer than m 
connectives and quantifiers. 

Case 1. PlJ is -l(]. By inductive hypothesis, s satisfies C(] in M if and only if 
{Jisj satisfies C(] in MJ} E §. s satisfies ---,~ in M if and only if 
{jjs1 satisfies C(] in MJ} €f ff. But, since§ is an ultrafilter, the last condition 
is equivalent, by exercise 2.119, to {jjsJ satisfies -,C(] in MJ} E §. 

Case 2.@ is C(] A!!);. By inductive hypothesis, s satisfies C(] in M if and only 
if {JisJ satisfies C(] in MJ} E ff, and s satisfies !!)) in M if and only if 
{jjs1 satisfies !!)) in M 1} E ff. Therefore, s satisfies C(] A fili if and only if both 
of the indicated sets belong to !F. But, this is equivalent to their intersection 
belonging to §, which, in turn, is equivalent to {jjs1 satisfies C(] A PJ 
in MJ} E ff. 

Case 3. PJJ is (3.x;)C(]. Assume s satisfies (:lYi)C(]. Then there exists h in 
niEJDj such that s' satisfies C(] in M, where s' is the same ass except that hff 
is the ith component of s'. By inductive hypothesis, s' satisfies C(] in M if and 
only if {jjsj satisfies C(] in M1} E §. Hence, {jlsJ satisfies (3.x;)C(] in MJ} 
E §, since, if sj satisfies C(] in Mi then s1 satisfies (3.xi)C(] in MJ. 

Conversely, assume W = {jjs1 satisfies(3.x;)C(] in MJ} E §. For each j in 
W, choose some sj such that sf is the same as Sj except in at most the ith 
component and sf satisfies C(]_ Now define h in ITjEJDj as follows: for j in W, 
let hU) be the ith component of sj, and , for j€f W, choose hU) to be an 

tA wf Ak(t1, ... ,t11 ) can be replaced by (Vu1) ... (Vu11)(u1 = tt/\ ... A 

u11 =fn==>Ak(u1 , ... ,u,)), and a wf x=J;1(ti, ... ,t11 ) can be replaced by 
(Vzt) ... (Vz,)(zl =ttA ... I\z11 =f11 ==>x=Ji/(zi , .. . ,z,)). In this way, every wfis 
equivalent to a wf built up from wfs of the forms (i)-(iii) by applying connectives and 
quantifiers. 
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arbitrary element of D1. Lets' be the same ass except that its ith component 
is hfF. Then W C {jjsj' satisfies Cf5 in M1} E ff. Hence, by the inductive 
hypothesis, s'' satisfies Cf5 in M. Therefore, s satisfies (3x;)Cf5 in M. 

(b) This follows from part (a) by noting that a sentence !!JJ is true in a 
model if and only if some sequence satisfies !!11. 

COROLLARY 2.43 

If M is a model and ff is an ultrafilter on J, and if M* is the ultrapower 
MJ j!F, then M* = M. 

Proof 

Let !!JJ be any sentence. Then, by Proposition 2.42(b ), f!lJ is true in M* if and 
only if {jj!!JJ is true in M } E ff. If !!JJ is true in M, {ji!!JJ is true in M } 
= J E ff. If !!JJ is false in M, {ji!!JJ is true in M } = 0 ¢:. ff. 

Corollary 2.43 can be strengthened considerably. For each c in the domain 
D ofM, let e# stand for the constant function such that e#U) = c for allj in 
J. Define the function tjJ such that, for each c in D, tjf(c) = (c#)!F E rY /ff, 
and denote the range of t/1 by M#. M# obviously contains the interpretations 
in M* of the individual constants. Moreover; M# is closed under the op­
erations Ul/)M*; for Cft')M* ((cf)!F, ... , (c!/)!F) is h;F, where hU) = (!J/)M 
(c1, ..• , e11 ) for all j in J, and Cfk')M ((ct, ... , c,) is a fixed element b of D. So, 

h!F = (b#)!F EM#. Thus, M# is a substructure ofM*. 

COROLLARY 2.44 

tjJ is an isomorphism of M with M#, and M# ~eM*. 

Proof 

{a) By definition of M#, the range of t/J is M#. 
(b) t/1 is one-one. (For any c, d in D, (c#)!F = (d#).:y; if and only if 

c# = ff d#, which is equivalent to VIc# U) = d# U)} E ff; that is, 
{jjc = d} E !F. If e f= d, .{jlc = d,J M* 0 ~ ff, and, therefore~ 't(c) f=#tjf(d). 

(c) Foranye., ... ,C11 1nD, Cfk) (tjf(ci) ... ,tjf(e~,))- (h) ((c1 )!1', .. . , 
(ctf)37)=h:Ji7, where hU)=Cfl')M (cfU), ... ,cJ!U)) ={fl')M(ct, . . . ,c11 ). 

Thus, h:F = ((/k)M(ct, ... , C11 )) /!F = t/l((ft')M (ct, ... , Cn)). 
(d) FM* A%[t/J(ct) ... , t/J(c")] if and only if {jf FM Ak(tjl(ci)U), ... , 

tjf(c11 )U))} E ff, which is equivalent to {jl FM Ak(c1, ••• , C11)} E ff, that is, 
FM Ak[c1, ... , en]· Thus, t/1 is an isomorphism of M with M#. 
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To see that M# ::::;eM*, let !!lJ be any wf and (cf)g;, ... , (cff).'F EM#. 
Then, by proposition 2.42(a), PM* !!JJ[(cf)ff, ... (c~).r] if and only if 
{jii=M £?8[cfU), ... , ctfU)]} E ff, which is equivalent to {jii=M .@[c1, ... , 
c,]} E ff, which, in turn, is equivalent to PM !!JJ[ct, ... , c11J, that is, to 
FMit .q8[(cf)y, ... , (cff).?], since t/1 is an isomorphism of M with M#. 

Exercises 

2.124 (The compactness theorem again; see Exercise 2.54) If all finite sub­
sets of a set of sentences r have a model, then r has a model. 

2.125 
(a) A class 1fl of interpretations of a language !£ is called elementary if 

there is a set r of sentences of!£ such that 1r is the class of all models 
of r. Prove that 1fl is elementary if and only if 1f/ is closed under 
elementary equivalence and the formation of ultra products. 

(b) A class 1fl of interpretations of a language!£ will be called sentential if 
there is a sentence !!lJ of!£ such that 1r is the class of all models of f!JJ. 
Prove that a class 1/1 is sentential if and only if both 'If! and its com­
plement 1r (all interpretations of!£ not in ·'ff) are closed with respect 
to elementary equivalence and ultraproducts. 

(c) Prove that theory K of fields of characteristic 0 (see page 117) is 
axiomatizable but not finitely axiomatizable. 

Non-standard analysis 

From the invention of the calculus until relatively recent times the idea of 
infinitesimals has been an intuitively meaningful tool for finding new results 
in analysis. The fact that there was no rigourous foundation for in­
finitesimals was a source of embarrassment and led mathematicians to 
discard them in favour of the rigorous limit ideas of Cauchy and Weier­
strass. However, about forty years ago, Abraham Robinson discovered that 
it was possible to resurrect infinitesimals in an entirely legitimate and precise 
way. This can be done by constructing models that are elementarily 
equivalent to, but not isomorphic to, the ordered field of real numbers. Such 
models can be produced either by using Proposition 2.33 or as ultrapowers. 
We shall sketch here the method based on ultrapowers. 

Let R be the set of real numbers. Let K be a generalized predicate calculus 
with equality having the following symbols: 

1. For each real number r, there is an individual constant ar. 
2. For every n-ary operation cp on R, there is a function letter f(/J· 
3. For every n-ary relation <D on R, there is a predicate letter A<t>. 

We can think of R as forming the domain of a model~ forK; we simply let 
& ~ ~ (a,.) = r, (f(/J) = cp, and (A<t>) =<D. 
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Let !F be a non-principal ultrafilter on the set w of natural numbers. We 
can then form the ultra power Yl* = f?ltw I .fF. We denote the domain Rw I !F of 
l/1.* by R*. By Corollary 2.43, !Yl* _ -~ and, therefore, ~* has all the prop­
erties formalizable inK that~ possesses. Moreover, by Corollary 2.44, ~* 
has an elementary submodel fYt# that is an isomorphic image of .o/t. The 
domain R# of fYt# consists of all elements (c#).:F corresponding to the 
constant functions c#(i) = c for all i in w. We shall sotnetimes refer to the 
members of R# also as real numbers; the elements of R*- R# will be called 
non-standard reals. 

That there exist non-standard reals can be shown by explicitly exhibiting 
one. Let 1U) = j for all j in w. Then l§" E R*. However, (c#)y; < z5 for ali c 
in R, by virtue of Los's theorem and the fact that 
{jjc#U) < zU)} =VIc<}}, being the set of all natural numbers greater 
than a fixed real number, is the complement of a finite set and is, therefore, 
in the non-principal ultrafilter !F. l§" is an 'infinitely large' non-standard 
real (The relation < used in the assertion (c#).:F < l.:¥ is the relation on the 
ultrapower [1)?* corresponding to the predicate letter < of K. We use the 
symbol< instead of ( <)~· in order to avoid excessive notation, and we shall 
often do the same with other relations and functions. such as u + v, u x v, 
and lui.) 

Since Yl* possesses all the properties of ~ formalizable in K, fYI* is an 
ordered field having the real number field f?!t.# as a proper subfield. (.c~* is 
non-Archimedean: the element ly; defined above is greater than all the 
natural numbers (n#)_:p; of~*.) Let Rt, the set of 'finite' elements of R*, 
contain those elements z such that lzl < u for some real nun1ber u in R#. (Rt 
is easily seen to form a sub ring of R* .) Let Ro consist of 0 and the 'in­
finitesimals' of R*, that is, those elements z =/= 0 such that lzl < u for all 
positive real numbers u in R#. The reciprocal 1 I zy; is an infinitesimal.) It is 
not difficult to verify that Ro is an ideal in the ring Rt. In fact, since 
x E R1 - Ro implies that 1lx E Rt - Ro, it can be easily proved that Ro is a 
maximal ideal in R 1 . 

Exercises 

2.126 Prove that the cardinality of R* is 2No. 

2.127 Prove that the set Ro is closed under the operations of +, - and x. 
2.128 Prove that, if x E Rt and y E Ro, then xy E Ro. 
2.129 Prove that, if x E R1 - Ro, then Ilx E Rt -- Ro. 

Letx E R1• LetA= {ulu E R# 1\ u < x} and B = {u!u E R# 1\ u > x}. Then 
(A, B) is a 'cut' and, therefore, determines a unique real number r such that 
(I) ('v'x)(x E A==;. x~r) and (2) ('v'x)(x E B =} x~r).tThe differencex- r is 0 

tsee Mendelson (1973, chap. 5). 
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or an infinitesimal. (Proof: Assume x - r is not 0 or an infinitesimal. Then 
lx- rl > r 1 for some positive real number r 1. If x > r, then x- r > r 1. So 
x > r + n > r. But then r + rt E A, contradicting condition (1). If x < r , 
then r- x > rt, and so r > r- r1 > x. Thus, r- r 1 E B, contradicting con-
dition (2).) The real number r such that x - r is 0 or an infinitesimal is called 
the standard part of x and is denoted st(x). Note that, if x is itself a real 
number, then st(x) = x. We shall use the notation x:::::: y to mean 
st(x) = st(y). Clearly, x:::::: y if and only if x- y is 0 or an infinit~simal. If 
x ~ y, we say that x andy are infinitely close. 

Exercises 

2.130 If x E R 1, show that there is a unique real number r such that x- r is 
0 or an infinitesimal. (It is necessary to check this to ensure that st(x) is well­
defined.) 

2.131 If x and y are in R1, prove the following. 

(a) st(x + y) = st(x) + st(y) 
(b) st(.:tJ!) = st(x)st(y) 
(c) st(-x) = -st(x) 1\ st(y- x) = st(y)- st(x) 
(d) x~O =? st(x) ~0 
(e) x~y =? st(x)~st(y) 

The set of natural numbers is a subset of the real numbers. Therefore, in 
the theory K there is a predicate letter N corresponding to the property 
x E w. Hence, in R*, there is a set w* of elements satisfying the wf N(x). An 
element f :¥ of R* satisfies N(x) if and only if {jlf(j) E w} E ff. In particular, 
the elements n~, for n E w, are the 'standard' members of w*, whereas z.<F, 
for example, is a 'non-standard' natural number in R*. 

Many of the properties of the real number system can be studied from the 
viewpoint of non-standard analysis. For example, if sis an ordinary denu­
merable sequence of real numbers and cis a real number, one ordinarily says 
that lim s11 = c if 

(&) (\ie)(e > 0 ==? (3n)(n E w 1\ (\ik)(k E w A k';?:;n ==? lsk- cl <e))) 

Since s E Rw, sis a relation and, therefore, the theory K contains a predicate 
letter S(n,x) corresponding to the relation s11 = x. Hence; R* will have a 
relation of all pairs (n,x) satisfying S(n,x). Since~* ~. this relation will 
be a function that is an extension of the given sequence to the larger domain 
w*. Then we have the following result. 
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pROPOSITION 2.45 

Lets be a denumerable sequence of real numbers and c a real number. Lets* 
denote the function from OJ* into R* corresponding to s in !?11*. Then 
Jims11 = c if and only if s*(n) ~ c for alln in OJ* - OJ. (The latter condition 
can be paraphrased by saying that s* (n) is infinitely close to c when n is 
infinitely large.) 

Proof 

Assume lims11 =c. Consider any positive real t:. By (&), there is a natural 
number no such that (Vk)(k E w 1\ k?:-no =? lsk- cl <e) holds in !?11. Hence, 
the corresponding sentence (Vk)(k E OJ* 1\ k?:-no =? ls*(k)- cl <e) holds in 
[!};*. For any n in OJ* - OJ, n > no and, therefore, Is* (n) - cl < t:. Since this 
holds for all positive real t:, s*(n)- cis 0 or an infinitesimal. 

Conversely, assume s*(n) ~ c for all n E OJ*- OJ . Take any positive real e. 
Fix some n1 in OJ*- OJ. Then (Vk)(k?:-nt =? ls"'(k)- cl <e). So the sentence 
(3n)(n E OJ 1\ (Vk)(k E OJ 1\ k?:-n =? lsk- cl <e)) is true for !?11* and, there­
fore, also for !?11. So there must be a natural number no such that 
(\lk)(k E OJ 1\ k?:-no =? isk- cl <e). Since t: was an arbitrary positive rea] 
number, we have proved lim S 11 =c. 

Exercise 

2.132 Using Proposition 2.45, prove the following limit theorems for the 
real number system. If s and u are denumerable sequences of real num­
bers and c1 and c2 are real numbers such that lim s, = Ct and lim u, = c2, 
then: 

(a) lim(s11 + Un) = Ct + c2; 
(b) lim(s"un) = c1c2; 
(c) If c2 f= 0 and all U11 f= 0, lim(s11 /u,J = ctfc2. 

Let us now consider another important notion of analysis, continuity. Let 
B be a set of real numbers, let c E B, and let f be a function defined on Band 
taking real values. One says that f is continuous at c if 

(~) (Vc)(c > 0 ==> (3o)(b > 0 A (Vx)(x E B A lx- cl < b ==> lf(x)- f(c)l <e))) 
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PROPOSITION 2.46 

Let f be a real-valued function on a set B of real numbers. Let c E B. Let B* 
be the subset of R* corresponding to B, and let f* be the function corre~ 
sponding to f.t Then f is continuous at c if and only if (Vx)(x E B* 
1\ x::::: c:::? f*(x)::::: f(c)). 

Exercises 

2.133 Prove Proposition 2.46. 
2.134 Assume f and g are real-valued functions defined on a set B of real 
numbers and assume that f and g are continuous at a point c in B. Using 
Proposition 2.46, prove the following. 

(a) f + g is continuous at c. 
(b) f · g is continuous at c. 

2.135 Let f be a real-valued function defined on a set B of real numbers 
and continuous at a point c in B, and let g be a real-valued function defined 
on a set A of real numbers containing the image of B under f. Assume that g 
is continuous at the point f(c). Prove, by Proposition 2.46, that the corn­
position go f is continuous at c. 

2.136 Let C C R. 
(a) C is said to be closed if (Vx)((Vt:)[t: > 0:::? (3y)(y E C A fx- yf < 

t:)] =? x E C). Show that Cis closed if and only if every real number that 
is infinitely close to a member of C* is in C. (b) Cis said to be open if 
(\fx)(x E C =? (3<:5)(<:5 > 01\ (\fy)(ly - xl < b =? y E C))). Show that Cis 
open if and only if every non-standard real number that is infinitely 
close to a member of C is a member of C*. 

Many standard theorems of analysis turn out to have much simpler 
proofs within non-standard analysis. Even stronger results can be obtained 
by starting with a theory K that has symbols, not only for the elements, 
operations and relations on R, but also for sets of subsets of R, sets of sets of 
subsets of R, and so on. In this way, the methods of non-standard analysis 
can be applied to all areas of modern analysis, sometimes with original and 
striking results. For further development and applications, see A. Robinson 
(1966), Luxemburg (1969), Bernstein (1973), Stroyan and Luxemburg 
(1976), and Davis (1977a). A calculus textbook based on non-standard 
analysis has been written by Keisler (1976) and has been used in some 
experimental undergraduate courses. 

tTo be more precise, f is represented in the theory K by a predicate letter A1 , 
where A1 (x,y) corresponds to the relation J(x) = y. Then the corresponding relation 
Aj in R* determines a function f* with domain B*. 
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-Exercises 

.2.137 A real-valued function f defined on a closed interval [a, b] 
== {xla ~x ~ b} is said to be uniformly continuous if 

(Vt:)(t: > 0 ~ (3c5)(c5 > 01\ (Vx)(Vy)(a~x~b A a~y~b 1\ lx-Yl < 1J 

=* IJ(x)- f(y)l < t:))) 

-.Prove that f is uniformly continuous if and only if, for all x andy in [a, b]*, 
x ':::5 Y =? f*(x) ~ f*(y). 

2.138 Prove by non-standard methods that any function continuous on 
[a,b] is uniformly continuous on [a,b]. 

2.15 SEMANTIC TREES 

Remember that a wf is logically valid if and only if it is true for all inter­
pretations. Since there are uncountably many interpretations, there is no 
simple direct way to determine logical validity. Godel's completeness the­
orem (Corollary 2.19) showed that logical validity is equivalent to deriva­
bility in a predicate calculus. But, to find out whether a wf is provable in a 
predicate calculus, we have only a very clun1sy method: start generating the 
theorems and watch to see whether the given wf ever appears. Our aim here 
is to outline a more intuitive and usable approach in the case of wfs without 
function letters. Throughout this section, we assume that no function letters 
occur in our wfs. 

A wfis logically valid if and only if its negation is not satisfiable. We shall 
now explain a simple procedure for trying to determine satisfiability of a 
closed wf &n.t Our purpose is either to show that £!61 is not satisfiable or to 
find a model for £!61. 

We shall construct a figure in the shape of an inverted tree. Start with the 
wf £!61 at the top (the 'root' of the tree). We apply certain rules for writing wfs 
below those already obtained. These rules replace complicated wfs by sim­
pler ones in a way that corresponds to the meaning of the connectives and 
quantifiers. 

tRemember that a wf is logically valid if and only if its closure is logically valid. 
So it suffices to consider only closed wfs. 
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Conjunction: ~ A P2 

1 
Disjunction: ~ V P2 

/\. 
~ ~ P2 
P2 

Conditional: ~ => P2 Biconditional: 
/ ~ 

--,~ P2 

Universal quantifier: (\ix)~(x) (Rule U) 
1 [Here, b is any individual 

~(b) constant already present.] 

Existential quantifier: (3x)~(x) 

1 
~(c) 

[cis a new individual 
constant not already in 
the figure.] 

Note that some of the rules require a fork or branching. This occurs when 
the given wf implies that one of two possible situations holds. 

A branch is a sequence of wfs starting at the top and proceeding down the 
figure by applications of the rules. When a wf and its negation appear in a 
branch, that branch becomes closed and no further rules need be applied to 
the wf at the end of the branch. Closure of a branch will be indicated by a 
large cross X . 

Inspection of the rules shows that, when a rule is applied to a wf, the 
usefulness of that wf has been exhausted (the formula will be said to be 
discharged) and that formula need never be subject to a rule again, except in 
the case of a universally quantified wf. In the latter case, whenever a new 
individual constant appears in a branch below the wf, rule U can be applied 
with that new constant. In addition, if no further rule applications are possible 
along a branch and no individual constant occurs in that branch, then we must 
introduce a new individual constant for use in possible applications of rule U 
along that branch. (The idea behind this requirement is that, if we are trying 
to build a model, we must introduce a symbol for at least one object that can 
belong to the domain of the modeL) 
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fiASIC PRINCIPLE OF SEMANTIC TREES 
'< 

[fall branches become closed, the original wf is unsatisfiable. If, however, a 
branch remains unclosed, that branch can be used to construct a model in 
which the original wf is true; the domain of the model consists of the in­
dividual constants that appear in that branch. 

We shall discuss the justification of this principle later on. First, we shall 
give examples of its use. 

Examples 
1. To prove that (\lx)~(x):::;. <fi(b) is logically valid, we build a semantic tree 

starting from its negation. 
(i) -{(\lx)<fi(x):::;. <fi(b)) 
(ii) (\lx)<fi(x) (i) 
(iii) -,<fi( b) (i) 
(iv) <fi(b) (ii) 

X 

The number to the right of a given wf indicates the number of the line of the 
wf from which the given wf is derived. Since the only branch in this tree is 
closed, •((\lx)<fi(x) =;.~(b)) is unsatisfiable and, therefore, (\lx)<fi(x) :::::> <fi(b)) 
is logically valid. 

2. (i) -.[(\lx)(<fi(x):::;. fifi(x)):::;. ((\lx)<fi(x):::;. (\lx)fifi(x))] 
(ii) (\lx)(<fi(x):::;. fifi(x)) (i) 
(iii) -.((\lx)<fi(x):::;. (\lx)fifi(x)) (i) 
(iv) (\lx)<fi(x) (iii) 
(v) -.(\lx)f»(x) (iii) 
(vi) (::Jx)-,fifi(x) (v) 
(vii) -,fifi (b) (vi) 
(viii) Cli(b) (iv) 
(ix) <fi(b) :::;. fifi(b) (ii) 

/ ~ 
(x) -.<fi(b) fifi(b) (ix) 

X X 

Since both branches are closed, the original wf (i) is unsatisfiable and, 
therefore, (\lx)(<fi(x):::;. fifi(x)):::;. ((\lx)<fi(x) => (\lx)fifi(x)) is logically valid. 

3. (i) •[(3x)AHx):::;. (\lx)AHx)] 
(ii) (3x)AHx) (i) 
(iii) -.(\lx)A~ (x) (i) 
(iv) A{(b) (ii) 
(v) (3x)-.AHx) (iii) 
(vi) ·Al (c) (v) 
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No further applications of rules are possible and there is still an opetf 
branch. Define a model M with domain {b, c} such that the interpretation of" 
A{ holds forb but not for c. Thus, (3x)-.Al(x) is true in M but (\fx)A~ (x) is~ 
false in M. Hence, (3x)A{ (x) =} (\fx)A{ (x) is false in M and is, therefore, not~ 
logically valid. 

4. (i) •[(3y)(\fx)~(x,y) ::::} (\ix)(3y)~(x,y)] 
(ii) (3y)(Vx)~(x,y) (i) 
(iii) -.(\fx)(3y)~(x,y) (i) 
(iv) (\fx )fJ?J(x, b) (ii) 
(v) (3x)-.(3y)~(x,y) (iii) 
(vi) ~(b,b) (iv) 
(vii) -.(3y)fJ?J(c,y) (v) 
(viii) ~( c, b) (iv) 
(ix) (\fy)-.fJ?J(c,y) (vii) 
(x) ·~(c, b) (ix) 

X 
Hence, (3y)(\fx)fJ?J(x,y) ::::} (\fx)(3y)~(x,y) is logically valid. 

Notice that, in the last tree, step (vi) served no purpose but was required 
by our method of constructing trees. We should be a little 1nore precise in 
describing that method. At each step, we apply the appropriate rule to each 
undischarged wf (except universally quantified wfs), starting from the top of 
the tree. Then, to every universally quantified wf on a given branch we apply 
rule U with every individual constant that has appeared on that branch since 
the last step. In every application of a rule to a given wf, we write the 
resulting wf(s) below the branch that contains that wf. 

5. (i) 
(ii) 
(iii) 
(iv) 
(v) 
(vi) 

•[(Vx)fJ?J(x) =} (3x)fJ?J(x)] 
(\ix )fJ?J(x) 
-.(3x)fJ?J(x) 
(\ix) -.fJ?J(x) 
~(b) 

·~(b) 
X 

(i) 
(i) 
(iii) 
(ii)t 
(iv) 

Hence, (\fx)~(x) =? (3x)~(x) is logically valid. 

6. (i) •[(\fx)-.Ai(x,x) =} (3x)(\fy)-.Ai<x,y)] 
(ii) (\fx)-.Af(x,x) (i) 
(iii) •(3.x)(Vy)•Ai(x,y) (ii) 
(iv) (\t'x)-.(\fy)-.Af(x,y) (iii) 
(v) •Ai(a1, at) (ii)t 
(vi) -.(\fy)•At(al,Y) (iv) 

tHere, we must introduce a new individual constant for use with rule U since, 
otherwise, the branch would end and would not contain any individual constants. 
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(vii) (3y)··Ar(ai ,y) 
(viii) ·-.Af(ah a2) 
(ix) AI(a1,a2) 
(x) -v4r(a2,a2) 
(xi) •('v'y)•At(a2,Y) 
(xii) (3y)••Af( a2, y) 
(xiii) --,--,AI( a2, a3) 
(xiv) Ai(a2, a3) 

(vi) 
(vii) 
(viii) 
(ii) 
(iv) 
(xi) 
(xii) 
(xiii) 

~We can see that the branch wilJ never end and that we will obtain a sequence 
-of constants a1, a2, ... with wfs Af(a,, an+I) and ·Af(an, a11 ). Thus, we con­
,5tnJct a model M with domain {at, a2, ... } and we define (Ai)M to contain 
only the pairs (an, an+I)· Then, ('v'x)-.Af(x,x) is true in M , whereas 
(3x)('v'y)•Ai(x,y) is false in M. Hence, ('v'x)-.AT(x,x) ::::> (3x)('v'y)-.Ai(x,y) is 
not logically valid. 

Exercises 

2.139 Use semantic trees to determine whether the following wfs are logi­
cally valid. 

(a) ('v'x)(A: (x) V Ai(x)) => ((V'x)Af (x)) V ('v'x)AHx) 
(b) ((V'x)~(x)) A ('v'x)~(x) ~ ('v'x)(~(x) 1\ ~(x)) _ 
(c) (V'x)(~(x) A ~(x)) ::::> ((V'x)~(x)) A (V'x)~(x) 
(d) (3x)(A{(x) :::9- A~(x)) => ((3x)At(x) => (3x)Ai(x)) 
(e) (3x)(3y)Ar(x,y) * (3z)AT(z,z) 
(f) ((V'x)Al (x)) V (V'x)A1(x) * ('v'x)(AHx) V A1{x)) 
(g) (3x)(3y)(Ai(x, y) => ('v'z)AT{z, y)) 
(h) The wfs of Exercises 2.24, 2.3l(a, e, j), 2.39 and 2.40. 
(i) The wfs of Exercise 2.21(a, b, g). 

PROPOSITION 2.47 

Assume that r is a set of dosed wfs that satisfy the following closure con­
ditions: (a) if --,--,,t}J is in r, then f!J is in r; (b) if·(~ v ~) is in r, then --,{!8 

and .~ are in r; (c) if·(~=>~) is in r, then f1A and ~~are in r; (d) if 
•(V'x)PJ is in r, then (3x)-.PJ is in r; (e) if ·(3.x)~ is in r, then (V'x)•.?J is in 
r; (f) if •(f!J A~) is in r. then at least one of~~ and ·~ is in r; (g) if 
•(f!J {::} ~) is in r, then either@ and~~ are in r, or~~ and~ are in r; (h) 
if@ A ~ is in r, then so are f!J and ~; (i) if f!J V ~ is in r, then at least one of 
f!lJ and~ is in r, (j) if f!J =>~is in r, then at least one of •M and~ is in r; 
(k) if f!J {::} ce is in r, then either f!J and ~ are in r or --,f!J and .~ are in r; (1) 
if'v'x)96'(x) is in r, then ~(b) is in[' (where b is any individual constant that 
occurs in some wf of r); (m) if (3x)PJ(x) is in r, then .t!J(b) is in r for some 
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individual constant b. If no wf and its negation both belong to r and sorne 
wfs in [' contain individual constants, then there is a model for r whose 
domain is the set D of individual constants that occur in wfs of r. ~, 

Proof 

Define a model M with domain D by specifying that the interpretation of any 
predicate letter Ak in r contains an n-tuple (b1, ... , b11 ) if and only i-f 
A%(b1 , •.• , b,) is in r. By induction on the number of connectives and 
quantifiers in any closed wf @,it is easy to prove: (i) if Cis in r, then Cis tru€ 
in M; and (ii) if -.6, is in r, then Cis false in M . Hence, M is a model for r ' 

If a branch of a semantic tree remains open, the set r of wfs of thal 
branch satisfies the hypotheses of Proposition 2.47. If follows that, if a, 
branch of a semantic tree remains open, then the set r of wfs of that branch. 
has a model M whose domain is the set of individual constants that appear 
in that branch. This yields half of the basic principle of semantic trees. 

PROPOSITION 2.48 

If all the branches of a semantic tree are closed, then the wf f!lJ at the root of 
the tree is unsatisfiable. 

Proof 

From the derivation rules it is clear that, if a sequence of wfs starts at f!lJ and 
continues down the tree through the applications of the niles, and if the wfs 
in that sequence are simultaneously satisfiable 'in some model M, then that 
sequence can be extended by another application of a rule so that the added 
wf(s) would also be true in M. Otherwise, the sequence would form an 
unclosed branch, contrary to our hypothesis. Assume now that f!lJ is sa· 
tisfiable in a model M. Then, starting with f!JJ, we could construct an infinite 
branch in which all the wfs are true in M. (In the case of a branching rule, if 
there are two ways to extend the sequence, we choose the left-hand wf.) 
Therefore, the branch would not be closed, contrary to our hypothesis. 
Hence, f!lJ is unsatisfiable. 

This completes the proof of the basic principle of semantic trees. Notice 
that this principle does not yield a decision procedure for logical validity. If 
a closed wf f!lJ is not logically valid, the semantic tree of -,f!JJ may (and often 
does) contain an infinite unclosed branch. At any stage of the construction 
of this tree, we have no general procedure for deciding whether or not, at 
some later stage, all branches of the tree will have become closed. Thus, we 
have no general way of knowing whether f!lJ is unsatisfiable. 
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For the sake of brevity, our exposition has been loose and imprecise. A 
clear and masterful study of semantic trees and related matters can be found 
irF-Stnullyan (1968). 

2!16 QUANTIFICATION THEORY ALLOWING EMPTY DOMAINS 

our definition in Section 2.2 of interpretations of a language assumed that 
the domain of an interpretation is non-empty. This was done for the sake of 
siinplicity. If we allow the empty domain, questions arise as to the right way 
of defining the truth of a formula in such a domain.t Once that is decided, 
the corresponding class of valid formulas (that is, formulas true in all in­
terpretations, including the one with an empty domain) becomes smaller, 
and it is difficult to find an axiom system that will have all such formulas as 
its theorems. Finally, an interpretation with an empty domain has little or 
no importance in applications of logic. 

Nevertheless, the problem of finding a suitable treatment of such a more 
inclusive logic has aroused some curiosity and we shall present one possible 
approach. In order to do so, we shall have to restrict the scope of the 
investigation in the following ways. 

First, our languages will contain no individual constants or function 
letters. The reason for this restriction is that it is not clear how to interpret 
individual constants or function letters when the domain of the interpreta­
tion is empty. Moreover, in first-order theories with equality. individual 
constants and function letters always can be replaced by new predicate 
letters, together with suitable axioms.+ 

Second, we shall take every formula of the form (\lx)PJ(x) to be true in the 
empty domain. This is based on parallelism with the case of a non-empty 
domain. To say that (Vx).?J(x) holds in a non-empty domain D amounts to 
asserting 

(*) for any object c, if c ED, then ~(c) 

When D is empty, 'c E D' is false and, therefore, 'if c E D, then PJ (c)' is true. 
Since this holds for arbitrary c, (*)is true in the empty domain D, that is, 
{Vx).?J(x) is true in an empty domain. Not unexpectedly, (3x)gB(x) will be 
false in an empty domain, since (3x)PJ(x) is equivalent to -.(\lx)-.PJ(x). 

These two conventions enable us to calculate the truth value of any closed 
formula in an empty domain. Every such formula is a truth-functional 
combination of formulas of the form (\lx)PJ(x). Replace every subformula 

tFor example, should a formula of the form (Vx)(A~(x) A -.A!{x)) be considered 
true in the empty domain? 

+For example, an individual constant b can be replaced by a new monadic 
predicate letter P, together with the axiom (:Jy)(Vx)(P(x) {::> x = y). Any axiom ~(b) 
should be replaced by (Vx)(P(x) =* ~(x)). 
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(\t'x)~(x) by the truth value T and then compute the truth value of the whole 
formula. -_, 

It is not clear how we should define the truth value in the empty domain 
of a formula containing free variables. We might imitate what we do in the 
case of non-empty domains and take such a formula to have the same truth 
values as its universal closure. Since the universal closure is automatically 
true in the empty domain, this would have the uncomfortable consequence 
of declaring the formula A~ (x) 1\ •A ~ (x) to be true in the empty domain. For 
this reason, we shall confine our attention to sentences, that is, formulas 
without free variables. 

A sentence will be said to be inclusively valid if it is true in all inter2 
pretations, including the interpretation with an empty domain. Every in~ 
elusively valid sentence is logically valid, but the converse does not hold. To 
see this, let f stand for a sentence ~ 1\ --.~, where ~ is some fixed sentence, 
Now, f is false in the empty domain but (\fx)f is true in the empty domain 
(since it begins with a universal quantifier). Thus the sentence (\fx)f :=} f is 
false in the empty domain and, therefore, not inclusively valid. However, it 
is logically valid, since every formula of the form (\fx )PJJ =} ~ is logically 
valid. 

The problem of determining the inclusive validity of a sentence is re­
ducible to that of determining its logical validity, since we know how to 
determine whether a sentence is true in the empty domain. Since the problem 
of determining logical validity will turn out to be unsolvable (by Proposition 
3.S4), the same applies to inclusive validity. 

Now let us turn to the problem of finding an axiom system whose the­
orems are the inclusively valid sentences. We shall adapt for this purpose an 
axiom system pp# based on Exercise 2.28. As axioms we take all the fol­
lowing formulas (see the Logical Axioms on p. 69): 

(AI) f!JJ =} (~ =} ~) 
(A2) (f!JJ =} (~ =} !?2)):::::} ((.@ =} ~) =} (~:::::} !?2)) 
(A3) ( --.~ => •rl4) => ( ( .~ ;:::} f!JJ) =} ~) 
(A4) (\t'x)r!4(x) => f!4(v) if PJJ(x) is a wf of 2 andy is a variable that is free 

for x in f!JJ(x). (Recall that, if y is x itself, then the axiom has the form 
(\fx)r!4 =} f!JJ. In addition, x need not be free in f!JJ(x).) 

(AS) (\fx) ( PlJ :::::} ~) =? ( f!JJ ==? (\fx) ~) if !llJ contains no free occurrences of x. 
(A6) (V'YI) ... (\fyn )(~ =} ~) =? [(V'YI) ... (\fyn)f!JJ =} (V'Yt) .. . (Vyn)~] 

together with all formulas obtained by prefixing any sequence of universal 
quantifiers to instances of (Al)-(A6). 

Modus ponens (MP) will be the only rule of inference. 
PP denotes the pure first-order predicate calculus, whose axioms are 

(A l )-(AS), whose rules of inference are MP and Gen, and whose language 
contains no individual constants or function letters. By G6del's complete­
ness theorem (Corollary 2.19), the theorems of PP are the same as the 
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logically valid formulas in PP. Exercise 2.28 shows first that Genis a derived 
rtlle of inference ofPP#, that is, iff--pp# !?J, then 1--pp# (\fx)!?J, and second that 
pp and pp# have the same theorems. Hence, the theorems of pp# are the 
t&gically valid formulas. 

Let pps# be the same system as pp# except that, as axioms, we take only 
:the axioms of pp# that are sentences. Since MP takes sentences into sen­
t~nces, all theorems of pps# are sentences. Since all axioms of PPS# are 
;,axioms of pp#, all theorems of pps# are logically valid sentences. Let us 
JshoW that the converse holds. 

~'pROPOSITION 2.49 
}-

;·Every logically valid sentence is a theorem of pps#. 

-·Proof 

Let f!JJ be any logically valid sentence. We know that PJJ is a theorem of pp#. 
::Let us show that PJJ is a theorem of pps#. In a proof of PJJ in pp#, let 
u1, ••• , U11 be the free variables (if any) in the proof, and prefix (\fu1) ... (\fun) 
to all steps of the proof. Then each step goes into a theorem ofPPS#. To see 
this, first note that axioms of pp# go into axioms of pps#. Second, assume 
that !?J comes from Cf5 and Cf5 =} !?J by MP in the original proof and that 

~{v'u1 ) ... ('v'un)Cf5 and (V'ut) ... (\fu11 )(Cf5 ~ !?J) are provable in pps#. Since 
(\fu1) ... (\fun) ( Cf5 :::::} !?J) =} [ (V'tq) ... (\fun )Cf5 =} (\ltq) ... (\fu, )!?J] is an in-
stance of axiom (A6) of pps#, it follows that (\ll.li) ... (\lu 11 )!?J is provable in 
pps#. Thus, (\fu1) ... (\fu11 )PJJ is a theorem of pps#. Then n applications of 
axiom (A4) and MP show that PJJ is a theorem of pps#. 

Not all axioms of PPS# are inclusively valid. For example, the sentence 
(\lx)f:::::} f discussed earlier is an instance of axiom (A4) that is not in­
clusively valid. So, in order to find an axiom system for inclusive validity, we 
must modify pps#. 

If Pis a sequence of variables Ut, ... , u11 , then by \fP we shall mean the 
expression (V'ut) ... (\lun)· 

Let the axiom system ETH be obtained from PPS# by changing axiom 
(A4) into: 

(A4') All sentences of the form \fP[(\fx)PJJ(x) :::::} PJJ(y)], where y is free for x 
in PJJ(x) and xis free in PJJ(x), and Pis a sequence of variables that 
includes all variables free in PJJ (and possibly others). 

MP is the only rule of inference. 
It is obvious that all axioms of ETH are inclusively valid. 
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LEMMA 2.50 

If !T is an instance of a tautology and P is a sequence of variables that 
contains all free variables in f/, then f---ETH V'P!T. 

Proof 

By the completeness of axioms (Al)-(A3) for the propositional calculus. 
k 

there is a proof of!!/ using MP and instances of (Al)-(A3). If we prefix vf.i~ 
to all steps of that proof, the resulting sentences are all theorems of ETH. In: 
the case when an original step f!lJ was an instance of (Al)-(A3), \:fPff8 is a~ ' 
axiom of ETH. For steps that result from MP, we use axiom (A6). 

LEMMA 2.51 

If Pis a sequence of variables that includes all free variables of f!lJ:::::? rri, and 
f---ETH V'Pf!JJ and f---ETH \IP[f!/J :::::} rri], then f---ETH \/PrrJ. 

Proof 

Use axiom (A6) and MP. 

LEMMA2.52 

If Pis a sequence of variables that includes all free variables of f!JJ, rri, ~,and 
f---ETH V'P[f!/J => rri] and f---ETH \IP[rrJ => ~), then f---ETH\:fP[f!/J:;:::} ~). 

Proof 

Use the tautology (f!JJ ==> rri) => ((rri => ~):;:::} (f!/J => ~)), Lemma 2.50, and 
Lemma 2.51 twice. 

LEMMA 2.53 

If xis not free in f!lJ and P is a sequence of variables that contains all free 
variables of f!/J, f---ETH \fP[f!/J:;:::} (V'x)f!/J]. 

Proof 

By axiom (AS), f---ETH V'P[(V'x)(B => B) => (B => (V'x)B)). By Lemma 2.50, 
f---ETH V'P[(V'x)(f!JJ:;:::} f!/J)]. Now use Lemma 2.51. 
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tOROLLARY 2.54 
:~· 

If r!lJ has no free variables, then ~ETH f!JJ =} (\fx)f!JJ. 

LEMMA 2.55 

If x is not free in f!JJ and P is a sequence of variables that includes all 
variables free in f!JJ, then ~ETH V'P[-.(\fx)f ==? ((\fx).?4 ==? f!JJ)]. 

Proof 

1-ETH \fP[-.f!JJ ==? (.?4 =:?- f)] by Lemma 2.50. By Lemma 2.53, ~ETH \IP 
[(r!lJ =}f) ==? (\fx)(.?4 ==? f)]. Hence, by Lemma 2.52, ~ETH \fP[-.f!JJ =? (\fx) 
(PJ =>f)]. By axiom (A6), ~ETH \fP[(\fx)(f!JJ ==?f)=:?- ((\fx)f!JJ;::::} (V'x)f)]. 
Hence, by Lemma 2.52, ~ETH \fP[-.f!JJ =:?- ((\fx)f!JJ =} (\fx)f)]. Since [•f!JJ =} 

((Vx)f!JJ =} (\fx)f)] * [•(\fx)f ~ ((\fx)f!JJ => f!JJ)] is an instance of a tautology, 
Lemmas 2.50 and 2.51 yield ~ETH \fP[•(\fx)f =} ((\fx)f!JJ ==? @)]. 

PROPOSITION 2.56 

ETH + { -.(\fx)f} is a complete axiom system for logical validity, that is. a 
sentence is logically valid if and only if it is a theorem of the system. 

Proof 

All axioms of the system are logically valid. (Note that (\fx)f is false in all 
interpretations with a non-empty domain and, therefore, •(\fx)f is true in all 
such domains.) By Proposition 2.49, all logically valid sentences are pro­
vable in pps#. The only axioms of pps# missing from ETH are those of the 
form \fP[(\fx)f!JJ =} f!JJ], where x is not free in f!JJ and P is any sequence of 
variables that include all free variables of f!JJ. By Lemma 2.55, 
~ETH \fP[-.(\fx)f =} ((\fx)f!JJ => f!JJ)]. By Corollary 2.54, \fP[-.(\fx)f] will be 
derivable in ETH + { •(Vx)f}. Hence, \fP[(\fx)f!JJ =} f!JJ] is obtained by using 
axiom (A6). 

LEMMA 2.57 

If P is a sequence of variables that include all free variables of f!JJ, 
~ETH \fP[(\fx)f ==? ((\fx)f!JJ {::} t)], where t is -,f. 
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Proof 

Since f =} PJJ is an instance of a tautology, Lemma 2.50 yields 
~Em \fP(Vx)[f =} £'J). By axiom (A6), ~ETH \fP[(\fx)[f =} £'J) ;::} ((\fx)f 
=} (Vx)PJJ]]. Hence, ~ETH VP((\fx)f =? (\fx)PJJ] by Lemma 2.51. Since 
(\fx)PJJ =? [(Vx)PJJ {:} t] is an instance of a tautology, Lemma 2.50 yields 
~ETH VP[(Vx)~ =} [(\fx)PJJ {:} t]]. Now, by Lemma 2.52, ~ETH VP[(Vx)f 
=? [ (\fx)@ {:} t]]. 

Given a formula@, construct a formula PJJ* in the following way. Moving 
from left to right, replace each universal quantifier and its scope by t. 

LEMMA 2.58 

If P is a sequence of variables that include all free variables of £llJ, then 
~ETH \fP((Vx)f =} (@ {:} £llJ*]]. 

Proof 

Apply Lemma 2.57 successively to the formulas obtained in the stepwise 
construction of@*. We leave the details to the reader. 

PROPOSITION 2.59 

' 
ETH is a complete axiom system for inclusive vali~ity, that is, a sentence f!iJ 
is inclusively valid if and only if it is a theorem of ETH. 

Proof 

Assume @is a sentence valid for all interpretations. We must show that 
~Em@. Since@ is valid in all non-empty domains, Proposition 2.56 implies 
that@ is provable in ETH + { -{Vx)f}. Hence, by the deduction theorem, 

( +) 1-Ern -{v'x )f => ~. 

Now, by Lemma 2.58, 

(%) 1-Ern (Vx)f => [~ {::} ~*] 

(Since @has no free variables, we can take Pin Lemma 2.58 to be empty.) 
Hence, [(Vx )f =? [£'J <=} PJJ*]] is valid for all interpretations. Since (Vx )f is 
valid in the empty domain and f!J is valid for all interpretations, £llJ* is 
yalid in the empty domain. But f!J* is a truth-functional combination of ts. 
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So, (!4* must be truth-functionally equivalent to either t or f. Since it is 
-valid in the empty domain, it is truth-functionally equivalent to t. Hence, 
't-ETH {!)J*. Therefore by (o/o), f--ETH (V'x)f:::} {!)J. This, together with (+), 
yields f--ETH {!)J • 

The ideas and methods used in this section stem largely, but not entirely, 
from a paper by Hailperin (1953).t That paper also made use of an idea in 
Mostowski (195lb), the idea that underlies the proof of Proposition 2.59. 
Mostowski's approach to the logic of the empty domain is quite different 
from Hailperin's and results in a substantially different axiom system for 
inclusive validity. For example, when f!J does not contain x free, Mostowski 
interprets (Vx)f!J and (3x)f!J to be f!J itself. This makes (\fx)f equivalent to f, 
rather than to t, as in our development. 

tThe name ETH comes from 'empty domain' and 'Theodore Hailperin'. My 
simplification of Hailperin's axiom system was suggested by a similar simplification 
in Quine (1954). 
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Formal Number Theory 

3.1 AN AXIOM SYSTEM 

Together with geometry, the theory of numbers is the most immediately 
intuitive of all branches of mathematics. It is not surprising, then, that 
attempts to formalize mathematics and to establish a rigorous foundation 
for mathematics should begin with number theory. The first semi-axiomatic 
presentation of this subject was given by Dedekind in 1879 and, in a slightly 
modified form, has come to be known as Peano's postulates. t It can be 
formulated as follows: 

(P 1) 0 is a natural number. t 
(P2) If xis a natural number, there is another natural number denoted by x' 

(and called the successor of x).§ 
(P3) 0 =1- x' for every natural number x. 
(P4) If x' = y', then x = y. 
(P5) If Q is a property that may or may not hold for any given natural 
number, and if (I) 0 has the property Q and (II)' whenever a natural number 
x has the property Q, then x' has the property Q, then all natural numbers 
have the property Q (mathematical induction principle). 

These axioms, together with a certain amount of set theory, can be used 
to develop not only number theory but also the theory of rational, real and 
complex numbers (see Mendelson, 1973). However, the axioms involve 
certain intuitive notions, such as 'property', that prevent this system from 
being a rigorous formalization. We therefore shall build a first-order theory 
S that is based upon Peano's postulates and seems to be adequate for the 
proofs of all the basic results of elementary number theory. 

The language £A of our theory S will be called the language of arithmetic . 
.PA has a single predicate letter Ai. As usual, we shall write t = s for AI (t, s) . 
.PA has one individual constant a1. We shall use 0 as an alternative notation 

tFor historical information, see Wang (1957). 
+The natural numbers are supposed to be the non-negative integers 0, 1, 2, .... 
§The intuitive meaning of x' is x + 1. 
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for a1. Finally, 2 A has three function letters, fl ,f[ and fi- We shall 
write(t') instead of fl(t), (t+s) instead of !?(t,s), and (t·s) instead of 

, ff(t,s). However, we shall write t', t + s, and t · s instead of (t'), (t +s), and 
(t. s) whenever this will cause no confusion. 

The proper axioms of S are: 

(Sl) 
(S2) 
(S3) 
(S4) 
(S5) 
(S6) 
(S7) 
(S8) 
(S9) 

XI = X2 ==? (XJ = X3 =} X2 = X3) 
I I 

Xt = X2 ==} x1 = x2 

0 :f= X~ 
XI =X~ ==} XI = X2 

XI+ 0 =XI 

x1 +x~ =(xi +x2)
1 

XI· 0 = 0 
XJ · (x2)

1 = (xi · x2) + XJ 
&6'(0) ==? ((Vx)(PJ(x) ==? PJ(x')) =i'- (Vx)&6'(x)) for any wf PJ(x) of S. 

We shall call (S9) the principle of mathematical induction. Notice that 
axioms (Sl)-(S8) are particular wfs, whereas (S9) is an axiom schema pro­
viding an infinite number of axioms.t 

Axioms (S3) and (S4) correspond to Peano postulates (P3) and (P4), 
respectively. Peano's axioms (Pl) and (P2) are taken care of by the presence 
of 0 as an individual constant and fl as a function letter. Our axioms (Sl) 
and (S2) furnish some needed properties of equality; they would have been 
assumed as intuitively obvious by Dedekind and Peano. Axioms (S5)-(S8) 
are the recursion equations for addition and multiplication. They were not 
assumed by Dedekind and Peano because the existence of operations + and 
. satisfying (S5)-(S8) is derivable by means of intuitive set theory, which was 
presupposed as a background theory (see Mendelson, 1973, chapter 2, 
Theorems 3.1 and 5.1). 

Any theory that has the same theorems as S is often referred to in the 
literature as Peano arithmetic, or simply PA. 

From (S9) by MP, we can obtain the induction rule: 

@(0), ('v'x)(~(x) =7- ~(x')) 1-8 ('v'x)~(x). 

lt will be our immediate aim to establish the usual rules of equality; that 
is, we shall show that the properties (A6) and (A7) of equality (see page 95) 
are derivable inS and, hence, that Sis a first-order theory with equality. 

First, for convenience and brevity in carrying out proofs, we cite some 
immediate, trivial consequences of the axioms. 

tHowever, (S9) cannot fully correspond to Peano's postulate (P5), since the 
latter refers intuitively to the 2No properties of natural numbers, whereas (S9) can 
take care of only the denurnberable number of properties defined by wfs of !I' A. 
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LEMMA 3.1 

For any terms t,s,r of !EA, the following wfs are theorems ofS. 

(Sl') t = r:::.? (t = s:::.? r = s) 

(S2') t = r :::.? t' = 1
1 

(S3') 0 f= t' 
(S4') t' = r' :::.? t = r 
(SS') t + 0 = t 

(S6') t+r' = (t+r)' 
(S7') t · 0 = 0 
(S8') t · r' = (t · r) + t 

Proof 

(Sl')- (S8') follow from (Sl )- (S8), respectively. First form the closure by 
means of Gen, use Exercise 2.48 to change all the bound variables to vari­
ables not occuring in terms t, r, s, and then apply rule A4 with the appro­
priate terms t, r, s.i 

PROPOSITION 3.2. 

For any terms t, s, r, the following wfs are theorems of S. 

(a) t = t 

(b) t=r==>r=t 

(c) t = r ::::> (r = s ~ t = s) 
(d) r = t:::.? (s = t:::.? r = s) 
(e) t = r:::.? t + s = r + s 

(f) t = 0 + t 
(g) t' + r = (t + r)' 
(b) t +r = r + t 
(i) t = r ::::} s + t = s + r 
0) ( t + r) + s = t + ( r + s) 
(k) t = r :::.? t · s = r · s 
(1) 0. t = 0 
(m) t' · r = t · r + r 

fThe change of bound variables is necessary in some cases. For example, if we 
want to obtain x2 = Xt => x2 = ~ from Xt = x2 => x; = x2, we first obtain 
('v'xt)('v'x2)(xt = x2 => x; = x2). We cannot apply rule A4 to drop (\fx1) and replacext 
by x2, since X2 is not free for x1 in ('v'x2)(x1 = x2 => x; = x2). From now on, we shall 
assume without explicit mention that the reader is aware that we sometimes have to 
change bound variables when we use Gen and rule A4. 

~, ... 



i[ _________________ A_N __ A_X_I_O_M __ SY_S_T_E_M __________________ ~I I 157 

(n) t · r = r · t 
(o) t = r ~ s · t = s · r 

Proof 

(a) 1. t+ 0 = t (S5') 
2. (t + 0 = t) ~ (t + 0 = t ~ t = t) (S1') 
3. t + 0 = t ~ t = t 1, 2, MP 
4. t = t 1, 3, MP 

(b) 1. t = r ~ (t = t => r = t) (S1') 
2. t = t ~ (t = r => r = t) 1, tautology, MP 
3. t = r ~ r = t 2, part (a), MP 

(c) l. r = t ~ (r = s:::::!? t = s) (S1') 
2. t = r ~ r = t Part (b) 
3. t = r ~ (r = s ~ t = s) 1, 2, tautology, MP 

(d) 1. r = t ~ (t = s ~ r = s) Part (c) 
2. t = s ~ (r = t ~ r = s) 1, tautology, MP 
3. s = t ~ t = s Part (b) 
4. s = t ~ (r = t ~ r = s) 2, 3, tautology, MP 

(e) Apply the induction rule to PJ(z): x = y ~ x + z = y + z. 
(i) 1. X + 0 = X (S5') 

2. y + 0 = y (S5') 
3. x=y Hyp 
4. x+O =y 1, 3, part (c), MP 
5. x+O =y+O 4, 2, part (d), MP 
6. I-s x = y ~ x + 0 = y + 0 1-5, deduction theorem 

Thus, I-s PJ(O). 

(ii) 1. 
2. 
3. 
4. 

x=y~x+z=y+z 

x=y 
x+z' = (x+z)1 

y +z' = (y +z)' 
5. x+z=y+z 
6. (x+z)1 

= (y+z)
1 

7. x +z' = (y+z)' 
8. x+z'=y+z' 
9. I-s (x = y ~ x + z = y + z) => 

(x = y ~ x + z' = y + z') 

Hyp 
Hyp 
(S6') 
(S6') 
1, 2, MP 
5, (S2'), MP 
3, 6, part (c), MP 
4, 7, part (d), MP 
1-8, deduction theorem twice 

Thus, I-s PJ(z) ~ PJ(z'), and, by Gen, I-s (Vz)(PJ(z) ~ PJ(z')). Hence, 
I-s (Vz)PJ(z) by the induction rule. Therefore, by Gen and rule A4, 
I-s t = r ~ t + s = r + s. 

(f) Let PJ(x) be x = 0 +x. 
(i) I-s 0 = 0 + 0 by (S5'), part (b) and MP; thus, I-s PJ(O). 
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(ii) 1. X = 0 + X 

2. 0 +x' = (0 +x)' 
3. x' = (0 + x)' 
4. :/ = 0 +x' 
5. f--s x = 0 +x::::} x' = 0 +:I 

Hyp 
(S6') 
1, (S2'), MP 
3, 2, part (d), MP 
L- 4, deduction theorem 

Thus, f--s ~(x)::::} ~(x') and, by Gen, 1-s (\fx)(,?g(x) => ~(x')). So, by (i), 
(ii) and the induction rule, f--s (V'x)(x = 0 + x), and then, by rule A4 

' f--s t = 0 + t. 

(g) Let ~(y) be x' + y = (x + y)'. 
(i) 1. :/ + 0 = x' 

2. x+O =x 
3. (x + 0)1 

= x' 
4. x' + 0 = (x + 0)' 

Thus, f--s ~(0). 

(ii) 1. x' + y = (x + y)' 
2. x' + y' = (x' + y)' 
3. (x' + y)' = (x + y)" 
4. x' + y' = (x + y) 11 

5. x + y' = (x + y)' 
6. (x + y')' = (x + y)

11 

7. x' + y' = (x + y')' 
8. f--s x' + y = (x + y)' ::::} 

x' + y' = (x + y')' 

(S5') 
(S5') 
2, (S2'), MP 
1, 3, part (d), MP 

Hyp 
(S6') 
l, (S2'), MP 
2, 3, part (c), MP 
(S6') 
5, (S2'), MP 
4, 6, part (d), MP 
1-7, deduction theorem 

Thus, f--s ~(y)::::} ~(y'), and, by Gen, f--s ('v'y)(~(y) ::::} ~(y')). Hence, by 
(i), (ii) and the induction rule, f-s (\fy)(x' + y = (x + y)'). By Gen and rule 
A4, f--s t' + r = (t + r)'. 

(h) Let ~(y) be x + y = y + x. 
(i) 1. x + 0 =x 

2. x = O+x 
3. x+O=O+x 

Thus, 1-s ~(0). 

(ii) l. X + y = y + X 

2. x+y'=(x+y)' 
3. y' +x = (y+x)' 
4. (x+y)1 =(y+x)

1 

5. x + y' = (y + x)' 
6. X + )l

1 = y' +X 

7. f--s X + y = y + X ::::} 

x+y'=y'+x 

(S5') 
Part (f) 
l, 2, part (c), MP 

Hyp 
(S6') 
Part (g) 
1, (S2'), MP 
2, 4, part (c), MP 
5, 3, part (d), MP 
1 -6, deduction theorem 
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1'hus, f-s .@(y) ::::} .@(y') and, by Gen, f-s (Vy)(.@(y) ~ .@(y')). So, by (i), (ii) 
and the induction rule, f-s (Vy)(x + y = y + x). Then, by rule A4, Gen and 
rule A4, f-s t + r = r + t. 
(i) 1. t = r ::::} t + s = r + s 

2. t+s = s + t 
3. r+s =s+r 
4. t =,. 
5. t+s = r+s 
6. s+t= r+s 
7. s + t = s + 1' 

8. f-s t = r ::::} s + t = s + r 

0) Let .@(z) be (x+y)+z=x+(y+z). 
(i) 1. (x+y)+O=x+y 

2. y+O =y 
3. X+ (y + 0) = X + y 
4. (x + y) + 0 = x + (y + 0) 

Thus, f-s .@(0). 

(ii) 1. (x+y)+z=x+(y+z) 
2. (x+y) +z' = ((x+y) +z)' 
3. ((x + y) + z)' = (x + (y + z))

1 

4. (x+y)+z' = (x+(y+z))' 
5. y+z' = (y+z)' 
6. X + (y + z') = X + (y + Z )

1 

7. x+ (y+z)' = (x+ (y+z))' 
8. X + (y + z') = (x + (y + Z)) 1 

9. (x + y) + z' = x + (y + z') 
LO. f-s (x + y) + z = x + (y + z) =? 

(x + Y) + z' = x + (y + z') 

Part (e) 
Part (h) 
Part (h) 
Hyp 
1, 4, MP 
2, 5, (S1') MP 
6, 3, part (c), MP 
1- 7, deduction theorem 

(S5') 
(S5') 
2, part U), MP 
1, 3, part (d), MP 

Hyp 
(S6') 
1, (S2'), MP 
2, 3, part (c), MP 
(S6;) 

5, part (i), MP 
(S6') 
6, 7, part (c), MP 
4, 8, part (d), MP 
1- 9, deduction theorem 

Thus, f-s ~(z)::::} 86'(z') and, by Gen, f-s (Vz)(~(z)::::} (~(z')). So, by (i), 
(ii) and the induction rule, f-s (Vz)_gg(z), and then, by Gen and rule A4, 
f-s (t + r) + s = t + (r + s). 

Parts (k)-( o) are left as exercises. 

COROLLARY 3.3 

Sis a theory with equality. 

Proof 

By Proposition 2.25, this reduces to parts (a) -(e), (i), (k) and (o) of pro­
position 3.2, and (S2'). 
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Notice that the interpretation in which: 

(a) the set of non-negative integers is the domain 
(b) the integer 0 is the interpretation of the symbol 0 
(c) the successor operation (addition of 1) is the interpretation of the ' 

function (that is, of fl) 
(d) ordinary addition and multiplication are the interpretations of+ and. 
(e) the interpretation of the predicate letter = is the identity relation 

is a normal model for S. This model is called the standard interpretation or 
standard model. Any normal model for S that is not isomorphic to the 
standard model will be called a non-standard model for S. 

If we recognize the standard interpretation to be a model for S, then, of 
course, Sis consistent. However, this kind of semantic argument, involving 
as it does a certain amount of set-theoretic reasoning, is regarded by some as 
too precarious to serve as a basis for consistency proofs. Moreover, we have 
not proved in a rigorous way that the axioms of S are true under the 
standard interpretation, but we have taken it as intuitively obvious. For 
these and other reasons, when the consistency of S enters into the argument 
of a proof, it is common practice to take the statement of the consistency of 
S as an explicit unproved assumption. 

Some important additional properties of addition and multiplication are 
covered by the following result. 

PROPOSITION 3.4 

For any terms t, r,s, the following wfs are theorems of S. 

(a) t · (r + s) = (t · r) + (t · s) (distributivity) 
(b) (r + s) · t = (r · t) + (s · t) (distributivity) 
(c) (t · r) · s = t · (r · s) (associativity of·) 
(d) t + s = r + s :=? t = r (cancellation law for +) 

Proof 

(a) Prove f-s x · (y + z) = (x · y) + (x · z) by induction on z. 
(b) Use part (a) and Proposition 3.2(n). 
(c) Prove f-s (x · y) · z = x · (y · z) by induction on z. 
(d) Prove 1-s x + z = y + z :=} x = y by induction on z. This requires, for the 

first time, use of (S4'). 

The terms 0, O', 0", 0"',... we shall call numerals and denote by 
0, I, 2, 3, .... More precisely, 0 is 0 and, for any natural number n, n + 1 is 
(n)'. In general, if n is a natural number, n stands for the numeral consisting 
of 0 followed by n strokes. The numerals can be defined recursively by 
stating that 0 is a numeral and, if u is a numeral, then u' is also a numeral. 
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pROPOSITION 3.5 

The following are theorems of S. 

(a) t + T = t' 
(b) t ·I= t 
(c) t · 2 = t + t 
(d) t + s = 0 :=:} t = 0 1\ s = 0 
(e) t =F 0 :::::;, (s · t = 0 =? s = 0) 
(f) t+s _T :=:} (t _o 1\s _T) v (t = T As= 0) 
(g) t . s = 1 :::::} ( t = 1 1\ s = 1) 
(h) t =F 0:::::} (3y)(t = y') 
(i) s =F 0 :=:} (t · s = r · s =? t = r) 
G) t =F 0:::::} (t =I= 1 :::::} (3y)(t = y")) 

Proof 

(a) 1. t + O' = (t + 0)' (S6') 
2. t + 0 = t (S5') 
3. (t + 0)' = t' 2, (S2'), MP 
4. t + O' = t' 1, 3, Proposition 3.2(c), MP 
5. t + T = t' 4, abbreviation 

(b) 1. t · O' = t · 0 + t (S8') 
2. t · 0 = 0 (S7') 
3. t · 0 + t = 0 + t 2, Proposition 3.2(e), MP 
4. t · 01 = 0 + t 1, 3, Proposition 3.2(c), MP 
5. 0 + t = t Proposition 3.2(f,b), MP 
6. t · O' = t 4, 5, Proposition 3.2(c), MP 
7. t · 1 = t 6, abbreviation 

(c) 1. t ·_(I)'= (t · T) + t (S8') 
2. t · 1 = t Part (b) 
3. (t · T) + t = t + t 2, Proposition 3.2(e), MP 
4. t ·~I)' = t + t l, 3, Proposition 3.2(c), MP 
5. t · 2 = t + t 4, abbreviation 

(d) Let f~J(y) be x + y = 0 :=:} x = 0 1\y = 0. It is easy to prove that f---s f~J(O). 
Also, since f---s (x + y)' =F 0 by (S3') and Proposition 3.2(b), it follows by 
(S6') that f---s x + y' =I= 0. Hence, f---sf~J(y') by the tautology 
·A :=:} (A =?B). So, f---s t~J(y) =? t~J(y') by the tautology A :::::;, (B =?A). 
Then, by the induction rule, f---s (Vy)~(y) and then, by rule A4, Gen and 
rule A4, we obtain the theorem. 

(e) The proof is similar to that for part (d) and is left as an exercise. 
(f) Use induction on y in the wf x + y = T =? ((x = 0 1\y = T)V 

(x = T 1\ y = 0)). 
(g) Use induction on yin x · y = T =? (x = T 1\ y = T). 
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(h) Perform induction on x in x =f 0::::} (3w)(x = w'). 
(i) Let @J(y) be (Vx)(z =f 0 ==> (x · z = y · z::::? x = y)) . 

(i) I. z =f 0 Hyp 
2. X • z = 0 . z Hyp 
3. 0 · z = 0 Proposition 3.2(1) 
4. x · z = 0 2, 3 Proposition 3.2(c), MP 
5. x = 0 I, 4, part(e), MP 
6. 1-s z ::f. 0 ::::? (x · z = 0 · z::::? x = 0) 1-5, deduction theorem 
7. 1-s (Vz)(z ::f. 0 ::::? (x · z = 0 · z 6, Gen 

::::? X= 0)) 

Thus, f-s @1(0). 

(ii) I. (Vx)(z =f 0 ~ (x · z = y · z =:? x = y))Hyp (FJ(y)) 
2. z =f 0 
3. X· Z = y' · Z 

4. y' =f 0 
5. y' . z I- 0 
6. X· Z =f 0 
7. X ::j:. 0 

8. (3w)(x = w') 
9. X= b' 

10. b'. z = y' . z 
11. b·z+z=y · z + z 
12. b. z = y. z 
13. z =I= 0 :::} (b . z = y. z ::::} b = y) 
14. b. z = y. z * b = y 
15. b = y 
16. b' =)I 
17.x=y' 
18. @J(y),z =f O, x · z = y' · z 1-s x = y' 
19. @J(y) 1-s z =f 0 ==? 

(x · z = y' · z ::::? x = y') 
20. FJ(y) 1-s (\ix)(z ::f. 0 ==> 

(x · z = y' · z:::} x = y')) 

Hyp 
Hyp 
(S3'), Proposition 3.2(b), MP 
2, 4, part (e), a tautology, MP 
3, 5, (Sl'), tautologies, MP 
6, (S7'), Proposition 3.2(o,n), 
(S 1'), tautologies, MP 
7, part (h), MP 
8, rule C 
3, 9, (A 7), MP 
10, Proposition 3.2(m,d), MP 
11, Proposition 3.4(d), MP 
1, rule A4 
2, 13, MP 
12, 14, MP 
15, (S2'), MP 
9, 16, Proposition 3.2(c), MP 
1- 17, Proposition 2.10 
18, deduction theorem twice 

19, Gen 

21. 1-s FJ(y) ::::? FJ(y') 20, deduction theorem 

Hence, by (i), (ii), Gen, and the induction rule, we obtain 1-s (\iy)FJ(y) 
and then, by Gen and rule A4, we have the desired result. 

G) This is left as an exercise. 

PROPOSITION 3.6 

(a) Let m and n be any natural numbers. 
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(i) If m #- 11, then 1-s m =I n. 
(ii)l-s m + n = rn +nand 1-s m · n = m · n. 

(b) Any model for S is infinite. 
(c) For any cardinal number 'Np, S has a normal model of cardinality 'N13• 

Proof 

(a)(i) Assume m =1- 11. Either m < 11 or n < m. Say, m < n. 
1. m-:-- n Hyp 

m times n times 
'-v-' '-v-' 

2. 011 
••• 

1 = O"' ... ' 1 is an abbreviation of 2 
11-111 times 
'---v--" 

3. Apply (S4') and MP m times in a row. We get 0 = 011 
••• 

1 
• Let t be 

11-m- 1. Since 11 > m,n- m- 1;:::::0. Thus, we obtain 0 = t'. 
4. 0 f- t' (S3') 
5. 0 = t' 1\ 0 =1- t' 3, 4, conjunction introduction 
6. m = n 1-s 0 = t' 1\ 0 =1- t' 1- 5 
7. 1-s m =1- n 1-6, proof by contradiction 

A similar proof holds in the case when n < m. (A more rigorous proof can 
be given by induction in the metalanguage with respect ton.) 

(ii) We use induction in the metalanguage. First, m + 0 is m. Hence, 
1-s m + 0 = m + 0 by (S5'). Now assume 1-s m + 11 = m + n. Then 
1-s (m + 11 )

1 
= m + (n)' by (S2') and (S6'). But m + (n + l) is ( m + n )' and 

n + 1 is (n)'. Hence, 1-s m + (n + 1) = m + 11 + 1. Thus, 1-s m + n = m + n. 
The proof that 1-s m · n = rn · n is left as an exercise. 
(b) By part (a), (i), in a model for S the objects corresponding to the nu­
merals must be distinct. But there are denumberably many numerals. 
(c) This follows from Corollary 2.34(c) and the fact that the standard model 
is an infinite normal model. 

An order relation can be introduced by definition in S. 

DEFINITIONS 

t < s for (3w)(w =f- 0 1\ w + t = s) 
t ~ s for t < s V t = s 

t > s for s < t 
t;:;::s for s~t 
t f s for •(t < s), and so on 

In the first definition, as usual, we choose w to be the first variable not in 
tors. 
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PROPOSITION 3.7 

For any terms t,r,s, the following are theorems. 
(a) t f- t 

(b) t < s =? (s < r =? t < r) 
(c) t < s :::::> s f- t 

(d) t < s {::} t + r < s + r 
(e) t~t 
(f) t~s :::::> (s~r :::::> t~r) 
(g) t ~ s {::} t + r ~ s + r 
(h) t~s ==> (s < r =? t < r) 
(i) 0 ~t 
(j) O<t' 
(k) t < r {::} t' ~r 
(1) t ~ r {::} t < r' 
(m) t < t' 
(n) o < T, T < 2, 2 < 3, ... 

Proof 

(a) l. t < t 
2. (3w) ( w f. 0 A w + t = t) 
3. b I= 0 A b + t = t 

4. b + t = t 
5. t = 0+ t 
6. b+ t = 0 + t 
7. b = 0 
8. b =I= 0 
9. b = 0 A b I= 0 

10. 0 = 0 A 0 I= 0 
11. t < t 1-s 0 = 0 A 0 =f 0 
12. 1-s t f- t 

(b) 1. t < s 
2. s < r 
3. (3w)(w I= 0 A w + t = s) 
4. (3v)(v::j=.0Av+s=r) 
5. b =f 0 A b + t = s 
6. c I= 0 A c + s = r 
7. b + t = s 
8. c+s = r 
9.c+(b+t)=c+s 

lO.c+(b+t)=r 
11. (c+b)+t=r 
12. ·b I= 0 

(o) t=f.r=?(t<rVr<t) 
(p) t = r V t < r V r < t 
(q) t~r V r~t 

(r) t+r~t 
(s) r ::/=- 0 =? t + r > t 
(t) r I= 0 =? t · r ~ t 
(u) r :f= 0 <=> r > 0 
(v) r > 0 =? (t > 0 =? r · t > 0) 
(w) r I= 0 =? (t > 1 :::::> t · r > r) 
(x) r ::/=- 0 =? (t < s {::} t · r < s · r) 
(y) r f. 0::::} (t~s {::} t · r~s · r) 
(z) t f- 0 
(z') t~r A r~t =? t = r 

Hyp 
1 is an abbreviation of 2 
2 rule C 

' 
3, conjunction rule 
Proposition 3.2(f) 
3, 4, Proposition 3.2(c), MP 
6, Proposition 3.4(d), MP 
3, conjunction elimination 
7, 8, conjunction elimination 
9, tautology: B A """~B :::::> C, MP 
1-10, Proposition 2.10 
1-11, proof by contradiction 
Hyp 
Hyp 
1 is an abbreviation of 3 
2 is an abbreviation of 4 
3, rule C 
4, rule C 
5, conjunction elimination 
6, conjunction elimination 
7, Proposition 3.2(i), MP 
9, 8, Proposition 3.2(c), MP 
10, Proposition 3.2(j,c), MP 
5, conjunction elimination 
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13. c + b :f 0 

14. c + b :f 0 1\ ( c +b) + t = r 
15. (3u)(u :f 01\ u + t = r) 
16. t < r 
17. 1--s t < s ==* (s < r ==* t < r) 

parts (c)-(z') are left as exercises. 

PROPOSITION 3.8 

12, Proposition 3.5(d), 
tautology, MP 
13, 11, conjunction introduction 
14, rule E4 
Abbreviation of 15 
1-15, Proposition 2.10. 
deduction theorem 

(a) For any natural number k, 1--s x = 0 V ... V x = k {::} x~k. 
(a') For any natural number k and any wf ~, 1--s tJU(O) 1\ tJU(T) 1\ .. . 1\tJU(k) 

{::} ('v'x)(x~k ==* tJU(x)). 
(b) For any natural number k > 0, I-s x = 0 V ... V x = (k- 1) {::} x < k 
(b') For any natural number k > 0 and any wf tJU, I-s tJU(O) 1\ tJU(T) 1\ . . . 

1\~(k- 1) {::} ('v'x)(x < k::::} ~(x)). 
(c) 1--s (('v'x)(x < y ==* ~(x)) 1\ ('v'x)(x;;?;y::::} ~(x))) * ('v'x)(tJU(x) V ~(x)) 

Proof 

(a) We prove 1--s x = 0 V ... V x = k {::} x~k by induction in the metalan­
guage on k. The case fork= 0, 1--s x = 0 {::} x~O, is obvious from the defi­
nitions and Proposition 3.7, Assume as inductive hypothesis 1--s x = 0 V ... 

Vx = k {::} x ~ k. Now assume x = 0 V ... V x = k V x = k + 1. But 1--s x = 
k + 1 ::::} x ~ k + 1 and, by the inductive hypothesis, 1--s x = 0 V .. . V x = 
k ==* x~k. Also 1--s x~k ==* x~k + 1. Thus, x~k + l. So, 1--s x = 0 V ... 
Vx=kVx=k+ 1 =*X~k+ 1. Conversely, assume x~k+ 1. Then 
X = k + 1 V X < k + 1. If X = k + 1, then X = 0 V ... V X = k V X = k + 1. If -- -- -, -
x < k + 1, then since k + 1 is (k) , we have x ~ k by Proposition 3. 7(1). By the 
inductive hypothesis, x = 0 V ... V x = k, and, therefore, x = 0 V ... V x = 
k V x = k + 1. In either case, x = 0 V ... V x = k V x = k + 1. This proves 
1-s x~k + 1 ::::} x = 0 V ... V x = k V x = k + 1. From the inductive hypoth­
esis, we have derived 1--s x = 0 V ... V x = k + 1 {::} x ~ k + 1 and this com­
pletes the proof. (This proof has been given in an informal manner that we 
shall generally use from now on. In particular, the deduction theorem, the 
eliminability of rule C, the replacement theorem, and various derived rules 
and tautologies will be applied without being explicitly mentioned.) 

Parts (a'), (b), and (b') follow easily from part (a). Part (c) follows almost 
immediately from Proposition 3.7(o), using obvious tautologies. 

There are several stronger forms of the induction principle that we can 
prove at this point. 
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PROPOSITION 3.9 

(a) Complete induction. f-s (\fx)((\fz)(z < x::::} ~(z)):::::? ~(x))::::} (Vx),@(x). 
In ordinary language, consider a property P such that, for any x, if p 
holds for all natural numbers less than x, then P holds for x also. Then p 
holds for all natural numbers. 

(b) Least-number principle. f-s (3x)~(x)* (3y)(~(y)/\(Vz)(z<y:::::?•@(z))). 
If a property P holds for some natural number, then there is a least 
number satisfying P. 

Proof 

(a) Let ~(x) be (Vz)(z ~x::::} .?4(z) ). 
(i) l. (\fx)((\fz)(z < x:::::? .?4(z)) ~ @(x)) 

2. (Vz)(z < 0 ~ .?4(z)):::::? .?4(0) 
3. z 1- 0 
4. (Vz)(z < 0::::} @(z)) 
5. @(0) 
6. (Vz)(z~O:::::? ~(z)) i.e., ~(0) 
7. (Vx)((Vz)(z < x::::} .?4(z)) 

::::} @(x)) f-s ~(0) 
(ii) 1. (\fx)((Vz)(z < x:::::? .?4(z)):::::? ~(x)) 

2. ~(x), i.e., (\fz)(z~x:::::? ~(z)) 
3. (Vz)(z <x':::::? @(z)) 
4. (Vz)(z < x' ~ @(z)) ::::} ~(x') 
5. ~(x') 
6. z ~x' ~ z < x' V z = x' 
7. z < x' ::::} @(z) 
8. z = x' ::::} @(z) 

9. (\fz)(z ~x' ~ .?4(z)) i.e., ~(x') 
10. (Vx)((Vz)(z < x:::::? P8(z))::::} @(x)) 

f-s (\fx)(~(x) :::::? ~(x')) 

Hyp 
1, rule A4 
Proposition 3.7(y) 
3, tautology, Gen 
2, 4, MP 
5, Proposition 3.8(a') 

1-6 
Hyp 
Hyp 
2, Proposition 3. 7(1!) 
1, rule A4 
3, 4, MP 
D~finition, tautology 
3, rule A4 
5, axiom (A 7), Proposition 
2.23(b), tautologies 
6, 7, 8, Tautology, Gen 

1-9, deduction theorem, Gen 

By (i), (ii) and the induction rule, we obtain £» f-s (Vx)~(x), that is, 
£» f-s (\fx)(Vz)(z~x::::} @(z)), where£» is (\fx)((\fz)(z < x:::::? ~(z))::::} ~(x)). 
Hence, by rule A4 twice, £» f-s x~x:::::? P8(x). But f-s x~x. So, £» f-s ~(x), 
and, by Gen and the deduction theorem, f-s £»:::::? (Vx)~(x). 

(b) 1. •(3y)(@(y) 1\ (\fz)(z < y::::} •@(z))) Hyp 
2. (Vy)-{?4(y) 1\ (\fz)(z < y::::} ·~(z))) 1, derived rule for negation 
3. (\fy)((\fz)(z < y::::} --,@(z)):::::? ·~(y)) 2, tautology, replacement 
4. (\fy)•~(y) 3, part (a) with--,@ instead of~ 
5. •(3y)@(y) 4, derived rule for negation 
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6. -{3x)~(x) 5, change of bound variable 
7. 1-s -.(:3y)(~(y) 1\ (Vz)(z < y ::::} 
.~(z))) =? -{3x)~(x) 

8. 1-s (3x)&6'(x) ::::} (3y)(~(y)A 
(Vz)(z < y =? --.&6'(z))) 

;E;xercise 

3.1 (Method of infinite descent) 

1--6, deduction theorem 

7, derived rule 

Prove 1-s (Vx)(~(x)::::} (3y)(y < x 1\ ~(y)))::::} (Vx)--.&.J(x) 

Another important notion in number theory is divisibility, which we now 

define. 

DEFINITION tis for (3z)(s = t · z) . (Here, z is the first variable not in tors.) 

PROPOSITION 3.10 

The following wfs are theorems for any terms t, s, r. 

(a) tit 
(b) Tit 
(c) tiO 
(d) tis 1\ sir =? tlr 
(e) s =/= 01\ tis=? t~s 
(f) tis 1\ sit =? s = t 
(g) tis ::::} tl ( r · s) 
(h) tis 1\ tlr::::} tl(s + r) 

Proof 

(a) t = t · T. Hence, tit. 
(b) t = T · t. Hence, Tit. 
(c) 0 = t · 0. Hence, tiO. 
(d) If s = t · z and r = s · w, then r = t · (z · w). 
(e) If s =I= 0 and tis, then s = t · z for some z. If z = 0, then s = 0. Hence, 

z :f 0. So, z = u for some u. Then s = t · (u) = t · u + t';::.t. 
(f)- (h) These proots are left as exercises. 

Exercises 

3.2 Prove 1-s tiT ::::} t = T. 
3.3 Prove 1-s (tis 1\ tis') =? t = 1. 
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It will be useful for later purposes to prove the existence of a unique 

quotient and remainder upon division of one number x by another nonzero 
number y. 

PROPOSITION 3.11 

f-s y -1- 0 =* (3u) (3v)[x = y · u + v 1\ v < y 1\ (Vu1) (Vvt) ((x = y · Ut + v1f\ 
VI < y)::::? U = Ut 1\ V = Vt)] 

Proof 

Let ~(x) bey -1- 0::::? (3u)(3v)(x = y · u + v 1\ v < y). 

(i) 1. y =f- 0 Hyp 
2. 0 = y · 0 + 0 (S5'), (S7') 
3. 0 < y l, Proposition 3.7(t) 
4. 0 = y · 0 + 0 1\ 0 < y 2, 3, conjunction rule 
5. (3u)(3v)(O = y · u + v 1\ v < y) 4, rule E4 twice 
6. y -1- 0::::? (3u)(3v)(O = y · u + v 

1\ v < y) 
(ii) l. ~(x) i.e., y f= 0 ::::? (3u)(3v) 

(x = y · u + v 1\ v < y) 
2. y =1- 0 
3. (3u) (3v) ( x = y · u + v 1\ v < y) 
4. x = y · a + b 1\ b < y 
5. b <y 
6. b'~y 
7. b' < y v b' = y 
8. b' < y =* ( x' = y · a + b' 1\ b' < y) 
9. b' < y =* (3u)(3v)(x' = y · u 

+vl\v<y) 
I 0. b' = y ::::? x' = y · a + y · T 
II. b' = y::::? (x' = y · (a+ T) 

+01\0<y) 
12. b' = y::::? (3u)(3v)(x' = y · u + 

v 1\ v < y) 
13. (3u)(3v)(x' = y · u + v 1\ v < y) 
14. ~(x) ::::? (y f= 0::::? (3u)(3v) 

(x' = y · u + v 1\ v < y)) 
i.e., ~(x) ::::? ~(x') 

1-5, deduction theorem 

Hyp 
Hyp 
1, 2, MP 
3, rule C twice 
4, conjunction e~imination 
5, Proposition 3.7(k) 
6, definition 
4, (S6'), derived rules 

8, ru1e E4, deduction theorem 
4, (S6'), Proposition 3.5(b) 
10, Proposition 3.4, 2, 
Proposition 3. 7(t), (S5') 
11, rule E4 twice, deduction 
theorem 
7, 9, 12, disjunction elimination 
1-13, deduction theorem 

By (i), (ii), Gen and the induction rule, f-s (Vx)~(x). This establishes the 
existence of a quotient u and a remainder v. To prove uniqueness, proceed 
as follows. Assume y =f- 0. Assume x = y · u + v 1\ v < y and x = y · u1+ 
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"v1 1\ VI < y. Now, u = UI or u < u1 or UI < u. If u = u1, then v =VI by 
Proposition 3.4(d). If u < ui, then u1 = u + w for some w =I= 0. Then 
J'. u + v = y · (u + w) +VI= y · u + y · w + v1 . !f~nce, v = y · w +VI· Since 
w#O,y·w;:::y. So, v=y·w+v1;:::y, contradtctlng v<y. Hence, u{ui. 
-Similarly, UI f- u. Thus, u = u1. Since y · u + v = x = y · ur + v1, it follows 
that V =VI· 

From this point on, one can generally translate into S and prove the 
results from any text on elementary number theory. There are certain 
number-theoretic functions, such as x>' and x!, that we have to be able to 
define in S, and this we shall do later in this chapter. Some standard results 
of number theory, such as Dirichlet's theorem, are proved with the aid of the 
theory of complex variables, and it is often not known whether elementary 
proofs (or proofs in S) can be given for such theorems. The statement of 
some results in number theory involves non-elementary concepts, such as 
the logarithmic function, and, except in special cases, cannot even be for­
mulated inS. More information about the strength and expressive powers of 
Swill be revealed later. For example, it will be shown that there are closed 
wfs that are neither provable nor disprovable in S, if S is consistent; hence 
there is a wf that is true under the standard interpretation but is not pro­
vable inS. We also will see that this incompleteness of S cannot be attrib­
uted to omission of some essential axiom but has deeper underlying causes 
that apply to other theories as well. 

Exercises 

3.4 Show that the induction principle (S9) is independent of the other 
axioms of S. 
3.5D 
(a) Show that there exist non-standard models for S of any cardinality ~o:­
(b) Ehrenfeucht (1958) has shown the existence of at least 2No mutually non-

isomorphic models of cardinality No:. Prove the special case that there 
are 2No mutually non-isomorphic denumerable models of S. 

3.6D Give a standard mathematical proof of the categoricity of Peano's 
postulates, in the sense that any two 'models' are isomorphic. Explain why 
this proof does not apply to the first-order theory S. 
3.7° (Presburger, 1929) If we eliminate from S the function letter /f for 
multiplication and the axioms (S7) and (S8), show that the new system S+ is 
complete and decidable (in the sense of Chapter 1, p. 34). 
3.8 
(a) Show that, for every closed term t of S, we can find a natural number n 

such that 1-s t = n. 
(b) Show that every closed atomic wf t = s of S is decidable~ that is, either 

1-s t = s or 1-s t # s. 
(c) Show that every closed wf of S without quantifiers is decidable. 



170 I Ll ________ F_O_R_M_A_L_N_UM __ B_E_R_T_H_E_O_R_Y _______ ~t 
3.2 NUMBER-1HEORETIC FUNCTIONS AND RELATIONS 

A number-theoretic function is a function whose arguments and values are 
natural numbers. Addition and multiplication are familiar examples of 
number-theoretic functions of two arguments. By a number-theoretic rela­
tion we mean a relation whose arguments are natural numbers. For example, 
= and < are binary number-theoretic relations, and the expression 

x + y < z determines a number-theoretic relation of three arguments.t 
Number-theoretic functions and relations are intuitive and are not bound up 
with any formal system. 

Let K be any theory in the language .filA of arithmetic. We say that a 
number-theoretic relation R of n arguments is expressible inK if and only if 
there is a wf pJ(x1 , ••• , x 11 ) of K with the free variables Xt, ... , X 11 such that, 
for any natural numbers k1, ... , k," the following hold: 

1. If R(k1, ... , k11 ) is true, then 1-K pJ(kt, ... , kn)· 
2. If R(kt, ... ,k11 ) is false, then f--K -.pJ(kt, ... ,k"). 

For example, the number-theoretic relation of identity is expressed inS 
by the wfx1 = x2. In fact, if kt = k2, then ft is the same term as f 2 and so, by 
Proposition 3.2(a), f--s ft = f2. Moreover, if kt -1- k2, then, by Proposition 
3.6(a), f--s f1 i= f2. 

Likewise, the relation 'less than' is expressed inS by the wf x1 < x2 . Recall 
that Xt < x2 is (3x3)(x3 -=f 0 1\ x3 + x1 = x2) . If k1 < k2, then there is some 
non-zero number n such that k2 = n + k1• Now, by Proposition 3.6(a)(ii), 
1-s k2 = n + kt. Also, by (S3'), since n i= 0, f--s n =f. 0. Hence, by rule E4, one 
can prove inS the wf (3w)(w =f. 01\ w + f1 = f2); that is, f--s f1 < k2. On the 
other hand, if k1 f- k2, then k2 < kt or k2 = k1. If k2 < kt, then, as we have 
just seen, f--s f 2 < f 1. If k2 = kt, then 1-s f2 = f1. In either case, f--s f2 ~ft 
and then, by Proposition 3.7(a,c), f--s kt f- f2. 

Observe that, if a relation is expressible in a theory I(, then it is ex­
pressible in any extension of K. 

Exercises 

3.9 Show that the negation, disjunction, and conjunction of relations that 
are expressible inK are also expressible inK. 
3.10 Show that the relation x + y = z is expressible in S. 

twe follow the custom of regarding a number-theoretic property, such as the 
property of being even, as a ·relation' of one argument. 



NUMBER-THEORETIC FUNCTIONS AND RELATIONS 

Let I( be any theory with equality in the language Y A of arithmetic. A 
number-theoretic function f of n arguments is said to be representable in I( 
if and only if there is a wf ~(x., ... ,x,,y) of K with the free variables 
Xb ... ,x11 ,y such that, for any natural numbers k1, ... ,k11 ,m, the following 
bold: 

J. If f(kt, ... , k11 ) = m, then 1--K ~(kt, ... , k11 , m). 
2. 1--K (3tY)~(kt, ... , kn,y). 

If, in this definition, we replace condition 2 by 

2'.1--K (3ty)~(xl, ... ,x,l)y) 

then the function f is said to be strongly representable in K. Notice that 2' 
implies 2, by Gen and rule A4. Hence, strong representability implies re­
presentability. The converse is also true, as we now prove. 

PROPOSITION 3.12 (V.H. DYSON) 

If f(xt, ... ,x11 ) is representable inK, then it is strongly representable inK. 

Proof 

Assume f representable inK by a wf ~(x1 , ••• ,x,l)y). Let us show that f is 
strongly representable in K by the following wf Yff(x1, ... , x11 ,y) : 

([(3ty)gJ(xt, ... ,xn,Y)] 1\ _qJ(xl, ... ,Xn,Y)) V (•[(3ty)gJ(xt, ... ,xn,Y)] 1\y = 0) 

1. Assume f(kt, ... , k,) = m. Then 1--K ~(kt, ... , k,, m) and 1--K (3ty) 
f!J(k1, ... , k11 ,y). So, by conjunction introduction and disjunction introduc­
tion, we get 1--K Yff(kt, ... ,kn,m). 

2'. We must show 1--K (3ty)Yff(xl, ... ,x,ny). 
Case 1. Take (3Iy)~(xl, ... ,x,"y) as hypothesis. (i) It is easy, using rule 

C, to obtain ~(x1, ... ,x11 ,b) from our hypothesis, where b is a new in­
dividual constant. Together with our hypothesis and conjunction and dis-
junction introduction, this yields Yff(xt, ... , x,0 b) and then, by rule E4, 
(3y)Yff(xl, ... , Xn,y). (ii) Assume Yff(x1, ... ,x11 , u) 1\ Yff(x1, . . . ,x,11 v). From 
rc(xt 1 ••• 1 X111 U) and OUr hypothesis, we obtain ~(XI 1 •• • , X11 , u), and, from 
rc(xt, ... ,x,0 v) and our hypothesis, we obtain ~(x1 , ... , x11 , v). Now, from 
f!J(x1 , ••• ,x11 , u) and ~(xt, ... ,x11 , v) and our hypothesis, we get u = v. The 
deduction theorem yields Yff(x1, ... , x11 , u) 1\ Yff(x1, ... ,x11 , v) * u = v. From 
(i) and (ii), (31y)Yff(xt, ... ,xn,y). Thus, we have proved 1--K (3Iy) ~(xt, . .. , 
X11,y) ::=:} (3ty)Yff(xt, ... ,xn,y). 

Case 2. Take •(3ty).%'(xt, ... , x,11 y) as hypothesis. (i) Our hypothesis, 
together with the theorem 0 = 0, yields, by conjunction introduction, 
•(31y)~(x1 , ... ,x,0 y) 1\0 = 0. By disjunction introduction, Yff(x1 , ... ,x11 ,0), 
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and, by rule E4, (3y)Y&'(xi, ... , Xn,y). (ii) Assume Y&'(xi, . . . ,x,, u)f\ 
Y&'(x1 , ••• ,x,,,v). From Y&'(xJ, . .. ,x,,u) and our hypothesis, it follows easily 
that u = 0. Likewise, from Y&'(xt, ... , x,, v) and our hypothesis, v = 0. Hence~' 

' u = v. By the deduction theorem, Y&'(xt, ... ,x,, u) 1\ Y&'(x1, .. . ,x11 , v) ::::} u = v; 
From (i) and (ii), (3ty)Y&'(xi , .. . ,xn,y). Thus we have proved 1-K -{31y} 
t!8(xi, ... ,Xn,Y)::::} (3ty)Y&'(xt , · · . ,Xn,Y) 

By case l and case 2 and an instance of the tautology [(D ::::> 
E) 1\ (•D::::} E)]::::} E, We can obtain 1-K (3ty)Y&'(xt, ... ,xn,y). 

Since we have proved them to be equivalent, from now on we shall use 
representability and strong representability interchangeably. 

Observe that a function representable in K is representable in any ex­
tension of K. 

Examples 
In these examples, let K be any theory with equality in the language !eA . 

I. The zero function, Z(x) = 0, is representable in K by the wf x1 = 
x1 1\y = 0. For any I< and m, if Z(k) = m, then m = 0 and 
1-K k = k 1\ 0 = 0; that is, condition 1 holds. Also, it is easy to show that 
1-K (3ty)(x1 = x1 1\ y = 0). Thus, condition 2' holds. 

2. The successor function, N(x) = x + l, is representable in K by the wf 
y = x~. For any k and m, if N(k) = m, then m = k + l; hence, m is k'. Then 
1-K m = k. It is easy to verify that 1-K (3ty)(y = xD. 

3. The projection function, UJ' (x1, ••. ,x,) = x1, is representable in K by 
x1 = x1 1\ x2 = X?_/\ .. :_Ax,~= x,,_ 1\ y = xj. _![ Ujjk1, •.• , ~) = m, then m = 
k1. Hence, 1-K kt = kt 1\ k2 = k2 1\ . . . 1\ k11 = k11 1\ m = k1. Thus, condi­
tion l holds. Also, 1-K (3ty)(xl =XI 1\ x2 = x2 1\ ... 1\ x, = Xn 1\y = Xj ), 
that is, condition 2' holds. 

4. Assume that the functions g(xi, ... ,xm),ht(xJ ; ... ,x,,), ... , hm(XJ, . . . ,x11 ) 

are strongly representable in the theory with equality K by the wfs 
Y&'(xt, ... , Xm , z) , pgl (xi, . . . , x,lly l ) , .. . , t!8m(Xt , . .. , x,,y111 ), respectively. 
Define a new function f by the equation 

f(xt, ... Xn) = g(ht(Xt, ... ,xn), . . . ,hm(Xt, ... ,x11 )) 

f is said to be obtained from g, ht, ... , hm by substitution. Then f is also 
strongly representable in K by the following wf 22(x1 , •. • , x11 , z): 

(3yt) ... (3y111 )(Ph't (xi , ···, X,llyt) A .. · A &Bm(X1 , . .. , Xn,Ym) A C&'(yl, . . . ,)l,11 ,z)) 

To prove condition l, let f(kt, ... , k11 ) = p. Let hj(kt, . . . , kn) = ri for 
1 ~j~m; then g(r1 , ... ,rm) = p. Since Y&', r!J I, . .. , r!J111 represent g, ht , ... , 
hm, we have 1-K r!JJ(kt, ... , k,,, ri) for l ~j ~m_and 1-K Y&'(rt, ... ~m,p) . 
So by conjunction introduction, 1-K r!J1 (kt, .. . , k11 , h) 1\ . .. 1\ t!8m (ki , ... , 
k11 , rm)l\rc(rt . . . rn11J5). Hence, by rule E4, 1--K .@(ki, ... , k11 ,p). Thus, 
condition 1 holds. Now we shall prove condition 2'. Assume 22(x1, • • • , 

x, , u) 1\ f0 ( x 1 , • • • , x, , v) , that is 
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(.8.)(3yt) . ·. (3ym)(&6't (xt,. · · ,x,,yt) 1\ . ·- 1\ ~m(Xt, · . - ,x,J ,Ym) 1\ ~(y1, ... ,ym, ll)) 

and 

(0)(3yt)-.- (3ym)(&b't (xi, .. · ,Xn,yt) 1\ · .. 1\ ~m(XI, · · · ,x,llYm) 1\ ~(YI, · · · ,ym, v)) 

By(~), using rule C m times, 

&6'I(XI, ... ,Xn,bl) 1\ · . . 1\~m(XI, · ·. ,Xn,bm) 1\ Cfi(bt, ... ,b111 ,U) 

By( 0) using rule C again, 

Since 1-K (::IIJ:',;)Baj{xi, ... ,x11 ,Jj), we obtain from 88j(x11 ... ,x11 ,bj) and 
Bj(xl, ... ,x",cj), that bj=Cj. From %'(bt, ... ,bm,u) and b1 =c1, ... , 
bm = c111 , we have %'(c1, ... , em, u). This, with 1-K (31z)%'(xl, ... ,x11 ,z) and 
~(c1 , ... , em, v) yields u = v. Thus, we have shown 1-K !ZJ(x1, ••• , 

x,ll u) 1\ !ZJ(x1, ... ,xn, v) ::::} u = v. [t is easy to show that 1-K (3z).f0 
(x1, ... ,x11 ,z). Hence, 1-J(_ (31z)!Zi(xt, ... ,X11 ,z). 

Exercises 

3.11 Let K be a theory with equality in the language .!l' A. Show that the 
following functions are representable in K. 
(a) Z11 (Xt, ... ,xn) = 0 [Hint :Zn(Xt, ... ,xn) = Z(Ul'(xt, ... ,x,)).J 
(b) CJ:(x1, ••• ,x11 ) = k, where k is a fixed natural number. [Hint: Use 

mathematical induction in the metalanguage with respect to k.] 
3.12 Prove that addition and multiplication are representable in S. 

If R is a relation of n arguments, then the characteristic function CR is 
defined as follows: 

PROPOSITION 3.13 

if R(x1, ••• x 11 ) is true 
if R(xi, ... ,x11 ) is false 

Let K be a theory with equality in the language .!l' A such that 1-K 0 :f T. 
Then a number-theoretic relation R is expressible in K if and only if CR is 
representable in K. 

Proof 

If R is expressible inK by a wf Ba(x1, ... ,x11), it is easy to verify that CR is 
representable inK by the wf (88(xt, ... ,x11 )1\y=O)V(•88(x1, ••• ,x11 ) 

1\y = T). Conversely, if CR is representable in K by a wf %'(x1, ... ,x11 ,y), 
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then, using the assumption that 1-K 0 I 1, we can easily show that R is" 
expressible inK by the wf ~(xi, ... ,xn,O). 

Exercises 

3.13 The graph of a function f(xi, ... ,x,) is the relation 
f(xi, ... , x11 ) = Xn+I· Show that f(xi, . .. , x,) is representable in S if and only 
if its graph is expressible in S. 
3.14 If Q and R are relations of n arguments, prove that Cnot-R = 1 - CR, 
c(Q orR) = CQ. CR. and c(QandR) = CQ + CR- CQ. CR. 
3.15 Show that f(x1, ..• ,x11 ) is representable in a theory with equality Kin 
the language !l' A if and only if there is a wf 86'(x1, .. ~ x,"y) ~uch that, for any 
ki,· .. ,k",m, if f(kl, ... ,kn) = m. then 1-K (\fy)(86'(k1, . .. ,k,,y) {:} y = m) . 

3.3 PRIMITIVE RECURSIVE AND RECURSIVE FUNCTIONS 

The study of representability of functions in S leads to a class of number­
theoretic functions that turn out to be of great importance in mathematical 
logic and computer science. 

DEFINITION 

I. The following functions are called initial functions. 
(I) The zero function, Z(x) = 0 for all x. 

(II) The successor function, N(x) = x + 1 for all x. 
(III) The projection functions, up(xl' ... ,xn) =Xi .for all X}' •.. ' Xn. 

2. The following are rules for obtaining new functions from given functions. 
(IV) Substitution: 

f(xt, ... ,x,) = g(ht(Xt, ... ,xn), . .. ,h111 (x., ... ,x, )) 

f is said to be obtained by substitution from the functions 

g(y1, .. . ,ym), h1 (xi, ... ,x, ), ... , hm(Xt, ... 1xn) 

(V) Recursion: 

/(XI, ... ,Xn,O) = g(Xt, ... ,X11 ) 

f(xh .. · ,Xn,Y + 1) = h(xt, ... ,xn,Y,f(xi, .. . ,xn,y)) 

Here, we allow n = 0, in which case we have 

f(O) = k where k is a fixed natural number 

f(y + 1) = h(y,f(y)) 
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We shall say thatf is obtained from g and h (or, in the case n = 0, from 
h alone) by recursion. The parameters of the recursion are x1, •.. ,xn. 
Notice that f is well defined: f(xi, ... , Xm 0) is given by the first equa­
tion, and if we already know f(x1, ••• , X 11 , y), then we can obtain 
f(x 1, ••. , X1nY + 1) by the second equation. 

t(VI) Restricted p-Operator. Assume that g(x1, ... , x11 ,y) is a function such 
that for any Xt, ... , X 11 there is at least one y such that 
g(x1 , ••• ,x11 ,y) = 0. We denote by J.1y(g(x1, .•• ,x,,y) = 0) the least 
number y such that g(x1, ••• ,x11 ,y)=O. In general, for any relation 
R(x1, •.• ,x,"y), we denote by )lyR(xi, ... ,x11 ,y) the least y such that 
R(x1, ••• ,x11 ,y) is true, if there is any y at all such that R(x1, • •• ,xn,y) 
holds. Let f(xt, ... ,x11) = J.1y(g(x1, ... ,x11 ,y) = 0). Then f is said to be 
obtained from g by means of the restricted 11-operator if the given 
assumption about g holds, namely, for any x1, .•. , x 11 , there is at least 
one y such that g(x1, ... ,x11 ,y) = 0. 

3. A function f is said to be primitive recursive if and only if it can be 
obtained from the initial functions by any finite number of substitutions 
(IV) and recursions (V) - that is, if there is a finite sequence of functions 
f 0 , ... ,J,, such that/,,= f and, for O~i~n, either/; is an initial function 
or/; comes from preceding functions in the sequence by an application of 
rule (IV) or rule (V). 

4. A function f is said to be recursive if and only if it can be obtained from 
the initial functions by any finite number of applications of substitution 
(IV), recursion (V) and the restricted J.l-operator (VI). This differs from 
the definition above of primitive recursive functions only in the addition 
of possible applications of the restricted J.1 -operator. Hence, every pri­
mitive recursive function is recursive. We shall see later that the converse 
is false. 

We shall show that the class of recursive functions is identical with the 
class of functions representable in S. (In the literature, the phrase 'general 
recursive' is sometimes used instead of 'recursive'.) 

First, let us prove that we can add 'dummy variables' to and also permute 
and identify variables in any primitive recursive or recursive function, ob­
taining a function of the same type. 

PROPOSITION 3.14 

Let g (y1 , •.. , Yk) be primitive recursive (or recursive). Let x 1 , ... x11 be distinct 
variables and, for 1 ~i~k, let z; be one of x1, .•. ,xn. Then the function f 
such that f(x1, ... ,xn) = g(z1, ... ,zk) is primitive recursive (or recursive). 
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Proof 

Let z; = xj,, where I ~}; ~ n. Then z; = L); (xi, ... , x11 ). Thus, 

f(xl, ... ,xn) = g( u;; (xl, ... ,xn), ... , L'J: (xi, ... ,xn)) 

and therefore f is primitive recursive (or recursive), since it arises from 

g' U'/ , ... , [/'.1 by substitution. 
]I ]k 

Examples 
I. Adding dwmny variables. If g(xt,x3) is primitive recursive and if 

f(xi,xz,x3) = g(x1,x3), then f(x1,x2,x3) is also primitive recursive. In 
Proposition 3.14, let z1 = x1 and z2 = XJ. The new variable x2 is called a 
'dummy variable' since its value has no influence on the value of 
f(xt,xz,x3). 

2. Permuting variables. If g(xbx2,x3) is primitive recursive and if 
f(xt,X2,x3) = g(x3,xt,x2), thenf(x1,x2,x3) is also primitive recursive. In 
Proposition 3.14, let z1 = x3,z2 =XI and Z3 = x2. 

3. Identifying variables. If g(xi ,x2,x3) is primitive recursive and jf 

f(x1, x2) = g(x1, x2, xi), then f(xi, x2) is primitive recursive. In Proposi~ 
tion 3 .14, let n = 2 and ZJ = xi, z2 = x2 and z3 = XI. 

COROLLARY 3.15 

(a) The zero function Zn(xi, ... ,x11 ) = 0 is primitive recursive. 
(b) The constant function CJ: (xi, ... , x11) = k, where k is some fixed natural 

number, is primitive recursive. 
(c) The substitution rule {IV) can be extended to the case where each hi may 

be a function of some but not necessarily all of the variables. Likewise, 
in the recursion rule (V), the function g may not involve all of the 
variables xi, ... ,xn,y, or f(xi, ... ,x,1,y) and h may not involve all of the 
variables XI, ... ,x11 ,y, or f(xl,· .. ,x1l,y). 

Proof 

(a) In Proposition 3.14, let g be the zero function Z; then k = 1. Take z1 to be 
XJ. 

(b) Use mathematical induction. For k = 0, this is part (a). Assume c;: 
primitve recursive. Then C£+1 (x1 , ... , x 11 ) is primitive recursive by the sub­
stitution ck+I (xi' ... , Xn) = N( c;: (xl, ... 'Xn)). 

(c) By Proposition 3.14, any variables among x1, ... ,Xn not present in a 
function can be added as dummy variables. For example, if h(x1,x3 ) is 
primitive recursive, then h*(xi,x2,x3) = h(x1,x3) = h(Uf(xt,X2,x3), Ut(xt, 
x 2 ,x3 )) is also primitive recursive, since it is obtained by a substitution. 
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pROPOSITION 3.16 

rhe following functions are primitive recursive. 

~Ja) x+ Y 
~fb) X· Y 
(~) y)' 

_... s:( ) {X- 1 ;(d)uX = O 
if X> 0 
ifx = 0 

[) is called the predecessor function. 

. { X - y if X;?; y 
~e) x-y = 0 if x < y 

:z(f) lx - Yl = { x - Y if x;?; Y 
y-x if x < y 

{
0 ifx=O 

-(g) sg(x) = 1 if x # 0 

{
1 ifx=O 

(h) sg(x) = 0 if x # 0 

,{i) x! 
"'G) min(x,y) =minimum of x andy 
(k) min(xt, . . . ,xn) 
(I) max(x, y) = maximum of x and y 
(m) max(xi, ... ,xn) 
(n) rm(x,y) = remainder upon division of y by x 
(o) qt(x,y) = quotient upon division of y by x 

Proof 

(a) Recursion rule (V) 

x+O=x or f(x, 0) = Ul(x) 

x + (y + 1) = N(x + y) f(x,y + 1) = N(f(x,y)) 

(b) x·O =0 or g(x, 0) = Z(x) 
X· (y + 1) = (x · y) +X (x,y+ 1) = J(g(x,y),x) 

where f is the addition function 
(c) x0 = 1 

xY+l = (xY) . X 
(d) 1J(O) = 0 

1J(y + 1) = y 
(e) x_:_O = x 

x_:_(y+ 1) = 1J(x_:_y) 
(f) lx - Yl = (x_:_y) + (y_:_x) (substitution) 
(g) sg(x) = x_:_1J(x) (substitution) 
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(h) 
(i) 

(j) 

sg(x) = 1 _:_sg(x) (substitution) 
0! =I 

(y + l )! = (y!) . (y + 1) 
min(x,y) = x-=-(x-=-y) 

(k) Assume min(x1, ... ,x11 ) already shown primitive recursive. 

(I) max(x,y) = y + (x_:_y) 
(m) max(xt, ... ,x11 ,Xn+I) = max(max(xt, ... ,x11 ),xn+d 
(n) rm(x, 0) = 0 

rrn(x,y + 1) = N(rrn(x,y)) · sg(lx- N(rm(x,y))l) 
(o) qt(x, 0) = 0 

qt(x,y+ 1) = qt(x,y) +sg(lx -N(rrn(x,y))l) 

In justification of (n) and (o), note that, if q and r denote the quotient 
qt(x,y) and remainder rm(x,y) upon division of y by x, then y = qx +rand 
O~r<x. So, y+1=qx+(r+1). [f r+l<x (that is, if lx-N(nn 
(x,y))l > 0), then the quotient qt(x,y + 1) and remainder rm(x,y +I) upon 
division of y + I by x are q and r + 1, respectively. If r + 1 = x (that is, if 
lx-N(rm(x,y))l = 0), then y+ 1 = (q+ l)x, and qt(x,y+ I) and 
rm(x,y + 1) are q + 1 and 0, respectively.t 

DEFINITIONS 

if z > 0 

liz> 0 

These bounded sums and products are functions of x1 , ••• , x11 , z. We can also 
define doubly bounded sums and products in terms of the ones already 
given; for example, 

2:::: f(xl, ... ,Xn,Y) = f(xl, ... ,x,l, u + 1) + ... + f(xl, ... ,Xn, v- 1) 

= 2:::: f(xt, ... ,X,nY + u + 1) 
y < b(v-=-u) 

tsince one cannot divide by 0, the values of rm(O,y) and qt(O,y) have no in­
tuitive significance. It can be easily shown by induction that the given definitions 
yield rm(O,y) = y and qt(O,y) = 0. 



~R_I_M_I_T_I_V_E_R_E_C_U_RS_I_V_E_A_N_D_R_E_C_U_R_SI_V_E_F_U_N_C_T_IO_N_S_~__.I 1 179 

pROPOSITION 3.17 

,if f(x1, ••• ,xn,y) is primitive recursive (or recursive), then all the bounded 
sums and products defined above are also primitive recursive (or recursive). 

:froOf 

oLet g(xt, ... ,xn,z) = E f(xt, ... ,Xn,y). Then we have the following recur­
y<z 

g(x1, ... ,Xm 0) = 0 

g(xt, ... ,Xn,z+ 1) = g(XI, ... ,x",z) + f(xt, ... ,xn,z) 

--If h(xt, .. · ,Xn,z) = 2: f(x~, ... ,xn,y), then 
y~z 

h(x1, ... ,x11,z) = g(x1, .. . ,X11 ,Z + 1) (substitution) 

~The proofs for bounded products and doubly bounded sums and products 
-are left as exercises. 

Example 
Let -r(x) be the number of divisors of x, if x > 0, and let -r(O) = I. (Thus, -r(x) 
is the number of divisors of x that are less than or equal to x.) Then -r is 
primitive recursive, since 

-r(x) = L sg(rm(y,x)) 
y~x 

Given expressions for number-theoretic relations, we can apply the 
connvctives of the propositional calculus to them to obtain new expressions 
_for relations. For example, if R1 (x,y) and R2 (x, u, v) are relations, then 
R1 (x,y) 1\ R2(x, u, v) is a new relation that holds for x,y, u, v when and only 
when both Rt (x,y) and R2(x, u, v) hold. We shall use (Vy)y<zR(x1, ••• ,x,,y) 
to express the relation: for ally, if y is less than z, then R(x1, ••• , x11 ,y) holds. 
We shall use (Vy)y~z' (3y)y<z and (3y)y~z in an analogous way; for ex­
ample, (3y)y<zR(xt, ... ,x11 ,y) means that there is some y < z such that 
R(xt, ... ,x11 ,y) holds. We shall call (Vy)y<z'(Vy)y~z(3y)y<z and (3y)y~z 
bounded quantifiers. In addition. we define a bounded 1-1-operator: 

{

the least y < z for which R(x]l ... ,X11 ,y) 

Jl.Yy<zR(x., ... ,Xn,Y) = holds if there is such a y 

z otherwise 

The value z is chosen in the second case because it is more convenient in later 
proofs; this choice has no intuitive significance. We also define 
/tyy~zR(xt, ... ,x,lly) to be /-lYy<z+tR(xt, ... ,xmy). 

A relation R(x1, ••• , Xn) is said to be primitive recursive (or recursive) if and 
only if its characteristic function CR(x1, • • • ,x11 ) is primitive recursive (or re-
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cursive). In particular, a set A of natural numbers is primitive recursive (or 
recursive) if and only if its characteristic function CA (x) is primitive recursive 
(or recursive). 

Examples 
I. The relation x1 = x2 is primitive recursive. Its characteristic function is' 

sg(lx1 - x21), which is primitive recursive, by Proposition 3.16(f,g). 
2. The relation x1 < x2 is primitive recursive, since its characteristic function 

is sg(x2-=-xt), which is primitive recursive, by Proposition 3.16(e,h). -
3. The relation x1lx2 is primitive recursive, since its characteristic function is 

sg(rm(x1,x2)). -
4. The relation Pr(x), (x) is a prime, is primitive recursive, since 

Cr,(x) = sg(j-r(x)- 21). Note that an integer is a prime if and only if it h~s 
exactly two divisors; recall that -r(O) = 1. 

PROPOSITION 3.18 

Relations obtained from pnmttive recursive (or recursive) relations by 
means of the propositional connectives and the bounded quantifiers are also 
primitive recursive (or recursive). Also, applications of the bounded It-op­
erators fl)y<z and flYy~z lead from primitive recursive (or recursive) rela­
tions to primitive recursive (or recursive) functions. 

Proof 

Assume Rt(xt, ... ,x11) and R2(xt, ... ,x11 ) are primitive recursive (or re­
cursive) relations. Then the characteristic functions CR1 and CR2 are primi­
tive recursive (or recursive). But C..,R1 (xt, ... ,xn) = I-=-CR1 (x1, ... ,xn); hence 
•Rt is primitive recursive (or recursive). Also, CR1vR2 (xt, .. . ,x11) 

= CR, (x1, ... ,xn) · CR2 (xt, ... ,xn); so, Rt V R2 is primitive recursive (or re­
cursive). Since all propositional connectives are definable in terms of..., and 
V, this takes care of them. Now, assume R(x1, ... ,x11 ,y) is primitive recursive 
(or recursive). If Q(x1, ... ,x17 ,z) is the relation (3y)y<~(x1 , ... ,x,0 y), then it 
is easy to verify that CQ(xl, ... , X11 , z) = IIy<zCR(Xt, ... , X11 ,y), which, by 
Proposition 3.17, is primitive recursive (or recursive). The bounded quan­
tifier (3y)y ~z is equivalent to (3y)y<z+l' which is obtainable from (3y)y<z by 
substitution. Also, (Vy)y<z is equivalent to •(3y)y<z •, and (Vy)y ~z is 
equivalent to •(3y)y ~z •. Doubly bounded quantifiers, such as (3y)u<y<v' 
can be defined by substitution, using the bounded quantifiers already 
mentioned. Finally, IIu ~yCR(xt, ... ,xn, u) has the value I for ally such that 
R(xt, ... ,x11 , u) is false for allu ~y; it has the value 0 as soon as there is some 
u ~ y such that R(x1, ... ,xn, u) holds. ~encc, 'L:y<Allu ~yCR(xt, ... ,x", u)) 
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counts the number of integers from 0 up to but not including the first y < z 
such that R(x1, ••. ,x11 ,y) holds and is z if there is no such y; thus, it is equal 
to /lYy<zR(x1, ••• ,x11 ,y) and so the latter function is primitive recursive (or 
~~cursive) by Proposition 3.17. 

,Examples 
~i. Let p(x) be the x11t prime number in ascending order. Thus, 

p(O) = 2, p(1) = 3, p(2) = 5, and so on. We shall write Px instead of 
p(x). Then Px is a primitive recursive function. In fact, 

Po= 2 

Px+l = JlYy ~ {px)!+l (p_.r < Y 1\ Pr(y)) 

Notice that the relation u < y 1\ Pr(y) is primitive recursive. Hence, by 
Proposition 3.18, the function flYy~v(u<yi\Pr(y)) is a primitive re­
cursive function g(u, v). If we substitute the primitive recursive functions 
z and z! + l for u and v, respectively, in g(u, v), we obtain the primitive 
recursive function 

h(z) = JlYy ~z!+l (z < y 1\ Pr(y)) 

and the right-hand side of the second equation above is h(px); hence, we 
have an application of the recursion rule (V). The bound (Px)! + 1 on the 
first prime after p); is obtained from Euclid's proof of the infinitude of 
primes (see Exercise 3.23). 

!'2. Every positive integer x has a unique factorization into prime powers: 
- x = p~0pr1 ..• p;k. Let us denote by (x)1 the exponent a1 in this factor­

ization. If x = 1, (x)1 = 1 for all j. If x = 0, we arbitrarily let (x)1 = 0 for 
all j. Then the function (x). is primitive recursive, since (x). = 
,UYy<.."(pj'Jx 1\ -{pj+ljx)). 1 1 

c3. For X> 0, let fn(x) be the number of non-zero exponents in the factor­
ization of x into powers of primes, or, equivalently, the number of dis­
tinct primes that divide x. Let £11(0) = 0. Then £11 is primitive recursive. 
To see this, let R(x,y) be the primitive recursive relation 
Pr(y) 1\ylx 1\ x 1= 0. Then £1i(x) = Ly ~x sg( CR(x,y)). Note that this 
yields the special cases £11(0) = £11(1) = 0. The expression '£11(x)' should 
be read 'length of x'. 

4. If the number x = 2ao3a1 ••• P? is used to 'represent' or 'encode' the 
sequence of positive integers a 0, a1, .•. , ab and y = 2bo 3b1 ••• p~;· 're­
presents' the sequence of positive integers b0 , b1, ... , b111 , then the 
number 

'represents' the new sequence a0 , a 1, •.. , ak, b0 , b1, ••• , bm obtained by 
juxtaposing the two sequences. Note that £11(x) = k + 1, which is the 
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length of the first sequence, en(y) = m + 1, which is the length oLtht 
second sequence, and bj = (y)j. Hence, -

X * Y = X • II (pfli(x)+j) (y)j 

j<fli(y) 

and, thus, * is a primitive recursive function, called the juxtaposition 
function. It is not difficult to show that x * (y * z) = (x * y) * z as long.as 
y -=f. 0 (which will be the only case of interest to us). Therefore, there kno 
harm in omitting parentheses when writing two or more applications:or 
*· Also observe that x * 0 = x * 1 = x. 

Exercises 

3.16 Assume that R(xt, ... ,x",y) is a primitive recursive (or recursive) re;_'; 
lation. Prove the following: ----

(a)(3y)u<y<vR(x1, ... ,xn,y), (3y)u~y~vR(xt, ... ,x,ny) and (3y)11~y<vR (xr, 
... ,x11 ,y) are primitive (or recursive) relations. 

(b).UYu<y<vR(xt, ... ,x,lly), .UYu~y~vR(xt, ... ,x",y) and .UYu~y<vR (xt, ... ,Xn,J'~~ 
are primitive recursive (or recursive) functions . · 

(c) If, for all natural numbers x1, ..• , X11 , there exists a natural number y such;:' 
that R(xt, ... ,x11 ,y), then the functionf(xt, ... ,x11 ) = ,uyR(xt, ... ,x11,y) i~~ 
recursive. [Hint: Apply the restricted ,u-operator to CR(x1, ... ,x,,y).] 

3.17 
(a) Show that the intersection, union and complement of primitive recursive 

(or recursive) sets are also primitive recursive (or recursive). 
(b) Show that every finite set is primitive recursive. 
3.18 Prove that a function f(xt, ... ,x11 ) is recursive if and only if its re­
presenting relation f(x1, ••• ,x11 ) = y is a recursive relation. 
3.19 Let [vnJ denote the greatest integer less than or equal to yli, and let 
IT(n) denote the number of primes less than or equal to n. Show that [v'n) 
and IT ( n) are primitive recursive. 
3.20 Let e be the base of the natural logarithms. Show that [ne], the greatest 
integer less than or equal to ne, is a primitive recursive 'function. 
3.21 Let RP(y, z) hold if and only if y and z are relatively prime, that is, y 
and z have no common factor greater than 1. Let q>(n) be the number of 
positive integers less than or equal ton that are relatively prime ton. Prove 
that RP and q> are primitive recursive. 
3.22 Show that, in the definition of the primitive recursive functions, one 
need not assume that Z(x) = 0 is one of the initial functions. 
3.23 Prove that Pk+l ~ (popt ... Pk) + l. Conclude that Pk+l ~pk! + 1. 

For use in the further study of recursive functions, we prove the following 
theorem on definition by cases. 
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p~OPOSITION 3.19 

YI(XI,·· .,Xn) 
Y2(XI, · · · ,Xn) 

if R1 (XI, ... ,xnJ holds 
if R2(XI, ... ,xn) holds 

Yk(xi, ... ,xn) if Rk(XI, ... ,xn) holds 

If the functions 91, ... , 9k and the relations R1, ... , Rk are primitive recursive 
(or recursive), and if, for any x1, ... ,x1, exactly one of the relations 
Rr(x1, ... , Xn), ... , Rk(x1, ... , Xn) is true, then f is primitive recursive (or re­

-~hrsive). 

}'(xh ... ,x,) =g1 (xl, ... ,xn) · sg( CR1 (xi, ... ,xn)) + ... + 
9k(xl, ... ,xn) · sg(C~(x1, .. . ,x11 )). 

:Exercises 
~ 

~3.24 Show that in Proposition 3.19 it is not necessary to assume that Rk is 
;primitive recursive (or recursive). 
'3.25 Let 

f(x) = {x2 
x+l 

Yrove that f is primitive recursive. 

-3.26 Let 

if xis even 
if xis odd 

h(x) = { ~ if Goldbach's conjecture is true 
if Goldbach's conjecture is false 

Is h primitive recursive? 
It is often important to have available a primitive recursive one-one 

correspondence between the set of ordered pairs of natural numbers and the 
set of natural numbers. We shall enumerate the pairs as follows: 

(0, 0), (0, 1 ), (1, 0), (1' 1 ), (0,2), (2, 0), (1' 2), (2, 1 ), (2, 2), 

After we have enumerated all the pairs having components less than or 
equal to k, we then add a new group of all the new pairs having components 
less than or equal to k+1 in the following order: (O,k+1),(k+l,O), 
( 1, k + 1), ( k + 1, 1), ... , ( k, k + 1), (k + 1, k), ( k + 1, k + 1). If x < y, then 
(x,y) occurs before (y,x) and both are in the (y + 1)th group. (Note that we 
start from 1 in counting groups.) The first y groups contain y 2 pairs, and 
(x,y) is the (2.x+1)th pair in the (y+1)th group. Hence, (x,y) is the 
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(Y + 2Y + 1 )th pair in the ordering, and (y,x) is the (y2 + 2x + 2)th pair. On 
the other hand, if x = y, (x,y) is the ((x + 1)2)th pair. This justifies the foi~ 
lowing definition, in which a2(x,y) denotes the place of the pair (x,y) in the""' 
above enumeration, with (0, 0) considered to be in the Oth place: 

a2(x,y) = sg(x-=-y) · (~ + 2y + 1) + sg(x-=-y) · (i + 2Y) 

Clearly, a 2 is primitive recursive. 
Let us define inverse functions ai and cr~ such that 

ai(a2(x,y)) =x,a~(t?(x,y)) =y and a2(af(z),a~(z)) =z. Thus, cri(z) and 
a~(z) are the first and second components of the zth ordered pair in the given 
enumeration. Note first that ai(O) = 0, cr~(O) = 0, 

and 

{ 

a~(n) if ai(n) < ai(n) 
ai{n) = a~(n) + l if af(n) > aHn) 

0 if ai(n) = a~(n) 

a2(n + l) = l { 
a2 (n) 

2 ai(n) +I 
if ai(n)-=/= a~(n) 
if af(n) = a~(n) 

Hence, 

ai(n + 1) = ai(n) · (sg(ai(n) -=-ai(n))) + (a~(n) + 1) · (sg(af(n)...:...a~(n))) 

= <p(af(n), a~(n)) 

a~(n + 1) = ai(n) · (sg(la~(n) - ai(n)l)) + (ai(n) + 1) · (sg(lai(n)- ~(n)l)) 
= tf;(af(n), a~(n)) 

where q> and l/1 are primitive recursive functions. Thus, crf and~ are defined 
recursively at the same time. We can show that crf aJ]d cr~ are primitive 
recursive in the following devious way. Let h(u) = 2af(u) 3a~(u). Now, h is 
primitive recursive, since h(O) = 2ui(0)3~(o)"= 2° · 3° = 1, and h(n + 1) 
= 2af(n+1) 3a~(n+ 1) = 2CJJ(ai(n ),~(n)) 31/J(ui(n),a~(n)) = 2<p((h(n) )0,(h(n)) 1) 3!J!((h(n))0,(h(n))1). 

Remembering that the function (x); is primitive recursive (see Example 2 on 
page 181), we conclude by recursion rule (V) that h is primitive recursive. 
But crf(x) = (h(x))0 and cr~(x) = (h(x)) 1• By substitution, cri and ~ are 
primitive recursive. 

One-Dne primitive recursive correspondences between all n-tuples of 
natural numbers and all natural numbers can be defined step - by - step, 
using induction on n. For n = 2, it has already been done. Assume that, for 
n = k, we have primitive recursive functions d<"(x1, ... ,xk), a}(x), ... , crZ(x) 
such that af(ti(x1, ... ,xk)) =xi for 1~i~k, and d<"(crt(x), ... ,cr%(x) =x. 
Now, for n = k+ 1, define d<"+1(x1, .. . ,xk,Xk+I) = t?(d<"(xt, ... ,xk),xk+t), 
o-f+1(x)=af(cri(x)) for 1~i~k and af!f(x)=~(x). Then t/+1,o{+1, 
... , crZ!} are all primitive recursive, and we leave it as an exercise to verifY 
that cr7+1 (ak+1 (x1, ... ,xk+I )) = x; for 1 ~i ~k + 1, and if( at+1 (x), ... , 
crZ!~(x)) = x. 



PRIMITIVE RECURSIVE AND RECURSIVE FUNCTIONS 

It will be essential in later work to define functions by a recursion in 
;hich the value of f(xt, ·,x11 ,y + 1) depends not only upon f(xi, ... ,x11 ,y) 
but also upon several or all values of f(xi, ... , x,n u) with u ~y. This type of 
recursion is called a course-of-values recursion. Let f #(x1, .•• , x,n y) = 

n,, _J(.l:], ... ,xn,u). Note that f can be obtained from f# as follows: 
u<yPu 

/(xb ... ,x,oy) = U'#(xi, · ·. ,X,nY+ l))J" 
~t-

;;pROPOSITION 3.20 (COURSE-OF-VALUES RECURSION) 
:'0: 

:,If h(x1, ••• ,x,,y,z) is primitive recursive (or recursive) and f(x1, ••• ,x,,y) 
,z::: h(x1, ••• ,xn,y,f#(xi, ... ,x11 ,y)), then f is primitive recursive (or re­
cursive). 

:;Proof 

f#(xt, ... ,X11 ,0) = 1 

!#( X ! + 1)-J#( X y) . f(xJ .... ,X,a}') Xt, ... , ,,) - X(, ... ,"' Py 

=J#(X X y) ·ph(XJ, ... ,x,..y,{#(xJ .... r\'nJ')) 
(, ... ,Ill )' 

Thus, by the recursion rule, f # is primitive recursive (or recursive), and 
f(xi, ... ,xn,y) = U'#(xi, ... ,X11 ,y + 1))y. 

Example 
The Fibonacci sequence is defined as follows: f(O) = 1,/(1) = 1, and 
f(k+2) = f(k) + f(k+ 1) for k~O. Then f is primitive recursive, since 

f(n) = sg(n) + sg(ln- 11) + ((! #(n)),.-__1 + (! #(n))"..__2) · sg(n...:_1) 

The function 

h(y,z) = sg(y) + sg(IY- II)+ ((z)y-~l + (z)y..__2) • sg(y...:_l) 

is primitive recursive, and f(n) = h(n,f#(n)). 

Exercise 

3.27 Let g(O) = 2, g(1) = 4, and g(k + 2) = 3g(k + 1)- (2g(k) + 1). Show 
that g is primitive recursive. 

COROLLARY 3.21 (COURSE-OF-VALUES RECURSION 
FOR RELATIONS) 

If H(x1, •.• ,x,ny,z) is a primitive recursive (or recursive) relation and 
R(x1, ••• ,x11 ,y) holds if and only if H(xi,···,x",y,(CR)#(xi,···,xn,Y)), 
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where CR is the characteristic function of R, then R is primitive recursive (or 
recursive). 

Proof 

CR(x1, ... ,x11 ,y) = CH(x1, ... ,xn,y, (CR)#(xl, ... ,x,,y)). Since CHis primi­
tive recursive (or recursive), Proposition 3.20 implies that CR is primitive 
recursive (or recursive) and, therefore, so is R. 

Proposition 3.20 and Corollary 3.21 will be drawn upon heavily in what 
follows. They are applicable whenever the value of a function or relation for 
y is defined in terms of values for arguments less than y (by means of a 
primitive recursive or recursive function or relation). Notice in this con­
nection that R(xt, ... ,x,, u) is equivalent to CR(xl, ... ,x11 , u) = 0, which, in 
turn, for u < y, is equivalent to ((CR)#(xl, ... ,xn,y))11 = 0. 

Exercises 

3.28 Prove that the set of recursive functions is denumerable. 
3.29 If fo,Ji,/2, ... is an enumeration of all primitive recursive functions 
(or all recursive functions) of one variable, prove that the function f,(y) is 
not primitive recursive (or recursive). 

LEMMA 3.22 (GODEL'S p-FUNCTION) 

Let f3(x1,x2,x3) = rm(l + (x3 + l) · x2,xl) . Then f3 is primitive recursive, by 
Proposition 3.16(n). Also , f3 is strongly representable in S by the following 
wf Bt(x1,x2,x3,y): 

(3W)(.-ri = (1 + (x3 + 1) · x2) · w + y 1\ y < 1 + (x3 + 1) · x2) 

Proof 

By Proposition 3.111-s (3Iy)Bt(xi,X2,x3,Y). Assume f3(k1,k2,k3) = m. Then 
k1=(l+(k3+l)·k2)·k+m for some k, and m<l+(k3+l)·k2. So, 
1-s k1 = (I+ (k3 +I) · k2) · k + m, by Proposition 3.6(a). Moreover, 
1-s m < 1 + (k3 + T) · k2 by the expressibility of < and Proposition 3.6(a). 
Hence, 1-s k1 = (T + (k3 + T) · k2) · k + m 1\ m < T + (k3 +I) · k2 from which 
by rule E4,1-s Bt(k1,k2 ,k3,m). Thus, Bt strongly represents f3 inS. 

LEMMA3.23 

For any sequence of natural numbers k0 ,k1, .. . ,k,, there exist natural 
numbers band c such that f3(b,c,i) =k; for O~i~n. 
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proof 

Let j = max(n, ko,k1, ... ,kn) and let c = j!. Consider the numbers 
lli = 1 + (i + l)c for O~i~n; no two of them have a factor in common other 
than l. In fact, if p were a prime dividing both I + (i + 1 )c and 1 + (m + 1 )c 
with O~i < m ~ n, then p would divide their difference (m- i)c. Now, p 
does not divide c, since, in that case p would divide both (i + 1 )c and 
1 + (i + 1 )c, and so would divide 1, which is impossible. Hence, p also does 
not divide (m- i); form- i ~n ~j and so, m- i divides j! =c. If p divided 

111 - i, then p would divide c. Therefore, p does not divide (m- i)c, which 
yields a contradiction. Thus, the numbers u;, 0 ~ i ~ n, are relatively prime 
in pairs. Also, for 0 ~ i ~ n, k; ~j ~j! = c < 1 +(i + 1 )c = u;; that is, k; < u1• 

Now, by the Chinese remainder theorem (see Exercise 3.30), there is a 
number b<u0u1 •.• u, such that rm(u;,b)=k; for O~i~n. But 
p(b,c,i) =rm(l + (i+ 1)c,b) = rm(u;,b) =k;. 

Lemmas 3.22 and 3.23 enable us to express within S assertions about 
finite sequences of natural numbers, and this ability is crucial in part of the 
proof of the following fundamental theorem. 

PROPOSITION 3.24 

Every recursive function is representable in S. 

Proof 

The initial functions Z, Nand u;z are representable in S, by Examples 1- 3 
on page 172. The substitution rule (IV) does not lead out of the class of 
representable functions, by Example 4 on page 172. 

For the recursion rule (V), assume that g(x1, ... ,x11 ) and h(x1, ... ,xn,y,z) 
are representable in S by wfs 95'(xl, ... ,x11+1) and lff?(x1, ... ,xn+J), respec­
tively, and let 

(I) f(xt, ... ,x,,O) = g(xt, ... ,xn) 

f(xt, ... ,x,,y + 1) = h(xb ... ,xn,y,f(xt, ... ,x,,y)) 

Now, f(x1, ... ,x11 ,y) = z if and only if there is a finite sequence of numbers 
bo, ... ,by such that bo=g(xl, ... ,x11 ), bw+l=h(xt, ... ,xn,w,bw) for 
w + I ~y, and by= z. But, by Lemma 3.23, reference to finite sequences can 
be paraphrased in terms of the function f3 and, by Lemma 3 .22, f3 is re­
presentable inS by the wf Bt(x1,x2,x3,y). 

We shall show that f(xt, ... ,x11 ,Xn+d is representable in S by the fol­
lowing wf 2LJ(x1, ... ,x,+2): 

(3u)(:Jv)[((3w)(Bt(u, v, 0, w) A ~(Xt, ... ,x,, w))) A Bt(u, v,Xn+t,Xn+Z) 

A (\iw)(w < x,1+t =} (3y)(:lz)(Bt(u, v, w,y) A Bt(u, v, w',z) A C6'(x1, ••• ,x,, w,y,z)))] 
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(i) First, assume that f(xt, ... , Xn 1P) = m. We wish to show that 
l-s !Y2(kJ, ... ,k",p,m). If p = O, then m=g(kt, ... ,kn)· Consider these­
quence consisting of malone. By Lemma 3.23, there exist band c such thaf 
P(b, c, 0) = m. Hence, by Lemma 3.22, -

(X) rs Bt(b, c, 0, m) 

Also, since m = g(kt, ... , k"), we have 1-s r!J(kt, ... , kn, m). Hence, by rule 
E4, 

(XX) I-s (3w)(Bt(b, c, 0, w) /\ ~(k1 , ••• , k,, w)) 

In addition, since 1-s w 10, a tautology and Gen yield 

(XXX) (Vw)(w <0~ (3y)(3z)(Bt(b, c, w,y)/\(Bt(b, c, w',z)/\ C{}(kt, ... ,k,, w,y,z))) 

Applying rule E4 to the conjunction of (£), (££) and (L~X), we obtain 
1-s !Y2 (k17 ••. ,k11 ,0,m). Now, for p > O,f(kb ... ,k,0 p) is calculated from the 
equations (I) in p + l steps. Let r, = f(kt, .. . , k11 , i). For the sequence of 
numbers r0 , ... , 1'p, there are, by Lemma 3.23, numbers b and c such 
that P(b,c,i)=r; for O~i~p. Hence, by Lemma 3.22, 1-sBt (b,c,i,rt). 
In particular, P(b, c, 0) = ro = f(kt, ... , k", 0) = g(kt, . . . , k"). Therefore, 
1-s Bt (b,c,O,r0)/\r!J(k1, .. . ,k",ro), and, by rule E4, (i) 1-s (3w)(Bt(b,c,O,w) 
1\~(kt, ... ,k11 , w)). Since_ l'p = f(kt, ... ,k11 ,p) = m, we have P(b,c,p) 
= m. Hence, (ii) 1-s Bt(b,c,p, m). For 0 < i < p- 1, p(b, c, i) = r1 = f 
(kt, · · · ,k", i) andP(b, c, i + l) = r;+I = f(kt, · · · ,k11 , i +I) = h(kt, · · · ,ku,i, 
f(k1, • • • ,k11 ,i)) = h(kt, · · · ,kn,i,r,-). Therefore, 1-s Bt(b,c, I,rd 1\ Bt 
(b,c,l',r;+t) 1\ ~(k1, .. · ,k,,l,r,-,rt+d· By Rule E4, 1-s (3y)(3z)(Bt (b,c,z,y) 
1\Bt(b,c,f,z) /\ ~(k1 , • • • ,kn,l,y,z)) So, by Proposition 3.8(b'), (iii) 1-s 
(Vw)(w < ]5 =} (3y)(3z)(Bt(b,c, w,y) 1\ Bt(b, c, w',z)/\ ~(kt, . . . , k11 , w,y,z))). 
Then, applying rule E4 twice to the conjunction of (i), (iij and (iii), we obtain 
1-s !Y2(k1, • • • k11 ,p, m). Thus, we have verified clause l of the definition of 
representability (see page 171). 

(ii) We must show that I-s (31Xn+2)!Y2(kb ... , k,11 ]5,Xn+2). The proof is 
by induction on p in the metalanguage. Notice that, by what we have 
proved above, it suffices to prove only uniqueness. The case of p = 0 is left 
as an easy exercise. Assume 1-s (3txn+2)q(kt, ... ,k,,p,x11+2)· Let a=g 
(kJ, ... ,k11 ),P =J(kJ, . . . , kn,p), andy=f(kt, . .. ,k11 ,p+l)=h (kl,· ··, 
k11 ,p, p). Then 

(1) I-s C{}(kt, .. . , k,,p, {j, y) 

(2) I-s ~(k1, ... , k,, Cl.) 

(3) ~s f!J(kt, ... ,k,,p,{j) 

(4) l-sf2(kt, ... ,k",p+1,y) 
(5) I-s (3JX,+2)2L>(kt, ... ,k,,p,Xn+2) 

Assume 
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(6) !0(kt,. ·., kn,P + l,Xn+2 ) 

We must prove Xn+2 = y. From (6), by rule C, 

(a) (3w)(Bt(b, c, 0, w) 1\ .t~(kt, ... , kn, w)) 

(b) Bt(b, c,p + l,X11+2) 

(c) (\iw)(w < p-+ 1 

==> (3y)(3z)(Bt(b,c, w,y) 1\ Bt(b,c, w',z) 1\ ~(k1 , ••• ,k,, w,y,z))) 

From (c), 

(d)(Vw)(w < p ==> (3y)(3z)(Bt(b,c, w,y) 1\ Bt(b,c, w',z) 1\ ~(k1 , ••• ,k,, w,y,z))) 

From (c) by rule A4 and rule C, 

(e) Bt(b, c,p, d) 1\ Bt(b, c,p + 1, e) 1\ ~(kt, ... , k11 ,p, d, e) 

From (a), (d), and (e), 

From (f), (5) and (3). 

(g) d = 71 
From (e) and (g), 

(h) ~(kt, ... , k,-,p, {i, e) 

Since f3 represents h, we obtain from (1) and (h), 

(i) ? = e 

From (e) and (i), 

{j) Bt(b, c,p + 1, ?) 

From (b), G), and Lemma 3.22, 

This completes the induction. 
The 11--operator (VI). Let us assume, that, for any x1, .. . ,xn, there is some 

y such that g(x1, ... ,x,,y) = 0, and let us assume g is representable inS by a 
wf g (x1, .. . ,x,+2)· Letf(xt, ... ,x,) = 11-Y(g(xt, ... ,xn,Y) = 0). Then we shall 
show that f is representable inS by the wf ff(x1, ... ,x11+I): 

C(xl, ... ,X,+l, 0) 1\ (\iy)(y < X11+l ==> -.C(xt, ... ,xn,Y, 0)) 

Assume f(k1, ... ,k11 ) = m. Then g(k1, ••• ,k,,m) = 0 and, for k < m, 
g(k1, ... , kn, k) f. 0. So, ~s g(f{I, ... , k,, m, 0) and, for k < m, ~s -,g 
(k1, • • • ,k,,k,O). By Proposition 3.8(b'), 1-s ('v'y)(y < m =?- -,g(kt, .. . , 
k11 ,y, 0)). Hence, ~s ff(k1, .. . , k11 , m). We must also show: ~s (:::!Ixn+I) 
ff(k1, ... , k,,xn+d· It suffices to prove the uniqueness. Assume 
g(f1, ... , k,, u, 0) A ('v'y)(y < u =?- -,g(k1, • •• , k11 ,y, 0)). By Proposition 
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3.7(o'), t--s m < u V m = u V u < m. Since 1-s tC(k1, ... , k,, m, 0), we cannot 
have m < u. Since 1-s ('v'y)(y < m =* -.tC(ki, ... ,kn,y,O)), we cannot have . 
u < m. Hence, u = m. This shows the uniqueness. 

Thus, we have proved that all recursive functions are representable in s. 

COROLLARY 3.25 

Every recursive relation is expressible in S. 

Proof 

Let R(x1, .. . ,x11 ) be a recursive relation. Then its chracteristic function CR is 
recursive. By Proposition 3.24, CR is representable in S and, therefore, by 
Proposition 3.13, R is expressible inS. 

Exercises 

(a) Show that, if a and bare relatively prime natural numbers, then there is 
a natural number c such that ac 1 (mod b). (Two numbers a and bare 
said to be relatively prime if their greatest common divisor is l. In­
general, x = y (mod z) means that x andy leave the same remainder upon 
division by z or, equjvalently, that x - y is divisible by z. This exercise 
amounts to showing that there exist integers u and v such that 
1 =au +bv.) 

(b) Prove the Chinese remainder theorem: if x 1 , ••• , Xk are relatively prime in 
pairs and y 1, ••• ,yk are any natural numbers, there is a natural number z 

such that z _ y1 (mod xi), ... ,z = }k(modxk)· Moreover, any two suchzs 
differ by a multiple of x1 ... xk. [Hint: Let x = x 1 ... xk and let 
x = w 1x1 = w2x2 = ... = wkxk. Then, for 1 ~j~k, w1 is relatively prime 
to x1 and so, by (a), there is some zj such that wp1 - l(modx1). Now let 
z = WJZtJll + w2z2Y2 + ... + WkZk)lJc· Then z = w1z1Jj = yAmodx1). In 
addition, the difference between any two such solutions is divisible by 
each of x 1, ... ,xk and hence by x 1 ... xk.] 

3.31 Call a relation R(x1, ... ,x,) arithmetical if it is the interpretation of 
some wf £J6'(x1, ... ,x,) in the language !l'A of arithmetic with respect to the 
standard model. Show that every recursive relation is arithmetical. [Hint: 
Use Corollary 3.25.] 

3.4 ARITHMETIZATION. GODEL NUMBERS 

For an arbitrary first-order theory K, we correlate with each symbol u ofK 
an odd positive integer g(u), called the Godel number of u, in the following 
manner: 
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g(() = 3, g()) = 5, g(,) = 7, g(•) = 9, Y(=*) = Ll, g(\f) = 13, 
g(xk) = 13 + 8k fork~ 1 
g(ak) = 7 + 8k for k~1 

g(f,/) = 1 + 8(2n3k) for k,n ~ 1 
g(A'k) = 3 + 8(2n3k) fork, n ~ 1 

Clearly, every Godel number of a symbol is an odd positive integer. 
Moreover, when divided by 8, g(u) leaves a remainder of 5 when u is a 
variable, a remainder of 7 when u is an individual constant, a remainder of 1 
when u is a function letter, and a remainder of 3 when u is a predicate letter. 
Thus, different symbols have different Godel numbers. 

Examples 

g(x2) = 29, g(a4) = 39, g(ff) = 97, g(AD = 147 
Given an expression u0u1 ••• u,., where each uj is a symbol of K, we define 

its Godel number g(uou1 ••• u,.) by the equation 

g(uou, ... u,.) = 2g(uo)3g(u,) .. . p;(u,) 

where pj denotes the jth prime number and we assume that p0 = 2. For 
example, 

g(Ai(xl, x2)) = 2g(A~)3g(() 5g(:~:~)7g(,) 11 g(x2) 130()) 

= 29933521771129135 

Observe that different expressions have different Godel numbers, by virtue 
of the uniqueness of the factorization of integers into primes. In addition, 
expressions have different Godel numbers from symbols, since the former 
have even Godel numbers and the latter odd Godel numbers. Notice also 
that a single symbol, considered as an expression, has a different Godel 
number from its Godel number as a symbol. For example, the symbol x 1 has 
Godel number 21. whereas the expression that consists of only the symbol x 1 

has Godel number 221 . 

If e0 , e1, •.• , e,. is any finite sequence of expressions of K, we can assign a 
Godel number to this sequence by setting 

g(eo, e,, . . . , e,.) = 2g(eo)3g(ed ... p~(e,) 

Different sequences of expressions have different Godel numbers. Since a 
Godel number of a sequence of expressions is even and the exponent of 2 in 
its prime power factorization is also even, it differs from Godel numbers of 
symbols and expressions. Remember that a proof in K is a certain kind of 
finite sequence of expressions and, therefore, has a Godel number. 

Thus, g is a one-one function from the set of symbols of K, expressions 
of K, and finite sequences of expressions of K, into the set of positive 
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integers. The range of g is not the whole set of positive integers. For ex.,. 
ample, 10 is not a Godel number. 

Exercises 

3.32 Determine the objects that have the following Gode1 numbers. 

(a) 1944 (b) 49 (c) 15 (d) 13 824 (e) 251 311 59 

3.33 Show that, if n is odd, 4n is not a Godel number. 
3.34 Find the Godel numbers of the following expressions. 

(a) fl(al) (b) ((Vx3)(-.Ai(a1, x3))) 

This method of associating numbers with symbols, expressions and se. 
quences of expressions was originally devised by Godel (1931) in order t0 -

arithmetize metamathematics,t that is, to replace assertions about a formal 
system by equivalent number-theoretic statements and then to express these 
statements within the formal system itself. This idea turned out to be the key 
to many significant problems in mathematical logic. 

The assignment of Godel numbers given here is in no way unique. Other 
methods are found in Kleene (1952, chap. X) and in Smullyan (1961, chap. 1, 
§ 6). 

DEFINITION 

A theory K is said to have a primitive recursive vocabulwy (or a recursive 
vocabulmy) if the following properties are primitive recursive (or recursive)~ 

~' ~ 

(a) IC(x): xis the Godel number of an individual constant of K; 
(b) FL(x): xis the Godel number of a function letter of K; 
(c) PL(x): xis the Godel number of a predicate letter of K. 

REMARK 

Any theory K that has only a finite number of individual constants, function 
letters, and predicate letters has a primitive recursive vocabulary. For ex­
ample, if the individual constants ofK are ah, ah, ... , aj"' then IC(x) if and 
only if x = 7 + 8h V x = 7 + 8h V .. . V x = 7 + 8j"· In particular, any theory 

tAn arithmetization of a theory K is a one-one function g from the set of 
symbols of K, expressions of K and finite sequences of expressions of K into the set 
of positive integers. The following conditions are to be satisfied by the function g: (1) 
g is effectively computable; (2) there is an effective procedure that determines whether 
any given positive integer m is in the range of g and, if m is in the range of g, the 
procedure :finds the object x such that g(x) = m. 
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l( in the language .!l' A of arithmetic has a primitive recursive vocabulary. So, 
''S has a primitive recursive vocabulary. 

pROPOSITION 3.26 

Let K be a theory with a primitive recursive (or recursive) vocabulary. Then 
withe following relations and functions ( 1-16) are primitive recursive (or re­
s cursive). In each case, we give first the notation and intuitive definition for 
ahe relation or function, and then an equivalent formula from which its 
~ primitive recursiveness (or recursiveness) can be deduced. 

(I) EVbl(x): xis the Godel number of an expression consisting of a vari­
able, (3z)z<x(l ~z 1\ x = 213+8z). By Proposition 3.18, this is primitive 
recurstve. 

EIC(x): x is the Godel number of an expression consisting of an in­
dividual constant, (3y)y<x(IC(y) 1\x = 2Y) (Proposition 3.18). 
EFL(x) : x is the Godel number of an expression consisting of a func­
tion letter, (3y)y<x(FL(y) 1\x = 2>') (Proposition 3.18). 
EPL(x) : xis the Godel number of an expression consisting of a pre­
dicate letter, (3y)y< x(PL(y) 1\ X= 2>') (Proposition 3.18). 

(2) ArgT(x) = (qt(8, x-=-1))0: If xis the Godel·number of a function letter 
f}', then ArgT(x) = n. ArgT(x) is primitive recursive. 

Argp(x) = (qt(8, x-=-3))0 : If xis the Godel number of a predicate letter 
Aj, then Argp(x) = n. Argp(x) is primitive recursive. 

(3) Gd(x) : x is the GodeJ number of an expression of K, EVbl(x)V 
EIC(x) V EFL(x) V EPL(x) V x = 23 V x = 25 V x = 27 V x = 29 V x = 
211 V x = 213 V(3u)u<x(3v)v<xCx = u * v 1\ Gd(u) 1\ Gd(v)). Use Corollary 
3.21. Here, * is the juxtaposition function defined in Example 4 on 
page 181. 

(4) MP(x, y, z): The expression with Godel number z is a direct con­
sequence of the expressions with Godel numbers x and y by modus 
ponens, y = 23 * x * 211 * z * 25 1\ Gd(x) 1\ Gd(z). 

(5) Gen(x, y): The expression with Godel number y comes from the ex­
pression with GodeJ number x by the generalization rule: 

(3v)v<y(EVbl(v) 1\y = 23 * 23 * 213 * v * 25 *X * 25 
(\ Gd(x)) 

(6) Trm(x): x is the GodeJ number of a term of K. This holds when and 
only when either x is the Godel number of an expression consisting of a 
variable or an individual constant, or there is a function letter f// and 
terms t1, ••• , t11 such that x is the Godel number of fk'(tt, ... , t,J The 
latter holds if and only if there is a sequence of n + 1 expressions 
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( /£1(lt, Jl'(tt, t2, · · · JJ:(tt, · · ·, ln-1 1 JJ/(tt, • • ., ln-1 1 ln) 

the last of which, fl'(tt, ... , tn), has Godel number x. This sequence can 
be represented by its Godel number y. Clearly, y < 2xy . . . p,'< 
= (2 · 3 · ... ·Pnt < (pn!r < (p'(!)x. Note that tlz(y) = n + 1 and als~ 
that n = ArgT((x)0), since (x)0 is the Godel number of fJ/. Hence 

' Trm(x) is equivalent to the following relation: 

EVbl(x) V EIC(x) V (Jy)y<(p,!y[x = (y)11;(y)_:_1A 

th(y) = ArgT((x)0 ) + l/\ FL(((y)0 )0 ) 1\ ((y)0 ) 1 = 3 1\ 

t/t((y)0) = 2/\ (Vu),,<fh(y)_:_2(Jv)v<A(y)11+l = (y)11 * v * 27 
1\ Trm(v))A 

(3v)v<.~((y)1.1t(y)-"-l = (y)f!t(y)_:_2 * v * 25 
A Trm(v))] 

Thus, Trm(x) is primitive recursive (or recursive) by Corollary 3.21J 
since the formula above involves Trm(v) for only v < x. In fact, if we 
replace both occurrences ofTrm(v) in the formula by (z)v = 0, then the 
new formula defines a primitive recursive (or recursive) relation H(x, z), 
and Trm(x) {::} H(x, (CTrm)#(x)). Therefore, Corollary 3.21 is applic~ 
able. 

(7) Atfinl (x) : x is the Go del number of an atomic wf of K. This holds if 
and only if there are terms ft, ... , t 11 and a predicate letter AZ such thatx 
is the Godel number of AZ(tt, ... , t,J The latter holds if and only if 
there is a sequence of n + I expressions 

the last of which, AZ(tt, ... , t,,), has Godel number x. This sequence of 
expressions can be represented by its Godel number y. Clearly, 
y < (px!Y: (as in (6) above) and n = Argp((x)0). Thus, Atfml(x) is 
equivalent to the following: 

(Jy)y<(px!)x{.x = (y)//i(y)_:_J 1\ t'A(y) = Argp((x)0 ) + 1 1\ 

PL(((y)o)o) 1\ ((y)oh = 3 1\ t h((y)o) = 2 1\ 

(Vu)u<f!t(y)-"-2(Jv)v<xC(y)u+l = (y)" * V * 27 
1\ Trm(v)) 1\ 

(::lv)v<.~((y)1"u'FI = (y)th()·F-2 * v * 25 
1\ Trm(v))] 

Hence, by Proposition 3.18, Atfml(x) is primitive recursive (or recursive) 
(8) Fml(y): y is the Godel number of a formula of K: 

Atfml(y) V (Jz)z<y[(Fml(z) 1\y = 23 * 29 * z * 25
) V 

(Fml((z)0) 1\ Fm1((zh) 1\y = 23 * (z)0 * 211 * (z) 1 * 25
) V 

(Fml((z)0) 1\ EVbl((z) 1) 1\y = 23 * 23 * 213 * (zh * 25 * (z)0 * 2
5

)] 

It is easy to verify that Corollary 3.21 is applicable. 
(9) Subst(x, y, u, v): xis the Godel number of the result of substituting in 

the expression with Godel number y the term with GodeJ number u for 
all free occurrences of the variable with Godel number v: 
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Gd(y) 1\ Trm(u) 1\ EVbl(2u) 1\ [(y = 2v 1\x = u) V 

(3w )wq•(y = 2w 1\ y =/= 2u 1\ X = y) V 

(3z)z<y(3w)w<y(Fml(w) 1\y = 23 * 213 * 2u * 25 * w * z 1\ 

(3a)rx<x(x = 23 * 213 * 2t' * 25 * w *a 1\ Subst(a, z, u, v))) V 

( ( --,(3z)z<y(3w)w<y(Fml(w) 1\ y = 23 * 213 * 2v * 25 * w * z)) 1\ 

(3a)rx<x(3fi)f:l<x(3z)z</1 < Z 1\y = 2(Y)o * z 1\x =a* fi 1\ 

Subst(a, 2(y)o, u, v) 1\ Subst(fi, z, u, v)))] 

Corollary 3.21 is applicable. The reader should verify that this formula 
actually captures the intuitive content of Subst(x, y, u, v). 

(10) Sub(y, u, v): the Godel number of the result of substituting the term 
with Gode] number u for all free occurrences in the expression with 
Godel number y of the variable with Godel number v: 

Sub(y, u, v) = Jl.Xx<(p,<>.!)"J'Subst(u, y, u, v) 

Therefore, Sub is primitive recursive (or recursive) by Proposition 3.18. 
(When the conditions on u, v andy are not met, Sub( y, u, v) is defined, 
but its value is of no interest.) 

(11) Fr(y, v) : y is the Godel number of a wf or term of K that contains free 
occurrences of the variable with Godel number v: 

(Fml(y) V Trm(y)) 1\ EVbl(2v) 1\ --,Subst(y, y, 213+Bv, v) 

(That is, substitution in the wf or term with Go del number y of a certain 
variable different from the variable with Godel number v for all free 
occurrences of the variable with Godel number v yields a different 
expression.) 

(12) Ff(u, v, w): u is the Godel number of a term that is free for the vari-
able with Godel number v in the wf with Godel number w: 

Trm(u) 1\ EVbl(2v) 1\ Fml(w) 1\ [Atfml(w) 

1\ (3y)y<w(w = 23 * 29 * y * 25 1\ Ff(u, v, y)) 

V (3y)y<w(3z)z<w(w = 23 * y * 211 * z * 25 

1\ Ff(u, v, y) 1\ Ff(u, v, z)) V 

(3y)y<w(3z)z<w(w = 23 * 23 * 213 * 2z * 25 * y * 25 

1\ EVbl(Y) 1\ (z =/= v ==> Ff(u, v, y) 

1\ (Fr(u, z) ==> --,Fr(y, v))))] 

Use Corollary 3.21 again. 
(13) (a) Ax1 (x): x is the Godel number of an instance of axiom schema 

(A1): 

(3u)u<x(3v)v0 (Fml(u) 1\ Fml(v) 

1\ X= 2
3 * U * 211 * 23 * V * 211 * U * 25 * 25

) 



196 I IL _______________ F_O_R_M __ A_L_N_U __ M_B_E_R __ T_H __ EO_R_Y ____________ __ 

(b) Ax2 (x) : x is the Godel number of an instance of axiom schema 
(A2): 

(3u)u<x(3v)v<.J3w)w<x(Fm1(u) 1\ Fml(v) 1\ Fml(w) 

/\X= 2
3 * 23 * U * 211 * 23 * V * 2ll * W* 2

5 * 25 * 2ll * 23 * 23 * U 

* 211 * v * 25 * 211 * 23 * ll * 211 * w * 25 * 25 * 25) 

(c) Ax3 (x): xis the Godel number of an instance of axiom schema 
(A3): 

(3ut<_.(3v)va(Fml(u) 1\ Fml(v) 

1\x = 2
3 * 23 * 23 * 29 * v * 25 * 211 * 23 * 29 * u * 25 * 25 * 211 

* 23 * 23 * 23 * 29 * v * 25 * 211 * u * 25 * 211 * v * 25 * 25) 

(d) AX4(x): xis the Godel number of an instance of axiom schema 
(A4): 

(3u),1<x(3v)v<x(3y)ya(Fml(y) 1\ Tnn(u) 1\ EVbl(2v) 1\ Ff(u, v, y) 

1\x = 23 * 23 * 23 * 213 *2v * 25 *Y* 211 * Sub(y, u, v) * 25) 

(e) Ax5 (x): xis the Godel number of an instance of axiom schema 
(A5): 

(3u)u<x(3v)v<-'"(3w)w<x(Fml(u) 1\ Fml(w) 1\ EVbl(2v) 1\ -.Fr(u, v) 

1\ X = 23 * 23 * 23 * 213 * 2v * 25 * 23 * U * 211 * W * 25 * 25 

* 211 * 23 * U * 21t * 23 * 23 * 213 * 2v * 25 * w * 25 * 25 * 25
) 

(f) LAX(y): y is the Godel number of a logical axiom of K 

Axt (y) V Ax2(y) V Ax3(y) V AX4(y) V Ax5(y) 

(14) The following negation function is primitive recursive. Neg(x): the 
Godel number of ( -.§.1) if x is the Godel number of ~: 

Neg(x) = 23 * 29 * x * 25 

(15) The following conditional function is primitive recursive. Cond(x, y): 
the Godel number of ( ~ ::::} ~) if x is the Godel number of !!8 and y is 
the Godel number of ~: 

Cond(x, y) = 23 *X* 2ll *Y * 25 

( 16) Clos( u): the Go del number of the closure of gg if u is the Go del number 
of a wf gg_ First, let V(u) = f£Vv~u(EVbl(2v) 1\ Fr(u, v)). Vis primitive 
recursive (or recursive). V(u) is the least Godel number of a free vari­
able of u (if there are any). Let Sent(u) be Fml(u) 1\ -.(3v)v~uFr(u, v). 
Sent is primitive recursive (or recursive). Sent(u) holds when and only 
when u is the Godel number of a sentence (i.e., a closed wf). Now let 

if Fml(u) 1\ -.Sent(u) 
otherwise 
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G is primitive recursive (or recursive). If u is the Go del number of a wf ~ 
that is not a closed wf, then G(u) is the Godel number of (\fx)~, where x 
is the free variable of PJJ that has the least Godel number. Otherwise, 
G(u) = u. Now, let 

H(u, 0) = G(u) 

H(u, y + 1) = G(H(u, y)) 

H is primitive recursive (or recursive). Finally, 

Clos(u) = H(u, JiYy.:;; 11(H(u, y) = H(u, y + L))) 

Thus, Clos is primitive recursive (or recursive). 

~J?ROPOSITION 3.27 

.Let K be a theory having a primitive recursive (or recursive) vocabulary and 
-whose language contains the individual constant 0 and the function letter fl 
nf !I? A- (Thus, all the numerals are terms of K. In particular, K can be S 
itself.) Then the following functions and relation are primitive recursive (or 
recursive). 

(17) Num(y): the Godel number of the expression y 

Num(O) = 215 

Num(y+ 1) = 249 * 23 * Num(y) * 25 

Num is primitive recursive by virtue of the recursion rule (V). 
(18) Nu(x): xis the Godel number of a numeral 

(3y)y<x(x = Num(y)) 

Nu is primitive recursive by Proposition 3.18. 
(19) D(u): the Godel number of ~(u), if u is the Godel number of a wf 

~(x1): 

D(u) = Sub(u, Num(u), 21) 

Thus, D is primitive recursive (or recursive). D is called the diagonal 
function. 

DEFINITION 

A theory K will be said to have a primitive recursive (or recursive) axiom set 
if the following property PrAxis primitive recursive (or recursive): 

PrAx(y): y is the Godel number of a proper axiom of K 

Notice that S has a primitive recursive axiom set. Let a1, a2, ... , ag be the 
Gode1 numbers of axioms (Sl)- (S8). It is easy to see that a number y is the 
Godel number of an instance of axiom schema (A9) if and only if 
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(3v)v<y(3w)lt'<y(EVbl(2v) 1\ Fml(w) 

1\y = 23 * Sub(w, 215, v) * 211 * 23 * 23 * 23 * 213 * 2v * 25 

* 23 * w * 211 * Sub( W, 2
49 * 23 * 2v * 25, v) * 25 * 25 * 211 

* 23 * 23 * 213 * 2v * 25 * W * 25 * 25) 

Denote the displayed formula by A9(y). Then y is the Godel number of a 
proper axiom of S if and only if 

y = a1 Vy = a2 V ... Vy =as V A9(y) 

Thus, PrAx(y) is primitive recursive for S. 

PROPOSITION 3.28 

Let K be a theory having a primitive recursive (or recursive) vocabulary and 
a primitive recursive (or recursive) axiom set. Then the following three re­
lations are primitive recursive (or recursive). 

(20) Ax(y): y is the Godel number of an axiom of K: 

LAX(y) VPrAx(y) 

(21) Prf(y): y is the Godel number of a proof inK: 

(3u)11<y(3v)v<y(3z)z<y(3w)w<y([y = 2~~' 1\ Ax(w)] V 

[Prf(u) 1\ Fml((u)w) 1\y = u * 2v 1\ Gen((u)w, v)] V 

[Prf(u) 1\ Fml((u)z) A Fml((u)w) 1\y = ll * 2v 1\ MP((u)z, (u)w, v)] 

V [Prf(u) 1\y = u * 2v 1\ Ax(v)] 

Apply Corollary 3.21. 
(22) Pf(y,x): y is the Godel number of a proof inK of the wf with Godel 

number x 

Prf(y) 1\ X= (y)fli(y) -'-1 

The relations and functions of Propositions 3.26-3.28 should have the 
subscript 'K' attached to the corresponding signs to indicate the dependence 
on K. If we considered a different theory, then we would obtain different 
relations and functions. 

Exercise 

3.35 
(a) [f K is a theory for which the property Fml (y) is primitive recursive (or 

recursive), prove that K has a primitive recursive (or recursive) voca~ 
bulary. 
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f,,(b) Let K be a theory for which the property Ax(y) is primitive recursive (or 
recursive). 
(i) Show that K has a primitive recursive (or recursive) vocabulary. 

(ii) Assuming also that no proper axiom of K is a logical axiom, prove 
that K has a primitive recursive (or recursive) axiom set. 

PROPOSITION 3.29 

Let K be a theory with equality whose language contains the individual 
constant 0 and the function letter fl and such that K has a primitive re­
cursive (or recursive) vocabulary and axiom set. Also assume: 

( *) For any natural numbers r and s, if 1-K r = s, then r = s. 

Then any function f(xt, ... ,x11 ) that is representable inK is recursive. 

Proof 

Let 36'(xt, ... ,x,nXn+l) be a wf of K that represents f . Let 
P?J(Ut, ... , U11 , u,+1,y) mean thaty is the Godel number of a proof inK of the 
wf 36'(ii1, ... , u,, iin+d· Note that, if J>.qa(Ut, ... , U11 , u,,+l ,y), then f(ul, ... , 
u11 ) = Un+l· (In fact, let f(ut, ... , u11 ) = r. - Since 36' represents f in 
K, 1-K 36'(iit, ... 'Un, r) and 1-K (3ty)36'(iit, ... , Un,y). By hypothesis, P~(u1' 
... ,u,l)un+l,y). Hence, I-K36'(iit, ... ,ii11 ,u,+I). Since K is a theory with 
equality, it follows that 1-K r = iin+l· By (*), r = Un+l-) Now let m be the 
Godel number of 86'(x1, ... ,x11 ,x,+t)· Then P~(u1, ... , Un, Un+t,Y) is equiva­
lent to: 

Pf(y, Sub( ... Sub(Sub(m, Num(ui), 21), Num(u2), 29) ... Num(un+t), 21 + Sn)) 

So. by Propositions 3.26-3.28, P~(u1, ... , U11 , Un+bY) is primitive recursive 
(or recursive). Now consider any natural numbers kt, . .. ,kn. Let 
f(kt, ... , k,) = r. Then 1-K 86'(k1, ... , k11 , r). Let j be the Godel number of a 
proof in K of 36'(kt, ... , k,, r). Then P~(k1 , ..• , k11 , r,j). Thus, for any 
x1, ... ,x11 , there is some y such that P~(x., ... ,x,, (y)0, (y) 1). Then, by Ex­
ercise 3.16(c), J1y(PM(xt, ... ,x11 , (y)0, (y)1)) is recursive. But, f(xt, ... ,x,) 
= (Jly(PM(xt, ... ,x,, (y)0, (y)1)))0 and, therefore, f is recursive. 

Exercise 

3.36 Let K be a theory whose language contains the predicate letter =,the 
individual constant 0, and the function letter fl. 
(a)If K satisfies hypothesis ( *) of Proposition 3.29, prove that K must be 

consistent. 
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(b)If K is inconsistent, prove that every nrunber-theoretic function is re;,, 

presentable inK. 
(c) If K is consistent and the identity relation x = y is expressible inK, show·' 

that K satisfies hypothesis ( *) of Proposition 3.29. 

COROLLARY 3.30 

Assume S consistent. Then the class of recursive functions is identical with 
the class of functions representable in S. 

Proof 

We have observed that S has a primitive recursive vocabulary and axiom set. 
By Exercise 3.36(c) and the already noted fact that the identity relation is 
expressible in S, we see that Proposition 3.29 entails that every function 
representable inS is recursive. On the other hand, Proposition 3.24 tells us 
that every recursive function is representable in S. 

ln Chapter 5, it will be made plausible that the notion of recursive 
function is a precise mathematical equivalent of the intuitive idea of effec­
tively computable function. 

COROLLARY 3.31 

A number-theoretic relation R(x1, ... ,x11 ) is recursive if and only if it is 
expressible in S. 

Proof 

By definition, R is recursive if and only if CR is recursive. By Corollary 3.30, 
CR is recursive if and only if CR is representable in S. But, by Proposition 
3.13, CR is representable in S if and only if R is expressible in S. 

It will be helpful Jater to find weaker theories than S for which the 
representable functions are identical with the recursive functions. Analysis 
of the proof of Proposition 3.24 leads us to the following theory. 

Robinson's System 

Consider the theory in the language !fA with the following finite list of 
proper ax10ms. 

(l)xt = x1 
(2)Xt = X2 ==? X2 = Xt 
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(3)XI =X2 :::::}- (x2 =X3 ::::}-XI =X3) 

(4)xt =x2 * x'1 = 4 
(5)xt = x2 * (x1 +x3 = x2 +x3 1\ X3 +x1 = X3 +x2) 

(6) Xl = X2 :::::}- (XI · X3 = X2 · X3 1\ X3 ·X! = X3 · X2) 

(7)x'1 =X~:::::}- XI = X2 

(8) 0 #- x'1 

(9)xt #- 0 =* (Jx2)(x1 = x'2 ) 

(10) Xt +0 =Xt 

(11) Xl +X~ = (XI + X2)
1 

(12) Xl · 0 = 0 
(13) XI· 4 = (xt · x2) +x1 
(14) (x2 =X!· X3 +x41\X4 <XI I\X2 = Xt ·Xs + X61\X6 < Xt) ==>-

x4 = x 6 (uniqueness of remainder) 

We shall call this theory RR. Clearly, RR is a subtheory of S, since all the 
axioms of RR are theorems of S. In addition, it follows from Proposition 
2.25 and axioms (l)-(6) that RR is a theory with equality. (The system Q of 
axioms (l}--(13) is due to R.M. Robinson (1950). Axiom (14) has been added 
to make one of the proofs below easier.) Notice that RR has only a finite 
number of proper axioms. 

LEMMA 3.32 

[n RR, the following are theorems. 

(a) n + ii1 = n + m for any natural numbers n and m 
(b) n · ii1 = n · rn for any natural numbers n and m 
(c) fl #- ii1 for any natural numbers such that n #- m 
(d) n < iiz for any natural numbers n and m such that n < m 

(e) xI 0 
(f) x ~ n * x = 0 V x = I V ... V x = n for any natural number n 

(g) x ~ n V n ~x for any natural number n 

Proof 

Parts (a)-( c) are proved the same way as Proposition 3.6(a). Parts (d)-(g) are 
left as exercises. 

PROPOSITION 3.33 

All recursive functions are representable in RR. 

L 201 
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Proof 

The initial functions Z, N, and ur are representable in RR by the same wfs 
as in Examples 1- 3, pagel72. That the substitution rule does not lead out of~ 
the class of functions representable in RR is proved in the same way as in 
Example 4 on page 172. For the recursion rule, first notice that the proof of 
Lemma 3.22 is a demonstration that Godel's beta function fJ(x1,x2 ,x3 ) is 
strongly representable in RR. (Axiom (14) is used for the uniqueness part.) 
Now, a careful examination of the treatment of the recursion rule in the 
proof of Proposition 3.24 reveals that all the required theorems are the­
orems of RR. The argument given for the restricted .u-operator rule 
also remains valid for RR. 

By Proposition 3.33, all recursive functions are representable in any ex­
tension of RR. Hence, by Proposition 3.29 and Exercise 3.36( c), in any 
consistent extension of RR in the language !l'A that has a recursive axiom 
set, the class of representable functions is the same as the class of recursive 
functions. Moreover, by Proposition 3.13, the relations expressible in such a 
theory are the recursive relations. 

Exercises 

3.37° Show that RR is a proper subtheory ofS. [Hint: Find a model for RR 
that is not a model for S.] (Remark: Not only is S different from RR, but it is 
not finitely axiomatizable at all, that is, there is no theory K having only a 
finite number of proper axioms, whose theorems are the same as those of S. 
This was proved by Ryll-Nardzewski (1953).) 

3.38 Show that axiom (14) of RR is not provable fron:i axioms (I }--(13) 
and, therefore, that Q is a proper subtheory of RR. [Hint: Find a model of 
(1)-(13) for which (14) is not true.] 
3.39 Let K be a theory in the language !l' A with just one proper axiom: 
('fxt)(\/x2)Xt ==x2 . 

(a) Show that K is a consistent theory with equality. 
(b) Prove that all number-theoretic functions are representable in K. 
(c) Which number-theoretic relations are expressible in K? [Hint: Use 

elimination of quantifiers.] 
(d) Show that the hypothesis ~K 0 =/:1 cannot be eliminated from Propo­

sition 3.13. 
(e) Show that, in Proposition 3.29, the hypothesis ( *) cannot be replaced by 

the assumption that K is consistent. 
3.40 Let R be the theory in the language !l' A having as proper axioms the 
equality axioms (1}--(6) of RR as well as the following five axiom schemas, in 
which nand mare arbitrary natural numbers: 
(Rl) n + i"i1 = n + m 
(R2) n . iii = n · m 
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;JR3) n-=/= fil if n f= m 
i(R4) x~n::::} x = 0 v ... v x = n 

s:(R5) x~nvn~x 

Prove the following . 

. (a) R is not finitely axiomatizable. [Hint: Show that every finite subset of 
the axioms of R has a model that is not a model of R.] 

(b) R is a proper subtheory of Q. 
(c)D Every recursive function is representable in R. (See Monk, 1976, p. 248.) 
(d) The functions representable in R are the recursive functions. 
(e) The relations expressible in Rare the recursive relations. 

3.5 THE FIXED-POINT THEOREM. GODEL'S INCOMPLETENESS 
THEOREM 

IfK is a theory in the language .PA, recall that the diagonal function D has 
the property that, if u is the Godel number of a wf PJ(xt), then D(u) is the 
Godel number of the wf :?ZJ(u). 

NOTATION 

When lfl is an expression of a theory and the Godel number of lfl is q, then 
we shall denote the numeral q by 1 lf/1

. We can think of 1 lf/1 as being a 
'name' for lfl within the language .P A. 

PROPOSITION 3.34 (DIAGONALIZATION LEMMA) 

Assume that the diagonal function D is representable in a theory with 
equality K in the language !EA. Then, for any wf 8'(x1) in which x1 is the 
only free variable, there exists a closed wf lfl such that 

1--K rt1 ~ £&"( rt1') 

Proof 

Let f0(x1,x2) be a wf representing DinK. Construct the wf 

(\7) (Vx2)(!0(xt,x2) => &'(x2)) 

Let m be the Godel number of (\7). Now substitute fi1 for x1 in (\7): 

(rt1) (Vx2)(!0(i11,x2) => &'(x2)) 
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Let q be the Godel number of this wfrtf. So, q is r ~~. Clearly, D(m) = q. (In 
fact, m is the Godel number of a wf ,q6'(xt), namely, (\7), and q is the Godef 
number of ,q6' (ffz).) Since !» represents Din K, 

(B) 1-K £?(nz, q) 

(a) Let us show 1-K ~ => C(q). 

1.~ 

2. ('v'x2)(!»(m,x2) * C(x2)) 
3. !»(m, q) =:::} c(q)) 
4. !»( m, q) 
5. C(q) 
6. rtf 1-K C(q) 
7. 1-K ~ ::::}- C(q) 

(b) Let us prove 1-K C(q) * rtf. 

l. C(q) 
2. !»(in,x2) 
3. (3tx2)!»(i1t,x2) 
4. !»(-m, q) 
5. X2 = q 
6. C(x2 ) 

7. C(q), !»(m, x2) 1-K C(x2) 
8. C(q) 1-K !»(ii1, x2) ::::}- C(x2) 
9. C(q) ~K ('v'x2)(!»(n1,x2) ::::}- C(x2)) 
10. ~K C(q) ::::} ('v'x2)(!»(m,x2) :::::?- tff(x2)) 
11. ~K C(q) ::::}- rtf 

Hyp 
Same as 1 
2, rule A4 
(8) 
3, 4, MP 
1- 5 
l-6, Corollary 2. 6 

Hyp 
Hyp 
!» represents D 
(8) 
2-4, properties of = 

1, 5, substitutivity of = 
1-6 
1- 7, Corollary 2.6 
8, Gen 
1- 9, Corollary 2.6 
Same as 10 

From parts (a) and (b), by biconditional intr~duction, ~K ({j' {::} C(q). 

PROPOSITION 3.35 (FIXED-POINT THEOREM)t 

Assume that all recursive functions are representable in a theory with 
equality K in the language .P A· Then, for any wf C(xt) in which x1 is the 
only free variable, there is a closed wf rtf such that 

1-K ~ {::} 8(1 ~~) 

tThe terms 'fixed-point theorem' and 'diagonalization lemma' are often used 
interchangeably, but I have adopted the present terminology for convenience of 
reference. The central idea seems to have first received explicit mention by Catnap 
(1934), who pointed out that the result was implicit in the work of Godel (1931). The 
use of indirect self-reference was the key idea in the explosion of progress in math­
ematical logic that began in the 1930s 
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Proof 

By Proposition 3.27, D is recursive.t Hence, D is representable in K and 
Proposition 3.34 is applicable. 

By Proposition 3.33, the fixed-point theorem holds when K is RR or any 
extension of RR. In particular, it holds for S. 

DEFINITIONS 

Let K be any theory whose language contains the individual constant 0 and 
the function letter fl. Then K is said to be ill-consistent if, for every wf g.6l(x) 
of K containing x as its only free variable, if 1--K -.g.6'(n) for every natural 
number n, then it is not the case that 1--K (3x)g.6l(x) . 

Let K be any theory in the language .P A. K is said to be a true theory if all 
proper axioms of K are true in the standard model. (Since all logical axioms 
are true in all models and MP and Gen lead from wfs true in a model to wfs 
true in that model, all theorems of a true theory will be true in the standard 
model.) 

Any true theory K must be ill-consistent. (In fact, if 1--K -.g.6'(n) for alJ 
natural numbers n, then g.3'(x) is false for every natural number and, 
therefore, (3x)g.6l(x) cannot be true for the standard model. Hence, 
(3x),q.6'(x) cannot be a theorem of K.) In particular, RR and S are ill­
consistent. 

PROPOSITION 3.36 

If K is ill-consistent, then K is consistent. 

Proof 

Let C(x) be any wf containing x as its only free variable. Let ,q.6'(x) be 
6"(x) 1\ -.t&"(x). Then -.g.6'(n) is an instance of a tautology. Hence, 1--K -,g.6l(n) 
for every natural number n. By ill-consistency, not-1-K (3x)86'(x). Therefore, 
K is consistent. (Remember that every wf is provable in an inconsistent 

trn fact, Dis primitive recursive, since K, being a theory in !PA, has a primitive 
recursive vocabulary. 
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theory, by virtue of the tautology -.A ==>- (A ==>- B). Hence, if at least one wf is 
not provable, the theory must be consistent.) 

It wil1 turn out later that the converse of Proposition 3.36 does not hold. 

DEFINITION 

An undecidable sentence of a theory K is a closed wf !?lJ ofK such that neither 
!?lJ nor -.PJJ is a theorem of K, that is, such that not-~K fJ?J and not-~K •f!JJ. 

Godel's incompleteness theorem 

Let K be a theory with equality in the language .9! A satisfying the following 
three conditions: 

1. K has a recursive axiom set (that is, PrAx(y) is recursive). 
2. ~K 0 f=l. 
3. Every recursive function is representable inK. 

By assumption 1, Proposi~ions 3.26-3.28 are applicable. By assumptions 2 
and 3 and Proposition 3.13, every recursive relation is expressible in K . By 
assumption 3, the fixed-point theorem is applicable. Note that K can be 
taken to be RR, S, or, more generally, any extension of RR having are­
cursive axiom set. Recall that Pf(y,x) means that y is the Gode1 number of a 
proof in K of a wf with Godel number x. By Proposition 3.28, Pf is re­
cursive. Hence, Pf is expressible in K by a wf f!J/(x2 , XI). Let t&'(x1) be the wf 
(\fx2 )•f!J/(x2 ,xt). By the fixed-point theorem, there must be a closed wf I§ 

such that 

($) 1-K C§ {::} (\fx2)-..9/(x2,rC§1 ) 

Observe that, in terms of the standard interpretation, (\fx2)-.f!J/(x2,1~1 ) 
says that there is no natural nmnber that is the Godel number of a proof in 
K of the wf I§, which is equivalent to asserting that there is no proof in K of 
1§. Hence, I§ is equivalent inK to an assertion that I§ is unprovable inK. In 
other words, I§ says 'I am not provable inK'. This is an analogue of the liar 
paradox: 'I am lying' (that is, 'I am not true'). However, although the liar 
paradox leads to a contradiction, Godel (1931) showed that I§ is an un­
decidable sentence of K. We shall refer to I§ as a Godel sentence forK. 

PROPOSITION 3.37 (GODEL'S INCOMPLETENESS THEOREM) 

Let K satisfy conditions 1-3. Then: 
(a) If K is consistent, not-~x 1§. 
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(b) If K is m-consistent, not -I-K -,C§. 

Bence, if K is w-consistent, C§ is an undecidable sentence of K. 

Proof 

Let q be the Go del number of C§. 

(a) Assume 1--K C§. Let r be the Godel number of a proof in K of C§. 

Then Pf(r, q). Hence, 1-K r!Jf(r, q), that is 1--K r!Jf(r, 1C§ 1 
). But, from ($) 

above by biconditional elimination, 1--K (Vx2)-.f!J/(x2, 1 C§1 ). By rule A4, 
1--K -.r!Jf (r, 1 C§1 

). Therefore, K is inconsistent. 
(b) Assume K is w-consistent and 1--K -.C§. From ($) by biconditional 

elimination, 1--K -.(\fx2 )-.r!Jf(x2 , 1 C§ 1 ), which abbreviates to 

(*) 1-K (3x2)P/(x2,1~1 ) 

On the other hand, since K is w-consistent, Proposition 3.36 implies that K 
js consistent. But, 1--K -.C§. Hence, not-1--K C§, that is, there is no proof inK of 
rtf. So, Pf(n, q) is false for every natural number n and, therefore, 
1--K -.r!Jf(n,l C§

1
) for every natural number n. (Remember that 1 C§ 1 is q.) 

By w-consistency, not-1-K (3x2)f!l/(x2,1 C§ 1
), contradicting(*). 

REMARKS 

Godel's incompleteness theorem has been established for any theory with 
equality K in the language ff A that satisfies conditions 1-3 above. Assume 
that K also satisfies the following condition: 

( +) K is a true theory. 

(In particular, K can be S or any subtheory of S.) Proposition 3.37(a) shows 
that, if K is consistent, C§ is not provable in K. But, under the standard 
interpretation, C§ asserts its own unprovability inK. Therefore, C§ is true for 
the standard interpretation. 

Moreover, when K is a true theory, the following simple intuitive argu­
ment can be given for the undecidability of C§ in K. 

(i) Assume 1--K C§. Since 1-K C§ {::} (Vx2)-.f!l/(x2,r ~1 ), it follows that 
1--K ('v'x2)-.f!J/(x2, 1 C§ 1 

). Since K is a true theory, (Vx2)-.f!J/(x2, 1 C§1 ) is true 
for the standard interpretation. But this wf says that C§ is not provable inK, 
contradicting our original assumption. Hence, not-1-K C§. 

(ii) Assume 1--K -.C§. Since 1--K C§ {::} (Vx2)-.f!J/(x2, 1 C§ 1
), 

1-K -.(Vx2) -.r!Jf(x2,1 C§1 ). So, 1--K (3x2)r!Jf(x2,1 ~1 ). Since K is a true 
theory, this wf is true for the standard interpretation, that is, C§ is provable 
inK. This contradicts the result of (i). Hence, not-1-K -.C§. 
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Exercises 

3.41 Let q; be a Godel sentence for S. Let Sg be the extension of S obtained 
by adding -,q; as a new axiom. Prove that, if S is consistent, then Sg is 
consistent, but not ru-consistent. 
3.42 A theory K whose language has the individual constant 0 and func~ 
tion letter Jl is said to be w-incomplete if there is a wf C(x) with one free 
variable x such that 1-K C(n) for every natural number n, but it is not the 
case that 1-K (Vx)C(x). If K is a consistent theory with equality in the lan­
guage 2? A and satisfies conditions 1-3 on page 206, show that K is co­
incomplete. (In particular, RR and S are ru-incomplete.) 
3.43 Let K be a theory whose language contains the individual constant 0 
and function letter fl. Show that, if K is a consistent and ru-inconsistent, 
then K is ru-incomplete. 
3.44 Prove that S, as well as any consistent extension of S having a re­
cursive axiom set, is not a scapegoat theory. (See page 87.) 
3.45 Show that there is an w-consistent extension K of S such that K is not 
a true theory. [Hint: Use the fixed point theorem.] 

The Godel-Rosser incompleteness theorem 

The proof of undecidability of a Godel sentence f/J required the assumption 
of ru-consistency. We will now prove a result of Rosser (1936) showing that, 
at the cost of a slight increase in the complexity of the undecidable sentence, 
the assumption of ru-consistency can be replaced by consistency. 

As before, let K be a theory with equality in the language 2? A satisfying 
conditions 1-3 on page 206. In addition, assume: 

4. 1-K x~n =} x = 0 V x =Tv ... V x = n for every natural number n. 
5. 1-K x~n V n ~x for every natural number n. 

Thus, K can be any extension of RR with a recursive axiom set. In parti­
cular, K can be RR or S. 

Recall that, by Proposition 3.26 (14), Neg is a primitive recursive func­
tion such that, if xis the G6de1 number of a wf f!J, then Neg(x) is the Godel 
number of ( -.~). Since all recursive functions are representable in K, let 
uY.e?(Xt,X2) be a wf that represents Neg inK. Now construct the following 
wf C(xt): 

(V'x2)(&f-l/(X2,XI) => (V'x3)(A-e?(XI,X3) => (3x4)(x4 ::::;;x21\ &f-l/(X4,X3)})) 

By the fixed-point theorem, there is a closed wf r!ll such that 

( *) 1-K P4! {::} c&'(' ~~) 

f!li is called a Rosser sentence forK. Notice what the intuitive meaning of P/1 
is under the standard interpretation. r!ll asserts that, if r!ll has a proof in K, 
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say with Gcdel number x2 , then -.f!lt has a proof in K with Godel number 
smaller than x2 . This is a roundabout way for f!lt to claim its own un­
provability under the assumption of the consistency of K. 

pROPOSITION 3.38 (GODEL-ROSSER THEOREM) 

Let K satisfy conditions 1- 5. If K is consistent, then f!lt is an undecidable 
sentence of K. 

Proof 

Let p be the Go del number of f!Jt. Thus, 1 f!lt 1 is p. Let j be the Go del number 
of -,f!Jt. 

(a) Assume 1-K f!lt. Since 1-K f!lt {::} 8'(1 a?1 ), biconditional elimination 
yields 1-K 8'(1 f!lt 1 ), that is: 

1-K (Vx2)(9f(x2,P) =* ('v'x3)(.A1e?(p,x3) => (::lx4)(x4~X2 1\ 9f(x4.x3)))) 

Let k be the Godel number of a proof in K of f!lt. Then Pf(k,p) and, 
therefore, 1--K r!Jf(k,p). Applying rule A4 to 8'(1 f!/t1 

), we obtain 

1-K 9f(k, P)::::} (V'x3)(.A1e?(p, X3) => (3x4)(x4 ~k 1\ 9f(x4. X3))) 

So, by MP, 

(%) 1-K ('v'x3)(A'e?(p, x3)::::} (Jx4)(x4 ~k 1\ 9f(x4, x3))) 

Since j is the Godel number of -.f!/t, we have Neg(p, j), and, therefore, 
1-K Ate{/(p, ]). Applying rule A4 to (o/o), we obtain 1-K ~.Y .efl(p, ]) ::::} (3x4) 
(x4~k 1\ r!Jf(x4, ])).Hence, by MP, 1-K (:::Jx4)(x4 ~k 1\ r!Jf(x4, ])),which is an 
abbreviation for 

(#) 1-K ....,('v'x4)-,(x4~k/\9f(x4,])) 

Since 1-K f!lt, the consistency ofK implies not-1-K -.f!lt. Hence, Pf(n, j) is false 
for all natural numbers n. Therefore, 1-K -.r!Jf(n, ]) for all natural numbers 
n. Since K is a theory with equality, 1-K x4 = n ::::} -.r!Jf(x4, ]) for all natural 
numbers n. By condition 4, 

But 

(f f) 
So, by a suitable tautology, (§) and (§ §) yield 1-K X4 ~k::::} -.f37Jf(x4, ]) 
and then, by another tautology, 1-K -.(x4 ~k 1\ r!Jf(x4, ])). By Gen, 

'----20~ 
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rK (\fx4)~(x4:::;;k 1\ Pl'f(x4, ])). This, together with (#), contradicts the -· 
consistency of K. 

(b) Assume rK ~f!A. Let m be the Godel number of a proof of ~f!A inK. 
So, Pf(m, j) is true and, therefore, rK Pl'/(in, ]). Hence, by an application of 
rule E4 and the deduction theorem, rK m:::;;x2 ~ (::lx4)(x4 :::;;x2 l\r'Pf(x4, ])). 
By consistency of K, not-f-K f!A and, therefore, Pf(n, p) is false for all 
natural numbers n. Hence, rK ~Pl'/(n, p) for all natural numbers 
n. By condition 4, 1-K x2 :::;;ifl ~ x2 = 0 V X2 =IV ... v x2 = m. Hence .. 
1--K x2 ~in~ --.PI'/ (x2, p) . Consider the following derivation. ' 

1. Pl'f(x2, p) Hyp 
2. v-Vep(p, X3) Hyp 
3. X2:::;; m v m ~X2 Condition 5 
4. m ~X2 ~ (3x4)(x4 :::;;x21\ Pl'f(x4, ])) Proved above 
5. x2 ~m ~ ----.PJ'f(x2, p) Proved above 
6. -.PJ'f(x2, p) V (::tx4)(x4 ~x2 1\ Pl'f(x4, ])) 3-5, tautology 
7. (::lx4)(x4 ~x21\ Pl'f(x4, ])) 1, 6, disjunction rule 
8. A1~g{v, ]) Proved in part (a) 
9. (31x3 )A1 .ep(p, x3) Alep represents Neg 

10. x3 =] 2, 8, 9, properties of = 

11. (::lx4)(x4 ~x21\ Pl'f(x4, x3)) 7, 10, substitutivity of = 

12. PJ'f(X2, p), JVeyr,(p, X3) 1-K (3x4) 1-11 
(x4 ~x2 1\ Pl'/(x4, x3)) 

13. PJ'!(x2, p) 1-K JVeyr,(p, x3) 1-12, Corollary 2.6 
~ (::lx4)(x4 ~x2 1\ Pl'f(x4, x3)) 

14. Pl'f(x2, p) rK (\fx3)(A'£p(p, X3) 13, Gen 
=} (::tx4)(x4 ~x2 1\ Pl'f(x4, x3))) 

15. rK Pl'f(x2, p) ~ (\fx3)(Jf~p(p, x3) 1-14, Corollary 2.6 
~ (::tx4)(x4 ~x2 1\ Pl'f(x4, x3))) 

16. rK (\fx2)(PJ'!(x2, p) ~(\fx3) 15, Gen 
( .. kep(p, x3) ~ (3x4)(x4 ~x2/\ 
Pl'f(x4, x3)))) 

17. rK f!A (*1, biconditional elimination) 

Thus, rK f!A and rK --.[fA, contradicting the consistency of K. 

The Godel and Rosser sentences for the theory S are undecidable sen­
tences of S. They have a certain intuitive metamathematical meaning; for 
example, a Gode1 sentence 'If asserts that '§ is unprovable in S. Until re­
cently, no undecidable sentences of S were known that had intrinsic math­
ematical interest. However, in 1977, a mathematically significant sentence of 
combinatorics, related to the so-called finite Ramsey theorem, was shown to 
be undecidable inS (see Kirby and Paris, 1977; Paris and Harrington, 1977; 
and Paris, 1978). 
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DEFINITION 

A theory K is said to be recursively axiomatizable if there is a theory K * 
having the same theorems as K such that K * has a recursive axiom set. 

COROLLARY 3.39 

Let K be a theory in the language !I! A. If K is a consistent, recursively 
axiomatizable extension of RR, then K has an undecidable sentence. 

Proof 

Let K* be a theory having the same theorems asK and such that K* has a 
recursive axiom set. Conditions 1-5 of Proposition 3.38 hold forK*. Hence, 
a Rosser sentence for K* is undecidable in K* and, therefore, also un­
decidable in K. 

An effectively decidable set of objects is a set for which there is a me­
chanical procedure that determines, for any given object, whether or not 
that object belongs to the set. By a mechanical procedure we mean a pro­
cedure that is carried out automatically without any need for originality or 
ingenuity in its application. On the other hand, a set A of natural numbers is 
said to be recursive if the property x E A is recursive. t The reader should be 
convinced after Chapter 5 that the precise notion of recursive set corresponds 
to the intuitive idea of an effectively decidable set of nawral numbers. This 
hypothesis is known as Church's thesis. 

Remember that a theory is said to be axiomatic if the set of its axioms is 
effectively decidable. Clearly, the set of axioms is effectively decidable if and 
only if the set of Godel numbers of axioms is effectively decidable (since we 
can pass effectively from a wfto its Godel number and, conversely, from the 
GOdel number to the wf). Hence, if we accept Church's thesis, to say that K 
has a recursive axiom set is equivalent to saying that K is an axiomatic 
theory, and, therefore, Corollary 3.39 shows RR is essentially incomplete, 
that is, that every consistent axiomatic extension of RR has an undecidable 
sentence. This result is very disturbing; it tells us that there is no complete 
axiomatization of arithmetic, that is, there is no way to set up an axiom 
system on the basis of which we can decide all problems of number theory. 

Exercises 

3.46 Church's thesis is usually taken in the form that a number-theoretic 
fimction is effectively computable if and only if it is recursive. Prove that this is 
equivalent to the form of Church's thesis given above. 

tTo say that x E A is recursive means that the characteristic function CA is a 
recursive function, where CA (x) = 0 if x E A and CA (x) = 1 if x fj_ A (see page 180). 
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3.47 Let K be a true theory that satisfies the hypotheses of the Godel"'­
Rosser theorem. Determine whether a Rosser sentence f7l forK is true f~t 
the standard interpretation. ' 
3.48 (Church, 1936b) Let Tr be the set of Godel numbers of all wfs in the 
language !!? A that are true for the standard interpretation. Prove that Tr is 
not recursive. (Hence, under the assumption of Church's thesis, there is no 
effective procedure for determining the truth or falsity of arbitrary sentences 
of arithmetic.) 
3.49 Prove that there is no recursively axiomatizable theory that has Tr as 
the set of Go del numbers of its theorems. 
3.50 Let K be a theory with equality in the language !!? A that satisfies 
conditions 4 and 5 on page 208. If every recursive relation is expressible in 
K, prove that every recursive function is representable in K. 

Godel's Second Theorem 

Let K be an extension of Sin the language !!?A such that K has a recursive 
axiom set. Let ~.onK be the following closed wf of K: 

For the standard interpretation, ~.o7lK asserts that there are no proofs inK 
of a wf and its negation, that is, that K is consistent. 

Consider the following sentence: 

where t§ is a Godel sentence for K. Remember that f§, asserts that f§ is 
unprovable in K. Hence, (G) states that, if K is consistent, then t§ is not 
provable in K. But that is just the first half of Godel's incompleteness 
theorem. The metamathematical reasoning used in the proof of that theo­
rem can be expressed and carried through within K itself, so that one ob­
tains a proof in K of (G) (see Hilbert & Bernays, 1939, pp. 285-328; 
Feferman, 1960). Thus, 1--K ~.onK::::} t'§. But, by Godel's incompleteness 
theorem, if K is consistent, t§ is not provable in K. Hence, ifK is consistent, 
~.onK is not provable inK. 

This is Giidel's second theorem ( 1931 ). One can paraphrase it by stating 
that, if K is consistent, then the consistency of K cannot be proved within K, 
or, equivalently, a consistency proof of K must use ideas and methods that 
go beyond those available inK. Consistency proofs for Shave been given by 
Gentzen (1936; 1938) and Schiitte (1951), and these proofs do, in fact, 
employ notions and methods (for example, a portion of the theory of de­
numerable ordinal numbers) that apparently are not formalizable inS. 

Godel's second theorem is sometimes stated in the form that, if a 'suffi­
ciently strong' theory K is consistent, then the consistency of K cannot be 
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;proved within K. Aside from the vagueness of the 'sufficiently strong' (which 
-ban be made precise without much difficulty), the way in which the con­
sistency ofK is formulated is crucial. Feferman (1960, Cor. 5.10) has shown 
!that there is a way of formalizing the consistency of s- say, c(5 ons- such 
:that 1-s c(5.o::~z~. A precise formulation of Godel second theorem may be found 
an Feferman (1960). (See Jeroslow (1971; 1972; 1973) for further clarification 
'and development.) 

In their proof of Godel's second theorem, Hilbert and Bernays (1939) 
:based their work on three so-called derivability conditions. For the sake of 
:_definiteness, we shall limit ourselves to the theory S, although everything we 
-8ay also holds for recursively axiomatizable extensions of S. To formulate 
the Hilbert-Bernays results, let 99uo(xi) stand for (::!x2)El'/(x2, xi). Thus. 
'~under the standard interpretation, 86'ew(xt) means that there is a proof inS 
of the wf with Godel number XI; that is, the wf with Godel number XI is 
provable in s.t Notice that a Godel sentence t§ for S satisfies the fixed-point 
condition: I-s t§ {::} -,f!J ew( 1 

t§ 1 ). 

THE HILBERT-BERNAYS DERIVABILITY CONDITIONS:j: 

(HB 1) If I-s c(5, then I-s 86' ew( 1 
c(5'1 

) . 

(HB2) I-s 86'ew(1 c(5 ~ .@1 ) =? (86'.ew(1
c(5'1 ) ~ f!J-ew( 1 .@1 )) 

(HB3) I-s f!Jew( 1 c(51
) ~ ~ew(1 f!Juo(rc(51 ) 

1
) 

Here, Vi and.@ are_ arbitrary closed wfs of S. (HBl) is straightforward and 
(HB2) is an easy consequence of properties of El'/. However, (HB3) requires 
a careful and difficult proof. (A clear treatment may also be found in Boolos 
(1993, chap. 2), and in Shoenfield (1967, pp. 211-213).) 

A Godel sentence t§ for S asserts its own unprovability in S: 
l-s t§ {::} -.86'ew(1 

t§ 1 ). We also can apply the fixed-point theorem to obtain 
a sentence Yt such that I-s .Ye {::} 86'ew(1 Yf' ). ff is called a Henkin sentence 
for S. :It asserts its own provability inS. On intuitive grounds, it is not clear 
whether :/f' is true for the standard interpretation, nor is it easy to determine 
whether .Ye is provable, disprovable or undecidable inS. The problem was 
solved by Lob (1955) on the basis of Proposition 3.40 below. First, however, 
let us introduce the following convenient abbreviation. 

+'Bew' consists of the first three letters of the German word beweisbar, which 
means 'provable'. 

+These three conditions are simplifications by Lob (1955) of the original Hil­
bert-Bernays conditions. 
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NOTATION 

Let D~ stand for~ ew(1 ~~),where~ is any wf. Then the Hilbert-Bernays;: 
derivability conditions become: 

(HBl) If I-s~' then I-s 0~. 
(HB2) I-s D(~ => f};) => (D~ => Of};) 
(HB3) I-s D~ => D D~ 

The Godel sentence tfJ and the Henkin sentence ::If satisfy the equivalences 
I-s t§ {::} -.Ot§ and I-s ::If{::} Oc~. 

PROPOSITION 3.40 (LOB'S THEOREM) 

Let C(! be a sentence of S. If I-s D~ => ~, then I-s~-

Proof 

Apply the fixed-point theorem to the wf P4ew(xl) =>~to obtain a sentence 
2 such that I-s 2 {::} (24ew(1 2 1

) =>~).Thus, I-s 2 ~ (02 => C(!). Then 
we have the following derivation of((/. 

1. I-s 2 {::} (02 => ~) 
2. I-s 2 => (02 * ~) 
3. I-s 0(2 => (02 * C(!)) 
4. I-s 02 => 0(02 => ~) 
5. I-s 0(02 => ~) => (D 02 => D~) 
6. I-s 02 => (D 02 => D~) 
7. I-s 02 => D 02 
8. I-s 02 => D~ 
9. f-s D~=> ~ 

10. I-s 02 => ~ 
11. I-s 2 
12. I-s 02 
13. I-s~ 

COROLLARY 3.41 

Obtained above 
1, biconditional elimination 
2, (HBl) 
3, (HB2), MP 
(HB2) 
4, 5 tautology 
(HB3) 
6, 7, tautology 
Hypothesis of the theorem 
8, 9, tautology 
1, 10, biconditional elimination 
11, (HBI) 
10, 12, MP 

Let .Yf be a Henkin sentence for S. Then I-s <~ and <~ is true for the 
standard interpretation. 

Proof 

I-s :Yf {::} O.Yt'. By biconditional elimination, I-s D<~ * c~· So, by Lob's 
theorem, I-s c~. Since ::If asserts that c~ is provable in S, Yf is true 
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:::~-
Lob's theorem also enables us to give a proof of Godel's second theorem 

for S. 

pROPOSITION 3.42 (GODEL'S SECOND THEOREM) 

IfS is consistent, then not-I-s ((i.ons. 

Proof 

Assume S consistent. Since I-s 0 =1- I, the consistency of S implies not­
I-s 0 =I. By Lob's theorem, not-I-s D (0 = T) ::::} 0 = I. Hence, by the 
tautology --.A ::::} (A ::::} B). we have: 

(*) not-1-s•D(O=l) 

But, since I-s 0 =1- I, (HBl) yields t-s 0(0 =1- I). Then it is easy to show that 
~s ((JMzs::::} -.O(O =I). So, by(*), not-I-s ((J.ons. 

Boolos (1993) gives an elegant and extensive study of the fixed-point 
theorem and Lob's theorem in the context of an axiomatic treatment of 
provability predicates. Such an axiomatic approach was first proposed and 
developed by Magari (1975). 

Exercises 

3.51 Prove (HBl) and (HB2). 
:3.52 Give the details of the proof of I-s ((i.o1tS ::::} -,f4 ew(' 0 = 11 ), which 
·was used in the proof of Proposition 3.42. 
3.53 If q; is a ·Godel sentence of S, prove I-s q; {::} -,f4ew(1 0 = I 1 ). 

(Hence, any two Godel sentences for S are provably equivalent. This is an 
'instance of a more general phenomenon of equivalence of fixed-point sen­
tences, first noticed and verified independently by Bernardi (1975; 1976), De 

-Jongh, and Sambin (1976). See Smorynski (1979; 1982).) 
'3.54 In each of the following cases, apply the fixed-point theorem for S to 
obtain a sentence of the indicated kind; determine whether that sentence is 
provable in S, disprovable in S, or undecidable in S; and determine the truth 
or falsity of the sentence for the standard interpretation. 
(a)A sentence ((6 that asserts its own decidability in S (that is, that I-s ((6 or 

I-s -.((6). 

(b)A sentence that asserts its own undecidability in S. 
(c) A sentence Cfi asserting that not-I-s -.Cfi. 
(d)A sentence ((6 asserting that I-s -.((6. 
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3.6 RECURSIVE UNDECIDABILITY. CHURCH'S THEOREM 

If K is a theory, let TK be the set of Godel numbers of theorems of K. 

DEFINITIONS 

K is said to be recursively decidable if TK is a recursive set (that is, the 
property x E TK is recursive). K is said to be recursively undecidable if TK ls 
not recursive. K is said to be essentially recursively undecidable if K and all 
consistent extensions of K are recursively undecidable. 

If we accept Church's thesis, then recursive undecidability is equivalent to 
effective undecidability, that is, non-existence of a mechanical decisio~ 
procedure for theoremhood. The non-existence of such a mechanical pro­
cedure means that ingenuity is required for determining whether arbitrary 
wfs are theorems. · 

Exercise 

3.55 Prove that an inconsistent theory having a recursive vocabulary is 
recursively decidable. 

PROPOSITION 3.43 

>~ 

Let K be a consistent theory with equality in the language 2 A in which the 
diagonal function D is representable. Then the property x E TK is not ex­
pressible in K. 

Proof 

Assume x E TK is expressible inK by a wf ff'(x1). Thus: 

(a)If n E TK, f-K Y(n). 
(b)If n ¢:. TK, f-K ---,§"(ri). 

By the diagonalization lemma applied to ---.3(x1 ), there is a sentence Cfi/ such 
that 1-K Cfi/ {:::? -,§"(rCfi/1 ). Let q be the Godel number of Cfi/. So: 

(c) f-K Cfi/ {:::? ---.ff'(q). 

Case 1: f-K Cfi/. Then q E TK. By (a), f-K 3(q). But, from f-K Cfi/ and (c), by 
biconditional elimination, f-K -.§"(q). Hence K is inconsistent, contradicting 
our hypothesis. 
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Case 2: not-1--K Cfi/. So, q ¢:. TK. By (b), 1--K -.5""(q). Hence, by (c) and 
~biconditional elimination, 1--K Cfi/. 

Thus, in either case a contradiction is reached. 

DEFINITION 

A set B of natural numbers is said to be arithmetical if there is a wf pg(x) in 
the language 2 A, with one free variable x, such that, for every natural 
number n, n E B if and only if ~(n) is true for the standard interpretation. 

COROLLARY 3.44 [TARSKI'S THEOREM (1936)] 

Let Tr be the set of G6del numbers of wfs of S that are true for the standard 
interpretation. Then Tr is not arithmeticaL 

Proof 

Let Jfl be the extension of S that has as proper axioms all those wfs that are 
true for the standard interpretation. Since every theorem of .A'. must be tn1e 
for the standard interpretation, the theorems -or A·~ are identical with the 
axioms of .;fl. Hence, ~1"- = Tr. Thus, for any closed wf ~' !18 holds for the 
standard interpretation if and only if 1--x _qg_ It follows that a set B is ar­
ithmetical if and only if the property x E B is expressible in ./V. We may 
assume that ..¥ is consistent because it has the standard interpretation as a 
model. Since every recursive function is representable in S, every recursive 
function is representable in .,~V and, therefore, D is representable in .. A1 . By 
Proposition 3.43, x E Tr is not expressible in "f"_ Hence. Tr is not ar­
ithmetical. (This result can be roughly paraphrased by saying that the no­
tion of arithmetical truth is not arithmetically definable.) 

PROPOSITION 3.45 

Let K be a consistent theory with equality in the language 2 A in which all 
recursive functions are representable. Assume also that 1--K 0 f=- 1. Then K is 
recursively undecidable. 

Proof 

D is primitive recursive and, therefore, representable in K. By Proposition 
3.43, the property x E TK is not expressible in K. By Proposition 3.13, the 
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characteristic function CrK is not representable in K. Hence, CrK is not a 
recursive function. Therefore, TK is not a recursive set and so, by definition , 
K is recursively undecidable. 

COROLLARY 3.46 

RR is essentially recursively undecidable. 

Proof 

RR and all consistent extensions of RR satisfy the conditions on K in 
Proposition 3.45 and, therefore, are recursively undecidable. (We take for 
granted that RR is consistent because it has the standard interpretation as a 
model. More constructive consistency proofs can be given along the same 
lines as the proofs by Beth (1959, § 84) or Kleene (1952, § 79).) 

We shall now show how this result can be used to give another derivation 
of the Godel-Rosser theorem. 

PROPOSITION 3.47 

Let K be a theory with a recursive vocabulary. If K is recursively ax­
iomatizable and recursively undecidable, then K is incomplete (i.e., K has an 
undecidable sentence). 

Proof 
·-. 

By the recursive axiomatizability of K, there is a theory J with a recursive 
axiom set that has the same theorems as K. Since K and J have the same 
theorems, TK = Tj and, therefore, J is recursively undecidable, and K is 
incomplete if and only if J is incomplete. So, it suffices to prove J incomplete. 
Notice that, since K and J have the same theorems, J and K must have the 
same individual constants, function letters, and predicate letters (because all 
such symbols occur in logical axioms). Thus, the hypotheses of Propositions 
3.26 an 3.28 hold for J. Moreover, J is consistent, since an inconsistent 
theory with a recursive vocabulary is recursively decidable. 

Assume J is complete. Remember that, if xis the Godel number of a wf, 
Clos(x) is the Godel number of the closure of that wf. By Proposition 3.26 
( 16), Clos is a recursive function. Define: 

H(x) = f.lY[(Fml(x) 1\ (Pf(y, Clos(x)) V Pf(y, Neg(Clos(x))))) V -.Fml(x)J 

Notice that, if xis not the Godel number of a wf, H(x) = 0. If xis the Godel 
number of a wf fJlJ, the closure of fJlJ is a closed wf and, by the completeness 
of J, there is a proof in J of either the closure of fJlJ or its negation. Hence, 
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.B(x) is obtained by a legitimate application of the restricted p-operator and, 
therefore, His a recursive function. Recall that a wfis provable if and only if 
its closure is provable. So, x E Tj if and only if Pf(H(x), Clos(x) ). But 
pf(H(x), Clos(x)) is recursive. Thus, 1j is recursive, contradicting the re­
cursive undecidability of J. 

The intuitive idea behind this proof is the following. Given any wf f!JJ, we 
form its closure C(! and start listing all the theorems in J. (Since PrAx is 
recursive, Church's thesis tells us that J is an axiomatic theory and, there­
fore, by the argument on page 86, we have an effective procedure for gen­
erating all the theorems.) If J is complete, either C(! or --..((/ will eventually 
appear in the list of theorems. [f Cfi appears, f!JJ is a theorem. If -,C(! appears, 
then, by the consistency of J, C(! will not appear among the theorems and, 
therefore, f!JJ is not a theorem. Thus, we have a decision procedure for 
theoremhood and, again by Church's thesis, J would be recursively decidable. 

COROLLARY 3.48 (GODEL-ROSSER THEOREM) 

Any consistent recursively axiomatizable extension of RR has undecidable 
sentences. 

Proof 

This is an immediate consequence of Corollary 3.46 and Proposition 3.47. 

Exercises 

3.56 Prove that a recursively decidable theory must be recursively ax­
iomatizable. 
3.57 Let K be any recursively axiomatizable true theory with equality. (So, 
TK c Tr.) Prove that K has an undecidable sentence. [Hint: Use Proposition 
3.47 and Exercise 3.48.] 
3.58 Two sets A and B of natural numbers are said to be recursively in­
separable if there is no recursive set C such that A C C and B C C. (Cis the 
complement w- C.) Let K be any consistent theory with equality in the 
language 2! A in which all recursive functions are representable and such that 
1-K 0 i- 1. Let RefK be the set of Godel numbers of refutable wfs of K, that 
is, {xiNeg(x) E TK}· Prove that TK and RefK are recursively inseparable. 

DEFINITIONS 

Let K 1 and K 2 be two theories in the same language. 

(a) K 2 is called a finite extension of K 1 if and only if there is a set A of wfs 
and a finite set B of wfs such that: (1) the theorems of K 1 are precisely 
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the wfs derivable from A; and (2) the theorems of K2 are precisely tfle 
wfs derivable from AuB. 

(b) Let K1 uK2 denote the theory whose set of axioms is the union of the set 
of axioms of K1 and the set of axioms of K2. We say that K1 and K2 are 
compatible if K1 uK2 is consistent. "' 

PROPOSITION 3.49 

Let K 1 and K2 be two theories in the same language. If K2 is a finite 
extension of K1 and if K2 is recursively undecidable, then K 1 is recursively 
undecidable. "' 

Proof 

Let A be a set of axioms of Kt and Au { 86'1, ... , f!lJ11 } a set of axioms for K2• 

We may assume that f!lJ1, .•. , f!lJ11 are closed wfs. Then, by Corollary 2.7, itis 
easy to see that a wf ((ij is provable in K2 if and only if (f!lJ1 1\ ... 1\ f!lJ11 ) => ((ij is 
provable in K 1. Let c be a Godel number of (86'1 1\ ... 1\ f!lJ,J Then b is a 
Godel number of a theorem of K2 when and only when 23 * c * 211 * b * 2s is 
a Godel number of a theorem of K1; that is, b is in TK2 if and only if 
23 * c * 2 11 * b * 25 is in TK1 • Hence, if TK1 were recursive, TK2 would also be 
recursive, contradicting the recursive undecidability of K2. 

PROPOSITION 3.50 

Let K be a theory in the language !.eA. IfK is compatible with RR, thenKis 
recursively undecidable. 

Proof 

Since K is comptatible with RR, the theory KuRR is a consistent extension 
of RR. Therefore, by Corollary 3.46, KuRR is recursively undecidable. 
Since RR has a finite number of axioms, KuRR is a finite extension of K. 
Hence, by Proposition 3.49, K is recursively tmdecidable. 

COROLLARY 3.51 

Every true theory K is recursively undecidable. 

Proof 

K U RR has the standard interpretation as a model and is, therefore, con­
sistent. Thus, K is compatible with RR. Now apply Proposition 3.50. 
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c@ROLLARY 3.52 

Let Ps be the predicate calculus in the language !.eA. Then Psis recursively 
undecidable. 

!',roof 
p

8
uRR = RR. Hence, Ps is compatible with RR and, therefore, by Pro­

position 3.50, recursively undecidable. 

By PF we mean the full first-order predicate calculus containing all 
predicate letters, function letters and individual constants. Let PP be the 
pure first-order predicate calculus, containing all predicate letters but no 
function letters or individual constants. 

EEMMA 3.53 

:'There is a recursive function h such that, for any wf PJJ of PF having Godel 
~mumber u, there is a wf PJJ' of PP having Godel number h(u) such that f!fi is 
,:provable in PF if and only if PJJ' is provable in PP. 

:;cProof 

;Let PJJ be a wf of PF. With the distinct function letters!}' in PJJ, associate 
;:-distinct predicate letters A;+• not occurring in PJJ, and with the distinct 
''individual constants aj in P/J, associate distinct predicate letters A! not oc­
'<curring in PJJ. Find the first individual constant aj in f!fi (if any). Let z be the 
;first variable not in PJJ and let PJJ* result from PJJ by replacing all occurrences 
of aj by z. Form the wf P/J1: (3z)A1(z) =} (3z)(Ai:(z) 1\ PJJ*), where Al is the 
:predicate letter associated with aj· It is easy to check (see the proof of 
Proposition 2.28) that PJJ is logically valid if and only if ~1 is logically valid. 
_Keep on performing similar transformations until a wf ((J without individual 
constants is reached; then ((J is logically valid if and only if PJJ is logically 
valid. Next, take the leftmost termjp(t1, ... , t11 ) in C(J, where t1, ... , t11 do not 
contain function letters. Let w be the first variable not in C(J, let <(!# result 
Jrom ((J by replacing fF ( t1, ... , t,) by w, and let ((J 1 be the wf 
(3w)A~~+1 (w, t 1 , ••• , t,) =} (3w)(A;~+1 (w, t1 , ••• , t,) 1\ <(!#), where A;~+ 1 is the 
predicate letter associated with.fT- It is easy to verify that ((J is logically valid 
if and only if C(J1 is logically valid. Repeat the same transformation on ((i/1, 

and so on, until a wf PJJ' is reached that contains no function letters. Then PJJ' 
is a wf of PP, and PJJ' is logically valid if and only if PJJ is logically valid. By 
Godel's completeness theorem (Corollary 2.19), PJJ is logically valid if and 
only if l-pF PJJ, and PJJ' is logically valid if and only if l-pp PJJ'. Now, if u is the 
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Godel number of flJJ, let h(u) be the Godel number of f!4'. When u is not the 
Godel number of a wf of PF, de~ne h(u) to b~ 0. Clearly, h is effectively 
computable because we have desc~bed a~ eff~ctive pr~cedure for obtaining 
PJJ' from £$. Therefore, by Church s thesis, h IS recursive. Alternatively, an· 
extremely diligent reader could avoid the use of Church's thesis by 'ar: 
ithmetizing' all the steps described above in the computation of h. 

PROPOSITION 3.54 (CHURCH'S THEOREM (1936a)) 

PF and PP are recursively undecidable. 

Proof 

(a) By Godel's completeness theorem, a wf f1JJ of Ps is provable in Ps if and 
only if PJJ is logically valid, and PJJ is provable in PF if and only if &J is 
logically valid. Hence, I-ps PJJ if and only if l-pp £$. However, the set 
Fmlps of Godel numbers of wfs of Ps is recursive. Then 
Tps = TppnFmlps, where Tps and Tpp are, respectively, the sets ofGodel 
numbers of the theorems of Ps and PF. If Tpp were recursive, Tps would 
be recursive, contradicting Corollary 3.52. Therefore, PF is recursively 
undecidable. 

(b) By Lemma 3.53, u is in Tpp if and only if h(u) is in Tpp. Since h is 
recursive, the recursiveness of Tpp would imply the recursiveness ofTpp, 
contradicting (a). Thus, Tpp is not recursive; that is, PP is recursively 
undecidable. 

If we accept Church's thesis, then ·recursively undecidable' can be re­
placed everywhere by 'effectively undecidable'. In particular, Proposition 
3.54 states that there is no decision procedure for recognizing theoremhood, 
either for the pure predicate calculus PP or the full predicate calculus PF. By 
Godel's completeness theorem, this implies that there is no effective method 
for determining whether any given uf is logically valid. 

Exercises 

3.59D 
(a) By a wf of the pure monadic predicate calculus (PMP) we mean a wf of 

the pure predicate calculus that does not contain predicate letters of 
more than one argument. Show that, in contrast to Church's theorem, 
there is an effective procedure for determining whether a wf of PMP is 
logically valid. [Hint: Let B 1, B2 , ..• , B k be the distinct predicate letters in 
a wf PJJ. Then !YJ is logically valid if and only if PJJ is true for every 
interpretation with at most 2k elements. (In fact, assume PJJ is true for 
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every interpretation with at most 2k elements, and let M be any inter­
pretation. For any elements b and c of the domain D of M, call b and c 
equivalent if the truth values of B 1 (b), B2 (b), ... , B k (b) in M are, re-
spectively, the same as those of B1(c),B2(c), ... ,Bk(c). This defines an 
equivalence relation in D, and the corresponding set of equivalence 
classes has at most 2k members and can be made the domain of an 
interpretation M* by defining interpretations of B1, ... , Bk, in the ob­
vious way, on the equivalence classes. By induction on the length of wfs 
((5 that contain no predicate letters other than B1, ... , Bk, one can show 
that Cf5 is true for M if and only if it is true forM*. Since !(JJ is true for 
M*, it is also true forM. Hence, !!8 is true for every interpretation.) Note 
also that whether!$ is true for every interpretation that has at most 2k 
elements can be effectively determined.]t 

_(b) Prove that a wf !!8 ofPMP is logically valid if and only if!$ is true for all 
finite interpretations. (This contrasts with the situation in the pure 
predicate calculus; see Exercise 2.56 on page 93.) 

3.60 If a theory K* is consistent, if every theorem of an essentially recur-
-sively undecidable theory K 1 is a theorem of K*, and if the property 
FmlK

1 
(y) is recursive, prove that K* is essentially recursively undecidable. 

3.61 (Tarski, Mostowski and Robinson. 1953, I) 
(a) Let K be a theory with equality. If a predicate letter AJ, a function letter 

!j' and an individual constant aj are not symbols of K, then by possible 
definitions of A'J, !j' and aj inK we mean, respectively, expressions of the 
form 
(i)(Vxi) ... (Vxn)(Aj(xl, ... ,x11 ) <=? !!8(x1, ... ,xn)) 

(ii)(Vx1) ... (Vx11 )(Vy)(fj'(xl, ... ,xn) = y <=? Cf5(xl, ... ,xn,y)) 
(iii)(Vy)(aj = y <=? ~(y)) 
where @. Cf5 and f» are wfs of K; moreover, in case (ii), we must also have 
~K (Vx1) ... (Vxn)(~IY)Cf5(xl, ... ,x11 ,y), and, in case (iii), ~K (:hy)~(y). If 
K is consistent, prove that addition of any possible definitions to K as 
new axioms (using only one possible definition for each symbol) yields a 
consistent theory K', and K' is recursively undecidable if and only if K is. 

(b) By a non-logical constant we mean a predicate letter, function letter or 
individual constant. Let K1 be a theory with equality that has a finite 
number of non-logical constants. Then K 1 is said to be inte1pretable in a 
theory with equality K if we can associate with each non-logica] con­
stant of K 1 that is not a non-logical constant of K a possible definition 

tThe result in this exercise is, in a sense, the best possible. By a theorem of 
Kalmar (1936), there is an effective procedure producing for each wf :!JJ of the pure 
predicate calculus another wf 882 of the pure predicate calculus such that ~2 contains 
only one predicate letter, a binary one, and such that fllJ is logically valid if and only if 
Plh is logically valid. (For another proof, see Church, 1956, § 47.) Hence, by Church's 
theorem, there is no decision procedure for logical validity of wfs that contain only 
binary predicate letters. (For another proof, see Exercise 4.68 on page 271.) 

223 
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in ~ such th~t? if K* is !he theory obtaine~ from K by adding .. 
pOSSible defirubons as aXIoms, then every ax10m (and hence every 
orem) of K 1 is a theorem of K*. Notice that, if K1 is interpretable 

1 
it is interpretable in every extension of K. Prove that, if K1" is i 
pre table in K and K is consistent, and if K1 is essentially recur .

11 

- s 
undecidable, then K is essentially recursively undecidable. -

3.62 Let K be a theory with equality and A) a monadic predicate lettc 
inK. Given a closed wf~, let ~A}) (called the relativization of~ with rt~ 
to Aj) be the wf obtained from ~by replacing every subformula (stat 
from the smallest subformulas) ofthe form (Vx)f4(x) by ~Vx)(Aj(x) ===k.:!IJ 
Let the proper axioms of a new theory with equality KAj be: (i) all wfs (1 
where ~is the closure of any proper axiom of K; (ii) (3x)A ~ (x); (iii) A~ 
for each individual constant am o~ K; and (iv) AJ(it):/ 
A) (Xn) =? A)(fl'(x1 , ••• ,xn)) for any function letter ft of K. Prove the 1 
lowing. 
(a) As proper axioms of KA) we could have taken all wfs ~(A)), where,, 

the closure of any theorem of K. --
(b) KA) is interpretable inK. 
(c) KA) is consistent if and only if K is consistent. 
(d) K Aj is essentially recursively undecidable if and only if K is rfars 

Mostowski and Robinson, 1953, pp. 27-28). 
3.63 K is said to be relatively interpretable in K' if there is some prediri 
letter A J not in K such that K A) is interpretable in K'. If K is relative 
interpretable in a consistent theory K' and K is essentially recursively m 

decidable, prove that K' is essentially recursively tmdecidable. 
3.64 Call a theory K in which RR is relatively interpretable sufficiet' 
strong. Prove that any sufficiently strong consistent theory K is ess~ntiau 
recursively undecidable, and, if K is also recursively axiomatizable;~:pro 

that K is incomplete. Roughly speaking, we may say that K is suffi~!enl 
strong if the notions of natural number, 0, 1, addition and multiplicati9n Hr 

'definable' in K in such a way that the axioms of RR (relativized io t 
'natural numbers' of K) are provable inK. Clearly, any theory adequate'" 
present-day mathematics will be sufficiently strong and so, if it is consjstcnl 
then it will be recursively undecidable and, if it is recursively axiomadzablc 
then it will be incomplete. If we accept Church's thesis, this implies that al" 

consistent sufficiently strong theory will be effectively undecidable and, if 11 

is axiomatic, it will have undecidable sentences. (Similar results also hold fc 
higher-order theories; for example, see Godel, l93l.) This destroys all1u 
for a consistent and complete axiomatization of mathematics. 



Axiomatic Set Theory 

l ,,~AXIOM SYSTEM 

prime reason for the increase in importance of mathematical logic in the 
~·enfieth century was the discovery of the paradoxes of set theory and the 
!d:~for a revision of intuitive (and contradictory) set theory. Many dif­

renf axiomatic theories have been proposed to serve as a foundation for 
l tlieory but, no matter how they may differ at the fringes, they all have as 

. corbmon core the fundamental theorems that mathematicians require for 
:.eir:aaily work. We make no claim about the superiority of the system we 
;;aU\~-tise except that, from a notational and conceptual standpoint, it is a 
OLwenient basis for present-day mathematics. 

We shall describe a first-order theory NBG, which is basically a system of 
he ~yme type as one originally proposed by von Neumann (1925; 1928) and 
Jnter ~thoroughly revised and simplified by R. Robinson (1937), Bernays 
193-7~1954); and Godel (1940) (We shall follow Godel's monograph to a 
.rcat extent, although there will be some significant differences.) 

NBG has a single predicate letter A~ but no function letter, or individual 
~onstants.t In order to conform to the notation in Bernays (1937-1954) and 
GOdel (1940), we shall use capital italic letters X1, X 2, X3, ... as variables 
n1stead ofx1, x2 , x3 , •.•. (As usual, we shall use X, Y, Z, ... to represent 
rbiti"ary variables.) We shall abbreviate Ai(X, Y) by X E Y, and -.A~ (X, Y) 
y~~ -

I_ntuitively, E is to be thought of as the membership relation and the 
valqes of the variables are to be thought of as classes. Classes are certain 
collections of objects. Some properties determine classes. in the sense that a 
property P may determine a class of all those objects that possess that 
property. This 'interpretation' is as imprecise as the notions of 'collection' 
:1nd ~property'. The axioms will reveal more about what we have in mind. 
l'hey will provide us with the classes we need in mathematics and appear 
modest enough so that contradictions are not derivable from them. 

-JWe use A~ instead of Ai because the latter was used previously for the equality 
-elation. 

4 
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Let us define equality in the following way. 

DEFINITION 

X= Y for (\iZ)(Z EX{:::} Z E Y)t 

Thus, two classes are equal when and only when they have the same 
members. 

DEFINITIONS 

XC Y for (\t'Z)(Z EX=? Z E Y) 

X c Y for XC Y 1\X f= Y 

(inclusion) 

(proper inclusion) 

When XC Y, we say that X is a subclass of Y. When X c Y, we say that X is 
a proper subclass of Y. 

As easy consequences of these definitions, we have the following. 

PROPOSITION 4.1 + 

(a) I- X= Y {::?(XC Y 1\ Y ~X) 
(b) I- X= X 
(c) I- X= Y ==} Y =X 
(d) I- X = Y ==} ( Y = Z ==} X = Z) 

We shall now present the proper axioms of NBG, interspersing among 
the axioms some additional definitions and various consequences of the 
axioms. 

We shall define a class to be a set if it is a member of some class. Those 
classes that are not sets are called proper classes. 

DEFINITIONS 

M(X) 

Pr(X) 

for 

for 

(3Y)(X E Y) 

--.M(X) 
(X is a set) 

(X is a proper class) 

It will be seen later that the usual derivations of the paradoxes now no 
longer lead to contradictions but only yield the results that various classes 
are proper classes, not sets. The sets are intended to be those safe, com­
fortable classes that are used by mathematicians in their daily work, whereas 

t As usual, Z is to be the first variable different from X and Y. 
+The subscript NBG will be omitted from 1-NBG in the rest of this chapter. 
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~ -proper classes are thought of as monstrously large collections that, if per­
mitted to be sets (i.e., allowed to belong to other classes), would engender 
contradictions. 

Exercise 4.1 Prove 1- X E Y =} M(X). 

The system NBG is designed to handle classes, not concrete individuals. t 
The reason for this is that mathematics has no need for objects such as cows 
and molecules; all mathematical objects and relations can be formulated in 
terms of classes alone. If non-classes are required for applications to other 
sciences, then the system NBG can be modified slightly so as to apply to 
both classes and non-classes alike (see the system UR in Section 4.6 below). 

Let us introduce lower-case letters x 1, x2 , ••• as special restricted vari­
ables for sets. In other words, (\lxj )fffl(xj) stands for (\IX) (M (X) => fffl(X)), 
that is, fffJ holds for all sets, and (3,1j)fffl(xj) stands for (3X)(M(X) 1\ fffl(X)), 
that is, fffJ holds for some set. As usual, the variable X used in these defi­
nitions should be the first one that does not occur in fffl(xj). We shal1 use 
x, y, z, ... to stand for arbitrary set variables. 

Example 

(\iX.)(\ix)(3y)(3X3)(X1 Ex 1\ y E X3) stands for 

(\iXI)(\iX2)(M(X2) =? (3X4)(M(X4) 1\ (3X3)(Xt E X2 I\X4 E X3))) 

Exercise 4.2 

Prove that ~X= Y {:::} (Vz)(z EX{:::} z E Y). This is the so-called exten­
sionality principle: two classes are equal when and only when they contain 
the same sets as members. 

AXIOMT 

Xt =X2 =? (Xt EX3 {::}X2 EX3) 

This axiom tells us that equal classes belong to the same classes. 

Exercise 

4.3 Prove that 1- M(Z) 1\ Z = Y =} M(Y). 

tlf there were concrete individuals (that is, objects that are not classes), then the 
definition of equality would have to be changed, since all such individuals have the 
same members (namely, none at all). 
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PROPOSITION 4.2 

NBG is a first-order theory with equality. 

Proof 

Use Proposition 4.1, axiom T, the definition of equality, and the discussion­
on page 99. 

AXIOM P (PAIRING AXIOM) 

(\fx)(\fy)(3z)(\fu)(u E z ¢=> u = x V u = y) 

Thus, for any sets x and y , there is a set z that has x and y as its only 
members. 

Exercises 

4.4 Prove 1- (Vx)(Vy)(:3Iz)('v'u)(u E z {::} u = x V u = y). This asserts that 
there is a unique set z, called the unordered pair of x and y , such that z has x 
and y as its only members. Use axiom P and the extensionality principle. 
4.5 Prove 1- ('v'X)(M(X) {::} (3y)(X E y)). 
4.6 Prove~ (3X)Pr(X) ::::} -,(\J'Y)('v'Z)(::JW)(VU)(U E Z {::} U =XV U = Y). 

AXIOM N (NULL SET) 

{3x) (\fy) (y fj_ X) 

Thus, there is a set that has no members. From axiom N and the ex­
tensionality principle, there is a unique set that has no members - - that is, 
1- (:31x)(Vy)(y ¢: x). Therefore, we can introduce a new individual constant 0 
by means of the following condition. 

DEFINITION 

(\fy) (y 1- 0) 

It then follows from axiom Nand Exercise 4.3 that 0 is a set. 
Since we have (by Exercise 4.4) the uniqueness condition for the un­

ordered pair, we can introduce a new ftmction letter g(x, y) to designate the 
tmordered pair of x and y. In accordance with the traditional notation, we 
shall write {x,y} instead of g(x,y). Notice that we have to define a tmique 
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·value for {X, Y} for any classes X andY, not only for sets x andy. We shall 
let {X, Y} be Q) whenever X is not a set or Y is not a set. One can prove: 
1- (31Z)([( -.M(X) V -.M(Y)) 1\ Z = 0] V [M(X) 1\ M(Y) 1\ ('v'u) (u E Z {:} u = 

·x v u = Y)]). This justifies the introduction of a term {X, Y} satisfying the 
following condition: 

[M(X) A M(Y) A (\lu)(u E {X, Y} {:::} u = XV u = Y)J 

V [(--.M(X) V -.M(Y)) A {X, Y} = 0) 

;One can then prove 1- (\lx)('v'y)('v'u)(u E {x,y} {:} u = x V u = y) and 
;1- ('v'X)('v'Y)M( {X, Y} ). 

'DEFINITION 

{X} for {X,X} 

For a set x, { x} is called the singleton of x. It is a set that has x as its only 
member. 

In connection with these definitions, the reader should review Section 2.9 
and, in particular, Proposition 2.28, which assures us that the introduction 
of new individual constants and function letters, such as 0 and {X, Y}, adds 
nothing essentially new to the theory NBG. 

Exercise 

4.7 (a) Prove 1- {X, Y} = {Y,X}. 
(b) Prove 1- (V'x)('v'y)({x} = {y}::::} x = y). 

DEFINITION 

(X, Y) for {{X}, {X, Y}} 
For sets x andy, (x,y) is called the ordered pair of x andy. 

The definition of (X, Y) does not have any intrinsic intuitive meaning. It 
is just a convenient way (discovered by Kuratowski, 1921) to define ordered 
pairs so that one can prove the characteristic property of ordered pairs 
expressed in the following proposition. 

PROPOSITION 4.3 

1- (\lx)(\ly)(\lu)(\lv)( (x,y) = (u, v) =} x = u Ay = v) 
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Proof 

Assume (x,y) = (u,v). Then {{x},{x,y}} = {{u},{u,v}}. Since {x} E {{x} 
{x,y}}, {x} E {{u}, {u, v}}. Hence, {x} = {u} or {x} = {u,v}. In either case' 

' x=u. Now, {u,v} E {{u},{u,v}}; so, {u,v} E {{x},{x,y}}. Then {u,v}= 
{x} or {u, v} = {x,y}. Similarly, {x,y} = {u} or {x,y} = {u, v}. If 
{u, v} = {x} and {x,y} = {u}, then x = y = u = v; if not, {u, v} = {x,y}. 
Hence, {u, v} = {u, y}. So, if v # u, then y = v; if v = u, then y = v. Thus, in 
all cases, y = v. 

Notice that the converse of Proposition 4.3 holds by virtue of the sub­
stitutivity of equality. 

Exercise 

4.8 (a) Show that, instead of the definition of an ordered pair given in the 
text, we could have used (X, Y) = { {0,X}, { {0}, Y} }; that is, Proposition4.3 
would still be provable with this new meaning of (X, Y). 

(b) Show that the ordered pair also could be defined as { {0, {X}}, 
{ {Y}} }. (This was the first such definition, discovered by Wiener (1914). For 
a thorough analysis of such definitions, see A. Oberschelp (1991).) 

We now extend the definition of ordered pairs to ordered n-tuples. 

DEFINITIONS 

(X) =X 

(XI,··· ,X,,,X,z+I) = (\Xt, · · · ,.X,,j,.X,H-1} 

Thus, (X, Y,Z) =((X, Y),Z) and (X, Y,Z, U) =(((X, Y),Z), U). 
It is easy to establish the following generalization of Proposition 4.3. 

f- (\ixt) ... (\ixn)(\iyt) · · · (\iyn)((xt, · · . . ,Xn) = (yl, · · · .,yn}:::} 

Xt = YI 1\ ... 1\xn = Yn) 

AXIOMS OF CLASS EXISTENCE 

(Bl) (3X)(Vu)(\iv)((u, v) EX<=? u E v) 
(B2) (\iX)(VY)(3Z)('v'u)(u E Z <=? u EX 1\ u E Y) 
(B3) (\iX)(3Z)(Vu)(u E Z <=? u rJ_ X) 
(B4) (\iX)(3Z)(\iu)(u E Z <=? (3v)( (u, v) EX)) 
(B5) (V'X)(3Z)(\iu)('v'v)( (u, v) E Z <=? u EX) 

( E -relation) 
(intersection) 
(complement) 
(domain) 

(B6) ('v'X)(3Z)(\iu)('v'v)(Vw)((u, v, w) E Z <=? (v, w, u) EX) 
(B7) ('v'X)(3Z)(\iu)('v'v)('v'w)( (u, v, w) E Z <=? (u, w, v) EX) 

1-. 
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From axioms (B2}-(B4) and the extensionality principle, we obtain: 

1- (\fX)(\fY)(3tZ)(\fu)(u E Z {:::} u EX 1\ u E Y) 

1-- (\fX)(3tZ)(\fu)(u E Z {:::} u<j::X) 

1- (\fX)(3IZ)(\fu)(u E Z {:::} (3v)( (u, v) EX)) 

These results justify the introduction of new function letters: n, - and flJ . 

DEFINITIONS 

(Vu)(u E XnY {:::} u EX 1\ u E Y) 
(\fu)(u EX{:::} u~X) 
(\fu)(u E flJ(X) {:::} (3v)( (u, v) EX)) 

XuY=XnY 
V=0 
X-Y=XnY 

Exercises 

(intersection of X and Y) 
(complement of X) 
(domain of X) 
(union of X and Y) 
(universal class) t 
(difference of X and Y) 

4.9 Prove: 

4.10 

4.11 

(a) 1- (\fu)(u E XuY {:::} u EX VuE Y) 
(b) 1- (\fu)(u E V) 
(c) 1- (\fu)(u EX- Y {:::} u EX 1\ u~ Y) 
Prove: 
(a) 1-XnY=YnX 
(b) 1- XuY = YuX 
(c) 1- X C Y {:::}X nY =X 
(d) 1- X C Y {:::} Xu Y = Y 
(e) 1- (XnY)nZ = Xn(YnZ) 
(f) 1- (XuY)uZ = Xu(YuZ) 
(g) 1- XnX =X 
(h) 1- XuX =X 
(i) 1- X n0 = 0 
G) I-Xu0 =X 
(k) I- XnV =X 
Prove the following wfs. 

(1) 1- XuV = V 
(m) 1-XuY=XnY 
(n) 1- XnY = XuY 
(o) I-X-X=0 
(p) 1- V -X =X 
( q) 1- X - (X - Y) = X n Y 
(r) 1- Y C X =} X- Y =X 
(s) 1- X =X 
(t) 1- v = 0 
(u) 1- Xn(YuZ) = (XnY)u(XnZ) 
(v) 1- Xu(Y nZ) = (XuY)n(XuZ) 

(a) 1- (VX)(3Z)(\fu)(Vv)( (u, v) E Z {:::} (v, u) EX) [Hint: Apply axioms 
(B5),(B7),(B6) and (B4) successively.] 

(b) 1- (\fX)(3Z)(\fu)(Vv)(\fw)( (u, v, w) E Z {:::} (u, w) EX) [Hint: Use 
(B5) and (B7).] 

(c) 1- (VX)(3Z)(\fv)(Vxl) ... (Vx11)((xt , ... ,x11 , v) EZ{::} (x1, . . . ,x11) EX) 
[Hint: Use (B5).] 

fit will be shown later that V is a proper class, that is, Vis not a set. 
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(d) 1- (\iX)(::JZ)(Vvt) ... (Vvm)(Vxt) ... (Vx,)((xi, ... ,xn, v~, ... , Vm) E z 

{::} (xi, ... , x11 ) EX) [Hint: Iteration of part (c).] 
(e) 1- (VX)(::JZ) (\ivl) ... (Vvm) (Vxi) .. . (\ixn) ((xi, ... ,XII-I, Vt, ... , Vm,Xn} 

E Z {:::} (x1, ... ,xn) EX) [Hint: For m = 1, use (b), substituting 
(x1, ... , Xn-I) for u and x, for w; the general case then follows by 
iteration.] 

(f) 1- (VX)(::JZ)(\ix)(Vvt) ... (Vvm)((v1, .. . , Vm,x) E Z {:::} x EX) [Hint: 
Use (B5) and part (a).] 

(g) 1- (VX) (::JZ) (Vxi) ... (Vx,J ((xt, ... ,xn) E Z {:::} (::Jy) ((xt, ... ,x,,y) 
EX)) [Hint: In (B4), substitute (x,, ... , X11 ) for u andy for v.] 

(h) 1- (VX)(::JZ)(Vu)(Vv)(Vw)( (v, u, w) E Z {::} (u, w) EX) [Hint: Substi­
tute (u, w) for u in (B5) and apply (B6).] 

(i) 1- (VX) (::JZ) (\ivi) ... (\ivk) (Vu)(\iw)( (vb ... , Vk, u, w) E Z {:::} (u, w) 
EX) [Hint: Substitute (vi, ... , vk) for v in part (h).] 

Now we can derive a general class existence theorem. By a predicative llf 
we mean a wf cp(X1, .•• ,X,,, l{, ... , Y,,) whose variables occur among 
X1, ... , X,,, Yi, ... , Y,11 and in which only set variables are quantified (i.e., cp 
can be abbreviated in such a way that only set variables are quantified). 

Examples 
(3x.)(x1 E Yi) is predicative, whereas (::Jfi)(xJ E ll) is not predicative. 

PROPOSITION 4.4 (CLASS EXISTENCE THEOREM) 

Let cp(X1, ••• , X,,, Yi, ... , Yn,) be a predica tive wf. Then 
1- (::JZ)(Vxt) ... (Vxn)((xt, ... ,xn) E Z {:::} cp(x1, ... ,x,, Yt, ... -: 1';1,)). 

Proof 

We shall consider only wfs cp in which no wf of the form Y; E W occurs, since 
Y; E W can be replaced by (:3x)(x = Y; 1\ x E W), which is equivalent to (:lx) 
[(\iz)(z Ex{:::} z E Y;) 1\x E WJ. Moreover, we may assume that cp contains 
no wf of the form X EX, since this may be replaced by (::Ju)(u =X 1\ u EX), 
which is equivalent to (::Ju)[(\iz)(z E u {:::} z EX) 1\ u EX]. We shall proceed 
now by induction on the number k of connectives and quantifiers in cp 
(written with restricted set variables). 

Base: k = 0. Then cp has the form x; E xi or xi Ex; or x; E }£, where 
1 ~ i < j ~ n. For xi E Xj, axiom (B 1) guarantees that there is some Wi such 
that (Vx;)(Vxj)((x;,xj) E JiVi {:::}X; E xj)· For Xj Ex;, axiom (B1) implies that 
there is some Wz such that (Vx;)(Vxj)((x1,xj) E Wz {:::} Xj Ex;) and then. by 
Exercise 4.11(a), there is some ff3 such that (Vx;)(xj)((x;,xj) E Jf3 {:::} Xj E x1). 

So, in both cases, there is some W such that (Vx1)(Vxj)((x1,xi) E W {:::} 
cp(x1, ... ,x,,, l{, ... , Y,n)). Then, by Exercise 4.ll(i) with W =X, there is 
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some Z1 such that (Vxt) ... (Vx;-1) (Vx;) (Vxj) ( (x1, ... , x;-I, x;, x j) E Z1 <:=? 
!P (x1, ... ,xn, Y1, ... , Y,n)). Hence, by Exercise 4.11(e) with Z1 =X, there exists 
Z2 such that (Vxl) ... (Vx;) (Vxi+t) ... (Vxj)((xl, ... ,xj) E zl {:} cp(xl, ... ,Xn, 

i'i, ... , Y,,) ). Then, by Exercise 4.11(d) with Z2 =X, there exists Z such that 
(Vx1) ... (Vx,, )((xi , ... , Xn) E Z {::} cp ( x 1 , ... , Xn, II , ... , Y,Jl)). In the remaining 
case, x; E Y£, the theorem follows by application of Exercise 4.ll(f,d). 

Induction step. Assume the theorem provable for all k < r and assume 
that cp has r connectives and quantifiers. 

(a) cp is -.l/J. By inductive hypothesis, there is some W such that 
(Vx1) ... (Vxn)((xl, ... ,X11 ) E W <:=? l/J(xl, ... ,X11 , Y1, ... , Y,11 )). Let Z = W. 

(b) cp is 1/1 :::::> iJ. By inductive hypothesis, there are classes Z1 and Z2 such 
that (Vxt) ... (Vxn)((xl,· .. ,xn) EZ1 <:=?1/!(xl, ... ,x,, Y1, ... , Y,,)) and (Vxi) 
... ('v'xn)((xl, ... ,xn) E Z2 <:=? iJ(xi, ... ,xn, Y1, ... , Y,n)). Let Z = Z1nZ2. 

(c) cp is (Vx)l/J. By inductive hypothesis, there is some W such that 
(Vxi) ... (Vx11 )(Vx)((xl, ... ,x,,x) E W <:=?1/!(x~, ... ,x11 ,x, Y1, ... , Y,,)). Apply 
Exercise 4.ll(g) with X= W to obtain a class Z1 such that 
(Vxt)- .. (Vxn)((xl, ... ,x,) E Z1 {=} (3x)-.l/J(xl, ... ,x,,x, Y1, ... , Y,,)) Now let 
z = Zb noting that (Vx)l/J is equivalent to -.(3x)-.l/J. 

Examples 
I. Let cp(X, Y1, Yi) be (::lu)(3v)(X = (u, v) 1\ u E Y1 1\ v E fi). The only 

quantifiers in cp involve set variables. Hence, by the class existence the­
orem, 1- (::IZ)(Vx)(x E Z <:=? (3u)(::lv)(x = (u, v) 1\ u E II 1\ v E Yi)). By the 
extensionality principle, 

I- (3tZ)(Vx)(x E Z {:::} (3u)(3v)(x = (u, v) 1\ u E Yj 1\ v E fi). 

So, we can introduce a new function letter x. 

DEFINITION 

(Cartesian product of Y1 and Yi) 

(Vx)(x E Yj x Yi {:::} (3u)(3v)(x = (u, v) 1\ u E Yi 1\ v E Y2)) 

DEFINITIONS 
Y2 for Y x Y 

Y11 for Y''-1 x Y when n > 2 

Rel(X) for X C V2 (X is a relation) t 

V2 is the class of all ordered pairs, and V" is the class of all ordered 
n-tuples. In ordinary language, the word 'relation' indicates some kind of 
connection between objects. For example, the parenthood relation holds 

tMore precisely, Rel(X) means that X is a binary relation. 



234 I '~---------------A_X_I_O_M_A_T_I_C_S_E_T __ T_H_E_O_R_Y ______________ ~ 
between parents and their children. For our purposes, we interpret the 
parenthood relation to be the class of all ordered pairs (u, v) such that u is-~ 
parent of v. -

2. Let cp(X, Y) be XC Y. By the class existence theorem and the ex­
tensionality principle, 1- (3tZ)(\ix)(x E Z {::?- x C Y). Thus, there is a un~ 
ique class Z that has as its members all subsets of Y. Z is called the power 
class of Y and is denoted @J(Y). 

DEFINITION 

(\lx) (x E @J( Y) {::?- x C Y) 

3. Let cp(X, Y) be (3v)(X E v 1\ v E Y)). By the class existence theorem and 
the extensionality principle, 1- (3tZ)(Vx)(x E Z {::?- (3v)(x E vi\ v E f)). 
Thus, there is a unique class Z that contains all members of members of 
Y. Z is called the sum class of Y and is denoted U Y. 

DEFINITION 

(\lx)(x E U Y {::?- (3v)(x E v 1\ v E Y)) 

4. Let cp(X) be (3u)(X = (u, u) ). By the class existence theorem and the 
extensionality principle, there is a unique class Z such that (\lx)(x E z 
{::?- (3u)(x = (u, u) )). Z is called the identity relation and is denoted I. 

DEFINITION 

(\lx)(x E I{::?- (3u)(x = (u, u) )) 

COROLLARY 4.5 

If cp (X1 , ••• , X,1 , Yt , ... , Y,11 ) is a predica tive wf, then 

I- (3, W)(W ~ V11 1\ ('v'xt) ... ('v'x,){(x,, ... ,x11 ) E W {::} cp(x,, ... ,x11 , Y,, ... , Y,n))) 

Proof 

By Proposition 4.4, there is some Z such that (Vxt) ... (\lx,)((x1, ••• ,x,) 
E z {::?- cp(Xt, ... ,Xn, Yt, ... ' Y,n)). Then w = ZnV11 satisfies the corollary, 
and the uniqueness follows from the extensionality principle. 

DEFINITION 

Given a predicative wf cp(X1 , ••• ,X,11 Yt, ... , Y,11), let 
{ (x1, ... , x,) I cp (xt, ... , Xn, Yt, ... , f,JI)} denote the class of all n-tuples 
(x1, .•. ,x,) that satisfy cp(xt, ... ,xn, Yt, ... , Y,11 ); that is, 

") .. -
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('v'u)(u E {(xi, ... ,xn)lcp(Xt, ... ,xn, Y., ... , Y,~~)} {::} 

(3xt) ... (3x,)(u = (xt, ... ,xn) 1\ cp(Xt, ... ,Xn, Y., ... , Ym))) 

,-This definition is justified by Corollary 4.5. In particular, when n = 1, 
~;}- (\lu)(u E {xlcp(x, Yi, ... , Y,n)} {::} cp(u, Yt, ... , Y,n)). 

'"Examples 
1. Take cp to be (x2,x1) E Y. Let Y be an abbreviation for 

v 2 v 

{(x1,x2)l(x22-Xt) E Y}. Hence, Y C V 1\ ('v'xt)('v'x2)((xt,x2) E Y {::} (x2,x1) 
E Y). Call Y the inverse relation of Y. 

2. Take cp to be (:3v)( (v,x) E Y). Let ~(Y) stand for {xl(:3v)( (v,x) E Y)}. 
Then 1- ('v'u)(u E ~(Y) {::} (:3v)((v,x) E Y)). ~(Y) is called the range of Y. 
Clearly, 1- ~(Y) = 2)(Y). 

Notice that axioms (Bl)-(B7) are special cases of the class existence 
theorem, Proposition 4.4. Thus, instead of the infinite number of instances 
of the axiom schema in Proposition 4.4, it sufficed to assume only a finite 
number of instances of that schema. 

Exercises 

4.12 Prove: 
(a) 1- U0 = 0 
(b) 1- U{0} = 0 
(c) 1- UV = V 
(d) 1- f!J(V) = V 
(e) 1- XC Y * UX C U Y 1\ f!J(X) C f!J(Y) 
(f) 1- U f!J(X) =X 
(g) 1- X c f!J(UX) 
(h) I- (X nY) x (W nZ) = (X x W)n(Y x Z) 
(i) 1- (XuY) x (WuZ) =(X x W)u(X x Z)u(Y x W)n(Y x Z) 
U) 1- f!J(X nY) = f!J(X)nf!J(Y) 
(k) 1- f!J(X)uf!J(Y) ~ f!J(XuY) 
(I) What simple condition on X and Y is equivalent to 

f!J(XuY) C f!J(X)uf!J(Y)? 
(m) 1- U(XuY) = (UX)u(U Y) 
(n) 1- U(X nY) C (UX)n(U Y) 
( 0) 1- z = y * z = y n V2 

(p) 1- Rel(J) 1\1 =I 
(q) 1- f!J(0) = {0} 
(r) 1- f!J( {0}) = {0, {0}} 
(s) 1- ('v'x)('v'y)(x x y C f!J(f!J(xuy))) 
(t) 1- Rel(Y) * Y C f2(Y) x ~(Y) 
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Until now, although we can prove, using Proposition 4.4, the existence dr 
a great many classes, the existence of only a few set~, such as 0, {0}, {0, {0}J: 
and { {0} }, is known to us. To guarantee the existence of sets of greater 
complexity, we require more axioms. 

AXIOM U (SUM SET) 

(\ix)(3y)(\iu)(u E y {::} (3v)(u E v 1\ vEx)) 

This axiom asserts that the sum class Ux of a set xis also a set, which we 
shall call the sum set of x, that is, I- (\fx)M(Ux). The sum set Ux is usually 
referred to as the union of all the sets in the set x and is often denoted U v 

VEx • 

Exercises 

4.13 Prove: 
(a) I- (\ix)(\fy)(U{x,y} = xuy) 
(b) 1- (\fx)(\iy)M(xuy) 
(c) I- (Vx)(U{x} = x) 
(d) I- (\fx)(\iy)(U(x,y) = {x,y}) 

4.14 Define by induction {xJ, ... ,x11 } to be {x~, ... ,x11_I}u{x,J. Prove 
I- (\fxt) ... (Vxn)(\fu)(u E {xt, . . . ,x,J {:} u = Xt V ... V u = Xn) Thus, for any 
sets x1, • • • ,x,, there is a set that has x1 , ••. ,x, as its only members. 

Another means of generating new sets from old is the formation of the set 
of subsets of a given set. 

AXIOM W (POWER SET) 

(\ix)(3y)(\iu)(u E y {::} u ~ x) 

This axiom asserts that the power class P(x) of a set xis itself a set, that is, 
I- (\ix)M(P(x)). 

A much more general way to produce sets is the following axiom of 
subsets. 

AXIOM S (SUBSETS) 

(\ix)(\iY)(3z)(\iu)(u E z {::} u E x 1\ u E Y) 



AN AXIOM SYSTEM 

COROLLARY 4.6 

(a) ~ (Vx)(VY)M(xnY) (The intersection of a set and a class is a set.) 
(b) 1-- (Vx)(VY)(Y c x ==> M(Y)) (A subclass of a set is a set.) 
(c) For any predicative wf .%'(y), ~ (Vx)M( {YIY Ex 1\ .%'(y)} ). 

Proof 
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(a) By axiom S, there is a set z such that (Vu)(u E z {::} u Ex 1\ u E Y), 
which implies (Vu)(u E z {::} u E xnY). Thus, z = x n Y and, therefore, 
xn Y is a set. 

(b) If Y C x, then xnY = Y and the result follows by part (a). 
(c) Let Y = {yly Ex 1\ .%'(y)}t. Since Y c x, part (b) implies that Y is a set. 

Exercise 

4.15 Prove: 
(a) ~ (Vx)(M(22(x)) 1\ M(~(x))). 
(b) ~ (Vx)(Vy)M(x x y). [Hint: Exercise 4.12(s).] 
(c) ~ M(22(Y)) 1\ M(~(Y)) 1\ Rel(Y) ==> M(Y) . [Hint: Exercise 4.12(t).] 
(d) ~ Pr(Y) 1\ Y C X==> Pr(X). 

On the basis of axiom S, we can show that the intersection of any non­
empty class of sets is a set. 

DEFINITION 

nxfor {yj(Vx)(x EX==> y Ex)} 

PROPOSITION 4.7 

(a) ~ (Vx)(x EX==> nx C x) 
(b) ~x-:~ 0 ==> M(nx) 
(c) I- n0 = v 

Proof 

(intersection) 

(a) Assume u EX. Consider any y in nx. Then (Vx)(x EX==> y Ex). 
Hence, y E u. Thus, nx Cu. 

(b) Assume X# 0. Let x EX. By part (a), nx C x. Hence, by Corollary 
4.6(b), nx is a set. 

tMore precisely, the wf Y EX 1\ IW(Y) is predicative, so that the class existence 
theorem yields a class {YIY EX 1\ IW(y)}. In our case, X is a set x. 
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(c) Since ~ (\ix)(x tJ- 0), ~ (\fy)(\ix)(x E 0 * y Ex), from which we obtain 

1- (\fy)(y En 0). From 1- (\iy)(y E V) and the extensionality principle, 
~ n0 = v. 

Exercise 

4.16 Prove: 
(a) 1- n{x,y} = xny 
(b) ~ n{x} =X 

(c) ~X c Y :::::? n Y c nx 
A stronger axiom than axiom S will be necessary for the full development 

of set theory. First, a few definitions are convenient. 

DEFINITIONS 

Fnc(X) for Rel(X)/\(\fx)(\fy)(\iz)((x,y) EX/\(x,z) EX=>y=z) 
(X is a function) 

X : Y -t Z for Fnc(X) 1\ 2J(X) = Y 1\ &?!(X) ~ Z (X is a function from Y into Z) 
Y [X for X n ( Y x V) (restriction of X to the domain Y) 

Fnc1 (X) for Fnc(X) 1\ Fnc(X) (X is a one- one function) 

X'Y= {z if (\fu)((Y,u)EX {::} u =z) 
0 otherwise 

X" Y = &?!( Y [X) 

If there is a unique z such that (y, z) EX, then z = X'y; otherwise, 
X'y = 0. If X is a function andy is a set in hs domain, X'y is the value of the 
function applied to y. If X is a function, X" Y is the range of X restricted to 
Y.t 

Exercise 

4.17 Prove: 

(a) ~ Fnc(X) 1\y E .@(X):::::? (\iz)(X'y = z {::} (y,z) EX) 
(b) 1- Fnc(X) 1\ Y C .@(X) :::::? Fnc(Y[X) 1\ .@(Y[X) = Y 1\ (\fy)(y E Y * 

X'y = (Y[X)'y) 
(c) 1- Fnc(X) => [Fnc1 (X) {::} (\iy)(\iz)(y E .@(X) 1\ z E .@(X) 1\ y =J- z * 

X'y =J- X'z)] 
(d) ~ Fnc(X) 1\ Y C .@(X) :::::? (Vz)(z E X"Y <=> (3y)(y E Y 1\ X'y = z)) 

t1n traditional set-theoretic notation, ifF is a function andy is in its domain, F'y 
is written as F{y), and if Y is included in the domain ofF, F"Y is sometimes written 
as F[Y]. 

') .. 
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AXIOM R (REPLACEMENT) 

Fnc(Y) => (Vx)(3y)(Vu)(u E y {::} (3v)( (v, u) E Y 1\ vEx)) 

Axiom R asserts that, if Y is a function and x is a set, then the class of second 
components of ordered pairs in Y whose first components are in xis a set 
(or, equivalently, 24(x[Y) is a set). 

Exercises 

4.18 Show that, in the presence of the other axioms, the replacement axiom 
(R) implies the axiom of subsets (S). 
4.19 Prove 1- Fnc(Y) :::::? (Vx)M(Y"x)). 
4.20 Show that axiom R is equivalent to the wf 
Fnc(Y) 1\ M(22(Y)) :::::> M(24(Y)). 
4.21 Show that, in the presence of all axioms except RandS, axiom R is 
equivalent to the conjunction of axiom S and the wf 
Fnc1 (Y) 1\ M(22(Y)) * M(24(Y)). 

To ensure the existence of an infinite set, we add the following axiom. 

AXIOM I (AXIOM OF INFINITY) 

(3x)(0 Ex 1\ (Vu)(u Ex=> uu{ u} Ex)) 

Axiom I states that there is a set x that contains 0 and such that, whenever a 
set u belongs to x, then u u { u} also belongs to x . Hence, for such a set x, 
{0} Ex, {0, {0}} Ex, {0, {0}, {0, {0}}} Ex, and so on. If we let 1 stand for 
{0}, 2 for {0, 1 }, 3 for {0, 1, 2}, ... , n for {0, 1, 2, ... , n- 1 }, etc., then, for 
all ordinary integers n > 0, n Ex, and 0 -/=- 1, 0 -/=- 2, 1 -/=- 2, 0 -1 3, 1 f:- 3, 
2 #-3, .... 

Exercise 

4.22 (a) Prove that any wf that implies (3X)M(X) would, together with 
axiom S, imply axiom N. 

(b) Show that axiom I is equivalent to the following sentence (I*): 

(3x)((3y)(y Ex 1\ (Vu)(u ¢:. y)) 1\ (Vu)(u Ex=> uu{u} Ex)) 

Then prove that (I*) implies axiom N. (Hence, if we assumed(!*) instead of 
(1), axiom N would become superfluous.) 
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This completes the List of axioms of NBG, and we see that NBG has only a 
finite number of axioms - namely, axiom T, axiom P (pairing), axiom N 
(null set), axion1 U (sum set), axiom W (power set), axiomS (subsets), axiom 
R (replacement), axiom 1 (infinity), and the seven class existence axioms 
(Bl)-(B7). We have also seen that axiom S is provable from the other 
axioms; it has been included here because it is of interest in the study of 
certain weaker subtheories of NBG. 

Let us verify now that the usual argument for Russell's paradox does not 
hold in NBG. By the class existence theorem, there is a class Y = {xlx ~ x}. 
Then ('v'x)(x E Y <=? xr;J_x). In unabbreviated notation this becomes 
('v'X)(M(X):::} (X E Y {:}Xr;j_X)). Assume M(Y). Then Y E Y {:} Y~ Y, 
which, by the tautology (A <=? •A) :::} (A 1\ •A), yields Y E Y 1\ Y ~ Y . Hence 

' by the derived rule of proof by contradiction, we obtain~ ·M(Y). Thus, in 
NBG, the argument for Russell's paradox merely shows that Russell's class 
Y is a proper class, not a set. NBG will avoid the paradoxes of Cantor and 
Burali-Forti in a similar way. 

Exercise 

4.23 Prove~ •M(V), that is, the universal class Vis not a set. [Hint: Apply 
Corollary 4.6(b) with Russell's class Y.] 

4.2 ORDINAL NUMBERS 

Let us first define some familiar notions concerning relations. 

DEFINITIONS 

X Irr Y for Rel(X) 1\ ('v'y)(y E Y ==? {y,y) ~X) 
(X is an irreflexive relation on Y) 

X Tr Y for Rel(X) 1\ ('v'u)('v'v)('v'w)([u E Y 1\ v E Y 1\ wE Y 1\ 

(u, v) EX 1\ (v, w) E XJ =? (u, w) EX) 

(X is a transitive relation on Y) 

X Part Y for (X Irr Y) 1\ (X Tr Y) (X partially orders Y) 

X Con Y for Rel(X) 1\ (\fu)('v'v)([u E Y 1\ v E Y 1\ u i= vJ =? 

(u, v) EX V (v, u) EX) 

(X is a connected relation on Y) 

X Tot Y for (X Irr Y) 1\ (X Tr Y 1\ (X Con Y) (X totally orders Y) 

X We Y for (X Irr Y) 1\ (\fZ)([Z C Y 1\ Z i= 0J =? (::ly)(y E Z 1\ 

('v'v)(v E Z 1\ vi= y ==? {y, v) EX 1\ (v,y) ~X))) 
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(X well-orders Y, that is, the relation X is irreflexive on Y and every non­
empty subclass of Y has a least element with respect to X) 

.Exercises 

4.24 Prove 1- X We Y =>X Tot Y. [Hint: To show X Con Y, let x E Y 1\ y 
E Y 1\ x =I- y. Then {x,y} has a least element, say x. Then (x,y) EX. To show 
X Tr Y, assumex E Y 1\ y E Y 1\ z E Y 1\ (x,y) EX 1\ (y, z) EX. Then {x,y, z} 
has a least element, which must be x.] 
4.25 Prove 1- X We Y 1\ Z C Y =>X We Z. 

Examples (from intuitive set theory) 

1. The relation < on the set P of positive integers well-orders P. 
2. The relation< on the set of all integers totally orders, but does not wen­

order, this set. The set has no least element. 
3. The relation c on the set W of all subsets of the set of integers partially 

orders W but does not totally order W. For example, {1} ¢. {2} and 
{2} ¢. {1}. 

DEFINITION 

Simp(Z, Wt, Wz) for 

(:Jxt)(3x2)(3n)(3n)(Rel(n) 1\ Rel(n) 1\ W. = (r1,xt) 1\ Jf2 = (r2,x2) 

(\ Fncl (Z) 1\ ~(Z) = Xt (\ ~(Z) = X2 1\ (\iu)(\iv)(u E x 1 1\ V E x1 :::} 

( (u, v) E r 1 {:} (Z'u, Z'v) E r2) )) 

(Z is a similarity mapping of the relation r1 on x 1 onto the relation n on x2.) 

DEFINITION 
Sim(W1 , Jf2) for (:Jz)Simp(z, Wi, Wz) 

( W. and W2 are simi I ar ordered structures) 
Example 

Let r1 be the less-than relation < on the set A of non-negative integers 
{0, 1, 2, ... }, and let r2 be the less-than relation < on the set B of positive 
integers { 1, 2, 3, ... } . Let z be the set of all ordered pairs (x, x + 1) for x E A. 
Then z is a similarity mapping of (r1,A) onto (r2 ,B). 

DEFINITION 

X1 oX2 for {(u, v)I(:Jz)((u,z) E X2 1\ (z, v) E Xl)} 

(the composition of X2 and XI) 
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Exercises 

4.26 Prove: 

(a) ~ Simp(Z,X, Y) => M(Z) 1\ M(X) 1\ M(Y) 
(b) 1- Simp(Z,X, Y) => Simp(Z, Y,X) 
4.27 
(a) Prove: ~ Rel(XI) 1\ Rel(X2) => Rel(XJ oX2) 
(b) Let X 1 and X2 be the parent and brother relations on the set of human 

beings. What are the relations X 1 o X1 and X1 o X2? 
(c) Prove: ~ Fnc(Xt) 1\ Fnc(X2) => Fnc(Xt oX2) 
(d) Prove: ~ Fnc1 (Xt) 1\ Fnc1 (X2) => Fnc1 (Xt o X2) 
(e) Prove: ~ (Xt : Z-----* W 1\ X2 : Y-----* Z) ==? X1 o X2 : Y-----* W 

DEFINITIONS 

Fld(X) for ~(X)u~(X) (the field of X) 

TOR(X) for Rel(X) 1\ (X Tot (Fld(X))) (X is a total order) 

WOR(X) for Rel(X) 1\ (X We (Fld(X))) (X is a well- ordering relation) 

Exercise 

4.28 Prove: 

(a) ~ Sim(W., Tfl2) => Sim(Wz, Wt) 
(b) ~ Sim(Wt, ff2) 1\ Sim(TJ72, W3) => Sim(Wt, W3) 
(c) ~ Sim( (X, Fld(X)), (Y, Fld(Y))) => (TOR(X) {::} TOR'(Y)) 1\ (WOR(X) 

···· {::} WOR(Y)) 

If xis a total order, then the class of all total orders similar to xis called 
the order type of x. We are especially interested in the order types of well­
ordering relations, but, since it turns out that all order types are proper 
classes (except the order type {0} of 0), it will be convenient to find a class W 
of well-ordered structures such that every well-ordering is similar to a un­
ique member of W. This leads us to the study of ordinal numbers. 

DEFINITIONS 

E for { (x,y)lx E y} 
Trans(X) for (Vu) ( u EX => u C X) 

Secty(X, Z) for 

(the membership relation) 

(X is transitive) 

Z C X 1\ (Vu) (\i v) ( [ u E X 1\ v E Z 1\ (u, v) E Y] => u E Z) 
(Z is a Y-section of X, that is, Z is a subclass of X and every 
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member of X that Y-precedes a member of Z is also a 
member of Z.) 

Segy(X, W) for {x]x EX 1\ (x, W) E f}(the Y-segment of X determined 
by W, that is, the class of all members of X that Y-precede W) 

Exercises 

4.29 Prove: 
(a) ~ Trans(X) {::} (\iu)(\iv)(v E u 1\ u EX==> vEX) 
(b) 1- Trans(X) {::} UX C X 
(c) ~ Trans(0) 
(d) ~ Trans( {0}) 
(e) ~ Trans(X) 1\ Trans(Y) ==> Trans(XuY) 1\ Trans(XnY) 
(f) ~ Trans(X) ==> Trans(UX) 
(g) ~ (\iu)(u EX) ==> Trans(u)) :::::} Trans(UX) 
4.30 Prove: 
(a) ~ (Vu)[SegE(X, u) =X nu 1\ M(SegE(X, u))] 
(b) ~ Trans(X) {::} (Vu)(u EX:::::} SegE(X, u) = u) 
(c) ~ EWe X 1\ SectE(X, Z) 1\ Z #X==> (:3u)(u EX 1\ Z = SegE(X, u)) 

DEFINITIONS 

Ord(X) forE We X 1\ Trans(X) (X is an ordinal class if and 

only if the E -relation well--orders X and any member 

of X is a subset of X) 

On for {xiOrd(x)} (The class of ordinal numbers) 

Thus, ~ (\ix)(x E On{::} Ord(x)). An ordinal class that is a set is called an 
ordinal number, and On is the class of all ordinal numbers. Notice that a wf 
x EOn is equivalent to a predicative wf- namely, the conjunction of the 
following wfs: 

(a) (Vu)(u Ex==> ufj. u) 
(b) (Vu)(u C x 1\ u # 0 ==> (3v)(v E u 1\ ('v'w)(w E u 1\ w # v ==> v E w/\ 

wfj. v))) 
(c) (\iu)(u Ex:::::} u C x) 

(The conjunction of (a) and (b) is equivalent toE We x, and (c) is Trans(x).) 
In addition, any wf OnE Y can be replaced by the wf (:3y)(y E Y 1\ 
(Vz)(z E y {::} z E On)). Hence, any wf that is predicative except for the 
presence of 'On' is equivalent to a predicative wf and therefore can be used 
in connection with the class existence theorem. 
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Exercise 

4.31 Prove: (a) ~ 0 E On. (b) ~ 1 E On, where 1 stands for {0}. 

We shall use lower-case Greek letters a, {3, y, b, -r, ... as restricted variables 
for ordinal numbers. Thus, (\Ia)~( a) stands for (\ix)(x EOn==? ~(x)). and 
(3a)~(a) stands for (3x)(x EOn 1\ .@(x)). 

PROPOSITION 4.8 

(a) ~ Ord(X) :=}(X ~X 1\ (\iu)(u EX==? u¢ u)) 
(b) ~ Ord(X) 1\ Y c X 1\ Trans(Y) ==? Y EX 
(c) ~ Ord(X) 1\ Ord(Y) ==? (Y c X{:} Y EX) 
(d) ~ Ord(X) 1\ Ord(Y) :=}[(X E Y V X= Y V Y EX) 1\ •(X E Y 1\ Y EX) 

1\•(X E YV X= Y)] 
(e) ~ Ord(X) 1\ Y EX==? Y E On 
(f) ~EWe On 
(g) ~ Ord( On) 
(h) ~ -.M(On) 
(i) ~ Ord(X) ==? X = On V X E On 
(j) ~ y C On 1\ Trans(y) ==? y E On 
(k) ~ x E On 1\ y E On :=} (x C y V y C x) 

Proof 

(a) If Ord(X), then E is irrefiexive on X; so, (\lu)(u EX'=? u¢ u); and, if 
X EX, X ~ X. Hence, X¢ X. 

(b) Assume Ord(X) 1\ Y c X 1\ Trans(Y). It is easy to see that Y is a proper 
E-section of X. Hence, by Exercise 4.30(b,c), Y EX. 

(c) Assume Ord(X) 1\ Ord(Y). If Y EX, then Y C X, since X is transitive; 
but Y =/=-X by (a); so, Y C X. Conversely, if Y c X, then, since Y is 
transitive, we have Y EX by (b). 

(d) Assume Ord(X) 1\ Ord(Y) 1\X 1=- Y. Now, XnY C X and XnY ~ Y. 
Since X and Yare transitive, so is XnY. If X nYc X and X nYc Y, 
then, by (b), X nY EX and X nY E Y; hence, X nY EX nY, contra­
dicting the irreflexivity of E on X . Hence, either X nY =X or 
X nY = Y; that is, X c Y or Y C X. But X 1=- Y. Hence, by (c), X E Y or 
Y EX. Also, if X E Y andY EX, then, by (c), X c Y andY c X, which 
is impossible. Clearly. X E Y 1\ X= Y is impossible, by (a). 

(e) Assume Ord(X) 1\ Y EX. We must show E We Y and Trans(Y). Since 
Y EX and Trans(X), Y c X . Hence, since EWe X, EWe Y. Moreover, 
if u E Y and v E u, then, by Trans(X), v EX. Since E Con X and 
Y E X 1\ v E X, then v E Y V v = Y V Y E v. If either v = Y or Y E v, 
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then, s1nce E Tr X and u E Y 1\ v E u, we would have u E u, contra­
dicting (a). Hence v E Y. So, if u E Y, then u C Y, that is, Trans(Y). 

(0 By (a), E Irr On. Now assume XC On 1\X-/= 0. Let IX EX. If IX is the 
least element of X, we are done. (By least element of X we mean an 
element v in X such that (Vu)(u EX 1\ u-!= v ==>- v E u).) If not, then E 
We IX and X nIX I= 0; let f3 be the least elen1ent of X nIX. It is obvious, 
using (d), that f3 is the least element of X. 

(g) We must show EWe On and Trans(On). The first part is (f). For the 
second, if u EOn and v E u, then, by (e), v EOn. Hence, Trans( On). 

(h) If M( On), then, by (g), On E On, contradicting (a). 
(i) Assume Ord(X). Then XC On. If X-!= On, then, by (c), X EOn. 
(j) Substitute On for X andy for Yin (b). By (h), y c On. 
(k) Use parts (d) and (c). 

We see from Proposition 4.8(i) that the only ordinal class that is not an 
ordinal number is the class On itself. 

DEFINITIONS 

x <o y for x E On 1\ y E On 1\ x E y 
x~oY for y EOn 1\ (x = y V x <o y) 
Thus, for ordinals, <o is the same as E; so, <o well-orders On. In particular, 
from Proposition 4.8(e) we see that any ordinal x is equal to the set of 
smaller ordinals. 

PROPOSITION 4.9 (TRANSFINITE INDUCTION) 

I- (V {3)[ (Vex)( ex E f3 ::::} ex E X) ::::} f3 E X] ::::} On ~ X 

(If, for every {3, whenever all ordinals less than f3 are in X, f3 must also be in 
X, then all ordinals are in X.) 

Proof 

Assume (Vf3)[(V1X)(1X E f3 ==>-IX EX) ==>- f3 EX]. Assume there is an ordinal in 
On- X. Then, since On is well-ordered by E, there is a least ordinal f3 in 
On- X. Hence, all ordinals less than f3 are in X . So, by hypothesis, f3 is in X, 
which is a contradiction. 

Proposition 4.9 is used to prove that all ordinals have a given property 
.@(IX). We let X= {xi.?J(x) 1\x EOn} and show that (V/3)[(V1X)(1X E f3 =>­
.@(IX)) ==}- .?J({J)]. 
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DEFINITION 

x' for xu{x} 

PROPOSITION 4.10 

(a) ~ ('v'x)(x E On{:::} x' E On) 
(b) ~ (\ia)-{3{3)( IX <o {3 <o a') 
(c) ~ ('v'a)('v'{J)(a' = {3' =>a= {3) 

Proof 

(a) x Ex'. Hence, if x' E On, then x E On by Proposition 4.8(e). Conversely, 
assume x EOn. We must prove EWe (xu{x}) and Trans(xu{x} ). Since 
E Wex andx ¢:. x, E [rr (xu{x}). Also, ify-# (!) 1\y C xu{x}, then either 
y = { x}, in which case the least element of y is x, or y n x -:1 (!) and the 
least element of y nx is then the least element of y. Hence, E We 
(xu{x}). In addition, if yExu{x} and uEy, then uEx. Thus, 
Trans(xu{x}). 

(b) Assume a <o {3 <o a'. Then, a E {3 1\ {3 E a'. Since a E {3, {3¢:. a and {3 -:1 a 
by Proposition 4.8(d), contradicting {3 E a'. 

(c) Assume a'= {3'. Then {3 <o a' and, by part (b), {3~ 0a. 
Similarly, a~0 {3. Hence, a= {3. 

Exercise 

4.32 Prove: ~ (Va)( a C a') 

DEFINITIONS 

Suc(X) for X EOn 1\ (3ex)(X = cl) 

K 1 for {x/x = 0 V Suc(x)} 

w for {x/x E Kt 1\ \iu)(u Ex::::} u E KI)} 

Example 

(X is a successor ordinal) 

(the class of ordinals of the first kind) 

( w is the class of all ordinals ex of the first 

kind such that all ordinals smaller 

than ex are also of the first kind) 

~ (!) E w 1\ 1 E w. (Recall that 1 = {(!)}.) 

PROPOSITION 4.11 

(a) ~ (\Ia)( a E w {:::} a' E w) 
(b) ~ M(w) 
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(c) ~ 0 EX 1\ ('v'u)(u EX::::> u' EX) ::::>OJ C X 
(~) ~ (Va)( a E w 1\ {3 <o a ::::;. {3 E OJ) 

.proof 

:(a) Assume a E OJ. Since Suc(a'), d E K 1 . Also, if f3 E a', then f3 E a or 
{3 = a. Hence, f3 E K 1. Thus, a' E OJ. Conversely, if a' E w, then, since 
a E a' and ('v'f3)(f3 E a=? f3 E a'), it follows that a E OJ. 

~(b) By the axiom of infinity (I), there is a set x such that 0 Ex and 
(Vu)(u Ex::::;. u' Ex). We shall prove OJ C x. Assume not. Let a be the 
least ordinal in OJ- x. Clearly, a i= 0. since 0 Ex. Hence, Suc(a). So, 
(3{3)(a = {3'). Let b be an ordinal such that a= b'. Then b <o a and, by 
part (a), bE OJ. Therefore, bE x. Hence, b' Ex. But a= b'. Therefore, 
a Ex, which yields a contradiction. Thus, OJ C x. So, M(OJ) by Corol­
lary 4.6(b). 

(c) This is proved by a procedure similar to that used for part (b). 
-(d) This is left as an exercise. 

The elements of OJ are called finite ordinals. We shall use the standard 
-notation: l for 0', 2 for 1 ', 3 for 2', and so on. Thus, 
0 E OJ, 1 E OJ, 2 E OJ, 3 E OJ, ••.• 

The non-zero ordinals that are not successor ordinals are called 
limit ordinals. 

DEFINITION 

Lim(x) for x E On 1\ x tJ_ K 1 

Exercise 

4.33 Prove: 
(a) ~Lim(OJ) 

(b) ~ ('v'a)(V{J)(Lim(a) 1\ f3 <o a=? f3' <o a). 

PROPOSITION 4.12 

(a) ~ ('v'x)(x COn ::::;.[Ux EOn 1\ ('v'a)(a Ex==> a~o Ux) 1\ ('v'{J)(('v'a) 
(a Ex::::;. a~ 0{3) ==> Ux~ 0{3)]). (Ifx is a set of ordinals, then Ux is an 
ordinal that is the least upper bound of x.) 

(b) ~ ('v'x)(x COn 1\x-:/:- 0 A ('v'a)(a Ex=? (3{3)({3 Ex A a <o {3))] 
=? Lim(Ux)). (If xis a non-empty set of ordinals without a maximum, 
then Ux is a limit ordinal.) 



AXIOMATIC SET THEORY 

Proof 

(a) Assume x C On. Ux, as a set of ordinals, is well-ordered by E. Also~:.if 
a E Ux 1\ {3 E a, then there is some y with y Ex and a E y. Then 
{3 E a 1\ a E y; sine~ _every ordina) is transitive, {3 E y .. ~o, {3 E Ui 
Hence, Ux 1s translt1Ve and, therefore, Ux E On. In add1t1on, if a E :r 
then IX c Ux; so, IX ~o Ux, by Proposition 4.8(c). Assume now th~~ 
('v'a)(a Ex:::;.. IX~ 0{3). Clearly, if bE Ux, then there is some y such th~t 
bEy 1\ y Ex. Hence, 'Y~of3 and so, b <o {3. Therefore, Ux c {3 and, by 
Proposition 4.8(c), Ux ~of3· · 

(b) Assume x C On!\ x-# f/JA (Va)(a Ex:::?- (3{3)({3 Ex 1\ IX <o {3) ). If Ux = 0. 
then IX Ex implies IX= f/J. So, x = f/J or x = 1, which contradicts our:~ 
assumption. Hence, Ux -=f. f/J. Assume Suc(Ux). Then Ux = y' for some·' 
y. By part (a), Ux is a least upper bound of x. Therefore, y is not an;: 
upper bound of x; there is some bin x withy <o b. But then b = Ux,: 
since U x is an upper bound of x. Thus, U x is a maximum element of x _, 

' contradicting our hypothesis. Hence, -.Suc(Ux), and Lim(Ux) is the~ .. 
only possibility left. 

Exercise 

4.34 Prove: 
(a) f- ('v'a)([Suc(a) :::;.. CU a)'= a] A [Lim( a):::;.. U IX= a]). 
(b) If f/J -:/=- X c On' then n X is the least ordinal in X. 

We can now state and prove another form of transfinite induction. 

PROPOSITION 4.13 (TRANSFINITE INDUCTION: SECOND FORM) 

(a) f- [f/J EX 1\ (\ia)(aEX=?-1X1 EX) 1\ ('v'a)(Lim(a) 1\ (\1{3)({3 <o a~{J EX) 
~IX EX)] :::;.. On C X. 

(b) (Induction up to b.) f- [f/J EX A (Va)(a <o b 1\ IX EX 
~ tX1 EX) 1\ (\ia)(a <o b 1\ Lim( a) 1\ (V{3)({3 <o IX 

~ {3 E X) ~ IX E X)] ==? b ~ X. 
(c) (Induction up tow.) f-f/JEX!\(\fa)(a <ow!\ IX EX:::;.. 1X1 EX):::;.. w CX. 

Proof 

(a) Assume the antecedent. Let Y = { x I x E On 1\ (V IX)( IX ~ 0 x :::;.. IX E X)}. It 
is easy to prove that (Va)(a <o y:::;.. IX E Y) :::;.. y E Y. Hence, by Pro­
position 4.9, On C Y. But Y c X. Hence, On c X. 

(b) The proof is left as an exercise. 
(c) This is a special case of part (b), noting that f- ('v'a)(a <om=* 

-.Lim( IX)). 
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Set theory depends heavily upon definitions by transfinite induction, 
·which are justified by the following theorem. 

/pROPOSITION 4.14 

~(a) r (VX)(31Y)(Fnc(Y) 1\ !0(Y) =On 1\ (Va)(Y'a =X'(a [ Y))). (Given X, 
there is a unique function Y defined on all ordinals such that the value 
of Y at a is the value of X applied to the restriction of Y to the set of 
ordinals Less than a.) 

'(b) 1- (Vx)(VXI)(VX2)(31 Y)(Fnc(Y) 1\ .@(Y) =On 1\ Y'0 = x 1\ (Va)(Y'(a') = 
X.'(Y'a)) 1\ (Va)(Lim(a) ~ Y'a =X2'(a[Y))). 

-(c) (Induction up to b.) I- (Vx)(VXI)(VX2)(31 Y)(Fnc(Y) 1\ !0(Y) = b 1\ Y'0 = 

x 1\ (Va)(a' <o b:::::} Y'(d) = Xt '(Y'a)) 1\ (Va)(Lim(a) 1\ a <o b ~ Y'a = 
X2'(a[Y))). 

Proof 

(a) Let ll = {u!Fnc(u) 1\ !0(u) EOn 1\ (Va)(a E !0(u) ~ u'a = X'(a [ u))}. 
Now, if u1 E ll and u2 E Jl, then u1 C u2 or u2 C u1• ln fact, let 
y1 = !0(ui) and Y2 = !0(u2). Either y1 ~oY2-0r Y2 ~oy1 ; say, y1 ~0y2 . Let 
w be the set of ordinals a <o y1 such that u1 'a# u2'a; assume w # 0 and 
Let rJ be the least ordinal in w. Then for all fJ <o rJ, u1 '{J = u2'{J. Hence, 
u1 'a= rJ [ u2. But UJ '11 = X'(rJ [ ui) and u2'rJ = X'(17 [ u2); and so, 
u1 '11 = u2 '17, contradicting our assumption. Therefore, w = 0; that is, for 
all a~oy1 , u1'a = u2'a. Hence, Ut = y1[ut = y1£u2 c u2. Thus, any two 
functions in Y1 agree in their common domain. Let Y = U Y1• We leave 
it as an exercise to prove that Y is a function, the domain of which is 
either an ordinal or the class On, and (Va)(a E !0(Y)~ Y'a =X'(a[Y)). 
That !0(Y) =On follows easily from the observation that, if !0(Y) = b 
and if we let W = Yu{ (b,X'Y)}, then WE Y1; so, W C Y and 
bE !0(Y) = b, which contradicts the fact that b rt b. The uniqueness of 
Y follows by a simple transfinite induction (Proposition 4.9). 

The proof of part (b) is similar to that of (a), and part (c) follows from (b). 
Using Proposition 4.14, one can introduce new function letters by 

transfinite induction. 

Examples 
1. Ordinal addition. In Proposition 4.14(b), take 

X= {J XI= {(u, v)lv = U} X2 = {(u, v)lv = u~(u)} 
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Hence, for each ordinal {3, there is a unique function Yp such that 

Yt/0 = {31\ (Vex)(Yfi'(cl) = (Yp'ex)' 1\ [Lim(ex) :::;. Yp'ex = U(Yp"ex)]) 

Hence there is a unique binary function +o with domain (On) 2 
such that, for 

any ordinals {3 and y, +o(f3, y) = Yp'y. As usual. we write {3 +o y instead of 
+o(f3, y). Notice that: 

In particular, 

{3 +o (/) = {3 

f3 +o (y') = ({3 +o y)' 

Lim( ex) ::::} {3 +o ex= U ({3 +or) 
r<oa 

{3 +o 1 = {3 +o (0') = ({3 +o 0)' = fJ' 

2. Ordinal multiplication. In Proposition 4.14(b), take 

X= 0 Xt = {(u, v)lv = u +o {3} x2 = {(u, v)lv = u~(u)} 

Then, as in Example 1, one obtains a function {3 X 0 y with the properties 

{3 Xo 0 = 0 
{3 Xo (y') = ({3 Xo Y) +o {3 

Lim( ex) :::;. {3 X0 ex= U ({3 Xo r) 
r<oCI' 

Exercises 

4.35 Prove: I- {3 X 0 1 = {3 1\ {3 Xo 2 = {3 +o [3. 
4.36 Justify the following definition of ordinal exponentiation. t 

exp({J, 0) = 1 

exp({J, y') = exp({J, y) X 0 {3 

Lim( ex) :::;. exp({J, ex) = U exp({J, r) 
0<oT<oCI' 

For any class X, let Ex be the membership relation restricted to X; that is, 
Ex= { (u, v)iu E v 1\ u EX 1\ vEX}. 

twe use the notation exp({J, ex) instead of~ in order to avoid confusion with the 
notation xy to be introduced later. 
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:,pROPOSffiON 4.tst 

-Let R be a well-ordering relation on a class Y; that is, R We Y. Let F be a 
function from Y into Y such that, for any u and v in Y, if (u, v) E R, then 
(F'u,F'v) E R. Then, for all u in Y, u = F'u or (u,F'u) E R. 

Proof 

LetX = {ui(F'u, u) E R}. We wish to show that X= 0. Assume X -=I 0. Since 
X c Y and R well-orders Y, there is an R-least element u0 of X. Hence, 
(F'u0 , u0) E R. Therefore (F'(F'uo), F'uo) E R. Thus, F'uo EX, but F'u0 is 
R-smaller than u0, contradicting the definition of u0 • 

COROLLARY 4.16 

If Y is a class of ordinals, F: Y --7 Y, and F is increasing on Y (that is, 
a E Y 1\ {3 E Y 1\ ex <o {3::::? F'cx <o F'{J), then ex ~oF'CJ. for all ex in Y. 

Proof 

In Proposition 4.15, let R beEr. Note that Er well-orders Y, by Proposition 
4.8(f) and Exercise 4.25. 

COROLLARY 4.17 

Let ex <o {3 andy C ex; that is, let y be a subset of a segment of {3. Then (Ep, {3) 
is not similar to (Ey, y) . 

Proof 

Assume (Ep, {3) is similar to (Ey,y). Then there is a function/ from {3 onto y 
such that, for any u and v in {3, u <o v {:} f'u <o f'v. Since the range off is y, 
f'cx E y. But y C ex. Hence f'cx <o ex. But, by Corollary 4.16, ex~ of' ex, which 
yields a contradiction. 

tFrom this point on, we shall express many theorems of NBG in English by 
using the corresponding informal English translations. This is done to avoid writing 
lengthy wfs that are difficult to decipher and only in cases where the reader should be 
able to produce from the English version the precise wf of NBG. 
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COROLLARY 4.18 

(a) For a i= {J, (Ea, a) and (Ep, {J) are not similar. 
(b) For any a, iff is a similarity mapping of (Ea, a) with (Ea, a), thenj is 

the identity mapping, that is, f'{J = fJ for all fJ <o a. 

Proof 

(a) Since a i= {J, it follows by Proposition 4.8(d,c) that one of a and fJ is a 
segment of the other; say, a is a segment of {J. Then Corollary 4.17 tells 
us that (Ep, {J) is not similar to (Ea, a). 

(b) By Corollary 4.16, f'fJ';::;ofJ for all fJ <o a. But, noting by Exercise 
4.26(b) that j is a similarity mapping of (Ea, a) with (Ea, a), we again 
use Corollary 4.16 to conclude that (})'{3';::; 0 {3 for all fJ <o a. Hence 
fJ = (})'(f'{J) ';::; 0 /'fJ';::;ofJ and, therefore, f'{J = {J. 

PROPOSITION 4.19 

Assume that a non-empty set u is the field of a well-ordering r. Then there is 
a unique ordinal y and a unique similarity mapping of (E,, y) with (r, u). 

Proof 

Let F = { (v, w) lw E u- v 1\ (\tz)(z E u- v :::::> (z, w) ¢:. r)}. F is a function 
such that, if vis a subset of u and u - v -I- 0, then F' vis the r-least element of 
u- v. Let X= { (v, w)I(G£(v), w) E F}. Now we use a definition by transfinite 
induction (Proposition 4.14) to obtain a function Y with On as its domain 
such that (Va)(Y'a = X'(a f Y)). Let W = { aiY"a C u 1\ u- Y"a 10}. 
Clearly, if a E Wand fJ E a, then fJ E W. Hence, either W =On or Wis some 
ordinal y. (If W i= On, let y be the least ordinal in On- W.) If a E W, then 
Y' a = X' (a £ Y) is the r-least element of u-Y" a; so, Y' a E u and, if fJ E a, 
Y'a i= Y'{J. Thus, Y is a one-one function on Wand the range of Y restricted 
to W is a subset of u. Now, let h = (WfY) and f = h; that is, let f be the 
inverse of Y restricted to W. So, by the replacement axiom (R), W is a set. 
Hence, W is some ordinal y. Let g = yfY. Then g is a one-one function with 
domain y and range a subset u1 of u. We must show that u1 = u and that, if a 
and fJ are in y and fJ <o a, then (g'{J, g'a) E r. Assume a and fJ are in y and 
fJ <o a. Then g"{J C g"a and, since g'a E u- g"a, g'a E u- g"{J. But g'{J is 
the r-least element of u- g"{J. Hence, (g'{J, g'a) E r. It remains to prove that 
u1 = u. Now, u1 = Y"y. Assume u- u1 i= 0. Then y E W. But W = y, which 
yields a contradiction. Hence, u = UJ. That y is unique follows from Cor­
ollary 4.18(a). 



EQUINUMEROSITY. FINITE AND DENUMERABLE SETS 

Exercise 

4.37 Show that the conclusion of Proposition 4.19 also holds when u = f/J 
and that the unique ordinal y is, in that case, f/J. 

pROPOSITION 4.20 

Let R be a well-ordering of a proper class X such that, for each y EX, the 
class of all R-predecessors of yin X (i.e., the R-segment in X determined by 
y) is a set. Then R is 'similar' to E0 ,,; that is, there is a (unique) one-one 
mapping H of On onto X such that a E {3 {::} (H'a,H'{J) E R. 

Proof 

Proceed as in the proof of Proposition 4.19. Here, however, W =On; also, 
one proves that ~(Y) =X by using the hypothesis that every R-segment of 
X is a set. (If X- ~(Y) f f/J, then, if w is the R-least element of X- ~(Y), 
the proper class On is the range of Y, while the domain of Y is the R-segment 
of X determined by w, contradicting the replacement axiom.) 

Exercise 

4.38 Show that, if X is a proper class of ordinal numbers, then there is a 
unique one-one mapping H of On onto X such that a E {3 {::} H'a E H'{J. 

4.3 EQUINUMEROSITY. FINITE AND DENUMERABLE SETS 

We say that two classes X andY are equinumerous if and only if there is a 
one-one function F with domain X and range Y. We shall denote this by 
X"' Y. 

DEFINITIONS 

X'"'"'Y for Fnc, (F) 1\ !0(F) =X 1\ ~(F) = Y 
F 

X::: Y for (3F)(X"'Y) 
F 

Notice that~ (Vx)(Vy)(x "'y {::} (3z)(x"'y)). Hence, a wfx ""y is predicative 
z 

(that is, is equivalent to a wf using only set quantifiers). 

253 

-
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Clearly, if X rv Y, then Y rv X, where G =F. Also, if X rv Y andy ~Z 

F G R Fz 
then X rv Z, where H is the composition F2 o F1. Hence, we have the fo}. 

H 

lowing result. 

PROPOSITION 4.21 

(a) ~X""' X 
(b) ~ X ""' Y ===? Y ""' X 
(c) ~X rv Y 1\ Y'"" Z ===?X rv Z 

PROPOSITION 4.22 

(a) ~(X'"" Y 1\Z""' W 1\XnZ = 01\ YnW = 0)::::} XuZ'"" YnW 
(b) ~ (X rv Y 1\ Z rv W) ::::} X X Z rv Y X W 
(c) ~Xx{y}rvX 
(d) ~X X y ""' y X X 
(e) ~ (X X Y) X z rv X X ( y X Z) 

Proof 

(a) Let X""' Y and Z rv W. Then XuZ ""'YuW, where H = FuG. 
F G H 

(b) Let X,.__, Y and Z""' W. Let 
F G 

H = { (u, v)j(3.x)(3y)(x EX 1\y E Z 1\ u = (x,y) 1\ v = (F'x, G'y))} 
ThenXxZ~YxW. 

H 
(c) Let F = { (u, v)lu EX 1\ v = (u,y) }. Then Xrv X x {y}. 

F 

(d) Let F = { (u, v)l(3x)(3y)(x EX 1\y E Y 1\ u = {x,y) 1\ v = (y,x) )}. 
Then X x Y"' Y x X. 

F 

(e) Let F = { (u, v)l(3x)(3y)(3z)(x EX 1\y E Y 1\ z E Z 1\ u = ( (x,y),z) 1\ v 
= (x, (y,z)))}. Then (X x Y) x Z "'X x (Y x Z). 

F 

DEFINITION 

xY for {ulu: y ~X} 
xY is the class of all sets that are functions from y into X. 
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:i£~ercises 

:'prove the following. 

-,4.39 ~ (\fX)(\fY)(3Xi)(3Yj)(X ~X11\ Y"' Y11\XInYI = 0) 
4.40 ~ ~(y) rv 2J' (Recall that 2 = {0, 1} and l = {0}.) 
4.41 (a) ~ •M(Y) ::::}- Xy = 0 

(b) ~ (\fx)(\fy)M(xY) 
,4.42 (a) ~ X 0 = 1 

(b) ~ [Y rv 1 
(c) ~ Y =1: 0 ::::}- (L)Y = 0 

4.43 ~X '"'"'X{u} 
4.44 ~ X rv Y 1\ Z '"'"' W =? XZ rv yW 
4.45 ~X nY = 0 ::::}- zXuY '"'"'zx X zY 
4.46 ~ (\ix)(\fy)j\fz)[(xYY "'Xyxz] 

4.47 ~ (X X Y) rv xz X yz 
4.48 ~ (\fx)(\fR)(R We x ::::}- (3a)(x ~a)) 

We can define a partial order ~ on classes such that, intuitively, X~ Y if 
and only if Y has at least as many elements as X. 

DEFINITIONS 

X~Y for (3Z)(Z ~ Y AX"' Z) 

(X is equinumerous with a subclass of Y) 

X-< Y for X ~y A •(X ~ Y) 

(Y is strictly greater in size than X) 

Exercises 

Prove the following. 

4.49 ~ x·~y {::}(X-< Y V X rv Y) 
4.50 ~ X~Y 1\ ·M(X) => -.M(Y) 
4.51 ~ X~Y 1\ (3Z)(Z We Y) ::::}- (3Z)(Z We X) 
4.52 ~ (\fa)(\f{3)(a~f3 V {3~a) [Hint: Proposition 4.8(k).] 

PROPOSITION 4.23 

(a) ~x~x 1\-.(x -<X) 
(b) ~X c Y =>X~Y 
(c) ~X~Y 1\ Y~Z =}-X~Z 
(d) ~ X~Y 1\ Y~X =>X rv y (Bernstein's theorem) 
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Proof 

(a), (b) These proofs are obvious. 
(c) Assume Xrvlll\ Y1 C Y !\ yrvzl 1\ Zt C Z. Let H be the composition of; F - G -

F and G. Then r!Jl(H) C Z 1\Xrvf!A(H). So, X ~z. - H 

(d) There are many proofs of this nontrivial theorem. The following one 
was devised by Hellman (1961). First we derive a lemma. 

Lemma. AssumeXnY = 0,XnZ = 0 and YnZ = 0, and letX~uYuZ 
F . 

Then there is a G such that X3:X u Y. 
G 

Proof Define a function H on a subclass of X x OJ as follows~ 

((u,k), v) E H if and only if u EX and k E OJ and there is a functionf with 
domain k' such that.f'0 = F'u and, ifj E k, thenf'j EX andf'U') = F'(f'j) 
and f'k = v. Thus, H'( (u, f/J)) = F'u,H'( (u, 1)) = F'(F'u) if F'u EX, and 
H'( (u, 2)) = F'(F'(F'u)) if F'u and F'(F'u) are in X, and so on. Let X* be the 
class of all u in X such that (3y)(y E OJ 1\ (u,y) E !?J(H) 1\H'( (u,y)) E Z). Let 
Y* be the class of all u in X such that (\iy)(y E OJ 1\ (u,y) E !?J(H) 
=} H'((u,y))tj.Z). Then X =X*uY*. Now define Gas follows: !?J(G) = X 
and, if u EX*, then G'u = u, whereas, if u E Y*, then G'u = F'u. Then 
X rv XuY. (This is left as an exercise.) 

G 

Now, to prove Bernstein's theorem, assume X rv Y1 !\ Yt C Y 1\ Y~XiJ\ 
F G 

X1 C X. LetA= G"Yt C Xt C X. ButAn(Xt- A)= 0,An(X -XI)= 0 and 
(X - XI)n(X1 -A)= f/J. Also, X= (X -X1)u(X1 -A)uA, and the com­
positon H ofF and G is a one-one function with domain X and range A. 
Hence, A~. So, by the lemma, there is a one-one function D such that 

H 
A "'X1 (since (X1- A)uA = X1). LetT be the composition of the functions 

D ~ ~ 

H,D and G; that is, T'u = (G)'(D'(H'u)). Then X"' Y, since X rv A and 
A rv Xt and Xt rv Y. T H 

D G 

Exercises 

4.53 Carry out the details of the following proof (due to J. Whitaker) of 
Bernstein's theorem in the case where X and Y are sets. Let 
X'::::'.. JlA. Yit C Y 1\ Y rv X1 A.Xt C X. We wish to find a set Z C X such that 

F - G -

G, restricted to Y- F"Z, is a one-one function of Y- F"Z onto X- z. [If 
we have such a set Z, let H = (ZfF)u((X- Z)rG); that is, H'x = F'x for 
X E Z, and H'x = G'x for X E X- z. Then x~Y.] Let z = {xI (3u)(u 

H 
C X 1\x E u 1\ G"(Y- F"u) C X - u)}. Notice that this proof does not 
presuppose the definition of OJ nor any other part of the theory of ordinals. 
4.54 Prove: (a) 1-X~ XuY (b) 1- X-< Y =} •(Y-< X) (c) 1- X-< Y 1\ Y~Z 
=}X-<Z 
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_pROPOSITION 4.24 AssumeX~Y andA~B. Then: 

(a) YnB = 0::::} XuA~YuB 
(b) XxA~YxB 
(c) XA~yB ifB is a set and •(X =A= Y = 01\B I 0) 

Proof 

(a) Assume X"-JY1 C Y and A"'B1 C B. Let H be a function with domain 
F G 

Xu A such that H'x = F'x for x EX, and H'x = G'x for x E A -X. Then 
XuAedl"(XuA) c YuB. 

H 

(b) and (c) are left as exercises. 

PROPOSITION 4.25 

(a) ~ •(3f)(Fnc(f) 1\ !»(f)= x 1\ !!Jl(f) = Y'(x)). (There IS no function 
from x onto .?l'(x).) 

(b) ~ x -< .?l'(x) (Cantor's theorem) 

Proof 

(a) Assume Fnc(f) 1\ !»(f) = x 1\ !!Jl(f) = .?l'(x). Let y = { uiu Ex 1\ 

ufj_ f'u }. Then y E .?l'(x). Hence, there is some z in x such that f'z = y. 
But, (\fu)(u E y {::} u Ex 1\ ufj_ f'u). Hence, (\iu)(u E f'z {::} u Ex 1\ u 
fj_f'u). By rule A4, z E f'z {::} z Ex 1\ ztf.f'z. Since z Ex, we obtain 
z E f'z {::} zf/::.f'z, which yields a contradicition. 

(b) Let f be the function with domain x such that f'u = { u} for each u in x. 
Then f"x C .?l'(x) and f is one-one. Hence, x~.?l'(x). By part (a), 
x "-J .?l'(x) is impossible. Hence, x-< .?l'(x). 

[n naive set theory, Proposition 4.25(b) gives rise to Cantor's paradox. If 
we let x = V, then V-< .?i'(V). But .?I'(V) C V and, therefore, .?I'(V) ~ V. 
From V-< .?I'(V), we have V~.?I'(V). By Bernstein's theorem, V "-J .?I'(V), 
contradicting V -< .?I'(V). In NBG, this argument is just another proof that 
V is not a set. 

Notice that we have not proved ~ (\ix)(\fy)(x~yVy~x). This in­
tuitively plausible statement is, in fact, not provable, since it turns out to be 
equivalent to the axiom of choice (which will be discussed in Section 4.5). 

The equinumerosity relation "-J has all the properties of an equivalence 
relation. We are inclined, therefore, to partition the class of all sets into 
equivalence classes under this relation. The equivalence class of a set x 
would be the class of all sets equinumerous with x. The equivalence classes 
are called Frege-Russell cardinal numbers. For example, if u is a set and 
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x = { u}, then the equivalence class of x is the class of all singletons { v} and is 
referred to as the cardinal number lc. Likewise, if u f- v andy = { u, v}, then 
the equivalence class of y is the class of all sets that contain exactly twa 
elements and would be the cardinal number 2c; that is 2c is 
{xl(3w)(3z)(w f- z 1\x = {w,z})}. All the Frege-Russell cardinal numbers 

' except the cardinal number Oc of 0 (which is {0} ), tum out to be proper 
classes. For example, V ~ lc. (Let F'x = {x} for all x. Then Vr_::: lc.) But 

. F ' -.M(V). Hence. by the replacement axwm, -.M(lc). 

Exercise 

4.55 Prove 1- ·M(2c). 

Because all the Frege-Russell cardinal numbers (except Oc) are proper 
classes, we cannot talk about classes of such cardinal numbers, and it is 
difficult or impossible to say and prove many interesting things about them. 
Most assertions one would like to make about cardinal numbers can be 
paraphrased by the suitable use of rv, ~ and -<. However, we shall see later 
that, given certain additional plausible axioms, there are other ways of de~ 
fining a notion that does essentially the same job as the Frege-RusseJl 
cardinal numbers. 

To see how everything we want to say about cardinal numbers can be 
said without explicit mention of cardinal numbers, consider the following 
treatment of the 'sum' of cardinal numbers. 

DEFINITION 

X +c Y for (X x {0})u(Y x {1}) 
Note that 1- 0 f- 1 (since 1 is {0}). Hence, X x {0} and Y x {I} are disjoint 
and, therefore, their union is a class whose 'size' is the sum of the 'sizes' of X 
andY. 

Exercise 

4.56 Prove: 
(a) 1-X::::::;X+cY/\Y~X+cY 
(b) 1- X rv A 1\ Y rv B ~ X +c Y rv A +c B 
(c) 1- X +c Y rv Y +eX 
(d) 1- M(X +c Y) {::} M(X) 1\ M(Y) 
(e) 1- X +c (Y +c Z) rv (X +c Y) +c Z 
(f) 1- X::::::; Y::::} X +c Z::::::; Y +c Z 
(g) 1- X +c X= X x 2 (Recall that 2 is {0, 1 }.) 
(h) 1- xY+cZ rv Xy X xz 
(i) 1- X rv X +c I ~ 2x +c X r_::: 2x 



EQUINUMEROSITY. FINITE AND DENUMERABLE SETS 

Finite sets 

Remember that w is the set of all ordinals ex such that ex and all smaller 
ordinals are successor ordinals or 0. The elements of w are called finite 
ordinals, and the elements of On - w are called infinite ordinals. From an 
intuitive standpoint, w consists of 0, 1, 2, 3, ... , where each term in this 
sequence after 0 is the successor of the preceding term. Note that 0 contains 
no members, l = {0} and contains one member, 2 = {0, I} and contains 
two members, 3 = {0, l, 2} and contains three members, etc. Thus, it is 
reasonable to think that, for each intuitive finite number n, there is exactly 
one finite ordinal that contains exactly n members. So, if a class has n 
members, it should be equinumerous with a finite ordinal. Therefore, a class 
will be called finite if and only if it is equinumerous with a finite ordinal. 

DEFINITION 

Fin(X) for (3a)(a E w 1\X "'a) (X is fmite) 

Exercise 

4.57 Prove: 

(a) 1- Fin(X) ::::} M(X) (Every finite class is a set) 
(b) 1- (\frx)(rx E w ==>-Fin( ex)) (Every finite ordinal is finite.) 
(c) 1- Fin(X) 1\ X "' Y ::::} Fin(Y) 

PROPOSITION 4.26 

(a) 1- (\frx)(rx '1:- (IJ *(X rv ex'). 
(b) 1- (\frx)(\lf3)(rx E w 1\ ex-/= f3::::} •(ex rv {3)). (No finite ordinal is equinu­

merous with any other ordinal.) 
(c) 1- (\frx)(\fx)(rx E w 1\x c ex==>- •(ex rv x)). (No finite ordinal is equinu­

merous with a proper subset of itself.) 

Proof 

(a) Assume ex¢:. w. Define a function f with domain ex' as follows: f'o = o' 
if o E w; f'o = o if o E ex' 1\ () ~ wu{ ex}; and f'rx = 0. Then ex' rv ex. 

f 
(b) Assume this is false, and let ex be the least ordinal such that ex E w and 

there is {3-/= ex such that ex f'V {3. Hence, ex <o fJ. (Otherwise, f3 would be a 
smaller ordinal than ex and f3 would also be in w, and f3 would be 
equinumerous with another ordinal, namely, ex.) Let ex-::::. {3. If ex= 0, 

f 
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then f = 0 and f3 = 0, contradicting ex =J fJ. So, ex f= 0. Since 
ex E w, ex=[)' for some bE w. We may assume that fJ = y' for some y. (If 
f3 E (JJ, then f3 -=1 0; and if f3 ¢:. w, then, by part (a), f3 rv P' and we can 
take {f instead of {3.) Thus, [)' =ex rv y'. Also, [J f= y, since ex f:- {3. 

f 
Case 1. j'[J = y. Then [J ; y, where g = b[j. 

Case 2. j'[J t- y. Then there is some 11 E b such that f'p = y. Let 
h=((b£/)-{(p,y)})u{(p,j'b)}; that is, let h'1:=j'1: if 7:f:_{b,p}, and 
h'p = f'b. Then [J rv y. 

h 

In both cases, [J is a finite ordinal smaller than ex that is equinumerous 
with a different ordinal y, contradicting the minimality of ct. 

(c) Assume {3 E w /\ x C fJ 1\ fJ rv x holds for some fJ, and let ex be the least 
such {3. Clearly, ex f= 0; hence, ex= y' for some y. But, as in the proof of 
part (b), one can then show that y is also equinun1erous with a proper 
subset of itself, contradicting the minimality of a. 

Exercises 

4.58 Prove: I- (Vex) (Fin (ex) {:::} ex E w). 
4.59 Prove that the axiom of infinity (I) is equivalent to the following 
sentence. 

(*) (3x)((3u)(u Ex) A (\fy)(y Ex::::} (3z)(z Ex Ay C z))) 

PROPOSITION 4.27 

(a) I- Fin(X) 1\ Y c X::::}- Fin(Y) 
(b) I- Fin(X) ::::}- Fin(Xu{y}) 
(c) I- Fin(X) 1\ Fin(Y)::::} Fin(XuY) 

Proof 

(a) Assume Fin(X) 1\ Y C X. Then X~ ex, where ex E w. Let g = Yff and 
W = g"Y c ex. W is a set of ordinals, and so, Ew is a well-ordering of W. 
By Proposition 4.19, (Ew, W) is similar to (Ep, {3) for some ordinal {J. 
Hence, W rv {J. In addition, fJ ~ 0 cx. (If ex <o fJ, then the similarity of 
(Ep, {3) to (Ew, W) contradicts Corollary 4.17.) Since ex E w, fJ E w. 
From Y r-v W A W rv {3, it follows that Fin(Y). 

g 

(b) If y EX, then Xu{y} =X and the result is trivial. So, assume y ¢:.X. 
From Fin(X) it follows that there is a finite ordinal ex and a function f 
such that ex rv X. Let g = fu{ (a,y)}. Then a' rv Xu{y }. Hence, 
Fin(Xu{y} ). 1 g 



,.,(c) 

EQUINUMEROSITY. FINITE AND DENUMERABLE SETS 

Let Z = { ulu E w 1\ (\fx)(\fy)(\if)(x r-v u 1\ Fin(y) ~ Fin(x u y) )}. We 
f . 

must show that Z = w. Clearly, 0 E Z, for 1f x r-v 0, then x = 0 and 
xu y = y. Assume that ex E Z. Let x r-v ex' and Fin(y). Let w be such that 

f'w =ex and let XI= X- {w}. The£ XI rv ct. Since ex E Z, Fin(xi u y). 
Butxuy =(xi uy)u{w}. Hence, by part (b), Fin(xuy). Thus, ex' E Z. 
Hence, by Proposition 4.ll(c), Z = w. 

-DEFINITIONS 

DedFin(X) for M(X) 1\ (\iY)(Y c X ::::} •(X "' Y)) 

(X is Dedekind-finite, that is, X is a set that is not equinumerous 

with any proper subset of itself) 
Dedlnf(X) for M(X) 1\ ·DedFin(X) 

(X is Dedekind-infinite, that is, X is a set that is equinumerous 

with a proper subset of itself) 

COROLLARY 4.28 

(\fx)(Fin(x) ~ DedFin(x)) (Every finite set is Dedekind-finite)t 

Proof 

This follows easily from Proposition 4.26(c) and the definition of 'finite'. 

DEFINITIONS 

Inf(X) for •Fin(X) 

Den(X) for X ""' OJ 

Count(X) for Fin(X) V Den(X) 

Exercise 

4.60 Prove: 

(X is in finite) 

(X is denumerable) 

(X is countable) 

(a) 1- Inf(X) 1\X"' Y ~ Inf(Y) 
(b) 1- Den(X) I\ X~ Y ~ Den(Y) 
(c) 1- Den(X) ~ M(X) 
(d) 1- Count(X) I\ X"' Y ==> Count(Y) 
(e) 1- Count(X) ~ M(X) 

tThe converse is not provable without additional assumptions, such as the ax­
iom of choice. 
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PROPOSITION 4.29 

(a) 1- Inf(X) /\XC Y ==> Inf(Y) 
(b) 1- Inf( X) {::} lnf(X u {y}) 
(c) 1- Dedlnf(X) => Inf(X) 
(d) 1- Inf(w) 

Proof 

(a) This follows from Proposition 4.27(a). 
(b) 1- Inf(X) => Inf(Xu{y}) by part (a), and 1- Inf(Xu{y})::::} lnf(X) by 

Proposition 4.27(b) 
(c) Use Corollary 4.28. 
(d) 1- w ¢:: w. If Fin(w), then w ~ex for some ex in w, contradicting Propo­

sition 4.26(b). 

PROPOSITION 4.30 

1- (\iv)(\iz)(Den(v) 1\ z C v ==> Count(z)). (Every subset of a denumerable set 
is countable.) 

Proof 

It suffices to prove that z C OJ::::} Fin(z) V Den(z). Assume z C w 1\ •Fin(z). 
Since -.Fin(z), for any ex in z, there is some f3 in z with ex < 0 {3. (Otherwise, 
z C r1 and, since Fin(ex'), Fin(z).), Let X be a function such that, for any ex in 
w, X'ex is the least ordinal f3 in z with ex <o {3. Then, by Proposition 4.14(c) 
(with b = w), there is a function Y with domain w such that Y'0 is the least 
ordinal in z and, for any y in w, Y'(y') is the least ordinal f3 in z with 
f3 >o Y'y. Clearly, Y is one--one, .@(Y) = w, and Y"w C z. To show that 
Den(z), it suffices to show that Y"w = z. Assume z- Y"w -=/0. Let b be the 
least ordinal in z- Y"w, and let r be the least ordinal in Y"OJ with r >o b. 
Then r = Y'o- for some o- in OJ. Since b <or, o- # 0. So, o- = 11' for some fl in 
OJ. Then r = Y'o- is the least ordinal in z that is greater than Y'p. But 
b >o Y'p, since r is the least ordinal in Y"OJ that is greater than b. Hence, 
r~0b, which contradicts b <o r. 

Exercises 

4.61 Prove: 1- Count(X) 1\ Y C X=> Count(Y). 
4.62 Prove: 
(a) 1- Fin(X) ==> Fin(Y'(X)) 
(b) 1- Fin(X) 1\ (\iy)(y EX=> Fin(y)) ::::} Fin(Ux) 
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(c) 1-X~Y 1\ Fin(Y) => Fin(X) 
(d) 1- Fin(#(X)) => Fin(X) 
(e) 1- Fin(UX) ~ Fin(X) 1\ (\fy)(y EX~ Fin(y)) 
(f) 1- Fin(X) =* (X~ Y V Y ~X) 
(g) 1- Fin(X) 1\ Inf(Y) =*X-< Y 
(h) 1- Fin(X) 1\ Y c X ~ Y -<X 
(i) 1- Fin(X) 1\ Fin(Y) => Fin(X x Y) 
(j) 1- Fin(X) 1\ Fin(Y) => Fin(Xy) 
(k) 1- Fin(X) 1\y ¢::X=> X-< Xu{y} 
4.63 Define X to be a minimal (respectively, maximal) element of Y if and 
only if X E Y and (\fy)(y E Y ~ •(y c X))(respectively, (\fy)(y E Y =>-. 
(X c y))). Prove that a set Z is finite if and only if every non-empty set of 
subsets of Z has a minimal (respectively, maximal) element (Tarski, 1925). 
4.64 Prove: 
(a) 1- Fin(X) 1\ Den(Y) ~ Den(XuY) 
(b) 1- Fin(X) 1\ Den(Y) 1\X -:f0 => Den(X x Y) 
(c) 1- (\fx)[Dedlnf(x) B- (3y)(y c x 1\ Den(y))]. (A set is Dedekind-infinite 

if and only if it has a denumerable subset) 
(d) 1- (\fx)[(3y)(y ~ x 1\ Den(y)) {:} w ~x] 
(e) 1- (\i a) [ (a ¢:: w => Dedlnf( a)) 1\ (\fa) (Inf( a) ~ a ¢:: w) 
(f) 1- (\ix)(\iy)(y ¢:: x =} [Dedlnf(x) {:} x r--.J xu{y }]) 
(g) 1- (\ix) ( (JJ ~ X {:} X +c I ""' X) 
4.65 If NBG is consistent, then, by Proposition 2.17, NBG has a denu­
merable model. Explain why this does not contradict Cantor's theorem, 
which implies that there exist non-denumerable infinite sets (such as £?1>(w)). 
This apparent, but not genuine, contradiction is sometimes called Skolem 's 
paradox. 

4.4 HARTOGS' THEOREM. INITIAL ORDINALS. 
ORDINAL ARITHMETIC 

An unjustly neglected proposition with many uses in set theory is Hartogs' 
theorem. 

PROPOSITION 4.31 (HARTOGS, 1915) 

1- (\fx)(3a)(\iy)(y C x ~ •(a rv y)). (For any set x, there is an ordinal that is 
not equinumerous with any subset of x.) 
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Proof 

Assume that every ordinal ct is equinumerous with some subset y of x. 
Hence, yrva for some f. Define a relation ron y by stipulating that (u, v) E,. 

if and orily if f'u E f'v. Then r is a well-ordering of y such that (r,y) is 
similar to (Ea, ex). Now define a function F with domain On such that, for 
any a, F'a is the set w of all pairs (z,y) such that y C x, z is a well-ordering of 
y, and (Ea, ex) is similar to (z,y). (w is a set, since w C &(x x x) x &(x).) 
Since,!"( On) ~ &(&(x x x) x &(x)), F"(On) is a set. F is one- one; hence, 
On= F"(F"(On)) is a set by the replacement axiom, contradicting Propo~ 
sition 4.8(h). 

DEFINITION 

Let Yf denote the function with domain V such that, for every x, Yf'x is the 
least ordinal a that is not equinumerous with any subset of x. (Yf is called 
Hartogs' function.) 

COROLLARY 4.32 

(\ix)(Yf'x ~ &&&&(x)) 

Proof 

With each {3 <o :Yf'x, associate the set of relations r such that r C x x x, r is a 
well~ordering of its fieldy, and (r,y) is similar to (Ep, {3). This defines a one­
one function from :;/f'x into &&(x x x). Hence, Yf'x ~ &&(x x x). By Ex­
ercise 4.12(s), x x x C &&(x). So, &&(x x x) C &&&&(x), and therefore, 
Yf'x ~ &&&&(x). 

DEFINffiON 

Init(X) for X E On A (V {3) ({3 <o X =::} -.({3 ""X)) 

(X is an initial ordinal) 

An initial ordinal is an ordinal that is not equinumerous with any smaller 
ordinal. 

Exercises 

4.66 (a) f- (\ia)(ct E w::::} Init(cx)). (Every finite ordinal is an initial ordinal.) 
(b) f- Init(w). [Hint: Use Proposition 4.26(b) for both parts.] 

~, . 
. · 
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4.67 Prove: 
(a) For every x, :Yt'x is an initial ordinal. 
(b) For any ordinal ex, :Yt'a is the least initial ordinal greater than ex. 
(c) For any set x, .1t''x = w if any only if x is infinite and x is Dedekind­

finite. [Hint: Exercise 4.64(c).] 

Definition by transfinite induction (Proposition 4.14(b)) yields a function 
G with domain On such that 

G'0 = w 

G'(cl) = J'f''(G'a) for every a 

G'). = U(G"(J)) for every limit ordinal). 

PROPOSITION 4.33 

(a) f- (\icx)(Init(G'cx) 1\ W~0G'et 1\ (\1{3)({3 <o et =} G'{J <o G'cx)) 
(b) ~ (\ia)( et ~ 0 G'cx) 
(c) f- ('v'f3)(w~of31\ Init(f3) =? (3cx)(G'cx = {3)) 

Proof 

(a) Let X= { et I lnit( G'cx) 1\ W ~ 0 G'et 1\ (\7'{3) ({3 <o et =} G'f3 <o G'et) }. 

We must show that On C X. To do this, we use the second form of trans­
finite induction (Proposition 4.13(a)). First, 0 EX, since G'(/J = w. Second, 
assume a EX. We must show that ex' EX. Since a EX, G'a is an infinite 
initial ordinal such that (\7'{3)({3 <o a=? G'f3 <o G'cx). By definition, 
G'(cx') = :Yt'(G'a), the least initial ordinal >o G'(cx). Assume {3 <o d. Then 
{3 <o et V {3 =Ct. If {3 <o et, then, since et EX, G'f3 <o G'et <o G'(d). If {3 =a, 
then G'f3 = G'a <o G'(cx'). In either case, G'f3 <o G'(cx'), Hence, ex' EX. Fi­
nally, assume Lim( a) 1\ (\1{3)({3 <o a=? {3 EX). We must show that a EX. 
By definition, G'cx = U(G"(cx)). Now consider any {3 <o a. Since 
Lim( ex), {3' <o a. By assumption, f3' EX, that is, G'(/3') is an infinite initial 
ordinal such that, for any y <o {3', G'y <o G'(/3'). It follows that G"(cx) is a 
non-empty set of ordinals without a maximum and, therefore, by Proposi­
tion 4.12, G'cx, which is U(G"(cx)), is a limit ordinal that is the least upper 
bound of G"(cx). To conclude that G'cx EX, we must show that G'cx is an 
initial ordinal. For the sake of contradiction, assume that there exist b such 
that b <o G'(cx) and b rv G'et. Since G'et is the least upper bound of G"(cx), 
there must exist some 11 in G''(cx) such that b <o Jl· Say, 11 = G'f3 with {3 <o a. 
So, b C J1 = G'f3 c G'(f3') C G'et rv b. Since b c G'(f3'), bE G'({J') and 
b ~ G'(f3'). On the other hand, since G'(f3') C G'et rv b, G'(f3') ~b. By 
Bernstein's theorem, b rv G'(/3'), contradicting the fact that G'(/3') is an in­
itial ordinal. 
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(b) This follows from Corollary 4.16 and part (a). 
(c) Assume, for the sake of contradiction, that there is an infinite initial 

ordinal that is not in the rang~ of G_, ~~d let~ beth~ least _such. By part (b)~, 
CJ~0G'CJ and, by part (a), G'CJ IS an m1ttal ordmal. Smce CJ Is not in the range: 
of G, CJ <o G'CJ. Let f-l be the least ordinal such that CJ <o G'tL Clearly, f-l =f. 0,­
since G'(/J =ill <o CJ. Assume first that f-l is a successor ordinal y' . Then, by; 
the minimality of p, G'y <o CJ. Since G'(y') = Jlf'(G'y), G'(y') is the least~ 
initial ordinal greater than G'y. However, this contradicts the fact that CJ is­
an initial ordinal greater than G'y and CJ <o G'(y'). So, f-l must be a limit 
ordinal. Since G'p = U( G"(f-l)), the least upper bound of G"(lt), and, 
CJ <o G'p, there is some 1> <o f-l such that CJ <o G'b <o G'p, contradicting the 
minimality of f-l· 

Thus, by Proposition 4.33, G is a one-one <0 -preserving function from 
On onto the class of all infinite initial ordinals. 

NOTATION 

illa for G'cx 

Hence, (a) illrtJ =ill; (b) illa' is the least initial ordinal greater than illa; (c) for a 
limit ordinal A, ill;, is the initial ordinal that is the least upper bound of the 
set of all illy with y <o A. Moreover, illr~_ > 0 ex for all ex. In addition, any 
infinite ordinal ex is equinumerous with a unique initial ordinal illp ~0cx, 

namely, with the least ordinal equinumerous with ex. 

Let us return now to ordinal arithmetic. We already have defined ordinal 
addition, multiplication and exponentiation (see Examples 1-2 on pages 
249-50 and Exercise 4.36). · 

PROPOSITION 4.34 

The following wfs are theorems. 

(a) {3 +o 1 = /3' 
(b) 0 +o {3 = {3 
(c) 0 <o {3 =? (ex <o ex +o {31\ f3~oCX +o {3) 
(d) {3 <o y =? ex +o {3 <o ex +o Y 
(e) ex +o {3 =ex +o 1> =? f3 = 1> 

(f) ex <o {3 ==? (3tb)(cx +o 1> = {3) 
(g) (/J =I x C On =? ex +o U {3 = U (ex +o {3) 

{JEx {JE.Y 

(h) (/j <o CJ. 1\ l <o {3 =? CX <o C1 Xo {3 
(i) (/j <o CX 1\ (/j <o {3 =? CX~oCX Xo {3 
(j) y <o {3 1\ (/J <o ex=? ex X0 y <o ex X0 {3 
(k) XC On=? ex X 0 U/3 = U(cx X 0 {3) 

_, -,_ 
f3E.< f3Ex 



:[ ___ __ H_A_R_T_o_a_s_·_r_H_E_o_R_E_M_. _IN_I_TI_A_L_O_R_D_I_N_A_L_s _____ _Jj I 267 

:Proof 

,c(a) {J +o 1 = fJ +o (0') = ({J +o 0)' = [J' 
!(b) Prove 0 +o {J = {J by transfinite induction (Proposition 4.13(a)). Let 

X= {{J 10 +o {J = {J}. First~ 0 EX, since 0 +o 0 = 0. If0 +o y = y, then 
0 +o y' = (0 +o y)' = y'. If Lim( a) and 0 +or= r for all r <o a, then 
0 +o a= U (0 +or)= U r =a, since Uris the least upper bound of 

<<oct <<oct 
the set of all r <o a, which is ~. 

(c) Let X= {/310 <o {J =>a <o a +o {J}. Prove X = On by transfinite in­
duction. Clearly, 0EX. If yEX, then a~0a+0 y; hence 
a~ 0a +o y <o (a +o y)' =a +o y'. If Lim('A) and rEX for all r <o A, 
then a <o a'= a +o 1 ~0 U (a +or)= a +o A. The second part is left 
as an exerctse. <<oA 

(d) Let X= {y / ('Va)('V{J) ({J <o y =>a +o {J <o a +o y)} and use transfinite 
induction. Clearly, 0 EX. Assume y EX and {J <o y'. Then f3 <o y or 
{J = y. If {J <o y then, since y EX, a +o f3 <o a +o }' <o (a +o y)' 
=a +o y'. If {J = y, then a +o {J = a+o y <o (a +o y)' =a +o y'. Hence, 
y' EX. Assume Lim ('A) andrE X for all r <o A. Assume {J <o A. Then 
fJ <or for some r <o A, since Lim( 'A). Hence, since rEX, 
a +o {J <o a +o 'r~o Ur<o;,(a +or)= a +o A. Hence, A EX. 

(e) Assume a +o {J =a +o b. Now, either {J <o b or b <o fJ or b = {3. If 
{J <o b, then a +o {J <o a +o b by part (d), and, if b <o {J, then 
a +o b <o a +o f3 by part (d); in either case, we get a contradiction with 
~ +o fJ =a +o b. Hence, b = {J. 

(f) The uniqueness follows from part (e). Prove the existence by induction 
on {J. Let X= {{J/a <o {J => (3lb)(a +o b = {J)}. Clearly. 0 EX. Assume 
y EX and a <o y'. Hence, a= y or a <o y. If a = y, then 
(3b)(a +o b = y'), namely, b = 1. If a <o y, then, since y EX, 
(31b)(a +o b = y). Take an ordinal CJ such that a +o o- = y. Then 
a +o a'= (a +o CJ)' = y'; thus, (3b)(a +o b = y'); hence, y' EX. Assume 
now that Lim( 'A) and -c EX for all r <o A. Assume a <o A. Now define a 
function f such that, for a <o 11 <o 'A,f'p is the unique ordinal b such 
that a +o b = 11· But A = Ua<oP<oA J1 = Ua<otL<o), (a +of' fl). Let 
p = Ua<oll<o), (f'p). Notice that, if a <o J1 <o A, then f'p <o f'(p'); 
hence, p is a limit ordinal. Then A= Ua<oJl<o.lc(a +of'p) = 
Ua<oP(a +o CJ) =a +o p. 

(g) Assume 0 =f. x COn. By part (f), there is some b such that 
a +o b = uf3Ex(a +o {J). We must show that b = uf3E:x {J. If {J Ex, then 
a +o f3~ 0a +o b. Hence, {J~ 0b by part (d). Therefore, b is an upper 
bound of the set of all fJ in x. So, uf3Er fJ ~ob. On the other hand, if 
{J EX, then a +o P~oa +o u/3E.Y {J. Hence, a +o b =UP Ex (a +o {J) 
~oa+o Uf3E-.:fl· Hence, a +o b = U/3Ex(a+o {J)~oa+o Uf3E-.:fl and so, 
by part (d), b ~0 uf3Er {J. Therefore, (j = uf3Er {J. 

(h)-(k) are left as exercises. 
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PROPOSITION 4.35 The following wfs are theorems. 

(a) {3 X0 1 = {3 1\ 1 Xo {3 = {3 
(b) 0 X 0 {3 = 0 
(c) (ex +o {3) +o Y =ex +o ({3 +o Y) 
(d) (ex X0 {3) Xo y =ex Xo ({3 Xo y) 
(e) ex X0 ({3 +o y) =(ex Xo {3) +o (ex Xo y) 
(f) exp(/3, 1) = {31\ exp(l, {3) = 1 
(g) exp(exp(/3, y), t5) = exp(/3, y X0 t5) 
(h) exp(/3, y +o b) = exp(/3, y) X0 exp(/3, b) t 
(i) ex >o 1/\ {3 <o y ::::} exp( ex, {3) <o exp( ex, y) 

Proof 

(a) {3 X0 1 = {3 X0 0' = ({3 Xo 0) +o {3 = 0 +o {3 = {3, by Proposition 4.34(b). 
Prove 1 X 0 {3 = {3 by transfinite induction. 

(b) Prove 0 X0 {3 = 0 by transfinite induction. 
(c) Let X= {y I (\fex)(\f{3)((ex +o {J) +o Y =ex +o ({3 +o y))}. 0 EX, smce 

(ex +o {3) +o 0 =(ex +o {3) =ex +o ({3 +o 0). Now assume y EX. Then 
(ex +o [J) +o y' =((ex +o {J) +o y)' =(ex +o ({3 +o y))' =ex +o ({3 +o y)' = 
ex +o ({3 +o y'). Hence, y' EX. Assume now that Lim(.A) andrE X for 
all T <o A. Then (ex +o {3) +o A= Ur<o), ((ex +o {3) +or) = UT<o),(ex+o 
({3 +or)) =ex +o Ur<o}, ({3 +or), by Proposition 4.34(g), and this is equal 
to ex +o ({3 +o .A). 

(d)-(i) are left as exercises. 

We would like to consider for a moment the properties pf ordinal addi­
tion, multiplication and exponentiation when restricted to w. 

PROPOSITION 4.36 
Assume ex, {3, y are in w. Then: 

(a) ex +o {3 E w 
(b) ex X 0 {3 E W 

(c) exp(ex, {3) E w 
(d) ex +o {3 = {3 +o ex 
(e) ex X0 {3 = {3 X0 ex 
(f) (ex +o {3) Xo y = (ex Xo Y) +o ({3 Xo y) 
(g) exp(ex X 0 {3,y) =exp(ex,y) X0 exp({3,y) 

tin traditional notation, the results of (f)-(h) would be written as {31 = {3, 
1P = 1, (fJY)O = fJYXoD,fJY+ob = fJY Xo po. 
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Proof 

(a) Use induction up to w (Proposition 4.13(c)). Let X= {/31 {3 E w/\ 
(\fa)(a E w)::::} a+o {3 E w)}. Clearly, 0 EX. Assume {3 EX. Consider 
any a E w. Then a +o {3 E w. Hence, a +o fJ' = (a +o {3)' E w by Prop­
osition 4.11(a). Thus, fJ' EX. 

(b) and (c) are left as exercises. 
(d) Lemma. ~a E w 1\ {3 E w::::} a' +o {3 = a +o {3'. Let Y = {/31 {3 E w 

/\(Vex) (a E w::::} a' +o {3 =a +o {3')}. Clearly, 0 E Y. Assume {3 E Y. 
Consider any a E w. So, d +o {3 = a +o fJ'. Then a' +o fJ' = (a' +o {3)

1 
= 

(a +o fJ')' = a +o ({3')'. Hence, {3' E Y. 

To prove (d), let X= {/31 {3 E w 1\ (\fa)(a E w::::} a +o {3 = {3 +o a)}. 
Then 0 EX and it is easy to prove, using the lemma, that {3 EX::::} fJ' EX. 

( e }--(g) are left as exercises. 

The reader will have noticed that we have not asserted for ordinals cer­
tain well-known laws, such as the commutative laws for addition and 
multiplication, that hold for other familiar number systems. In fact, these 
laws fail for ordinals, as the following examples show. 

Examples 
1. (3a)(3{3)(a +o {3 i= {3 +o a) 

1 +oW= U (1 +o er:) = W 

«<oro 
(J) +o 1 = w' >o (J) 

2. (3a)(3{3)(a X 0 {3 # {3 X 0 a) 
2 X 0 m = U (2 X 0 a::) = m 

«<oro 
W X 0 2 = W Xo (1 +o 1) = (w Xo 1) +o (w X 0 1) = W +oW >o W 

3. (3a)(3{3)(3y)((a +o {3) Xo y I (a Xo y) +o ({3 X0 y)) 
(1 +o 1) X 0 W = 2 X 0 W = W 

(1 Xo w) +o (1 Xo OJ)= OJ +oW >oW 

4. (3a)(3{3)(3y)(exp(a X0 {3, y) i= exp(a, y) Xo exp({J, y)) 
exp(2 X 0 2, w) = exp(4, w) = U exp(4, er:) = w 

«<oro 

exp(2, w) = U exp(2, er:) = w 

So, exp(2, w) X 0 exp(2, w) = w X 0 w >o w. 
Given any wf flA of forn1al number theory S (see Chapter 3), we can 

associate with flA a wf PA* ofNBG as follows: first, replace every'+' by '+0 ', 

every '·' by 'x 0 ', and every 'fl ( t )' by 't U { t} b; then, if flA is Cfl ::::} !?2 or •Cfl, 

tm abbreviated notation for S, 'fl (t)' is written as t', and in abbreviated no­
tation in NBG, 'tU {t}' is written as t'. So, no change will take place in these 
abbreviated notations. 
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respectively, and we have already found Y5* and !?2*, let f!J* be ~* ==} !'»* or-:: 
, Yff*, respectively; if f!J is (\lx)~(x), replace it by (\ix)(x E w ==} ~*(x)). This­
completes the definition of PJ*. Now, if XJ, ••. ,x, are the free variables (if 
any) of #.1, prefix (x1 E w A. ... 1\ Xn E w) ==} to f!J*, obtaining a wf f!J#. This 
amounts to restricting all variables to w and interpreting addition, multi­
plication and the successor function on natural numbers as the corre­
sponding operations on ordinals. Then every axiom [lJJ of S is transformed 
into a theorem f!J# of NBG. (Axioms (Sl)-(S3) are obviously transfonned 
into theorems, (S4)# is a theorem by Proposition 4.10(c), and (S5)#-(S8)# 
arc properties of ordinal addition and multiplication.) Now, for any wf f!J of 
S, f!J# is predicative. Hence, by Proposition 4.4, all instances of (S9)# are 
provable by Proposition 4.13(c). (In fact, assume f!J#(f/J) A. (\ix)(x E w 
==} ( f!J#(x) ~ .r£i#(x')))). Let X = {y I y E w 1\ @#(y)}. Then, by Proposi­
tion 4.13(c), (\ix)(x E w ==} f!4#(x)).) Applications of modus ponens 
are easily seen to be preserved under the transformation of f!J into fJJ#. 
As for the generalization rule, consider a wf f!J(x) and assume that 
[lJJ#(x) is provable in NBG. But #.J#(x) is of the form 
x E w A. Yl E w A. ... A. y, E ill ==} .%'* (x). Hence, Yl E ill A. ... 1\ Yn E w ==} (\fx) 
(x E w ==} #.J*(x)) is provable in NBG. But this wfisjust ((\ix)f!J(x))#. Hence, 
application of Gen leads f.tom theorems to theorems. Therefore, for every 
theorem f!J of S, f!J# is a theorem of NBG, and we can translate into NBG 
all the theorems of S proved in Chapter 3. 

One can check that the number-theoretic function h such that, if xis the 
Godel number of a wf #.1 ofS, then h(x) is the Godel number of f!J#, and ifx 
is not the Godel number of a wf of S, then h(x) = 0, is recursive (in fact, 
primitive recursive). Let K be any consistent extension of NBG. As we saw 
above, if xis the Godel number of a theorem of S, then h(?Z) is the Godel 
number of a theorem of NBG and, hence, also a theorem of K. Let S(K) be 
the extension of S obtained by taking as axioms all wfs f!J of the language of 
S such that #.1# is a theorem of K. Since K is consistent, S(K) must be 
consistent. Therefore, since S is essentially recursively undecidable (by 
Corollary 3.46), S(K) is recursively undecidable. Now, assume K is recur­
sively decidable; that is, the set TK of Godel numbers of theorems of K is 
recursive. But Crs(K) (x) = CrK (h(x)) for any x, where CrsrK) and CrK are the 
characteristic functions of Ts(K) and TK. Hence, Ts(K) would be recursive, 
contradicting the recursive undecidability of S(K). Therefore, K is recur­
sively undecidable, and thus, if NBG is consistent, NBG is essentially re­
cursively undecidable. Recursive undecidability of a recursively 
axiomatizable theory implies incompleteness (see Proposition 3.47). Hence, 
NBG is also essentially incomplete. Thus, we have the following result: if 
NBG is consistent, then NBG is essentially recursively undecidable andes­
sentially incomplete. (It is possible to prove this result directly in the same 
way that the corresponding result was proved for Sin Chapter 3.) 
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Exercise 

4.68 Prove that a predicate calculus with a single binary predicate letter is 
recursively undecidable. [Hint: Use Proposition 3.49 and the fact that NBG 
has a finite number of proper axioms.] 

There are a few facts about the 'cardinal arithmetic' of ordinal numbers that 
we would like to deal with now. By 'cardinal arithmetic' we mean properties 
connected with the operations of union (U), Cartesian product (x) and XY. 
as opposed to the properties of +o, X 0 and exp. Observe that x is distinct 
from x 0 ; also notice that ordinal exponentiation exp(a, {3) has nothing to do 
with XY, the class of all functions from Y into X. (From Example 4 on page 
269 we see that exp(2,ill) is ill, whereas, from Cantor's theorem, ill-< 2m, 
where 2m is the set of functions from ill into 2. 

PROPOSITION 4.37 

(a) 1- ill X ill "' ill 
(b) f- 2~X 1\ 2~Y::::} Xu y ~X X y 
(c) f- Den(x) 1\ Den(y) ::::} Den(x U y) 

Proof 

(a} Letf be a function with domain ill such that, if a E ill, thenf'a = (a, f/J) . 
Then f is a one-one function from ill into a subset of ill x ill. Hence, 
ill~ill x ill. Conversely, let g be a function with domain w x ill such 
that, for any (a, {3) in ill x ill, g'(a, {3) = exp(2, a) X 0 exp(3, {3). We leave 
it as an exercise to show that g is a one-one function from ill x ill into 
ill. Hence, w X ill~ill. So, by Bernstein's theorem, ill X ill rv ill. 

(b) Assume at EX,a2 EX,a1 f= a2,b1 E Y,b2 E Y,b1 f= b2. Define 

{ 

(ai,bi) if x EX 
f'x = (a1,x} if x E Y -X and x -1- bt 

(az,bz) if x = b1 and x E Y -X 

Then f is a one ~one function with domain XU Y and range a subset of 
X x Y. Hence, XU Y~X x Y. 

(c) Assume Den(x) and Den(y) . Hence, each of x andy contains at least 
two elements. Then, by part (b), X u y~x X y. But X ~ ill and y rv (J). 

Hence, X X y rv ill X ill. Therefore, Xu y~ill X ill rv ill. By Proposition 
4.30, either Den (xU y) or Fin (xU y). But x C xu y and Den(x); hence, 
·Fin(x U y). 

For the further study of ordinal addition and multiplication, it is quite 
useful to obtain concrete interpretations of these operations. 
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PROPOSITION 4.38 (ADDITION) 

Assume that (r,x) is similar to (Ea, a), that (s,y) is similar to (Ep, {3), and that 
x n y = 0. Let t be the relation on xU y consisting of all (u, v) such that 
(u, v) Ex x y or u Ex 1\ v Ex 1\ (u, v) E r or u E y 1\ v E y 1\ (u, v) E s (that is, 
tis the same as r in the set x, the same as s in the set y, and every element of x 
t-precedes every element of y). Then t is a well-ordering of xU y, and 
(t,x U y) is similar to (Ea+oP' a +o {3). 

Proof 

First, it is simple to verify that t is a well-ordering of x U y, since r is a well­
ordering of x and sis a well-ordering of y. To show that (t, x u y) is similar to 
(Ea+oP' a +o {3), use transfinite induction on {3. For {3 = 0, y = 0. Hence, 
t = r,x U y = x, and a +o f3 =a. So, (t, aU {3) is similar to (Ea+oP' a +o {3). 
Assume the proposition for y and let {3 = y'. Since (s,y) is similar to (Ep, {3), 
we have a function f with domain y and range f3 such that, for any u, v in 
y, (u, v) E s if and only if f'u E f'v. Let b = (f)'y, let Yl = y- {b} and let 
s1 = s n (y1 x y1). Since b is the s-maximum of y, it follows easily that s1 
well-orders y1. Also, ydf is a similarity mapping of YI onto y. Let 
f) = t n ( (x u Yl) X (x u yt)). By inductive hypothesis, (tt 'Xu YI) is similar to 
(Ea+o1'' a +o y), by means of some similarity mapping 9 with domain xU y1 

and range a +o y. Extend 9 to 91 = 9 u { (b, a +o y)}, which is a similarity 
mapping of xU y onto (a +o y )

1 
= a +o y' = a +o {3. Finally, if Lim(/3) and 

our proposition holds for all r <o {3, assume that f is a similarity mapping 
of y onto {3. Now, for each r <o {3, let y. = (i)"r,s. = s n (y. x y.), and 
t1 = t n ( (x U Yr) x (xU Yr)). By inductive hypothesis and Corollary 4.18(b ), 
there is a unique similarity mapping g-r of (t-r, xU y.) with (Ert;-J 

0
-., a +o-r); 

also, if r 1 <o r2 <o {3, then, since (x U Yr1 H 9r2 is- a similarity mapping of 
(trp xU Y-.1 ) with (Ea+o•I, a +o 'tt) and, by the uniqueness of 9rp (xU Jlr1) 

[9.2 = 9-r1 ; that is, 9r2 is an extension of 9-r1 • Hence, if 9 = U-r<oP 9-r and 
A= Ur<aP(a+or), then 9 is a similarity mapping of (t,U-r<oP(xUy-r)) with 
(El, .A). But, UT<oP(x u Yr) =Xu y and u.<oP( a +or) = a +o {J. This com­
pletes the transfinite induction. 

PROPOSITION 4.39 (MULTIPLICATION) 

Assume that (r, x) is similar to (Ea, a) and that (s,y) is similar to (Ep, {3). Let 
the relation ton x x y consist of all pairs ( (u, v), (w, z)) such that u and ware 
in x and v and z are in y, and either (v, z) E s or (v = z 1\ (u, w) E r). Then tis 
a well-ordering of x x y and (t,x x y) is similar to (Eax

0
p, a X 0 p).t 

tThe ordering t is called an inverse lexicographical ordering because it orders 
pairs as follows: first, according to the size of their second components and then, if 
their second components are equal, according to the size of their first components. 
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Proof 

This is left as an exercise. Proceed as in the proof of Proposition 4.38. 

Examples 
1. 2 X 0 w = w. Let (r,x) = (E2, 2) and (s,y) = (Ew, w). Then the Cartesian 

product 2 x w is well-ordered as follows: (0, 0), (I, 0), (0, l), (1, 1), 
(0, 2), (1, 2), ... , (0,n), (1, n), (0, n + 1), (1,n + l), . .. 

2. By Proposition 4.34(a), 2 = I'= 1 +o 1. Then by Proposition 4.35(e,a), 
w X 0 2 = (w X 0 1) +o (w X 0 1) = w +ow. Let (r,x) = (Ew, w) and 
(s,y) = (E2, 2). Then the Cartesian product w x 2 is well-ordered as 
follows: (0, 0), (1, 0), (2, 0), ... , (0, l), (1, 1), (2, 1), ... 

PROPOSITION 4.40 

Proof 

(Sierpinski, 1958) Assume this is false and let a be the least ordinal such that 
mrx x Wa r-.J Wa is false. Then mp x Wp r-.J Wp for. all f3 <o a. By Proposition 
4.37(a), a >o 0. Now let P = Wa x wfJ. and, for f3 <o Wa, let Pp = { (y, 6) IY 
+ob = {3}. First we wish to show that p = u{J<oW.x Pp. Now, if 
Y+o (j = f3 <o Wa, then Y~of3 <o Wa and (j~of3 <o Wa; hence, (y,c5) E Wa 
xwfJ. = P. Thus, u{J<oWa Pp c P . To show that p c u{J<oWa Pp, it suffices to 
show that, if y <o Wa and (j <o Wa, then y +o (j <o Wa. This is clear when y or 
(j is finite. Hence, we may assume that y and (j are equinumerous with initial 
ordinals Wa ~oY and Wp ~ob, respectively. Let C be the larger of CJ and p. 
Since y <o Wa and (j <o Wrx, then we <o Wa. Hence, by the minimality of 
a, we x we r-.J w{. Let x = y x { 0} and y = (j x { 1}. Then, by Proposition 
4.38, xU y r-.J y +o b. Since y r-.J Wa and b r-.J Wp,x "-~ Wa x {0} and 
y"' Wp X {1 }. Hence, since X ny = 0,x u y"' (waX {0}) u (wp X { 1} ). But, 
by Proposition 4.37(b), (wax {0}) U (wp x {1})~(wa x {0}) x(wpx 
1}) ,..___ Wa X Wp~We X we"' we. Hence, y +o b~we <o Wa. [t follows that 
y +o b <o Wa· (If Wa ~oY +o b, then Wa~We. Since we <o Wa, we~Wa. So, by 
Bernstein's theorem, Wa r-.J we, contradicting the fact that Wa is an initial 
ordinal.) Thus, p = u{J<oWa Pp. Consider Pp for any f3 <o Wa. By Proposition 
4.34(f), for each y ~ of3, there is exactly one ordinal b such that y +o b = f3. 
Hence, there is a similarity mapping from {31 onto Pp, where Pp is ordered 
according to the size of the first component y of the pairs (y, b). Define the 
following relation R on P. For any y <o Wrx, b <o Wa, p <o Wa, v <o Wa, 
( (y, b), (p, v)) E R if and only if either y +o b <o p +o v or (y +o b = 
p +o v 1\ y <o p). Thus, if fJ1 <o {32 <o Wrx, then the pairs in Pp

1 
R-precede the 
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pairs in Pf3
2

, and, within each P13, the pairs are R-ordered according to the size 
of their first components. One easily verifies that R well-orders P. Sin_ce 
P = wti. ~ wcx, it suffices ~ow_ to_ show that (R, P) is similar to. (Ew .. , w«). Bx 
Proposthon 4.19, (R,P) ts similar to some (Ee, ~), where ~ IS an ordina[' 
Hence, P"" ~- Assume that ~ >o Wcx. There is a similarity mapping f bet ... 

1 

ween (Ee, ~) and (R, P). Let b = f'(wrx); then b is an ordered pair (y, b) witn: 
y <o Wcx, b <o Wcx, and Wcx [ f is a similarity mapping between (Eru"' wu.) and:, 
the R-segment Y = SegR(P, (y, b)) of P determined by (y, b). Then Y ~ Wz. loP 
we let {J = y +o b, then, if (a, p) E Y,we have a +o P~o'Y +o b = {J; hence"' 
a~ 0 {3 and p ~ 0 {3. Therefore, Y C fJ' x {1. But {J' <o Wcx. Since {3 is obviousl;­
not finite, {31 

"" w 11 wi~h _11 <o a. By the minimality of a, w11 x w 11 ""w11. So,_ 
Wcx "-' Y ~w10 contradtctmg W11 -< Wa. Thus, ~ ~ 0 Wcx and, therefore, P~w"". 
Let h be the function with domain Wcx such that h'{J = (/3, 0) for every 
{J <o Wcx. Then h is one-one correspondence between Wa and the subset 
Wa x {0} of P and, therefore, Wa~P. By Bernstein's theorem, Wa ~ P, 
contradicting the definition of a. Hence, wp x WfJ "" wp for all {J. 

COROLLARY 4.41 

If X"' Wcx andy rv Wp, and if y is the maximum of a and {J, then X X y ~ Wy 
and Xu y rv Wy· In particular, (l)'Y. X Wp "-' Wy. 

Proof 

By Propositions 4.40 and 4.37(b), Wy~XUy~x xy rv Wcx X Wp~Wy XWy rv 

Wy· Hence, by Bernstein's theorem, x x y ~ wy and xU y ~ wy. 

Exercises 

4.69 Prove that the following are theorems of NBG. 
(a) X~ Wa ::::} X U Wa "' Wcx 
(b) Wa +c Wcx "' Wa 
(C) 0 -1=- X~ Wcx ::::} X X Wcx "' Wcx 
(d) 0 -1=- X -< (1) =? (waY rv Wa 
4.70. Prove that the following are theorems of NBG 
(a) ff'(wcx) X ff'(wcx)""' ff'(wcx) 
(b) x~ff'(wcx) ::::} XU ff'(wcx) "'ff'(wa) 
(c) 0-=/:- x~ff'(wcx)::::} X X ff'(wa) rv ff'(wa) 
(d) 0 =/= X~Wcx::::} (ff'(wcx)Y"' ff'(wa) 
(e) I -< X~Wcx::::} XVrt rv (wa)OJ(I "" (ff'(wa))OJ" ~ ff'(wrx) 
4. 71 Assume y =/= 0 1\ y rv y +c y. (This assumption holds for y = Wa by Cor­
ollary 4.41 and for y = ff'(wa) by Exercise 4.70(b). It will turn out to hold 
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for all infinite sets y if the axiom of choice holds.) Prove the following 
properties of y. 
!a) Inf(y) 
(b) y ~ 1 +cY 
{c) (3u)(3v)(y = u u v 1\ u n v = 0/\ u "'-' y 1\ v ""y) 
(d) {zlz c y 1\ z rv y} ""&(y) 
(e) {zlz C y 1\ lnf(z)} "" &(y) 
(f) (3f)(y""y 1\ (\fu)(u E y => f'u -1- u)) 

4.72 Assu£.e y rv y X y 1\ 1 -< y. (This holds when y = Wa by Proposition 
4.40 and for y = &(wa) by Exercise 4.70(a). It is true for all infinite sets y if 
the axiom of choice holds.) Prove the following properties of y. 

(a) Y ""Y +cY 
(b)0 Let Perm(y) denote {fly""y}. Then Perm(y) ~ &(y). 

f 

4.5 THE AXIOM OF CHOICE. THE AXIOM OF REGULARITY 

The axiom of choice is one of the most celebrated and contested statements 
of the theory of sets. We shall state it in the next proposition and show its 
equivalence to several other important assertions. 

PROPOSITION 4.42 

The following wfs are equivalent. 

(a) Axiom of choice (AC). For any set x, there is a function f such that, for 
any non-empty subset y of x, f'y E y. (f is called a choice function for 
x.) 

(b) Multiplicative axiom (Mult). If xis a set of pairwise disjoint non-empty 
sets, then there is a set y (called a choice set for x) such that y contains 
exactly one element of each set in x: 

(\lu)(u EX==? U =/= 01\ (\lv)(v EX 1\ V =/= U ==? V n ll = 0)) =} 

(3y)(\lu)(u EX=} (3Iw)(w E u ny)) 

(c) Well-ordering principle (WO). Every set can be well-ordered: 
(\fx)(3y)(y We x). 

(d) Trichotomy (Trich). (\fx)(\fy)(x~ V y~x)t 

tThis is equivalent to (\lx)(\ly)(x-< y V x rv y V y-< x), which explains the name 
'trichotomy' for this principle. 

275 
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(e) Zorn's Lemma (Zorn). Any non-empty partially ordered set x, in which, 

every chain (i.e., every totally ordered subset) has an upper bound, has-­
a maximal element: 

Proof 

('v'x)(Vy)([(y Part x) A ('v'u)(u ~ x Ay Tot u =9-

(3v)(v Ex A ('v'w)(w E u ::9- w = v V (w, v) E y)))J =9-

(3v)(v Ex A ('v'w)(w Ex ::9- (v, w) ~ y))) 

I. I- WO =? Trich. Given sets x andy, then, by WO, x andy can be well­
ordered. Hence, by Proposition 4.19, x-:::: rx andy rv {3 for some ordinals ex 
and {3. But, by Exercise 4.52, rx~f3 or {3~rx. Therefore, x~y or y~x. 

2. I- Trich * WO. Given a set x, Hartogs' theorem yields an ordinal a 
such that rx is not equinumerous with any subset of x, that is, rx~x is false. 
So, by Trich, x~rx, that is, xis equinumerous with some subset y of rx. Hence, 
by translating the well-ordering Ey of y to x, x can be well-ordered. 

3. }-- wo* Mult. Let X be a set of non-empty pairwise disjoint sets. By 
WO, there is a well-ordering R of U x. Hence, there is a function f with 
domain x such that, for any u in x, f'u is the R-least element of u. (Notice 
that u is a subset of U x.) 

4. I- Mult * AC. For any set x, we can define a one-one function g such 
that, for each non-empty subset u of x, g~u = u x { u }. Let Xt be the range of 
g. Then x1 is a set of non-empty pairwise disjoint sets. Hence, by Mult, there 
is a choice set y for x1 . Therefore, if u is a non-empty svbset of x, then 
u x { u} is in x1, and soy contains exactly one eleJJ}ent ( v, u) in u x { u}. Then 
the function f such that f'u = v is a choice function for x. 

5. I- AC * Zorn. Let y partially order a non-empty set x such that every 
y-chain in x has an upper bound in x. By AC, there is a choice function f for 
x. Let b be any element of x. By transfinite induction (Proposition 4.14(a)), 
there is a function F such that F'0 =band, for any rx >o 0,F'rx is f'u, where 
u is the set of y-upper bounds v in x of F"rx such that v ¢:. F"rx. Let {3 be the 
least ordinal such that the set of y-upper bounds in x ofF" {3 that are not in 
F"f3 is empty. (There must be such an ordinal. Otherwise, F would be a one­
one function with domain On and range a subset of x, which, by the re­
placement axiom R, would imply that On is a set.) Let g = {3[F. Then it is 
easy to check that g is one-one and, if rx <o y <o {3, (g'rx, g'y) E y. Hence, g"{J 
is a y-chain in x; by hypothesis, there is a y-upper bound w of g" {3. Since the 
set of y-upper bounds of F"f3(= g"f3) that are not in g"f3 is empty, wE g"f3 
and w is the only y-upper bound of g"f3 (because a set can contain at most 
one of its y-upper bounds). Hence, w is a y-maximal element. (If (w,z) E y 
and z Ex, then z is a y-upper bound of g"{3, which is impossible.) 
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6. 1- Zorn::::::;:.. WO. Given a set z, let X be the class of all one-one functions 
with domain an ordinal and range a subset of z. By Hartogs' theorem, X is a 
set. Clearly, 0 EX. X is partially ordered by the proper inclusion relation c. 
Given any chain of functions in X, of any two, one is an extension of the 
other. Hence, the union of all the functions in the chain is also a one-one 
function from an ordinal into z, which is a C -upper bound of the chain. 
Hence, by Zorn, X has a maximal element g, which is a one-one function 
from an ordinal a into z. Assume z- g"a =/=- 0 and let bE z- g"a. Let 
f = g u {<a, fJ >}.Then f EX and g c f, contradicting the maximality of 
g. So, g"a = z. Thus, a ; z. By means of g, we can transfer the well-ordering 

Eo: of a to a well-ordering of z. 

Exercises 

4.73 Show that each of the following is equivalent to the axiom of choice. 
(a) Any set xis equinumerous with some ordinal. 
(b) Special case of Zorn's lemma. If x is a non-empty set and if the union of 

each non-empty c -chain in x is also in x, then x has a c -maximal 
element. 

(c) Hausdorff maximal principle. If x is a set, then every c -chain in x is a 
subset of some maximal C -chain in x. 

(d) Teichmiiller-Tukey Lemma. Any set of finite character has a c -maximal 
element. (A non-empty set x is said to be of finite character if and only 
if: (i) every finite subset of an element of xis also an element of x; and 
(ii) if every finite subset of a set y is a member of x, then y Ex.) 

(e) (\lx)(Rel(x)::::::;:.. (3y)(Fnc(y) 1\ 22(x) = 22(y) 1\y C x)) 
(f) For any non-empty sets x andy, either there is a function with domain x 

and range y or there is a function with domain y and range x. 
4.74 Show that the following finite axiom of choice is provable in NBG: if x 
is a finite set of nonempty disjoint sets, then there is a choice set y for x. 
[Hint: Assume X rv a where a E (1). Use induction on a .] 

PROPOSITION 4.43 

The following are consequences of the axiom of choice. 

(a) Any infinite set has a denumerable subset. 
(b) An infinite set is Dedekind-infinite. 
(c) If xis a denumberable set whose elements are denumerable sets, then 

U x is denumerable. 
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Proof 

Assume AC. 
(a) Let x be an infinite set. By Exercise 4.73(a), xis equinumerous with 

some ordinal a. Since x is infinite, so is a. Hence, w ~ 0 a; therefore, w is 
equinumerous with some subset of x. 

(b) The proof is by part (a) and Exercise 4.64(c). 
(c) Assume x is a denumerable set of denumerable sets. Let f be a'" 

function assigning to each u in x the set of all one-one correspondences 
between u and w. Let z be the union of the range of f. Then, by AC applied 
to z, there is a function g such that g'v E v for each non-empty v c z. In 
particular, if u EX, then g'(f'u) is a one-one correspondence between u and 
w. Let h be a one-one correspondence between w and x. Define a function F 
on Ux as follows: let y E Ux and let n be the smallest element of w such that 
y E h'n. Now, h' n Ex; so, g'(f'(h'n)) is a one-one correspondence between 
h'n and w. Define F'y = (n, (g'(f'(h 'n)))'y). Then F is a one-one function 
with domain U x and range a subset of w x w. Hence, Ux~w x m. But 
w X w rv wand, therefore, Ux~w. If vEX, then v c Ux and v rv w. Hence, 
w~ Ux. By Bernstein's theorem, Ux rv w. 

Exercises 

4. 75 [f x is a set, the Cartesian product llu E xu is the set of functions f with 
domain x such that f'u E u for all u E x. Show that AC is equivalent to the 
proposition that the Cartesian product of any set x of non-empty sets is also 
non-empty. 
4.76 Show that AC implies that any partial ordering of a set xis included in 
a total ordering of x. _ 
4. 77 Prove that the following is a consequence of AC: for any ordinal a, if x 
is a set such that x~wu. and such that (\lu)(u Ex::::;. u~wa), then Ux~wo:. 
[Hint: The proof is like that of Proposition 4.43(c).] 
4.78 (a) Prove y~x::::;. (3f)(Fnc(f) A!»(!) = x 1\ al(f) = y). 

(b) Prove that AC implies the converse of part (a). 
4.79°(a) Prove (u +c v)2 

rv u2 +c (2 X (u X v)) +c v2• 

(b) Assume y is a well-ordered set such that x x y rv x +c y and 
•(y~x). Prove that x~. 

(c) Assume y rv y x y for all infinite sets y. Prove that, if Inf(x) and 
Z = .Yf'x, then X X Z ""x+cz. 

(d) Prove that AC is equivalent to (Vy)(Inf(y) ::::;. y :-: y x y) (Tarski, 
1923). 

A stronger form of the axiom of choice is the following sentence (UCF): 
(3X) (Fnc(X) A (\lu)(u I=- 0::::;. X'u E u)). (There is a universal choice function 
-that is, a function that assigns to every non-empty set u an element of u.) 
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{JCF obviously implies AC, but W.B. Easton proved in 1964 that UCF is 

1{0 t provable from AC if NBG is consistent. However, Feigner (197lb) 
proved that, for any sentence@ in which all quantifiers are restricted to sets, 
if f!d is provable from NBG + (UCF), then &J is provable ill NBG + (AC). 
(See Feigner (1976) for a thorough treatment of the relations between UCF 
and AC.) 

The theory of cardinal numbers can be simplified if we assume AC; for 
AC implies that every set is equinumerous with some ordinal and, therefore, 
that every set x is equinumerous with a unique initial ordinal. which can be 
designated as the cardinal number of x. Thus, the cardinal numbers would be 
identified with the initial ordinals. To conform with the standard notation 
for ordinals, we let No: stand for Wo:. Proposition 4.40 and Corollary 4.41 
establish some of the basic properties of addition and multiplication of 
cardinal numbers. 

The status of the axiom of choice has become less controversial in recent 
years. To most mathematicians it seems quite plausible, and it has so many 
important applications in practically all branches of mathematics that not to 
accept it would seem to be a wilful hobbling of the practising mathemati­
cian. We shall discuss its consistency and independence later in this section. 

Another hypothesis that has been proposed as a basic principle of set 
theory is the so-called regularity axiom (Reg): 

(V'X)(X =/:- 0 =} (3y)(y EX 1\y nX = 0)) 

(Every non-empty class X contains a member that is disjoint from X.) 

PROPOSITION 4.44 

(a) The regularity axiom implies the Fundierungsaxiom: 

-.(3/)Fnc(f) /\ [')([) = w /\ (\fu)(u E w =} f '(u') E f'u)) 

that is, there is no infinitely descending E-sequence x0 3 x1 3 x2 3 ... 

(b) If we assume AC, then the Fundierungsaxiom implies the regularity 
axmm. 

(c) The regularity axiom implies the non-existence of finite E-cycles that 
is, of functions f on a non-zero finite ordinal a such that 
['0 E f' 1 E ... E f'a E ['0. In particular, it implies that there is no set y 
such that y E y. 

Proof 

(a) Assume Fnc(f) 1\ ~(f) = w 1\ (Vu)(u E w =* f'(u') E f'u). Let z = f''w. 
By (Reg), there is some element yin z such that y n z = 0. Since y E z, there 
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is a finite ordinal a such that y = f'a. Then f'(a') E y n z, contradicting:' 
ynz = (/). M 

(b) First, we define the transitive closure TC(u) of a set u. Intuitively) we_ 
want TC(u) to be the smallest transitive set that contains u. Define by:: 
induction a function g on w such that g'(/J = {u} and g'(a') = U(g'a) for eachl 
a in w. Thus, g'l = u, g'2 = U u, g'3 = U(U u), and so on. Let­
TC(u) = U(g"w) be called the transitive closure of u. For any u, TC(u) is' 
transitive; that is, (Vv)(v E TC(u)::::;. v ~ TC(u)). Now, assume AC and the 
Fundierungsaxiom; also, assume X -::F (/J but there is no y in X such that 
y nx = (/). Let b be some element of X; hence, b nx -::F (/). Let 
c = TC(b) nx. By AC, let h be a choice function for c. Define a function f 
on w such that['(/)= band, for any a in w,f'(a') = h'((f'a) nX). It follows 
easily that, for each a in w,f'(a') E f'a, contradicting the Fundierungsaxi­
om. (The proof can be summarized as follows: we start with an element b of 
X; then, using h, we pick an element f'l in b nX; since, by assumption, /'1 
and X cannot be disjoint, we pick an element ['2 in f'l nx, and so on.) 

(c) Assume given a finite E-cycle: f'(/J E f'l E ... E f'n E ['(/). Let X be 
the range off: {f'(/J,j' 1, ... ,f'n }. By (Reg), there is some f'j in X such that 
f'jnX =(/).But each element of X has an element in common withXt. 

Exercises 

4.80 If z is a transitive set such that u E z, prove that TC(u) C z. 
4.81 By the principle of dependent choices (PDC) we mean the following: if r 
is a non-empty relation whose range is a subset of its domain, then there is a 
function f: w ~ !0(r) such that (Vu)(u E OJ ::::;. (f'u,f'(u')) E r) (Mostowski, 
1948). 
(a) Prove 1- AC ::::;. PDC. 
(b) Show that PDC implies the denumerable axiom of choice (DAC): 

Den(x) 1\ ('v'u)(u Ex==? u =/= 0) ==? (3f)(f: x--} Ux 1\ ('v'u)(u Ex==? f'u E u)) 

(c) Prove 1- PDC::::;. (Vx)(Inf(x) ::::;. w~x) (Hence, by Exercise 4.64(c), PDC 
implies that a set is infinite if and only if it is Dedekind-infinite.) 

(d) Prove that the conjunction of PDC and the Fundierungsaxiom implies 
(Reg). 

Let us define by transfinite induction the following function 'I' with do~ 
main On: 

trhe use of AC in deriving (Reg) from the Fundierungsaxiom is necessary. 
Mendelson (1958) proved that, if NBG is consistent and if we add the Fundie~ 
rungsaxiom as an axiom, then (Reg) is not provable in this enlarged theory. 
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'1''0 = 0 
\f'(o:') = #('P'o:) 

Lim(A) '* 'P'A = U '1''{3 
fJ <o ;_ 

Let H stand for U('l'''On), that is, H consists of all members of sets of the 
form 'I''a. Let HfJ stand for 'I'' (/3'). Thus, HfJ = 9('1''/3) and H13, = 9(\l''(/3')) 
::::: f!I(H13 ). In particular, Hf/J = 9(\l''0) = r1'(0) = {0}, H1 = r1'(HfJJ) = 
&( {0}) = {0, {0} }, and H2 = r1'(Ht) = ,o/J( {0, {0}}) = {0, {0}, { {0} }, 
{0, {0}} }. 

Define a function p on H such that, for any x in H, p'x is the least ordinal 
a such that x E 'l''a. p'x is called the rank of x. Observe that p'x must be a 
successor ordinal. (In fact, there are no sets of rank 0, since '1''0 = 0. If It is a 
limit ordinal, every set in \}''It already was a member of 'I''f3 for some 
fJ <o lt.) As examples, note that p'0 = I, p'{0} = 1, p'{0, {0}} = 2, and 
p'{{0}} = 2. 

Exercise 4.82. Prove that the following are theoretns of NBG. 

(a) (\la)Trans(\l''a) 
(b) Trans(H) 
(c) (\la)('I''a C \l''( a')) 
(d) (\la)(\1/3)( a <o f3 ~ \l''a C 'I''/3) 
(e) On c H 
(f) (\la)(p'a =a') 
(g) (\lu)(\lv)(u E H 1\ v E H 1\ u E v * p'u <o p'v) 
(h) (\lu)(u ~ H * u E H) 

PROPOSITION 4.45 

The regularity axiom is equivalent to the assertion that V = H, that is, that 
every set is a member of H. 

Proof 

(a) Assume V =H. Let X -=fi 0. Let a be the least of the ranks of all the 
members of X, and let b be an element of X such that p'b =a. Then 
b nX = 0; for, if u E b nX, then, by Exercise 4.82(g), p'u E p'b =a, 
contradicting the minimality of ex. 

(b) Assume (Reg). Assume V :f- H. Then V- H # 0. By (Reg), there is 
some yin V- H such that y n (V- H)= 0. Hence, y c Hand so, by 
Exercise 4.82(h), y E H, contradicting y E V - H. 

281 
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Exercises 

4.83 Show that (Reg) is equivalent to the special case: (\lx)(x =/:: 0 
==;> (3y) (y E X 1\ y n X = 0)). 

4.84 Show that, if we assume (Reg), then Ord(X) is equivalent to 
Trans(X) 1\ E Con X, that is, to the wf 

('v'u)(u EX:::} u ~X) 1\ ('v'u)('v'v)(u EX 1\ vEX 1\ ll =/:. v:::} 11 E v V v E u) 

Thus, with the regularity axiom, a much simpler definition of the notion of 
ordinal class is available, a definition in which all quantifiers are restricted to 
sets. 

4.85 Show that (Reg) implies that every non-empty transitive class con­
tains 0 

Proposition 4.45 certainly increases the attractiveness of adding (Reg) as 
a new axiom to NBG. The proposition V = H asserts that every set can be 
obtained by starting with 0 and applying the power set and union operations 
any transfinite number of times. The assumption that this is so is called the 
iterative conception of set. Many set theorists now regard this conception as 
the best available formalization of our intuitive picture of the universe of 
sets.t 

By Exercise 4.84, the regularity axiom would also simplify the definition 
of ordinal numbers. In addition, we can develop the theory of cardinal 
numbers on the basis of the regularity axiom; namely, just define the car­
dinal number of a set x to be the set of all those y of lowest rank such that 
y rv x. This would satisfy the basic requirement of a theory of cardinal 
numbers, the existence of a function Card whose domain is ·v and such that 
(Vx)('v'y)(Card'x = Card'y {:}X rv y). 

There is no unanimity among mathematicians about whether we have 
sufficient grounds for adding (Reg) as a new axiom, for, although it has 
great simplifying power, it does not have the immediate plausibility that 
even the axiom of choice has, nor has it had any mathematical applications. 
Nevertheless, it is now often taken without explicit mention to be one of the 
axiOms. 

The class H determines an inner model of NBG in the following sense. 
For any wf {!g (written in unabbreviated notation), let RelH( ~) be the wf 
obtained from f!J by replacing every subforn1ula (\IX)~(X) by 
('v'X) (X C H ==;> ~(X)) (in making the replacements we start with the in-

tThe iterative conception seems to presuppose that we understand the power set 
and union operations and that ordinal numbers (or something essentially equivalent 
to them) are available for carrying out the transfinite iteration of the power set and 
union operations. 
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nermost subformulas) and then, if &J contains free variables. Y1, • •• , Y,,, 
prefixing ( Yi C H 1\ Y2 <;;;: H 1\ ... 1\ Y,, C H) =?. 

In other words, in forming RelH(&J), we interpret "class' as 'subclass of 
H'. Since M(X) stands for (3Y)(X E Y), RelH(M(X)) is 
(3Y)(Y c H 1\X E Y), which is equivalent to X E H; thus, the 'sets' of the 
model are the elements of H. Hence, RelH((Vx)&J) is equivalent to 
(Vx)(x E H =? &J#), where ~# is RelH(&J). Note also that 
1-- X C H 1\ Y C H =? [RelH(X = Y) {=?X = Y]. Then it turns out that, for 
any theorem f!IJ of NBG, RelH(&J) is also a theorem of NBG. 

Exercises 

4.86 Verify that, for each axiom &J of NBG, 1-NBG RelH(&J). If we adopt a 
semantic approach, one need only show that, if J/ is a model for NBG, in 
the usual sense of 'model', then the objects X of j{ that satisfy the wf X C H 
also form a model for NBG. In addition, one can verify that (Reg) holds in 
this model; this is essentially just part (a) of Proposition 4.45. A direct 
consequence of this fact is that, if NBG is consistent, then so is the theory 
obtained by adding (Reg) as a new axiom. That (Reg) is independent of 
NBG (that is, cannot be proved in NBG) can be shown by means of a model 
that is somewhat more complex than the one gi_ven above for the consistency 
proof (see Bernays, 1937-1954, part VII). Thus, we can consistently add 
either (Reg) or its negation to NBG, if NBG is consistent. Practically the 
same arguments show the independence and consistency of (Reg) with re­
spect to NBG + (AC). 
4.87 Consider the model whose domain is Ha and whose interpretation of E 
is EH~· the membership relation restricted to Ha. Notice that the ·sets' of this 
model are the sets of rank ~ 0 a and the 'proper classes' are the sets of rank 
cl. Show that the model Hr:~. satisfies all axioms of NBG (except possibly the 
axioms of infinity and replacement) if and only if Lim( a). Prove also that Hr1. 
satisfies the axiom of infinity if and only if a >o w. 
4.88 Show that the axiom of infinity is not provable from the other axioms 
of NBG, if the latter form a consistent theory. 
4.89 Show that the replacement axiom (R) is not provable from the other 
axioms (T, P, N, (Bl) (B7), U, W, S) if these latter form a consistent theory. 
4.90 An ordinal a such that Ha is a model for NBG is called inaccessible. 
Since NBG has only a finite number of proper axioms, the assertion that a is 
inaccessible can be expressed by the conjunction of the relativization to Ha 
of the proper axioms of NBG. Show that the existence of inaccessible or­
dinals is not provable in NBG if NBG is consistent. (Compare Shepherdson 
(1951-53), Montague and Vaught (1959), and, for related results, Bernays 
(1961) and Levy (1960).) Inaccessible ordinals have been shown to have 
connections with problems in measure theory and algebra (see Ulam, 1930; 
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Zeeman, 1955; Erdos and Tarski, 1961).t The consistency of the theory 
obtained from NBG by adding an axiom asserting the existence of an in­
accessible ordinal is still an open question. More about inaccessible ordinals 
may be found in Exercise 4.91. 

The axiom of choice turns out to be consistent and independent with 
respect to the theory NBG + (Reg). More precisely, if NBG is consistent , 
AC is an undecidable sentence of the theory NBG + (Reg). In fact, Godel 
(1938; 1939; 1940) showed that, ifNBG is consistent, then the theory NBG 
+ (AC) + (Reg) + (GCH) is also consistent, where (GCH) stands for the 
generalized continuum hypothesis: 

(\ix)(Inf(x)::::? -.(3y)(x ~ y 1\y ~ &(x))) 

(Our statement of Godel's result is a bit redundant, since 
1-NBG (GCH) ::::} (AC) has been proved by Sierpinski (1947) and Specker 
(1954). This result will be proved below.) The unprovability of AC from 
NBG + (Reg), ifNBG is consistent, has been proved by P.J. Cohen (1963-
64), who also has shown the independence of the special continuum hy­
pothesis, zw rv WJ' in the theory NBG + (AC) + (Reg). Expositions of the 
work of Cohen and its further development can be found in Cohen (1966) 
and Shoenfield (1971b), as well as in Rosser (1969) and Feigner (197la). For 
a thorough treatment of these results and other independence proofs in set 
theory, Jecb (1978) and Kunen (1980) should be consulted. 

We shall present here a modified form of the proof in Cohen (1966) of 
Sierpinski's theorem that GCH implies AC. 

DEFINITION 

For any set v, let &>0(v)=v,&>1(v) =&>(v),&>2(v) = &>(&>(v)), ... ,g>k+1(v) 
= &(&>k(v)) for all kin w. 

LEMMA4.46 

tinaccessible ordinals are involved also with attempts to provide a suitable set­
theoretic foundation for category theory (see MacLane, 1971; Gabriel, 1962; Sonner, 
1962; Kruse, 1966; Isbell, 1966). 
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Proof 

Remember that El'(x) ""' 2x (see Exercise 4.40). From w~v we obtain 
w~.?lk(v) for all kin w. Hence, ~(v) +c l ""'.?Pk(v) for all kin w, by Ex­
ercise 4.64(g). Now, for any k >o 1, 

27"'(v) +c &f'(v) = .?Jk(v) x 2 = &J(gP"-l (v)) x 2-:::= 2~-I(v) x 2 

rv 2#-I(v) X 2' rv 2~H(v)+cl ,..,_, 2Jl"'-l(v) ,..,_, &J(f!/ '{v)) = gpk(v) 

LEMMA 4.47 

If y +c x ""' .qf'(x +c x), then El'(x) ~y. 

Proof 

Notice that El'(x +c x) rv 2x+c X "-' 2X X 2X rv .?P(x) X El'(x). Let y* = y X {0} 
and x* = x x { 1 }. Since y +c x ""'El'(x +c x) ""' El'(x) x El'(x), there is a func­
tion[ such that y* U x*""'El'(x) x El'(x). Let h be the function that takes each u 
in x* into the first cobJponent of the pair f'u. Thus, h: x* ::::} El'(x). By 
Proposition 4.25(a), there must exist c in El'(x) - h"(x*). Then, for all z in 
.9'(x), there exists a unique v in y* such that f'v = (c,z). This determines a 
one-one function from El'(x) into y. Hence, El'(x)~y. 

PROPOSITION 4.48 

Assume GCH. 

(a) If u cannot be well-ordered and u +c u ~ u and fJ is an ordinal such that 
{J~2u, then {J~u. 

(b) The axiom of choice holds. 

Proof 

(a) Notice that u +c u""' u implies 1 +c u ""'u, by Exercise 4.71(b). Therefore, 
by Exercise 4.55(i), 2u +c u""' 211

• Now, u~fJ +c u~2u +c u ""'2 11
• By GCH, 

either (i) u "-' fJ +c u or (ii) fJ +c u rv 211
• If (ii) holds, 

fJ+cu""'211 +cu""'El'(u+cu). Hence, by Lemma 4.47, El'(u)~fJ and, 
therefore, u~{J. Then, since u would be equinumerous with a subset of an 
ordinal, u could be well-ordered, contradicting our assumption. Hence, (i) 
must hold. But then, fJ~fJ +c u""' u. 

(b) We shall prove AC by proving the equivalent sentence (WO) asserting 
that every set can be well-ordered. To that end, consider any set x and 
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assume, for the sake of contradiction, that x cannot be well-ordered. Let 
v = zxum. Then w~x u w~v. Hence, by Lemma 4.46, &k(v) +c :Jlk(;)­
,....., g>k(v) for all k;;?:: 0 1. Also, since x~x U w~v-< G'>(v)-< -~(&(v))-< .. . , 
and x cannot be weB-ordered, each#( v) cannot be well-ordered, fork;;?; 0 
Let {3 = ff'v. We know that {J~?r(v) by Corollary 4.32. Hence, by part(~): 
with u = & 3 (v), we obtain {3~G'>3 (v). Using part (a) twice more (successively 
with u = @-'

2 (v) and u = &>(v)), we obtain .it'v = {3~v. But this contradicts 
the definition of :ff' v as the least ordinal not equinumerous with a subset 
of v. 

Exercise 

4.91 An a-sequence is defined to be a function f whose domain is a. If the 
range off consists of ordinals, then f is called an ordinal a-sequence and, if, 
in addition, {3 <o '}' <o a implies f'/3 <o /''}', then f is called an 
increasing ordinal a-sequence. By Proposition 4.12, if f is an increasing 
ordinal a-sequence, then U(f"a) is the least upper bound of the range of f . 
An ordinal fJ is said to be regular if, for any increasing ordinal a-sequence 
such that a <o fJ and the ordinals in the range of f are all 
<o fJ, U(f"a) +o 1 <o fJ. Non-regular ordinals are called singular ordinals. 
(a) Which finite ordinals are regular? 
(b) Show that roo is regular and Ww is singular 
(c) Prove that every regular ordinal is an initial ordinal. 
(d) Assuming the axiom of choice (AC), prove that every ordinal of the 

form Wy+
0

l is regular. 
(e) If Wr~. is regular and Lim( a), prove that Wr~. = a. (A regular ordinal cor~. 

such that Lim(a) is called a weakly inaccessible ol'dinal.) 
(f) Show that, if Wr~. has the property that '}' <o Wa implies G'>( '}') -< Wr~., then 

Lim( a). The converse is implied by the generalized continuum hypoth­
esis. A regular ordinal Wr~. such that a >o 0 and such that'}' <o Wa. implies 
G'>('Y) --<( Wr~., is called strong~y inaccessible. Thus, every strongly inacces­
sible ordinal is weakly inaccessible and, if (GCH) holds, the strongly 
inaccessible ordinals coincide with the weakly inaccessible ordinals. 

(g) (Sheperdson 1951- 53; Montague and Vaught, 1959) (i) If 'Y is inacces­
sible (i.e., if Hy is a model ofNBG), prove that 'Y is weakly inaccessible. 
(ii)D In the theory NBG + (AC), show that 'Y is inaccessible if and only 
if 'Y is strongly inaccessible. 

(h) If NBG is consistent, then in the theory NBG + (AC) + (GCH), show 
that it is impossible to prove the existence of weakly inaccessible or­
dinals. 
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4.6 OTHER AXIOMATIZATIONS OF SET THEORY 

We have chosen to develop set theory on the basis of NBG because it is 
relatively simple and convenient for the practising mathematician. There 
are, of course, many other varieties of axiomatic set theory, of which we will 
now make a brief survey. 

Morse-Kelley (MK) 

Strengthening NBG, we can replace axioms (B1)-(B7) by the axiom schema: 

(D) (3Y)('v'x)(x E Y {::?- .18(x)) 

where PJ(x) is any wf (not necessarily predicative) of NBG and Y is not free 
in ~(x). The new theory MK, called Morse- Kelley set theory, became well­
known through its appearance as an appendix in a book on general to­
pology by Kelley (1955). The basic idea was proposed independently by 
Mostowski, Quine, and Morse (whose rather unorthodox system may be 
found in Morse (1965)). Axioms (B1)-(B7) follow easily from (D) and, 
therefore, NBG is a subtheory of MK. Mostowski (195la) showed that, if 
NBG is consistent, then MK is really stronger than NBG. He did this by 
constructing a 'truth definition' in MK on the basis of which he proved 
f-MK ~-MtNBG, where ~onNBG is a standard arithmetic sentence asserting the 
consistency of NBG. On the other hand, by Godel's second theorem, 
~onNBG is not provable in NBG if the latter is consistent. 

The simplicity and power of schema (D) make MK very suitable for use 
by mathematicians who are not interested in the subtleties of axiomatic set 
theory. But this very strength makes the consistency of MK a riskier gamble. 
However, if we add to NBG + (AC) the axiom (In) asserting the existence 
of a strongly inaccessible ordinal e, then Ho is a model of MK. Hence, MK 
involves no more risk than NBG + (AC) + (In). 

There are several textbooks that develop axiomatic set theory on the basis 
of MK (Rubin, 1967; Monk, 1980; Chuquai, 1981). Some of Cohen's in­
dependence results have been extended to MK by Chuquai (1972). 

Exercises 

4.92 Prove that axioms (Bl)-(B7) are theorems of MK. 
4.93 Verify that, if e is a strongly inaccessible ordinal, then He is a model of 
MK. 
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Zermelo-Fraenkel (ZF) 

The earliest axiom system for set theory was devised by Zermelo (1908). The 
objects of the theory are thought of intuitively as sets, not the classes of 
NBG or MK. Zermelo's theory Z can be formulated in a language that 
contains only one predicate letter E. Equality is defined extensionally: x = y 
stands for (\iz)(z Ex{::} z E y). The proper axioms are: 

T: x = y * (x E z {::} y E z) (substitutivity of=) 
P: (3z)(\fu)(u E z {::} u = x V u = y) (pairing) 
N: (3x)(\fy)(y~ x) (null set) 
U: (3y)(\fu)(u E y ~ (3v)(u E v 1\ vEx)) (sum set) 
W: (3y)(\fu)(u E y {::} u C x) (power set) 
S*: (3y)(\fu)(u E y {::} (u Ex 1\ 86'(u))), where 86'(u) is any wf not containingy 

free (selection) 
I: (3x)((i) Ex 1\ (\fz)(z Ex* z U {z} Ex)) (infinity) 

Here we have assumed the same definitions of c, (i), u and { u} as in 
NBG. 

Zermelo's intention was to build up mathematics by starting with a few 
simple sets ((i) and w) and then constructing further sets by various well­
defined operations (such as formation of pairs, unions and power sets). In 
fact, a good deal of mathematics can be built up within Z. However, 
Fraenkel (1922a) observed that Z was too weak for a full development of 
mathematics. For example, for each finite ordinal n, the ordinal OJ +on can 
be shown to exist, but the set A of all such ordinals cannot be proved to 
exist, and, therefore, w +o w, the least upper bound of A, cannot be shown 
to exist. Fraenkel proposed a way of overcoming such difficulties, but his 
idea could not be clearly expressed in the language of Z. However, Skolem 
(1923) was able to recast Fraenkel's idea in the following way: for any wf 
88(x,y), let Fun(@) stand for (\fx)(\fu)(\fv)(88(x, u) 1\ 86'(x, v) * u = v). Thus, 
Fun (86') asserts that 86' determines a function. Skolem's axiom schema of 
replacement can then be formulated as follows: 

(R#) Fun(9.3') =? (Vw)(3z)(Vv)(v E z {::} (3u)(u E w 1\ 86'(u, v))) 

for any wf ~(x,y) 

This is the best approximation that can be found for the replacement axiom 
R ofNBG. 

The system Z + (R#) is denoted ZF and is called Zermelo-Fraenkel set 
theory. In recent years, ZF is often assumed to contain a set-theoretic reg­
ularity axiom (Reg*): x =/= (i) * (3y)(y Ex 1\ y n x = 0). The reader should 
always check to see whether (Reg*) is included within ZF. ZF is now the 
most popular form of axiomatic set theory; most of the modern research in 
set theory on independence and consistency proofs has been carried out with 
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respect to ZF. For expositions of ZF, see Krivine (1971), Suppes (1960), 
.Zuckerman (1974), Levy (1978) and Hrbacek and Jech (1978). 

ZF and NBG yield essentially equivalent developments of set theory. 
Every sentence of ZF is an abbreviation of a sentence of NBG since, in 
NBG, lower-case variables x,y,z, ... serve as restricted set variables. Thus 
axiom N is an abbreviation of (3x)(M(x) 1\ (\fy)(M(y)::::;. y¢:x)) in NBG. It 
is a simple matter to verify that all axioms of ZF are theorems in NBG. 
Indeed, NBG was originally constructed so that this would be the case. We 
can conclude that, if NBG is consistent, then so is ZF. In fact, if a con­
tradiction could be derived in ZF, the same proof would yield a con­
tradiction in NBG. 

The presence of class variables in NBG seems to make it much more 
powerful than ZF. At any rate, it is possible to express propositions in NBG 
that either are impossible to formulate in ZF (such as the universal choice 
axiom) or are much more unwieldy in ZF (such as transfinite induction 
theorems). Nevertheless, it is a surprising fact that NBG is no riskier than 
ZF. An even stronger result can be proved: NBG is a conservative extension 
of ZF in the sense that, for any sentence f!J of the language of ZF, if 1-NBG f!J, 
then 1-zF f!J (see Novak (Gal) 1951; Rosser and Wang, 1950; Shoenfield, 
1954). This implies that, if ZF is consistent, then NBG is consistent. Thus, 
NBG is consistent if and only if ZF is consistent, and NBG seems to be no 
stronger than ZF. However, NBG and ZF do differ with respect to the 
existence of certain kinds of models (see Montague and Vaught, 1959). 
Moreover, another important difference is that NBG is finitely axiomatiz­
able, whereas Montague (196la) showed that ZF (as well as Z) is not finitely 
axiomatizable. Montague (1961b) proved the stronger result that ZF cannot 
be obtained by adding a finite number of axioms to Z. 

Exercise 

4.94 Let H; = UHa (see page 281). 
(a) Verify that H; consists of all sets of rank less than r:x. 
(b) If r:x is a limit ordinal >o w, show that H; is a model for Z. 
(c)D Find an instance of the axiom schema of replacement (R#) that is false 

in H;+ow· [Hint: Let r!J(x, y) be x E w 1\ y = w +ox. Observe that 
w +o w¢:H;+ow and w +ow= U{v I (3u)(u E w 1\ :?JJ(u, v))}.] 

(d) Show that, if ZF is consistent, then ZF is a proper extension of Z. 

The theory of types (ST) 

Russell's paradox is based on the set K of all those sets that are not members 
of themselves: K = {x I x¢:x}. Clearly, K E Kif and only if K ¢: K. In NBG 
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this argmnent simply shows that K is a proper class, not a set. In ZF the 
conclusion is just that there is no such set K. 

Russell himself chose to find the source of his paradox elsewhere. Be 
maintained that x E x and xfj_ x should be considered 'illegitimate' and 
'ungrammatical' formulas and, therefore, that the definition of K makes no 
sense. However, this alone is not adequate because paradoxes analogous to 
Russell's can be obtained from slightly more complicated circular prop­
erties, like x E y 1\ y Ex. 

Exercise 

4.95 (a) Derive a Russell-style paradox by using x E y 1\ y Ex. 
(b) Use x E YI 1\ YI E )'2 1\ ... 1\ Yn-1 E Yn 1\ Yn E x to obtain a paradox, 

where n > 1. 

Thus, to avoid paradoxes, one must forbid any kind of indirect circu­
larity. For this purpose, we can think of the universe divided up into types in 
the following way. Start with a collection W of non-sets or individuals. The 
elements of Ware said to have type 0. Sets whose members are of type 0 are 
the objects of type I. Sets whose members are of typel will be the objects of 
type 2, and so on. 

Our language will have variables of different types. The superscript of a 
variable will indicate its type. Thus, x0 is a variable of type 0, y 1 is a variable of 
type 1, and so on. There are no variables other than type variables. The atomic 
wfs are of the formx11 E y'+1, where n is one of the natural numbers 0, I, 2, .... 
The rest of the wfs are built up from the atomic wfs by means of logical 
connectives and quantifiers. Observe that •(x Ex) and -{x.E y 1\y Ex) are 
not wfs. 

The equality relation must be defined piecemeal, one definition for each 
type. 

DEFINITION 

x11 = y' for ('v'z'+1 )(x11 E zn+I {::} y' E z''+1) Notice that two objects are de­
fined to be equal if they belong to the same sets of the next higher type. The 
basic property of equality is provided by the following axiom scheme. 

STl (EXTENSIONALITY AXIOM) 

(\lx')(.x'' E yn+ I {:} _x1 E .t'+l) :::::;> y'+l = .t'+l 

This asserts that two sets that have the same members must be equal. On the 
other hand, observe that the property of having the same members could 
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not be taken as a general definition of equality because it is not suitable for 
objects of type 0. 

Given any wf 8U(x11
), we wish to be able to define a set {x11 I ~(x11 )}. 

ST2 (COMPREHENSION AXIOM SCHEME) 

for any wf 8U(x11
), the following wf is an axiom: 

(3y'+I )(\1;.\JI)(x' E _yr+l ¢=> PJ(:tJ')) 

Here, y'+1 is any variable not free in ~(x11 ). If we use the extensionality 
axiom, then the set yn+I asserted to exist by axiom ST2 is unique and can be 
denoted by {x" I 8U(x11

) }. 

Within this system, we can define the usual set-theoretic notions and 
operations, as well as the natural numbers, ordinal numbers, cardinal 
numbers and so on. However, these concepts are not unique but are re­
peated for each type (or, in some cases, for all but the first few types). For 
example, the comprehension scheme provides a null set .t\."+1 = 

{x' I x" =f- x'} for each non-zero type. But there is no null set per se. The 
same thing happens for natural numbers. n type theory, the natural numbers 
are not defined as they are in NBG. Here they are the finite cardinal 
numbers. For example, the set of natural numbers of type 2 is the inter­
section of all sets containing {A 1} and closed under the following successor 
operation: the successor S(y) of a set y2 is {vi 1 (3u1 )(3z0) (ul E 
yl\ fJ rJ_ u1 1\ vi = u1 u {fJ})}. Then, among the natural numbers of type 2, 
we have 0 = {.t\.1}, 1 = S(O), 2 = S(1), and so on. Here, the numerals 0, 1, 2, 
... should really have a superscript 2 to indicate their type, but the super­
scripts were omitted for the sake of legibility. Note that 0 is the set of all sets 
of type 1 that contain no elements, 1 is the set of all sets of type 1 that 
contain one element, 2 is the set of all sets of type 1 that contain two 
elements, and so on. 

This repetition of the same notion in different types makes it somewhat 
inconvenient for mathematicians to work within a type theory. Moreover, it 
is easy to show that the existence of an infinite set cannot be proved from the 
extensionality and comprehension schemas.t To see this, consider the 
'model' in which each variable of type n ranges over the sets of rank less 
than or equal to n +o 1. (There is nothing wrong about assigning overlap­
ping ranges to variables of different types.) 

We shall assume an axiom that guarantees the existence of an infinite set. 
As a preliminary, we shall adopt the usual definition { {x"}, {x" ,y"}} of the 
ordered pair: (x",y'), where {x",y'} stands for {u" I u" = x" V u" = Jll}. 

tThis fact seemed to undermine Russell's doctrine of logicism, according to 
which all of mathematics could be reduced to basic axioms that were of an essentially 
logical character. An axiom of infinity could not be thought of as a logical truth. 
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Notice that (x",y") is of type n + 2. Hence, a binary relation on a setA, being 
a set of ordered pairs of elements of A, will have type 2 greater than the type 
of A. In particular, a binary relation on the universe V1 = {x0 I x0 = xo} of 
all objects of type 0 will be a set of type 3. 

ST3 (AXIOM OF INFINITY) 

(:lt3)([(3zP)(3v0
)( (u0

, l,O) E ~)]/\ 

(\iu0)(\iv0)(Vw0)((u0 ,zP) f:-x3
1\ [(zP,v0

) Ex3
/\ (v0,w'l) E x3 * 

(zP,11P) E ~] 1\ [(u0,v0
) E~ => (3z0)((v0 ,}>) E x3)])) 

This asserts that there is a non-empty irreflexive, transitive binary relation _x-3 

on V1 such that every member of the range of x3 also belongs to the domain 
of x3. Since no such relation exists on a finite set, V 1 must be infinite. 

The system based on STl- ST3 is called the simple theory of types and is 
denoted ST. Because of its somewhat complex notation and the repetition of 
concepts at all (or, in some cases, almost all) type levels, ST is not generally 
used as a foundation of mathematics and is not the subject of much con­
temporary research. Suggestions by Turing (1948) to make type theory more 
usable have been largely ignored. 

With ST we can associate a first-order theory ST*. The non-logical 
constants of ST* are E and monadic predicates T,, for each natural number 
n. We then translate any wf f!J of ST into ST* by replacing subformulas 
('v'x")~(x11) by ('v'x)(T,,(x) => ~(x')) and, finally, if yj', . .. ,yA are the free 
variables of !?J, prefixing to the result 1}, (y1) 1\ ... 1\ Ijk(.Yk) => and changing 
each yj; into y;. In a rigorous presentation, we would have tb specify clearly 
that the replacements are made by proceeding from smaller to larger sub­
formulas and that the variables x,y1, ... ,yk are new variables. The axioms of 
ST* are the translations of the axioms of ST. Any theorem of ST translates 
into a theorem of ST*. 

Exercise 

4.96 Exhibit a model of ST* within NBG. 

By virtue of Exercise 4. 96, NBG (or ZF) is stronger than ST: (1) any 
theorem of ST can be translated into a corresponding theorem of NBG; and 
(2) if NBG is consistent, so is ST.t 

To provide a type theory that is easier to work with, one can add axioms 
that impose additional structure on the set V1 of objects of type 0. For 

t A stronger result was proved by John Kemeny (1949) by means of a truth 
definition within Z: if Z is consistent, so is ST. 
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example, Peano's axioms for the natural numbers were adopted at level 0 in 
Godel's system P, for which he originally proved his famous incompleteness 
theorem (see Godel, 1931). 

In Principia Mathematica (1910--1913), the three-volume work by Alfred 
North Whitehead and Bertrand Russell, there is a theory of types that is 
further complicated by an additional hierarchy of orders. This hierarchy was 
introduced so that the comprehension scheme could be suitably restricted in 
order not to generate an impredicatively defined set, that is, a set A defined by 
a formula in which some quantified variable ranges over a set that turns out 
to contain the set A itself. Along with the mathematician Henri Poincare, 
Whitehead and Russell believed impredicatively defined sets to be the root 
of al1 evil. However, such concepts are required in analysis (for example, in 
the proof that any non-empty set of real numbers that is bounded above has 
a least upper bound). Principia Mathematica had to add the so-called axiom 
of reducibility to overcome the order restrictions imposed on the compre­
hension scheme. The Whitehead-Russell system without the axiom of re­
ducibility is called ramified type theory; it is mathematically weak but is of 
interest to those who wish an extreme constructivist approach to mathe­
matics. The axiom of reducibility vitiates the effect of the order hierarchy; 
therefore, it is much simpler to drop the notion of order and the axiom of 
reducibility. The result is the simple theory of types ST, which we have 
described above. 

[n ST, the types are natural numbers. For a smoother presentation, some 
logicians allow a larger set of types, including types for relations and/or 
functions defined on objects taken from previously defined types. Such a 
system may be found in Church (1940). 

Principia M athematica must be read critically; for example, it often 
overlooks the distinction between a formal theory and its metalanguage. 
The idea of a simple theory of types goes back to Ramsey (1925) and, 
independently, to Chwistek (1924--25). Discussions of type theory are found 
in Andrews (1986), Hatcher (1982) and Quine (1963). 

Quine's theories NF and ML 

Quine (1937) invented a type theory that was designed to do away with some 
of the unpleasant aspects of type theory while keeping the essential idea of 
the comprehension axiom ST2. Quine's theory NF (New Foundations) uses 
only one kind of variable x,y,z, ... and one binary predicate letter E. 
Equality is defined as in type theory: x = y stands for (\iz)(x E z {::} y E z). 
The first axiom is familiar: 
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NFl (EXTENSIONALITY) 

(\lz)(z EX{::} z E y) ~X= y 

In order to formulate the comprehension axiom, we introduce the notion 
of stratification. A wf :Jg is said to be stratified if one can assign integers to 
the variables of flJ so that: (l) all occurrences of the same free variable are 
assigned the same integer; (2) all bound occurrences of a variable that are 
bound by the same quantifier must be assigned the same integer; and (3) for 
every subformula x E y of fJ1J, the integer assigned toy is l greater than the 
integer assigned to x. 

Examples 
1. (3y)(x E y 1\y E z) VuE x is stratified by virtue of the assignment indi­

cated below by superscripts: 

(3y2)(x1 Ey2 A/ E ~) V u0 E x1 

2. ((3y)(x Ey)) 1\ (3y)(y Ex) is stratified as follows: 
((3/)(x1 E /)) 1\ (3i)(;P E x1

) 

Notice that the ys in the second conjunct do not have to have the same 
integers assigned to them as the ys in the first conjunct. 

3. x E y Vy Ex is not stratified. If xis assigned an integer n, then the first y 
must be assigned n + 1 and the second y must be assigned n -1. con­
tradicting (1 ). 

NF2 (COMPREHENSION) 

For any stratified wf fJ1J(x), 

(3y) (\lx) (x E y <=? 88(x)) 

is an axiom. (Here, y is assumed to be the first variable not free in fJ1J(x).) 
Although NF2 is an axiom scheme, it turns out that NF is finitely axi­

omatizable (Hailperin. 1944). 

Exercise 

4.97 Prove that equality could have been defined as follows: x = y for 
(V'z)(x E z => y E z) (More precisely, in the presence of NF2. this definition is 
equivalent to the original one.) 

The theory of natural numbers, ordinal numbers and cardinal numbers is 
developed in much the same way as in type theory, except that there is no 
longer a multiplicity of similar concepts. There is a unique empty set 
A= {xI x =I- x} and a unique universal set V = {x l x = x}. We can easily 
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prove V E V, which immediately distinguishes NF from type theory (and 
.from NBG, MI( and ZF). 

The usual argument for Russell's paradox does not hold in NF, since 
x ¢:. x is not stratified. Almost all of standard set theory and mathematics is 
derivable in NF; this is done in full detail in Rosser (1953). However, NF 
has some very strange properties. First of all, the usua] proof of Cantor's 
theorem, A-< f30(A), does not go through in NF; at a key step in the proof, a 
set that is needed is not available because its defining condition is not 
stratified. The apparent unavailability of Cantor's theorem has the desirable 
effect of undermining the usual proof of Cantor's paradox. If we could 
prove A -< f30(A), then, since f30(V) = V, we could obtain a contradiction 
from V-< f30(V). In NF, the standard proof of Cantor's theorem does yield 
USC(A) -< f30(A), where USC(A) stands for {xI (3u)(u E A 1\x = {u})}. If 
we let A= V, we conclude that USC(V) -< V. Thus, V has the peculiar 
property that it is not equinumerous with the set of all unit sets of its 
elements. In NBG, the function f, defined by f(u) = {u} for all u in A, 
establishes a one-one correspondence between A and USC(A) for any setA. 
However, the defining condition for f is not stratified, so that f may not 
exist in NF. Iff does exist, A is said to be strongly Cantorian. 

Other surprising properties of NF are the following. 

1. The axiom of choice is disprovable in NF (Specker, 1953). 
2. Any model for NF must be non-standard in the sense that a well-ordering 

of the finite cardinals or of the ordinals of the model is not possible in the 
metalanguage (Rosser and Wang, 1950). 

3. The axiom of infinity is provable in NF (Specker, 1953). 

Although property 3 would ordinarily be thought of as a great advan­
tage, the fact of the provability of an axiom of infinity appeared to many 
logicians to be too strong a result. If that can be proved, then probably 
anything can be proved, that is, NF is likely to be inconsistent. In addition, 
the disprovability of the axiom of choice seems to make NF a poor choice 
for practising mathematicians. However, if we restrict attention to so-called 
Cantorian sets, sets A for which A and USC(A) are equinumerous, then it 
might be consistent to assume the axiom of choice for Cantorian sets and to 
do mathematics within the universe of Cantorian sets. 

NF has another attractive feature. A substantial part of category theory 
(see MacLane, 1971) can be developed in a straightforward way in NF, 
whereas this is not possible in ZF, NBG or MI(. Since category theory has 
become an important branch of mathematics, this is a distinct advantage for 
NF. 

If the system obtained from NF by assuming the existence of an inac­
cessible ordinal is consistent, then ZF is consistent (see Orey, 1956a; Collins 
1955). If we add to NF the assumption of the existence of an infinite strongly 
Cantorian set, then Zermelo's set theory Z is consistent (see Rosser, 1954). 
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The question of whether the consistency of ZF implies the consistency ofNF'' 
is still open (as is the question of the reverse implication). 

Let ST- be the simple theory of types ST without the axiom of infinity. 
Given any closed wf f!)J of ST, let f!)J+ denote the result of adding 1 to the 
types of all variables in$. Let SP denote the theory obtained from ST- by 
adding as axioms the wfs f!)J {:} f!)J+ for all closed wfs $. Specker (1958; 1962) 
proved that NF is consistent if and only if SP is consistent. 

Let NFU denote the theory obtained from NF by restricting the ext­
ensionality axiom to non-empty sets: 

NFl * (3u)(u Ex) 1\ (Vz)(z Ex{::} z E y) ==> x = y 

Jensen (1968- 69) proved that NFU is consistent if and only if ST- is con­
sistent, and the equiconsistency continues to hold when both theories are 
supplemented by the axiom of infinity or by axioms of infinity and choice. 

Discussions of NF may be found in Hatcher (1982) and Quine (1963). 
Forster (1983) gives a survey of more recent results. 

Quine also proposed a system ML that is formally related to NF in much 
the same way that MK_ is related to ZF. The variables are capital italic 
letters X, Y, Z, ... ; these variables are called class variables. We define 
M(X),X is a set,t by (3Y)(X E Y), and we introduce lower-case italic letters 
x,y,z, ... as variables restricted to sets. Equality is defined as in NBG: X= y 
for (\IZ)(Z EX{:} Z E Y). Then we introduce an axiom of equality: 

MLI: X = Y 1\X E Z ==> Y E Z 

There is an unrestricted comprehension axiom scheme: 

ML2: (3Y)(Vx)(x E Y {::} .@(x)) 

where $(x) is any wfofML. Finally, we wish to introduce an axiom that has 
the same effect as the comprehension axiom scheme NF2: 

ML3: (Vyt) ... (Vy11)(3z)(Vx)(x E z {::} .@(x)) 

where $(x) is any stratified wf whose free variables are x,y1, ••• ,y,(n > 0) 
and whose quantifiers are set quantifiers. 

All theorems of NF are provable in ML. Hence, if ML is consistent, so is 
NF. The converse has been proved by Wang (1950). In fact, any closed wf of 
NF provable in ML is already provable in NF. 

ML has the same advantages over NF that Ml( and NBG have over ZF: 
a greater ease and power of expression. Moreover, the natural numbers of 
ML behave much better than those of NF; the principle of mathematical 
induction can be proved in full generality in ML. 

tQuine uses the word 'element' instead of 'set'. 
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The prime source for ML is Quine (195l).t Consult also Quine (1963) and 
Fraenkel, Bar-Hillel and Levy (1973). 

Set theory with urelements 

The theories NBG, Ml(, ZF, NF and ML do not allow for objects that are 
not sets or classes. This is all well and good for mathematicians, since only 
sets or classes seem to be needed for dealing with mathematical concepts and 
problems. However, if set theory is to be a part of a more inclusive theory 
having to do with the natural or social sciences, we must permit reference to 
things like electrons, molecules, people, companies, etc., and to sets and 
classes that contain such things. Things that are not sets or classes are 
sometimes called urelements.+ We shall sketch a theory UR similar to NBG 
that allows for the existence ofurelements.§ Like NBG, UR will have a finite 
number of axioms. 

The variables of UR will be the lower-case Latin boldface letters 
x1, x2, .... (As usual, let us use x, y, z, ... to refer to arbitrary variables.) In 
addition to the binary predicate letter A~ there will be a monadic predicate 
letter A}. We abbreviate A~(x, y) by x E y, ·A~(x, y) by x (j: y, and A~ (x) by 
Cls (x). (Read 'Cls(x)' as 'xis a class'.) To bring our notation into line with 
that of NBG, we shall use capital Latin letters as restricted variables for 
classes. Thus, ('v'X)P27(X) stands for ('v'x) (Cis (x) ==? g6'(x)), and (3X)~(X) 
stands for (3x) (Cls(x) 1\ g6'(x)). Let M(x) stand for Cls(x) 1\ (3y(x E y), and 
read 'M(x)' as 'x is a set'. As in NBG, use lower-case Latin letters as 
restricted variables for sets. Thus, ('v'x)P27(x) stands for ('v'x) (M(x) ==? ~(x)), 
and (3x)P27(x) stands for (3x) (M(x) /\88(x)). Let Pr(x) stand for Cls(x) 1\ 
-.M(x), and read 'Pr(x)' as 'x is a proper class'. Introduce Ur(x) as an 
abbreviation for ·Cls(x), and read 'Ur(x)' as 'xis an urelement'. Thus, the 
domain of any model for UR will be divided into two disjoint parts con­
sisting of the classes and the urelements, and the classes are divided into sets 
and proper classes. Let El(x) stand for M(x) V Ur(x), and read 'El(x)' as xis 
an element'. In our intended interpretation, sets and urelements are the 
objects that are elements (i.e., members) of classes. 

tQuine's earlier version of ML, published in 1940, was proved inconsistent by 
Rosser (1942). The present version is due to Wang (1950). 

+·ur' is a German prefix meaning primitive, original or earliest. The words 
'individual' and 'atom' are sometimes used as synonyms for ·urelement'. 

§Zermelo's 1908 axiomatization permitted urelements. Fraenkel was among the 
first to draw attention to the fact that urelements are not necessary for mathematical 
purposes (see Fraenkel, 1928, pp. 355f). Von Neumann's (1925; 1928) axiom systems 
excluded urelements. 
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Exercise 

4.98 Prove: 1-uR (Vx)(El(x) {:} •Pr(x)). 

We shall define equality in a different way for classes and urelements. 

DEFINITION x = y is an abbreviation for: 

[Cls(x) 1\ Cls(y) 1\ (\lz)(z Ex{::}, z E y)] V [Ur(x) 1\ Ur(y) 1\ (\lz)(x E z <=? y E z}J 

Exercise 

4.99 Prove :1--uR (Vx)(x = x). 

AXIOMUR1 

(\lx)(Ur(x) ~ (\ly)(y r:J_ x)] 

Thus, urelements have no members. 

Exercise 

4.100 Prove: 1--uR (Vx)(Vy)(x E y =? Cls(y) 1\ El(x)). 

AXIOM UR2 

(\IX)(\IY)(\IZ)(X = Y 1\X E Z ~ Y E Z) 

Exercise 

4.101 Show: 

{a) 1--uR ('v'x) ('v'y)(x = y =? ('v'z)(z E x {:} z E y)) 
{b) 1--uR (Vx)(Vy)(x = y =? (Vz)(x E z {:} y E z)) 
(c) 1--uR (Vx)(Vy)(x = y =? [Cls(x) {:} Cls(y)] 1\ [Ur(x) {:} Ur(y)]/\ 

M(x) {:} M(y)J) 
(d) 1--uR (Vx)(Vy)[x = y =? (.%'(x, x) =? 88(x, y) )], where 88(x, y) arises from 

.'18(x, x) by replacing some, but not necessarily all, free occurrences ofx 
by y, with the proviso that y is free for x in 88(x, x). 

(e) UR is a first-order theory with equality (with respect to the given 
definition of equality). 
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~xtbM UR3 (NULL SET) 

(3x)(Vy)(y ¢: x) 

This tell us that there is a set that has no members. Of course, all urelements 
c.lsq have no elements. 

Exercise 

4J02 Show: 
•VR (31x)('v'y)(y ¢:. x). On the basis of this exercise we can introduce a new 
individual constant 0 satisfying the condition M(0) 1\ ('v'y)(yf:. 0). 

AXIOM UR4 (PAffiiNG) 

(Vx)(Vy)(El(x) 1\ El(y) ::::> (3z)(\:lu)(u E z ~ [u = x V u = y]) 
Exercise 

4.112 Prove: ~UR ('v'x)('v'y)(3tz)([El(x) 1\ El(y) 1\ ('v'u)(u E z {::} [u = x V u 
,;_ y]) V [(-.El(x) V •El(y)) 1\z = 0]) 

On the basis of this exercise we can introduce the unordered pair notation 
Jx,y}. When x andy are elements) {x,y} is the set that has x andy as its 
\only members; when x or y is a proper class, { x, y} is arbitrarily chosen to be 
~the empty set 0. As usual, the singleton notation {x} stands for {x,x}. 

DEFINITION (ORDERED PAIR) 

Let (x,y) stand for {{x}, {x,y}}. As in the proof of Proposition 4.3, one can 
-:show that, for any elements x, y, u, v, (x, y) = (u, v) {::} [x = u 1\ y = v]. Or-
-dered n-tuples can be defined as in NBG. 

The class existence axioms B l-B7 of NBG have to be altered slightly by 
sometimes replacing universal quantification with respect to sets by uni­
versal quantification with respect to elements. 

AXIOMS OF CLASS EXISTENCE 

(UR5) (3X)('v'u)('v'v)(El(u) 1\El(v) * [(u, v) EX{::} u E vJ) 
(UR6) ('v'X)('v'Y)(3Z)('v'u)(u E Z {::} u EX Au E Y) 
(UR7) (\fX)(3Z)(\fu)(El(u) ==> [u E Z {::} u¢:. X]) 
(UR8) (\fX)(3Z)(Vu)(El(u) ==> (u E Z {::} (3v)((u, v) EX)) 
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(UR9) ('VX)(3Z)('Vu)('Vv)(El(u) 1\ El(v) ==? ( (u, v) E Z ~ u EX)) 
(URlO) ('VX)(3Z)('Vu)('Vv)('v'w)(El(u) 1\ El(v) 

1\ El(w) ==? [(u, v, w) E Z ~ (v, w, u) EX]) 
(URll) ('VX)(3Z)(Vu)(V'v)('Vw)(El(u) 1\ El(v) 1\ El(w) 

:::::> [(u, v, w) E Z ~ (u, w, v) EX]) 

As in NBG, we can prove the e~stence of the intersection, completl!~nt 
and union of any classes, and the eXIstence of the class V of all elements. ~ut 
in UR we also need an axiom to ensure the existence of the class VM 0~,-aU 
sets, or, equivalently, of the class Vur of all urelernents. 

AXIOMUR12 

(3X)(Vu)(u EX{::? Ur(u)) 

This yields the existence of Vur and implies the existence of VM, that is: 
' (3X)('Vu)(u EX~ M(u)). The class VEI of all elements is then the union 

Vur U VM. Note that this axiom also yields (3X)('Vu)(El(u) ==? [u EX~ 
Cls(u)]), since VM can be taken as the required class X. 

As in NBG, we can prove a general class existence theorem. 

Exercise 

4.104. Let cp(x1, ... , Xn 1 y 11 ... , Ym) be a formula in which quantification,_ 
takes place only with respect to elements, that is, any sub formula ('Vu)ga has _ 
the form ('Vu)(El(u) ==> CC). Then 

1-uR (3Z)(Vx,) ... (Vx")(El(x1) 1\ ... 1\ El(x11 ) ::::> 

[(XJ, ... , Xn) E Z {::? qJ(Xt, · · ·, Xn, Yb .. • 'Ym)J). 

The sum set, power set, replacement and infinity axioms can be translated 
into UR. 

AXIOM UR13 

(Vx)(3y)(Vu)(u E y {::? (3v)(u E v 1\ v Ex)) 

AXIOM URI4 

('Vx)(3y)('Vu)(u E y ~ u C x) 

where u C x stands for M(u) 1\ M(x) 1\ ('Vv)(v E u ==>vEx). 
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f\XIOM UR15 

(VY)(Vx)(Vn(Y) 9 (:ly)(Vu)[u E y ¢:? (3-v)( (-v, u) E Y !\-vEx)]) 

where Un(z) stands for (Vxi)(\fx2)(Vx3)[El(xi) 1\ El(x2) 1\ El(x3) =? ((xi, x2) 
E Z 1\ (xi, X3)z =? X2 = X3)] 

,NKIOM UR16 

(3x)(0 Ex!\ (Vu)(u Ex~ u U {u} Ex)) 

from this point on, the standard development of set theory including the 
_theory of ordinal numbers, can be imitated in UR. 

~PROPOSITION 4.49 
~---" 

JN'BG is a subtheory of UR. 

Proof 

1t is easy to verify that every axiom of NBG is provable in UR, provided 
that we take the variables ofNBG as restricted variables for 'classes' in UR. 
The restricted variables for sets in NBG become restricted variables for 'sets' 
in UR.t 

_PROPOSITION 4.50 

UR is consistent if and only if NBG is consistent. 

Proof 

By Proposition 4.49, if UR is consistent, NBG is consistent. For the con­
verse. note that any model of NBG yields a model of UR in which there are 
no urelements. In fact, if we replace 'Cls(x)' by the NBG formula 'x = x', 
then the axioms of UR become theorems of NBG. Hence, a proof of a 
contradiction in UR would produce a proof of a contradiction in NBG. 

The axiom of regularity (Reg) takes the following form in UR. 

trn fact, a formula (Vx)~(x) in NBG is an abbreviation in NBG for 
(VX)((3Y)(X E Y) ~~(X)). The latter formula is equivalent in UR to 
(Vx)(M(x) ::::} ~(x)), which is abbreviated as (Vx)~(x) in UR. 
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(ReguR) (\iX)(X =/;0::::} (3u)(u EX 1\ --.(3ll)(l' EX 1\ l' E u))) 

It is clear that an analogue of Proposition 4.49 holds: UR + (ReguR) is an 
extension of NBG + (Reg). Likewise, the argument of Proposition 4.So 
shows the equiconsistency of NBG + (Reg) and UR + (ReguR)· 

Since definition by transfinite induction (Proposition 4.14(b )) holds in~ 
UR, the cumulative hierarchy can be defined 

'!''0 = 0 
'I''( a')= &('P'a) 

Lim(J.) ~ 'P'J. = U 'P'/3 
P<o), 

and the union H = U('l'"On) is the class of 'pure' sets in UR and forms a 
model of NBG + (Reg). In NBG, by Proposition 4.45, (Reg) is equivalent 
to V = H, where V is the class of all sets. 

If the class ~1r of urelements is a set, then we can define the following by 
transfinite induction: 

8'0 = Vur 
3'(a') = &(3'a) 

Lim(J.) ::::}8'2 = U 3'/3 
P<oJ. 

The union Hur = U(S"On) is a model ofUR + (RegUR), and (ReguR) holds 
in UR if and only if Hur is the class VEl of all elements. 

If the class Vur of urelements is a proper class, it is possible to obtain an 
analogue of Hur in the following way. For any set x whose members are 
urelements and any ordinal y, we can define a function' 3~ by transfinite 
induction up to 11: 

';:;'}'en.= X 
__,X VJ 

";;'Y'( ') = /'Jlj(';:j'}'C ) ,_.X a ;:r '-'x a 

Lim(J.)::::} BtJ. = U 2{'/3 
fJ<oi.. 

ifa' <o y 

if A <o Y 

Let H:n: be the class of all elements v such that, for some x andy, vis in the 
range of 3~. Then H~r determines a model of UR + (ReguR), and, in UR, 
(ReguR) holds if and only if H~ is the class VEl of all elements. 

The equiconsistency of NBG and UR can be strengthened to show the 
following result. 

PROPOSITION 4.51 

If NBG is consistent, then so is the theory UR + (Regur) + 'Vur is denu­
merable'. 
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proof 

Within NBG one can define a model with domain w that is a model ofNBG 
\Vithout the axiom of infinity. The idea is due to Ackermann (1937). For any 
~~ and m in w, define m E n to mean that 2111 occurs as a term in the expansion 
dfn as a sum of different powers of2.t If we tal<e 'A-sets' to be members of w 
:;rtd 'proper A-classes' to be infinite subsets of OJ, it is easy to verify all 
;axioms ofNBG +(Reg) except the axiom ofinfinity.f (See Bemays (1954, 
PP· 81-82) for a sketc? of the argument.) Then w: change the ·membership' 
relation on OJ by defimng m EI n to Inean that 2"'En. Now we define a 'set' to 
'be either 0 or a member n of OJ for which there is some m in OJ such that 
'Ill EI n. We take the 'urelements' to be the members of w that are not ·sets'. 
for example, 8 is an 'urelement', since 8 = 23 and 3 is not a power of 2. 
Other small 'urelements' are I, 9, 32, 33 and 40. In general, the 'urelements' 
are sums of one or more distinct powers 2k, where k is not a power of 2. The 
'proper classes' are to be the infinite subsets of OJ. Essentially the same 
argument as for Ackermann's model shows that this yields a model Jl of all 
axioms of UR + (ReguR) except the axiom of infinity. Now we want to 
extend J/ to a model of UR. First, let r stand for the set of all finite subsets 
of OJ that are not members of OJ, and then define by transfinite induction the 
following function E>. 

8'0 = (JJ 

8'(a') = &P(8'o:)- r 

Lim( A) ~ 8' A = U 8'/3 
fJ<o), 

LetHn = U(E>"On). Note that HB contains no members ofr. Let us define a 
membership relation E* on l-IB. For any members x andy of lin, define 
x E* y to mean that either x andy are in OJ and x E 1 y, or y ~ OJ and x E y. 
The 'urelements' will be those members of OJ that are the 'urelements' of ull. 
The 'sets' will be the ordinary sets of HB that are not 'urelements', and the 
'proper classes' will be the proper classes of NBG that are subclasses of HB. 
It now requires a long careful argument to show that we have a model of 
UR + (ReguR) in which the class of urelements is a denumerable set. 

A uniform method for constructing a model of UR + (RegUR) in which 
the class of urelements is a set of arbitrary size may be found in Brunner 
(1990, p.65).§ If AC holds in the underlying theory, it holds in the model as 
well. 

tThis is equivalent to the statement that the greatest integer k such that k · 2111 ~ 11 

is odd. 
tFor distinct natural numbers 11 1, ••• , nk, the role of the finite set {n1, ••. , 11k} is 

played by the natural number 2'11 + ... + 211
k- . 

§Brunner attributes the idea behind the construction to J. Truss. 



304 I I~ ________________ A_X_I_O_M_A_TI __ C __ SE_T __ T_H_E_O_R_Y _____________ ===_ 
The most important application of axiomatic set theories with urelements­

used to be the construction of independence proofs. The first independence' 
proof for the axiom of choice, given by Fraenkel (1922b), depended essen~-, 
tially on the existence of a denumerable set of urelements. More precise­
formulations and further developments may be found in Lindenbaum and'> 
Mostowski (1938) and Mostowski (l939).t Translations of these proofs into 
set theories without urelements were found by Shoenfield (1955), Mendelson 
(1956b) and Specker (1957), but only at the expense of weakening the axiom_ 
of regularity. This shortcoming was overcome by the forcing method of 
Cohen (1966), which applies to theories with (Reg) and without urelements. 

tFor more information about these methods, see Levy (1965), Pincus (1972), 
Howard (1973) and Brunner (1990). 



omputability 

5.1 ALGORITHMS. TURING MACHINES 

An algorithm is a computational method for solving each and every problem 
from a large class of problems. The computation has to be precisely specified 
so that it requires no ingenuity for its performance. The familiar technique 
for adding integers is an algorithm, as are the techniques for computing the 
other arithmetic operations of subtraction, multiplication and division. The 
truth table procedure to determine whether a statement form is a tautology 
is an algorithm within logic itself. 

It is often easy to see that a specified procedure yields a desired algorithm. 
[n recent years, however, many classes of problems have been proved not to 
have an algorithmic solution. Examples are: 

l. Is a given wf of quantification theory logically valid? 
2. Is a given wf of formal number theory S true (in the standard interpre­

tation)? 
3. Is a given wf of S provable in S? 
4. Does a given polynomial f(x 11 ••. ,x,,) with integral coefficients have 

integral roots (Hilbert's tenth problem)? 

[n order to prove rigorously that there does not exist an algorithm for 
answering such questions, it is necessary to supply a precise definition of the 
notion of algorithm. 

Various proposals for such a definition were independently offered in 
1936 by Church (l936b), Turing (1936-37), and Post (1936). All of these 
definitions, as well as others proposed later, have been shown to be equiv­
alent. Moreover, it is intuitively clear that every procedure given by these 
definitions is an algorithm. On the other hand, every known algorithm falls 
under these definitions. Our exposition will use Turing's ideas. 

First of all, the objects with which an algorithm deals may be assumed to 
be the symbols of a finite alphabet A = { a0 , a 1, ... , a11 }. Non-symbolic 

5 
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Figure 5.1 

objects can be represented by symbols, and languages actually used for 
computation require only finitely many symbols.t ·~,, 

A finite sequence of symbols of a language A is called a word of A. It is 
convenient to admit an empty word A consisting of no symbols at all. If p-: 
and Q are words, then PQ denotes the word obtained by writing Q to the' 
right ofP. For any positive integer k, pk shall stand for the word made up of, 
k consecutive occurrences of P. 

The work space of an algorithm often consists of a piece of paper or a 
blackboard. However, we shall make the simplifying assumption that all 
calculations take place on a tape that is divided into squares (see Figure 5.1). 
The tape is potentially infinite in both directions in the sense that, although 
at any moment it is finite, more squares always can be added to the right­
and left-hand ends of the tape. Each square contains at most one symbol of 
the alphabet A. At any one time, only a finite number of squares contain 
symbols, while the rest are blank. The symbol ao will be reserved for the 
content of a blank square. (In ordinary language, a space is sometimes used 
for the same purpose.) Thus, the condition of the tape at a given moment 
can be represented by a word of A; the tape in Figure 5.1 is a2a0a5a 1. Our 
use of a one-dimensional tape does not limit the algorithms that can be 
handled; the information in a two-dimensional array can be encoded as a 
finite sequence.+ 

Our computing device, which we shall refer to as a Turing machine, works 
in the following way. The machine operates at discrete moments of time, not 
continuously. It has a reading head which, at any moment, will be scanning 
one square of the tape. (Observation of a larger domain could be reduced to 
consecutive observations of individual squares.) The device then reacts in 
any of four different ways: 

1. It prints a symbol in the square, erasing the previous symbol. 
2. It moves to the next square to the right. 
3. It moves to the next square to the left. 
4. It stops. 

tifa language has a denumerable alphabet {ao, a., ... }, then we can replace it by 
the alphabet {b, * }. Each symbol a11 of the old alphabet can be replaced by the 
expression b* · · · *· consisting of b followed by n occurrences of*· 

~This follows from the fact that there is an effective one-one correspondence 
between the set of pairs of natural numbers and the set of natural numbers. For the 
details, see pp. 183-4. 
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:What the machine does depends not only on the observed symbol but also 
:on the internal state of the machine at that moment (which, in tum, depends 
~on the previous steps of the computation and on the structure of the ma­
:'chine). We shall make the plausible assumption that a machine has only a 
:.finite number of internal states {q0 ,q., ... ,q111 }. The machine will always 
(begin its operation in the initial state q0 . 

A step in a computation corresponds to a quadruple of one of the fol­
'lowing three forms: (1) qjaiakq,.; (2) qja;Rq,.; (3) qja;Lq,.. In each case, qj is 
.,,the present internal state, a; is the symbol being observed, and q,. is the 
internal state after the step. In form (1), the machine erases a; and prints ak. 
In form (2), the reading head of the machine moves one square to the right, 
and, in form (3), it moves one square to the left. We shall indicate later how 
the machine is told to stop. 

Now we can give a precise definition. A Turing machine with an alphabet 
A of tape symbols { ao, a1, ... , a,} and with internal states { q0, q1, ... , q111 } is 
a finite set :T of quadruples of the forms ( 1) qja;ak'L·, (2) qja;Rq,., and (3) 
qja;Lq,. such that no two quadruples of :Y have the same first two symbols. 

Thus, for fixed qja;, no two quadruples of types (1), (2) and (3) are in :T. 
This condition ensures that there is never a situation in which the machine is 
instructed to perform two contradictory operations. 

The Turing machine :T operates in accordance with its list of quadruples. 
This can be made precise in the following mann~r. 

By a tape description of !Y we mean a word such that: (1) all symbols in 
the word but one are tape symbols; (2) the only symbol that is not a tape 
symbol is an internal state qj; and (3) qj is not the last symbol of the word. 

A tape description describes the condition of the machine and the tape at 
a given moment. When read from left to right, the tape symbols in the 
description represent the symbols on the tape at that moment, and the tape 
symbol that occurs immediately to the right of qj in the tape description 
represents the symbol being scanned by the reading head at that moment. If 
the internal state qj is the initial state q0, then the tape description is called 
an initial tape description. 

Example 
The tape description a2aoq1 a0a1 a1 indicates that the machine is in the in­
ternal state q1, the tape is as shown in Figure 5.2, and the reading head is 
scanning the square indicated by the arrow. 

We say that :T moves one tape description CJ. into another one p (ab­
breviated a-»P) if and only if one of the following is true. 

fY 

1. a is of the form Pqja;Q, P is of the form PqrakQ, and qjaiak'L· is one of the 
quadruples of :T. t 

tHere and below, P and Q are arbitrary (possibly empty) words of the alphabet 
of§". 
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t 
Figure 5.2 

2. a is of the form PasqjaiQ, ~is of the form PClJ.asaiQ, and %-a;Lct. is one of 
the quadruples of !T. 

3. a is of the form qjaiQ, ~is of the form q,.aoa;Q, and qja;Lq,. is one of the 
quadruples of !T. 

4. a is of the form PqjaiakQ, ~ is of the form Pa;q,.akQ, and qjaiRct. is one of 
the quadruples of !T. 

5. a is of the form Pqjai, ~ is of the form Pa;ClJ.ao, and qja;RClJ. is one of the 
quadruples of !T. 

According to our intuitive picture,'§ moves a into W means that, if the 
condition at a time t of the Turing machine and tape is described by a, then 
the condition at time t + l is described by ~- Notice that, by clause 3 

' whenever the machine reaches the left-hand end of the tape and is ordered to 
move left, a blank square is attached to the tape on the left; similarly, by 
clause 5, a blank square is added on the right when the machine reaches the 
right-hand end and has to move right. 

We say that !T stops at tape description a if and only if there is no tape 
description ~such that a-;:~. This happens when q;a; occurs in a but qjai is 
not the beginning of an/'quadruple of !T. 

A computation of !T is a finite sequence of tape descriptions 
a0 , •.• , ak (k > 0) such that the following conditions hold. 

1. a0 is an initial tape description, that is, the internal state occurring in a is q0• 

2. a;r a;+ I for o ~i < k 
3. !T stops at ak. 

This computation is said to begin at a0 and end at ak. If there is a compu­
tation beginning at ao, we say that !T is applicable to a 0• 

The algorithm Alg3 determined by !T is defined as follows: 

For any words P and Q of the alphabet A of !!7, Alg3 (P) = Q if and 
only if there is a computation of !T that begins with the tape de­
scription q0P and ends with a tape description of the form R 1 qjR2, 
where Q = R1R2. 

This means that, when !T begins at the left-hand end of P and there is 
nothing else on the tape, :F stops with Q as the entire content of the tape. 
Notice that Alg3 need not be defined for certain words P. An algorithm 
Alg3 determined by a Turing machine !T is said to be a Turing algorithm. 
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Example 
tin any computation of the Turing machine !T given by 

GoaoRqo, Goataoqt, Goa2aoq1, · · ·, qoanaoqt 

ff locates the first non-blank symbol (if any) at or to the right of the square 
scanned at the beginning of the computation, erases that symbol, and then 
stops. If there are only blank squares at or to the right of the initial square, 
If keeps on moving right for ever. 

Let us now consider computations of number-theoretic functions. For 
convenience, we sometimes will write I instead of a 1 and B instead of a0 • 

. (Think of B as standing for 'blank'.) For any natural number k, its tape 
representation k will stand for the word lk+l, that is, the word consisting of 
k + l occurrences of I· Thus, 0 =I, I= II, 2 =Ill, and so on. The reason why 
we represent k by k + 1 occurrences of I instead of k occurrences is that we 
wish 0 to be a non-empty word, so that we will be aware of its presence. The 
tape representation (k1, k2, ... , k,) of an n-tuple of natural numbers 
(k1,k2, ... ,k11 ) is defined to be the word ktB k2B · · · Bk11 • For example, 
(3, 1,0, 5) is IIIIBIIBIBIJIIII· 

A Turing machine !T will be thought of as computing the following 
partial function fr, 1 of one variable. t 

fr, 1 (k) = m if and only if the following condition holds: Alg3 (k) is 
defined and Alg3 (k) = E1 m E2, where E 1 and .E2 are certain (possibly 
empty) words consisting of only Bs (blanks). 

The function f.r,I is said to be Turing-computable. Thus, a one-place partial 
function f is Turing-computable if and only if there is a Turing machine 
such that f = fr,I· 

For each n > 1, a Turing machine !Y also computes a partial function 
[.r,11 of n vatiables. For any natural numbers k1, ... ,k11 : 

f'g-. 11 (k1, ••• , k11 ) = m if and only if the following condition holds: 

Algy((kt,k2, ... ,kn)) is defined and Algg-((khk2, ... ,k11 )) = E1 m E2, 
where E1 and E2 are certain (possibly empty) words consisting of only Bs 
(blanks). 

The partial function f.r,n is said to be Turing-computable . Thus, ann-place 
partial function f is Turing-computable if and only if there is a Turing 
machine !T such that f = f.r,,. 

Notice that, at the end of a computation of a value of a Turing-com­
putable function, only the value appears on the tape, aside from blank 
squares at either or both ends, and the location of the reading head does not 
matter. Also observe that, whenever the function is not defined, either the 

tRemember that a partial function may fail to be defined for some values of its 
argument. Thus, a total function is considered to be a special case of a partial 
function. 
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Turing machine will never stop or, if it does stop, the resulting tape is not of 
the appropriate form Et m E2. 

Examples 
l. Consider the Turing machine ff, with alphabet {B, lh defined by 

q0lLq1, q 1 ~q2 . !T computes the successor function N(x), since 
q0k~q1 Bk~q2k + 1, and ff stops at q2k + l. Hence N(x) is Turing-

f/ f7 
computable. 

2. The Turing machine !!7 defined by 

qoiBqt, ql BRqo, qoBI'b 

computes the zero function Z(x). Given k on the tape, !T moves right, 
erasing aU Is until it reaches a blank, which it changes to al. So, 0 is the 
final result. Thus, Z(x) is Turing-computable. 

3. The addition function is computed by the Turing machine ff defined by 
the following seven quadruples: 

qoiBqo, qoBRqt, qJ!Rqt, qtBiqz, qziR'll, 'bBLiq3, q3IBq3 

In fact, for any natural numbers m and n, 

qo(m, n) = Qolm+lBI"+l-;qoBimBI"+l-;BqtlmBin+l 

Bl,,l Bl"+' Blm 11"+1 -» · · · ~ ql -» qz -» · · · 
ff ;7 :Y § 

-»Bimln+2qzB-»Bjm+n+lq3IB-»Bim+n+tq3BB = Bm + nq3BB 
ff ff !Y 

and !T stops at B m + n q3BB. 

Exercises 

5.1 Show that the function u:j such that U}(xl' X2) = X2 is Turing-com­
putable. 
5.2 (a) What function f(xt ,x2,x3) is computed by the following Turing 
machine? 

QoiiGt , qtiBqo, QoBRqt 1 ql BRqz, 

'12IR'l21 qzBRq3, q3IBq4, q4BRq3 

(b) What function f(x) is computed by the following Turing machine? 

qoiBq, 1 ql BRqz, '12BI'b 

5.3 (a) State in plain language the operation of the Turing machine, de­
scribed in Example 3, for computing the addition function. 

(b) Starting with the tape description q0 IIIBIIII, write the sequence of 
tape descriptions that make up the computation by the addition machine of 
Example 3. 
5.4 What function f(x) is computed by the following Turing machine? 

""'~ · .. 
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CJoiRqt 
q1IBcn 
qzBRq3 
q3IRq3 
q3BRq4 

q4IR~ 
q4Biqs 
qsiLqs 
qsBLq6 
q6ILq6 

q6Biqo 
qtBiq7 
q7ILq7 

q7BRq8 

qsiBqs 

::s.5 Find a Turing machine that computes the function sg(x). (Recall that 
.,sg(O) = 0 and sg(x) = l for x > 0.) 
_ 5.6° Find Turing machines that compute the following functions. 
-(a) x_:_y (Remember that x_:_y =x- y ifx > y, and x_:_y = 0 if x < y.) 
(b) [x/2] (Recall that [x/2] is the greatest integer less than or equal to x/2. 

Thus. [x/2] = x/2 if xis even, and [x/2] = (x- 1)/2 if xis odd.) 
(c) x · y, the product of x andy. 
5.7 If a function is Turing-computable, show that it is computable by 
infinitely many different Turing machines. 

5.2 DIAGRAMS 

Many Turing machines that compute even relatively simple functions (like 
multiplication) require a large number of quadruples. It is difficult and 
tedious to construct such machines, and even more difficult to check that 
they do the desired job. We shall introduce a pictorial technique for con­
structing Turing machines so that their operation is easier to comprehend. 
The basic ideas and notation are due to Hermes (1965). 

l. Let :Y L, •.• , ff,. be any Turing machines with alphabet A = 

{ ao, a 1 , •.. , ak}. 
2. Select a finite set of points in a plane. These points will be called vertices. 
3. To each vertex attach the name of one of the machines !T 1 , ... , .r,.. 

Copies of the same machine may be assigned to more than one vertex. 
4. Connect some vertices to others by arrows. An arrow may go from a 

vertex to itself. Each arrow is labelled with one of the numbers 0, 1, ... , k. 
No two arrows that emanate from the same vertex are allowed to have 
the same label. 

5. One vertex is enclosed in a circle and is called the initial vertex. 

The resulting graph is called a diagram. 

Example 
See Figure 5. 3. 

We shall show that every diagram determines a Turing machine whose 
operation can be described in the following manner. Given a tape and a 
specific square on the tape, the Turing machine of the initial vertex V of the 
diagram begins to operate, with its reading head scanning the specified 
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Figure 5.3 

square of the tape. If this machine finally stops and the square being scanned 
at the end of the computation contains the symbol a,-, then we look for an 
arrow with label i emanating from the vertex V. If there is no such anow 

' the computation stops. If there is such an arrow, it leads to a vertex to which 
another Turing machine has been assigned. Start that machine on the tape 
produced by the previous computation, at the square that was being scan­
ned at the end of the computation. Repeat the same procedure that was just 
performed, and keep on doing this until the machine stops. The resulting 
tape is the output of the machine determined by the diagram. If the machine 
never stops, then it is not applicable to the initial tape description. 

The quadruples for this Turing machine can be specified in the following 
way. 

1. For each occurrence in the diagram of a machine !lj, write its quadruples, 
changing internal states so that no two machine occurrences have an 
internal state in common. The initial vertex machine is not to be changed. 
This retains q0 as the initial internal state of the machine assigned to the 
initial vertex. For every other machine occurrence, the original initial 
state q0 has been changed to a new internal state. 

2. If an occurrence of some ~is connected by an arrow~ to some !lj, then, 
for every (new) internal state CJs of that occurrence of ff such that no 
(new) quadruple of ff begins with CJsau, add the quadruple 'lsa11a11q1, 

where q1 is the (new) initial state for !Jj. (Step 2 ensures that, whenever If 
stops while scanning au, .9} will begin operating.) 

The following abbreviations are used in diagrams: 

l. If one vertex is connected to another vertex by all arrows ~' ~' ... , ~' 
we replace the arrows by one unlabelled anow. 

2. If one vertex is connected to another by all arrows except~' we replace 
feu 

all the arrows by~-
3. Let ff1ff2 stand for ff1 ---t ff2, let ff1ff2!T3 stand for ff1 ~ !T2 ~ !T3, 

and so on. Let !T2 be :Y !T, let !T3 be !T :Y !T, and so forth. 
4. If no vertex is circled, then the leftmost vertex is to be initial. 

To construct diagrams, we need a few simple Turing machines as building 
blocks. 
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1. r (right machine). Let { a0, a1, ... , ak} be the alphabet. r consists of the 
quadruples q0atRq1 for all a;. This machine, which has k + 1 quadruples, 
moves one square to the right and then stops. 

2. I (left machine). Let { a0, a1, ... , ak} be the alphabet. I consists of the 
quadruples q0a;Lq1 for all a;. This machine, which has k + 1 quadruples, 
moves one square to the left and then stops. 

3. aj (constant machine) for the alphabet { ao, a1, . . . , ak}· aj consists of the 
quadruples q0a;ajq1 for all a1. This machine replaces the initial scanned 
symbol by aj and then stops. In particular, ao erases the scanned symbol, 
and at prints I· 

Examples of Machines Defined by Diagrams 
I. P (Figure 5.4) finds the first blank to the right of the initially scanned 

square. In an alphabet { ao, a1, ... , ak}, the quadruples for the machine P 
are: q0a;Rq1 for all ai, and q1 a;a;q0 for all a; =1- a0 . 

-=1=0 

Figure 5.4 

2. A (Figure 5. 5) finds the first blank to the left of the initially scanned 
square. 

-=1=0 

Figure 5.5 

Exercises 

5.8 Describe the operations of the Turing machines p (Figure 5.6) and A 
(Figure 5. 7) and write the list of quadruples for each machine. 

0 

L---• r 

Figure 5.6 
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Figure 5.7 

5.9 Show that machine S in Figure 5.8 searches the tape for a non-blank 
square. If there are such squares, S finds one and stops. Otherwise, S never' 
stops. 

0 ' 0 0 
r- atl - a 1 pa0 r - a 1 J..a0 

! 4= 0 ! * 0 

paol.. J..aop 

Figure 5.8 

To describe some aspects of the operation of a Turing machine on part of 
a tape, we introduce the following notation: 

B ... B 
B .. . 
... B 
w 
X 

arbitrary symbol 
sequence of blanks 
everything blank to the right 
everything blank to the left 
non-empty word consisting of non-blanks 
W1BW2B ... Wn(n > 1 ), a sequence of 
nonempty words of non-blanks, separated 
by blanks 

Underlining will indicate the scanned symbol. 

More Examples of Turing Machines Defined by Diagrams 
3. f!ll (right-end machine). See Figure 5.9. 

~XBB ==> f'"V XBB 

Squares on the rest of the tape are not affected. The same assumption is made 
in similar places below. When the machine r!Jl begins on a square preceding a 
sequence of one or more nonempty words, followed by at least two blank 
squares, it moves right to the first of those blank squares and stops. 

*O 

Figure 5.9 
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A. 2 (left-end machine) See Figure 5.10. 

BBXrv => BBX rv 

4=0 

r 
0 

Figure 5.10 

5. T (left-translation machine) See Figure 5 .11. t 

~BWB => rv WBB 

This machine shifts the whole word W one square to the left. 

k 
lao 

la1 

r2 

~ 
lak 

Figure 5.11 

6. cr (shift machine). See Figure 5.12. 

BW1BW2B => BW2B ... B 

In the indicated situation, Wt is erased and W2 is shifted leftward so that it 
begins where W 1 originally began. 

4=0 
AI - a0 T 

~ 0 

T 

Figure 5.12 

7. C (clean-up machine) See Figure 5.13. 

rv BBXBWB => rv WB ... B 

tThere is a separate arrow from r2 to each of the groups on the right and a 
separate arrow from each of these, except la0 , back to r2. 
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=1=0 
AI - rPa 

~0 
TAIT 

Figure 5.13 

8. K (word-copier) See Figure 5.14. 

BWB . .. =} BWBWB ... 

Figure 5.14 

9. K 11 (n-shift copier) See Figure 5.15. 

BW11 BWn-tB ... WtB ... => BWnBW11-tB .. . WtBWnB ... 

P" 

k aoP"+l Rt A"+l·al 

A"r 

~ 
8o pn+l a1r. A n+l a1r. 

Figure 5.15 

Exercises 

5.10. Find the number-theoretic function f(x) computed by each of the 
following Turing machines. 

(a) 1at 
(b) Figure 5.16 
(c) PKAatA(rao)

2 

5.11. Verify that the given functions are computed by the indicated Turing 
machines. 
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(a) lx- Yl (Figure 5.17) 

(b) x + y PatA(rao)2 

(c) x · y (Figure 5.18) 

0 
~ 0 

0 
a 1 ra1 

Figure 5.16 

l 0 
a0 r - P2 la01 - Aa1 

Figure 5.17 

I -
! 0 I 

r ---Ia1 A(ra0)2 P 

t 
Figure 5.18 

5.12. Draw diagrams for Turing machines that will compute the following 
functions: (a) max(x,y) (b) min(x,y) (c) x_!_y (d) [x/2] 
5.13. Prove that, for any Turing machine :T with alphabet { a0 , ••• , ak}, there 
is a diagram using the Turing machines r, I, ao, ... , ak that defines a Turing 
machine !7 such that :T and !7 have the same effect on all tapes. (In fact, !7 
can be defined so that, except for two additional trivial initial moves left and 
right, it carries out the same computations as :T.) 

5.3 PARTIAL RECURSIVE FUNCTIONS. 
UNSOLVABLE PROBLEMS 

Recall, from Section 3.3, that the recursive functions are obtained from the 
initial functions (the zero function Z(x), the successor functionN(x), and the 
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projection functions Uf'(xi, ... ,xn)) by means of substitution, recursion and 
the restricted Jl-operator. Instead of the restricted Jl-operator, let us intro~ 
duce the unrestricted p-operator: 

If/(x,, ... ,xn) = J.lY(g(xJ, ... ,xn,y) = 0) 
=the least y such that g(x1, ••• ,x11 ,y) = 0 

then f is said to arise from g by means of the unrestricted p-operator. 

Notice that, for some xll ... ,x,o the value f(xt, ... ,xn) need not be defined• 
this happens when there is no y such that g(x1 , ••• ,x,l)y) = 0. ' 

If we replace the restricted p-operator by the unrestricted p-operator in 
the definition of the recursive functions, we obtain a definition of the partial 
recursive functions. In other words, the partial recursive functions are those 
functions obtained from the initial functions by means of substitution, re­
cursion and the um·estricted Jl-operator. 

Whereas all recursive functions are total functions, some partial recursive 
functions wil1 not be total functions. For example, py(x + y = 0) is defined 
only when x = 0. 

Since partial recursive functions may not be defined for certain arguments, 
the definition of the unrestricted ft-operator should be made more precise: 

py(g(xt, ... ,x,0 y) = 0) = k means that, for O.::::;;u < k, 

g(x1, ••• ,x11 , u) is defined and g(xt, ... ,x11 , u) =/= 0, and 

g(x,, ... ,x11 ,y) =0. 

Observe that, if R(x1, ... ,xn,Y) is a recursive relation, then 
fly(R(x1, ••. ,x11 ,y)) can be considered an admissible application of the un­
restricted Jl-operator. In fact, flY(R(xl,· . . ,xn,Y)) = flY(CR(Xt,· .. ,x11 ,y) 
= 0), where CR is the characteristic function of R. Since R is a recursive 
relation, CR is, by definition, a recursive function. 

Exercises 

5.14 Describe the following partial recursive functions. 

(a) fly(x + y + 1 = 0) 
(b) fly(y > x) 
(c) flY(y + x = x) 

5.15 Show that all recursive functions are partial recursive. 
5.16 Show that every partial function whose domain is a finite set of natural 
numbers is a partial recursive function. 

It is easy to convince ourselves that every partial recursive function 
f(x1, ... , x11 ) is computable, in the sense that there is an algorithm that 
computesf(x1, ••• ,xn) whenj(x1, ... ,x11 ) is defined and gives no result when 
f(x1, ... ,x,) is undefined. This property is clear for the initial functions and 
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-~is inherited under the operations of substitution, recursion and the unre­
stricted p-operator. 

It turns out that the partial recursive functions are identical with the 
Turing-computable functions. To show this, it is convenient to introduce a 
different kind of Turing-computablility. 

A partial number-theoretic function f(x 11 ••• , xn) is said to be standard 
Turing-computable if there is a Turing machine !T such that, for any natural 
numbers k1, ... , k11 , the following holds. 

Let Bk1Bk2B ... Bkn be called the argument strip.t Notice that the ar­
gument strip is B (k1, ••. , k,z). Take any tape containing the argument 
strip but without any symbols to the right of it. (It may contain 
symbols to the left.) The machine !T is begun on this tape with its 
reading head scanning the first I of k1. Then: 

1. !T stops if and only if f(k1, •.• , k,) is defined. 
2. If !T stops, the tape contains the same argument strip as before, followed 

by Bf(kt. ... kn)· Thus, the final tape contains 

Bk1Bk2B ... BknBf(kt, . .. , k") 

Moreover: 

3. The reading head is scanning the first I of f(kt, ... ,k11 ). 

4. There is no non-blank symbol on the tape to the right of f(kt, ... , k11 ). 

5. During the entire computation, the reading head never scans any square 
to the left of the argument strip. 

For the sake of brevity, we shall say that the machine !T described above 
ST-computes the function f(xt, ... , x11 ). 

Thus, the additional requirement of standard Turing computability is 
that the original arguments are preserved, the machine stops if and only if 
the function is defined for the given arguments, and the machine operates on 
or to the right of the argument strip. In particular, anything to the left of the 
argument strip remains unchanged. 

PROPOSITION 5.1 

Every standard Turing-computable function is Turing-computable. 

Proof 

Let !T be a Turing machine that ST-computes a partial function 
f(x11 ••• ,x11 ). Then/ is Turing-computable by the Turing machine !TPC. In 

tFor a function of one variable, the argument strip is taken to be Bk1• 

319 
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fact, after !T operates, we obtain B:xtB ... Bx,1Bf(xt, ... ,xn), with the reading. 
head at the leftmost I of f(xt, ... ,xn)· P then moves the reading head to the ­
right of f(x1, ••• ,xn), and then C removes the original argument strip. 

PROPOSITION 5.2 

Every partial recursive function is standard Turing-computable. 

Proof 

(a) Pra1 ST-computes the zero function Z(x). 
(b) The successor function N(x) is ST-computed by PKa1Ar. 
(c) The projection function ur(xl, ... ,xn) = X; is ST-computed by 

£nKn-i+ 1 Ar. 
(d) (Substitution.) Let f(xt, .. . , Xn) = g(h1 (xt, ... ,xn), .. . , h111 (Xt, ... ,xi!)}: 

and assume that !T ST-computes g and ~ST-computes hj for 1 ~j~m~ 
Let !/j be the machine ~0'11(Kn+jr A11r. The reader should verify that~ 
f is ST -computed by 

We take advantage of the ST-computability when, storing x1, .• . ,X,
1
J 

ht (xt, ... , xn), ... , h;(xt, . .. ,xn) on the tape, we place (xt, ... ,x11 ) on the 
tape to the right and compute h;+I (xt, ... ,x11 ) without disturbing what 
we have stored on the left. 

(e) (Recursion.) Let 

f(xt, ... ,x", 0) = g(xt, . . . , x,~) 

f(xt, ... ,xn,y+ 1) = h(xt, .. . ,x,l,y;f(xt, ... ,X11 ,y)) 

Assume that !/ ST-computes g and !T ST-computes h. Then the reader 
should verify that the machine in Figure 5.19 ST-computes f. 

(f) Unrestricted p-operator. Let f(xt, ... x,,) = py(g(xt, ... , XmY) = 0) and 
assume that !T ST-computes g. Then the machine in Figure 5.20 ST­
computesf. 

0r a, r K,(l(,.,)" A".,lao r P r !/ p K •• ,laol'\ 

I ;;CAr 
r(Kn+2)"ra.rKo+3A"+2 rffPKo+.cla01 ~ r(K..+.cY'+l 

t 
Figure 5.19 
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t 
9fra1A"+Irf'/r ---- Pra1 rula0 1 

1 

la01Ar 

Figure 5.20 

Exercise 

5.17 For a recursion of the form 

f(O) = k 

f(y + 1) = h(y,f(y)) 

show how the diagram in Figure 5.19 must be modified. 

COROLLARY 5.3 

Every partial recursive function is Turing-computable. 

Exercise 

5.18 Prove that every partial recursive function is Turing-computable by a 
Turing machine with alphabet { a0 , a1 }. 

In order to prove the converse of Corollary 5.3, we must arithmetize the 
language of Turing computability by assigning numbers, called Godel 
numbers, to the expressions arising in our study of Turing machines. 'R' and 
'L' are assigned the Godel numbers 3 and 5, respectively. The tape symbols 
a; are assigned the numbers 7 + 4i, while the internal state symbols qi are 
given the numbers 9 + 4i. For example, the blank B, which is a0 , receives the 
number 7; the stroke I, which is a1, has the number 11; and the initial 
internal state symbol q0 has the number 9. Notice that all symbols have odd 
Godel numbers, and different symbols have different numbers assigned to 
them. 

As in Section 3.4, a finite sequence u0 , u1 , ... , uk of symbols is assigned 
h G .. d 1 b g(uo) g(ul) g(uk) h h . t e o e num er Po p1 ... pk , w ere Po, PI, p2, ... are t e pnme 

numbers 2, 3, 5, ... in ascending order and g(ui) is the Godel number as­
signed to ui. For example, the quadruple q0a0a1 q0 receives the Godel 
number 29 37 511 79 . 

By an expression we mean a finite sequence of symbols. We have just 
shown how to assign Godel numbers to expressions. In a similar manner, to 
any finite sequence E0 , Et, ... , Em of expressions we assign the number 

1 1 321 
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pg(Eo)pf(EJ) .. . P/n(Em). For example, this assigns Godel numbers to finite se. 
quences of Turing machine quadruples and to finite sequences of tape de­
scriptions. Observe that the Godel number of an expression is even and 

' therefore, different from the Godel number of a symbol, which is odd. 
Moreover, the Godel number of a sequence of expressions has an even 
number as an exponent of Po and is, therefore, different from the Gode] 
number of an expression, which has an odd number as an exponent of Po. 

The reader should review Sections 3.3 and 3.4, especially the functions 
tA(x), (x)J, and x * y. Assume that x is the Godel number of a finite se-

. h · _ g(wo) g(w!) g(wk) h ( ) . quence w0 , WI, ... , wk, t at ts, x- Po PI .. . pk , w ere g Wj ts the 
Godel number of Wj· Recall that tA(x) = k + 1, the length of the sequence, 
and (x)j = g(wj), the Godel number of the jth term of the sequence. If in 
addition, y is the Godel number of a finite sequence v0 , VI, ... , v,, then x * y 
is the Godel number of the juxtaposition wo, WI, ... , wk, vo, VI, ... , v, of the 
two sequences. 

PROPOSITION 5.4 

The following number-the,pretic relations and functions are primitive re. 
cursive. In each case, we write first the notation for the relation or function, 
then, the intuitive interpretation in terms of Turing machines, and, finally, 
the exact definition. (For the proofs of primitive recursiveness, use Propo­
sition 3.18 and various primitive relations and functions defined in Section 
3.3. At a first reading, it may be advisable to concentrate on just the intuitive 
meanings and postpone the technical verification until later.) 

IS(x): xis the Godel number of an internal state symbo'l q11 : 

(:3u)11<..y(x = 9 + 4u) 

Sym(x): xis the Godel number of an alphabet symbol a11 : 

(3u)u<x(x = 7 + 4u) 

Quad(x): xis the Godel number of a Turing machine quadruple: 

£1i(x) =41\ IS((x)0) 1\ Sym{{x)1) 1\ IS{{xh) 

1\ [Sym((xh) V {xh = 3 V (xh = 5] 

TM(x): xis the Godel number of a Turing machine (in the form of a finite 
sequence of appropriate quadruples): 

(Vu\<£!.(x)Quad{(x)11 ) 1\ x > 1/\ (\fu)u<l'l.(x) (\fv)v<£!t(x) (u =j:; v 

:::} [((x)J0 =I ((x)v)o V ((x),J1 =I ((x)vhJ 

TD(x): xis the Godel number of a tape description: 

x > 1/\ (Vu)u<£1.(x)[IS{(x)J V Sym{(x)J] 1\ {3Iu)11 <£1.(x)IS({x)11) 

1\ {Vu)11<£.1t(x){IS{{x),J:::} u + 1 < £/z(x)) 
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Cons(x,y,z): x andy are Godel numbers of tape descriptions r:x and p, and 
z is the Godel number of a Turing machine quadruple that transforms r:x 
into P: 

TD(x) (\ TD(y) 1\ Quad(z) 1\ (3w)w<£1l(x)~I [IS((x)w) 

1\ (x)w = (z)o 1\ (x)w+l = (z)l/\ 

I{ ([Sym((z).·2 ) 1\ {y)w+l = (zh 1\ (y)w = (zh 1\ fA(x) = fA(y) 
I\(Vu)11<l'li(x)(u =/=- w 1\ u =/=- w + 1 ==;. (x)11 = {y)11 )]V 

II 

Ill 

[{zh = 3 1\ (y)w = (x)w+l 1\ (Y)w+l = (zh/\ 

(Vu)u<£/i(x)(u =/=- W 1\ u =/= W + 1 => {y) 11 = (x)11 )/\ 

([w + 2 < fA(x) 1\ fA(y) = ffi(x)] V [w + 2 = €A(x)l\ 

f!t(y) = fA(x) + 1/\ (y)w+l = 7])]V 

[(zh =51\ {[w I 01\ {y)w_,_l = (zh 1\ (y)w = (x)w-=-l 

1\ €A(y) = flz(x) 1\ (Vu)u<lh(x)(u =/=- w-=- 1/\ u =/=- w => 
(y)u = (x)u)] V [w = 0 1\ (y)0 = (zh 1\ (y). = 7/\ 

flz(y) = fA(x) + 1/\ (Vu)O<u<Cii(x){y)u+l = (x)u]}])] 

I corresponds to a quadruple qjaiakqn II to a quadruple qja;Rqn and III 
to a quadruple qja;Lq,.. 
NTD(x): xis the Godel number of a numerical tape description- that is, 
a tape description in which the tape has the form E 1kE2, where each of E1 

and E2 is empty or consists entirely of blanks, and the location of the 
reading head is arbitrary: 

TD(x) 1\ (Vu)u<l'li(x)(Sym((x)11 ) => (x)11 = 7 V (x) 11 = 11) 

1\ (Vu)u<fh{x)(Vv)v<l'h(x)(Vw)w<fh(x)(u < V 1\ V < w 1\ (x)u = 11 1\ 

(x)w = 11 :::::> (x)v =/= 7) (3u)u<£h(x)((x) 11 = 11) 

Stop(x,z): z is the Godel number of a Turing machine !T and xis the 
Godel number of a tape description ex such that !T stops at ex: 

TM(z) 1\ TD(x) 1\ •(3u)11<£/l(x) [IS((x),J 1\ (3v)v<l'll(z)(((z)v)o 

= (x)u 1\ ((z)vh = (x)u+l)] 

Comp(y,z): z is the Godel number of a Turing machine :Y andy is the 
Godel number of a computation of !T: 

y > lA TM(z) 1\ (Vu)u<i~li(r)TD({y)11 ) 1\ Stop({y)cli(r)-=-t,z) 1\ 

(Vu )u<£/l(y)..:.l (3w)w<£/l(z)Cons( {y)10 {y)11+l' (z)w) 1\ 

(Vv)v<£1i((r)o)(IS(({y)o)v) => ((y)o)v = 9) 

Num(x): The Godel number of the word x- that is, of lx+l: 

Num(x) = ITP! 1 

u~x 
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TR(x1, ... ,x11): The Godel number of the tape representation (x1, ••• ,x
11

} _ 

of the n-tuple (xt, ... , Xn): 

TR{x1, .•• ,x11 ) = Num(xt) * 27 * Num{x2) * 27 * · · · * 27 * Num(x11 ) 

u(y): If y is the Godel number of a computation that results in a nu.., 
merical tape description, then U(y) is the number represented on that 
final tape. t 

U(y) = [ L sg(I((Y)cll(y)~t)" -111)] ~ 1 
u<£1l((y)l!.(}·)~ I) 

[Let w be the number, represented by r+t, on the final tape. The cal­
cualtion of U(y) tallies a 1 for every stroke I that appears on the final 
tape. This yields a sum of w + 1, and then 1 is subtracted to obtain w.] 
T,1(z,x1, .•• ,x11 ,y): y is the Godel number of a computation of a Turing 
machine with Godel number z such that the computation begins on the 
tape (x1, ••• ,x11 ), with the reading head scanning the first I in .Xt, and ends 
with a numerical tape description: 

Comp(y,z) A (y)0 = 29 * TR(xt, ... ,x,) A NTD((y)£/t(y)~l) 

When n = 1, replace TR(xt, ... ,xn) by Num(xt)- (Observe that, if 
Tn(z,xt, ... ,xn,Yt) and T,J(z,xt, ... ,x,ll;-2), then Yl = y2, since there is at 
most one computation of a Turing machine starting with a given initial 
tape.) 

PROPOSITION 5.5 

If !Y is a Turing machine that computes a number-theoretic function 
f(x~, ... , x,) and e is a Godel number of !Y, thent 

f(xt, ... ,x") = U(tryTn(e,xl, ... ,X11 ,y)) 

Proof 

Let kt, ... , k11 be any natural numbers. Then f(k11 .•. , k11 ) is defined if and 
only if there is a computation of !Y beginning with (k1 , ••• , k11 ) and ending 
with a numerical tape description - that is, if and only if 
(3y)Tn(e,kt,···,xn,y). So, f(kt, ... ,kn) is defined if and only if 
flyT,,( e, kt, ... , k11 ,y) is defined. Moreover. when f(kt, ... , k11 ) is defined, 

tif y is not the GodeJ number of a computation that yields a numerical tape 
description, U(y) is defined, but its value in such cases will be of no significance. 

tRemember that an equality between two partial ftmctions means that, when­
ever one of them is defined, the other is also defined and the two functions have the 
same value. 
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pyT,,(e, k1,: •• ,k,, y) is the Godel number of a computation of fT beginning 
with (k1, ••• ,k,) and U(pyT,(e,k1, ..• ,k11 ,y)) is the value yielded by the 
computation, namely, f(kt, ... , kn)· 

COROLLARY 5.6 

Every Turing-computable function is partial recursive. 

Proof 

Assume f(x1, ••• , x11 ) is Turing-computable by a Turing machine with Godel 
number e. Thenf(xt, ... ,xn) = U(pyTn(e,xt, ... ,x,,y)). Since T,, is primitive 
recursive, flyT,, ( e, Xt , ... , x", y) is partial recursive. Hence, U (flyT, ( e, x 1 , 

... , x11 , y)) is partial recursive. 

COROLLARY 5.7 

The Turing-computable functions are identical with the partial recursive 
functions. 

Proof 

Use Corollaries 5.6 and 5.3. 

COROLLARY 5.8 

Every total partial recursive function is recursive. 

Proof 

Assume that the total partial recursive function f(x1, .•. ,x,) is Turing­
computable by the Turing machine with Godel number e. Then, for all 
Xt, •.. ,x11 , (3y)T,,(e,xt, ... ,x11 ,y). Hence, flYTn(e ,xi, ... ,x,,y) is produced by 
an application of the restricted fl-Operator and is, therefore, recursive. So, 
U(flyT,,(e,xt, ... ,x,,y)) is also recursive. Now use Proposition 5.5. 

COROLLARY 5.9 

For any total number-theoretic function f, f is recursive if and only iff is 
Turing-computable. 
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Proof 

Use Corollaries 5. 7-5.8 and Exercise 5.15. 
Church's thesis amounts to the assertion that the recursive functions are­

the same as the computable total functions. By Corollary 5.9, this is 
equivalent to the identity, for total functions. of computability and Turing:' 
computability. This strengthens the case for Church's thesis because of the 
plausibility of the identification of Turing computability with computabil­
ity. Let us now widen Church's thesis to assert that the computable func­
tions (partial or total) are the same as the Turing-computable functions. By 
Corollary 5. 7, this implies that a function is computable if and only if it is 
partial recursive. 

COROLLARY 5.10 

Any number-theoretic function is Turing-computable if and only if it is 
standard Turing-computable. 

Proof 

Use Proposition 5.1, Corollary 5.6 and Proposition 5.2. 

COROLLARY 5.11 (KLEENE'S NORMAL FORM THEOREM) 

As z varies over all natural num hers, U (JtYTn (z, Xt , • •• , x,, y)) enumerates 
with repetitions all partial recursive functions of n variables. 

Proof 

Use Corollary 5.3 and Proposition 5.5. The fact that every partial recursive 
function of n variables reappears for infinitely many z follows from Exercise 
5. 7. (Notice that, when z is not the Godel number of a Turing machine, there 
is no y such that T,1(z,x1, ... ,xn,y), and, therefore, the corresponding partial 
recursive function is the empty function.t) 

COROLLARY 5.12 

For any recursive relation R(x1 , ... ,x11 ,y), there exist natural numbers z0 and 
v0 such that, for all natural numbers x1, ... ,x11 : 

fThe empty function is the empty set 0. It has the empty set as its domain. 
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(a) (3y)R(xi, ... ,x,,y) if and only if (3y)T,,(zo,XI, ... ,x,,y) 
(b) (\ly)R(xt, ... ,x,0 y) if and only if (\ly)-<I;,(vo,XI, ... ,x,ny) 

Proof 

(a) The functionf(xi, ... , x,) = JlYR(xi, ... ,xn,Y) is partial recursive. Let zo 
be a Godel number of a Turing machine that computes f. Hence, 
f(xi, ... ,x11 ) is defined if and only if (3y)T,,(zo,XI, ... ,x,,y). But 
f(xi, ... ,x11 ) is defined if and only if (3y)R(xi, ... ,x,ny). 

(b) Applying part (a) to the recursive relation -.R(xi, ... , x,,y), we obtain a 
number v0 such that: 

(3y)•R(xt, ... ,x,,y) if and only if (3y)T,1(vo,Xt, ... ,x,,y) 

Now take the negations of both sides of this equivalence. 

Exercise 

5.19 Extend Corollary 5.12 to two or more quantifiers. For example, if 
R(x1 , ••• ,x,,y,z) is a recursive relation, show that there are natural numbers 
z0 and v0 such that, for all XI, ... ,x,: 
(a) (\lz)(3y)R(xi, ... ,x,,y,z) if and only if (Vz)(3y)T,1+I(zo,XI, ... ,x11 ,y,z). 
(b) (3z)(\ly)R(xi, ... , x,0 y, z) if and only if (3z)_(Vy)-.T,,+I ( vo,xl, . . . ,x,,y, z). 

COROLLARY 5.13 

(a) (3y)T,,(xi,xi,x2, ... ,x,,y) is not recursive. 
(b) (3y)T,,(z,xl, ... ,x11 ,y) is not recursive. 

Proof 

(a) Assume (3y)T,,(xi, XI ,x2, ... ,x11 ,y) is recursive. Then the relation 
-.(3y)T,1(xi,XI,X2, ... ,x11 ,y) 1\z = z is recursive. So, by Corollary 5.12(a), 
there exists z0 such that: 

(3z)(-{3y)T,1(xt,Xt,X2, ... ,x11 ,y) Az = z) if and only if 

(3z)Tn(zo,Xt,X2, . . . ,xn,z) 

Hence, since z obviously can be omitted on the left, 

•(3y)T,,(xt,Xt,X2, ... ,x,l)y) if and only if (3z)T,,(zo,Xt,X2, ... ,x11 ,z) 

Let xi = x2 = · · · = X11 = zo. Then we obtain the contradiction 

-,(3y)T,~(zo,zo,zo, ... ,zo,y) if and on1y if (3z)T,~(zo,zo,zo, .. . ,zo,z) 

(b) If (3y)T,,(z,xi,X2, ... ,x,,y) were recursive, so would be, by substitu-
tion, (3y)T,1(XI, XI ,x2, ... , X11 ,y), contradicting part (a). 
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Exercises 

5.20 Prove that there is a partial recursive function g(z, x) such that, for 
any partial recursive function f(x), there is a number z0 for which 
f(x) = g(z0 ,x) holds for all x. Then show that there must exist a number v

0 
such that g(v0 , v0 ) is not defined. 
5.21 Let ht(Xt, ... ,xn), ... ,hk(xt, ... ,xn) be partial recursive functions, and 
let R1 (x1, ... , xn), ... , Rk(XI, ... , x,) be recursive relations that are exhaustive 
(i.e., for any x1, ... , x 11 , at least one of the relations holds) and pairwise 
mutually exclusive (i.e., for any x1, ... ,x,, no two of the relations hold). 
Define 

Prove that g is partial recursive. 
5.22 A partial functionf(x) is said to be recursively completable if there is a 
recursive function h(x) such that, for every x in the domain off, h(x) = f(x). 

(a) Prove that pyTt (x, x,y) is not recursively completable. 
(b) Prove that a partial recursive functionf(x) is recursively completable if 

the domain D off is a recursive set - that is, if the property 'x E D' is 
recursive. 

(c) Find a partial recursive functionf(x) that is recursively completable but 
whose domain is not recursive. 

5.23 If R(x.y) is a recursive relation, prove that there are natural numbers 
zo and v0 such that: 

(a) --.[(3y)R(zo, y) {:} (\fy)--.Tt (zo, zo,y)] 
(b) --.[(\fy)R(v0 ,y) <* (3y)TI (vo, vo,y)] 

5.24 If S(x) is a recursive property, show that there are natural numbers z0 

and v0 such that: 

(a) --.[S(zo) <* (\fy)-.TI (zo,zo,y)] 
(b) •[S(vo) <* (3y)Tt (vo, vo,y)] 

5.25 Show that there is no recursive function B(z,x1, ••• ,x11 ) such that, if z 
is a Godel number of a Turing number !T and k1, .. . , k11 are natural numbers 
for which Jsr,11 (k1 , ••• , k11 ) is defined, then the number of steps in the com­
putation of Jsr,11 (kt, ... , k11 ) is less than B(z, k1, ... , k11 ). 

Let !T be a Turing machine. The halting problem for !T is the problem of 
determining, for each tape description p, whether !T is applicable to p, that 
is, whether there is a computation of !Y that begins with p. 

We say that the halting problem for f7 is algorithmically solvable if there 
is an algorithm that, given a tape description (), determines whether f7 is 
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applicable· to p. Instead of a tape description p, we may assume that the 
algorithm is given the Godel number of[). Then the desired algorithm will 
be a computable function Hff such that: 

if x is the Godel number of a tape description p 
to which ff is applicable 
otherwise 

If we accept Turing algorithms as exact counterparts of algorithms (that is, 
the extended Church's thesis), then the halting problem for fY is algorith-
1nically solvable if and only if the function Hff is Turing-computable, or 
equivalently, by Corollary 5.9, recursive. When the function Hff is recursive, 
we say that the halting problem for fY is recursively solvable. If Hff is not 
recursive, we say that the halting problem for fY is recursively unsolvable. 

PROPOSITION 5.14 

There is a Turing machine with a recursively unsolvable halting problem. 

Proof 

By Proposition 5.2, let fT be a Turing machine that ST-computes the partial 
recursive function pyT1(x,x,y). Remember that,. by the definition of stan­
dard Turing computability, iffY is begun on the tape consisting of only .X 

with its reading head scanning the leftmost I, then fY stops if and only if 
flyT1(x,x,y) is defined. Assume that fY has a recursively solvable halting 
problem, that is, that the function Hff is recursive. Recall that the Godel 
number of the tape description q0x is 29 * Num(x). Now, 

(3y)T1(x,x,y) if and only if flyT1(x,x,y) is defined 
if and only if ff, begun on q0x, performs a computation 

if and only if H3 (29 * Num(x)) = 0 

Since Hff, Num and* are recursive, (3y)T1(x,x,y) is recursive, contradicting 
Corollary 5.13(a) (when n = 1). 

Exercises 

5.26 Give an example of a Turing machine with a recursively solvable 
halting problem. 
5.27 Show that the following special halting problem is recursively un­
solvable: given a Godel number z of a Turing machine !!7 and a natural 
number x, determine whether fY is applicable to q0x. 
5.28 Show that the following self-halting problem is recursively unsolvable: 
given a Godel number z of a Turing machine fT, determine whether fY is 
applicable to q0z. 
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5.29 The printing problem for a Turing machine !T and a symbol ak is the 
problem of determining, for any given tape description ex, whether !T, begun 
on ex, ever prints the symbol ak. Find a Turing machine fT and a symbol ak 
for which the printing problem is recursively unsolvable. 
5.30 Show that the following decision problem is recursively unsolvable: 
given any Turing machine !T, if !T is begun on an empty tape, determine 
whether .0/ stops (that is, whether !Tis applicable to q0B). 
5.31° Show that the problem of deciding, for any given Turing machine 

' whether it has a recursively unsolvable halting problem is itself recursively 
unsolvable. 

To deal with more intricate decision problems and other aspects of the 
theory of computability, we need more powerful tools. First of all, let us 
introduce the notation 

rp~(xt, ... ,x,) = U(pyT,,(z,xt, ... ,x11 ,y)) 

Thus, by Corollary 5.11, cp~, cpJ., cp2, ... is an enumeration of all partial re­
cursive functions of n variables. The subscript j is called an index of the 
function cpj. Each partial recursive function of n variables has infinitely 
many indices. 

PROPOSITION 5.15 (ITERATION THEOREM 
OR s-m-n THEOREM) 

For any positive integers m and n, there is a primitive recursive function 
s;~1 (z,y1 , ... ,y111 ) such that 

111+11 
( • x y lJ ) - m (x X ' ) fPz Xt, · · · 1 111 h • · · l.I'IJI - 't's~'(z,y1 , ••. J'm) I, • · · l li' 

Thus, not only does assigning particular values to z, Yl, .. . , Ym in 
m+n ( ) · ld t ' 1 · f t' f · fPz x1, ... ,x,])y1 , .•• ,Ym y1e a new par 1a recursive unc ton o n van-

abies, but also the index of the resulting function is a primitive recursive 
function of the old index z and of Yl , ... , Ym. 

Proof 

If !T is a Turing machine with Godel number z, let ffy1 , ... ,y,. be a Turing 

machine that, when begun on (x1, ... ,x11 ), produces (xt, ... ,xn,Yl, ... ,y111 ), 

moves back to the leftmost I of x1, and then behaves like !T. Such a machine 
is defined by the diagram 

Rr(atr?1+1r(atrr~+1 r ... r(atrf~+I !er!!T 

The Godel number s'~'(z,y1 , ••. ,ym) of this Turing machine can be effectively 
computed and, by Church's thesis, would be partial recursive. In fact, s,;z can 
be computed by a primitive recursive function g(z,y1, ••• ,ym) defined in the 
following manner. Let t = Yl + ... + Ym +2m+ 1. Also, let u(i) = 
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29+4i3751179-t:-4i and v(i)=29+4i3 11 5 37 13+4i. Notice that u(i) is the Godel 
number of the quadruple q;B\q; and v(i) is the Godel number of the quad­
ruple qijRq;+l· Then take g(z,YJ, ... ,ym) to be: 

(229311 5379 32937 53713 52u31153P 72133757717 ]* 

Yt+2 

II u(i) v(i) 
2

29+4(>·1+3)375379+4(>·1+4) 
Pl2i-4!PI2i-3l * * 

i=2 

YI-t-Yz+4 

II u(i) v(i) 
P2li-{yt+4)IP2Ii-{yt+4)1+1 * 

i=yt+4 

2
29+40•t +n +5) 3753 p+4u·t +n+6l 

* ... * 

Yt+···+Ym+2m 

II pu(~) pv(~) * 
2lr-01 + ... +J'm-1+2m)l 2II-{yt+ ... +)'m-I+2m)l+l 

i=yt +···+Ym-1 +2m 

229+4r3u 5sp+4t 329+4t375sp+4(t+tl 529+4(t+tl311 5sp+4t. 

729+4(1+1)375379+4(1+2) 1129+4(1+2)3753p+4(t+3) * 
<5( ell(z)) 

II 2((z);)o+4(t+3) 3((z); h 5((Z)j)2 7l(z);)3+4(t+3) 
P; 

i=O 

g is primitive recursive by the results of Section 3.3. When z is not a Godel 
number of a Turing machine, cp~1+11 is the empty function and, therefore, 
s~1 (z,y1 , ••• ,y111 ) must be an index of the empty function and can be taken to 
be 0. Thus, we define: 

sm(z y y ) = { g(z,YL· . · · ·Ym) 
11 ' t, ... , Ill 0 

Hence, s~ is primitive recursive. 

COROLLARY 5.16 

if TM(z) 
otherwise 

For any partial recursive function j(x1, ... ,x11 ,YI, ... ,y111 ), there is a recur­
sive function g(y1, ... ,ym) such that 

Proof 

Let e be an index of f. By Proposition 5.15, 

Let 9U'I, · · · ,Ym) = ~'(e,y1, · · · ,ym)· 
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Examples 
1. Let G(x) be a fixed partial recursive function with non-empty domain. 

Consider the following decision problem: for any u, determine whether 
m 1 = G. Let us show that this problem is recursively unsolvable, that is 
Yu , 

that the property R(u), defined by q;~ = G, is not recursive. Assume~ for 
the sake of contradiction, that R is recursive. Consider the function 
f(x,u) = G(x)·N(Z(pyTt(u,u,y))). (Recall that N(Z(t)) = 1 for all t). 
Applying Corollary 5.16 to f(x, u), we obtain a recursive function g(u) 
such that f(x, u) = ffJ!(u) (x). For any fixed u, q;!(u) = G if and only if 
(3y)T1 (u, u, y). (Here, we use the fact that G has non-empty domain.) 
Hence, (3y)Tt (u, u,y) if and only if R(g(u)). Since R(g(u)) is recursive, 
(3y)T1 (u, u,y) would be recursive, contradicting Corollary 5.13(a). 

2. A universal Turing machine. Let the partial recursive function 
U(pyT1 (z, x, y)) be computed by a Turing machine "f/ with Godel number 
e. Thus, U(pyTt(z,x,y)) = U(pyT2(e,z,x,y)). "f/ is universal in the fol­
lowing sense. First, it can compute every partial recursive function f(x) of 
one variable. If z is a Godel number of a Turing machine that computes f, 
then, if 'f./ begins on the tape (z,x), it will compute U(pyTt(z,x,y)) = f(x). 
Further, "f/ can be used to compute any partial recursive function 
h(x1, ..• ,x,J Let v0 be a Godel number of a Turing machine that com­
putes h, and let f(x) = h((x)0 , (x) 1 , ••. , (x)11_ 1). Then h(xt, ... ,x11 ) 

= J(p~1 
•• • p~"_1 ). By applying Corollary 5.16 to the partial recursive 

function U(py T,,(v, (x)0 , (x)p· .. , (x)11_ 1,y)), we obtain a recursive func­
tion g(v) such that U(pyT,,(v,(x)0 ,(x)1, ... ,(x)11 _ 1,y)) = q;!(v)(x). Hence, 
f(x) = q;!(v) (x). So h(xt, ... , Xn) is computed by applying "f/ to the tape 

( ( ) 
X] X 11 ) g vo ,po · · ·Pn-l · 

Exercises 

5.32 Find a superuniversal Turing machine "f/* such that, for any Turing 
machine ff. ifz is a Godel number of f!T andx is the Godel number of an initial 
tape description a of !Y, then "f/* is applicable to qo(z,x) if and only if !Tis 
applicable to a; moreover, if !Y, when applied to a, ends with a tape description 
that has Godel number w, then 1.r*, when applied to q0(z,x), produces w. 
5.33 Show that the following decision problem is recursively unsolvable: for 
any u and v, determine whether q;~ = q;!. 
5.34 Show that the following decision problem is recursively unsolvable: for 
any u, determine whether cp]

1 
has empty domain. (Hence, the condition in 

Example 1 above, that G(x) has non-empty domain is unnecessary). 
5.35 
(a) Prove that there is a recursive function g(u, v) such that 

fP!(u,v) (x) = (/)1~(x) · cp~(x) 

(b) Prove that there is a recursive function C(u, v) such that 
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5.4 THE KLEENE-MOSTOWSKI HIERARCHY. 
RECURSIVELY ENUMERABLE SETS 

Consider the following array, where R(x~, ... ,xn,YI, ... ,y111 ) is a recursive 
relation. 

R(x~, . . . , Xn) 
(3YJ.)R(xt, ... ,xn,Yt) (\fyt)R(xt, ... ,Xn,yt) 
(3yt)(\fyz)R(xt, ... ,xn,J'L,Yz) 
(3yt)(V'Y2)(3y3)R(xz, ... ,x,,y1 ,yz,YJ) 

(\fyt)(3Y2)R(xr, ... , x,,y~,yz) 
('v'yt)(3yz)(\fy3)R(x~, .. . ,Xn,Yt,yz,.Y3) 

Let 'EZ = nz = the set of all n-place recursive relations. For k > 0, let 2::~ 
be the set of all n-place relations expressible in the prenex form 
(3YI)(\fyz) ... (Qyk)R(xt, ... ,X,11 YI, ... ,Jk), consisting of k alternating quan­
tifiers beginning with an existential quantifier and followed by a recursive 
relation R. (Here, '(Qyk)' denotes (3_») or ('v'J'k), depending on whether k is 
odd or even.) Let llZ be the set of all n-place relations expressible in the 
prenex form (Vyl)(3y2) ... (QJ!k)R(x1, ••• ,x11 ,y1, ••• ,Jlk), consisting of k al­
ternating quantifiers beginning with a universal quantifier and followed by a 
recursive relation R. Then the array above can be written 

E~ 
E': IT~ 
E~ Ih 
E; IT~ 

This array of classes of relations is called the Kleene-Mostowski hierarchy, 
or the arithmetical hierarchy. 

PROPOSITION 5.17 

(a) Every relation expressible in any form listed above is expressible in all 
the forms in lower rows; that is, for all j > k, 

(b) There is a relation of each form, except '2::~, that is not expressible in 
the other form in the same row and, hence, by part (a), not in any of the 
rows above; that is, fork> 0, 
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(c) Every arithmetical relation is expressible in at least one of these 
forms. 

(d) (Post) For any relation Q(xt, ... ,xn). Q is recursive if and only if both Q 
and -.Q are expressible in the form (3yi)R(xt, ... ,x11,Yt), where R is 
recursive; that is, '2:7 n ll'1' = '2:~. 

(e) If Q1 E '2:~ and Q2 E '2:~. then Q1 V Q2 and Q1 1\ Q2 are in '2:~- If 
QI E flk and Q2 E ilk, then QI V Qz and Q1 1\ Q2 are in ilk. 

(f) In contradistinction to part (d), if k > 0, then 

Proof 

(a) (::Jzt)('v'yt) ... (3zk)('v'yk)R(xt, ... ,x,,zt,Yl,- .. ,zk,Yk) {::} 

('v'u)(::Jzt)('v'yt) ... (3zk)('v'yk)(R(x~, ... ,Xn,Zt,Yt, . .. ,zk,J~) 1\ u = u) {::} 

(::Jzt)('v'yt) ... (3zk)('v'.Yk)(3u)(R(xt,- .. ,Xn,zt,yl, ... ,zk,Yk) 1\ u = u) 
Hence, any relation expressible in one of the forms in the array is 
expressible in both forms in any lower row. 

(b) Let us consider a typical case, say 2:;. Take the relation 
(3v)('v'z) (3y)T,1+2(xt ,xt ,x2, ... ,xn, v, z,y), which is in 2:;. Assume that 
this is in n~. that is, it is expressible in the form (\iv)(3z)(\iy) 
R(x1, ••• ,x11 , v,z,y), where R is recursive. By Exercise 5.19, this relation 
is equivalent to (\fv)(3z)(\fy)-,T,,+2(e,xt, ... ,x11 , v,z,y) for some e. When 
x 1 = e, this yields a contradiction. 

(c) Every wf of the first-order theory Scan be put into prenex normal form. 
Then, it suffices to note that (3u)(3v)R(u, v) is equivalent to (3z)R((z)0 , 

(zh), and (\fu)(Vv)R(u, v) is equivalent to (\fz)R((z)0 , (z)1). Hence, 
successive quantifiers of the same kind can be condensed into one such 
quantifier. 

(d) If Q is recursive, so is -,Q, and, if P(x1 , .•• ,xn) is recursive, then 
P(xt, ... ,x11 ) <::} (3y)(P(xt, ... ,x11 ) 1\y = y). Conversely, assume Q is 
expressible as (3y)Rt(Xl, ... ,x11,y) and -,Q as (3y)R2(Xt, ... ,xmy), 
where the relations R1 and R2 are recursive. Hence, ('Vx1) ... 

(\ixn) (3y) (Rt (x1, ... ,x,l)y) V R2(x1, ... ,x11 ,y)). So, t/1 (xt, ... ,x11 ) = 
flY(RJ (xt, ... ,xn,Y) V R2(X1, ... ,xn,Y)) is recursive. Then, Q(xt, ... ,xn) 
<::} Rt(x1 , •.• ,xn, 1/J(xt, ... ,xn)) and, therefore, Q is recursive. 

(e) Use the following facts. If xis not free in d. 

f- (::Jx)(d V 98) {::} (d V (:3x)98), f- (::lx)(d 1\ 98) {::} (J?i 1\ (:3x)98), 

1-- ('v'x)(sf V 98) {::} (d V ('v'x)98), 1-- ('v'x)(d 1\ 98) {::} (d 1\ ('v'x)98) 
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--(f) We shall suggest a proof in the case n = 1; the other cases are then easy 
consequences. Let Q(x) E 'Ek- IT!. Define P(x) as (3z) [(x = 2zl\ 
Q(z))v (x = 2z + 1/\ -.Q(z))]. It is easy to prove that P ¢. 'E! U Tit and 
that P E L:!+t· Observe that P(x) holds if and only if 

(3z)(x = 2z 1\ Q(z)) V ((3z)z<Ax = 2z+ 1) 1\ (\iz)(x = 2z+ 1:::::? •Q(z))) 

Hence, P E llk+t (Rogers, 1959). 

Exercises 

5.36 For any relation W of n variables, prove that W E 2:~ if and only if 
W E IT~, where W is the complement of W with respect to the set of all 
n-tuples of natural numbers. 
5.37 For each k > 0, find a universal relation fk in I:~+ I; that is, for any 
relation W of n variables: (a) if WE 2::~, then there exists z0 such that, for all 
Xt, ... ,x,, W(xt, ... ,xn) if and only if fk(zo,Xt, . .. ,xn); and (b) if wE rr~. 
there exists Vo such that, for all Xt, . .. , x,u W(xt, .. . , X 11 ) if and only if 
-.fk(vo,Xt, ... ,x,). [Hint: Use Exercise 5.19.] 

The s-m-n theorem (Proposition 5.15) enables us to prove the following 
basic result of recursion theory. 

PROPOSITION 5.18 (RECURSION THEOREM) 

If n > 1 and f(xt, ... ,x11 ) is a partial recursive function, then there exists a 
natural number e such that 

Proof 

By the s-rn-n theorem, <pd(xt, ... ,x11 ) = <p''t-1
(d _)(xi, ... ,X11-t)- Let e = 

l S I , Xn 
s,_

1 
(d, d). Then: ,_ 

f(xl, ... , Xn-l, e) = f(xl,- .. ,Xn-l, s~- l (d, d)) = q>~(Xl, ... ,Xn-l, d) 
_ m11-l (x . ) _ mn-1 ( . X ) 
- rs~_1 (d.d) I,··· ,XII-I - re XI,···, 11- l 

COROLLARY 5.19 (FIXED-POINT THEOREM) 

If h(x) is recursive, then there exists e such that <p~ = <p)
1
(e). 
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Proof 

Applying the recursion theorem to f(x, u) = <p},(u) (x), we obtain number e 
such thatf(x,e) = <p!(x). Butf(x,e) = (j)},(e)(x). 

COROLLARY 5.20 (RICE'S THEOREM) (RICE, 1953) 

Let !F be a set consisting of at least one, but not all, partial recursive 
functions of one variable. Then the set A= {ul(/)~1 E ff} is not recursive. 

Proof 

By hypothesis, there exist numbers u 1 and u2 such that u 1 E A and u 2 ¢ A. 
Now assume that A is recursive. Define 

h(x) = { Ut 
lll 

if X (j: A 

ifx EA 

Clearly, h(x) E A if and only ifx ¢A. his recursive, by Proposition 3.19. By 
the fixed-point theorem, there is a number e such that <p! = <pl(e). Then we 
obtain a contradiction as follows: 

eEA if and only if q>! E ff 

if and only if q>Jz(e) E ff 

if and only if h(e) EA 

if and only if e(j:A 

Rice's theorem can be used to show the recursive unsolvabflity of various 
decision problems. 

Example 
Consider the following decision problem: for any u, determine whether cp1~ 
has an infinite domain. Let ff be the set of all partial recursive functions of 
one variable that have infinite domain. By Rice's theorem, {ul<p:

1 
E ff} is 

not recursive. Hence, the problem is recursively undecidable. 
Notice that Example 1 on page 332 and Exercise 5.34 can be handled in 

the same way. 

Exercises 

5.38 Show that the following decision problems are recursively unsolvable. 
(a) For any u, determine whether cp! has infinite range. 
(b) For any u, determine whether <p:

1 
is a constant function. 

(c) For any u, determine whether qJ~ is recursive. 
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5.39 
(a) Show that there is a number e such that the domain of q>! is { e }. 
(b) Show that there is a number e such that the domain of q>; is w-{ e}. 
5.40 This exercise will show the existence of a recursive function that is not 
primitive recursive. 
(a) Let [.Ji] be the largest integer less than or equal to .JX. Show that [VXJ 

is defined by the recursion 

K(O) = 0 

K(x + 1) = K(x) + sgl(x + 1)- (K(x) + 1)21 

Hence, [JX) is primitive recursive. 
(b) The function Quadrem(x) = x...!... [vxf is prinlltive recursive and rep­

resents the difference betweenx and the largest square less than or equal 
to x. 

(c) Let p(x,y) = ((x + y)2 + y/ +x~ p1(z) = Quadrem(z), and p2(z) = 
Quadrem([JZ]). These functions are primitive recursive. Prove the 
following: 
(i) p1 (p(x,y)) = x and P2(p(x,y)) = y. 

(ii) p is a one-one function from w2 into w. 
(iii) p1 (0) = P2(0) = 0 and 

p1(x+ 1) = p1(x) + 1} 
if p 1 (x + 1) # 0 

P2(x + 1) = P2(x) 

(iv) Let p2 denote p, and, for n > 3, define p"(xt, ... ,x11 ) 

= p(p11- 1 (x~, ... ,x,_l),x,). Then each p11 is primitive recursive. 
Define p7(x) = p7- 1(p1(x)) for 1 :::;,_i:::;,_n- l, and P:!(x) = p2(x). 
Then each p;', 1 :::;,_ i :::;,_ n, is primitive recursive, and 
p~1 (p"(x1 , ••• ,x,J) =xi. Hence, p11 is a one-one function of w" into 
w. The p"s and the p;'s are obtained from p, p1 and p2 by sub­
stitution. 

(d) The recursion rule (V) (p. 174) can be limited to the form 

F(xt, ... , Xu+ I, 0) = Xn+l (n > 0) 

F(xt, ... ,x11+I ,y + 1) = G(xt, ... ,x"+l,y,F(xt, ... ,x11+l ,y)) 

[Hint: Given 

f(xt, ... ,xll, 0) = g(xt, ... ,xn) 

f(xt, ... ,x,lly + 1) = h(x1, ... ,x",y,f(xt, ... ,x,lly)) 

define F as above, letting G(xt, . . . ,xn+I,y,z) = h(xt, ... ,x11 ,y,z). Then 
f(xt, ... ,xn,Y) = F(xt, ... ,Xn,g(xt, ... ,xn),y).] 

(e) Taking x + y,x · y, and [.Ji] as additional initial functions, we can limit 
the recursion rule to the one-parameter form: 
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F(x, 0) = G(x) 

F(x,y+ 1) =H(x,y,F(x,y)) 

[Hint: Let n > 2. Given 

/(Xt, .. . ,xn, 0) = g(x1, .. . ,x11 ) 

f(xt, ... ,XmY + 1) = h(x1, ... ,Xn,y,f(xt, ... ,X11 ,y)) 

let F(u,y) = f(pi(u), ... , p:;(u),y). Define F by a permissible recursion. 
(Note that b(x),x..!-y, P11 and Pi are available.) f(xi, . . . ,x

11
,y) 

= F(p"(x1, ... ,xn),y).] 

(f) Taking x + y, x · y, and [.JX] as additional initial functions, we can use 
h(y,F(x,y)) instead of H(x,y,F(x,y)) in part (e). 
[Hint: Given 

F(x, 0) = G(x) 
F(x,y + 1) = H(x,y,F(x,y)) 

let F1(x,y) = p(x,F(x,y)). Then x = p1(F1(x,y)) and F(x,y) 
= p2(F1(x,y)). Define F1(x,y) by a permissible recursion.] 

(g) Taking x + y, x · y, and [.JX] as additional initial functions, we can limit 
uses of the recursion rule to the form 

Hint: Given 

j(x,O) =X 

f(x,y+ 1) = h(y,f(x,y)) 

F(x, 0) = G(x) 

F(x,y+ 1) = h(y,F(x,y)) 

define f as above. Then f(x,y) = f( G(x),y). 

(h) Taking x + y, x · y, [Vi] and x-=-y as additional initial functions, we can 
limit uses of the recursion rule to those of the form 

g(O) = 0 

g(y + 1) = H(y, g(y)) 

[Hint: First note that jx- yj = (x-=-y) + (y-=-x) and that [.JX] is defin­
able by a suitable recursion. Now, given 

f(x,O) =X 

f(x,y + 1) = h(y,f(x,y)) 

let g(x) = f(p2(x), p1 (x)). Then 
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g(O)' = J(p2(0), Pt (0)) = f(O, 0) = 0 

g(x + 1) = f(p2(x + 1), p1 (x + 1)) 

{ 
p2 (x + 1) if p 1 (x + 1) = 0 

= h(p 1 (x + 1) -=-l,/(p2(x + 1), p1(x + 1) -=-1)) if Pt(X + 1) f 0 

{ 
p2 (x + 1) if p 1 (x + 1 ) = 0 

h(p1 (x),f(p1 (x), p2(x))) if p1 (x + 1) f 0 

{
p2(x+1) ifp1(x+1)=0 

h(p1 (x), g(x)) if p1 (x + 1) f 0 

= p2(x + 1) · sg(p1 (x + 1 )) + h(p1 (x), g(x)) · sg(p1 (x + 1)) 

= H(x, g(x)) 

Thenf(x,y) = g(p(y,x)). (Note that sg is obtainable by a recursion of 
the appropriate form and sg(x) = 1-=-x.) 

(i) In part (h), H(y, g(y)) can be replaced by H(g(y)). 
[Hint: Given 

g(O) = 0 

g(y + 1) = H(y, g(y)) 

letf(u) = p(u,g(u)) and cp(w) = p(p1(w) + l,H(p1(w),p2 (w))). Then 

/(0) = 0 

f(y + l) = cp(f(y)) 

and g(u) = p2(/(u)). (Note that sg(x) is given by a recursion of the 
specified form.) 

G) Show that the equations 

t/f(x, 0) = x + 1 

t/I(O,y + 1) = t/1(1,y) 
t/f(x + l,y + 1) = t/l(t/f(x,y + 1),y) 

define a number-theoretic function. In addition, prove: 
(I) fjf(x,y) > x. 
(II) fjf(x,y) is monotonic in x, that is, if x <z, then fjl(x,y) < fjf(z,y). 
(III) fjl(x + l,y) ~fjf(x,y + 1). 
(IV) fjl(x,y) is monotonic in y, that is, ify < z, then fjl(x,y) < fjf(x,z). 
(V)D Use the recursion theorem to show that fjJ is recursive. [Hint: Use 

Exercise 5.21 to show that there is a partial recursive function g such 
that g(x, 0, u) = x + 1, g(O,y + 1, u) = <p~(i,y), and g(x + l,y + 1, u) = 
<p~ (<p~(x,y + 1),y). Then use the recursion theorem to find e such that 
g(x,y, e) = <p;(x,y). By induction, show that g(x,y, e) = fjl(x,y).] 

(VI) For every primitive recursive functionj(x1, ... ,x11 ), there is some fixed 
m such that 

f(xt, ... ,x,) < t/l(max(xt, ... ,X11),m) 
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for all x1, ... , x11 • [Hint: Prove this first for the initial functions Z, N U!I 
l l l 

x + y, x x y, [ Jx] and x ..:-y, and then show that it is preserved by 
substitution and the recursion of part (i).] Hence, for every primitive 
recursive functionf(x), there is somem such thatf(x) < 1/J(x, m) for allx. 

(VII) Prove that 1/J(x,x) + 1 is recursive but not primitive recursive. 
For other proofs of the existence of recursive functions that are not 
primitive recursive, see Ackermann (1928), Peter (1935; 1967), and 
R.M. Robinson (1948). 

A set of natural numbers is said to be recursively enumerable (r.e.) if 
and only if it is either empty or the range of a recursive function. If we 
accept Church's thesis, a non-empty recursively enumerable set is a 
collection of natural numbers generated by some mechanical process 
or effective procedure. 

PROPOSITION 5.21 

(a) A set B is r.e. if and only if x E B is expressible in the form (3y)R(x,y), 
where R is recursive. (We even can allow R here to be primitive re­
cursive.) 

(b) B is r.e. if and only if B is either empty or the range of a partial recursive 
function.t 

(c) B is r.e. if and only if B is the domain of a partial recursive function. 
(d) B is recursive if and only if Band its complement B are r.e.t 
(e) The set K = {xj(3y)T1(x,x,y)} is r.e. but not recursive. 

Proof 

(a) Assume B is r.e. If B is empty, then x E B {::} (3y) (xi= x 1\ y I- y). If B is 
non-empty, then B is the range of a recursive function g. Then 
x E B {::} (3y)(g(y) = x). Conversely, assumex E B {::} (3y)R(x,y), whereRis 
recursive. If B is empty, then B is r.e. If B is non-empty, then let k be a fixed 
element of B. Define 

{
k 

e(z) = (z)o 
if -.R((z)0 , (z)1) 

if R((z)0 , (z)d 

8 is recursive by Proposition 3.19. Clearly, B is the range of 8. (We can take 
R to be primitive recursive, since, if R is recursive, then, by Corollary 5.12(a), 
(3y)R(x,y) {::} (3y)T1(e,x,y) for some e, and T1(e,x,y) is primitive recursive.) 

tsince the empty function is partial recursive and has the empty set as its range, 
the condition that B is empty can be omitted. 

lB = m- B, where co is the set of natural numbers. 
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(b) Assume B is th~ range of a partial recursive function g. If B is empty, 
then B is r.e. If B is non-empty, then let k be a fixed element of B. By 
Corollary 5.11, there is a number e such that g(x) = U(J1yT1(e,x,y)). Let 

h(z) _ { U((z)d if Tt(e,(z)0,(z)d 
- k if•Tt(e,(z)0 , (z) 1) 

By Proposition 3.19, h is primitive recursive. Clearly, B is the range of h. 
Hence, B is r .e. 

(c) Assume B is r.e. If B is empty, then B is the domain of the partial 
recursive function JlY(x + y + 1 = 0). If B is non-empty, then B is the range 
of a recursive function g. Let G be the partial recursive function such that 
G(y) = JlX(g(x) = y). Then B is the domain of G. Conversely, assume B is 
the domain of a partial recursive function H. Then there is a number e such 
that H(x) = U(JlYTt(e,x,y)). Hence, H(x) = z if and only if (3y)(T1(e,x,y)l\ 
U(y) = z). But, x E B if and only if (3z)(H(x) = z). So, x E B if and only if 
(3z)(3y)(T1 (e,x,y) 1\ U(y) = z), and the latter is equivalent to (3u)(Tt(e,x, 
(u)1) 1\ U((u)1) = (u)0). Moreover, Tt(e,x, (u) 1) 1\ U((u) 1) =(u)0 is recur­
sive. Thus, by part (a), B is r.e. 

(d) Use part (a) and Proposition 5.17(d). (The intuitive meaning of part 
(d) is the following: if there are mechanical procedures for generatingB and 
B, then to determine whether any number nisin B we need only wait until n 
is generated by one of the procedures and then observe which procedure 
produced it.) 

(e) Use parts (a) and (d) and Corollary 5.13(a). 

Remember that the functions qJ~(x) = U(JlYTt(n,x,y)) form an enumer­
ation of all partial recursive functions of one variable. If we designate the 
domain of (p~ by W,, then Proposition 5.21 (c) tells us that Wo, Wi, U2, ... is 
an enumeration (with repetitions) of all r.e. sets. The number n is called the 
index of the set W,,. 

Exercises 

5.41 Prove that a set B is r.e. if and only if it is either empty or the range of 
a primitive recursive function. [Hint: See the proof of Proposition 5.2l(b).] 
5.42 
(a) Prove that the inverse image of a r.e. set B under a partial recursive 

function f is r.e. (that is, {xlf(x) E B} is r.e.). 
(b) Prove that the inverse image of a recursive set under a recursive func­

tion is recursive. 
(c) Prove that the image of a r.e. set under a partial recursive function is 

r.e. 
(d) Using Church's thesis, give intuitive arguments for the results in parts 

(a)-( c). 
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(e) Show that the image of a recursive set under a recursive function need-, 
not be recursive. 

5.43 Prove that an infinite set is recursive if and only if it is the range of a 
strictly increasing recursive function. (g is strictly increasing if x < y implies 
g(x) < g(y).) 
5.44 Prove that an infinite set is r.e. if and only if it is the range of a one­
one recursive function. 
5.45 Prove that every infinite r.e. set contains an infinite recursive subset. 
5.46 Assume that A and Bare r.e. sets. 
(a) Prove that AuB is r.e. [In fact, show that there is a recursive function 

g(u, v) such that f'Vg(u,v) = J!Ji, u rrv.] 
(b) Prove that AnB is r.e. [In fact, show that there is a recursive function 

h(u, v) such that W,1(u,v) = Wz,nffv .] 
(c) Show that A need not be r.e. 
(d) Prove that UnEA W,z is r.e. 
5.47 Show that the assertion 

('v) A set B is r.e. if and only if Bis effectively enumerable (that is, 

there is a mechanical procedure for generating the numbers in B) 

is equivalent to Church's thesis. 
5.48 Prove that the set A= {ul J!Ji, = w} is not r.e. 
5.49 A set B is called creative if and only if B is r.e. and there is a partial 
recursive function h such that, for any n, if W, C B, then h(n) E B- W,1• 

(a) Prove that {xl(3y)T1 (x,x,y)} is creative. 
(b) Show that every creative set is non-recursive. 

5.50D A set B is called simple if B is r.e., B is infinite, and B contains no 
infinite r.e. set. Clearly, every simple set is non-recursive. Show that a simple 
set exists. 
5.51 A recursive permutation is a one-one recursive function from w onto m. 
Sets A and 8 are called isommphic (written A c::: B) if there is a recursive 
permutation that maps A onto B. 

(a) Prove that the recursive permutations form a group under the opera­
tion of composition. 

(b) Prove that t'V is an equivalence relation. 
(c) Prove that, if A is recursive (r.e., creative, simple) and A t'V B, then B is 

recursive (r.e., creative, simple). 

Myhill (1955) proved that any two creative sets are isomorphic. (See also 
Bernays, 1957.) 

5.52 A is many--one reducible to B (written ARmB) if there is a recursive 
function f such that u E A if and only iff( u) E B. (Many-one reducibility of 
A to B implies that, if the decision problem for membership in B is recur­
sively solvable, so is the decision problem for membership in A.) A and Bare 
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called many-one equivalent (written A m B) if ARmBand ERmA. A is one­
one reducible to B (writtten ARtB) if there is a one- one recursive function f 
such that u E A if and only if J(u) E B. A and Bare called one-one equivalent 
(written A 1 B) if AR1B and BRtA. 
(a) Prove that =m and 1 are equivalence relations. 
(b) Prove that, if A is creative, B is r.e., and ARmB, then B is creative. 

[Myhill (1955) showed that, if A is creative and B is r.e., then ERmA. J 
(c) (Myhill, 1955) Prove that, if AR1B then ARmB, and if A =1 B then 

A =mB. However, many-one reducibility does not imply one-one re­
ducibility, and many-one equivalence does not imply one-one equiv­
alence. [Hint: Let A be a simple set, Can infinite recursive subset of A, 
and B =A -C. Then ARtB and ERmA but not-(BRtA).] It can be 
shown that A 1 8 if and only if A ~ B. 

5.53 (Dekker, 1955) A is said to be productive if there is a partial 
recursive function f such that, if W,, C A, then f(n) E A- ffn. Prove the 
following. 
(a) If A is productive, then A is not r .e.; hence, both A and A are infinite. 
(b)D If A is productive, then A has an infinite r.e. subset. Hence, if A is 

productive, A is not simple. 
(c) If A is r.e., then A is creative if and only if A is productive. 
(d)D There exist i~o productive sets. 
5.54 (Dekker and Myhill, 1960) A is recursively- equivalent to B (written 
A rv B) if there is a one-one partial recursive function that maps A onto B. 
(a) Prove that rv is an equivalence relation. 
(b) A is said to be immune if A is infinite and A has no infinite r.e. subset. A 

is said to be isolated if A is not recursively equivalent to a proper subset 
of A. (The isolated sets may be considered the counterparts of the 
Dedekind-finite sets.) Prove that an infinite set is isolated if and only if 
it is immune. 

(c)D Prove that there exist 2No immune sets. 

Recursively enumerable sets play an important role in logic because, if we 
assume Church's thesis, the set TK of Godel numbers of the theorems of any 
axiomatizable first-order theory l( is r.e. (The same holds true of arbitrary 
formal axiomatic systems.) In fact, the relation (see page 198) 

PfK(y,x): y is the Godel nrunber of a proof inK of a wf with Godel 

number x 

is recursive if the set of Godel numbers of the axioms is recursive, that is, if 
there is a decision procedure for axiomhood and Church's thesis holds. 
Now, x E TK if and only if (:3y)FfK(y,x) and, therefore, TK is r.e. Thus, if we 
accept Church's thesis, l( is decidable if and only if the r.e. set TK is re­
cursive. It was shown in Corollary 3.46 that every consistent extension K of 
the theory RR is recursively undecidable, that is, TK is not recursive. 
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Much more general results along these lines can be proved (see Smullyan, 

1961; Feferman, 1957; Putnam, 1957; Ehrenfeucht and Feferman, 1960; and 
Myhill, 1955). For example, if K is a first-order theory with equality in the 
language 2! A of arithmetic: ( 1) if every recursive set is expressible in K, then 
K is essentially recursively undecidable, that is, for every consistent exten­
sion K' of I(, T K' is not recursive (see Exercise 5.58); (2) if every recursive 
function is representable in K and K satisfies conditions 4 and 5 on page 
208, then the set TK is creative. For further study of r.e. sets, see Post (1944)­
and Rogers (1967); for the relationship between logic and recursion theory, 
see Yasuhara (1971) and Monk (1976, part III). 

Exercises 

5.55 Let I( be a first-order theory with equality in the language !!!A of 
arithmetic. A number-theoretic relation B(x1, ... ,x11 ) is said to be weakll' 
expressible in K if there is a wf Bb'(x1, ... , Xn) of K such that, for any natur~l 
numbers kt, ... ,k11 ,B(kt, ... ,k11 ) if and only if 1-K Bb'(kt, ... ,k11 ). 

(a) Show that, if I( is consistent, then every relation expressible in K is 
weakly expressible in K. 

(b) Prove that, if every recursive relation is expressible in I( and I( is w­
consistent, every r.e. set is weakly expressible in IC (Recall that, when 
we refer here to a r.e. set B, we mean the corresponding relation 
'x E B'.) 

(c) If K has a recursive vocabulary and a recursive axiom set, prove that 
any set that is weakly expressible in I( is r.e. 

(d) If formal number theory S is w-consistent, prove that a set B is r.e. if 
and only if B is weakly expressible in S. 

5.56 
(a) (Craig, 1953) Let K be a first-order theory such that the set TK of Godel 

numbers of theorems of K is r.e. Show that K is recursively axiom­
atizable. 

(b) For any wf 86' of formal number theory S, let PlJ# represent its trans­
lation into axiomatic set theory NBG (see page 269. Prove that the set 
of wfs pg such that 1-NBG PlJ# is a (proper) recursively axiomatizable 
extension of S. (However, no 'natural' set of axioms for this theory is 
known.) 

5.57 Given a set A of natural numbers, let u E A* if and only if u is a Godel 
number of a wf g6'(xt) and the Godel number of :!ZJ(u) is inA. Prove that, if A 
is recursive, then A* is recursive. 
5.58 Let I( be a consistent theory in the language 2! A of arithmetic. 
(a) Prove that (T K)* is not weakly expressible in I(. 
(b) If every recursive set is weakly expressible in K, show that K is re­

cursively undecidable. 
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(c) If every recursive set is expressible in I(, prove that K is essentially 
recursively undecidable. 

5.5 OTHER NOTIONS OF COMPUTABILITY 

Computability has been treated here in terms of Turing machines because 
Turing~s definition is probably the one that makes clearest the equivalence 
between the precise mathematical concept and the intuitive notion.t We 
already have encountered other equivalent notions: standard Turing com­
putability and partial recursiveness. One of the strongest arguments for the 
rightness of Turing's definition is that all of the many definitions that have 
been proposed have turned out to be equivalent. We shall present several of 
these other definitions. 

Herbrand-Godel Computability 

The idea of defining computable functions in terms of fairly simple systems 
of equations was proposed by Herbi·and, given a more precise form by 
Godel (1934), and developed in detail by Kleene (1936a). The exposition 
given here is a version of the presentation in IUeene (1952, chap. XI.) 

First let us define the terms. 

1. All variables are terms. 
2. 0 is a term. 
3. If tis a term, then (t)' is a term. 
4. If t1, ... , tn are terms and Jj' is a function letter, then Jj'(t1 , ••• , t11 ) is a 

term. 

For every natural number n, we define the corresponding numeral n as 
follows: (1) 0 is 0 and (2) n + 1 is (n)'. Thus, every numeral is a term. 

An equation is a formula r = s where rands are terms. A system E of 
equations is a finite sequence r 1 = s1, r2 = s2, ... , rk = sk of equations such 
that rk is of the form fJ'(ti, ... , t 11 ). 

The function letter !J' is called the principal letter of the system E. Those 
function letters (if any) that appear only on the right-hand side of equations 
of E are called the initial letters of E; any function letter other than the 
principal letter that appears on the left-hand side of some equations and also 
on the right-hand side of some equations is called an auxiliary letter of E. 

We have two rules of inference: 

tFor further justification of this equivalence, see Turing (1936-37), K1eene 
(1952, pp. 317-323, 376-381) and Mendelson (1990). 
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R 1: An equation e2 is a consequence of an equation e1 by R 1 if and only if 
e2 arises from e1 by substituting any numeral n for all occurrences of a 
variable. 

R2: An equation e is a consequence by R2 of equations fj," (iit, ... ,n111 ) = ]5 
and r = s if and only if e arises from r = s by replacing one or more 
occurrences of fi/'(nJ, ... , nm) ins by p, and r = s contains no variables. 

A proof of an equation e from a set B of equations is a sequence e0 , ••. , e
11 

of equations such that e11 is e and, ifO~i~n, then: (1) ei is an equation of B, 
or (2) e; is a consequence by Rt of a preceding equation ejU < i), or (3) ei is a 
consequence by R2 of two preceding equations ej and e111 U < i, rn < i). We 
use the notation B I- e to state that there is a proof from B of e (or, in other 
words, that e is derivable from B). 

Example 
Let E be the system 

f[(xt) = (xt)' 

/ 1
2(xt,X2) = J{(2,x2,f[(xt)) 

The principal letter of E is fl, fl is an auxiliary letter, and f[ is an initial 
letter. The sequence of equations 

ff(xt,X2) = f{(2,x2,/l(xt)) 
2- 3- 1-ft (2,x2) = / 1 (2,x2,/1 (2)) 

tf(2, T) = t?C2, T./11(2)) 
/ 1

1 (xi) = (xi )1 

!lC2) = (2)' (i.e.,/1
1(2) = 3) 

tf (2, I) = t{ (2, I, 3) 

is a proof of ![(2, T) = ff (2, T, 3) from E. 
A number-theoretic partial function <p(x1, ••. , x,) is said to be computed 

by a system E of equations if and only if the principal letter of E is a letter!}' 
and, for any natural numbers k1, ... , k,,, p, 

E I- fF(kt, ... ,kn) =]5 if and only if ([J(kt, ... ,k11 ) = p 

The function <p is called Herbrand-Godel-computable (for short, HG-com­
putable) if and only if there is a system E of equations by which <p is 
computed. 

Examples 
1. Let E be the system fl (x1) = 0. Then E computes the zero function Z. 

Hence, Z is HG-computable. 
2. Let E be the system fl (x1) = (x1 )'. Then E computes the successor 

function N. Hence, N is HG-computable. 
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3. Let E be the system f!'(xt, ... ,x,) = x;. Then E computes the projection 
function up. Hence, U;' is HG-computable. 

4. Let E be the system 

tr(xt, o) = x1 

/ 1
2(Xt, (xz)1

) = (f1
2(Xt,X2))' 

Then E computes the addition function. 
5. Let E be the system 

f 1
1(xt) = 0 

!l(xt) =Xt 

The function <p(xt) computed byE is the partial function with domain {0} 
such that cp(O) = 0. For every k =1- 0, E ~ Jl(k) = 0 and E ~ Jl(k) = k. 
Hence, <p(xt) is not defined for x1 f:- 0. 

Exercises 

5.59 
(a) What functions are HG-computable by the following systems of 

equations? 

(i) fl(O)=O, fl((xt)')=xt 
(ii) /f(xt,O) =xt, J[(O,x2) = 0, !l((xt)',(x2)') =f[(xt,X2) 

(iii) fl (xi) = 0, fl (xt) = O' 
(iv) f[(xt, 0) = Xt, ![(xi, (x2)') = (f[(xt, x2))', fl (xi) = f[(xt, xt) 

(b) Show that the following functions are HG-computable. 
(i) lxt - x2l 
(ii) XI · X2 
(iii) cp(x) = { o

1 
if x is even 
if xis odd 5.60 

(a) Find a system E of equations that computes then-place function that is 
nowhere defined. 

(b) Let f be ann-place function defined on a finite domain. Find a system 
of equations that computes f. 

(c) If f(x) is an HG-computable total function and g(x) is a partial func­
tion that coincides with f(x) except on a finite set A, where g is unde­
fined, find a system of equations that computes g. 

PROPOSITION 5.22 

Every partial recursive function is HG-computable. 
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Proof 

(a) Examples 1 -3 above show that the initial functions Z, Nand V:' are HG~ 
computable. 

(b) (Substitution rule (IV).) Let cp(xh ... ,x,,) = 11(f/!1(xt, ... ,x,), ... , 
f/!m(x1 , ••• ,x,)) where 11, f/Jh ... , f/!111 have been shown to be HG-computable. 
Let E; be a system of equations computing f/J;, with principal letter ft, and 
let Em+1 be a system of equations computing IJ, with principal letter fm+l· By 
changing indices we may assume that no two of Et, ... , Em-t-1 have any 
function letters in common. Constn1ct a system E for lfJ by listing 
Et, ... ,Em+1 and then adding the equation .r:,:+2(x1, •.• ,x11 ) = /,~~~~ 
(f}'(x1, ... ,x,), ... ,1,~;(x1, ... ,x,)). (We may assume that 1,:;+2 does not oc­
c~r in ~1, ... , Em+1-) It is clear that, if <p(kt,.:...:, k11 ) _p, then E I- 1,~:+2 
(k1, ... , kn) = ]5. Conversely, if E I- .t:,;+2 (kt, .. . , k11 ) = ]5, then E 
1- f{'(kt, . .. , k") = Pt, ... , E I- J;;:(kt, .. . , kn) = ]5,~ and E_l- 1,;;~ 1 (p1, ... ,p,) 
= ]5. Hence, it readily follows that E1 I- ft(kt, . .. ,k") =]51, ... , Em I­
J~;(k:1, ... , kn) = ]5111 and Em+l 1- J;:;+l \Pt, ... ,]5111 ) = ]5. Consequently, f/!1 
(k1, ... ,kn) =pt, ... ,f/!111 (kt, ... ,kn) =Pm and t](pt,···,Pm) =p. So, 
cp(k1, •.. , k11 ) = p. [Hints as to the details of the proof may be found in 
Kleene (1952, chap. XI, especially, pp. 262-270).] Hence, <p is HG-com­
putable. 

(c) (Recursion rule (V).) Let 

qJ(Xt, . . . 1 Xn, 0) = t/J(xt, ... ,x,) 

qJ(Xt, • · · , X,, Xn+l + l) = '19(Xt, · · . , Xn+l, qJ(Xl, ... ,Xn+I)) 

where fjJ and{) are HG-computable. Assume that E1 is a system of equations 
computing fjJ with principal letter ft and that E2 is a system of equations 
computing {) with principal letter tr+2. Then form a system for computing cp 
by adding to E1 and E2 

J:'+1(xl,- .. ,x11 , 0) = J:'(x,, ... ,x11 ) 

pr+l(X X (x )1
) _ {"11+2(X X rn+l(. X )) 11 }, ... , 111 n+l -11 J, ... , 11-t-l,Jl Xt,···, n+l 

(We assume that E1 and E2 have no function letters in cmmnon.) Clearly, if 
<p(kt, ... ,k11 ,k) = p, then E I- J{'+1(kt, ... ,k11 ,k) = p. Conversely, one can 
prove easily by induction on k that, if E I- J{'+1 (k1 , •• . , k,, k) = p, then 
<p(k1, ... , k,,, k) = p. Therefore, cp is HG-computable. (The case when the 
recursion has no parameters is even easier to handle.) 

(d) (11-operator rule (VI).) Let cp(x1, . . . ,x11 ) = Jty(fjf(xt, ... ,x11 ,y) = 0) 
and assume that fjJ is HG-computable by a system E1 of equations with 
principal letter fi'+1. By parts (a}-(c), we know that every primitive recursive 
function is HG-computable. In particular, multiplication is HG-comput­
able; hence, there is a system E2 of equations having no function letters in 
common with E 1 and with principal letter f{ such that E2 1- /}(k1, k2) = p if 
and only if k1 · k2 = p. We form a system E3 by adding to E 1 and E2 the 
equations 
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f~'+1 (x1 , ••• ,x",0) = 1 

13+1 (xt, ... ,x,,, (xn+l)') = /}(/~'+1 (xt, ... ,x",x"+l ),Jl'+1(xt, ... ,x"x"+I)) 

One can prove by induction that E3 computes the function 
n,.<zt/l(it, ... ,Xn,y); that is, E3 I- J;+ 1(kt, ... ,kn,k) = p if and only if 
ITy<zt/l(kt, ... , k,l)y) = p. Now construct the system E by adding to E3 the 
equations 

J]((xt)', O,x3) = x3 

/3'(xt, ... ,x,) = J)Cf31+1(xt, ... ,x",x"+t),f:+l(xt, ... ,x", (x"+t)'),x,+t) 

Then E computes the function cp(xt, ... ,xn) = py(tjl(xt, ... ,xn,y) = 0). If flY 
(rjl(kt, ... , k,oy) = 0) = q, then E3 I- J3~+1 (kt, ... , kn,7i) = p, where p + 1 = 
n,<qt/l(kt,···,kn,y), and E31--/~'+1 (kt, ... ,ku,Zf')=0. Hence, E 1--/3' 
(k~, ... ,k11 ) =J](]J',O,q). But, E I- J](]J',O,q) =q, and so, E I- /3'(kt, ... , 
k11 ) = q. Conversely, if E I- f?/(kt, ... ,k11 ) = q, then E I- f](m',O,q) = q, 
where E3 I- /31+1(kt, ... ,kn,Zf) = (m)' and E3l-- /3'+1(kt, . . . ,kn,Zf') = 0. 
Hence, Tiy<qt/l(kt, ... , k",y) = m + 1 -:/= 0 and Tiy<q+l t/l(kt, ... , kn,Y) = 0. So, 
tjl(kt, ... ,k11 ,y)-:j=.O for y<q, and tjl(kt, ... ,k11 ,q)=0. Thus, py(t/l(kt, 
... , k11 ,y) = 0) = q. Therefore, cp is HG-computable. 

We now shall proceed to show that every HG-computable function is 
partial recursive by means of an arithmetization of the apparatus of Her­
brand- Godel computability. We shall use the same arithmetization that was 
used for first-order theories (see Section 3.4). (We take the symbol' to be an 
abbreviation for fl. Remember that r =sis an abbreviation for Ai(r,s). The 
only individual constant is 0.) In particular, the following relations and 
functions are primitive recursive (see pages 192-4): 

FL(x): xis the Godel number of a function letter 

(3y)y <.x(3z)z<.xCx = 1 + 8(~' · 3z) 1\ y > 01\ Z > 0) 

EVbl(x): x is the Godel number of an expression consisting of a variable 
EFL(x): xis the Godel number of an expression consisting of a function 

letter 
Nu(x): x is the Godel number of a numeral 
Trm(x): x is the Godel number of a term 
Num(x) = the Godel number of the numeral :X 
ArgT(x) =the number of arguments of a function letter, f, ifx is the Godel 

number off 
x * y = the Godel number of an expression AB if x is the Godel number of 

the expression A and y is the Godel number of B 
Subst(x,y, u, v): v is the Godel number of a variable x;, u is the Godel 

number of a term t, y is the Godel number of an expression !!lJ, and x is 
the Godel number of the result of substituting t for all occurrences of x; 
in !!lJ 
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The following are also primitive recursive: 

Eqt(x): x is the Godel number of an equation: 

tfi(x) = 3/\ Tnn((xh) 1\ Trm((xh) 1\ (x)0 = 99 

(Remember that= is Af, whose Godel number is 99.) 

Syst(x): x is the Godel number of a system of equations: 

(\iy)y<fli(x)Eqt((x)y) 1\ FL((((x)!Ji(x)-'- 1 )1)o) 

Occ(u, v): u is the Godel number of a term tor equation~ and vis the Godel 
number of a term that occurs in tor m: 

(Trm(u) V Eqt(u)) 1\ Tnn(v) 1\ (3.;r)x <u(3y)y<u(u = x * v * y 

Vu=X*VVU= V*yVu= v) 

Cons1 (u, v): u is the Godel number of an equation e., vis the Godel number 
of an equation e2, and e2 is a consequence of e1 by rule R1: 

Eqt(u) 1\ Eqt(v) 1\ (3.:r)x<u(3y)y<v(Nu(y) 1\ Subst(v, u,y,x) 1\ Occ(u,x)) 

Cons2(u,z, v): u, z, v are Q:odel numbers of equations e1, e2, e3, respec­
tively, and e3 is a consequence of e1 and e2 by rule R2: 

Eqt(u) 1\ Eqt(z). 1\ Eqt(v) 1\ -.(3.;r)x <z(EVbl(x) 1\ Occ(z,x)) 

1\ FL(((z)1)o) 1\ (\ix)O<x<fli((z)
1
)-,FL(((z)I)x) 

1\ (\ix)x<tli((zh)-,FL(((z)z)x) 1\ Occ((uh, (z)1) 

1\ [(3y)y<)3w)w<u((uh = y * (z)1 * w f\ v = 2993(u),SJ'*(zh*w) v. 

((uh = (z)1 1\ v = 299 3(u), sCzh) J 

Ded(u,z): u is the Godel number of a system of equations E and z is the 
Godel number of a proof from E: 

Syst(u )1\(\ix)_Y <fli(z) ( (3w)w< fli(u) (u)w = (z)x 

V (3y)y<xConst ((z)J', (z)x) V (3y)y<x(3v)v<xConsl((z)J'' (z)v, (zt.)) 

S,(u,x1, ••• ,x11 ,z): u is the Godel number of a system of equations E whose 
principal letter is of the form fT, and z is the Godel number of a proof 
from E of an equation of the form .lj'(x1, .. . ,x11 ) = ]5: 

Ded(u,z) /\ArgT(((u)tli(u)-'-1h)o = nl\ (((z)fli(z)-'-l)t)o 

= ( ( (u )r li(u) _,_ l) 1)0 1\ (\iy )o <y < fli(((z)u(z)~th) -.FL( ( ( (z)f/i(z)-'- l) 1 )y) 

1\ Nu(((z) . ) ) 1\ ((z) . ) = 2(((u)r"(uH )do * 23 * 2Num(xt) * 27 { li(z) - 1 2 { li(z)- I 1 

* 2Num(x2) * 27 * ... * 27 * 2Num(x.) * 25 

Remember that g(() = 3, g()) = 5 and g(,) = 7. 
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U(x) = PYy<x(Num(y) = ((x)11i(x)-"-Ih)- (Ifx is the Godel number of a proof 
of an equation r = p, then U(x) = p.) 

PROPOSITION 5.23 

(Kleene, 1936a) If <p(x1, ... ,xn) is HG-computahle by a system of equations 
E with Godel number e, then 

cp(xt, ... ,x,l) = U(,uy(Sn(e,xt , ... ,x11 ,y))) 

Hence, every HG-computable function <p is partial recursive, and, if <p is 
total, then <p is recursive. 

Proof 

<p(k1 , ••• , k11 ) = p if and only if E ~ fjtk1 , ••• , k,) = p, where Jj' is the 
principal letter of E. <p(k1, ••• , k,,) is defined if and only if 
(3y)S11 ( e, k1, . .. , k11 ,y). If <p(k1, ... , k,,) is defined, py(S11 ( e, k1, ... , k11 , y)) is the 
G6del number of a proof from E of an equation fj1 (k1, ... , k11 ) = ]5. Hence, 
U(py(S11 (e, k1, ... , k,,,y))) = p = <p(k1, ••• , k,,) . Also, since S, is primitive 
recursive, py(Sn(e,x1, ... ,X11 ,y)) is partial recursive. If <p is total, then 
(Vxi) ... (Vx11)(3y)S,(e,xl, ... ,X11 ,y); hence, py(S11 (e,x1, ... ,x,,y)) is recur­
sive, and then, so is U(py(S11(e,x1, ... ,x,,y))). 

Thus, the class of HG-computable functions is identical with the class of 
partial recursive functions. This is further evidence for Church's thesis. 

Markov algorithms 

By an algorithm in an alphabet A we mean a computable function 2£ whose 
domain is a subset of the set of words of A and the values of which are also 
words in A. If P is a word in A, 2£ is said to be applicable to P if P is in the 
domain of 2£; if 2£ is applicable to P, we denote its value by 2l(P). By an 
algorithm over an alphabet A we mean an algorithm 2£ in an extension B of 
A. t Of course, the notion of algorithm is as hazy as that of computable 
function. 

Most familiar algorithms can be broken down into a few simple steps. 
Starting from this observation and following Markov (1954), we select a 
particularly simple operation, substitution of one word for another, as the 
basic unit from which algorithms are to be constructed. To this end, ifP and 
Q are words of an alphabet A, then we call the expressions P---+ Q and 
P-----? · Q productions in the alphabet A. We assume that'---+' and'.' are not 
symbols of A. Notice that P or Q is permitted to be the empty word. P---+ Q 

tAn alphabet B is an extension of A if A ~ B. 
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is called a simple production, whereas P----+ · Q is a terminal production. Lef 
us use P ~ (·) Q to denote either P ~ Q or P ~ · Q. A finite list of pro­
ductions in A 

Pt - (-) Qt 
pl - (·) Ql 

Pl. ~o Q,. 

is called an algorithm schema and determines the following algorithm ~ 
in A. As a preliminary definition, we say that a word T occurs in a word 
Q if there are words U , V (either one possibly the empty word A) such 
that Q = UTV. Now, given a word P in A: (I) We write 21: P=t if none 
of the words P 1, •. • , P,. occurs in P. (2) Otherwise, if m is the least in­
teger, with I ~m ~r, such that Pm occurs in P, and if R is the word that 
results from replacing the leftmost occurrence of P 111 in P by Q

111
, then we 

write 

(a) m::PI-R 

if Pm ~ (·) Qm is simple (and we say that 21 simply transforms Pinto R); 

(b) m::PI- · R 

if P, - (-) Q111 is terminal (and we say that 21 terminally transforms Pinto 
R). We then define 2l : P f= R to mean that there is a sequence 
Ro, R 1 , ••• , Rk such that: 

(i) p = Ro. 
(ii) R = Rk. 
(iii) For O~j~k- 2, 21: Rj I- RHt· 
(iv) Either 2l : Rk- I 1- Rk or 2l : ~-I 1-- · Rk. (In the second case, we write 

2l:Pf=·R.) 

We set 2l(P) = R if and only if either 21 : P f= · R. or 2l : P f= R and 
21 : R =t. The algorithm thus defined is called a normal algorithm (or a 
Markov algorithm) in the alphabet A. 

The action of 21 can be described as follows: given a word P, we find the 
:fhst production P171 ~ ( ·) Qm in the schema such that Pm occurs in P. We 
then substitute Q, for the leftmost occurrence ofP, in P. Let R 1 be the new 
word obtained in this way. If Pm ~ (·) Q111 was a temlinaJ production, the 
process stops and the value of the algorithm is R 1• If P111 --+ ( ·) Q111 was 
simple, then we apply the same process to R1 as was just applied to P, and so 
on. If we ever obtain a word R; such that 2l: R;:J, then the process stops 
and the value 2l(P) is R;. It is possible that the process just described never 
stops. [n that case, 21 is not applicable to the given word P. 

Our exposition of the theory of normal algorithms will be based on 
Markov (1954). 
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Examples 
1. Let A be the alphabet {b, c}. Consider the schema 

b~-A 

c~c 

The normal algorithm 21: defined by this schema transforms any word 
that contains at least one occurrence of b into the word obtained by 
erasing the leftmost occurrence of b. 21: transforms the empty word A into 
itself. 21: is not applicable to any non-empty word that does not contain b. 

2. Let A be the alphabet { ao, at, ... , a,z}. Consider the schema 

a,~ A 

We can abbreviate this schema as follows: 

~~A (~inA) 

(Whenever we use such abbreviations, the productions intended may be 
listed in any order.) The corresponding normal algorithm transforms 
every word into the empty word. For exampl~, 
21:: a1a2a1a3ao 1- a1a2a1a3 1- a2a1a3 1- a2a3 1- a3 1- A and 21:: A::::J. Hence, 
2I(ata2a1a3ao) = A. 

3. Let A be an alphabet containing the symbol a1, which we shall abbre­
viate 1- For natural numbers n, we define n inductively as follows: 0 =I 
and n + 1 = n 1- Thus, T =II, 2 =Ill, and so on. The words n will be called 
numerals. Now consider the schema A _____, · I, defining a normal algorithm 
21:. For any word P in A, W(P) =I P.t In particular, for every natural 
number n, 2r(n) = n + 1. 

4. Let A be an arbitrary alphabet { ao, a 1, ... , a11 }. Given a word 
P =a · a· ···a· let P =a· ···a· a· be the inverse of P We seek a nor-Jo 1I h' }k 11 Jo v • 

mal algorithm 21: such that 2I(P) = P. Consider the following (abbrevi-
ated) algorithm schema in the alphabet B = Au {a, ~}. 

(a) aa _____, ~ 
(b) ~~ _____, ~~ ( ~ in A) 
(c) ~a_____, ~ 
(d) ~ _____, ·A 
(e) WJ~ -4 ~a11 (~, 11 in A) 
(f) A -4 a 

tTo see this, observe that A occurs at the beginning of any word P, since 
P=AP. 
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This determines a normal algorithm 2£ in B. Let P = aioaJ1 • • • aA be any 
word in A. Then 'll: P 1- IXP by production (f). Then, IXP 1- aj11Xahah ... aik 
1- aj1 ahiXaioah ... aik ... 1- a11 aJ2 ••• aikiXaJo• all by production (e). Thus, 
2£ : P f= ah ah ... aAIXajo. Then, by production (f), 2£ : P f= 1Xaj1 ah ... 
aJkiXaio· Applying, as before, production (e), 21: P f= ahah ... aJk1XaJ1a.a· 
Iterating this process, we obtain 21 : P f= 1Xajk1XaJk_1 1X ... IXah 1Xaj

0
• Then, b'; 

production (f), 21: P f= IXIXajk1XaJk_1 1X .. . 1Xaj11XaJo, and, by production (a), 
2£: P f= ~aAIXaJ"k_ 1 1X ... IXaj11Xajo· Applying productions (b) and (c) and fi­
nally (d), we arrive at 21 : P f= · P. Thus, '21 is a normal algorithm over A 
that inverts every word of A. t 

Exercises 

5.61 Let A be an alphabet. Describe the action of the normal algorithms 
given by the following schemas. 

(a) Let Q be a fixed word in A and let the algorithm schema be: A ---7 • Q. 
(b) Let Q be a fixed word in A and let IX be a symbol not in A. Let 

B =Au{ IX}. Consider the schema 

(l; in A) 

(c) Let Q be a fixed word in A. Take the schema 

l; - i\ (l; in A) 

A-·Q 

(d) Let B =Au{!}. Consider the schema 

l; -1 (l; in A- {I}) 

A-·1 
5.62 Let A be an alphabet not containing the symbols IX,~' y. Let B = 
Au{ IX} and C =Au{ IX,~' y}. 

(a) Construct a norma] algorithm 2£ in B such that 2I(A) =A and 
21(~P) = P for any symbol s in A and any word P in A. Thus, 21 erases 
the first letter of any non-empty word in A. 

tThe distinction between a normal algorithm in A and a normal algorithm over 
A is important. A normal algorithm in A uses only symbols of A, whereas a normal 
algorithm over A may use additional symbols not in A. Every normal algorithm in A 
is a normal algorithm over A, but there are algorithms in A that are determined by 
normal algorithms over A but that are not normal algorithms in A (for example, the 
algorithm of Exercise 5.62(d)). 
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(b) Construct a normal algorithm !) in B such that :D(A) =A and 
:D(P~) = P for any symbol ~ in A and any word P in A. Thus, !) erases 
the last letter of any non-empty word in A. 

(c) Construct a normal algorithm (£: in B such that <£:(P) equals A if P 
contains exactly two occurrences of a and <£:(P) is defined and is not 
equal to A in all other cases. 

(d) Construct a normal algorithm f!J inC such that, for any word P of A, 
~(P) = PP. 

5.63 Let A and B be alphabets and let a be a symbol in neither A nor B. For 
certain symbols a 1, ••. , akin A, let Q1, ••• , Qk be corresponding words in B. 
Consider the algorithm that associates with each word P of A the word 
Sub(t.·.·.·,tk (P) obtained by simultaneous substitution of each Qi for ai 
(i = 1, ... ,k). Show that this is given by a normal algorithm in AuBu{a}. 
5.64 Let H ={I} and M = {j,B}. Every natural number n is represented by 
its numeral n, which is a word in H. We represent every k-tuple 
(n1,n2, ... ,nk) of natural numbers by the word "iitB n2B ... B nk in M. We 
shalldenotethisword by (ni,n2,···,nk)· For example, (3,1,2) is IIIIBIIBIII-
(a) Show that the schema 

B~B 

a II ~ al 
al ~·I 
A~a 

defines a normal algorithm illz over M such that illz(n) = 0 for any n, and 
illz is applicable only to numerals in M. 

(b) Show that the schema 

defines a normal algorithm 21N over M such that 21N(n) = n + 1 for all n, 
and illN is applicable only to numerals in M. 

(c) Let a1, •.. , a2k be symbols not in M. Let 1 ~ j ~ k. Let Y'i be the list 
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If 1 < j < k consider If j = 1, consider If j = k, consider 
the algorithm schema the schema the schema 

!/j-1 

r:t2j-1 B ~ rx2j-IB 
fX2j-tl ~ fX2j' 

rx2jl ~ !rx2j 

rx2j B ~ rx2j+l 

!/j+1 

[/k-1 

rx2k-l B ~ rx2k-1 B 
fX2k-11 --7 fX'!.k 

rx2k! ~ rx2k 

rx2kB ~ rx2kB 

rx21( --+ • A 
A~ rx1 

rx1 B ~ ct1B 
r:td --+ ctzl 
ctzl ~ lrxz 
r:tzB~r:t3 

!/z 

!/k-1 

rx2k-l B ~ r:t2k-1B 
r:t2k-tl ~ rx2k! 

rx2kBI ~ r:t2k 

r:t2kB ~ r:t2kB 

r:t2k--+. A 
A~ rx 1 

!/k-1 

rx2k-1 B ~ rx2k-1B 

rx2k-1l ~ rx2k I 
rx2k I --+ !rx2k 

rx2k B ~ rx2kB 

rx2k ~·A 

A~ rx1 

Show that the corresponding normal algorithm m:J is such that 
2Ij ( (n1, ... , nk)) = ni; al}d mj is applicable to only words of the form 

(nt, ... ' nk)· 
(d) Construct a schema for a normal algorithm in M transforming (n1, n2 ) 

into jn1 - n2j. 
(e) Construct a normal algorithm in M for addition. 
(f) Construct a normal algorithm over M for multiplication. 

Given algorithms 'll and ~ and a word P, we write 'll(P) ~ m(P) if and 
only if either m and mare both applicable toP and Ql(P) = m(P) or neither 
'll norm is applicable toP. More generally. if C and Dare expressions, then 
C ~ D is to hold if and only if neither C nor D is defined, or both C and D 
are defined and denote the same object. If 'll and m are algorithms over an 
alphabet A, then we say that 'll and ~ are fully equivalent relative to A if 
and only if 2I(P) ~ m(P) for every word Pin A; we say that 2I and mare 
equivalent relative to A if and only if, for any word Pin A, whenever 'll(P) or 
m(P) exists and is in A, then 2I(P) ~ m(P). 

Let M be the alphabet {), B}, as in Exercise 5.64, and let w be the set of 
natural numbers. Given a partial number-theoretic function cp of k argu­
ments, that is, a function from a subset of oi into w, we denote by mcp the 
corresponding function in M; that is, mcp( (n1, •• • , nk)) = cp(n1, •.• , nk) 
whenever either of the two sides of the equation is defined. mcp is assumed to 
be inapplicable to words not of the form (n1, ... , nk) · The function cp is said 
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to be Markov-computable if and only if there is a normal algorithm ill over 
M that is fully equivalent to 234J relative to M.f 

A normal algorithm is said to be closed if and only if one of the pro­
ductions in its schema has the form A -7 · Q. Such an algorithm can end 
only terminally- that is, by an application of a terminal production. Given 
an arbitrary normal algorithm m, add on at the end of the schema for ill the 
new production A -7 ·A, and denote by ill· the normal algorithm deter­
mined by this enlarged schema. ill· is closed, and ill· is fully equivalent to ill 
relative to the alphabet of ill. 

Let us now show that the composition of two normal algorithms is again 
a normal algorithm. Let ill and 23 be normal algorithms in an alphabet A. 
For each symbol bin A, form a new symbol b, called the correlate of b. Let 
A be the alphabet consisting of the correlates of the symbols of A. We 
assume that A and A have no symbols in common. Let ex and ~ be two 
symbols not in Au A. Let 621 be the schema of ill· except that the terminal 
dot in terminal productions is replaced by ex. Let 6m be the schema of 23· 
except that every symbol is replaced by its correlate, every terminal dot is 
replaced by ~. productions of the fonn A -7 Q are replaced by ex -7 exQ, and 
productions A -7 · Q are replaced by ex~ ex~Q. Consider the abbreviated 
schema 

aex --7 exa (a in A) 

exa --7 cia (a in A) 

ab-7ab (a, bin A) 

a~-?~a (a in A) 

~a-7~a (a in A) 

ab-?ab (a, b in A) 

ex~ --7 · A 

6!8 

6~r 

This schema determines a normal algorithm m over A such that 
ffi(P) ~ 23(ill(P)) for any word Pin A. (fj is called the composition of ill and 
23 and is denoted 23 o ill. In general, by 2111 o .. . o ill1 we mean 
m" o (. _. o (ill3 o (ill2 o 2!.)) ... ). 
Let~ be an algorithm in an alphabet A and let B be an extension of A. If 

we take a schema for ~ and prefix to it the production b -7 b for each 
symbol b in B - A, then the new schema determines a normal algorithm ~B 
in B such that ~B(P) ~ ~(P) for every word P in A, and ~B is not appli-

tin this and in all other definitions in this chapter, the existential quantifier 
'there is" is meant in the ordinary 'classical' sense. When we assert that there exists an 
object of a certain kind, we do not necessarily imply that any human being has found 
or ever will find such an object. Thus, a function cp may be Markov-computable 
without our ever knowing it to be so. 
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cable to any word in B that contains any symbol of B - A. ~B is fully 
equivalent to ~ relative to A and is called the propagation of ~ onto B. 

Assume that 21 is a normal algorithm in an alphabet At and ~ is a 
normal algorithm in an alphabet A2. Let A = At uA2. Let 21A and ~A be 
the propagations of 21 and~' respectively, onto A. Then the composition 
G) of 21A and ~A is called the normal composition of 21 and ~ and is 
denoted by ~ o 21. (When At = A2, the norma] con1position of 21 and Q3 is 
identical with the composition of 21 and ~; hence the notation ~ o m is 
unambiguous.) G) is a normal algorithm over A such that GJ(P) ~ ~(21(P)) 
for any word P in At, and G5 is applicable to only those words P of A 
such that P is a word of At, 21 is applicable to P, and ~ is applicable to 
2I(P). 

PROPOSITION 5.24 

Let !!/ be a Turing machine with alphabet A. Then there is a normal al­
gorithm 21 over A that is fully equivalent to the Turing algorithm Alg.r 
relative to A. 

Proof 

Let D = { ClJco, ... , qkm}, where Cfro , ... , 'lJ.
111 

are the internal states of !!7 and 
~o = q0 . Write the algorithm schema for 21 as follows: First, for all qua­
druples ~a;akCL· of !!7, take the production qja; ---? CL-ak· Second, for each 
quadruple qja;Lq,. of fl, take the productions a11qjai ---? CL.a,a; for all sym­
bols a, of A; then take the production qja; -7 q,.a0a;. Third, for each qua­
druple qja;RCL. of :T, take the productions qja;a11 -7 a;q,.a11 for all symbols a, 
of A; then take the production qjai -7 a;CL.a0 . Fourth, write the productions 
~~ -7 · A for each internal state 'lk, of !!7, and finally take A -7 q0 . This 
schema defines a normal algorithm 21 over A, and it is easy to see that, for 
any word P of A, Alg_9""(P) ~ 2I(P). 

COROLLARY 5.25 

Every Turing-computable function is Markov-computable. 

Proof 

Let f(x1, • • • ,x,) be standard Turing-computable by a Turing machine !!7 
with alphabet A ::J {I, B}. (Remember that B is ao and I is at.) We know 
that, for any natural numbers kt , . .. , km if f(k1, ••• , k,,) is not defined, then 
Alg_9"" is not applicable to (k1, • • • , k,) , whereas, if f(k1, • •• , k,) is defined, 
then 
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Alg_:r((ki, . . . ,k,)) ~ R1 (k1, ... ,k,) B f(k,, .. . , k11)R2 

where R 1 and R2 are (possibly empty) sequences of Bs. Let ~ be a normal 
algorithm over A that is fully equivalent to Alg_r relative to A. Let ffi be the 
normal algorithm over {I, B} determined by the schema 

a I ~ PI 
PI ~IP 
PB -··~ By 

Yl ~PI 
yB ~ y 

By .- · A 

P~·A 

A ~ a 

lf R 1 and R2 are possibly empty sequences of Bs, then ffi, when applied to 
Rt (kh ... , kn) B f(kt, ... , k11 ) R2, will erase Rt and R2. Finally, let ~::!~ 
be the normal •projection' algorithm defined in Exercise 5.64(c). Then the 
normal composition~::!~ o ffi o ~is a normal algorithm that computes f. 

Let ~be any algorithm over an alphabet A= {aj0 , ••• ,ajm}. We can 
associate with ~ a partial number-theoretic function 1/1~ such that 
1/J~(n) = m if and only if either n is not the Godel numbert of a word of A 
and m = 0, or n and m are Godel numbers of words P and Q of A such that 
~(P) = Q. 

PROPOSITION 5.26 

If 21 is a normal algorithm over A = {a jo, ... , a jm}, then 1/121 is partial re­
curs tv e. 

Proof 

We may assume that the symbols of the alphabet of~ are of the form a1• 

Given a simple production P ~ Q, we call 213g(P) 5g(Q) its index; given a 
terminal production P -7 • Q, we let 2239(P) 5g(Q) be its index. If 
Po- (·)Q0 , ... , P,.---+ (·)Q, is an algorithm schema, we let its index be 
2ko3k1 •• • p~r, where k; is the index ofP; ~ (·)Q;. Let Word(u) be the recur­
sive predicate that holds if and only if u is the Godel number of a finite 
sequence of symbols of the form a;: 

tHere and below, we use the Godel numbering of the language of Turing 
computability given in Section 5.3 (p. 321). Thus, the Godel number g(ai) of ai is 
7 + 4i. In particular, g(B) = g(ao) = 7 and g(l) = g(ai) = II. 
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u t= 01\ [u = 1 V (\iz)(z < tll(u) =} (3y)(y < u 1\ (ut = 7 + 4y))] 

Let SI(u) be the recursive predicate that holds when u is the index of a simple 
production: tll(u) = 31\ (u)0 = 1 1\ Word((u) 1) 1\ Word((uh)· Similarly, 
TI(u) is the recursive predicate that holds when u is the index of a terminal 
production: tA(u) = 31\ (u)0 = 2 1\ Word((u)1) 1\ Word((uh). Let Ind(u) 
be the recursive predicate that holds when u is the index of an algorithm 
schema: u > I 1\ (Vz)(z < tll(u) =} SI((u)z) V TI((u)z)). Let Lsub(x,y, e) be 
the recursive predicate that holds if and only if e is the index of a production 
P ---7 (·)Q andx and yare Godel numbers of words U and V such that P occurs 
in U, and Vis the result of substituting Q for the leftmost occurrence ofP in U: 

Word(x) 1\ Word(y) 1\ (Sl(e) V TI(e)) 1\ (3u)11 ~ x(3v)v ~ xCx = u * (e)1 * v 

1\y = u * (eh * v 1\ -.(3w)w ~ x(3z)z ~ xCx = w * (e) 1 * z 1\ w < u)) 

Let Occ(x,y) be the recursive predicate that holds when x andy are Godel 
numbers of words U and V such that V occurs in U: Word(x) 1\ Word(y) 
1\(:::lv)v ~ x(::lz)z ~ xCx = v * y * z). Let End(e, z) be the recursive predicate that 
holds when and only when z is the Godel number of a word P, and e is the 
index of an algorithm schema defining an algorithm W that cannot be ap­
plied to P (i.e., W: P:J):lnd(e) A Word(z) 1\ ('v'w)~t' < tll(e) -.Occ(z, ((e)w)1). 

Let SCons(e,y,x) be the recursive predicate that holds if and only if e is the 
index of an algorithm schema and y and x are Godel numbers of words V 
and U such that V arises from U by a simple production of the schema: 

Ind(e) 1\ Word(x) 1\ Word(y) 1\ (3v)v < fh(e)[Sl((e)v) 1\ Lsub(x,y, (e)v) 

1\ (\fzt< v -.Occ(x, (( e)J1)] 

Similarly, one defines the recursive predicate TCons(e,y,x), which differs 
from SCons(e,y,x) only in that the production in question is terminal. Let 
Der(e,x,y) be the recursive predicate that is true when and only when e is the 
index of an algorithm schema that determines an algorithm 21, x is the 
Godel number of a word Uo,y is the Godel number of a sequence of words 
Uo, ... , Vk(k > 0) such that, for O~i < k~ 1, Ui+I arises from Ui by a 
production of the schema, and either m: uk-'--1 f-. vk or m: Uk~I f- uk and 
W: Uk :J(or,if k = 0, just W: Uk=:~): 

Ind(e) 1\ Word(x) 1\ (\fz)z<fh(y) Word((y)z) 1\ (y)0 = x 

1\ (\fz)z<fh(y)-'-2SCons(e, (y)z+l' (y)z) 1\ [(tfi(y) = l/\ End(e, (y)0)) 

V (tfi(y) > 1/\ {TCons(e, (Y)rh(y)-'-h (Y)tlt(y) -'-2) V (SCons(e, (Y)rh(y)-'-l' 

(Y)rh(y)-'-2) 1\ End(e, (Y)th(y)-'-d)})] 

Let WA(u) be the recursive predicate that holds if and only if u is the 
Godel number of a word of A: 

U f= 01\ (u = 1 V (\fz)z<th(u)((u)z = 7 + 4j0 V · · · V (u)z = 7 + 4jm) 
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Let e be the index of an algorithm schema for 21. Now define the partial 
recursive function cp(x) = JlY((WA(x) A Der(e,x,y)) VI WA(x)). But 
t/lm(x) = ( cp(x))u; (¢(x))~ 1• Therefore, t/Jm is partial recursive. 

COROLLARY 5.27 

Every Markov-computable function cp is partial recursive. 

Proof 

Let ill be a normal algorithm over {1, B} such that cp(k1, .•• ,k,) =I if and 
only if ill( (k~, . .. , k11 )) = 7. By Proposition 5.26, the function t/Jm is partial 
recursive. Define the recursive function y(x) = t A(x) ~ 1. If x = ll?=o pJ 1, 

then n = y(x). (Remember that a stroke I, which is an abbreviation for a1, 

has G6del number 11. So, if x is the G6del number of the numeral n, then 
y(x) = n.) Let l;,(kt, ... , k11 ) be the Godel number of (k1, .. . , kn): 

~(kt' ... 'kn) =g( (kt, ... 'kn)) = g(lk,+t Blk2+1 B ... Blk,.+t) 

k+l k2+1 

=(rrPJ1
). (pkt+Z)

1
. err (pi+kt+3)Il). (pkJ+k2+5f ... 

i=O i=O 

kn+l 

. (pkt+-··+k,.+Zn-'-3?. err {pi+k,+·+k,.+2n-'-2)Il) 
i=O 

<;, is clearly recursive. Then cp = y o t/Jm o <;, is partial recursive. 
The equivalence of Markov computability and Turing computability 

follows from Corollaries 5.25 and 5.27 and the known equivalence of Turing 
computability and partial recursiveness. Many other definitions of com­
putability have been given, all of them turning out to be equivalent to 
Turing computability. One of the earliest definitions, A-computability, was 
developed by Church and Kleene as part of the theory of A-conversion (see 
Church, 1941). Its equivalence with the intuitive notion of computability is 
not immediately plausible and gained credence only when A-computability 
was shown to be equivalent to partial recursiveness and Turing comput­
ability (see Kleene, 1936b; Turing, 1937). All reasonable variations of Tu­
ring computability seem to yield equivalent notions (see W. Oberschelp, 
1958; Fischer, 1965). 

5.6 DECISION PROBLEMS 

A class of problems is said to be unsolvable if there is no effective procedure 
for solving each problem in the class. For example, given any polynomial 
f(x) with integral coefficients (for example, 3x5 - 4x4 + 7:Xl- 13x + 12), is 
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there an integer k such that f(k) = 0? We can certainly answer this question 
for various special polynomials, but is there a single general procedure that 
will solve the problem for every polynomial f(x)? (The answer is given 
below in paragraph 4.) 

lfwe can arithmetize the formulation of a class of problems and assign to 
each problem a natural number, then this class is unsolvable if and only if 
there is no computable function h such that, if n is the number of a given 
problem, then h(n) yields the solution of the problem. If Church's thesis is 
assumed, the function h has to be partial recursive, and we then have a more 
accessible mathematical question. 

Davis (1977b) gives an excellent survey of research on unsolvable prob­
lems. Let us look at a few decision problems, some of which we already have 
solved. 

1. Is a statement form of the propositional calculus a tautology? Truth 
tables provide an easy, effective procedure for answering any such question. 

2. Decidable and undecidable theories. Is there a procedure for deter­
mining whether an arbitrary wf of a formal system sP is a theorem of !/? If 
so, !/is called decidable; otherwise, it is undecidable. 

(a) The system L of Chapter 1 is decidable. The theorems of L are the 
tautologies, and we can apply the truth table method. 

(b) The pure predicate calculus PP and the full predicate calculus PF were 
both shown to be recursively undecidable in Proposition 3.54. 

(c) The theory RR and all its consistent extensions (including Peano 
arithmetic S) have been shown to be recursively undecidable in Cor­
ollary 3.46. 

(d) The axiomatic set theory NBG and all its consistent extensions are 
recursively undecidable (see pages 269~ 70). 

(e) Various theories concerning order structures or algebraic structures 
have been shown to be decidable (often by the method of quantifier 
elimination). Examples are the theory of unbounded densely ordered 
sets (see page 116 and Langford, 1927), the theory of abelian groups 
(Szmielew, 1955). and the theory of real closed fields (Tarski, 1951). For 
further information, consult Kreisel and Krivine (1967, Chap. 4); 
Chang and Keisler (1973, Chap. 1.5); Monk (1976, Chap. 13); Ershov 
et al. (1965); Rabin (1977); and Baudisch et al. (1985). On the other 
hand, the undecidability of many algebraic theories can be derived from 
the results in Chapter 3 (see Tarski, Mostowski and Robinson, 1953, 
II.6, III; Monk, 1976, Chap. 16). 

3. Logical validity. Is a given wf of quantification theory logically valid? 
By Godel's completeness theorem (Corollary 2.19), a wf is logically valid if 
and only if it is provable in the full predicate calculus PF. Since PF is 
recursively undecidable (Proposition 3.54), the problem of logical validity is 
recursively unsolvable . 

.,.,, 

.·. 
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However, there is a decision procedure for the logical validity of wfs of 
the pure monadic predicate calculus (Exercise 3.59). 

There have been extensive investigations of decision procedures for 
various jmportant subclasses of wfs of the pure predicate calculus; for ex­
ample, the class (V 3 V) of all closed wfs of the form ('v'x)(3y)(Vz)g61(x,y,z), 
where ~(x,y,z) contains no quantifiers. See Ackermann (1954), Dreben and 
Goldfarb (1980) and Lewis (1979). 

4. Hilbert's Tenth Problem. If J(x 1, ••• ,x11 ) is a polynomial with integral 
coefficients, are there integers k1 , ..• , k11 such that f(kt, ... , k,J = 0? This 
difficult decision problem is known as Hilbert's tenth problem. 

For one variable, the solution is easy. When a0, a1, •.• , a11 are integers, 
any integer x such that a,~J· + ... + a1x + a0 = 0 must be a divisor of a0. 

Hence, when a0 =!= 0, we can test each of the finite number of divisors of a0 . 

If a0 = 0, then x = 0 is a solution. However, there is no analogous proce­
dure when the polynomial has more than one variable. It was finally shown 
by Matiyasevich (1970) that there is no decision procedure for determining 
whether a polynomial with integral coefficients has a solution consisting of 
integers. His proof was based in part on some earlier work of Davis, Put­
nam and Robinson (1961). The proof ultimately relies on basic facts of 
recursion theory, particularly the existence of a non-recursive r.e. set 
(Proposition 5.21(e)). An up-to-date exposition may be found in Mat­
iyasevich (1993). 

5. Word problems. 
(a) Semi-Thue Systems. Let B = {b1, •.. , bn} be a finite alphabet. 

Remember that a word of B is a finite sequence of elements of B. 
Moreover, the empty sequence A is considered a word of B. By a pro­
duction of B we mean an ordered pair (u,v), where u and v are words of 
B. If p = (u, v) is a production of B, and if w and w' are words of B, we 
write w =?p w' if w' arises from w by replacing a part u of w by v. (Recall 
that u is a part of w if there exist (possibly empty) words w1 and w2 such 
that W = WtUW2.) 

By a semi-Thue system on B we mean a finite set !/ of productions of B. 
For words wand w' of B, we write w =?.c.t w' if there is a finite sequence w0, 

w1, •.. , wk (k > 0) of words of B such that w = wo, w' = wk, and, for 
0 ~i < k, there is a production p of!/ such that Wt =?p Wt+l· Observe that 
w =?y w for any word w of B. Moreover, ifw1 =?y w2 and w2 =:}-y w3, then 
Wr =?y w3. In addition, if WI =?y W2 and w3 =?!I' W4 , then Wt w3 =?.~ W2W4. 

Notice that there is no fixed order in which the productions have to be 
applied and that many different productions off/ might be applicable to the 
same word. 

By a Thue system we mean a semi-Thue system such that, for every 
production (u,v), the inverse (v,u) is also a production. Clearly, iff/ is a 
Thue systen1 and w ~!I' w', then w' =?y w. Hence, =?y is an equivalence 
relation on the set of words of the alphabet of !/. 
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Example 
Let g# be the Thue system that has alphabet {b} and productions (b3 , A) 
and (A, b3

). It is easy to see that every word is transformable into b2, b, or 
A. 

By a semigroup we mean a non-empty set G together with a binary op­
eration on G (denoted by the juxtaposition uv of elements u and v) that 
satisfies the associative law x(yz) = (xy)z. An element y such that 
xy = y.t = x for all x in G is called an identity element. If an identity element 
exists, it is unique and is denoted 1. 

A Thue system!/ on an alphabet B determines a semigroup G with an 
identity element. In fact, for each word w ofB, let [w] be the set of all words 
w' such that w ~S" w'. [w] is just the equivalence class of w with respect to 
~y. Let G consist of the sets [w] for all words w of B. If U and V are 
elements of G, choose a word u in U and a word v in V. Let UV stand for 
the set [uv]. This defines an operation on G, since, if u' is any word in U and 
v' is any word in V, [uv] = [u'v']. 

Exercises 

5.65 For the set G determined by the Thue system!/, prove: 
(a) (UV)W = U(VW) for all members U, V and W of G. 
(b) The equivalence class [A] of the empty word A acts as an identity 

element of G. 
5.66 
(a) Show that a semigroup contains at most one identity element. 
(b) Give an example of a semigroup without an identity element. 

A Thue system Y provides what is called a finite presentation of the 
corresponding semigroup G. The elements bt, ... , bm of the alphabet of!/ 
are called generators, and the productions (u,v) of!/ are written in the form 
of equations u = v. These equations are called the relations of the presen~ 
tation. Thus, in the example above, b is the only generator and b3 =A can 
be taken as the only relation. The corresponding semigroup is a cyclic group 
of order 3. 

If !/ is a semi-Thue or Thue system, the word problem for !/ is the 
problem of determining, for any words wand w', whether w ~S" w'. 

Exercises 

5.67 Show that, for the Thue system g# in the example, the word problem 
is solvable. 
5.68 Consider the following Thue system!/. The alphabet is {a,b,c,d} and 
the productions are (ac, A), (ca, A), (bd,A), (db, A), (a3,A), (b2,A), 
(ab, ba), and their inverses. 
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(a) Show that c ~Y' a2 and d ~Y' b. 
(b) Show that every word off/ can be transformed into one of the words a, 

a2, b, ab, a2b, and A. 
(c) Shqw that the word problem for f/ is solvable. [Hint: To show that the 

six words of part (b) cannot be transformed into one another, use the 
cyclic group of order 6 generated by an element g, with a= g2 and 
b = g3.] 

PROPOSITION 5.30 

(Post, 1947) There exists a Thue system with a recursively unsolvable word 
problem. 

Proof 

Let !T be a Turing machine with alphabet { a0 , a1, •.• , a11 } and internal 
states { q0 , q1 , ... , CL,J. Remember that a tape description is a sequence of 
symbols describing the condition of !T at any given moment; it consists of 
symbols of the alphabet of !T plus one internal state qj, and qj is not the last 
symbol of the description. :r is in state qj, scanning the symbol following qj, 
and the alphabet symbols, read from left to right, constitute the entire tape 
at the given moment. We shall construct a semi-Thue system f/ that will 
reflect the operation of :Y: each action induced by quadruples off/ will be 
copied by productions of f/. The alphabet of f/ consists of 
{ao,at, ... ,an,q0 ,q1, .•. ,CL11 ,~,o,~}. The symbol~ will be placed at the 
beginning and end of a tape description in order to 'alert' the semj-Thue 
system when it is necessary to add an extra blank square on the left or right 

end of the tape. We wish to ensure that, if W ~----+ W', then ~W~ ~ y ~W'~ . 
. r 

The productions of f/ are constructed from the quadruples of ff in the 

following manner. 

(a) If qja;akqr is a quadruple of !Y, let (qja;, arqk) be a production off/. 
(b) If qja;RCL. is a quadruple of :r, let (qja;ac,a;q,.ae) be a production off/ 

for every a£. In addition, let (qja;~a;, ~a0~) be a production off/. (This 
last production adds a blank square when :r reaches the right end of 
the tape and is ordered to move right.) 

(c) If qja;Lq,. is a quadruple of !!7, let (aeqjail q,.aea;) be a production off/ 
for each ac. In addition, let (~qja;, ~q,.a0a;) be a production off/. (This 
last production adds a blank square to the left of the tape when this is 
required.) 

(d) If there is no quadruple off/ beginning with CJja;, let f/ contain the 
following productions: (qjai, o), (oac, o) for all ac; (o ~' ~), (ae~, ~) for 
all a£; and (~~' ~). 
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ff stops when it is in a state qj, scanning a symbol a;, such that qja; does not 
begin a quadruple of ff. In such a case, !/would replace qja; in the final 
tape description of ff by D. Then () proceeds to annihilate all the other 
symbols to its right, including the rightmost~, whereupon it changes to l;. s 
then annihilates all symbols to its left, including the remaining ~- The final 
result is s alone. Hence: 

(D) For any initial tape description a, .o/halts when and only when ~a~ ==?.S" ~ 

Now, enlarge!/ to a Thue system!/' by adding to!/ the inverses of all 
the productions of!/. Let us show that: 

('\7) For any initial tape description a of Y, ~a~ ==?y' ~if and only if~o:~ ==?y l; 

Clearly, if ~a~ =}y l;, then ~a~ =}y' l;. Conversely, assume for the sake of 
contradiction that ~a~ =}y' l;, but it is not the case that ~a~ =}y l;. Consider 
a sequence of words leading from ~a~ to s in Y': 

~IX~ = Wo ==?.<J" WI =*.S"' • · · ==?.S"' Wr-l ==:;..S"' Wr = l; 

Here, each arrow is intended to indicate a single application of a production. 
It is clear from the definition of!/ that no production of!/ applies to s 
alone. Hence, the last step in the•.sequence Wr-1 =} Y' s must be the result of a 
production of!/. So, w1_ 1 =}y l;. Working backward, let us find the leastp 
such that Wp =}y l;. Since we have assumed that it is not true that ~a~ =}y l;, 
we must have p > 0. By the minimality of p, it is not true that Wp-1 =?y wp­
Therefore, wp =}y Wp-l· Examination of the productions of!/ shows that 
each of the words w0 , w1, ... , Wr must contain exactly one of the symbols 
q0 , q1, ••• , ~~~, (), or l;, and that, to such a word, at most one production of 
!/ is applicable. But, Wp is transformed into both wp+l and Wp- 1 by pro­
ductions of!/. Hence, Wp-1 = Wp+l· But, Wp+l =}y l;. Hence, wp-1 =}y l;, 
contradicting the definition of p. This establishes (\7). 

Now, let ff be a Turing machine .with a recursively unsolvable halting 
problem (Proposition 5.14). Construct the corresponding Thue system Y' as 
above. Then, by (D) and (\7), for any tape description a, ff halts if and only 
if ~a~ =}.'7' l;. So, if the word problem for !/' were recursively solvable, the 
halting problem for ff would be recursively solvable. (The function that 
assigns to the Godel number of IX the G6de1 number of (~a~, s) is clearly 
recursive under a suitable arithmetization of the symbolism of Turing ma­
chines and Thue systems.) Thus, !/' has a recursively unsolvable word 
problem. 

That the word problem is unsolvable even for certain Thue systems on a 
two-element alphabet (semigroups with two generators) was proved by Hall 
(1949). 

(b) Finitely presented groups. A finite presentation of a group consists of a 
finite set of generators g1, ... , g,. and a finite set of equations W 1 = 
w;, ... , W 1 = W~ between words of the alphabet B = {g1, ..• , 
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g,., g}-1, ... , g,:-1 }. What is really involved here is a Thue system !/ with 
alphabet B, productions (W 1, w;), ... , (W,, W~) and their inverses, and all 
the productions (g;gj 1, A), (gj-1 g1, A) and their inverses. The corresponding 
semigro~p G is actually a group and is called a .finitely presented group. The 
word problem for G (or, rather, for the finite presentation of G) is the word 
problem for the Thue system!/. 

Problems that concern word problems for finitely presented groups are 
generally much more difficult than corresponding problems for finitely 
presented semigroups (Thue systems). The existence of a finitely presented 
group with a recursively unsolvable word problem was proved. indepen­
dently, by Novikov (1955) and Boone (1959). Other proofs have been given 
by Higman (1961), Britton (1963), and McKenzie and Thompson (1973). 
(See also Rotman, 1973.) Results on other decision problems connected with 
groups may be found in Rabin (1958). For corresponding problems in 
general algebraic systems, consult Evans (1951). 



Appendix 
Second-Order Logic 

Our treatment of quantification theory in Chapter 2 was confined to first­
order logic, that is, the variables used in quantifiers were only individual 
variables. The axiom systems for formal number theory in Chapter 3 and set 
theory in Chapter 4 also were formulated within first-order languages. This 
restriction brings with it certain advantages and disadvantages, and we wish 
now to see what happens when the restriction is lifted. That will mean 
allowing quantification with respect to predicate and function variables. 
Emphasis will be on second-order logic, since the important differences 
between first-order and higher-order logics already reveal themselves at the 
second-order level. Our treatment will offer only a sketch of the basic ideas 
and results of second-order logic. 

Let Ll C be the first-order language in which C is the set of non-logical 
constants (that is, individual constants, function Letters, and predicate let­
ters). Start with the language LlC, and add function variables g? and pre­
dicate variables R~\ where 11 and i are any positive integers.t (We shall use 
g11

, h", . . . to stand for any function variables of n arguments, and 
R", S", ... , X", Y 11

, zn to stand for any predicate variables of 11 arguments. 
We shall also omit the superscript n when the value of n is clear from the 
context.) Let (u)

11 
stand for any sequence of individual variables u1 , ••• , U 11 + 

and let V(u), stand for the expression (Vut) ... (Vu,J Similarly, let (t)
11 

stand 
for a sequence of terms ft, ... , 111 • We expand the set of terms by allowing 
formation of terms g11 ((t)

11
), where g11 is a function variable, and we then 

expand the set of formulas by allowing formation of atomic formulas 

twe use bold letters to avoid confusion with function letters and predicate 
letters. Note that function letters and predicate letters are supposed to denote specific 
operations and relations, whereas function variables and predicate variables vary 
over arbitrary operations and relations. 

lin particular, (x)
11 

will stand for Xt, ... , x11 • 
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A~'((t)11 ) and R"((t)
11

) where (t), is any sequence of the newly enlarged set of 
terms, A? is any predicate letter of C and R" is any n-ary predicate variable. 
Finally, we expand the set of formulas by quantification (Vg11 )86' and 
(V R")36' with respect to function and predicate variables. 

Let L2C denote the second-order language obtained in this way. The 
language L2C will be called ajidl second-order language. The adjective 'full' 
indicates that we allow both function variables and predicate variables and 
that there is no restriction on the arity n of those variables. An example of a 
non-full second-order language is the second-order monadic predicate lan­
guage in which there are no function letters or variables, no predicate letters, 
and only monadic predicate variables. t 

It is not necessary to take = as a primitive symbol, since it can be defined 
in the following manner. 

DEFINITIONS 

t = u stands for (\iR1)(R1t ¢:> R1u) 

g'1 = h" stands for \i(x),,(g'( (x),J = h"( (x)
11

)) 

R11 = S" stands for \i(x))R11
( (x) 11 ) ~ S"( (x),,)) 

STANDARD SECOND-ORDER SEMANTICS FOR L2C 

For a given language L2C, let us start with a first-order interpretation with 
domain D. In the first-order case, we defined satisfaction for the set L of 
denumerable sequences of members of D. Now, instead of 2:.::, we use the set 
L of functions s that assign to each individual variable a men1ber of D, to 
eath function variable g11 some n-ary operation s(g11

) on D, and to each 
predicate variable R11 some n-ary relation+ s(R") on D. For each such s, we 
extend the denotations determined by s by specifying that, for any terms 
It, ... , t11 and any function variable g', the denotation s(g"(tt, ... , t11 )) is 
s(g1 )(s(tt), ... , s(t11)). The first-order definition of satisfaction is extended as 
follows: 

(a) For any predicate variable R11 and any finite sequence (t)
11 

of terms, s 
satisfies R11 ((t)11 ) if and only if (s(tt), ... , s(t,)) E s(R1

'); 

tThird-order logics are obtained by adding function and predicate letters and 
variables that can have as arguments individual variables, function and predicate 
letters, and second-order function and predicate variables, and then allowing 
quantification with respect to the new function and predicate variables. This pro­
cedure can be iterated to obtain nth-order logics for all n > 1. 

tAn n-ary relation on D is a subset of the set D" of n-tuples of D. When n = 1, an 
n-ary relation is just a subset of D. 
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(b) s satisfies (\/g11 )f18 if and only if s' satisfies f!IJ for every s' in 2: that 

agrees with s except possibly at g11
; 

2 

(c) s satisfies (\/ R'1)f!/J if and only if s' satisfies fJ8 for every s' in 2: that 
agrees with s except possibly at R". 2 

The resulting interpretation ~il is called a standard interpretation of the 
given language. 

A formula PA is said to be true for a standard interpretation ~ll (w1itten 
vli F= f!IJ) if :YJ is satisfied by every sin I: . flJ is false for ~lt if no sequences in 

? I: satisfies r!4. -
A formula r!4 is said to be standardly valid if fJ8 is true for all standard 

interpretations. PAis said to be standardly satisfiable if fJ8 is satisfied by some 
sin 2: in some standard interpretation. A formula rrl is said to be a stan­
dard ldgical consequence of a set r of formulas if, for every standard in­
terpretation. every sin '2::, that satisfies every formula in r also satisfies CC. 
A formula fJ8 is said to stahdardly logically imply a formula rrl if rrl is a logical 
consequence of { f!4}. 

The basic properties of satisfaction, truth, logical consequence, and lo­
gical implication that held in the first-order case (see ( l)-(XI) on pp. 61- 3) 
also hold here for their standard versions. In particular, a sentence ?A is 
standardly satisfiable if and only if fJ8 is true for some standard interpreta­
tion. 

We shall see that second-order Languages have much greater expressive 
power than first -order languages. This is true even in the case where the set 
C of non-logical constants is empty. The corresponding language L20 will be 
denoted L2 and called the pure full second-order language. Consider the 
following sentence in L2. 

(1) (3g)(3x)(\iR)[(R(x) 1\ (Vy)(R(y) =? R(g(y)))) '* (\ix)R(x)] 

This sentence is true for a standard interpretation if and only if the domain 
Dis finite or denumerable. To see this, consider an operation g and element 
x given by this sentence. By induction, define the sequence x, g(x), 
g(g(x)), g(g(g(x))), ... , and let R be the set of objects in this sequence. R is 
finite or denumerable, and (1) tells us that every object in Dis in R. Hence, 
D =Rand Dis finite or denumerable. Conversely, assume that Dis finite or 
denumerable. Let F be a one-one function from D onto w (when D is 
denumerable) or onto an initial segment {0, 1, ... , n} of w (when D is 
finite). t Let x = F 1 (0) and define an operation g on D in the following 
manner. When Dis denumerable, g(u) = F- 1(F(u) + 1) for all u in D; when 
D is finite, let g(u) = F-1(F(u) + 1)) if F(u) <nand g(u) = x if F(u) = n. 
With this choice of g and x, (1) holds. 

tRemember that the domain of an interpretation is assumed to be non-empty. 
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Exercise 

A.l Show that there is no first-order sentence ~ such that flA is true in an 
inter_pretation if and only if its domain is finite or denumerable. [Hint: 
Use Corollary 2.22.] 

Let us introduce the abbreviations Y1 c X1 for (Vu)(Y1 (u) ::::} X1 (u)), 
NonEm(X1

) for (::3u)(X1 (u)), and Asym(R2
, X1

) for (\iu)(\iv)(X1 (u) 1\ X1 (v) 
1\ R2(u, v)::::} -.R2(v, u)). Let R2 We X1 stand for the second-order formula 

Asym(R2
, X1

) 1\ (VY1 )(Y1 ~ X1 1\ NonEm(Y1
) 

'* (:3u)(Y1(u) 1\ (\iv)(Y1(v) 1\ v # u =? R2 (u, v)))) 

Then R2 We X1 is satisfied by an assignment in a given standard inter­
pretation if and only if the binary relation assigned to R2 well-orders the set 
assigned to X1. 

Let Suc(u, v, R2
) stand for R2 (v, u) 1\ (Vw)•(R2(v, w) 1\ R2 (w, u)), and 

let First(u, R2
) stand for (\iv)(v i- u::::} R2(u, v)). Consider the following 

second-order formula. 

(2) (:3R2)(:3X1)(R2 We X1 1\ (\iu)X1(u) 1\ (\iu)(•First(u, R2
) 

==? (:=lv)Suc(u, v, R2
)) 1\ (:=lu)(\iv)(v :f- u '* R2 (v, u))) 

This is true for a standard interpretation if and _only if there is a well­
ordering of the domain in which every element other than the first is a 
successor and there is a last element. But this is equivalent to the domain 
being finite. Hence, (2) is true for a standard interpretation if and only if its 
domain is finite. 

Exercise 

A.2 (a) Show that, for every natural number n, there is a first-order sentence 
the models of which are all interpretations whose domain contains at 
least n elements. (b) Show that, for every positive integer n, there is a 
first-order theory the models of which are all interpretations whose 
domain contains exactly n elements. (c) Show that there is no first-order 
sentence flA that is true for any interpretation if and only if its domain is 
finite. 

The second-order sentence (1) 1\ •(2) is true for a standard interpretation 
if and only if the domain is denumerable. 

Exercises 

A.3 Show that there is no first-order sentence !?4 the models of which are all 
interpretations whose domain is denumerable. 
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A.4 Construct a second-order formula Den(X1
) that is satisfied by an as­

signment in a standard interpretation if and only if the set assigned to 
X1 is denumerable. 

SECOND-ORDER THEORIES 

We define a second-order theory in a language L2C by adding the following 
new logical aximns and rules to the first-order axioms and rules. 

(B4a) (V R'');?6'(R11
) =? ~(W11 ), where ~(W'1) arises from ~(R11 ) by 

replacing all free occurrences of R11 by wn and W' is free for R11 in 
~(R'l 

(B4b) (V g11)~(g") ~ a3'(h"), where ~(h") arises from ~(g") by replacing all 
free occurrences of g'1 by h11 and h" is free for g" in ~(g11 ). 

(B5a) (VR")(a3' ~ <(6) ~ (~ =? (VR11 )<(6'), where R'1 is not free in~-

(B5b) (Vgn)(~ ~ <(6) ~ (~ =? ('v'g")<(6'), where g" is not free in~-

COMPREHENSION SCHEMA ( COMP) 

(3R11 )(V(x)11 )(R" ( (x)
11

) {::} ~), provided that all free variables of~ occur in 
(x), and R" is not free in #J. 

FUNCTION DEFINITION SCHEMA (FUNDEF) 

NEW RULES 

(Gen2a) ('v'R11).?4 follows from~ 
(Gen2b) (Vg11)~ follows from [!}) 

Exercises 

A.5 Show that we can prove analogues of the usual equality axioms (A6)­
(A7) in any second-order theory: 

(i) 1- t = t A g" = g" 1\ R" = R11 

(ii) 1- t = s ~ (26'(t, t) =? ~(t, s)), where ~(t, s) arises from ~(t, t) by re­
placing zero or more occurrences oft by s, provided that s is free for tin 
26'(t, t). 
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(iii) f-g11 =h" ~ (g6l(g'\ g11
) ~g6l(g'Z, h11

)), where E?.J(g11
, h") arises from 

g6l(g11
, g1

) by replacing zero or more occurrences of g11 by h11
, provided 

that h11 is free for g" in g6l(g", g11
). 

(iv) f- ~n = S" ~ (g6l(R'\ R'1) ~ g6l(R'\ S11
) ), where g6l(R11

, S") arises from 
gg(R", R11

) by replacing zero or more occurrences of R 11 by S 11
, provided 

that S11 is free for Rn in g6l(R11
, R"). 

A.6 Formulate and prove a second-order analogue of the first-order de­
duction theorem (Proposition 2.5). 

Let PC2 denote the second-order theory in the language L2C without any 
non-logical axioms. PC2 is called a second-order predicate calculus. 

PROPOSITION A.l (SOUNDNESS) 

Every theorem of PC2 is standardly valid. 

Proof 

That all the logical axioms (except Compand FunDef) are standardly valid 
and that the rules of inference preserve standard validity follow by argu­
ments like those for the analogous first-order properties. The standard va­
lidity of Comp and FunDef follows by simple set-theoretic arguments. 

We shall see that the converse of Proposition A.l does not hold. This will 
tum out to be not a consequence of a poor choice of axioms and rules, but 
an inherent incompleteness of second-order logic. 

Let us consider the system of natural numbers. No first-order theory will 
have as its models those and only those interpretations that are isomorphic 
to the system of natural numbers. t However, a second-order characteriza­
tion of the natural numbers is possible. Let AR2 be the conjunction of the 
axioms (Sl)~(S8) of the theory S of formal arithmetic (seep. 155), and the 
following second-order principle of mathematical induction: 

(2S9) (VR1)[R1(0) 1\ ('v'x)(R1(x) =? R1(x'))::::} ('v'x)R1(x)] 

Notice that, with the help of (Comp), all instances of the first-order axiom 
schema (S9) can be derived from (2S9).+ 

tLet K be any first-order theory in the language of arithmetic whose axioms are 
true in the system of natural numbers. Add a new individual constant b and the 
axioms b-=/- n for every natural number n. The new theory K* is consistent, since any 
finite set of its axioms has a model in the system of natural numbers. By Proposition 
2.17, K* has a model, but that model cannot be isomorphic to the system of natural 
numbers, since the object denoted by b cannot correspond to a natural number. 

tin AR2, the function letters for addition and multiplication and the associated 
axioms (S5)-(S8) can be omitted. The existence of operations satisfying (S5)-(S8) can 
then be proved. See Mendelson (1973, Sections 2.3 and 2.5). 
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For any standard interpretation that is a model of AR2 we can prove the 
following result that justifies inductive definition. 

PROPOSITION A.2 (ITERATION THEOREM) 

Let jf be a standard interpretation that is a model of AR2, and let D be the 
domain of Jl. Let c be an element of an arbitrary set W and let g be a 
singulary operation of W. Then there is a unique function F from D into w 
such that D(O) = c and ('v'x)(x ED==> F(x') = g(F(x))) .t 

Proof 

Let ~ be the set of all subsets H of D x W such that ( 1, c) E H and 
('v'x)(Vw)( (x, w) E H ==> (x', g(w)) E H). Note that D x WE ~. Let F be the 
intersection of all sets H in ~- We leave it to the reader to prove the fol­
lowing assertions: 

(a) FE~ 
(b) F is a function from D into W. [Hint: Let B be the set of all x in D for 

which there is a unique w in W such that (x, w) E F. By mathematical 
induction, show that B =D.] 

(c) F(l) =c. 
(d) F(x') = g(F(x)) for all x in D. 

The uniqueness ofF can be shown by a simple application of mathematical 
induction. 

PROPOSITION A.3 (CATEGORICITY OF AR2) 

Any two standard interpretations J!t and .Jt* that are models of AR2 are 
isomorphic. 

Proof 

Let D and D* be the domains of vii and Jlt*, 0 and 0* the respective zero 
elements, and f and j* the respective successor operations. By the iteration 
theorem applied to J!l, with W = D*, c = 0* and g = f*, we obtain a 
function F from D into D* such that F(O) = 0* and F(f(x)) = f*(F(x)) for 
any x in D. An easy application of mathematical induction in . .it* shows that 
every element of D* is in the range of F. To show that F is one-one, apply 

tin order to avoid cumbersome notation, '0' denotes the interpretation in Jl of 
the individual constant '0', and 'x'' denotes the result of the application to the object 
x of the interpretation of the successor function. 

~,_ 

··. 
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mathematical induction in dl to the set of all x in D such that 
(Vy)[(y ED 1\y #- x)::::} F(x) -I F(y)].t 

Let d consist of the non-logical constants of formal arithmetic (zero, 
successor, addition, multiplication, equality). Let JV be the standard inter­
pretation of L2d with the set of natural numbers as its domain and the 
usual interpretations of the non-logical constants. 

PROPOSITION A.4 

Let PlJ be any formula of L2d. Then PlJ is true in A' if and only if AR2::::} PlJ 
is standardly valid. 

Proof 

Assume AR2 ::::} PlJ is standardly valid. So, AR2 ::::} PlJ is true in JV. But AR2 
is true in JV. Hence, PlJ is true in Jf'. Conversely, assume PlJ is true in JV. We 
must show that AR2 ::::} PlJ is standardly valid. Assume that AR2 is true in 
some standard interpretation ull of L2sd. By the categoricity of AR2, <-II is 
isomorphic to Jf'. Therefore, since PlJ is true in Jf1

·, PlJ is true in ..it. Thus, 
AR2 ::::} PlJ is true in every standard interpretation of L2d, that Is, 
AR2 ::::} PlJ is standardly valid. 

PROPOSITION A.5 

(a) The set SV of standardly valid formulas of L2d is not effectively 
enumerable. 

(b) SV is not recursively enumerable, that is, the set of Godel numbers of 
formulas in SV is not recursively enumerable. 

Proof 

(a) Assume that SV is effectively enumerable. Then, by Proposition A4, we 
could effectively enumerate the set !TPJl of all true formulas of first­
order arithmetic by running through SV, finding all formulas of the 
form AR2 ::::} PJJ, where PlJ is a formula of first-order arithmetic, and 
listing those formulas PlJ. Then the theory !TPJl would be decidable, 
since, for any closed formula <fi, we could effectively enumerate !T PJl 
until either <fi or its negation appears. By Church's thesis, !TPJl would be 
recursively decidable, contradicting Corollary 3.46 (since !T fYl is a 
consistent extension of RR). 

(b) This follows from part (a) by Church's thesis. 

tnetails of the proof may be found in Mendelson (1973, Section 2.7). 
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The use of Church's thesis in the proof could be avoided by a consistent 
use of recursion-theoretic language and results. The same technique as the 
one used in part (a), together with Tarski's theorem (Corollary 3.44), would 
show the stronger result that the set (of Godel numbers) of the formulas in 
SV is not arithmetical. 

COROLLARY A.6 

The set of all standardly valid formulas is not effectively (or recursively) 
enumerable. 

Proof 

An enumeration of all standardly valid formulas would yield an enumera­
tion of all standardly valid formulas of L2d, since the set of formulas of 
L2d is decidable (recursively decidable). 

COROLLARY A.7 

There is no axiomatic formal system whose theorems are the standardly 
valid formulas of L2d. 

Proof 

If there were such an axiom system, we could enumerate the standardly valid 
formulas of L2d, contradicting Corollary A.5. 

PROPOSITION A.8 (INCOMPLETENESS 
OF STANDARD SEMANTICS) 

There is no axiomatic formal system whose theorems are all standardly valid 
formulas. 

Proof 

If there were such an axiom system, we could enumerate the set of all 
standardly valid formulas, contradicting Corollary A.6. 

Proposition A.8 sharply distinguishes second-order logic from first-order 
logic, since Godel' s completeness theorem tells us that there is an axiomatic 
formal system whose theorems are all logically valid first-order formulas. 
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Here are some additional important properties enjoyed by first-order the­
ories that do not hold for second-order theories. 

(I) Every consistent theory has a model. To see that this does not hold 
for second-order logic (with 'model' meaning 'model in the sense of the 
standa-rd semantics'), add to the theory AR2 a new individual constant b. 
Let !T be the theory obtained by adding to AR2 the set of axioms b -1=- n for 
all natural number n. !Tis consistent. (Any proof involves a finite number of 
the axioms b f. ii. AR2 plus any finite number of the axioms b f. n has the 
standard interpretation as a model, with b interpreted as a suitable natural 
number. So, every step of the proof would be true in .AI. Therefore, a 
contradiction cannot be proved.). But !T has no standard modeL (If Ji were 
such a model, AR2 would be true in J/. Hence, u/1 would be isomorphic to 
A1 and so, the domain of j/ would consist of the objects denoted by the 
numerals ii. But this contradicts the requirement that the domain of J!f 
would have to have an object denoted by 'b' that would satisfy the axioms 
b f. ii for all natural numbers n.) 

(II) The compactness property: a set r of formulas has a model if and 
only if every finite subset of r has a model. A counterexample is furnished 
by the set of axioms of the theory !T in (I) above. 

(III) The upward Skolem-Lowenheim theorem: every theory that has an 
infinite model has models of every infinite cardinality. In second-order logic 
this fails for the theory AR2. By Proposition A.3, all models of AR must be 
denumerable. 

(IV) The downward Skolem- Lowenheim theorem: every model J!t of a 
theory has a countable elementary submodelt. In second-order logic, a 
counterexample is furnished by the second-order categorical theory for the 
real number system. t Another argument can be given by the following 
considerations. We can express by the following second-order formula 
g>(Y 1, X 1) the assertion that Y1 is equinumerous with the power set of X1: 

(3R2)[(Vxi)(Vx2)(X1(xi) 1\ X1(x2) 1\ (Vy)(Y1(y) => [R2(x1,y) {::} 

R2(x2,y)]) => x1 = x2) 1\ (VW1 )(W1 ~ Y1 => (3 x)(X1 (x)/\ 

(Vy)(W1(y) {::} R\x,y))))] 

R2 correlates with each x in X1 the set of ally in Y1 such that R2 (x,y). Now 
consider the following sentence Cont: 

(3X1 )(3Y1)(Den(X1
) 1\ (Vy)Y1 (y) 1\ g>(Y1, X1 )) 

tFor a definition of elementary submodel, see Section 2.13. 
tThe axioms are those for an ordered field (see p.99) plus a second-order 

completeness axiom. The latter can be taken to be the assertion that every nonempty 
subset that is bounded above has a least upper bound (or, equivalently, that no 
Dedekind cut is a gap). For a proof of categoricity, see Mendelson [1973], Section 
5.4. 
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Then Cont is true in a standard interpretation if and only if the domain of 
the interpretation has the power of the continuum, since the power set of a 
denumerable set has the power of the continuum. See Shapiro (1991, Section 
5.1.2) and Garland (1974) for more information about the definability of 
cardinal numbers in second-order logic. 

Exercises 

A.7 Show that a sentence of pure second-order logic is true in a standard 
interpretation j/ if and only if it is true in any other standard inter­
pretation whose domain has the same cardinal number as that of .JI. 

A.8 (a) Show that there is a formula Cont (X1
) of pure second-order logic 

that is satisfied by an assignment in an interpretation if and only if 
the set assigned to X1 has the power of the continuum. 

(b) Find a sentence CH of pure second-order logic that is standardly 
valid if and only if the continuum hypothesis is true. t 

HENKIN SEMANTICS FOR L2C 
~: 

In light of the fact that completeness, compactness and the Skolem- Low­
enheim theorems do not hold in second-order logic, it is of some interest 
that there is a modification of the semantics for second-order logic that 
removes those drawbacks and restores a completeness property. The fun­
damental ideas sketched below are due to Henkin (1950). 

Start with a first-order interpretation with domain D. For each positive 
integer n, choose a fixed collection f»(n) of n-ary relations on D, and a fixed 
collection !F (n) of n-ary operations on D. Instead of ,E , we now use the set 
,EH of assignments s in ,E such that, for each predica

2

te variable R11
, s(R11

) 
2 2 

is in ~(n) and, for each function variable g", s(g11
) is in !F(n). The definitions 

of satisfaction and truth are the same as for standard semantics, except that 
L is replaced by z=H. Such an interpretation will be called a Henkin 

2 2 
inte1pretation. Using a Henkin interpretation amounts to restricting the 
ranges of the predicate and function variables. For example, the range of a 
predicate variable R1 need not be the entire power set f!JJ(D) of the domain 
D. In order for a Henkin interpretation :Yf to serve as an adequate semantic 
framework, we must require that all instances of the comprehension schema 
and the function definition schema are true in :Yt'. A Henkin interpretation 

twe take as the continuum hypothesis the assertion that every subset of the set 
of real numbers is either finite or denumerable or is equinumerous with the set of all 
real numbers. 
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for which this condition is met will be called a general model. A formula that 
is true in all general models will be said to be generally valid, and a formula 
that is satisfied by some assignment in some general model will be said to be 
generally satisfiable. We say that~ generally implies lfl if~=> lfl is generally 
valid, and that ~ is generally equivalent to lfl if ~ {::} lfl is generally valid. 

A standard interpretation on a domain D determines a corresponding 
general model in which !?L)(n) is the set of all n-ary relations on D and ff(n) is 
the set of all n-ary operations on D. Such a general model is called a full 
general model. Standard satisfaction and truth are equivalent to Henkin 
satisfaction and truth for the corresponding full general model. Hence, the 
following statements are obvious. 

PROPOSITION A.9 

(a) Every generally valid formula is also standardly valid. 
(b) Every standardly satisfiable formula is generally satisfiable. 

We also have the following strengthening of Proposition AI. 

PROPOSITION A.lO 

Every theorem of PC2 is generally valid. 

Proof 

The general validity of (Comp) and (FunDef) follows from the definition of 
a generaltnodel. The proofs for the other logical axioms are similar to those 
in the first-order case, as is the verification that general validity is preserved 
by the rules of inference. 

PROPOSITION A.ll (GENERAL SECOND-ORDER 
COMPLETENESS) 

The theorems of PC2 coincide with the generally valid formulas of L2C. 

Proof 

Let ~ be a generally valid formula of L2C. We must show that ~ is a 
theorem of PC2. (It suffices to consider only closed formulas.) Assume, for 
the sake of contradiction, that ~ is not a theorem of PC2. Then, by the 
deduction theorem, the theory PC2 + { ·~} is consistent. If we could prove 
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that any consistent extension of PC2 has a general model, then it would 
follow that PC2 + { -,@} has a general model, contradicting our hypothesis 
that @ is generally valid. Hence, it suffices to establish the following result. 

HENKIN'S LEMMA 

Every consistent extension !!/ of PC2 has a general model. 

Proof 

The strategy is the same as in Henkin's proof of the fact that every con­
sistent first-order theory has a model. One first adds enough new individual 
constants, function letters and predicate letters to provide 'witnesses' for all 
existential sentences. For example, for each sentence (3x)~(x) there will be a 
new individual constant b such that (3x)~(x) ==>~(b) can be consistently 
added to the theory. (See Lemma 2.15 for the basic technique.) The same 
thing is done for existential quantifiers (3g11

) and (3R11
). Let !!/* be the 

consistent extension of f!7 obtained by adding all such conditionals as ax­
ioms. Then, by the method of Lindenbaum's lemma (Lemma 2.14), we 
inductively extend !!/* to a maximal consistent theory !!J#. A general model 
Ji of !!7 can be extracted from g-#. The domain consists of the constant 
terms of !!J#. The range of the predicate variables consists of the relations 
determined by the predicate letters of !!J#. A predicate letter B determines 
the relation B# such that B# (t),1 holds in j/ if and only if B# (t),

1 
is a theorem 

of g-#. The range of the function variables consists of the operations de­
termined by the function letters of g-#. Iff is a function letter of ff#, define 
an operation J# by letting j#( (t),J = f( (t),). A proof by induction shows 
that, for every sentence ~. ~is true in j{ if and only if~ is a theorem of 
f!J#. In particular, all theorems of !T are true in .. it. 

The compactness property and the Skolem-Lowenheim theorems also 
hold for general models. See Manzano (1996, Chapter IV), or Shapiro 
(1991) for detailed discussions. t 

COROLLARY A.l2 

There are standardly valid formulas that are not generally valid. 

tLindstrom (1969) has shown that, in a certain very precise sense, first-order 
logic is the strongest logic that satisfies the countable compactness and Skolem­
Lowenheim theorems. So, general models really are disguised first-order models. 
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Proof 

By Corollary A.7, there is no axiomatic formal system whose theorems are 
the standardly valid formulas of L2d. By Proposition A.ll, the generally 
valid formulas of L2d are the theorems of the second-order theory P d2. 
Hence, the set of standardly valid formulas of L2d is different from the set 
of generally valid formulas of L2d. Since all generally valid formulas are 
standardly valid, there must be some standardly valid formula that is not 
generally valid. 

We can exhibit an explicit sentence that is standardly valid but not 
generally valid. The Godel-Rosser incompleteness theorem (Proposition 
3.38) can be proved for the second-order theory AR2. Let [lJl be Rosser's 
undecidable sentence for AR2. t If AR2 is consistent, [lJl is true in the stan­
dard model of arithmetic. (Recall that [lJl asserts that, for any proof in AR2 
of [l}l, there is a proof in AR2, with a smaller Godel number, of -.[l}l. If AR2 
is consistent, [lJl is undecidable in AR2 and, therefore, there is no proof in 
AR2 of [l}l, which makes [lJl trivially true.) Hence, AR2 ::::} [lJl is standardly 
valid, by Proposition A.4. However, AR2::::} [lJl is not generally valid. For, if 
AR2 ::::} [lJl were generally valid, it would be provable in P d2, by Proposi­
tion A.11. Hence, [lJl would be provable in AR2, contradicting the fact that it 
is an undecidable sentence of AR2. 

Exercise 

A.9 (a) Show that the second-order theory AR2 is recursively undecid­
able. 

(b) Show that the pure second-order predicate calculus P .Q/2 is re­
cursively undecidable. t 

It appears that second-order and higher-order logics were the implicitly 
understood logics of mathematics until the 1920s. The axiomatic char­
acterization of the natural numbers by Dedekind and Peano, the axiomatic 
characterization of the real numbers as a complete ordered field by Hilbert 
in 1900, and Hilbert's axiomatization of Euclidean geometry in 1902 (in the 
French translation of his original 1899 book) all presupposed a second­
order logic in order to obtain the desired categoricity. The distinction be­
tween first-order and second-order languages was made by Lowenheim 
(1915) and by Hilbert in unpublished 1917 lectures, and was crystal-clear in 

twe must assume that AR is consistent. 
tThe pure second-order monadic predicate logic MP2 (in which there are no 

nonlogical constants and no function variables, and all second-order predicate 
variables are monadic) is recursively decidable. See Ackermann (1954) for a proof. 
The earliest proof was found by Lowenheim (1915), and simpler proofs were given 
by Skolern (1919) and Behmann (1922). 
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Hilbert and Ackermann's (1950),t where the problem was posed about the 
completeness of their axiom system for first-order logic. The positive solu­
tion to this problem presented in Godel (1930), and the compactness and 
Skolem- Lowenheim theorems that followed therefrom, probably made the 
use of first-order logic more attractive. Another strong point favoring fiTst­
order logic was the fact that Skolem in 1922 constructed a first -order system 
for axiomatic set theory that overcame the imprecision in the Zermelo and 
Fraenkel systems.~ Skolem was always an advocate of first-order logic, 
perhaps because it yielded the relativity of mathematical notions that Sko­
lem believed in. Philosophical support for first-order logic came from W.V. 
Quine, who championed the position that logic is first-order logic, and that 
second-order logic is just set theory in disguise. 

The rich lodes of first-order model theory and proof theory kept logicians 
busy and satisfied for over a half-century, but recent years have seen a 
revival of interest in higher-order logic and other alternatives to first-order 
logic. and the papers in the book Model-Theoretic Logics (edited by Barwise 
and Feferman (1985)) offer a picture of these new developments.§ Barwise 
(1985) lays down the challenge to the old first-order orthodoxy, and Shapiro 
(1991) and Corcoran (1987) provide philosophical, historical and technical 
support for higher-order logic. _Of course, we need not choose between fust­
order and higher-order logic; there is plenty of room for both. 

tHilbert and Ackermann (1950) is a translation of the second (1938) edition of a 
book which was first published in 1928 as Grundziige der theoretischen Logik. 

~See Moore (1988) and Shapiro (1991) for more about the history of fu:st-order 
logic. Shapiro (1991) is the most reliable and thorough study of the controversies 
involving first-order and second-order logic. 

§Van Benthem and Doets (1983) also provides a high-level survey of second­
order logic and its ramifications. 



Anr;wers to Selected Exercises 

CHAPTER 1 !Jig a p ed1a 
1.1 

1.2 

1.3 

A B 
T T F 
F T T 
T F T 
F F F 
A B !A A~B 
T T F T 
F T T T 
T F F F 
F F T T 

((A==? B) 1\A) 

TTT TT 

FTT FF 

TFF FT 

FTF FF 

(A ~B) V lA 
T 
T 
F 
T 

1.4 (a) ((A=> (•B)) 1\ ((·A)~ (•B))) 
(c) (A~ B), A: xis prime,B: xis odd. 
(d) (A ~ B), A: the sequence s converges, 

B: the sequence s is bounded. 
(e) (A {:} (B A ( C 1\ D))) 
A: the sheikh is happy, 
B: the sheikh has wine, 
C: the sheikh has women, 
D: the sheikh has song. 
(f) (A~ B), A: Fiorello goes to the movies. 
(i) ((•A) ~B), A: Kasparov wins today, 

B: Karpov will win the tournament. 
1.5 (c), (d), (f), (g), (i), (j) are tautologies. 
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1.6 (a), (b), (d), (e), (f) are logically equivalent pairs. 
1.11 All except (i). 
1.13 Only (c) and (e). 
1.15 (a) (B ::=>-.A) A C (e) A<:=:> B <:=:> -.(C V D) 

(c) Drop all parentheses. (g) -.(-.-.(B V C) <:=:> (B <:=:> C)) 

] 

1.16 (a) (CV ((-.A) 1\B)) (c) ((C ==>((-.((A VB)=? C)) I\ A)) <:=>B) 
1.17 (a) (((-.(-.A))<:=:> A)<:=:> (B V C)) (d) and (f) are the only ones that are 

not abbreviations of statement forms. 
1.18 (a) V =? C-.AB and V C =? 1\B-.DC 

(c) (a) 1\ =? B-.AC (b) VA V BC 
(d) (i) is not. (ii) (A ::=> B) =? ( (B =? C) =? (-.A =? C)) 

1.19 (f) is contradictory, and (a), (d), (e), (g)-(j) are tautologies. 
1.20 (b)-( d) are false. 
1.21 (a) T (b) T (c) indeterminate 
1.22 (a) A is T, B is F, and -.A V (A =? B) is F. 

(c) A is T, C is T, B is T. 
1.29 (c) (i) A 1\ ((B 1\ C) V (-.B 1\ -.C)) (ii) A 1\B 1\ -.C 

(iii) -.A V ( -.B 1\ C) 
1.30 (a) If &8 is a tautology, the result of replacing all statement letters by 

their negations is a 1Jautology. If we then move all negation signs 
outward by using Exercise 1.27 (k) and (l), the resulting tautology 
is -.!!8'. Conversely, if -.&8' is a tautology, let <fi be -.&8'. By the first 
part, -.<(5' is a tautology. But -.<fi' is •-.&8. 

(c) (-.A 1\-.81\ -.C) V (A 1\B 1\ .D) 
1.32 (a) For figure 1.4: 

1.33 (a), (d) and (h) are not correct. 
1.34 (a) Satisfiable: Let A, B, and C be F, and let D beT. 
1.36 For f, 

(A 1\ B 1\ C) V (-.A 1\ B 1\ C) V (A 1\ -.B 1\ C) V (-.A 1\ -.B 1\ -.C) 

1.37 For =? and V, hotice that any statement form built up using =? and V 
will always take the value T when the statement letters in it are T. In the case 
of ---, and <=:>, using only the statement letters A and B, find all the truth 
functions of two variables that can be generated by applying -. and {::} any 
number of times. 
1.40 (a) 24 = 16 (b) 22" 
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1.41 h(C,C,C) = -.C and h(B,B,-.C) is B:::? C. 
1.42 (b) For -.(A:::? B) V (-.A 1\ C), a disjunctive normal form is (A 1\ -.B)V 
(-.A 1\ C), and a conjunctive normal form is (A V C) 1\ ( -.B V -.A) 1\ ( -.B v C). 
(c) (i) For (A 1\B) V -.A, a full dnfis (A 1\B) V (-.A 1\B) V (-.A 1\ -.B), and 
a full cnf is B V -.A. 
1.43 (b) (i) Yes. A: T, B: T, C: F (ii) Yes. A: T, B: F, C: T 
1.45 (b) A conjunction C of the form B~ 1\ ... 1\ B;,, where each B7 is either 
B; or -.Bi, is said to be eligible if some assignment of truth values to the 
statement letters of 88 that makes 88 true also makes C true. Let C(J be the 
disjunction of all eligible conjunctions. 
1.47 (b) L. <{] :::? !?2 

2. 88:::? <{] 

3. (88:::? (<{]:::? !?2)) :::? ( (88:::? C(j) 
:::? (88:::? !?2)) 

Hypothesis 
Hypothesis 
Axiom (A2) 

4. (<{]:::? !?2) :::? (88:::? (<{]:::? !?2)) Axiom (AI) 
5. 88:::? (<{]:::? !?2) 1, 4, MP 
6. ( 88 :::? <{]) :::? ( 88 :::? !0) 3, 5, MP 
7. 88:::? !0 2, 6, MP 

1.48 (a) 1. 88 :::? -.-.B Lemma 1.11 (b) 
2. -.-.AB :::? ( -.B :::? <{]) Lemma 1.11 (c) 
3. 88 * ( -.88 :::? <{]) 1, 2, Corollary l.IO(a) 
4. 88 :::? ( 88 V <{]) 3, Abbreviation 

(c) 1. -.<{]:::? 88 Hypothesis 
2. ( -.<{] :::? 88) :::? ( -.88 :::? -.-.<{]) Lemma 1.11 (e) 
3. -.88:::? -.-.<{] l, 2, MP 
4. -.-.<{]:::? <{] Lemma l.ll(a) 
5. -.88 :::? <{] 3, 4, Corollary l.IO(a) 
6. -.<{] :::? 88 I- -.88 :::? C(j 1-5 
7. I- ( -.<{] :::? 88) :::? ( -.88 :::? <{]) 6, deduction theorem 
8. I-(<{] V 88) :::? (88 V r~) 7, abbreviation 

1.50 Take any assignment of truth values to the statement letters of 88 that 
makes 88 false. Replace in 88 each letter having the value T by A1 V -.A1, and 
each letter having the value F by A1 1\ -.A 1• Call the resulting statement form 
<{]. Thus, <{] is an axiom of L *, and , therefore, 1-u <{]_ Observe that <{] always 
has the value F for any truth assignment. Hence, -.<{] is a tautology. So 
1-L -.<{] and, therefore, 1-L* -.<{]. 

1.51 (Deborah Moll) Use two truth values. Let:::? have its usual table and 
let-. be interpreted as the constant function F. When B is F, (-.B:::? -.A) :::? 
( ( -.B :::? A) :::? B) is F. 
1.52 The theorems of P are the same as the axioms. Assume that P is 
suitable for some n-valued logic. Then, for all values k, k * k will be a 
designated value. Consider the sequence of formulas 880 =A, 88j+l =A * 88j. 
Since there are n" possible truth functions of one variable, among 
880 , •.. , 8811" there must be two different formulas 88j and 88k that determine 
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the same truth function. Hence, ggj * ggk will be an exceptional formula that 
is not a theorem. 
1.53 Take as axioms all exceptional formulas, and the identity function as 
the only rule of inference. 

CHAPTER2 

2.1 (a) ((Vxi)(A}(xi) 1\ (1AHx2)))) (b) (((Vx2)A~(x2)) {::} A1{x2)) 
(d) (((Vx1)((Vx3)((Vx4)A~(xt)))):::;. (Al(xz) 1\ (•AHxi)))) 

2.2 (a) ((Vxt)(A~(x1 ):::;. AHxt))) V (3xi)A~(xi) 
2.3 (a) The only free occurrence of a variable is that of x2 . 

(b) The first occurrence of x3 is free, as is the last occurrence of x2• 

2.6 Yes, in parts (a), (c) and (e) 
2.8 (a) (Vx)(P(x) :::;. L(x)) 

(b) (Vx)(P(x):::;. IH(x)) or 1(3x)(P(x) 1\H(x)) 
(c) I (Vx)(B(x):::;. F(x)) 
(d) (Vx)(B(x) :::;. ·F(x)) (e) T(x) :::;. I(x) 
(f) (Vx)(Vy)(S(x) 1\D(x,y):::;. J(y)) 
(j) (Vx)(-.H(x,x) =? HU,X:)) or (Vx)(P(x) 1\ -.H(x,x):::;. HU,x)) 

(In the second wf, we have specified that John hates those persons 
who do not hate themselves, where P(x) means xis a person.) 

2.9 (a) All bachelors are unhappy. (c) There is no greatest integer. 
2.10 (a) (i) is satisfied by all pairs (x1 ,x2) of positive integers such that 

X]· Xz > 2. 
(ii) is satisfied by all pairs (x1 ,xz) of positive integers such that 

either x1 < x2 (when the antecedent is false) or x1 = x2 (when 
the antecedent and consequent are both true). 

(iii) is true. 
2.11 (a) Between any two real numbers there is a rational number. 
2.12 (I) A sequence s satisfies I gg if and only if s does not satisfy !J8. 

Hence, all sequences satisfy I [jg if and only if no sequence satisfies 
[Jg; that is, 1 f!JJ is true if and only if f!JJ is false. 

(II) There is at least one sequences in L· If s satisfies !J8, [jg cannot be 
false forM. If s does not satisfy [jg, [jg cannot be true forM. 

(III)If a sequence s satisfies both !J8 and !J8 :::;. ~. then s satisfies ~ by 
condition 3 of the definition. 

(V) (a) s satisfies [jg 1\ ~ if and only if s satisfies 1 ( !J8 :::;. 1 ~) 
if and only if s does not satisfy !J8 :::;. I~ 
if and only if s satisfies !J8 but not I~ 
if and only if s satisfies f!JJ and s satisfies ~ 

(VI)(a) Assume FM f!JJ . Then every sequence satisfies f!JJ. In particular, 
every sequence that differs from a sequence s in at most the ith 
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place satisfies !!4. So, every sequence satisfies (\lx;)!!J; that is, 
FM (\ix; )!!4. 

(b) Assume FM (Vx;)PJ. If s is a sequence, then any sequence that 
differs from sin at most the ith place satisfies f!JJ, and, in particular, 
s satisfies [!g. Then every sequence satisfies PJ; that is, FM PJ. 

(VIII) Lemma. If all the variables in a term t occur in the list x;1 , ••• , X;k 

(k > 0; when k = 0, t has no variables), and if the sequences s 
and s' have the same components in the it th, ... , ikth places, 
then s*(t) = (s')*(t). 

Proof. Induction on the number m of function letter in l. Assume 
the result holds for all integers less than m. 

Case 1. t is an individual constant ap- Then s*(ap) = (ap)M 
= (s')*(ap)· 

Case 2. tis a variable x;r Then s*(x;j) = s;j = s~j = (s')*(x;J. 
Case 3. t is of the form f}' ( t1 , •.. , tn). For q ~ n, each tq has fewer 

than m function letters and all its variables occur among 
x;1 , ••• ,xh. By inductive hypothesis, s*(tq) = (s');Jtq)· Then 
s*(fj1 (tt, ... ,t11)) = (f/)M(s*(ti), ... ,s*(tn)) = (f]) ((s')*(ti) 
, ... , (s')*(tn)) = (s')*(J}'(ti, ... , tn)). 

Proof of (VIII). Induction on the number r of connectives and 
quantifiers in !!4. Assume the result holds for all q < r. 

Case 1. !!4 is of the form Aj(t1, ... ,til); that is, r = 0. All the 
variables of each t; occur among x;1, ••• , x;". Hence, by the 
lemma, s*(t;) = (s')*(t;). Buts satisfies Aj(t1, ••• , til) if and only 
if (s*(tJ), ... ,s*(tn)) is in (Aj)M- that is, if and only if 
((s')*(ti), ... ,(s')*(t11 )) is in (Aj)M, which is equivalent to s' 
satisfying A j ( t 1 , ... , tn). 

Case 2. !!4 is of the form 1 <fl. 
Case 3. !!4 is of the form <fl ==} !':0. Both cases 2 and 3 are easy. 
Case 4. !!4 is of the form (\lxj)<fl. The free variables of <fl occur 

among X;1 , ••• ,xft and Xj. Assumes satisfies PJ. Then every se­
quence that differs from sin at most the jth place satisfies <fl. Let 
s# be any sequence that differs from s' in at most the jth place. 
Let sh be a sequence that has the same components ass in all but 
the jth place, where it has the same component as s#. Hence, sh 
satisfies <fl. Since sh and s# agree in the i 1 th, ... , ikth and jth 
places, it follows by inductive hypothesis that sh satisfies <fl if 
and only if s# satisfies <fl. Hence, s# satisfies <fl. Thus, s' satisfies 
!!4. By symmetry, the converse also holds. 

(IX) Assume [!g is closed. By (VIII), for any sequences and s', s satisfies 
!!4 if and only if s' satisfies PJ. If -,PJ is not true for M, some 
sequence s' does not satisfy -.!!4; that is, s' satisfies PJ. Hence, every 
sequence s satisfies PJ; that is, FM f14. 



ANSWERS TO SELECTED EXERCISES ~] 
(X) Proof of Lemma 1: induction on the number m of function letters 

in t. 
Case 1. tis aj. Then t' is aj. Hence, 

s*(t') = s*(aj) = (aj)M = (s')*(a1) = (s')*(t) 

Case 2. tis Xj, where j f=. i. Then t' is Xj. By the lemma of (VIII), 
s*(t') = (s')*(t), since sands' have the same component in the 
jth place. 

Case 3. t is x;. Then t' is u. Hence, s*(t ') = s*(u), while (s')*(t) = 
(s')* (x;) = s~ = s*(u). 

Case 4. tis of the form f}1(ft, ... , tn)· For 1 ~q~n, let t' result 
from fq by the substitution of u for x;. By inductive hyp~thesis, 
s*(t;) = (s')*(tq)· But 

s*(t') = s"'(fj(t{, ... , t,:)) = (Jj")M(s*(tt'), ... ,s*(t,:)) 

= (.1/)M((s')*(tt), ... , (s')*(t,)) = (s')*(jJ'(tt, ... , t")) = (s')*(t) 
Proof of Lemma 2( a): induction on the number m of connectives 

and quantifiers in 88(x;) . 
Case 1. m = 0. Then @(x;) is A'j(t1, ... , tn). Let t; be the result of 

substituting t for all occurrences of x; in tq. Thus, 88(t) is 
Aj(t{, ... ,t,:). By Lemma l, s*(t;) = (s')*(tq)· Now, s satisfies 
88(t) if and only if (s*(t{), ... ,s*(t,;)) belongs to (AJ)M, which is 
equivalent to ((s')*(tl), ... ,(s')*(tn)) belonging to (AJ)M- that 
is, to s' satisfying 88(x;). 

Case 2. 88(x;) is -.CC(x;); this is straightforward. 
Case 3. 88(x1) is CC(x;)==>~(x;); this is straightforward. 
Case 4. ~(x;) is (Vxj)~(x;). 
Case 4a. Xj is x;. Then x; is not free in P4(x;), and P4(t) is P4(x;). 

Since x; is not free in 88(x;), it follows by (VIII) that s satisfies 
88(t) if and only if s' satisfies 88(x;). 

Case 4b. xj is different from x;. Since tis free for x; in ~(x;), tis also 
free for x; in CC(x;). 

Assume s satisfies (Vxj)CC(t). We must show that s' satisfies 
(Vxj)CC(x;). Let s# differ from s' in at most the jth place. It 
suffices to show that s# satisfies CC(x1). Let sh be the same ass# 
except that it has the same ith component ass. Hence, sh is the 
same ass except in its jth component. Since s satisfies (Vxj)CC(t), 
sb satisfies CC(t). Now, since t is free for x; in (Vxj)CC(x;), t does 
not contain xj. (The other possibility, that x; is not free in CC(x;), 
is handled as in case 4a.) Hence, by the lemma of (VIII), 
(sh)*(t) = s*(t). Hence, by the inductive hypothesis and the fact 
that s# is obtained from sh by substituting (sb)* (t) for the ith 
component of sh, it follows that s# satisfies CC(x1), if and only if 
sh satisfies CC(t). Since sb satisfies CC(t), s# satisfies CC(x;). 
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Conversely, assumes' satisfies (\lxj)rc(x;). Let sb differ from s 
in at most the jth place. Lets# be the same as s' except in the jth 
place, where it is the same as sb. Then s# satisfies rc(x;). AB 
above, s*(t) = (sb)*(t). Hence, by the inductive hypothesis, sb 
satisfies rc(t) if and only if s# satisfies rc(x;). Since s# satisfies 
rc(x;),sb satisfies rc(t). Therefore, s satisfies (\lxj)rc(t). 

Proof of Lemma 2(b). Assume s satisfies (Vx;)88(x;). We must 
show that s satisfies 88(t). Lets' arise from s by substituting s*(t) 
for the ith component of s. Since s satisfies ('v'x;)88(xi) and s' 
differs from s in at most the ith place, s' satisfies 88(x;). By 
Lemma 2(a), s satisfies 88(t). 

2.13 Assume 88 is satisfied by a sequences. Lets' be any sequence. By (VIII), 
s' also satisfies 88. Hence, 88 is satisfied by all sequences; that is, FM 88. 
2.14 (a) x is a common divisor of y and z. (d) x1 is a bachelor. 
2.15 (a) (i) Every non-negative integer is even or odd. True. 

(ii) If the product of two non-negative integers is zero, at least one 
of them is zero. True. (iii) 1 is even. False. 

2.17 (a) Consider an interpretation with the set of integers as its domain. 
Let AHx) mean that x is even and let A~(x) mean that xis odd. 
Then (Vx1 )A~(xi) is false, and so (\lxt)A~ (xt)::::::::}(\lxi)A~(xi) is true. 
However, (Vxt)(A~ (xi)::::::::}A~(x1 )) is false, since it asserts that all 
even integers are odd. 

2.18 (a) [ (Vx; )-.88(x; )::::::::}-.88( t) ]::::::::} [88( t)::::::::}-.(\lx; )-.88(x;)] is logically valid 
because it is an instance of the tautology (A::::::::}-.B)::::::::}(B===}-.A). 
By (X), ('v'x;)-.88(x;)::::::::}-.88(t) is logically valid. Hence, by (III), 
88(t)===}-.(\lx;) -.88(x;) is logically valid. 

(b) Intuitive proof: If 88 is true for all x;, then 88 is true for some x;. 
Rigorous proof: ABsume (Vx;)B0::::::::}(3x;)88 is not logically valid. 
Then there is an interpretation M for which it is not true. Hence, 
there is a sequence s in L such that s satisfies (Vx; )88 and s does 
not satisfy -.(Vx;)-.88. From the latter, s satisfies (\lx;)-.88. Since s 
satisfies (Vx;)88, s satisfies 88, and, since s satisfies (Vx;)-.88, s sat­
isfies -.88. But then s satisfies both 88 and -.88, which is impossible. 

2.19 (b) Take the domain to be the set of integers and letA}(u) mean that u 
is even. A sequences in which s1 is even satisfies A~ (xd but does 
not satisfy ('v'xi)A~ (xi). 

2.21 (a) Let the domain be the set of integers and let AT(x,y ) mean that 
x < y. (b) Same interpretation as in (a). 

2.22 (a) The premisses are (i) (Vx)(S(x) ::::::::}N(x)) and (ii) (Vx)(V(x) ===} 
-.N(x)), and the conclusion is (Vx)(V(x)===}-.S(x)). Intuitive proof: 
Assume V(x). By (ii), -.N(x). By (i), -.S(x). Thus, -.S(x) follows 
from V(x), and the conclusion holds. A more rigorous proof can 
be given along the lines of ( 1)-( XI), but a better proof will become 
available after the study of predicate calculi. 
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2.26 (a) (3x)(3y)(Al (x) 1\ -.A~ (y)) 
2.27 (a) 1. (\ix)(88==?~) Hyp 

2. (\ix)1b Hyp 
3. (Vx)(B!J==?~)==?(f!IJ==?~) Axiom (A4) 
4. !14==?~ 1 ,3, MP 
5. (Vx)B!J==?f!IJ Axiom (A4) 
6. !14 2,5, MP 
7. ~ 4,6, MP 
8. (\ix)~ 7, Gen 
9. (Vx)(P4==?~), (Vx)P4 I- (Vx)~ 1- 8 

10. (Vx)(P4==?~) I- (\ix)P4==?(Vx)~ 1-9, Corrollary 2.6 
11. I- (Vx)(f!IJ===}~)===}((Vx)BfJ===}(Vx)~) 1-10, Corollary 2.6 

2.28 Hint: Assume 1-K ~- By induction on the number of steps in the 
proof of !14 in K, prove that, for any variables y1, .•• ,y,(n > 0), 
1-K# (Vyt ) ... (Vy,) ~. 
2.31 (a) 1. (Vx)(Vy)Ar(x,y) Hyp 

2. (Vy)Ar(x,y) 1, Rule A4 
3. Ai(x,x) 2, Rule A4 
4. (Vx)Ar(x,x) 3, Gen 
5. (Vx)(Vy)Ar(x,y) I- (Vx)Af(x, x) 1--4 
6. I- (Vx)(Vy)Ai(x,y)==?(\ix)Ai(x,x) 1-5, Corollary 2.6 

2.33 (a) I- -.(Vx)-.-.!14{::::::::}-.(\fx)-.88 by the replacement theorem and the fact 
that I- -.-.f74{:::::::}!14. Replace -.(\ix)-.-.B?J by its abbreviation (3 x)-.B!J. 
2.36 (b) (3c:)(t: > 01\ (V£5)(£5 > 0==?(3x)(lx- cl <£51\ -.lf(x)- /(c) I< c:))) 
2.37 (a) (i) Assume I-~- By moving the negation step-by-step inward to 

the atomic wfs, show that I- -.!14* {::::::::}~, where ~ is obtained 
from !14 by replacing all atomic wfs by their negations. But, 
from 1-!14 it can be shown that I- ~. Hence, I- -.!14*. The converse 
follows by noting that (!14*)* is !14. -

(ii) Apply (i) to -.!14 V ~-
2.39 1. (3y)(Vx)(Ai(x,y){:::::=}-.Ai(x,x)) Hyp 

2. (\ix)(Ar(x,b){:::::=}-.Ai(x,x)) 1, Rule C 
3. Ar(b,y){:::::=}-.Ar(b, b) 2, Rule A4 
4. ({! 1\ -.~ 3, Tautology 

(~is any wf not containing b.) Use Proposition 2.10 and proof by con­
tradiction. 
2.46 (a) In step 4, b is not a new individual constant. It was already used in 

step 2. 
2.49 Assume K is complete and let !14 and ~ be closed wfs of K such that 
1-K !14 V ((/.Assume not-1-K !14. Then, by completeness, 1-K -.!14. Hence, by the 
tautology -.A=?( (A V !14)===}!14), 1-K !14. Conversely, assume K is not com­
plete. Then there is a sentence PJ of K such that not-1-K PJ and not-1-K -.PJ. 
However, i-K PJ V -.!14. 
2.50 See Tarski, Mostowski and Robinson (1953, pp. 15-16). 
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2.55 (b) It suffices to assume f!IJ is a closed wf. (Otherwise, look at the 
closure of f!J.) We can effectively write all the interpretations on a 
finite domain { b1 , ... , bk}. (We need only specify the interpreta­
tions of the symbols that occur in £i.) For every such interpre­
tation, replace every wf (Vx)~(x), where ~(x) has no quantifiers, 
by ~(b1 ) 1\ ... 1\ ~(bk), and continue until no quantifiers are left. 
One can then evaluate the truth of the resulting wf for the given 
interpretation. 

2.59 Assume K is not finitely axiomatizable. Let the axioms of K1 be 
flJI, f!42, ... , and let the axioms of K2 be ~1 , ~2 ,.... Then 
{f!IJ1 ,~1 ,f!IJ2 ,~2,···} is consistent. (If not, some finite subset {f!JI, 
f!IJ2, ... , f!Jk, ~I, ... , ~m} is inconsistent. Since KI is not finitely axiomatiz­
able, there is a theorem f!4 ofKI such that f!JI, f!IJ2 , ... , flJk 1- f!4 does not hold. 
Hence, the theory with axioms { f!JI, f!42 , ... , f!Jk, -.f!J} has a model M. Since 
1-K f!J, M must be a model of K 2, and, therefore, M is a model of 
{ f!4t, f!lh, ... , f!Jk, ~I, ... , ~m}, contradicting the inconsistency of this set of 
wfs.) Since {f!JI, ~I, f!Jz, ~2, ... } is consistent, it has a model, which must be 
a model of both KI and Kz. 
2.60 Hint: Let the closures of the axioms of K be f!4t, £i2 , • • .. Choose a 
subsequence f!Jj1 , f!Jh, ... such that f!Jj,+t is the first sentence (if any) after f!Jj, 
that is not deducible from f!Jj1 1\ ... I\ f!Jj"· Let ~k be f!IJj1 1\ f!Jhl\ ···I\ f!IJjk· 

Then the ~ks form an axiom set for the theorems of K such that 
1- ~k+I===}~k but not-1- ~k=}~k+t· Then {~t, ~1===}~2, ~2=}~3, ... } is an 
independent axiomatization of K. 
2.61 Assume f!4 is not logically valid. Then the closure ~ of f!4 is not logi­
cally valid. Hence, the theory K with --,~ as its only proper axiom has a 
model. By the Skolem-Lowenheim theorem, K has a denumerable model 
and, by the lemma in the proof of Corollary 2.22, K has a model of car­
dinality m. Hence, ~ is false in this model and, therefore, f!4 is not true in 
some model of cardinality m. 
2.65 (c) 1. x = x Proposition 2.23( a) 

2. (3y)x = y L, rule E4 
3. (Vx)(3y)x = y 2, Gen 

2.68 (a) The problem obviously reduces to the case of substitution for a 
single variable at a time: 1- XI = YI =*t(xl) = t(y1). From (A 7), 
1- XI = YI =}(t(xt) = t(xi )===}t(xi) = t(yi)). By Proposition 2.23 
(a), I- t(xt) = t(xi). Hence, 1- Xt = Yt=}t(xt) = t(yt). 

2.70 (a) By Exercise 2.65(c), 1- (3y)x = y. By Proposition 2.23(b,c), 
1- (Vy)(Vz)(x = y 1\x = z===}y = z). Hence, I- (3Iy)x = y. By Gen, 
I- (Vx)(3Iy)x = y. 

2.71 (b) (i) Let I\I~i<j~ 11X; f=. Xj stand for the conjunction of all wfs of the 
form x; f=. Xj, where 1 ~i < j~n. Let f!J, be (3xt) ... (3x11 ) 

At ~i<j~nXi f=. Xj. 
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(ii) Assume there is a theory with axioms d 1, ... , d 11 that has the 
same theorems as K. Each of d 1, . .. , .9111 is provable from K1 
plus a finite number of the wfs 881,882, ••.• Hence, K1 plus a 
finite number of wfs Plj 1 , ••• , PJj, suffices to prove all theorems 
of K. We may assume j1 < · · · < j,. Then an interpretation 
whose domain consists of j, objects would be a model of K, 
contradicting the fact that PJj,+l is an axiom of K . 

2.74 For the independence of axioms (AI) - (A3), replace all t = s by the 
statement form A ~ A; then erase all quantifiers, terms and associated 
commas and parentheses; axioms (A4)- (A6) go over into statement forms 
of the form P ~ P, and axiom (A7) into (P ~ P) ~ (Q ~ Q). For the 
independence of axiom (AI), the following four-valued logic, due to Dr 
D.K. Roy, works, where 0 is the only designated value. 

A B A=}B 
0 0 0 
0 1 1 
0 2 1 
0 3 1 

A B A=}B 
1 0 0 
1 l 0 
1 2 0 
1 3 0 

A B 
2 0 
2 1 
2 2 
2 3 

A=}B 
0 
0 
0 
0 

A B 
3 0 
3 1 
3 2 
3 3 

A =}B A 
0 0 
1 1 
1 2 
0 3 

lA 
1 
0 
0 
0 

When A and B take the values 3 and 0, respectively, axiom (AI) takes the 
value L For the independence of axiom (A2), Dr Roy devised the following 
four-valued logic, where 0 is the only designated value. 

A B A=}B A B A=}B A B A=}B A B A=}B A lA 
0 0 0 L 0 0 2 0 0 3 0 0 0 1 
0 1 1 L 1 0 2 L 0 3 1 0 1 0 
0 2 L L 2 0 2 2 0 3 2 1 2 0 
0 3 L L 3 0 2 3 0 3 3 0 3 0 

If A, B and C take the values 3, 0 and 2 respectively, then axiom (A2) is 1. 
For the independence of axiom (A3), the proof on page 44 works. For 
axiom (A4), replace all universal quantifiers by existential quantifiers. For 
axiom (A5), change all terms t to x1 and replace all universal quantifiers by 
( Vx, ). For axiom (A6), replace all wfs t = s by the negation of some fJXed 
theorem. For axiom (A7), consider an interpretation in which the inter­
pretation of = is a reflexive non-symmetric relation. 

2.83 (a) (Vx)(3y)((3z)(PJ(z,x,y, . . . ,y) 1\Ai(x,y,z)) ~ (3z)(-~(z,y, x, ... ,x) 
1\z=x)) 

2.84 (a) (3z)(Vw)(3x)([Al (x) ~ Ai(x,y)] ~ [Al (w) ~ AJCy, z)]) 
2.87 f/ has the form (3x)(3y)(Vz)([Ai(x,y) ~ A{ (x)] ~A{ (z)) . Let the 
domain D be {I ,2}, let AJ be <, and let At{ u) stand for u = 2. Then f/ is 
true, but (Vx)(3y)Ai(x,y) is false. 
2.88 Let g be a one-one correspondence between D* and D. Define: 
(aj )M* = g((aj)M); (f/)M* (bl, ... , bu) = g 1 [(J}')M(g(bi ), ... , g(bn))]; 
FM* Aj[bl, ... ,bn] if and only if FM Aj[g(bJ), ... ,g(b,,)]. 



~-----------AN __ s_w __ E_RS __ T_o_s_E_L_E_c_T_E_D __ E_X_E_R_c_I_SE_s ____________ ~l I 393 

2.95 Hint: Extend K by adding axioms B011 , where~~~ asserts that there are 
at least n elements. The new theory has no finite models. 
2.96 (a) Hint: Consider the wfs B011 , where P411 asserts that there are at least 

n elements. Use elimination of quantifiers, treating the B011s as if 
they were atomic wfs. 

2.101 Let W be any set. For each bin W, let ab be an individual constant. 
Let the theory K have as its proper axioms: ab # ac for all b, c in W such 
that b # c, plus the axioms for a total order. K is consistent, since any finite 
subset of its axioms has a model. (Any such finite subset contains only a 
finite number of individual constants. One can define a total order on any 
finite set B by using the one- one correspondence between B and a set 
{1, 2, 3, ... , n} and carrying over to B the total order < on {1, 2, 3, ... , n }.) 
Since K is consistent, K has a model M by the generalized completeness 
theorem. The domain D of M is totally ordered by the relation <M; hence, 
the subset Dw of D consisting of the objects ( ab )M is totally ordered by <M. 
This total ordering of Dw can then be carried over to a total ordering of 
W: b <w c if and only if ab <Mac. 
2.103 Assume M 1 is finite and M1 = M2. Let the domain Dt of M1 haven 
elements. Then, since the assertion that a model has exactly n elements can 
be written as a sentence, the domain D2, of M2 must also haven elements. 
Let Dt = {b1, ... , bn} and D2 = {cl, ... , en}· 

Assume M 1 and M2 are not isomorphic. Let q> be any one of then! one-one 
correspondences between D1 and D2. Since q> is not an isomorphism, either: 
(1) there is an individual constant a and an element bj of D1 such that either 
(i) bj = aM1 1\ cp(bj) # aM2 or (ii) bj # aM1 1\ cp(bj) = ~2 ; or (2) there is a 
function letter ft and br, bj1 , ••• , bj"' in D1 such that 

bt = (ft)M1 (bjp ... 1 bjJ and f!J(bt) -1- (J;n)M2
( f!J(bjJ, .. . 1 f!J(bjm)) 

or (3) there is a predicate letter A'// and bj1 , ••• , bjm in Dt such that either 

(i) FM1 AZ1[hjp ... , bj,] and FM2 !Ak1[q>(bj1 ), ••• , cp(bj,)] or 
(ii) FM1 1Ak1[hj11 ••• ,bj,] and FM2 Aj;1[q>(bj1), ••• , cp(bj

111
)] . Construct a wf 

P4cp as follows: 

xj =a if (1) (i) holds 
Xj -1- a if ( 1) (ii) holds 

fffl(j! is Xt = ft(xj1 , ••• ,xjm) if (2) holds 
A'J/(Xjp .•. 1 Xjm) if (3) (i) holds 
IAk' (xh , ... , Xjm) if (3) (ii) holds 

Let cp1, ... , q>11! be the one--one correspondences between D1 and D2. 
Let d be the wf 

(3xl) ... {3x,) ( 1\ X; =f. Xj 1\ ffflcp1 1\ ffflcp2 1\ · · · 1\ ffflcpn!) 
l~i<j~ll 

Then dis true for M 1 but not for M2. 
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2.104 (a) There areNa sentences in the language of K. Hence, there are 2t{" 

sets of sentences. If M1 M2 does not hold, then the set of sen­
tences true for M 1 is different from the set of sentences true for 
M2. 

2.105 Let K* be the theory with Ny new symbols b, and, as axioms, all 
sentences true for M and all b, f=. bp for r f=. p. Prove K* consistent and 
apply Corollary 2.34. 
2.108 (a) Let M be the field of rational numbers and let X= { -1 }. 
2.110 Consider the wf (3x2) x2 < XJ. 

2.111 (a) (ii) Introduce a new individual constant b and form a new theory 
by adding to the complete diagram of M 1 all the sentences 
b f=. t for all closed terms t of the language of K. 

2.112 If 0 (j. ff, ff f=. f?J(A). Conversely, if 0 E ff, then, by clause (3) of 
the definition of filter, ff = f?J(A). 
2.113 If ff = !FB, then neE.¥" C =BE ff. Conversely, if B =neE§ C E ff, 
then ff = !F B· 

2.114 Use Exercise 2.113. 
2.115 (a) A E ff, since A =A - 0. 

(b) If B =A- JIVj E ff and C =A- »2 E ff, where J1Vi and Jf2 are 
finite, then B n c = A - ( JIVj u »2) E ff, since JIVj u w2 is finite. 

(c) If B =A-WE ff, where W is finite, and if B C C, then 
C = A - ( W - C) E ff, since W - C is finite. 

(d) Let B c C. So, B =A - W, where W is finite. Let b E B. Then 
Wu{b} is finite. Hence, C =A- (Wu{b}) E ff. But, B ~ C, since 
b (j. C. Therefore, ff f=. fJi B. 

2.118 Let ff' ={DID c A 1\ (3C)(C E fJi 1\BnC ~D)}. 
2.119 Assume that, for every B C A, either BE ff or A-BE§. Let q} be a 
filter such that ff c tf}. Let BE q;- ff. Then A-BE ff. Hence, A-BE q;. 
So, 0 = Bn(A- B) E q} and q; is improper. The converse follows from Ex­
ercise 2.118. 
2.120 Assume ff is an ultrafilter and B (j. ff, C (j. ff. By Exercise 2.119, 
A-BE ff and A-CE ff. Hence, A- (BuC) =(A- B)n(A- C) E ff. 
Since ff is proper, BuC (j. ff. Conversely, assume B (j. ff 1\ C (j. ff 
=> BuC (j. !F. Since Bu(A -B) =A E ff, this implies that, if B (j. ff, then 
A-BE ff. Use Exercise 2.119. 
2.121 (a) Assume ff e is a principal ultrafilter. Let a E C and assume 

C f=. {a}. Then {a} (j. ff e and C- {a} (j. ff e. By Exercise 2.120, 
C = {a}u(C- {a}) (j. ffe, which yields a contradiction. 

'· •·. 

(b) Assume a non-principal ultrafilter fJi contains a finite set. and let B 
be a finite set in ff of least cardinality. Since ff is non-principal, 
the cardinality of B is greater than 1. Let b E B. Then B - { b} f=. 0. 
Both { b} and B - { b} are finite sets of lower cardinality than B. 
Hence, { b} (j. ff and B - { b} (j. ff. By Exercise 2.120, 
B = { b} u (B - { b}) (j. !F, which contradicts the definition of B. 
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2.124 Let J be the set of all finite subsets of r. For each 8 in J, choose a 
model ML1 of /1. For 8 in J, let 8* = {8' 111' E 1 /\8 c 8'}. The collection<§ 
of all t..*s has the finite-intersection property. By Exercise 2.117, there is a 
proper filter fJi => <§. By the ultrafilter theorem, there is an ultrafilter 
!F' :J fJi :J <§. Consider TIL\EJ ML\/ ff'. Let @ E r. Then { &?1}* E <§ c ff'. 
Therefore, { &?1}* C { t-.j/1 E <§/\ FMt~ &?1} E ff'. By Los's theorem,@ is true in 
TillE] ML\ I !F'. 
2.125 (a) Assume 1f/ is closed under elementary equivalence and ultra-

products. Let 8 be the set of all sentences of!£ that are true in 
every interpretation in 1r. Let M be any model of 8. We must 
show that M is in 1r. Let r be the set of all sentences true forM. 
Let J be the set of finite subsets of r. For r' = { &?11, ... , @11 } E J, 
choose an interpretation Nr' in 1fl such that &?11 1\ . .. 1\ :!JJ11 is true 
in Nr'· (If there were no such interpretation, •(&?11 1\ ... /\ &?1,) , 
though false in M, would be in 8.) As in Exercise 2.124, there is an 
ultrafilter ff' such that N* = Tir'EJ Nr) !F' is a model of r. Now, 
N* E 1fi. Moreover, M _ N*. Hence, ME 1r. 

(b) Use (a) and Exercise 2.59. 
(c) Let 1r be the class of all fields of characteristic 0. Let-~ be a non­

principal ultrafilter on the set P of primes, and consider 
M = npEP zp; ff. Apply (b). 

2.126 R# C R*. Hence, the cardinality of R"" is >_ 2No. On the other hand, Rw 
is equinumerous with 2ro and, therefore, has cardinality 2No. But the cardi­
nality of R* is at most that of Rw. 
2.127 Assume x and y are infinitesimals. Let E be any positive real. Then 
lxl < E/2 and IYI < Ej2. So, lx + Yl ~ lxl + IYI < E/2 + E/2 = E; jxy! = lxiiYI 
< 1 · E = E; !x- yj ~ lxl + I - yj < E/2 + a/2 = E. 
2.128 Assume lxl < r1 and IYI < E for all positive real E. Let E be a positive 
real. Then e/rt is a positive real. Hence IYI < E/rt, and so, 
lxyl = lxiJYI < r1 (e/rJ) =E. 

2.130 Assume x - r1 and x - r2 are infinitesimals, with r 1 and r2 real. Then 
(x- r1)- (x- r2) = r2 - r1 is infinitesimal and real. Hence, r2- r1 = 0. 
2.131 (a) x- st(x) and y- st(y) are infinitesimals. Hence, their sum 
(x + y)- (st(x) + st(y)) is an infinitesimal. Since st(x) + st(y) is real, 
st(x) + st(y) = st(x + y) by Exercise 2.130. 
2.132 (a) By Proposition 2.45, s*(n) ~ c1 and u*(n) ~ c2 for all n E OJ* -OJ. 

Hence, s""(n) + u*(n) ~ c1 + c2 for all n E OJ*- OJ. But 
s*(n) + u*(n) = (s + u)*(n). Apply Proposition 2.45. 

2.133 Assume f continuous at c. Take any positive real B. Then there is a 
positive real fJ such that (\fx)(x E B /\ !x- cl < fJ::::} lf(x)- f(c)l <a) holds 
in f1A. Therefore, (\fx) (x E B* 1\ lx - cl < fJ ::::} I/* (x) - f (c) I < E) holds in 
PA*. So, if x E B* and x ~ c, then lx - cl < [J and, therefore, 
lf*(x)- f(c)l <E. Since B was arbitrary, f"'(x) ~ f(c). Conversely, assume 
x E B* 1\x ~ c::::} f*(x) ~ f(c). Take any positive real a. Let bo be a positive 
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infinitesimal. Then (\fx)(x E B* 1\ lx- cl < bo ==? lf*(x)- f(c)l <e) holds 
for rR"'. Hence, (3£5)(£5 > 01\ (\fx)(x E B* A lx- cj < £5 ==? lf'(x) -J(c)l <e)) 
holds for tR*, and so, (3£5)(£5 > 01\ (\fx)(x E B A lx- cl < £5 ==? lf(x) 
-f(c)l <e)) holds in rR. 
2.134 (a) Since x E B* Ax~ c =} (f*(x) ~ f(c) 1\ g*(x) ~ g(c)) by Proposi­

tion 2.46, we can conclude x E B* 1\ x ~ c ==? (f + g)*(x) 
~ (f +g)( c), and so, by Proposition 2.46, f + g is continuous 
at c. 

2.139 (a) (i) I [(\fx)(Al (x) V A1(x)) =} ((\fx)A~(x)) V (\fx)A~(x)J 
(ii) (\fx)(A: (x) V AHx)) (i) 

(iii) I [((\fx)Al (x)) V (\fx)A~(x)] (i) 
(iv) 1(\fx)A:(x) (iii) 
(v) I (\fx)A1{x) (ill) 

(vi) (3x) !A~ (x) (iv) 
(vii) (3x) !A~(x) (v) 

(viii) 1A; (b) (vi) 
(ix) !A~ (c) (vii) 
(x) A}(b) V AHb) (ii) 

/ \w 
(xi)Al(b) A1{b) (x) 

(xii) X A}(c) V AHc) (ii) 

/ \w 
(xiii) Al{c) Ai{c) (xii) 

X 

No further rules are applicable and there is an unclosed branch. Let the 
model M have domain { b, c}, let (A l )M hold only for c, and let (ADM hold 
for only b. Then, (\fx)(A{ (x) V AHx)) is true for M, but (\fx)AHx) and 
(\fx)A~(x) are both false forM. Hence, (\fx)(A:(x) vAi(x)) ==? ((\fx)A~(x)) 
V (\fx)Ai(x) is not logically valid. 

CHAPTER 3 

3.4 Consider the interpretation that has as its domain the set of polynomials 
with integral coefficients such that the leading coefficient is non-negative. 
The usual operations of addition and multiplication are the interpretations 
of + and ·. Verify that (Sl)-(S8) hold but that Proposition 3.11 is false 
(substituting the polynomial x for x and 2 for y). 
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3.5 (a) Form a new theory S' by adding to Sa new individual constant b 
and the axioms b =I= 0, b f= I, b =1= 2, ... , b =I= n, .... Show that S' is 
consistent, and apply Proposition 2.26 and Corollary 2.34(c). 

(b) By a cortege let us mean any denumerable sequence of Os and Is. 
There are 2~0 corteges. An element c of a denumerable model M of 
S determines a cortege (s0 , SJ, s2, ... ) as follows: St = 0 if FM Ptlc, 
and s; = 1 if FM l(p;lc). Consider now any corteges. Add a new 
constant b to S, together with the axioms Y.l;(b), where ~;(b) is pdb 
if St = 0 and Y.l;(b) is ICPtlb) if St = 1. This theory is consistent and, 
therefore, has a denumerable model Ms, in which the interpretation 
of b determines the cortege s. Thus, each of the 2~0 corteges is 
determined by an element of some denumerable model. Every 
denumerable model determines denumerably many corteges. 
Therefore, if a maximal collection of mutually non-isomorphic 
denumerable models had cardinality m < 2~0 , then the total num­
ber of corteges represented in all denumerable models would be 
~ m x N0 < 2~0 • (We use the fact that the elements of a denumer­
able model determine the same corteges as the elements of an iso­
morphic model.) 

3.6 Let (D, 0, ') be one model of Peano's postulates, with 0 ED and ' the 
successor operation, and let (D#, 0#,*) be another such model. For each x 
in D, by an x-mapping we mean a function f from Sx = { ulu E D 1\ u ~x} 
into D# such that f(O) = 0# and f(u') = (f(u))* for all u < x. Show by 
induction that, for every x in D, there is a unique x-mapping (which will be 
denoted fx). It is easy to see that, if Xt < x2, then the restriction of f'(2 to Sx, 
must be fx 1 • Define F(x) = f-..:(x) for all x in D. Then F is a function from D 
into D# such that F(O) = 0# and F(x') = (F(x))* for all x in D. It is easy to 
prove that F is one-one. (If not, a contradiction results when we consider 
the least x in D for which there is some y in D such that x f= y and 
F(x) = F(y).) To see that F is an isomorphism, it only remains to show that 
the range ofF is D#. If not, Let z be the least element of D# not in the range 
of F. Clearly, z f= 0#. Hence, z = w* for some w. Then w is in the range ofF, 
and so w = F(u) for some u in D. Therefore, F(u') = (F(u))* = w* = z, 
contradicting the fact that z is not in the range of F. 

The reason why this proof does not work for models of first-order 
number theory Sis that the proof uses mathematical induction and the least­
number principle several times, and these uses involve properties that cannot 
be formulated within the language of S. Since the validity of mathematical 
induction and the least-number principle in models of S is guaranteed to 
hold, by virtue of axiom (S9). only for wfs of S. the categoricity proof is not 
applicable. For example, in a non-standard model for S, the property of 
being the interpretation of one of the standard integers 0, i, 2, 3, ... is not 
expressible by a wf of S. If it were, then, by axiom (S9), one could prove that 
{0, I, 2, 3, ... } constitutes the whole model. 
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3.7 Use a reduction procedure similar to that given for the theory K 2 on 
pages 116-17. For any number k, define k · t by induction: 0 · t is 0 and 
(k + I) . tis (k · t) + t; thus, k ·tis the sum oft taken k times. Also, for any 
given k, let t- s(modk) stand for (3x)(t = s + k · x v s = t + k · x). In the 
reduction procedure, consider all such wfs t = s(mod k), as well as the wfs 
t < s, as atomic wfs, although they actually are not. Given any wfs ofS+, we 
may assume by Proposition 2.30 that it is in prenex normal form. Describe a 
method that, given a wf (3y)CC. where CC contains no quantifiers (remem­
bering the convention that t s(mod k) and t < s are considered atomic), 
finds an equivalent wf without quantifiers (again remembering our con­
vention). For help on details, see Hilbert and Bemays (1934, I, pp. 359-366). 
3.8 (b) Use part (a) and Proposition 3.6(a)(i). 

(c) Use part (b) and Lemma 1.12. 
3.13 Assumef(x1, ... ,x11 ) = Xn+l is expressible inS by &a(x1, ... ,x11+1). Let 
CC(x], ... ,Xn+d be Ba(xJ, ... ,Xn+l)/\(\fz)(z<Xn+l::::::} l&a(xl,···,Xn+J)). 
Show that CC represents f(x1, ... ,xn) inS. [Use Proposition 3.8(b).] Assume, 
conversely, thatj(x1, ... ,x11 ) is representable inS by d(x1, ... ,xn+d· Show 
that the same wf expresses f(xl, ... , X11) = Xn+l in S. 
3.16 (a) (3y)u<y<vR(xl, ... ,X11 ,y) is equivalent to (3z)z<v~(u+l)R(xl, ... ,x11 , 

z + u + I), and similarly for the other cases. 
3.18 If the relation R(xh ... ,xn,y): f(xl, ... ,x11 ) = y is recursive, then CR 
is recursive and, therefore, so is f(xJ, .. . ,x11 ) = J1y(CR(x1, ... ,x11 ,y) = 0). 
Conversely, if f (x1 , ... , X 11 ) IS recurstve, C R (x1, ... , X11 , y) = 
sgff(xl, ... , x,,) - yf is recursive. 
3.19 

[vfn) = b(J1Yy~II+1(Y2 > n)) 

II(n) = L sg(Cpr(Y)) 
)'~II 

3.20 [ne] = [n(l + 1 + J, +if+· .. +~)], since n C~~Jl)! + (n~l)! + · .. ) < ~­
Let I+ 1 + ~ + · · · + ,~! = g~r}_ Theng(O) = 1 and g(n + 1) = (n + 1)g(n) +1. 

Hence, g is primitive recursive. Therefore, so is [neJ = ["gY')] = qt(n!, ng(n)). 
11. 

3.21 RP(y,z) stands for (\fx)x::;;y+z(x[y 1\x[z::::::} x = 1). 

q>(n) = :Esg(CRp(y,n)) 
y::;;n 

3.22 Z(O) = O,Z(y+ 1) = Ui(y,Z(y)). 
3.23 Let v = (PoPI ... Pk) + I. Some prime q is a divisor of v. Hence, q ~ v. 
But q is different from po,PJ , ... ,pk. If q =Ph then pj[v and PjiPoPJ .. ·Pk 
would imply that pjfl and, therefore, pj = I. Thus, Pk+l ~q ~ 

(PoPJ .. ·Pk) + 1. 



~-----------A_N_s_w_E_R_s_T_o __ sE __ LE_c_T_E_D __ E_x_E_R_c_I_s_Es ____________ ~l I 399 

3.26 [f Goldbach's conjecture is true, his the constant function 2. If Gold­
bach's conjecture is false, h is the constant function 1. In either case, h is 
primitive recursive. 
3.28 List the recursive functions step by step in the following way. In the 
first step~ start with the finite list consisting of Z(x),N(x), and Ul(x). At the 
(n + l )th step, make one application of substitution, recursion and the p­
operator to all appropriate sequences of functions already in the list after the 
nth step, and then add the n + 1 functions Uj+1 (x1, ••• , xn+l) to the list. 
Every recursive function eventually appears in the list. 
3.29 Assume l<( y) is primitive recursive (or recursive). Then so is 
fx(x) + 1. Hence, f-..(x) + 1 is equal to fk(x) for some k. Therefore, 
Jk(x) = fx(x) + 1 for all x and, in particular, fk(k) = fk(k) + l. 
3.30 (a) Let d be the least positive integer in the set Y of integers of the 
form au+ bv, where u and v are arbitrary integers- say, d = au0 + bv0 . Then 
dja and dlb. (To see this for a. let a= qd + r, where O~r <d. Then 
r =a- qd =a - q(auo + bvo) = (1 - quo)a + (-qvo)b E Y. Since d is the 
least positive integer in Y and r < d, r must be 0. Hence dla.) If a and bare 
relatively prime, then d = 1. Hence, I = au0 + bv0 . Therefore, au0 = 1 
(mod b). 
3.32 (a) 1944 = 2335. Hence, 1944 is the Godel number of the expression 

( ). 
(b) 49 = 1 + 8(2131). Hence, 49 is the Godel number of the function 

letter fl. 
3.34 (a) g(fl) = 49 and g(ai) = 15. So, g(fl(at)) = 2493351575 . 

3.37 Take as a normal model for RR, but not for S, the set of polynomials 
with integral coefficients such that the leading coefficient is non-negative. 
Note that (Vx)(3y)(x = y + y V x = y + y + 1) is false in this model but is 
provable in S. 
3.38 Let oo be an object that is not a natural number. Let oo' = oo, oo 
+x = x + oo = oo for all natural numbers x, oo · 0 = 0 · oo = 0, and 
00 ·X = X • 00 = 00 for all X f:- 0. 
3.41 AssumeS is consistent. By Proposition 3.37(a), t§ is not provable inS. 
Hence, by Lemma 2.12, the theory Sg is consistent. Now, ~~is equivalent 
to (3x2)&f(x2, 1 ~~ ). Since there is no proof of~ in S, &f(k, q) is false for 
all natural numbers k, where q = 1 ~~.Hence, l-8 !Pf(k, q) for all natural 
numbers k. Therefore, 1-sg !&/(k, q). But, F=sg (3x2)&f(x2, q). Thus Sg is ill­
inconsistent. 
3.45 (G. Kreisel, Mathematical Reviews, 1955, Vol. 16, p. 103) Let &.J(xJ) 
be a wf of S that is the arithmetization of the following: x1 is the Godel 
number of a closed wf@ such that the theory S + { f!4} is ill-inconsistent. 
(The latter says that there is a wf <9'(x) such that, for every n, <9'(n) is provable 
inS+ {f!4}, and such that (3x)•<9'(x) is provable inS+ {f!4}.) By the fixed­
point theorem, let CC be a closed wf such that 1-s C(/-{:::::::?@(1 CC1 ). Let 
K = S + {CC}. (1) CC is false in the standard model. (Assume CC true. Then K 
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is a true theory. But, ~ {:::::::}.?l/( 1 ~~) is true, since it is provable in S. So, 
.~( 1~1 ) is true. Hence, K ism- inconsistent and, therefore, K is not true, 
which yields a contradiction.) (2) K is m-consistent. (Assume K m-incon­
sistent. Then ,qo(1 ~~) is true and, therefore, ~is true, contradicting (I).) 
3.46 (a) Assume the ·function' form of Church's thesis and let A be an 

effectively decidable set of natural numbers. Then the character­
istic function CA is effectively computable and, therefore, recur­
sive. Hence, by definition, A is a recursive set. 

(b) Assume the 'set' form of Church's thesis and let f(x1, ••• ,x11 ) be 
any effectively computable function. Then the relation 
f(x1, •.• ,x11 ) = y is effectively decidable. Using the functions rl, af 
of pages 183-4 let A be the set of all z such that 
f(a7+1 (z), ... , a:!+1(z)) = a::tl (z). Then A is an effectively decid­
able set and, therefore, recursive. Hence, f (x1 , . . . , x11 ) 

= a;tl (JlZ(CA(z) = 0)) is recursive. 
3.48 Let K be the extension of S that has as proper axioms all wfs that are 
true m the standard model. If Tr were recursive, then, by Proposition 3.38, I( 
would have an undecidable sentence, which is impossible. 
3.49 Use Corollary 3.39. 
3.50 Let f(x1, ••• ,x,J be a r~ursive function. So, f(x1, • • • ,x11 ) = y is a 
recursive relation, expressible inK by a wf d(x1, .. . ,x11 ,y). Then f is rep­
resentable by d(x1 , ••• ,x11,y) 1\ (\fz)(z < y ==} !d(xl, ... ,x11 ,z)), where 
z < y stands for z~y 1\ z # y. 
3.53 (a) 1-0 = ]==}~. Hence, 1- &8eu;( 1 0 = I1 )==}&8eu;(1~1 ) and, 

therefore, 1- !84eu;(1 ~1)==} I &8eu;(1 0 = I 1 ). Thus, 1- ~=?­
!&8eu;(10 = I 1 ). 

(b) 1- &8eu;(1~1 )==}88eu;(1 &8eu;( 1~1 )1 ). Also, 1- ~~ ~.?lieu; 
( 1 ~ 1 ), and so, 1- f!4eu;(1 1~1) ~ 88~u;( 1 &8eu;( 1 ~1) 1 ). 

Hence 1- &8eu;(1 ~1 ) =?-f!4eu;(1 1~1 ). By a tautology, 
1- ~=?-(!~==}(~ 1\ 1~)); hence, 1- &8eu;(1 ~1 )==} &8eu;(1 1~ 
==}(~ 1\ 1~) 1 ). Therefore, 1- &8eu;(1 ~1 ) ==} (&8eu;(1 1~1 ) 
==} &8eu;( 1 (~ 1\ 1~) 1)). It follows that 1- &8eu;(1~1 ) ==} 
@eu;(1 (~ 1\ !~) 1 ). But, 1- ~ 1\ 1~==}0 =I; so, 1- f!4eu; 
(1 (~ 1\ 1~)1)=?-88eu;(1 0 = I 1

). Thus, 1- &8eu;( 1~1 )==} 
&8eu;( 1 0 = I 1

), and 1- l&aeu;(1 0= I 1
) =>!&8eu;(1~1 ) . 

Hence, 1- !&8eu;(1 0 = I 1)=>~. 
3.56 If a theory K is recursively decidable, the set of Godel numbers of 
theorems ofK is recursive. Taking the theorems ofK as axioms, we obtain a 
recursive axiomatization. 
3.58 Assume there is a recursive set C such that TK C C and RefK C C. Let 
C be expressible inK by d(x). Let$', with Godel number k, be a fixed point 
for -.d(x). Then, 1-K ff {::::::::} !d(k). Since d(x) expresses C inK, 1-K d(k) 
or 1-K !d(k). 
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(a) If 1-K d(k), then 1-K 1.%. Therefore, k ERefK C C. Hence, 
1-K ld(k), contradicting the consistency of K. 

(b) If 1-K !d(k), then 1-K !F. So, k E TK ~ C and therefore, 1-K d(k), 
contradicting the consistency of K. 

3.60 Let K2 be the theory whose axioms are those wfs of K1 that are 
provable in K*. The theorems of K 2 are the axioms of K2. Hence, x E TK2 if 
and only if FmlK1 (x) 1\ x E TK*. So, if K* were recursively decidable- that is, 
if TK* were recursive - TK2 would be recursive. Since K2 is a consistent 
extension of K 1, this would contradict the essential recursive undecidability 
ofK1• 

3.61 (a) Compare the proof of Proposition 2.28. 
(b) By part (a), K* is consistent. Hence, by Exercise 3.60, K* is es­

sentially recursively undecidable. So, by (a), K is recursively un­
decidable. 

3.62 (b) Take (\fx)(Aj(x)~x = x) as a possible definition of A). 
3.63 Use Exercises 3.61(b) and 3.62. 
3.64 Use Corollary 3.46, Exercise 3.63, and Proposition 3.47. 

CHAPTER 4 

4.12 (s) Assume u Ex x y. Then u = (v, w} = { {v}, {v, w}} for some v inx 
and w in y. Then v E xuy and wE xuy. So, { v} E g>(xuy) and 
{v, w} E g>(xuy). Hence, { {v }, {v, w}} E gtl(gtl(xuy)). 

4.15 (a) !0(x) C U(Ux) and ~(x) C U(Ux). Apply Corollary 4.6(b). 
(b) Use Exercise 4.12(s), Exercise 4.13(b), axiom W, and Corollary 

4.6(b). 
(c) If Rel(Y), then Y ~ !0(Y) x ~(Y). Use part (b) and Corollary 

4.6(b). 
4.18 Let X= { (y1 ,y2}IY1 = Y2 1\ Yl E Y}; that is, X is the class of all or­
dered pairs (u, u} with u E Y. Clearly, Fnc(X) and, for any set x, 
(3v)( (v, u} EX 1\ v E x){=;>u E Y nx. So, by axiom R, M(Y n x) 
4.19 Assume Fnc(Y). Then Fnc(xfY) and !0(xfY) c x. By axiom R, 
M (Y"x). 
4.22 (a) Let 0 be the class {ulu =fi u}. Assume M(X). Then 0 C X. So, 0 = 

0 nX. By axiomS, M (0). 
4.23 Assume M(V). Let Y = {xlx~ x }. [t was proved above that -.M(Y). 
But Y c V. Hence, by Corollary 4.6(b), ·M(V). 
4.30 (c) Let u be the least E-element of X- Z. 
4.33 (a) By Proposition 4.11(a), Trans(OJ). By Proposition 4.ll(b) and 

Proposition 4.8(j), OJ E On. If OJ E K 1 then OJ E OJ, contradicting 
Proposition 4.8(a). Hence, OJ~ K 1• 

4.39 Let xl =X X {0} and l) = y X {1}. 
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4.40 For any u ~ y, let the characteristic function C11 be the function with 
domainy such that Cu'w = 0 ifw E u and C11'w =I ifw E y- u. Let F be the 
function with domain !?J>(y) such that F'u = Cu for u E &(y). Then !?J>(x)"'-'2Y 

F 
4.41 (a) For any set u, .@(u) is a set by Exercise 4.15(a). 

(b) If u E xY, then u C y x x. So, x'' c !?J>(y x x). 
4.42 (a) 0 is the only function with domain 0. 

(c) If .@(u) f:- 0, then ~(u) -1- 0. 
4.43 Define a function F with domain X such that, for any x0 in X, F (xo) is 
the function gin x{u} such that g'u = Xo. Then X"'-' x{u}. 

4.44 Assume X rv Y and Z "'-' W. If ·M(W), then _;M(Z) and X 2 = yw = 0 
F G 

by Exercise 4.4l(a). Hence, we may assume M(W) and M(Z). Define a 
function <I> onX2 as follows: iff E X 2

, let <l>'f = F of o a-1. Then%2 "'-'Yw. 
4.45 If X or y is not a set, then zXuY and zx X zY are both 0. We<Dmay 
assume then that X and Y are sets. Define a function <I> with domain zxuY as 
follows: iff E zxuY, let <l>'f = (X [ j, Y [f). Then zxuY "'zx X zY. 
4.46 Define a function F with domain (xYY as follows: fot any f in (xY)Z, 
let F'f be the function in xyxz such that (F'f)'(u, v) = (f'v)'u for all 
(u, v) E y x z. Then (x>'Y "'-' xyxz. 

F 

4.47 If ·M(Z), (X x Y)2 = 0 = 0 x 0 = X 2 x Y2
. 

M(Z). Define a function F: X 2 x yz ~(X x Y)2 

f EX2 ,g E yz,(F'~J,g))'z= (f'z,g'z) for all 
xz x yz "'-' (X x Y) . 

F 

Assume then that 
as follows: for any 
z 1n Z. Then 

4.48 This is a direct consequence of Proposition 4.19. 
4.54 (b) Use Bernstein's theorem (Proposition 4.23(d)). 

(c) Use Proposition 4.23(c,d). 
4.55 Define a function F from V into 2c as follows: F'u = { u, 0} if 
u f. 0;F'0 = {1, 2}. Since, F is one-one, V~2c. Hence,- by Exercises 4.23 and 
4.50, •M(2c). 
4.56 (h) Use Exercise 4.45. 

(i) 2X~2x +cx~2x +c 2x = 2x X 2 rv 2x X 21 rv 2x+cl rv 2x. 

Hence, by Bernstein's Theorem, 2x +c x '""' 2x. 

4.59 Under the assumption of the axiom of infinity, OJ is a set such that 
(3u)(u E OJ) 1\ (\fy)(y E OJ::::} (:3z)(z E OJ 1\y C z)). Conversely, assume (*) 
and let b be a set such that (i) (3u)(u E b) and (ii) (\fy)(y E b 
::::} (:3z)(z E b 1\ y C z)). Let d = { ul(:3z)(z E b 1\ u C z)}. Since d C !?J> (U(b)), 
dis a set. Define a relation R = { (n, v)ln E OJ 1\ v = { ulu Ed 1\ u "'-' n} }. Thus, 
(n, v) E R is and only if n E w and v consists of all elements of d that are 
equinumerous with n. R is a one-one function with domain w and range a 
subset of &(d). Hence, by the replacement axiom applied to R-1, OJ is a set 
and, therefore, axiom I holds. 
4.62 (a) Induction on a in (\fx)(x rv a A a E w::::} Fin(!?J>(x))). 
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(b) Induction on a in (\fx)(x"' a 1\ a E OJ 1\ (\fy)(y Ex==? Fin(y)) ==? 
Fin(Ux)). 

(c) Use Proposition 4.27(a). 
(d) x C f?l'(Ux) andy Ex==? y C Ux. 
(e) Induction on a in (\fx)(x::: ex 1\ a E OJ==? (x~y v y~x)) 
(g) Induction on a in (\fx)(x"' a 1\ a E OJ 1\ Inf(Y) ==? x~Y) 
(h) Use Proposition 4.26(c). 
(j) y}' C f?l'(y x x) 

4.63 Let Z be a set such that every non-empty set of subsets of Z has a 
minimal element. Assume Inf(Z). Let Y be the set of all infinite subsets of z. 
Then Y is a non-empty set of subsets of Z without a minimal element. 
Conversely, prove by induction that, for all a in OJ, any non-empty subset of 
£?/'(a) has a minimal element. The result then carries over to non-empty 
subsets of f?l'(z), where z is any finite set. 
4.64 (a) Induction on a in (\fx)(x"' a 1\ a E OJ 1\ Den(y) ==? Den(xuy)). 

(b) Induction on a in (\fx)(x 1"'-.J a 1\x f:- 01\ Den(y) ==? Den(x x y)) 
(c) Assume z ~ x and Den(z). Let zi"'-J OJ. Define a function g on x as 

follows: g'u = u if u Ex- z; g'u1 (])'((f'u)') if u E z. Assume x 
is Dedekind-infinite. Assume z c x and x 1"'-.J z. Let v Ex- z. Define 
a function h on OJ such that h'0 = v and h'(a') = J'(h'a) if a E OJ. 
Then h is one-one. So, Den(h"w) and h"vJ c x. 

(f) Assume y rf. x. (i) Assume xu {y} 1"'-.J x.. Define by induction a 
function g on OJ such that g'0 = y and g'(n + L) = f'(g'n). g is a 
one-one function from OJ into x. Hence, x contains a denumerable 
subset and, by part (c), x is Dedekind-infinite. (ii) Assume x is 
Dedekind-infinite. Then, by part (c), there is a denumerable subset 
z of x. Assume zrv OJ. Let Co= (f-1)'0. Define a function F as 
follows: F'u = u fol u E x- z; F'c0 = y; F'u = (f- 1 )'( (f'u - I) for 
u E z- {co}. Then X rv xu{y}. If z is {Co, C]' c2, ... }, F takes Cj+J 

F 
into ci and moves c0 into y. 

(g) Assume OJ~x. By part (c), x is Dedekind-infinite. Choosey rf. x. 
By part (f), xrvxu{y}. Hence, x+cl=(xx{0})u{(0,1)} 
rv XU {y} ::=:X. 

4.65 Assume M is a model of NBG with denumerable domain D. Let z be 
the element of D satisfying the wf X = 2(1). Hence, z satisfies the wf •(x rv OJ). 
This means that there is no object in D that satisfies the condition of being a 
one--<me correspondence between z and OJ. Since Dis denumerable, there is a 
one-one correspondence between the set of 'elements' of z (that is, the set of 
objects v in D such that FM v E z) and the set of natural numbers. However, 
no such one-one correspondence exists within M. 
4.68 NBG is finitely axiomatizable and has only the binary predicate letter 
A~. The argument on p. 269-70 shows that NBG is recursively undecidable. 
Hence, by Proposition 3.49, the predicate calculus with A~ as its only non­
logical constant is recursively undecidable. 
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4.69 (a) Assume x~mcx. If 2~x, then, by Propositions 4.37(b) and 4.40, 

Wcx~X U Wcx~X X Wcx~Wcx X Wcx rv Wcx. If X COntains one element, 
use Exercise 4.64(c,f). 

(b) Use Corollary 4.41. 
4.70 (a) g>(wcx) X g>(wcx) rv 2Wa X 2Wa rv 2wa+cwa rv 2Wrx ::: g>(wcx) 

(b) (g>(wcx)Y rv (2way rv 20JaXX rv 20J~ rv g>(mcx) 
4.71 (a) If y were non-empty and finite, y rv Y+cY would contradict Ex­

ercise 4.62(b ). 
(b) By part (c), lety = u u v, u n v = 0, u rv y, v rv y. Lety"' v. Define a 

function g on g>(y) as follows: for x C y, let g'x = uJ(j"x). Then 
g'x c y and y rv u~g'x~y. Hence, g'x rv y. So, g is a one-one 
function from g>(y) into A = {zlz C y Az rv y}. Thus, gt>(y)~A. 
Since A C g>(y), A~g>(y). 

(e) Use part (d): {zlz C y Az rv y} C {zlz C y A Inf(z)}. 
(f) By part (c), let y = uuv, unv = 0, u rv y, v rv y. Let u rv V. Define f 

h 
on y as follows: f'x = h'x if x E u and f'x = (h-1)'x if x E v. 

4.72 (a) Use Proposition 4.37(b). 
(b) (i) Perm (y) c yY~(2l'Y rv 2YXY rv 2!' rv gt'(y). 

(ii) By part (a), we may use Exercise 4.7 (c). Let 
y = u u v, u n v = 0, u rv y, v rv y. Let u rv v andy rv u. Define a 

H G 
function F: g>(y) -----+ Perm (y) in the following way: assume 
z E gt'(y). Let t/Jz: y-----+ y be defined as follows: 1/fz'x 
= H'x if x E G"z; 1/Jz'x = (H-1)'x if (H- 1)'x E G"z; 1/Jz'x =x 
otherwise. Then 1/Jz E Perm(y). Let F'z = 1/Jz· F is one-one. 
Hence, gt'(y) ~Perm(y). 

4.73 (a) Use WO and Proposition 4.19. 
(b) The proof of Zorn "'* WO in Proposition 4.42 uses only this 

special case of Zorn's Lemma. 
(c) To prove the Hausdorff maximal principal (HMP) from Zorn, 

consider some c -chain Co in x. Let y be the set of all c -chains C in 
x such that Co~ C and apply part (b) toy. Conversely, assume 
HMP. To prove part (b), assume that the union of each non­
empty c -chain in a given non-empty set x is also in x. By HMP 
applied to the c-chain 0, there is some maximal c -chain C in x. 
Then U( C) is an c -maximal element of x. 

(d) Assume the Teichmiiller-Tukey Lemma (TT). To prove part (b), 
assume that the union of each non-empty c-chain in a given non­
empty set xis also in x. Let y be the set of all c-chains in x. y is 
easily seen to be a set of finite character. Therefore, y contains a c­
maximal element C. Then U(C) is a c-maximal element of x. 
Conversely, let x be any set of finite character. In order to prove 
TT by means of part (b), we must show that, if C is a c -chain in x, 
then U( C) E x. By the finite character of x, it suffices to show that 
every finite subset z of U( C) is in x. Now, since z is finite, z is a 
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subset of the union of a finite subset W of C. Since C is a C -chain, 
W has a C -greatest element w E x, and z is a subset of w. Since x is 
of finite character, z Ex. 

(e) Assume Rel(x). Let u = {zl(3v)(v E .@(x) 1\z = {v}f x}; that is, 
z E u if z is the set of all ordered pairs (v, w) in x, for some fixed v. 
Apply the multiplicative axiom to u. The resulting choice set y C x 

is a function with domain .@(x). Conversely, the given property 
easily yields the multiplicative axiom. If x is a set of disjoint non­
empty sets, let r be the set of all ordered pairs (u, v) such that u Ex 
and v E u. By part (e), there is a function f C r such that 
.@(j) = .@(r) = x. The range ~(f) is the required choice set for x. 

(f) By trichotomy, either x-< y or y-< x. If x-< y, there is a function 
with domain y and range x. (Assume x 7 Yt C y. Take c Ex. Define 

g'u = c if u E y- Yl, and g'u = (f-1 )'u if u E Yl·) Similarly, if 
y-< x, there is a function with domain x and range y . Conversely, 
to prove WO, apply the assumption (f) to x and Yf'(&>(x)) . Note 
that, if (3/)(f: u-+ v 1\ ~(f) = v), then &(v) -< &(u). Therefore, 
if there were a function f from x onto £'(8/'(x)), we would have 
£'(8/'(x)) -< &(£'(8/'(x))) -< &(x) contradicting the definition of 
£'(8/'(x)). Hence, there is a function from :Yf'(&(x)) onto x. Since 
£' ( &(x)) is an ordinal, one can define a one -one function from x 
into £'(8/'(x)). Thus x-< :Yf'(&(x)) and, therefore, x can be well­
ordered. 

4.76 If< is a partial ordering of x, use Zorn's lemma to obtain a maximal 
partial ordering <* of x with < C <*. But a maximal partial ordering must 
be a total ordering. (If u, v were distinct elements of x unrelated by <*, we 
could add to <* all pairs (u1, v1) such that u1 ~ *u and v ~ *v1• The new 
relation would be a partial ordering properly containing <*.) 
4.79 (b) Since X X y rv X +cy, X X y = aub with anb = ¢, a rv x, b ""'y. 

Let r be a well-ordering of y. (i) Assume there exists u in x such 
that (u, v) E a for all v in y. Then y~a. Since a""' x, y~x, con­
tradicting •(y~x). Hence, (ii) for any u in x, there exists v in y 
such that (u, v) E b. Define f: x-+ b such that f'u = (u, v), where v 
is the r-least element of y such that (u, v) E b. Since f is one~one, 
x~b "'y. 

(c) Clearly Inf(z) and Inf(x +c z). Then 

X +c Z'"'"' (x +c z)2 "'r +c 2 X (x X z) +c? "'X +c 2 X (x X z) +c Z 

Therefore, X x z~2 x (x x z)~x +c 2 x (x x z) +c z "'x +c z. Con­
versely, x +c z~x x z by Proposition 4.37(b). 

(d) If AC holds, (Vy)(Inf(y) ::::} y rv y x y) follows from Proposition 
4.40 and Exercise 4.73(a). Conversely, if we assume y rv y X y for 
all infinite y, then, by parts (c) and (b), it follows that x~:Yt'x for 



~[ ANSWERS TO SELECTED EXERCISES 

any infinite set x. Since £''xis an ordinal, x can be well-ordered. 
Thus, WO holds. 

4.81 (a) Let (be a well-ordering of the range of r. Let f'f/J be the (-least 
element of ~(r), and let f'n be the (-least element of those v in 
~(r) such that (f'n, v} E r. 

(b) Assume Den(x) 1\ (\fu)(u EX==} u -=1- 0). Let (t) rv X. Let r be the set 
of all pairs (a, b} such that a and bare finite seqJences (vo, v1 , •.. vn} 
and (vo, VJ, • •. , Vn+l} such that, for O~i~n + 1, v; E g'i. Since 
:?tf(r) C .@(r), PDC produces a function h: w ~ .@(r) such that 
(h'n, h'(n')) E rfor all n in w. Definethechoicefunctionf by taking, 
for each u in x, f'u to be the (g'u)th component of the sequence 
h'(g'u). 

(c) Assume PDC and Inf(x). Let r consist of all ordered pairs 
(u, uu{a}), where uu{a} Cx,Fin(uu{a}), and arf.u. By PDC, 
there is a function f: w ~ .@(r) such that(f'n,f'(n')) E r for all n 
in w. Define g: w ~ x by setting g'n equal to the unique element of 
f'(n')-f'n. Then g is one-one, and so, w~x. 

(d) In the proof of Proposition 4.44(b ), instead of using the choice 
function h, apply PDC to obtain the function f. As the relation r, 
use the set of all pairs (u, v) such that u E c, v E c, v E unX. 

4.82 (a) Use transfinite induction. 
(d) Use induction on {3. 
(e)- (f) Use transfinite induction and part (a). 
(h) Assume u C H. Let v be the set of ranks p'x of elements x in u. Let 

f3 = Uv. Then u C '1!'{3. Hence u E f!J('P'f3) = 'P'(f3) C H .. 
4.83 Assume X=/=- 01\ -{3y)(y EX 1\ynX = f/J). Choose u EX. Define a 

function g: g'0 = unX, g'(n') = U(g'n)nX. Let x = U(~(g)). Then 
x f:- f/J and (\fy)(y Ex==> ynx =/=- f/J) . 

4.88 Hint: Assume that the other axioms of NBG are consistent and that 
the Axiom of Infinity is provable from them. Show that Hw is a model 
for the other axioms but not for the Axiom of Infinity. 

4.89 Use Hco +ow 

4.95 (a) Let C= {xl -{3y)(x E y 1\y Ex)}. 

CHAPTER 5 

5.1 qoiBqo 
qoBRql 
q1l1qo 
qlBRcn 

5.2 (a) Ui_ (b) c5(x) 
5. 7 Let a Turing machine ff compute the function f. Replace all occur­
rences of q0 in the quadruples of ff by a new internal state q, .. Then add the 
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quadruples q0a;ai'L· for all symbols ai of the alphabet of !F. The Turing 
machine defined by the enlarged set of quadruples also computes the 
function f. 
5.10 (a) N(x) = x + 1 (c) 2x 
5.12 (a) 

• &i (K2)2 l ao I 

! 0 

c 

1 
~ !Rra0 r -- &i 

~ 0 

9lK3C 

5.14 (a) The empty function (b) N(x) = x + 1 (c) Z(x) 
5.16 If f(at) = b1, ... ,J(a11 ) = b,, then 

f(x) = JlY[(x = a1 1\y = bt) V · · · V (x =an 1\y = bn)] 

5.20 Let g(z,x) = U(J1YTJ (z,x,y)) and use Corollary 5.11. Let v0 be a 
number such that g(x,x) + 1 = g(v0 ,x). Then, if g(v0 , v0 ) Is defined, 
g(vo, vo) + 1 = g(vo, vo), which is impossible. 

5.21 g(xJ' ... ,Xn) =h) (Xt' ... ,x,) . sg( CRI (xl' ... ,·xn)) + ... + 
hk(XJ, .. . , Xn) · sg( CRk (xl, ... , Xn)) 

5.22 (a) Assume that h(x) is a recursive function such that h(x) = 
J1yT1(x,x,y) for every x in the domain of J1yT1(x,x,y) . Then 
(3y)T1(x,x,y) if and only if T1(x,x,h(x)). Since T1(x,x,h(x)) is a 
recursive relation, this contradicts Corollary 5.13(a). 

(b) Use Exercise 5.21. 
(c) Z(J1yT1 (x,x,y)) is recursively completable, but its domain is 

{xl(3y)TJ (x,x,y)}, which, by Corollary 5.13(a), is not recursive. 
5.29 Let fl be a Turing machine with a recursively unsolvable halting 
problem. Let ak be a symbol not in the alphabet of fl. Let q,. be an internal 
state symbol that does not occur in the quadruples of fl. For each qi of fl 
and aj of fl, if no quadruple of fl begins with 'Lab then add the quadruple 
qiajakqr- Call the new Turing machine :Y*. Then, for any initial tape de­
scription a of fl, fl*, begun on a, prints ak if and only if fl is applicable to 
a. Hence, if the printing problem for !T* and ak were recursively solvable, 
then the halting problem for !T would be recursively solvable. 
5.31 Let fl be a Turing machine with a recursively unsolvable halting 
problem. For any initial tape description a for !Y. construct a Turing ma­
chine !T a that does the following: for any initial tape description {J, start fl 
on a; if fl stops, erase the result and then start ff on {J. It is easy to check 
that fl is applicable to a if and only if fl a has a recursively unsolvable 
halting problem. It is very tedious to show how to construct fl a and to 
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prove that the Godel number of !T Cf. is a recursive function of the Godel 
number of a. 
5.33 Let v0 be the index of a partial recursive function G(x) with non-empty 
domain. If the given decision problem were recursively solvable, so would be 
the decision problem of Example l on page 332 
5.34 By Corollary 5.16, there is a recursive function g(u) such that 
cp! u}(x) = x · pyT1 (u, u,y). Then qJ!(u} has an empty domain if and only if 
•(~y)T1 (u, u,y). But, •(3y)T1 (u, u,y) is not recursive by Corollary 5.13(a). 
5.39 (a) By Corollary 5.16, there is a recursive function g(u) such that 

cp!(u}(x) = py(x = u 1\y = x). The domain of cp!(u) is {u}. Apply 
the fixed-point theorem to g. 

(b) There is a recursive function g(u) such that cp!(u)(x) = 
py(x f: u 1\y = 0). Apply the fixed-point theorem to g. · 

5.42 (a) LetA= {xlf(x) E B}. By Proposition 5.2l(c), B is the domain of a 
partial recursive function g. Then A is the domain of the compo­
sition g of. Since g of is partial recursive by substitution, A is r.e. 
by Proposition 5.21(c). 

(b) Let B be a recursive set and let D be the inverse image of B under a 
recursive function f. Then xED if and only if CB(f(x)) = 0 and 
CB(f(x)) = 0 is a recursive relation. 

(c) Let B be an r.e. set and let A be the image {f(x)lx E B} under a 
partial recursive function f. If B is empty, so is A . If B is non­
empty, then B is the range of a recursive function g. Then A is the 
range of the partial recursive function f(g(x)) and, by Proposition 
5.21(b ), A is r.e. 

(d) Consider part (b). Given any natural number x, compute the value 
f(x) and determine whether f(x) is in B. This is an effective pro­
cedure for determining membership in the inverse image of B. 
Hence, by Church's thesis, B is recursive. 

(e) Any non-empty r.e. set that is not recursive (such as that of 
Proposition 5.2l(e)) is the range of a recursive function g and is, 
therefore, the image of the recursive set w of all natural numbers 
under the function g. 

5.43 The proof has two parts: 
I. Let A be an infinite recursive set. Then A is the range of a recursive 

function f, by Proposition 5.21(d). Since A is infinite, 
h(u) = J-ty(f(y) > u) is recursive. Let ao be the least element of A. 
Define g(O) = ao, g(n + 1) = f(h(g(n)). Then g is a strictly in­
creasing function with range A. 

2. Let A be the range of a strictly increasing recursive function g. 
Then g(x) > x for all x (by the special case of Proposition 4.15). 
Hence, x E A if and only if(::Ju)u ~xg(u) = x. So, A is recursive by 
Proposition 3.18. 
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5.44 Assume A is an infinite r.e. set. Let A be the range of the recursive 
function g(x). Define the function f by the following course-of-values re­
curswn: 

f(n) = g(,uy((\iz)z<ng(y) f- f(z))) = g(py((Vz)z<ng(y) f- (f#(n))z)) 

Then A is the range of h, h is one-one, and h is recursive by Propositions 
3.18 and 3.20. Intuitively, f(O) = g(O) and, for n > O,f(n) = g(y), where y is 
the least number for which g(y) is different from f(0),/(1), ... ,f(n- 1). 
5.45 Let A be an infinite r .e. set, and let A be the range of the recursive 
function g. Since A is infinite, F(u) = py(g(y) > u) is a recursive function. 
Define G(O) = g(O), G(n + 1) = g(py(g(y) > G(n))) = g(F(G(n))). G is a 
strictly increasing recursive function whose range is infinite and included in 
A. By Exercise 5.43, the range of G is an infinite recursive subset of A. 
5.46 (a) By Corollary 5.16, there is a recursive function g(u, v) such that 

q>!(u,v) (x) = py(TJ (u,x,y) V T1 (v,x,y)). 
5.47 Assume (\7). Let f(x1, ••• , xn) be effectively computable. Then the set 
B = {ulf((u)1 , •.. , (u),J = (u)

11
+ 1} is effectively enumerable and, therefore, 

by (V), r.e. Hence, u E B~(3y)R(u,y) for some recursive relation R. Then 

f(x,, ... ,x") = ([1w(((v)0) 1 = Xt !\ · · · !\ ((v)0 ) 11 = Xn f\R((v)0 , (v)1))]0 ) 11+1 

So, f is recursive. Conversely, assume Church's thesis and let W be an 
effectively enumerable set. If W is empty, then W is r.e. If W is non-empty, 
let W be the range of the effectively computable function g. By Church's 
thesis, g is recursive. But, x E W~(3u)(g(u) = x). Hence, W is r.e. by 
Proposition 5.2l(a). 
5.48 Assume A is r.e. Since A f:- 0, A is the range of a recursive function g(z). 
So, for each z, U(pyT1 (g(z),x,y)) is total and, therefore, recursive. Hence, 
U(pyT1 (g(x),x,y)) + 1 is recursive. Then there must be a number z0 such 
that U(pyT1 (g(x),x,y)) + 1 = U(pyT1 (g(zo),x,y)). A contradiction results 
when x = zo. 
5.49 (a) Let q>(n) = n for all n. 
5.50 Let cp(z) = ai(py[T1 (z, af(y), a~(y)) 1\ af(y) > 2z]), and let B be the 
range of¢. 
5.55 (b) Let A be r.e. Then x E A~(3y)R(x,y), where R is recursive. Let 

~(x,y) express R(x,y) inK. Then k E A~ 1-K (3y)~(k,y). 
(c) Assume k E A~ 1-K <r;v/ (k) for all natural numbers k. Then k E A 

{:::::=?(3y)B.~(k,y) and Bs-1 is recursive (see the proof of Proposition 
3.29 on page 199. 

5.56 (a) Clearly TK is infinite. Let f(x) be a recursive function with range 
TK. Let f!IJ0, q]1 , ••• be the theorems of K, where f!4j is the wf of K 
with Godel number f(j). Let g(x,y) be the recursive function such 
that, if x is the Godel number of a wf ~, then g (x, j) is the Go del 
number of the conjunction ~ 1\ ~ 1\ · · · 1\ ~ consisting of j con­
juncts; and, otherwise, g(x,j) = 0. Then g(f(j),j) is the Godel 
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number of the j-fold conjunction ~j 1\ ~j 1\ · · · 1\ flJJj. Let K' be the 
theory whose axioms are all these j-fold conjunctions, for 
j = 0, 1, 2, ... Then K' and K have the same theorems. Moreover, 
the set of axioms of K' is recursive. In fact, x is the Go del number 
of an axiom of K' if and only if x f:- 0 f\ (3y)y~x(g(f(y),y) = x). 
From an intuitive standpoint using Church's thesis, we observe 
that, given any wf d, one can decide whether dis a conjunction 
f(! 1\ f(! 1\ · · · 1\ f(!; if it is such a conjunction, one can determine the 
number j of conjuncts and check whether f(! is ~j-

(b) Part (b) follows from part (a). 
5.58 (a) Assume ~(xJ) weakly expresses (TK)* in K. Then, for any 

n, ~K ~(n) if and only ifn E (TK)*. Letp be the Godel number of 
~(x1 ). Then ~K ~(P) if and only ifp E (TK)*. Hence, ~K !!JJ(p) if 
and only if the Godel number of ~(p) is in TK; that is, ~K ~(p) if 
and only if not-~K ~(p). 

(b) lfKis recursively decidable, TK is recursive. Hence, TK is recursive 
and, by Exercise 5.57,(TK)* is recursive. So, (TK)* is weakly ex­
pressible inK, contradicting part (a). 

(c) Use part (b); every recursive set is expressible, and, therefore, 
weakly expressible, in every consistent extension of K. 

5.59 (a) (i) b(x). 
(ii) X1 ..;... X2 

(iii) The function with empty domain. 
(iv) The doubling function. 

(b) (i) ff(xh 0) =XI 

ff(O,xz) = xz 

/f((xi)
1

, (xz)') = ft2(xi,xz) 

(ii) /I
2

(XI, 0) =XI 

Jf(xi, (xz)') = (Jl(xi,xz))' 

J}(xt,O) = 0 

J}(x., (xz)') = fl(ff(x,,xz),xt) 

(iii) Jl (O) =I 
Jl ((xi)') = 0 

J}(O) = 0 

/}((xi)')= Jl(Jl(xt)) 

5.61 (a) Any word Pis transformed into QP. 
(b) Any word P in A is transformed into PQ. 
(c) Any word Pin A is transformed into Q. 
(d) Any word Pin A is transformed into n, where n is the number of 

symbols in P. 
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5.62 (a) ex~ ----+ • A (~in A) 

ex ----+ · A 

A----+ex 

(b) ex~ ----+ ~ex (~in A) 

~ex ----+ • A (~in A) 

ex ----+ · A 

A----+ex 

(c) ~----+A (~in A) 

exex ----+ • A 

A ----+ • ex 

(d) ~1113 ----+ t]l3~ (~, 17 in A) 

ex~ ----+ ~l3~ex (~in A) 

13----+y 
y----+A 

ex ----+ · A 

A ----+ ex 

5.63 exa; ----+ Q;ex (i = 1, ... , k) 
ex~ ----+ ~ex ( ~ in A - { a1, ... , ak}) 

ex----+·A 

A----+ex 

5.64 (d) IBI ~ B 
B~l 

(e) IBI ~I 
(f) Let ex, f3 and (J be new symbols. 

131 ----+ I 13 
ex! ----+ 113ex 

ex ----+ A 

lib ----+ Ibex 

lb ----+ I 

bll ----+ bl 

bi-T I 
b----+1 

13----+1 
IBI ----+ b 
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UR 297 COMP, FUNDEF 372 

ReguR 302 Gen 2a, Gen 2b 372 

A 306 PC2 373 

rJ.-»{3 308 AR2 373 
:!7 L2d 375 

Algg- 308 sv 375 
j,B 309 Cont 377 
k, (kl' ... ,k,) 309 2:~ 378 
/s-,1 309 
J ff,n 309 

...., _ 



Index 

Abbreviated truth table 14 
Abelian group 71, 98 
Absolute consistency 43 
A C, see axiom of choice 
Ackermann's model 303 
Addition, ordinal 249 
Adequate sets of connectives 27 
Algebra 

Boolean 9 
cylindrical 123 
Lindenbaum 49 
polyadic 123 

Algebraically closed fields 119 
Algorithm 305, 351 

closed 357 
(fully) equivalent 356 
Markov 352 
normal 352 
over an alphabet 351 
schema 352 
Turing 308 

Algorithmically solvable 328 
ex-sequence 286 
Alphabet of a Turing machine 305 
Alternative denial 29 
Analysis, nonstandard 136 
And 11 
Antecedent 12 
Applicable 308, 351 
AR2 373 
Argument strip 319 
Arguments, logically correct 26 
Arguments of a function 7 
Arithmetic, langauge of 154 
Arithmetical 

hierarchy 333 
relation 190 
set 217 

Arithmetization 190, 192, 349 
Arrows in diagrams 311 
Associativity 

of conjunction, disjunction 23 
Atom 297 
Atomic formula 52 
Auxiliary letter 345 
Axiom 34 

of choice 9, 275 
of class existence 230 
comprehension scheme 291, 294 
extensionality 290, 294 
finite, of choice 277 
Fundierungs- 279 
of infinity 239, 288, 292 
logical 69 
multiplicative 275 
null set 228, 288 
pairing 228, 288 
power set 236, 288 
proper (nonlogical) 69, 70 
of reducibility 293 
of regularity 279, 288 
of replacement 239, 288 
schema 36 
selection 288 
set (primitive recursive, recursive) 197 
of subsets 236 
sum set 236, 288 

Axiomatic theory 34, 211 
Axiomatizable 

finitely 94 
recursive} y 211 

Axiomatization, independent 94 

Basic principle of semantic trees 143 
Bernstein's theorem 8, 255 
Berry's paradox 3 



Beta function of Godel 186 
Biconditional 13 

associativity, commutativity 23 
elimination, introduction, 
negation 78 

rules 78 
Binary relation 6 
Blank square 306 
Blatant contradiction 32 
Boolean algebra 9 
Boolean representation theorem 121 
Bounded 

p-operator 
quantifiers 179 
sums and products 178 

Bound occurrence 53 
Bound variables 53 

change of 85 
Branch 142 

closed 142 
Brouwer, L.E.J. 4 
Burali-Forti's paradox 2, 4 

Cantorian (strongly) 295 
Cantor's paradox 2, 4, 257, 295 
Cantor's theorem 2, 257, 295 
Cardinal 

arithmetic 271 
Frege-Russel 257 
number 2, 8, 279, 282 
sum 258 

Cartesian product 6, 233 
Categorical 112 
Categoricity of AR2 374 
Category theory 295 
Causallaws 12 
Chain 276 
Change of bound variables 85 
Characteristic of a field 117 
Characteristic function 173 
Chinese remainder theorem 190 
Choice 

axiom of, (AC) 9, 275 
denumerable axiom of 280 
finite axiom of 277 
function 275 
principle of dependent 280 
set 9, 275 
universal, function 278 

Church, A. 
Church's theorem 222 
Church's thesis 211, 326 

INDEX 

Circuit, electrical 24 
Class 5, 225 

existence axioms 230 
finite 259 
general, existence theorem 232 
ordinal 243 
power 234 
proper 226 
sum 234 
universal 231 

'Classical' sense of existential 
quantifier 357 

Clean-up machine (C) 315 
Closed 

normal algorithm 357 
set 140 
term 87 
wf 58 

Closure 
transitive, 280 
(universal), of a formula 61 

Commutativity 
of biconditional, conjunction, 

disjunction 23 
Compactness theorem 93, 136 

failure of, in standard second­
order logic 377 

validity of, for general models 380 
Compatible theories 220 
Complement 231 

relative 5 
Complete 

diagram 127 
induction 8, 9, 166 
NP- 31 
theory 86 

Completeness theorem 
general second-order 379 
generalized 121 
Godel's 91 
for L 42 

Composition 7, 241, 357 
normal, of algorithms 358 

Comprehension axiom scheme 291, 
294 

in second-order theories (Comp) 372 
Computable 

2-, 361 
Herbrand-Godel 346 
Markov- 356-7 
standard Turing- 319 
Turing- 309 
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Computation of a Turing machine 308 
Conditional I2 

contrapositive 77 
counterfactual I2 
elimination, introduction 77 
function (Cond) I96 
rules for the 77 

Conjunct II 
Conjunction II 

associativity, commutativity 23 
elimination, introduction 77 
rules 77 

Conjunctive normal form ( cnf) 30 
Connected relation 240 
Connective 13, 44 

primitive 3 5 
principal I4 

Consequence 34 
direct 34 
logical 16, 66 
standard second-order logical 370 

Consequent 12 
Conservative extension 289 
Consistency 72 

absolute 43 
ofL 42 
of a predicate calculus 72 
of S 160, 212 
OJ- 205 

Constant 
individual 51 
nonlogical 57 
(Turing) machine 3I3 

Continuous 139 
uniformly 141 

Continuum 8 
hypothesis 284 
generalized, hypothesis 284 

Contracted model 100 
Contradiction, proof by 78 
Contradictory 18, 65 
Contrapositive 23, 77 
Correlate 357 
Correspondence, one-one 7 
Countable 8, 261 
Counterfactual conditional 12 
Course-of-values recursion 185 
Cowen, R. 32 
Craig's interpolation theorem 33 
Creative 342 
Cretan 'paradox' 2 
Cylindrical algebras 123 

Decidable 
effectively 211 
recursively 216 
theory 34, 362 
wf 169 

Decision problem 361 
Dedekind, R. 154 
Dedekind-finite, Dedekind-infinite 261 
Deduction 35 
Deduction theorem 

for first-order theories 73-4 
for L 37 

Definite description 106 
Definition 

by cases 182-3 
of new function letters 
and constants 103 

possible 223 
by transfinite induction 249 

De Morgan's law 23 
Densely-ordered sets, theory of 98 
Denumerable 8, 261 

axiom of choice 280 
model 90 
sequence 8 

Dependent choice, principle of 280 
Depends 73 
Derivability conditions 213 
Derivable from a set 

of equations 346 
Derived rules 76-7 
Designated values 44 
Detachment rule 35 
Diagonal function 197 
Diagonalization lemma 203 
Diagram (complete) of a model 127 
Diagrams of Tming machines 311 
Difference 5, 231 
Direct consequence 34 
Discharged wf of a semantictree 142 
Disjoint sets 5 
Disjunct 12 
Disjunction 12 

associativity, commutativity 23 
elimination, introduction 77 
rules 77 

Disjunctive normal form (dnf) 30 
Distributive law 23 
Domain 

empty 147 
of an interpretation 57 
of a relation 6, 231 
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Finitely 
axiomatizable theory 94 
presented group 366 

First-order language 56 
generalized 114 

First-order predicate calculus 70 
First-order vs. second-

order logic 381-2 
full 221 
pure 221 

First-order theory 69 
of densely ordered sets 98 
of equality 98 
with equality 94- 5 
generalized 114 

Fixed-point theorem 204 
Fixed-point theorem in recursion 

theory 335 
F-less transform 104 
Follows from 34 
Form, statement 13 
Formal 

number theory 154 
theory 18, 34 

Formula 
atomic 52 
well-formed 34, 52 

Fraenkel, A.A. 288 
Free 

OCCUITence 53 
variable 53 
for Xj in a formula 54 

Frege-Russell cardinal numbers 257 
F-transform 104 
Full first-order predicate calculus 221 
Full general model 3 79 
Full normal form 31 
Full Second-order language 369 

pure 370 
Fully equivalent algorithms 356 
Function 6, 238 

characteristic 173 
conditional (Cond) 196 
definition of new, letters L03 
diagonal 197 
effectively computable 200 
empty 326 
Godel's beta 186 
Herbrand-Godel (HG)-
computable 346 

initial 174 
into 7 

Function (conrinued) 
juxtaposition 182 
letter 51 
Markov-computable 356-7 
maximum, mmimum 177 
negation (Neg) 196 
number-theoretic 170 
one-one 7 
onto 7 
partial 7, 309 
partial recursive 318 
predecessor 177 
primitive recursive 17 5 
projection 174 
quotient 177 
recursive 175 
recursively completable 328 
remainder 177 
(strongly) representable 171 

successor 174 
total 7, 309 
truth 14--5 

Turing-computable- 309 
variables 368 
zero 174 

Function definition schema 
(Fundet) 372 

Fundierungsaxiom 279 

Gch, see Generalized continuum 
hypothesis 

Gen 70 
General class existence theorem 232 
General model 379 
Full 379 
General recursive 175 
General second-order 

completeness 379 
Generalization ( Gen) rule 70 

second-order 372 
Generalized completeness theorem 121 
Generalized continuum hypothesis 284 
Generalized first-order 

language 114 
theory 114 

Generally 
implies, is equivalent to 379 
satisfiable, valid 379 

Generators 364 
Godel, K. 

Herbrand-Godel-computable 346 
number 190, 321 
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Rosser theorem 208 -9, 219 
sentence 206 

Godel's 
{3-function 186 
completeness theorem 91 
incompleteness theorem 206 
second theorem 212, 215 

Graph 118 
Graph of a function 174 
Grelling's paradox 3 
Groups 

finitely presented 366 
orderable 119 
theory of 71, 98 

Halting problem 328 
self- 329 
special 329 

Hartogs' function 264 
Hartogs' theorem 263 
Hausdorff maximal principle 277 
Henkin, L. 

second-order interpretation 378 
second-order semantics 378 
sentence 213 

Henkin's lemma 380 
Herbrand, J. 345 
Herbrand-Godel-(HG )-

computable 346 
Heterological 3 
Higher-order 

languages 56 
theories 56, 381 

Hilbett, D. 381 
Bernays derivability conditions 213 
Hilbert's tenth problem 305, 363 
Hyp 38 

Hypothesis 35 
inductive 8 

Ideal (maximal, proper) 9 
Identifying variables 176 
Identity element 364 
Identity relation 6, 234 
Image 7 

inverse 7 
Immune 343 
Implication, logical 16, 65 
lmpredicatively defined set 293 
Improper filter 129 
Inaccessible ordinal 283 

strongly 286 
"'~ · .· 

Inaccessible ordinal (continued) 
weakly 286 

Inclusion 5, 226 
Inclusive 'or' 11 
Inclusively valid 148 
Incompleteness 

essential 211 
Godel-Rosser, theorem 208 
Godel's theorem 206 
of standard second-order 

semantics 376 
w- 208 

Inconsistent theory 72 
Increasing function 251 
Increasing ordinal cr.-sequence 286 
Independence 43 
Independent axiomatization 94 
Index 330, 341 
Individual 227, 297 

constants 51 
variables 51 

Induction 
complete 8, 9, 166 
mathematical 8 
principle 8, 154-5 
rule 155 
transfinite 9, 245, 248- 9 
up to w, up to {J 248 

[nductive hypothesis 8 
Inference, rules of 34 
Infinite 8, 261 

Dedekind- 261 
ordinal 259 

Infinitely close 138 
Infinitely descending E-sequences 279 
Infinitesimal 136 
Infinity, axiom of 239 

in type theory 292 
Initial 

functions 174 
letter 345 
ordinal 264 
state 307 
tape description 307 
vertex 311 

Inner model 282 
Inseparable, recursively 219 
Instance 61 
Internal state 307 
Interpolation theorem 33 
Interpretable 223 

relative! y 224 
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Interpretation 57 
Henkin second-order 378 
standard 160 
standard second-order 370 

Intersection 5, 231, 237 
Intuitionism 4 
Intuitionistic propositional calculus 48 
Inverse 7 

Image 7 
lexicographical ordering 272 
relation 6, 235 
of a word 353 

Iota term 106 
Irrefiexive 240 
Isolated 343 
Isomorphic 

interpretations 111 
recursively 342 

Iteration theorem 330 
for models of AR2 37 4 

Iterative conception of set 282 

Joint denial 29 
Juxtaposition function 181-182 

k-colourable graph 118 
Kleene, S.C. 

-Mostowski hierarchy 333 
Normal form theorem of 326 

Konig's Unendlichkeitslemma 118 
Kreisel, G. 399 
k-valid 93 

A.-computability 361 
L 35 
language 

of arithmetic 154 
first-order 56 
generalized first-order 114 
higher-order 56 
meta- 36 
object 36 

law of the excluded middle 4, 16 
Least 

element 9, 245 
number principle 166 

Left 
-end machine 315 
machine 313 
-translation machine 315 

Leibniz, G.W. 65 

Length of an expression 181 
Letter 

auxiliary 345 
function 51 
initial 345 
predicate 51 
principal 345 
statement 13, 35 

Liar paradox 2 
Limit ordinal 247 
Lindenbaum, A. 

algebra 49 
Lindenbaum's lemma 86 
Literal 30 
Lob, M.H. 

LOb's paradox 3 
Lob's theorem 214 

Logic 1 
many-valued 44-5 
second-order 368 
third and higher-order 369 

Logical 
axioms 69 
consequence 16, 66 
implication 16 
equivalence 16 
paradoxes 3 
standard, consequence 370 
validity 362 

Logically 
correct arguments 26 
equivalent 16, 66 
false 18 
imply 16, 65 
standardly second-order, imply 370 
true 18 
valid 65 

Logicism 291 
Los' theorem 13 3 
Lowenheim, L. 

Downward Skolem-Lowenheim­
T arski theorem 128 

Skolem-Lowenheim theorem 92 
Upward Skolem-L6wenheim­
Tarski theorem 128 

J-l-operator (mu-operator) 175 
bounded 179 
unrestricted 318 

Machine, Turing 306 
clean-up 315 
constant 313 
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Machine, Turing (continued) 

left 313 
left -end 315 
left-translation 315 
n-shift copier 316 
right 313 
right-end 314 
shift 315 
super-universal 332 
universal 332 
word-copier 316 

Many-one 
equivalent 343 
reducible 342 

Many-valued logic 44 5 
Maps 7 
Markov, A.A. 

algorithm 352 
-computable 356-7 

Marriage problem 119 
Mathematical induction 8, 154-5 
Mathematical logic 1, 4 
Maximal ideal 9 

theorem 121 
Maximum function 177 
m-categorical 112 
Mechanical procedure 211 
Member 1, 5 
Membership relation 225, 242 
Metalanguage 36 
Metamathematics 36 
Metaproof, metatheorem 36 
Method of infinite descent 167 
Minimum function 177 
Minimal (maximal) element 263 
ML 296 
Model 60, 70 

contracted 100 
denumerable 90 
(full) general 379 
inner 282 
nonstandard 160 
normal 100 
standard 160 

Modus ponens (MP) 34-5 
Moll. D. 385 
Monadic predicate calculus, pure 222 
Monadic predicate letters 51 
Morse-Kelley set theory (MK) 287 
Mostowski, A. 287 

Kleene-, hierarchy 333 
Moves 307 

""'~· .· 

MP, see Modus ponens 
Multiplication, ordinal 250 
Multiplicative axiom (Mult) 275 

Natural number 154 
NBG 225 
Negation 11 

elimination, introduction 77 
function (Neg) 196 
rules 77 

NF (Quine's New Foundations) 293 
NFU 296 
Non-class 227 
Nonlogical 

axioms 69- 70 
constants 57 

Nonstandard 160, 295 
analysis 136 
model 160, 295 
reals 137 

Normal 
algorithm 352 
closed, algorithm 357 
composition 358 
forms 30 
model 100 
prenex, form 106 
Skolem, form 109 

Normal form theorem, Kleene's 326 
NP-complete 31 
N-shift copier (K11) 316 
Null set 5 

axiom 228 
Number 

cardinal 2, 8, 279, 282 
of divisors 179 
Godel 190, 321 
natural 154 
ordinal 243 

Number-theoretic 
function 170 
relation 1 70 

Numeral 160, 345 
Numerical tape description 323 

Object language 36 
Occurrence (free, bound) 53 
Occurs 352 
w 246 

-consistency 205 
-incompleteness 208 

On 243 
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One-one 7 
correspondence 7 
equivalent 343 
function 238 
reducible 343 

Open 
set 140 
wf 68 

Operation, n-place 7 
Or 11 
Order 

partial 8 
total 9, 242 
type 242 
well- 9 

Orderable group 119 
Ordered 

fields 98 
k-tuple 5, 230 
pair 5, 229 

Ordinal 
a.-sequence 286 
addition 249 
class 243 
exponentiation 250 
finite 259 
of first kind 246 
inaccessible 283 
infinite 259 
initial 264 
limit 247 
multiplication 250 
number 243 
regular 286 
singular 286 
strongly inaccessible 286 
successor 246 
weakly inaccessible 286 

Owings, J.C., Jr. 12 

PA, see Peano arithmetic 
Pair 

ordered 5, 229 
unordered 5, 228 

Pairing axiom 228 
Paradox 

Berry's 3 
Burali-Forti's 2, 4 
Cantor's 2, 4 
Cretan 2 
Grelling's 3 
liar 2 

Paradox (continued) 
Lob's 3 
logical 3 
Richard's 2 
Russell's 1, 4 
semantical 3 
Skolem's 263 

Parameters of a recursion 175 
Parentheses 20, 52 
Partial 

function 7 
order 8, 71, 240 
recursive 318 

Particularization rule A4 76 
Peano arithmetic (PA) 155 
Peano's postulates 154 

categoricity of 169 
Permutation, recursive 342 
Permuting variables 176 
PF 221 
Poincare, H. 293 
Polish notation 21 
Polyadic algebras 123 
Possible definitions 223 
Possible worlds 65 
Post, E.L. 334 
Power 

class 234 
of the continuum 8 
set axiom 236 

pp 221 
Precisely k-valid 93 
Predecessor function 177 
Predicate 

calculus 70 
calculus, full 221 
calculus, pure 109, 221 
calculus, pure monadic 222 
letter 51 
variables 368 

Predicative wf 232 
Premiss 35 
Prenex normal form 106 
Prenex wf 94 
Presburger arithmetic 169 
Prime number function 181 
Prime number property 180 
Primitive connectives 35 
Primitive recursive 

axiom set 197 
function 17 5 
relation 179 
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Primitive recursive (continued) 

vocabulary 192 
Principal 

connective 14 
filter L29 
letter 345 

Principia Mathematica 4, 293 
Principle 

of complete induction 8, 9 
of dependent choices (PDC) 280 
extensionality 227 
least-number 166 
of mathematical induction 8, 154-5 
well-ordering 9, 275 

Printing problem 330 
Product 

bounded 178 
Cartesian 6, 233 

Production (simple, terminal) 351-2, 
363 

Productive 343 
- Projection functions 174 

Proof 34-6 
by contradiction 78 
of an equation 346 

Propagation 358 
Proper 

axioms 69-70 
class 226 
filter 129 
ideal 9 
inclusion 226 
initial segment 21 
subclass 226 
subset 5 

Property 6, 62 
Proposition 36 
Propositional calculus 11 

intuitionistic 48 
Propositional connective 13 
Pure 

first-order predicate calculus 109, 221 
first-order theory of equality 98 
full second-order language 3 70 
monadic predicate calculus 222 

Q 201 
Quadruple of a Turing machine 307 
Quantification theory 50 
Quantifiers 50 

bounded 179 
function and predicate 369 

Quine, W.V. 287, 293, 296, 382 
Quotation marks 13 
Quotient function 177 

R 202 
Ramified type theory 293 
Range 6, 235 
Rank 281 
R.e., see Recursively enumerable 
Reading head 306 
Real-close field 362 
Real numbers, nonstandard 137 
Recursion 17 4 

course-of-values 185 
theorem 335 

Recursive 
axiom set 197 
function 175 
partial 318 
permutation 342 
relation 179 
set 211 
vocabulary 192 

Recursive, but not primitive recursive 
function 340 

Recursively 
axiomatizable 211 
completable 328 
decidable 216 
enumerable (r.e.) 340 
equivalent 343 
essentially, undecidable 216 
inseparable 219 
solvable 329 
undecidable 216 
unsolvable 329 

Reduced direct product 133 
Reducibility, axiom of 293 
Reducible 

one-one 343 
many-one 342 

Reflexive 6 
partial order 8 
total order 9 

Regular ordinal 286 
Regularity axiom 279, 288 
Relation 6, 62, 233 

arithmetical 190 
binary 6, 233 
connected 240 
equivalence 6 
expressible 170 
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Relation (continued) 
identity 6, 234 
inverse 6, 235 
irrefiexive 240 
membership 242 
n-place 6 
number-theoretic 170 
primitive recursive 179 
recursive 179 
reflexive 6 
symmetric 6 
transitive 6, 240 
universal 3 3 5 
weakly expressible 344 
well-ordering 242 

Relations of a finite 
presentation 364 

Relative complement 5 
Relatively interpretable 224 
Relatively prime 190 
Relativization 224 
Remainder function 177 
Replacement 

axiom 239, 288 
theorem 79 

Representation function 171 
Resolution 32 
Restricted p-operator 175 
Restriction of a function 7, 238 
Rice's theorem 336 
Richard's paradox 2 
Right 

-end machine 314 
machine 313 

Robinson, A. 136 
Robinson, R.M. 

Robinson's system Q 201 
Rosser, J.B. 

Godel-, theorem 208 9, 219 
sentence 208 

Roy, D.K. 392 
RR 200 
Rule 

A4 76 
c 81-2 
E4 77 
Generalization (Gen) 70 
u 142 

Rules of inference 34 
derived 76-8 
for semantic trees 142 
for systems of equations 346 

Russell, B. 4, 293 
Russell's paradox 1, 4 

S (first-order arithmetic) 154 
consistency of 160, 212 

Satisfaction relation 60-2 
second-order 369 

Satisfiable 59, 65 
generally 379 
standardly second-order 370 
statement form 31 

Scapegoattheory 87 
Scope 52 
Second E~theorem 120 
Second form of transfinite 

induction 248 
Second-order 

general, completeness theorem 379 
generalization rules 372 
language (full) 369 
logic 368 
predicate calculus 373 
semantics 368 
soundness of, logic 373 

Second-order theory 372 
comprehension schema in 372 
function definition schema in 372 

Second-order vs. first-order 
logic 381-2 

Section 242 
Segment 21, 243 
Self-halting problem 329 
Semantic 

paradoxes 3 
trees 141 

Semantical 69, 92 
Semantics, second-order 369 

Henkin 378 
Semigroup 364 
Semi-Thue system 363 
Sentence 

Godel 206 
Henkin 213 
Rosser 208 
undecidable 206 

Sentential class of models 136 
Sequence 

(Y.- 286 
denumerable 8 
finite 8 

Set 1, 5, 226 
arithmetical 21 7 
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Set (continued) 

Cantorian (strongly) 295 
closed 140 
countable 8 
creative 342 
Dedekind-finite 261 
Dedekind-infinite 261 
denumerable 8 
effectively decidable 211 
empty (null) 5 
finite 8 
immune 343 
impredicatively defined 293 
infinite 8 
isolated 343 
iterative conception of 282 
open 140 
power 236 
productive 343 
recursive 211 
simple 342 
sum 236 
unit 5 
well-ordered 9 

Set theory with urelements 297 
Sets 

disjoint 5 
recursively inseparable 219 

Shannon, C. 24 
Shift machine 315 
Sierpinski, W. 284 
Similar 

ordered structures 241 
wfs 84 

Similarity mapping 241 
Simple 

f-term 104 
production 352 
set 342 
theory of types (ST) 292 

Singleton 229 
Singular ordinal 286 
Skolem-Lowenheim theorem 92, 101 

Downward 128 
Upward 128 

Skolem, T. 288, 382 
normal form 109 
Skolem's paradox 263 

S-m-n theorem 330 
Solvable 

algorithmically 328 
recursively 329 

Soundness of second-order logic 373 
Special halting problem 329 
ST (simple theory of types) 373 
sT- 296 
ST -computable 319 
ST (simple theory of types) 289 
Standard 

interpretation (model) 160 
part 138 
second-order interpretation 370 
second-order logical 
consequence 370 

Standard semantics, incompleteness 
of 376 

Standard Turing-computable 319 
Standardly (second-order) 

logically imply 370 
satisfiable, valid 3 70 

State 
initial 307 
internal 307 
valid formulas (SV) 37 5 

Statement 
form 13 
letter 13, 3 5 

Stops 308 
Stratified wf 294 
Strongly 

Cantorian 295 
inaccessible 286 
representable l71 

Subclass 226 
proper 226 

Submodel 124 
generated by 125 

Subset 5 
proper 5 

Subsets axiom 236 
Substitution 174 
Substitutivity of equality 95, 288 
Substructure 124 
Subtheory 86 
Successor 154, 291 

function 174 
ordinal 246 

Sufficiently strong theory 212, 224 
Suitable 45 
Sum 

bounded l78 
of cardinals 258 
class 234 
set axiom 236 



_______________ I_N_D_E_x __________________ ~l I 439 

Super-universal Turing machine 332 
sv 375 
Symbol 34 
Symmetric 6 
Syntactical 69, 92 
System of equations 345 

Tape 306 
description 307 
description, numerical 323 
representation 309 
symbols 307 

Tarski, A. 
Tarski's theorem 217 
-Vaught theorem 126 

Tautology 16 
Teichmiiller-Tukey lemma 277 
Term 51, 345 

closed 87 
Terminal production 3 52 
Theorem 34 
Theory 71 

axiomatic 34, 211 
complete 86 
consistent 72 
decidable 34, 362 
of densely ordered sets 98 
of equality 98 
with equality 94-5, 99 
essentially incomplete 211 
essentially recursively 

undecidable 216 
first -order 69 
formal 18, 34 
generalized first-order 114 
inconsistent 72 
ramified type 293 
recursively axiomatizable 211 
recursively decidable 216 
recursively undecidable 216 
scapegoat 87 
second-order 3 72 
sufficiently strong 212 
true 205 
of types 289, 292 
undecidable 34, 362 

Time system 363 
Tk 216 
Total 

function 7 
order 9, 240, 242 

Tr 212 
Transfinite induction 9 

definition by 249 
principle of 245 
second form 248 
up tow, up to b 248 

Transitive 
class 242 
closure 280 
relation 6, 240 

Trees, semantic 141 
basic principle of 143 
rules for 142 

Trichotomy (Trich) 275 
True 

for an interpretation 60 
for a standard second-order 
interpretation 370 

logically 18 
theory 205 

Truss, J. 303 
Truth 

function 14-5 
value 11 

Truth-functional combination 11 
Truth table 11, 14 

abbreviated 14 
Turing, A.M. 305 

algorithm 308 
-computable 309 
-computable, standard 319 

Turing machine 306-7 
alphabet 306-7 
clean-up 315 
computation 308 
Godel number of 321 
halting problem 328 
left-end 315 
left-translation 315 
n-shift copier 316 
quadruples 307 
right, left, constant 313 
right-end 314 
shift 315 
stops 308 
superuniversal 332 
universal 332 
word-copier 316 

Tychonoff's theorem 118 
Types, theory of 289 

ramified 293 
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Ultrafilter 130 
theorem 130 

Ultrapower 133 
Ultraproduct 133 
Undecidable 

recursively 216 
sentence 206 
theory 34, 362 
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