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This is a compact introduction to some of the principal topics of
mathematical logic. In the belief that beginners should be exposed to the
easiest and most natural proofs, I have used free-swinging set-theoretic
methods. The significance of a demand for constructive proofs can be
evaluated only after a certain amount of experience with mathematical logic
has been obtained. If we are to be expelled from ‘Cantor’s paradise’ (as non-
constructive set theory was called by Hilbert), at least we should know what
we are missing.

The major changes in this new edition are the following.

1. In Chapter 2, a section has been added on logic with empty domains, that
is, on what happens when we allow interpretations with an empty domain.
2. In Chapter 4, Section 4.6 has been extended to include an outline of an
axiomatic set theory with urelements.

3. The subjects of register machines and random access machines have been
dropped from Section 5.5 Chapter 5.

4. An appendix on second-order logic will give the reader an idea of the
advantages and limitations of the systems of first-order logic used in
Chapters 2-4, and will provide an introduction to an area of much current
interest.

5. The exposition has been further streamlined, more exercises have been
added, and the bibliography has been revised and brought up to date.

The material of the book can be covered in two semesters, but, for a one-
semester course, Chapters 1-3 are quite adequate (omitting, if hurried,
Sections 1.5, 1.6 and 2.10-2.16). I have adopted the convention of prefixing
a D to any section or exercise that will probably be difficult for a beginner,
and an A to any section or exercise that presupposes familiarnity with a topic
that has not been carefully explained in the text. Bibliographic references are
given to the best source of information, which is not always the earliest
paper; hence these references give no indication as to priority.

I believe that the essential parts of the book can be read with ease by
anyone with some experience in abstract mathematical thinking. There is,
however, no specific prerequisite.

This book owes an obvious debt to the standard works of Hilbert and
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Bernays (1934; 1939), Kleene (1952), Rosser (1953) and Church (1956). I am
grateful to many people for their help and would especially like to thank the
following people for their valuable suggestions and criticism: Richard
Butrick, James Buxton, Frank Cannonito, John Corcoran, Newton C.A. da
Costa, Robert Cowen, Anil Gupta, Eric Hammer, Bill Hart, Stephen
Hechler, Arnold Koslow, Byeong-deok Lee, Alex Orenstein, Dev K. Roy,
Atsumi Shimojima and Frank Vlach.

Elliott Mendelson
August 1996



One of the popular definitions of logic is that it is the analysis of methods of
reasoning. In studying these methods, logic is interested in the form rather
than the content of the argument. For example, consider the two arguments:

. All men are mortal. Socrates is a man. Hence, Socrates is mortal.
9. All cats like fish. Silvy is a cat. Hence, Silvy likes fish.

Both have the same form: All 4 are B. S'is an 4. Hence, S is a B. The truth or
{alsity of the particular premisses and conclusions is of no concern to lo-
gicians. They want to know only whether the premisses imply the conclu-
sion. The systematic formalization and cataloguing of valid methods of
reasoning are a main task of logicians, If the work uses mathematical
techniques or if it is primarily devoted to the study of mathematical rea-
soning, then it may be called mathematical logic. We can narrow the domain
of mathematical logic if we define its principal aim to be a precise and
adequate understanding of the notion of mathematical proof.

Impeccable definitions have little value at the beginning of the study of a
subject. The best way to find out what mathematical logic is about is to start
doing it, and students are advised to begin reading the book even though (or
especially if) they have qualms about the meaning and purpose of the
subject.

Although logic is basic to all other studies, its fundamental and appar-
ently self-evident character discouraged any deep logical investigations until
the late 19th century. Then, under the impetus of the discovery of non-
Euclidean geometry and the desire to provide a rigorous foundation for
calculus and higher analysis, interest in logic revived. This new interest,
however, was still rather unenthusiastic until, around the turn of the cen-
tury, the mathematical world was shocked by the discovery of the paradoxes
— that is, arguments that lead to contradictions. The most important
paradoxes are described here.

l. Russell’s paradox (1902). By a set, we mean any collection of objects — for
example, the set of all even integers or the set of all saxophone players in
Brooklyn. The objects that make up a set are called its members or
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elements. Sets may themselves be members of sets; for example, the set of
all sets of integers has sets as its members. Most sets are not members of
themselves; the set of cats, for example, is not a member of itself because
the set of cats is not a cat. However, there may be sets that do belong to
themselves — for example, the set of all sets. Now, consider the set 4 of all
those sets X such that X is not a member of X, Clearly, by definition, 4 is
a member of 4 if and only if 4 is not a member of 4. So, if 4 is a member
of 4, then 4 is also not amember of 4; and if 4 is not a member of 4, then
A is a member of 4. In any case, 4 is a member of 4 and 4 is not a member
of A.

2. Cantor’s paradox (1899). This paradox involves the theory of cardinal
numbers and may be skipped by those readers having no previous ac-
quaintance with that theory. The cardinal number ¥ of a set Y is a
measure of the size of the set; Y = Z if and only if ¥ is equinumerous with
Z (that is, there is a one—one correspondence between Y and Z). We define
Y <Z to mean that Y is equinumerous with a subset of Z; by ¥ < Z we
mean Y <Z and Y # Z. Cantor proved that, if 2(Y) is the set of all
subsets of ¥, then Y < 2(¥). Let ¥ be the universal set — that is, the set of

all sets. Now, 2(V) is a subset of V; so it follows easily that Z(V) <V. On
the other hand, by Cantor’s theorem, ¥ < 2(V). Bernstein’s theorem
asserts that, if ¥<Z and Z<7, then ¥ =Z. Hence, ¥ = #(V), contra-
dicting V < 2(V).

3. Burali-Forti’s paradox (1897). This paradox is the analogue in the theory
of ordinal numbers of Cantor’s paradox and requires familiarity with
ordinal number theory. Given any ordinal number, there is a still larger
ordinal number. But the ordinal number determined by the set of all
ordinal numbers is the largest ordinal number.

4. The liar paradox. A man says, ‘1 am lying’, If he is lymg, then what he
says is true and so he is not lying. If he is not lying, then what he says is
true, and so he is lying. In any case, he is lying and he is not lying.|

5. Richard’s paradox (1905). Some phrases of the English language denote
real numbers; for example, ‘the ratio between the circumference and
diameter of a circle’ denotes the number 7. All the phrases of the English
language can be enumerated in a standard way: order all phrases that
have k letters lexicographically (as in a dictionary) and then place all
phrases with k letters before all phrases with a larger number of letters.
Hence, all phrases of the English language that denote real numbers can

TThe Cretan ‘paradox’, known in antiquity, is similar to the liar paradox. The
Cretan philosopher Epimenides said, ‘All Cretans are liars’. If what he said is true,
then, since Epimenides is a Cretan, it must be false. Hence, what he said is false.
Thus, there must be some Cretan who is not a liar. This is not logically impossible; so
we do not have a genuine paradox. However, the fact that the utterance by Epi-
menides of that false sentence could imply the existence of some Cretan who is not a
liar 1s rather unsettling.
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be emunferated merely by omitting all other phrases in the given standard
enumeration. Call the nth real number in this enumeration the nth Ri-
chard number. Consider the phrase: ‘the real number whose nth decimal
place is 1 if the nth decimal place of the nth Richard number is not 1, and
whose nth decimal place is 2 if the nth decimal place of the nth Richard
pumber is 1.” This phrase defines a Richard number — say, the kth Ri-
chard number; but, by its definition, it differs from the kth Richard
number in the kth decimal place.

6. Berry's paradox (1906). There are only a finite number of symbols (letters,
punctuation signs, etc.) in the English language. Hence, there are only a
finite number of English expressions that contain fewer than 200 occur-
rences of symbols (allowing repetitions). There are, therefore, only a finite
nuniber of positive integers that are denoted by an English expression
containing fewer than 200 occurrences of symbols. Let & be the least
positive Integer that is not denoted by an English expression containing
fewer than 200 occurrences of symbols. The italicized English phrase
contains fewer than 200 occurrences of symbols and denotes the integer £.

7. Grelling’s paradox (1908). An adjective is called autological if the property
denoted by the adjective holds for the adjective itself. An adjective is
called heterological if the property denoted by the adjective does not
apply to the adjective itself. For example, ‘polysyllabic’ and ‘English’ are
autological, whereas °‘monosyllabic’ and ‘French’ are heterological.
Consider the adjective ‘heterological’. If ‘heterological’ is heterological,
then it is not heterological. If ‘heterological’ is not heterological, then it is
heterological. In either case, ‘heterological’ is both heterological and not
heterological.

8. Lob’s paradox (1955). Let 4 be any sentence. Let B be the sentence: “If this
sentence is true, then A’. So, B asserts: ‘If B is true, then 4’. Now consider
the following argument: Assume B is true; then, by B, since B is true, 4
holds. This argument shows that, if B is true, then 4. But this is exactly
what B asserts. Hence, B is true. Therefore, by B, since B is true, 4 is true.
Thus, every sentence is true.

All of these paradoxes are genuine in the sense that they contain no
obvious logical flaws. The logical paradoxes (1-3) involve only notions from
the theory of sets, whereas the semantic paradoxes (4 8) also make use of
concepts like ‘denote’, ‘true’ and ‘adjective’, which need not occur within
our standard mathematical language. For this reason, the logical paradoxes
are a much greater threat to a mathematician’s peace of mind than the
semantic paradoxes.

Analysis of the paradoxes has led to various proposals for avoiding them.
All of these proposals are restrictive in one way or another of the ‘naive’
concepts that enter into the derivation of the paradoxes. Russell noted the
self-reference present in all the paradoxes and suggested that every object
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must have a definite non-negative integer as its ‘type’. Then an expression ‘x
is-a member of the set 3’ is to be considered meaningful if and only if the
type of y is one greater than the type of x.

This approach, known as the theory of types and systematized and de-
veloped in Principia Mathematica Whitehead and Russell (1910-13), is
successful in eliminating the known paradoxes,! but it is clumsy in practice
and has certain other drawbacks as well. A different criticism of the logical
paradoxes is aimed at their assumption that, for every property P(x), there
exists a corresponding set of all objects x that satisfy P(x). If we reject this
assumption, then the logical paradoxes are no longer derivable.d It is ne-
cessary, however, to provide new postulates that will enable us to prove the
existence of those sets that are needed by the practising mathematician. The
first such axiomatic set theory was invented by Zermelo (1908). In Chapter 4
we shall present an axiomatic theory of sets that is a descendant of Zer-
melo’s system (with some new twists given to it by von Neumann, R. Ro-
binson, Bernays, and Godel). There are also various hybrid theories
combining some aspects of type theory and axiomatic set theory — for ex-
ample, Quine’s system NF.

A more radical interpretation of the paradoxes has been advocated by
Brouwer and his intuitionist school (see Heyting, 1956). They refuse to
accept the universality of certain basic logical laws, such as the law of
excluded middle: P or not-P. Such a law, they claim, is true for finite sets,
but it is invalid to extend it on a wholesale basis to all sets. Likewise, they
say it is invalid to conclude that “There exists an object x such that not-P(x)’
follows from the negation of ‘For all x, P(x)’; we are justified in asserting the
existence of an object having a certain property only if we know an effective
method for constructing (or finding) such an object. The paradoxes are not
derivable (or even meaningful) if we obey the intuitionist strictures, but so
are many important theorems of everyday mathematics, and, for this rea-
son, intuitionism has found few converts among mathematicians.

Whatever approach one takes to the paradoxes, it is necessary first to
examine the language of logic and mathematics to see what symbols may be
used, to determine the ways in which these symbols are put together to form
terms, formulas, sentences and proofs, and to find out what can and cannot
be proved if certain axioms and rules of inference are assumed. This is one of
the tasks of mathematical logic, and, until it is done, there is no basis for

tRussells’s paradox, for example, depends on the existence of the set 4 of all sets
that are not members of themselves. Because, according to the theory of types, it is
meaningless to say that a set belongs to itself, there is no such set 4.

tRussell’s paradox then proves that there is no set 4 of all sets that do not
belong to themselves. The paradoxes of Cantor and Burali-Forti show that there is
no universal set and no set that contains all ordinal numbers. The semantic para-
doxes cannot even be formulated, since they involve notions not expressible within
the system.
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comparing 1'ival foundations of logic and mathematics. The deep and de-
vastating results of Godel, Tarski, Church, Rosser, Kleene, and many others
have been ample reward for the labour invesied and have earned for
mathematical logic its status as an independent branch of mathematics.

For the absolute novice a summary will be given here of some of the basic
notation, ideas, and results used in the text. The reader is urged to skip these
explanations now and, if necessary, to refer to them later on.

A sct is a collection of objects.! The objects in the collection arc called
elements or members of the set. We shall write ‘x € y” for the statement that
y is a member of y. (Synonymous expressions are “x belongs to )’ and ‘y
contains x’.) The negation of ‘x € y’ will be written ‘x¢y’.

By ‘x C ¥ we mean that every member of x is also a member of y (sy-
nonymously, that x is a subset of y, or that x is included in y). We shall write
‘= 5° to mean that ¢ and s denote the same object. As usual, ‘¢ # 5 is the
negation of ¢ = 5’. For sets x and y, we assume that x = y if and only if x C y
and y C x — that is, if and only if x and y have the same members. A set x is
called a proper subset of a set y, written x C )’ if x Cy but x #y. (The
notation x & y is often used instead of x C ».)

The unionx Uy of sets x and y is defined to be the set of all objects that are
members of x or y or both. Hence, xUx =x,xUy=yUx,and (xUy)Uz =
xU(yUz). The intersection x Ny is the set of objects thal x and y have in
common. Therefore, xNx=x, xNy=yNx, and (xNy)Nz=xN(yNz).
Moreover, xN(yUz) =(xNy)U(xNz) and xU(yNz) =xUyp)N(xUz).
The relative complerment x —y is the sct of members of x that are not
members of y. We also postulate the existence of the empty set (or null sef)
() — that is, a set that has no members at all. Then xN@ =0, xUQ) =x,
x—0=x, 0 —x=0, and x—x=1{). Sets x and y are called disjoint if

xNy = 0.
Given any objects by, ..., by, the set that contains &y, ..., 5 as its only
members is denoted {by,..., b }. In particular, {x,y} is a set having x and y

as its only members and, if x 5£ y, is called the urordered pair of x and y. The
set {x,x} is identical with {x} and is called the unir set of x. Notice that
{x,7} = {y,x}. By (b1, ..., bx) we mean the ordered k-tuple of by, . .., by. The
basic property of ordered k-tuples is that (by,..., &) = {c1,...,cx) if and
only if by = ¢y, b2 = ¢a,...,bx = ¢y Thus, (by, b2) = (b2, b1) if and only if
b1 = by. Ordered 2-tuples are called ordered pairs. The ordered 1-tuple (b) is
taken to be & itself. If X is a set and £ is a positive integer, we denote by X*
the set of all ordered A-tuples (b1,...,#5:) of elements &q,...,5; of X. In

"Which collections of objects form sets will not be specified here. Care will be
exercised to avoid using any ideas or procedures that may lead to the paradoxes; all
the results can be formalized in the axiomatic set theory of Chapter 4. The term
‘class’ is sometimes used as a synonym for ‘set’, but it will be avoided here because it
has a different meaning in Chapter 4. If a property P(x) does determine a set, that set
is often denoted {x | P(x)}.
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particular, X! is X itself. If ¥ and Z are sets, then by ¥ x Z we denote the set
of all ordered pairs {y,z) such that y€ Y and z€ Z. Y x Z is called the
Cartesian product of Y and Z.

An n-place relation (or a relation with n argumentis) on a set X is a subset
of X" — that is, a set of ordered n-tuples of elements of X. For example, the
3-place relation of betweenness for points on a line is the set of all 3-tuples
(x,y,z) such that the point x lies between the points y and z. A 2-place
relation is called a binary relation; for example, the binary relation of fa-
therhood on the set of human beings is the set of all ordered pairs {x,y) such
that x and y are human beings and x is the father of y. A 1-place relation on
X is a subset of X and is called a property on X.

Given a binary relation R on a set X, the domain of R is defined to be the
set of all y such that (y,z) € R for some z; the range of R is the set of all z
such that {y,z) € R for some y; and the field of R is the union of the domain
and range of R. The inverse relation B! of R is the set of all ordered pairs
(y,z) such that (z,») € R. For example, the domain of the relation < on the
set o of non-negative integers’ is w, its range is « — {0}, and the inverse of
< is >. Notation: Very often xRy is written instead of (x,y) € R. Thus, in the
example just given, we usually write x < y instead of (x,y) € <.

A binary relation R is said to be reflexive if xRx for all x in the field of R; R
is symmetric if xRy implies yRx; and R is transitive if xRy and yRz imply xRz.
Examples: The relation < on the set of integers is reflexive and transitive
but not symmetric. The relation ‘having at least one parent in common’ on
the set of human beings is reflexive and symmetric, but not transitive.

A binary relation that is reflexive, symmetric and transitive is called an
equivalence relation. Examples of equivalence relations are: (1) the identity
relation Iy on a set X, consisting of all pairs (x,x), where x'€ X; (2) given a
fixed positive integer », the relation x = y (mod »n), which holds when x and y
are integers and x — y is divisible by »; (3) the congruence relation on the set
of triangles in a plane; (4) the similarity relation on the set of triangles in a
plane. Given an equivalence relation R whose field is X, and given any
y € X, define [ y] as the set of all z in X such that yRz, Then [y] is called the
R- equivalence class of y. Clearly, [u] = [v] if and only if uRv. Moreover, if
[#] # [v], then [u] N [v] = @; that is, different R-equivalence classes have no
clements in common. Hence, the set X is completely partitioned into the
R-equivalence classes. In example (1) above, the equivalence classes are just
the unit sets {x}, where x € X. In example (2), there are »n equivalence
classes, the kth equivalence class (k=0,1,...,n— 1) being the set of all
integers that leave the remainder & upon division by ».

A function f is a binary relation such that (x,y)} € f and (x,z) € f imply
y =z Thus, for any element x of the domain of a function f, there is a
unique y such that {x,y) € f; this unique y is denoted f(x). If x is in the

ten will also be referred to as the set of natural numbers.
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domain ij frthen f(x) is said to be defined. A function f with domain X and
range Y is said to be a function from X onto Y. If f is a function from X onto
q subset of Z, then f is said to be a function from X into Z. For example, if
the domain of f is the set of integers and f(x) = 2x for every integer x, then
fisa function from the set of integers onto the sel of even integers, and [ is
a function from the set of integers into the set of integers. A function whose
domain consists of n-tuples is said to be a function of n arguments. A i1otal
function of n arguments on a set X is a function f whose domain is X”. It is
customary to write f(x1,...,x,) instead of f({(x1,...,x,)), and we refer to
f(x1,-..,%,) as the value of f for the arguments x,,. .. ,x,. A partial function
of n arguments on-a set X is a function whose domain is a subset of X”. For
example, ordinary division is a partial, but not total, function of two ar-
guments on the set of integers, since division by 0 is not defined. If f is a
function with domain X and range Y, then the restriction f; of f toaset Z is
the function f N (Z x Y). Then f;(u) = vif and only if ¥ € Z and f(u) = v.
The image of the set Z under the function f is the range of f7. The inverse
image of a set W under the function f is the set of all u in the domain of f
such that f (1) € W. We say that f maps X onto (into) Y if X is a subset of
the domain of f and the image of X under f is (a subset of ) Y. By an n-place
operation (or operation with n arguments) on a set X we mean a function
from X* into X. For example, ordinary addition is a binary (i.c., 2-place)
operation on the set of natural numbers {0,1,2,---}. But ordinary sub-
traction is not a binary operation on the set of natural numbers.

The composition f o g (sometimes denoted fg) of functions f and g is the
function such that ( f o g)(x) = f(g(x)); (f o g)(x) is defined if and only if
g(x) is defined and f(g(x)) is defined. For example, if g(x) =x* and
f(x) =x+1 for every integer x, then (f og)(x) =x*+1 and (gof)(x) =
(x+ 1)2. Also, if h(x) = —x for every real number x and f(x) = /x for every
non-negative real number x, then (f o /)(x) is defined only for x <0, and, for
such x, (f o h)(x) = /—x. A function f such that f(x) = f(y) implies x = y is
called a 11 (one—one) function. For example, the identity relation Iy on a set
X is a 1-1 function, since Ix(y) =y for every y € X; the function g with
domain w, such that g(x) = 2x for every x € w, is 1-1; but the function #
whose domain is the set of integers and such that A(x) = x* for every integer
xis not 1-1, since #(—1) = h(1). Notice that a function f is 1-1 if and only if
its inverse relation f~! is a function. If the domain and range of a 1-1
function f are X and Y, then f is said to be a 1 — 1 (one—one) correspondence
between X and Y, then f ! is a 1-1 correspondence between ¥ and X, and
(flof)=1Ixand (fof ') =1Iy. If f is a 1-1 correspondence between X
and Y and ¢ is a 1-1 correspondence between Y and Z, then go fis a 1-1
correspondence between X and Z. Sets X and Y are said to be equinumerous
(written X = Y) if and only if there is a 1--1 correspondence between X and
Y. Clearly, X =2 X, X =Y implies Y= X, and X =Y and Y = Z implics
X =2 Z. It is somewhat harder to show that, if X =2 ¥; C Y and Y =2 X| C X,
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then X = ¥ (scec Bernstein’s theorem in Chapter 4). If X = ¥, one says that
X and Y have the same cardinal number, and if X is equinumerous with a
subset of ¥ but ¥ is not equinumerous with a subset of X, one says that the
cardinal number of X is smaller than the cardinal number of ¥.!

A set X is denumerable if it is equinumerous with the set of positive
integers. A denumerable set is said to have cardinal number ¥y, and any set
equinumerous with the set of all subsets of a denumerable set is said to have
the cardinal number 2% (or to have the power of the continuum). A set X is
finite if it is empty or if it is equinumerous with the set {1,2,...,n} of all
positive integers that are less than or equal to some positive integer n. A set
that is not finite is said to be infinite. A set is countable if it is either finite or
denumerable. Clearly, any subset of a denumerable set is countable. A
denumerable sequence is a function s whose domain is the set of positive
integers; one usually writes s, instead of s(r). A finite sequence is a function
whose domain is the empty set or {1,2,...,n} for some positive integer .

Let P(x, ), ...,y ) be some rclation on the sct of non-negative integers. In
particular, P may involve only the variable x and thus be a property. If
P(0,y,...,) holds, and, if, for every n, P(n,y,...,)x) implies
P(n+ 1,y1,...,), then P(x,y1,...,¥) is true for all non-negative integers x
(principle of mathematical induction). In applying this principle, one usually
proves that, for every n, P(n,y1,...,yx) implies P(n+ 1,y1,...,)%) by as-
suming P(n,y1,...,») and then deducing P(n + 1,1,...,)%); in the course
of this deduction, P(n,y1,...,3) is called the inductive hypothesis. If the
relation P actually involves variables y1, .. ., yx other than x, then the proof is
said to proceed by induction on x. A similar induction principle holds for the
set of integers greater than some fixed integer j. An example is: to prove by
mathematical induction that the sum of the first » odd integers
14+345+...+(2n—1) is 2, first show that 1 = 12 (that is, P(1)), and
then, thatif 1 +3+4+5+...+(2n—1)=r? then 1 +3+5+...+(2n—1)
+(2n +1) = (n+ 1)? (that is, if P(n) then P(n + 1)). From the principle of
mathematical induction one can prove the principle of complete induction: If,
for every non-negative integer x the assumption that P(u,y1,...,),) is true
for all # < x implies that P(x,y1,...,3) holds, then, for all non-negative
integers x, P(x,y,...,)x) is true, (Exercise: Show by complete induction
that every integer greater than 1 is divisible by a prime number.)

A partial order is a binary relation R such that R is transitive and, for
every x in the field of R, xRx is false. If R is a partial order, then the relation
R that is the union of R and the set of all ordered pairs {x,x), where x is in
the field of R, we shall call a reflexive partial order; in the literature, “partial
order’ is used for either partial order or reflexive partial order. Notice that

tOne can attempt to define the cardinal number of a set X as the collection [X] of
all sets equinumerous with X. However, in certain axiomatic set theories, [X] does
not exist, whereas in others [X] exists but is not a set.

N
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(xRy angL yRx) is impossible if R is a partial order, whereas (xRy and yRx)
implies x =y if R is a reflexive partial order. A (reflexive) total order is a
(reﬂexive) partial order such that, for any x and y in the field of R, either
x =y or xRy or yRx. Examples: (1) the relation < on the set of integers is a
total order, whereas < is a reflexive total order; (2) the relation C on the set
of all subsets of the set of positive integers is a partial order but not a total
order, whereas the relation C is a reflexive partial order but not a reflexive
total order. If B is a subset of the field of a binary relation R, then an element
yof Bis called an R-least element of B if yRz for every element z of B different
from y. A well-order (or a well-ordering relation) is a total order R such that
every non-empty subset of the field of R has an R-least clement. Examples:
(1) the relation < on the set ol non-negative integers is a well-order; (2) the
relation < on the set of non-negative rational numbers is a total order but
not a well-order; (3) the relation < on the set of integers is a total order but
not a well-order. Associated with every well-order R having field X there is a
complete induction principle: if P is a property such that, for any u in X,
whenever all z in X such that zRu have the property P, then u has the
property P, then it follows that all members of X have the property P. If the
set X is infinite, a proof using this principle is called a proof by fransfinite
induction. One says that a set X can be well-ordered if there exists a well-
order whose field is X. An assumption that is useful in modern mathematics
but about the validity of which there has been considerable controversy is
the well-ordering principle: every set can be well-ordered. The well-ordering
principle is equivalent (given the usual axioms of set theory) to the axiom of
choice: for any set X of non-empty pairwise disjoint sets, there is a set ¥
(called a choice sef) that contains exactly one element in common with each
set in X.

Let B be a non-empty set, f a function from B into B, and g a function
from B? into B. Write x’ for f(x) and x N y for g(x, ¥). Then (B, f, g) is called
a Boolean algebra if B contains at least two clements and the following
conditions are satisfied:

I.xNy=ynNxforall x and y in B
2.(xNny)nz=xnN(yNz) for all x,y,z in B
3.xNy' =znz' if and only if xNy = x for all x,y, z in B.

Let x Uy stand for (x’ Ny’)’, and write x<y for x Ny = x. It is easily proved
that zNz’ = wNw for any w and z in B; we denote the value of znz’ by 0.
Let 1 stand for 0'. Then zUz’ =1 for all z in B. Note also that < is a
reflexive partial order on B, and (B, f,U) is a Boolean algebra. (The symbols
N,U, 0,1 should not be confused with the corresponding symbols used in set
theory and arithmetic.) An ideal J in (B, f,g) is a non-empty subset of B
such that (1) if x€J and ye J, thenxUy € J, and (2) if x € J and y € B,
thenx Ny € J. Clearly, {0} and B areideals. An ideal different from Bis called
a proper ideal. A maximal ideal is a proper ideal that is included in no other
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proper ideal. It can be shown that a proper ideal J is maximal if and only if,
for any v in B,u € J or ¥’ € J. From the axiom of choice it can be proved
that every Boolean algebra contains a maximal ideal, or, equivalently, that
cvery proper ideal is included in some maximal ideal. For example, let B be
the set of all subsets of asct X; for Y € B,let ¥/ =X — ¥, and for ¥ and Z in
B, let YN Z be the ordinary set-theoretic intersection of ¥ and Z. Then
(B, ,N) is a Boolean algebra. The 0 of B is the empty set {), and 1 is X. For
each clement u in X, the set J,, of all subsets of X that do not contain v is a
maximal ideal. For a detailed study of Boolean algebras, see Sikorski (1960),
Halmos (1963) and Mendelson (1970).



T@ E'ropositional Calculus

1.1 PROPOSITIONAL CONNECTIVES. TRUTH TABLES

Sentences may be combined in various ways to form more complicated
sentences. We shall consider only truth-functional combinations, in which
the truth or falsity of the new sentence is determined by the truth or falsity
of its component sentences.

Negation is one of the simplest operations on sentences. Although a sen-
tence in a natural language may be negated in many ways, we shall adopt a
uniform procedure: placing a sign for negation, the symbol —, in front of the
entire sentence. Thus, if 4 is a sentence, then —4 denotes the negation of A.

The truth-functional character of negation is made apparent in the fol-

lowing truth table: A A
T F
F T

When A4 is true, —4 is false; when 4 is false, =4 is true. We use T and F to
denote the fruth values true and false.

Another common truth~functional operation is the conjunction: ‘and’. The
conjunction of sentences 4 and B will be designated by 4 A B and has the

following truth table:

AANB

e
T H
mm T >

A A B is true when and only when both 4 and B are true. 4 and B are called
the conjuncts of A A B. Note that there are four rows in the table, corre-
sponding to the number of possible assignments of truth values to 4 and B.

In natural languages, there are two distinct uses of ‘or’: the inclusive and
the exclusive. According to the inclusive usage, ‘4 or B means ‘4 or B or
both’, whereas according to the exclusive usage, the meaning is ‘4 or B, but
not both’, We shall introduce a special sign, V, for the inclusive connective.
Its truth table is as follows:
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A B AvB
T T T
F T T
T F T
F F F

Thus, 4 V B is false when and only when both 4 and B are false. ‘4 Vv B’ is
called a disjunction, with the disjuncts A and B.

Another important truth-functional operation is the conditional: “if A,
then B’. Ordinary usage is unclear here. Surely, if 4, then B’ is false when
the antecedent A is true and the consequent B is false. However, in other
cases, there is no well-defined truth value. For example, the following sen-
tences would be considered neither true nor false:

1. If 1 + 1 = 2, then Paris is the capital of France.
2. If 1 + 1 #£ 2, then Paris is the capital of France.
3. If 1 +1 # 2, then Rome is the capital of France.

Their meaning is unclear, since we are accustomed to the assertion of some
sort of relationship (usually causal) between the antecedent and the con-
sequent. We shall make the convention that ‘if 4, then B’ is false when and
only when 4 is true and B is false. Thus, sentences 1-3 are assumed to be
true. Let us denote ‘if 4, then B’ by ‘4 = B’. An expression ‘4 = B’ is called
a conditional. Then = has the following truth table:

A B A=FB
T T T
F T T
T F F
F F T

This sharpening of the meaning of ‘if 4, then B involves no conflict with
ordinary usage, but rather only an extension of that usage.!

A justification of the truth table for = is the fact that we wish “if 4 and B,
then B’ to be true in all cases. Thus, the case in which 4 and B are true justifies
the first line of our truth table for =, since (4 and B) and B are both true. If 4is

"There is a common non-truth-functional interpretation of “if 4, then B connected
with causal laws. The sentence “if this piece of iron is placed in water at time ¢, then the
iron will dissolve’ is regarded as false even in the case that the piece of iron is not placed
In water at time ¢ — that is, even when the antecedent is false. Another non-truth-
functional usage occurs in so-called counterfactual conditionals, such as ‘if Sir Walter
Scott had not written any novels, then there would have been no War Between the
States’. (This was Mark Twain’s contention in Life on the Mississippi: ‘Sir Walter had
so large a hand in making Southern character, as it existed before the war, that heisin
great measure responsible for the war’.) This sentence might be asserted to befalse even
though the antecedent is admittedly false. However, causal laws and counterfactual
conditions seem not to be needed in mathematics and logic. For a clear treatment of
conditionals and other connectives, see Quine (1951). (The quotation from Life on the
Mississippi was brought to my attention by Professor J.C. Owings, Jr.)

2
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false and B true, then (4 and B) is false while B is true. This corresponds to the
second line of the truth table. Finally, if 4 isfalse and Bis false, (4 and B) is false
and B is false. This gives the fourth line of the table. Still more support for our
definition comes from the meaning of statements such as “for every x, if x is an
odd positive integer, then x? is an odd positive integer’. This asserts that, for
every x, the statement “if x is an odd positive integer, then x? is an odd positive
integer’ is true. Now we certainly do not want to consider cases in which x s not
an odd positive integer as counterexamples to our general assertion. This
supports the second and fourth lines of our truth table. In addition, any case in
which x is an odd positive integer and x? is an odd positive integer confirms our
general assertion. This corresponds to the first line of the table.

Let us denote ‘4 if and only if B’ by ‘4 < B’. Such an expression 1s called
a biconditional. Clearly, A < B is true when and only when 4 and B have the
same truth value. [ts truth table, therefore is:

A B A< B
T T T
F T F
T F F
F F T

The symbols —, A, V, = and < will be called propositional connectives.t
Any sentence built up by application of these connectives has a truth value
that depends on the truth values of the constituent sentences. In order to
make this dependence apparent, let us apply the name statement form to an
expression built up from the statement letters A, B, C, and so on by appro-
priate applications of the propositional connectives.

1. All statement letters (capital italic letters) and such letters with numerical
subscriptst are statement forms.

2.If # and ¥ are statement forms, then so are (—%), (4 NE),
(B Vv E),(# =), and (% & ¢).

3. Only those expressions are statement forms that are determined to be so
by means of conditions 1 and 28

Some examples of statement forms are B,(—Gy), (D3 A(—B)),
(=B1) V B2) = (41 A CR)), and (((—4) & 4) & (C = (BV C))).

"'We have been avoiding and shall in the future avoid the use of quotation marks
to form names whenever this is not likely to cause confusion. The given sentence
should have quotation marks around each of the connectives. See Quine (1951, pp.
23-27).

YFor example, 41,42, 417,831, Ca, ..

SThis can be rephrased as follows: & is a statement form if and only if there is a
finite sequence %y,...,%,(n > 1) such that 4, =€ and, if 1<ign, %; is either a
statement letter or a negation, conjunction, disjunction, conditional or biconditional
constructed from previous expressions in the sequence. Notice that we use script
letters s, %,%, ... to stand for arbitrary expressions, whereas italic letters are used
as statement letters.
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For every assignment of truth values T or F to the statement letters that
occur in a statement form, there corresponds, by virtue of the truth tables
for the propositional connectives, a truth value for the statement form.
Thus, each statement form determines a truth function, which can be gra-
phically represented by a truth table for the statement form. For example,
the statement form (((—4) vV B) = C) has the following truth table:

C (-4) ((-4)vB) (b4 VvB)=C)

M AT ST S
M AT AW
M S o=
Hm o= s
o= TS
SRS R R

Each row represents an assignment of truth values to the statement letters
A,B and C and the corresponding truth values assumed by the statement
forms that appear in the construction of (((—4) vV B) = C).

The truth table for ((4 & B) = ((—4) A B)) is as follows:

B (4 B) (~d) ((~4)AB) ({44 B)= ((~4)AB))

o A
SRR
= o
s
o =
= =

If there are » distinct letters in a statement form, then there are 2" possible
assignments of truth values to the statement letters and, hence, 27 rows in
the truth table.

A truth table can be abbreviated by writing only the full statement form,
putting the truth values of the statement letters underneath all occurrences
of these letters, and writing, step by step, the truth values of each component
statement form under the principal connective of the form’. As an example,
for ((4 & B) = ((—4) A B)), we obtain:

(4 & B) = ((-4) A B))
T T T F FT F T
F F T T TF T T
T F F T FI F F
F T F F TF F F

'The principal connective of a statement form is the one that is applied last in
constructing the form.
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Exercises

1.1 Write the truth table for the exclusive usage of ‘or’.

1.2 Construct truth tables for the statement forms ((4 = B) V (—4)) and
(A= (B= )= (4= B)= (4= O)).

1.3 Write abbreviated truth tables for ((4 = B) A 4) and ((4 Vv (~C)) < B).
1.4 Write the following sentences as statement forms, using statement letters
to stand for the atomic sentences — that is, those sentences that are not built
up out of other sentences.

(a) If Mr Jones is happy, Mrs Jones is not happy, and if Mr Jones is not
happy, Mrs Jones is not happy.

(b) Either Sam will come to the party and Max will not, or Sam will not
come to the party and Max will enjoy himself.

(c) A sufficient condition for x to be odd is that x is pnime.

(d) A necessary condition for a sequence s to converge is that s be bounded.

(¢) A necessary and sufficient condition for the sheikh to be happy is that he
has wine, women and song.

(f) Fiorello goes to the movies only if a comedy 1s playing,

(2) The bribe will be paid if and only if the goods are delivered.

(h) If x is positive, x? is positive.

(i) Karpov will win the chess tournament unless Kasparov wins today.

1.2 TAUTOLOGIES

A truth function of n arguments is defined to be a function of » arguments,
the arguments and values of which are the truth values T or F. As we have
seen, any statement form containing » distinct statement letters determines a
corresponding truth function of » arguments.’

fTo be precise, enumerate all statement letters as follows: A4,B,...,

Z;A1,B1,...,7Z1;42,. ... If a statement form contains the ijm,..., 7, statement let-
ters in this enumeration, where iy < ... < i,, then the corresponding truth function is
to have x;,,...,x;, in that order, as its arguments, where x;, corresponds to the i

statement letter, For example, (4 = B) generates the truth function

x1 x3 flx,x2)

T T T
F T T
T F F
F F T

whereas (B = A) generates the truth function

X1 x2 g(x1,x2)
T T T

F T

T F T

F F T
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A statement form that is always true, no matter what the truth values of
its statement letters may be, is called a tautology. A statement form is a
tautology if and only if its corresponding truth function takes only the value
T, or equivalently, if, in its truth table, the column under the statement form
contains only 7's. An example of a tautology is (4 V (—4)), the so-called law
of the excluded middle. Other simple examples are (—(4A(—4))),
(4 & (—(—4))), (AAB)=4) and (4= (4V B)).

# is said to logically imply ¢ (or, synonymously, € is a logical con-
sequence of #) if and only if every truth assignment to the statement letters
of # and ¥ that makes & true also makes ¢ true. For example, (4 A B)
logically implies 4, 4 logically implies (4 Vv B), and (4 A (4 = B)) logically
implies B.

# and ¥ are said to be logically equivalent if and only if # and € receive
the same truth value under every assignment of truth values to the statement
letters of # and 4. For example, A and (—(—4)) are logically equivalent, as
are (4 A B) and (B AA4).

PROPOSITION 1.1

(a) % logically implies € if and only if (# = &) is a tautology.
(b) % and ¥ are logically equivalent if and only if (# < €) is a tautology.

Proof

(a) (i) Assume # logically implies 4. Hence, every truth assignment that
makes Z true also makes ¢ true. Thus, no truth asssignment makes %
true and % falsc. Therefore, no truth assignment makés (4 = %) false,
that is, every truth assignment makes (# = %) true. In other words,
(# = %) is a tautology. (ii) Assume (# = %) is a tautology. Then, for
every truth assignment, (# = €) 1s true, and, therefore, it is not the case
that 4 is true and ¥ false. Hence, every truth assignment that makes %
true makes % true, that is, 4 logically implies €.

(b) (# & ¥) is a tautology if and only if every truth assignment makes
(# < %) true, which is equivalent to saying that every truth assignment
gives 4 and ¥ the same truth value, that is, # and ¥ are logically
equivalent.

By means of a truth table, we have an effective procedure for determining
whether a statement form is a tautology. Hence, by Proposition 1.1, we have
effective procedures for determining whether a given statement form logi-
cally imphies another given statement form and whether two given statement
forms are logically equivalent.

To see whether a statement form is a tautology, there is another method
that is often shorter than the construction of a truth table.



r/ TAUTOLOGIES

17

Examples

{. Determine whether ((4 < ((—B) v C)) = ((—4) = B)) is a tautology.

Assume that the statement form

sometimes is F (line 1). Then (4 < (A< (7B v C))=((114)=B))

(-B) v 0))is Tand ((—4) = B) is F
F (line 2). Since ((—~4) = B) is F, T F

(—A4) is T and B is F (line 3). Since T F

(~4)isT,4isF (line 4). Since 4 is F F
F and A< ((HB)V(O) is T, b

(-B)v C) is F (line 5). Since F F
(-B)vC)is F, (=B) and C are F T

(line 6). Since (—B8) is F, Bis T (line

7). But B is both T and F (lines 7

and 3). Hence, it is impossible for

the form to be [alse.

2. Determine whether ((4 = (B V C)) V (4 = B)) is a tautology.
Assume that the form is F (line 1).

Then (4= (BVC)) and (4= B) are F

(line 2). Since (4 = B)isF, Ais T and B is (A=(B v C) v (4= 5)

F (line 3). Since (4 = (BVC))isF,4is T

and (B V C) is F (line 4). Since (BV C) is

F, B and C are F (line 5). Thus, when 4 is

T, B is F, and C is F, the form is F.

Therefore, it is not a tautology.

Exercises
1.5 Determine whether the following are tautologies.

@ (((4= B)= B)=B) ) (4= (B= (B=4)))
(b) (((4 = B) = B) = 4) (2) (A AB) = (4V ()
© (((4=B)=4)=4)
d) ((B=>C)=>A=B)=A=>B)) ) (4= B)V(B=4))
© (AV(~(BAC)) = (4« C)VB)) () ((—(4= B)) = 4)

1.6 Determine whether the following pairs are logically equivalent.

(@) ((4 = B) = A) and 4

(b) (A< B) and ((4 = B) A (B = 4))

(¢} ((—4) vB) and ((—B) V 4)

(d) (—~(4 & B)) and (4 & (—B))

€ (AV(Be C)and (AVB) & (4VC))

) U=FBeO0)and (U= B)e d=>0)
(8 AA(B S C))and (AAB) < (ANC))

(A= B)s (de (Be )

et B R, R LN O I o

wh BN e
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1.7 Prove:

(a) (4 = B) is logically equivalent to ((—4) Vv B).

(b) (4 = B) is logically equivalent to (—~(4 A (—B))).

1.8 Prove that # is logically equivalent to ¢ if and only if % logically
implies ¢ and € logically implies 4.

1.9 Show that # and ¥ are logically equivalent if and only if, in their truth
tables, the columns under % and ¥ are the same.

1.10 Prove that # and ¥ are logically equivalent if and only if (-#) and
(—%) are logically equivalent.

1.11 Which of the following statement forms are logically implied by

(4 AB)?

(a) 4 (d) ((=4) v B) (&) (4= B)

(b) B ©) ((-B) = 4) (h) ((~B) = (~4))
(c) (4VB) () (4 & B) WRCYNGT:))

1.12 Repeat Exercise 1.11 with (4 A B) replaced by (4= B) and by
(—(4 = B)), respectively.

1.13 Repeat Exercise 1.11 with (4 A B) replaced by (4 V B).

1.14 Repeat Exercise 1.11 with (4 AB) replaced by (4 < B) and by
(—=(4 & B)), respectively.

A statement form that is false for all possible truth values of its statement
letters is said to be contradictory. Its truth table has only Fs in the column
under the statement form. One example is (4 < (—4)):

A (—lA) (A A= (—IA))
T F F
F T F

Another is (4 A (m4)).

Notice that a statement form & is a tautology if and only if (—4%) is
contradictory, and vice versa.

A sentence (in some natural language like English or in a formal theory) f
that arises from a tautology by the substitution of sentences for all the
statement letters, with occurrences of the same statement letter being re-
placed by the same sentence, is said to be logically true (according to the
propositional calculus). Such a sentence may be said to be true by virtue of
its truth-functional structure alone. An example is the English sentence, ‘If it
is raining or it is snowing, and it is not snowing, then it is raining’, which
arises by substitution from the tautology (((4 Vv B) A (—B)) = A4). A sen-
tence that comes from a contradictory statement form by means of sub-
stitution is said to be logically false (according to the propositional calculus).

Now let us prove a few general facts about tautologies.

"By a formal theory we mean an artificial language in which the notions of
meaningful expressions, axioms and rules of inference are precisely described (see page
34).

.
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PROPOSITION 1.2

If & and (# = ¥) are tautologies, then so is €.
X

Proof

Assume that Z and (# = %) are tautologies. If € took the value F for some
assignment of truth values to the statement letters of # and ¥, then, since #
is a tautology, % would take the value T and, therefore, (# = %) would
have the value F for that assignment. This contradicts the assumption that
(% = %) is a tautology. Hence, ¢ never takes the value F.

PROPOSITION 1.3

If 4 is a tautology containing as statement letters A4, 4,,...,4,, and #
arises from & by substituting statement forms %,%,,...,%, for
Ap, A, .- ., An, respectively, then Z is a tautology; that is, substitution in a
tautology yields a tautology.

Example
Let 7 be ((41 A 42) = Ay), let &1 be (B Vv C) and let &, be (C A D). Then %
is((BVC)A(CAD))= (BV()).

Proof

Assume that 7 is a tautology. For any assignment of truth values to the
statement letters in 4, the forms %y,..., %, have truth values xi,...,x,
(where each x, is T or F). If we assign the values xj,...,x, to 41,...,4,,

respectively, then the resulting truth value of 7 is the truth value of 4 for
the given assignment of truth values. Since & is a tautology, this truth value
must be T. Thus, # always takes the value T.

PROPOSITION 1.4

If &, arises from 4, by substitution of % for one or more occurrences of 4,
then ((# <€) = (%1 & %1)) is a tautology. Hence, if 4 and € are logi-
cally equivalent, then so are %) and €.

Example

Let 48 be (CVD), let # be C, and let € be (—(—=C)). Then ¥ is
((=(=C)) v D). Since C and (~(—C)) are logically equivalent, (C v D) and
((=(=C)) v D) are also logically equivalent.
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Proof

Consider any assignment of truth values to the statement letters. If 4 and %
have opposite truth values under this assignment, then (# & ) takes the
value F, and, hence, ((# & ¥) = (%1 © €1)) is T. If # and ¥ take the
same truth values, then so do #; and ¥}, since ¥, differs from 4, only in
containing ¥ in some places where % contains %. Therefore, in this case,
(# < €)is T, (B & %) is T, and, thus, (# & ¥) = (%, & 1)) is T.

Parentheses

It is profitable at this point to agree on some conventions to avoid the use of
so many parentheses in writing formulas. This will make the reading of
complicated expressions easier.

First, we may omit the outer pair of parentheses of a statement form. (In
the case of statement letters, there is no outer pair of parentheses.)

Second, we arbitrarily establish the following decreasing order of strength
of the connectives: —,A,V,=,<. Now we shall explain a step-by-step
process for restoring parentheses to an expression obtained by eliminating
some or all parentheses from a statement form. Find the leftmost occurrence
of the strongest connective that has not yet been processed.

(1) If the connective is — and it precedes a statement form 4, restore left
and right parentheses to obtain (—4%).

(ii) If the connective is a binary connective C and it is preceded by a
statement form % and followed by a statement form &, restore left and
right parentheses to obtain (# C 2).

(i) If neither (i) nor (ii) holds, ignore the connective temporarily and find
the leftmost occurrence of the strongest of the remaining unprocessed
connectives and repeat (i1)-(iii) for that connective.

Examples
Parentheses are restored to the expression in the first line of each of the
following in the steps shown:

. A (-B)vC=4
A& ((-B)vC)=> 4
A& (FB)VC) = 4)
(4 & (B)VC) > 4)

2. A=>-B=>C
A= (-B) = C
(4= (~B) = )

3. B= -4
B——'>*l(ﬂA)
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e

‘B= ("("A))

4 Av~(B=AVBE)
AV ~(B= (4V B))
AV (~(B = (4V B)))
AV (B = (AVE))

Not every form can be represented without the use of parentheses. For
example, parentheses cannot be further eliminated from 4 = (B = (), since
/ i = B= C stands for ((A = B) = C). Likewise, the remaining parentheses
cannot be removed from =(4 v B) or from 4 A (B = C).

ig;iercises

I:15 Eliminate as many parentheses as possible from the following forms.

@ (B= (D) AC) (&) (4 & B) & (~(C VD))

(b) (4v(BVQ) () (=~(~(~(BVC)))) < (B« C))

© (AN (=B)AC)VD) (8) (~((=(=(BV () & (B= ()

(d) ((BV(=C)) V(4 AB)) (h) (4 = B) = (C= D)) A (=4)) v C)
1:16 Restore parentheses to the following forms.

(a) CV "4AB € C=>—~(AANB=>C)NA& B

(b) B=>—ANC () C=>4=>4-4VEB

.17 Determine whether the following expressions are abbreviations of
statement forms and, if so, restore all parentheses.

(a) —4d& A& BVvC ()4 (-AVB)= (ANBV())
(b) (44 BVC ()  AVBVCAD s AN-A
() ~(A=>B)VCVD=B (f) (4 = BA(CVD)A(4V D))

1.18 If we write 4 instead of (%), = %% instead of (4 = ¥) , NFE
instead of (Z N €), VA instead of (% v ), and & %% instead of (# & &),
1hen there is no need for parentheses. For example, ((—4) A (B = (—D))),
which is ordinarily abbreviated as ~4 A (B = —D), becomes A—4 = B-D.
This way of writing forms is called Polish notation.

(a) Write ((C = (—=4)) VB) and (C v ((B A (D)) = C)) in this notation.

(b) If we count =, A, Vv, and & each as +1, each statement letter as —1 and
- as (), prove that an expression # in this parenthesis-free notation is a
statement form if and only if (1) the sum of the symbols of % 1s —1 and
(1)) the sum of the symbols in any proper initial segment of % is non-
negative. (If an expression 4 can be writien in the form 4%, where
€ #+ %, then ¥ is called a proper initial segment of %.)

() Write the statement forms of Exercise 1.15 in Polish notation.
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(d) Determine whether the following expressions are statement forms in
Polish notation. If so, write the statement forms in the standard way,

(i) —=A4BCVAB-C (iii)) V A VA4-BC A VAC V -C—-4

(i) == 4B=>= BC = -AC (iv} VA BA BBB

1.19 Determine whether each of the following is a tautology, is contra-
dictory, or neither.

(a) B& (BVB) ) An(-(4VB))

by (U=>B)AB)= 4 (8 (4= B) < ((—4) VB)
(© (~4) = (AAB) (b) (4 = B) & ~(4 A (—B))
d Ad=B)=(B=>0=>A4A=0() i) Be(B=A)=>4
() (A< -B)=>AVB G) AN-4=B

1.20 If A and B are true and C is false, what are the truth values of the
following statement forms?

@) AVC © BvV—-C= A
by4nc (H) (BVA) = (B= ~C)
(c) =AA-C (8) (B=-4) & (4 & C)

d4<=-BVC ) (B=4)= (4= -C)= (-C=B))
1.21 If A= B is T, what can be deduced about the truth values of the
following?

() AVC=BvVvC
by ANC=BAC
(c) " ANB& AVEB

1.22 What further truth values can be deduced from those shown?

(a) 4V (4= B) (©) (24 V B)=(4 = ~C)
F F
(b ~(AAB) & 4= B (A4 B) & (C = —4)
T F T

1.23 If 4 & B is F, what can be deduced about the truth values of the
following?

(@) ANB (b)AVB (()A=B HANC&BAC

1.24 Repeat Exercise 1.23, but assume that 4 & B is T.
1.25 What further truth values can be deduced from those given?

(2) (4 AB)<(AVB)
F F
(b) (4= -8)=(C=B)

1.26 (a) Appl}}:Pl'OpOSitiOIl 1.3 when F 1s 4] = A1V 42, %1 i1s BA D, and

o 1s —B. '

(b) Apply Proposition 1.4 when %, is (B = C)AD, #is B= C, and ¢ is
—TB vV C i‘
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.27 ‘Show that each statement form in column I is logically equivalent to
the form next to it in column II.

L I
(;,)A:>(B:>C) AanB)y==0,C o
by ANBYV C) (ANB)V (4AC) (Distributive law)
© AV(BAC) (AVB)A(AVC) (Distributive law)
(d) (AANB)V B AV B
() (AVB)AB A AN—-B

(i A=1B —B = 4 (Law of the contrapositive)
(g) A= B B&s A (Biconditional commutativity)
h AeBeC A4 BeC) (Biconditional associativity)
(i) AeB (AAB)V (~4 A—B)

G) -4+ B) A& B

(k) —~(4VB) (—4) A (—B) (De Morgan’s law)

) —(4NB) (—4) V (—B) (De Morgan’s law)

(m) AV (41 B) A
(n) AN(AVB) A

(o) ANB BAA (Commutativity of conjunction)
(py A4VB BV A (Commutativity of disjunction)
tq) UAB)AC ANBAC) (Associativity of conjunction)
ry (AvB)vC Av(BVC) (Associativity of disjunction)

1.28 Show the logical equivalence of the following pairs.

(a) I A% and 4, where J is a tautology.
(b) 7 v £ and , where J is a tautology.
(c) F A% and #, where & is contradictory.
(d) F V% and 4, where F is contradictory.

1.29

(a) Show the logical equivalence of (4 = B) and 4 A —B.

(b) Show the logical equivalence of ~(4 < B) and (A A -B) vV (-4 A B).

(c) For each of the following statement forms, find a statement form that is
logically equivalent to its negation and in which negation signs apply
only to statement letters.

)4 = (Be -C)

(i) ~4 Vv (B = C)

(i) 4 A (BV-C)

1.30 (Dudlity)

* (a) If 4 is a statement form involving only -, A, and Vv, and 4’ results from
2 by replacing each A by v and each V by A, show that 4 is a tautology
if and only if -4’ is a tautology. Then prove that, if % = % is a tau-
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tology, then so is ¥’ = 4, and if # & € is a tautology, then so is
# & ¢'. (Here € is also assumed to involve only —, A and V.)

(b) Among the logical equivalences in Exercise 1.27, derive (c) from (b), (e)
from (d), (I) from (k), (p) from (o), and (r) from (q).

(c) If # is a statement form involving only -, A and Vv, and #” results from
Z by interchanging A and Vv and replacing every statement letter by its
negation, show that #” is logically equivalent to ~#. Find a statement
form that is logically equivalent to the negation of (4V Bv C)
N(—4 v =B v D), in which — applies only to statement letters.

1.31

(a) Prove that a statement form that contains < as its only connective is a
tautology if and only if each statement letter occurs an even number of
times.

(b) Prove that a statement form that contains — and < as its only con-
nectives is a tautology if and only 1f — and each statement letter occur an
even number of times.

1.32 (Shannon, 1938) An electric circuit containing only on- off switches
(when a switch is on, it passes current; otherwise it does not) can be re-
presented by a diagram in which, next to each switch, we put a letter re-
presenting a necessary and sufficient condition for the switch to be on (see
Figure 1.1). The condition that a current flows through this network can be
given by the statement form (4 AB)Vv (CA—4). A statement form re-
presentating the circuit shown in Figure 1.2 is (A AB) Vv ((CV A4)A—B),
which is logically equivalent to each of the following forms by virtue of the
indicated logical equivalence of Exercise 1.27.

((AAB)V (CVA)A((ANB)V —B) ﬁ (©)

((AAB)V(CVA) AAV-B) (d)
(AAB)V (AV C) A4V ~B) (p)
(AAB)vA)VC)A(AV —B) (r)
(AVC) A4V -B) (p), (m)

Av (C A —lB) (C)

Hence, the given circuit is equivalent to the simpler circuit shown in Fig-
ure 1.3. (Two circuits are said to be eguivalent if current flows through one if
and only if it flows through the other, and one circuit is simpler if it contains
fewer switches.)

A\ B\

c\ -|A\—

Figure. 1.1
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Figure. 1.4
B\ c\
A\ B o\
\NERAN o\
Figure. 1.5
AN . -
A A
AN
5B . B B\ B Vo
C\ N L RN
D
Figure, 1.6

(a) Find simpler equivalent circuits for those shown in Figures 1.4, 1.5 and
1.6,

(b) Assume that each of the three members of a committee votes yes on a
proposal by pressing a button. Devise as simple a circuit as you can that
will allow current to pass when and only when at least two of the
members vote in the affirmative.
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(c) We wish a light to be controlled by two different wall switches in a room
in such a way that flicking either one of these switches will turn the light
on if it is off and turn it off if it is on. Construct a simple circuit to do the

required job.,

1.33 Determine whether the following arguments are logically correct by
representing each sentence as a statement form and checking whether the
conclusion is logically impliéd by the conjunction of the assumptions. (To
do this, assign T to each assumption and F to the conclusion, and determine
whether a contradiction results.)

(a) If Jones is a communist, Jones is an atheist. Jones is an atheist.
Therefore, Jones is a communist.

(b) If the temperature and air pressure remained constant, there was no
rain. The temperature did remain constant. Therefore, if there was rain,
then the air pressure did not remain constant.

(c) If Gorton wins the election, then taxes will increase if the deficit will
remain high. If Gorton wins the election, the deficit will remain high.
Therefore, if Gorton wins the election, taxes will increase.

(d) If the number x ends in 0, it is divisible by 5. x does not end in 0. Hence,
x is not divisible by 5.

(e) If the number x ends in 0, it is divisible by 5. x is not divisible by 5.
Hence, x does not end in 0.

() Ifa=0orb=0, then ab = 0. But ab # 0. Hence, ¢ # 0 and b # 0.

(g) A sufficient condition for f to be integrable is that g be bounded. A
necessary condition for / to be continuous is that f is integrable. Hence,
if g is bounded or / is continuous, then f is integrable.

(h) Smith cannot both be a running star and smoke cigarettes. Smith is not
a running star. Therefore, Smith smokes cigarettes.

(i) If Jones drove the car, Smith is innocent. If Brown fired the gun, then
Smith is not innocent. Hence, if Brown fired the gun, then Jones did not
drive the car.

1.34 Which of the following sets of statement forms are satisfiable, in the
sense that there is an assignment of truth values to the statement letters that
makes all the forms in the set true?

(a) A =B
B=C
CvD & -B
(b) —l(—lBVA)
AV—|C)
B = C
(c) D=8 (
Av B
~(D A 4)
D
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1.35 Check each of the following sets of statements for consistency by re-
'i‘j‘reselnting the sentences as statement forms and then testing their con-
junction to see whether it is contradictory.

(a) Either the witness was intimidated or, if Doherty committed suicide, a
note was found. If the witness was intimidated, then Doherty did not
commit suicide. If a note was found, then Doherty committed suicide.

(b) The contract is satisfied if and only if the building is completed by 30
November. The building is completed by 30 November if and only if the
electrical subcontractor completes his work by 10 November. The bank
loses money if and only 1if the contract is not satisfied. Yet the electrical
subcontractor completes his work by 10 November if and only if the

bank loses money.

1.3 ADEQUATE SETS OF CONNECTIVES

Every statement form containing » statement letters generates a corre-
sponding truth function of n arguments. The arguments and values of the
function are T or F. Logically equivalent forms generate the same truth
function. A natural question is whether all truth functions are so generated.

PROPOSITION 1.5

Every truth function is generated by a statement form involving the con-
nectives -, A and V.

Proof

(Refer to Examples 1 and 2 below for clarification.) Let f(xi, ..., 35;1) be a
truth function. Clearly f can be represented by a truth table of 2" rows,
where each row represents some assignment of truth values to the variables
X, ..., x,, followed by the corresponding value of f(x,...,x;). If
1 <i<2”, let C; be the conjunction Uj A Uj A ... A UJ, where Uy is 4; if, in
the ith row of the truth table, x; takes the value T, and U 1s —4; if x; takes
the value F in that row. Let D be the disjunction of all those C;s such that f
has the value T for the ith row of the truth table. (If there are no such rows,
then f always takes the value F, and we let D be 41 A —4;, which satisfies the
theorem.) Notice that D involves only -, A and v. To see that D has f as its
corresponding truth function, let there be given an assignment of truth
values to the statement letters A4, ..., 4,, and assume that the corrre-
ponding assignment to the variables x, ..., x, is tow & of the truth table for
f. Then C; has the value T for this assignment, whereas every other C; has
the value F. If f has the value T for row k, then Cy is a disjunct of D. Hence,
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Proof

Notice that # v % is logically equivalent to —(—% A —%). Henf:e, by the
.ccond part of Proposition 1.4, any statement form in A V and — 1s logically
;_»qL;iv"alent to a statement form in only A and — [obtained by replacing all
expressions # V€ by —(—# A —%)]. The other parts of the corollary are
similar consequences of the following tautologies:

BNEC & ~(~BV ~F)
BN EC & (B = 6)
BNE < (B = —F)

We have just seen that there are certain pairs of connectives — for ex-
;éfmi:)le, A and — — in terms of which all truth functions are definable. It turns
otil that there is a single connective, | (joint denial), that will do the same
job. Its truth table 1s:

A B A|B
T T F
FT F
T F F
F F T

4 |‘B is truc when and only when neither 4 nor B is true. Clearly,
A (4] 4d)and (A AB) & ((4 ] 4) | (B | B)) are tautologies. Hence, the
‘adequacy of | for the construction of all truth functions follows from
Corollary 1.6.
Another connective, | (alternative denial), is also adequate for this pur-
pose. Its truth table is

A|B

I RN
T
== m—

A Bis true when and only when not both 4 and B are true. The adequacy of
| follows from the tautologies -4 < (4| A4) and (AVB) < ((4]4) |
B8)).

PROPOSITION 1.7

The only binary connectives that alone are adequate for the construction of
all truth functions are | and |.

Proof

Assume that #(4, B) is an adequate connective. Now, if #(T,T) were T, then
-any statement form built up using / alone would take the value T when all
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its statement letters take the value T. Hence, -4 would not be definable in
terms of k. So, #(T,T) = F. Likewise, #(F,F) = T. Thus, we have the partial
truth table

A B h(A4,B)
T T F

F T

T F

F F T

If the second and third entries in the last column are F, For T, T, then % is |
or |. If they are F, T, then #(4, B) & —B is a tautology; and if they are T, F,
then /(4,B) < —4 is a tautology. In both cases, # would be definable in
terms of —. But — is not adequate by itsell because the only truth functions
of one variable definable from it are the identity function and negation itself,
whereas the truth function that is always T would not be definable.

Exercises

1.37 Prove that each of the pairs =, Vv and -, < is not alone adequate to
express all truth functions.

1.38

(a) Prove that 4 v B can be expressed in terms of = alone.

(b) Prove that 4 A B cannot be expressed in terms of = alone.
(c) Prove that 4 & B cannot be expressed in terms of = alone.

1.39 Show that any two of the connectives {A, =, <} serve to define the
remaining one.
1.40 With one variable 4, there are four truth functions:

A -4 AV A4 AN-A

T F T F

F T T F

(a) With two variable 4 and B, how many truth functions are there ?
(b) How many truth functions of » variables are there ?

1.41 Show that the truth function /# determined by (4 V B) = —C generates
all truth functions.

1.42 By a literal we mean a statement letter or a negation of a statement
letter. A statement form is said to be in disjunctive normal form (dnf) if it is
a disjunction consisting of one or more disjuncts, each of which is a
conjunction of one or more literals — for example, (4 AB)Vv (-4 A C),
(AANBA-A)V(CA-B)V(AN-C), AJAANB, and Av (Bv C). A form is
in conjunctive nornial form (cnf) if it is a conjunction of one or more conjuncts,
each of which is a disjunction of one or more literals — for example,
(BvCNAV B), (BV-C)YN(AvD), ANBVA)N(-BVA),Av-B, AN
B,A. Note that our terminology considers a literal to be a (degenerate) con-
junction and a (degenerate) disjunction.
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) The proof of Proposition 1.5 shows that every statement form # is

" logically equivalent to one in disjunctive normal form. By applying this
result to 73, prove that # is also logically equivalent to a form in
conjunctive normal form.

(b) Find logically equivalent dnfs and cnfs for =(4 = B) V (-4 A C) and

A< ((BA-A4) v C). [Hint: Instead of relying on Proposition 1.5, it is

usually easier to use Exercise 1.27(b) and (c).]

A dnf (cnf) is called full if no disjunct (conjunct) contains two occur-

rences of literals with the same letter and if a letter that occurs in one

disjunct (conjunct) also occurs in all the others. For example,

(AN-ANB)V(AAB), (BABAC)Vv (BAC) and (BAC) Vv B are not

full, whereas (A ABA-C)v(ANBAC)V (AN -BA-C)and (4 \—B)

V(B A A) are full dnfs,

() Find full dnfs and cnfs logically equivalent to (AAB)vV -4 and
(4= B)Vv (~4 A C).

(ii) Prove that every non-contradictory (non-tautologous) statement
form 4 is logically equivalent to a full dnf (cnf) €, and, if ¥ contains
exactly » letters, then # is a tautology (is contradictory) if and only
if € has 2" disjuncts (conjuncts).

(d) For each of the following, find a logically equivalent dnf (cnf), and then
find a logically equivalent full dnf (cnf),

(i) (Av B) A (—BVC) (i) (AA-B)V (4 AC)

(i) « v (B = —C) (iv) (AvB) & -C
(e) Construct statement forms in — and A (respectively, in — and v or in -
and =) logically equivalent to the statement forms in (d).

(a

(c)

1.43 A statement form is said to be satisfiable if it is true for some as-
signment of truth values to its statement letters. The problem of determining
the satisfiability of an arbitrary cnf plays an important role in the theory of
computational complexity; it is an example of a so-called A4 ZP-complete
problem (see Garey and Johnson, 1978).

(a) Show that # is satisfiable if and only if —% is not a tautology.
(b) Determine whether the following are satisfiable:
§)) (A VB) A (—IA VBVC) AN (—lAV ‘_IBV_IC)
(i) (U=B)vC) & (-BA(AV()
(c) Given a disjunction & of four or more literals: Ly VL, V...V L, let
- Q, ..., C, o be statement letters that do not occur in &, and construct
the cnf &

(L4 VL VC)ANC vV Q) /\('“IC2 VIiVC)A...
A (—' n—3 VvV Ln——l \4 Cnf2) A (—'CH*E V Ln V ﬁCl)

Show that any truth assignment satisfying & can be extended to a truth
assignment satisfying & and, conversely, any truth assignment satisfying
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& is an extension of a truth assignment satisfying %. (This permits the
reduction of the problem of satisfying cnfs to the corresponding pro-
blem for cnfs with each conjunct containing at most three literals.)

(d) For a disjunction & of three literals L; Vv L, Vv L3, show that a form that
has the properties of & in (c) cannot be constructed, with & a cnf ip
which each conjunct contains at most two literals (R. Cowen).

1.44 (Resolution) Let % be a cnf and let C be a statement letter. If C is g
disjunct of a disjunction &} in # and —C is a disjunct of another disjunctioy-
%, in %, then a non-empty disjunction obtained by eliminating C from 9,
and —C from %, and forming the disjunction of the remaining literalgs:
(dropping repetitions) is said to be obtained from % by resolution on C. Fog
example, if # is

(AV-CV-B)A(-AVDV-B)A(CVvDVA)),

the first and third conjuncts yield 4 v =B v D by resolution on C. In addi-
tion, the first and second conjuncts yield ~C v B v D by resolution on 4,
and the second and third conjuncts yield DV —B Vv C by resolution on 4. If
we conjoin to # any new disjunctions obtained by resolution on all vari-
ables, and if we apply the same procedure to the new cnf and keep on
iterating this operation, the process must eventually stop, and the final result
is denoted Zes(2B). In the example, Rea(H) is:

(4 v -Cv-B)YA(-~AVDV-B)A(CVDVA)A(-CV-BVD)
ADV-BVC)AN(AV-BYD)N(DV-B)

(Notice that we have not been careful about specifying the order in which
conjuncts or disjuncts are written, since any two auangements will be lo-
gically equivalent.)

(a) Find Z#eq(#) when # is each of the following:
) (4v-B)AB
@ UAVBVCOYA(AV-BVC)
(iii) (4 v C) A (A vB)A (Av-COYAN (-4 Vv —B)

(b) Show that # logically implies Zeq(%).

(c) If # is a cnf, let B¢ be the cnf obtained from % by deleting those
conjuncts that contain C or =C. Let rc(%4) be the cnf that is the con-
junction of #¢ and all those disjunctions obtained from # by resolution
on C. For example, if 4 is the cnf in the example above, then r¢(H#) is
(4 v DV -B)A (4 Vv —BV D). Prove that, if #¢(4) is satisfiable, then so
is #. (R. Cowen)

(d) A cnf 4 is said to be a blutant contradiction if it contains some letter C
and its negation —C an conjuncts. An example of a blatant contradiction
is (AVBYABA(CvD)A—B. Prove that if 4 is unsatisfiable, then
Res( ) is a blatant contradiction. [Hins: Use induction on the number #
of letters that occur in #. In the induction step, use (c).]
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(¢) Prove that 4 is unsatisfiable if and only if #es(#) is a blatant contra-
 diction.
145 Let # and & be statement forms such that # = & is a tautology.

(a) If 7 agd % have no statement letiers in common, show that either % is

" contradictory or @ is a tautology.
(b) (Craig’s interpolation theorem) If % and 2 have the statement letters

" By...., By in common, prove that there is a statement form ¥ having
By, ..., B asits only statement letters such that # = ¢ and ¥ = & are
tautologies.

{c) Solve the special case of (b} in which 7 is (By = 4) A (4 = By) and 9 is
(B A C) = (B2 A C).

146

{a) A certain country is inhabited only by truth-tellers (people who always
tell the truth) and liars (people who always lie). Moreover, the in-
habitants will respond only to yes or no questions. A tourist comes to a
fork in a road where one branch leads to the capital and the other does
not. There 1s no sign indicating which branch to take, but there is a
native standing at the fork. What yes or no question should the tourist
ask in order to determine which branch to take ? [Hint: Let A stand for
“You are a truth-teller’” and let B stand for “The left-hand branch leads to
the capital’. Construct, by means of a suitable truth table, a statement
form involving 4 and B such that the native’s answer to the question as
to whether this statement form is true will be yes when and only when B
is true.]

(b) In a certain country, there are three kinds of people: workers (who
always tell the truth), businessmien (Who always lie), and students (who
sometimes tell the truth and sometimes lie). At a fork in the road, one
branch leads to the capital. A worker, a businessman and a student are
standing at the side of the road but are not identifiable in any obvious
way. By asking two yes or no questions, find out which fork leads to the
capital (Each question may be addressed to any of the three.)

More puzzles of this kind may be found in Smullyan (1978, chap. 3; 1985,
‘chaps 2, 4-8).

‘L4 AN AXIOM SYSTEM FOR THE PROPOSITIONAL CALCULUS

Truth tables enable us to answer many of the significant questions con-
:cerning the truth-functional connectives, such as whether a given statement
form is a tautology, is contradictory, or neither, and whether it logically
dmplies or is logically equivalent to some other given statement form. The
‘more complex parts of logic we shall treat later cannot be handled by truth
tables or by any other similar effective procedure. Consequently, another
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approach, by means of formal axiomatic theories, will have to be tried.
Although, as we have seen, the propositional calculus surrenders completely
to the truth table method, it will be instructive to illustrate the axiomatic
method in this simple branch of logic.

A formal theory & is defined when the following conditions are satisfied:

1. A countable set of symbols is given as the symbols of &!. A finite se-
quence of symbols of & is called an expression of &,

2. There is a subset of the set of expressions of % called the set of well-
Jormed formulas (wfs) of &. There is usually an effective procedure to
determine whether a given expression is a wf.

3. There is a set of wifs called the set of axioms of &%. Most often, one can
effectively decide whether a given wf is an axiom; in such a case, .% is
called an axiomatic theory.

4. There is a finite set Ry, ..., R, of relations among wfs, called rules of
inference. For each R;, there is a unique positive integer j such that, for
every set of j wfs and each wf %, one can effectively decide whether the
given j wifs are in the relation R; to &, and, if so, # is said to follow from
or to be a direct consequence of the given wis by virtue of R}.

A proof'in & is a sequence #, ..., Z; of wis such that, for each i, either
%; is an axiom of & or %; is a direct consequence of some of the preceding
wfs in the sequence by virtue of one of the rules of inference of &,

A theorem of & is a wl 9 of & such that 4 is the last wf of some proof in
& . Such a proof is called a proof of # in &.

Even if & is axiomatic — that 1s, if there is an effective procedure for
checking any given wf to see whether it is an axiom - the notion of ‘theorem’
is not necessarily effective since, in general, there is no effective procedure
for determining, given any wf 4, whether there’is a proof of 4. A theory for
which there is such an effective procedure is said to be decidable; otherwise,
the theory 1s said to be undecidable.

From an intuitive standpoint, a decidable theory is one for which a
machine can be devised to test wfs for theoremhood, whereas, for an un-
decidable theory, ingenuity is required to determine whether wfs are theo-
rems.

A wil € is said to be a consequence in & of a set of I' of wfs if and only if
there is a sequence 4, ..., #; of wfs such that ¢ is #; and, for each i,
either %; 1s an axiom or %; is in I, or %, is a direct consequence by some rule

IThese ‘symbols’ may be thought of as arbitrary objects rather than just lin-
guistic objects. This will become absolutely necessary when we deal with theories
with uncountably many symbols in Section 2.12.

tAn example of a rule of inference will be the rule modus ponens (MP): € follows
from % and # = €. According to our precise definition, this rule is the relation
consisting of all ordered triples ( #, 4 = €, € ), where & and € are arbitrary wis
of the formal system.
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of-inference of some of the preceding wfs in the sequence. Such a sequence is
cilled a proof (or deduction) of € from I'. The members of I are called the
f‘l;i-;patheses or premisses of the proof. We use I' - ¢ as an abbreviation for ‘¢
Egd conseqence of I, In order to avoid confusion when dealing with more
‘(han one theory, we write I' b ¢, adding the subscript & to indicate the
theory in question.

if I' is a finite set {H#], ..., Hm}, We write #1, ..., #Hp - € instead of
{Hyy <., K} b€ I Tis the empty set (), then () € if and only if € is a
-theorem. It is customary to omit the sign ‘0> and simply write - 4. Thus, - ¢
s another way of asserting that ¢ is a theorem.
"~ The following are simple properties of the notion of consequence:

L IfFCAand I'E %, then A€,
4 [+ € if and only if there is a finite subset A of T such that A+ .
3 IfA+%, and foreach Zin A, I't- %, then I' - €.

Assertion 1 represents the fact that if 4 is provable from a set I' of pre-
misses, then, if we add still more premisses, € is still provable. Half of 2
follows from 1. The other half is obvious when we notice that any proof of ¢
from I' uses only a finite number of premisses from I'. Proposition 3 is also
quite simple: if € is provable from premisses in A, and each premiss in A is
provable from premisses in I', then € is provable from premisses in I'.

We now introduce a formal axiomatic theory L for the propositional

calculus.

I. Thesymbols of L are -, =, (,), and the letters 4; with positive integers
i as subscripts: Ay, Az, Az,.... The symbols = and = are called pri-
mitive connectives, and the letters A; are called statement letters.
(a) All statement letters are wifs.
(b) If % and ¥ are wfs, then so are (—=4) and (% = ).
Thus, a wf of L is just a statement form built up from the statement
letters 4; by means of the connectives — and =.
3. &, € and & are wfs of 1L, then the following are axioms of L.:
(Al) (B = (¢ = %))
A (B=> (= D))= (B=>9F)= (B> D))
(A3) (€)= () = ((~€) = B) = ©))
4. The only rule of inference of L is modus ponens: € 1s a direct con-
sequence of # and (# = ¥). We shall abbreviate applications of this
rule by MP.}

I

We shall use our conventions for eliminating parentheses.

"To be precise, we should add the so called extremal clause: (c) An expression is
awf if and only if it can be shown to be a wf on the basis of clauses (a) and (b). This
can be made rigorous using as a model the definition in footnote § on page 13.

*A common English synonym for modus ponens is the detachment rule.
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Notice that the infinite set of axioms of L is given by means of three
axiom schemas (A1)—(A3), with each schema standing for an infinite number
of axioms. One can easily check for any given wf whether or not it is ag
axiom; therefore, 1. is axiomatic. In setting up the system L., il is our in-
tention to obtain as theorems precisely the class of all tautologies.

We introduce other connectives by definition:

(D1) (B AE) for ~(# = —F)
(D) (#VE) for (~H)= ¢
(D3) (# & 6) for (# = €)N(C = %)

The meaning of (D1), for example, is that, for any wis & and 4, “(# A €)’ is
an abbreviation for ‘—~(% => —€)’.

LEMMA 1.8 +, # = # for all wis 4.

Proof'

We shall construct a proof in L of # = 4.

l. (= ((B=>%)=> B))> Instance of axiom schema (A2)
(B = (B = B))=(F=>R))

2. B=>({(FB=>B)=> %) Axiom schema (Al)

3. (B=>(#=B))=(#=> %) From | and 2 by MP

4. B = (B = %) Axiom schema (Al)

The word ‘proof” is used in two distinct senses. First, it has a precise meaning
defined above as a certain kind of finite sequence of wfs of L. However, in another
sense, it also designates certain sequences of the English language (supplemented by
various technical terms) that are supposed to serve as an argument justifying some
assertion about the language L (or other formal theories). In general, the language
we are studying (in this case, L) 1s called the object language, while the language in
which we formulate and prove statements about the object language is called the
metalanguage. The metalanguage might also be formalized and made the subject of
study, which we would carry out in a metametalanguage, and so on. However, we
shall use the English language as our (unformalized) metalanguage, although, for a
substantial part of this book, we use only a mathematically weak portion of the
English language. The contrast between object language and metalanguage is also
present in the study of a foreign language; for example, in a Sanskrit class, Sanskrit is
the object language, while the metalanguage, the language we use, is English. The
distinction between proofand metaproof (1.e., a proof in the metalanguage) leads to a
distinction between theorems of the object language and metatheorems of the me-
talanguage. To avoid confusion, we generally use ‘proposition’ instead of ‘me-
tatheorem’. The word ‘metamathematics’ refers to the study of logical and
mathematical object languages; sometimes the word is restricted to those investiga-
tions that use what appear to the metamathematician to be constructive (or so-called
finitary) methods.
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5. B=A From 3 and 4 by MP!

Exercise
147 Provefik
@)L ("B = B)=> %
(b) # =, CE=>9 L B=>9
AB= (=92 FLEC= (#=> D)
b (€ = ~B) = (B =€)

[n mathematical arguments, one often proves a statement ¢ on the as-
sumption of some other statement # and then concludes that ‘if #, then €~
i< true. This procedure is justified for the system L by the following theorem.

PROPOSITION 1.9 (DEDUCTION THEOREM)!

JPL s a set of wisand # and € are wfs,and I', 4+ €,thenT'+ % = €. In
particular, if % - %, then & % = ¢ (Herbrand, 1930).

Proof

Let %y, ..., €, bea proof of € form I'u{#}, where €, is €. Let us prove, by
induction on j, that T + # = € for 1 <j<n. First of all, | must be either
in I or an axiom of L or # itself. By axiom schema (A1), €} => (# => €1) is
an axiom. Hence, in the first two cases, by MP, I' - # = %,. For the third
case, when €| is #, we have - % = &, by Lemma 1.8, and, therefore,
'+ % = %,. This takes care of the case j=1. Assume now that
T:= B = € for all k < j. Either € is an axiom, or €;isinI', or ¢;is #, or
%, follows by modus ponens from some ¥, and €,,, where £ < j, m < j, and
‘,-has the form €, = ;. In the first three cases, I' - % = € as in the case
= 1 above. In the last case, we have, by inductive hypothesis, [ - # = €,
and I'+- B = (4, = €;). But, by axiom schema (A2), - (# = (6, = €;))
>((# = €1) = (# = €;)). Hence, by MP, I' - (% = ¥;) = (# = €)),
-and, again by MP, I' - # = €. Thus, the proof by induction is complete.
“Fhe case j = n is the desired result. [Notice that, given a deduction of ¢ from
i and 4, the proof just given enables us to construct a deduction of & = €

 The reader should not be discouraged by the apparently unmotivated step 1 of
:the proof. As in most proofs, we actually begin with the desired result, & = 4, and
‘then look for an appropriate axiom that may lead by MP to that result. A mixture of
-Ingenuity and experimentation leads to a suitable instance of axiom (A2).

. FFor the remainder of the chapter, unless something is said to the contrary, we
ishall omit the subscript L in t;. In addition, we shall use I, #+ € to stand for
Tu{#} - 4. In general, we let T, &y, ..., B, € stand for TU{#,, ..., B} F .
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 beta : b
gama : g
x
-----------
1.(g->x)->(b->(g->x))      (A1)
2.g->x                                 (farz)
3.b->(g->x)                         (1,2,MP(
4.(b->(g->x))->((b->g)->(b->x))   (A2(
5.(b->g)->(b->x)                (3,4,MP(
6.b->g                                  (farz(
7.b->x                                  (5,6,MP)
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 beta : b
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x
-----
1. (b->(g->x))->((b->g)->(b->x))    (A2)
2. (b -> (g->x))                               (farz)
3. (g->(b->g))                                     (A1)
4. (b->g)->(b->x)                               (1,2,mp)
5.g->(b->x)                                         (3,4,b)
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 beta : b
gama : g
x
-----
1. -b->-b       (Lemma1.8)
2. (-b->-b)->((-b->b)->b)    (A3)
3.(-b->b)->b      (1,2,MP)
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from I'. Also note that axiom schema (A3) was not used in proving the-
deduction theorem.]
COROLLARY 1.10

#B=>Y C=>Y-B=>9
L) B=(€E=>2), €-B =9

Proof

For part (a):

1. 8=¢ Hyp (abbreviation for ‘hypothesis’)
2.4=>9 Hyp

3. B Hyp

4. € 1, 3, MP

5.9 2. 4, MP

Thus, &= €, € = 2, &+ 2. So, by the deduction theorem,
B=>C,¢=>D+%B=>9.
To prove (b), use the deduction theorem.

LEMMA 1.11

For any wfs # and ¢, the following wfs are theorems of L.

(@ —~F=>H (€ (# = %)= (—% = %)
(b) = A (f) # = (—€ = ~(# = %))
©) &= (B=>%) (2 (B=%€)=>((~F=%)=>%

d) (-€ = %) = (B =)

Proof

@QFr-—#=>%
1. (~# = &) = (B = ~B) = #) Axiom (A3)

2. B = B Lemma 1.8 1
3. (" FB= ) =>B 1, 2, Corollary 1.10(b)
4. =R = (B = ——H) Axiom (Al)
5. A =>HB 3, 4, Corollary 1.10(a)

fInstead of writing a complete proof of ~# = -4, we simply cite Lemma 1.8.
In this way, we indicate how the proof of ——% = £ could be written if we wished to
take the time and space to do so. This is, of course, nothing more than the ordinary
application of previously proved theorems.
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(b) ke B = F _
1. (% = %) = Axiom (A3)
(B = B) = ~—H)
3. —tpd = B Part (a)
3. (~FB = By = ~—H 1, 2, MP
4. F = (——F = B) Axiom (Al)
5. B= A 3, 4, Corollary 1.10(a)
() - ~F= (B =€)
1. % Hyp
2. # Hyp
3. B = (—F => %) Axiom (Al)
4. -# = (0 = ~H) Axiom (A1)
5. ~€ =B 2, 3, MP
6. =€ = K 1, 4, MP
7. (% = ~%) = (€ = #) = %) Axiom (A3)
8. (€ =>H)=>C 6, 7, MP
9. % 5, 8, MP
10. =B, B+ € 1-9

1. ~B-B=> €
12. % = (B = 6)

10, Deduction theorem
11, Deduction theorem

@)+ (6= ~B) = (B> 6)

1. =€ = % Hyp

2. (€= %H) = (€= %)=%) Axiom (A3)

3. B = (%€ => B) Axiom (Al)

4. (¢ = %) =€ 1, 2, MP

5. =% 3, 4, Corollary 1.10(a)

6. €= -B+-AB=>F 1-5

7. F (% = —-%B) = (B=> %) 6, deduction theorem
(e) H (B = €)= (=€ => %)

1. =% Hyp

2. A =>H Part (a)

3. B =€ 1, 2, Corollary 1.10(a)

4. € = € Part (b)

5. —# = % 3, 4, Corollary 1.10(a)

6. (—F# = €)= (—F = ~B) Part (d)

1. =% = K 5, 6, MP

8. B=>C+ €= A 1-7

9. H{(# = €)= (—€ = %) 8, deduction theorem

(f)

% = (% = (B = F)).

Clearly, 4, # = ¢+ ¢ by MP. Hence, - % = ((# = €)= €)) by
two uses of the deduction theorem. Now, by (e), + ((# = ¥)
=% => (€= (#=>€)). Hence, by Corollary 1.10(a),
FB = (-6 = (B = E)).

@ F(@#=96) = ((~F= %) = %)
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l. =€ Hyp

2. B=>% Hyp

3. (B = €)= (7€ = %) Part (e)

4. -6 => B 1, 3, MP

5. (~# = €)= (~F = —H) Part (e)

6. -6 = +—H 2,5, MP

7. (—€ = —B) = (€ = ~H) = €¢) Axiom (A3)
8. (-6 = -B)=¥ 6, 7, MP

9. ¢ 4, 8, MP
10 B>, " B=>FHF 1-9

Il. B=3CH(HB=>6)=> € 10, deduction theorem

12. - (B = 96) = (DB = €) = F) 11, deduction theorem

Exercises

1.48 Show that the following wfs are theorems of I..

(8) B = (BVYF) (€) BAEC =€

(b) 4 = (€ v %) ) B=>D=>((F=>9D)=>(BVE=> D))
© CVB=RBVE (2 (B=>C)=>B) =%

d) ZNE = B (h) B = (¢ = (B NE))

1.49 Exhibit a complete proof in L. of Lemma 1.11(c). [Hint: Apply the
procedure used in the proof of the deduction theorem to the demonstration
given earlier of Lemma 1.11(c).] Greater fondness for the deduction theorem
will result if the reader tries to prove all of Lemma 1.11 without using the
deduction theorem. :

It is our purpose to show that a wf of L is a theorem of L if and only if it
is a tautology. Half of this is very easy.

PROPOSITION 1.12

Every theorem of L is a tautology.

Proof

As an exercise, verify that all the axioms of L are tautologies. By Proposi-
tion 1.2, modus ponens leads from tautologies to other tautologies. Hence,
every theorem of L is a tautology.

The following lemma is to be used in the proof that every tautology is a
theorem of L.
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LEMMA 1.13

[ci-# be a wf and let By, ..., B be the statement letters that occur in 4.
For a givef-assignment of truth values to By, ..., By, let B} be B; if B; takes
the value T; and let B} be —B; if B; takes the value F. Let # be # if B takes
-the-value T under the assignment, and let 4’ be ~4 if # takes the value F.

"nlenBljy-"aB’kl—,@"_ ‘
For example, let  be (=4, = As). Then for each row of the truth table

A As —-(—IAZ = As)

T T F
F T F
T F F
F F T

emma 1.13 asserts a corresponding deducibility relation. For instance,
corresponding to the third row there is 4y, —d4s F —=—=(—42 = 45), and to the
fourth row, ~dz, —4s F (=42 = 4s).

Proof
‘The proof is by induction on the number » of occurrences of — and = in 4.
(We assume Z written without abbreviations.) If n = 0, 4 is just a statement
[étter B;, and then the lemma reduces to B, + B; and —B; + —B;. Assume
pow that the lemma holds for all j < n.

Case 1. # is =%¢. Then € has fewer than » occurrences of — and =.

Subcase la. Let € take the value T under the given truth value assign-
‘ment. Then 4 takes the value F. So, ¢’ is ¥ and #' is —~%. By the inductive
hypothesis applied to , we have B}, ..., B, - %. Then, by Lemma 1.11(b)
and MP, B, ..., B+ —%. But =% 1s #

Subcase 1b. Let € take the value F. Then 4 takes the value T. So, €’ is =%
and & is 8, By inductive hypothesis, B}, ..., By - -%. But ¢ is #'.

Case 2. #is € = 9. Then ¥ and & have fewer occurrences of — and =
than #. So, by inductive hypothesis, B}, ..., B, + ¢’ and B}, ..., B, - &'

Subcase 2a. ¢ takes the value F. Then & takes the value T. So, ¢ 1s = €
and #' is #. Hence, B, ..., B+ =%. By Lemma 1.11(c) and MP,
Bl,...,Bij-¥= 2. Bulé=9is #.

" Subcase 2b. & takes the value T. Then & takes the value T. So, &' is &
and #' is #. Hence, B}, ..., B\ + 2. Then, by axiom (Al) and MP,
By, ....B+-¢=2. Buté=>Zis #.
| Subcase 2c. € takes the value T and @ takes the value F. Then % takes
‘the valoe F. So, €' is 4, 9" is -9, and &' is ~4#. Therefore, B}, ..., By - €
and By, ..., B, + 9. Hence, by Lemma 1.11(f) and MP, B}, ..., B,
(% = 2). But (¢ = 9) is #'.
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PROPOSITION 1.14 (COMPLETENESS THEOREM)

If a wf # of 1. is a tautology, then it is a theorem of L.

Proof

(Kalmar, 1935) Assume 4 is a tautology, and let By, ..., By be the state..
ment letters in 4. For any truth value assignment (o By, ..., By, we have, by:
Lemma 1.13, B}, ..., B, - . (#' is % because # always takes the value T.):
Hence, when Bj is given the value T, we obtain By, ..., B; |, Bx + 4, and,
when By is given the value F, we obtain B, ..., B, |, By + 4. So, by the
deduction theorem, B}, ..., B,_, - By =% and B}, ..., Bj,_, F B, = 3,

Then by Lemma 1.11(g) and MP, By, ..., B;_, - 2. Similarly, B; ., may be
chosen to be T or F and, again applying the deduction theorem, Lemma
1.11(g) and MP, we can eliminate B;_, just as we eliminated B;. After k such
steps, we finally obtain - 4.

COROLLARY 1.15

If 4 is an expression involving the signs -, =, A, V and & that is an
abbreviation for a wf & of L, then € is a tautology if and only if % is a
theorem of L.

Proof

In definitions (D1) (D3), the abbreviating formulas replace wfs to which
they are logically equivalent. Hence, by Proposition 1.4; # and € are lo-
gically equivalent, and ¥ is a tautology if and only if # is a tautology. The
corollary now follows from Propositions 1.12 and 1.14.

COROLLARY 1.16

The system L is consistent; that is, there is no wf # such that both % and
-4 are theorems of L.

Proof

By Proposition 1.12, every theorem of L is a tautology. The negation of a
tautology cannot be a tautology and, therefore, it is impossible for both %
and - to be theorems of L.

Notice that L is consistent if and only if not all wfs of L are theorems. In
fact, if I. is consistent, then there are wfs that are not theorems (e.g., the
negations of theorems). On the other hand, by Lemma 1.11(c),
b L% = (# = ¥), and so, if 1. were inconsistent, that is, if some wf % and
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its negation —~44 were provable, then by MP any wf ¢ would be provable.
(This equivalence holds for any theory that has modus ponens as a rule of
inference and in which Lemma 1.11(c) is provable.) A theory in which not all
wls are theorems is said to be absolutely cm‘zsistent, and this definition is
,ttpp]jcable ¢ven to theories that do not contain a negation sign.

“Exercise

.1.50 Let # be a statement form that is not a tautology. Let L' be the formal
{ljeory obtained from L by adding as new axioms all wfs obtainable from %
by substituting arbitrary statement forms for the statement letters in %, with
the same form being substituted for all occurrences of a statement letter.

?Show that Lt is inconsistent.

1.5 INDEPENDENCE. MANY-VALUED LOGICS

‘A subset Y of the set of axioms of a theory is said to be independent if some
wfin Y cannot be proved by means of the rules of inference from the set of

‘those axioms not in Y.

PROPOSITION 1.17

Each of the axiom schemes (A1)-(A3) is independent.

Proof

Fo-prove the independence of axiom schema (Al), consider the following
‘tables:

4 -4 A B A=B
0 1 0 0 0
I 1 I © 2
2 0 20 0
0 1 2
1 1 2
2 1 0
0 2 2
1 2 0
2 2 0

For any assignment of the values 0, 1 and 2 to the statement letters of a wf
2, these tables determine a corresponding value of 4. If % always takes the
value 0, 4 is called select. Modus ponens preserves selectness, since it is easy
to check that, if # and % = ¢ are select, so is ¢. One can also verify that all
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instances of axiom schemas (A2) and (A3) are select. Hence, any wf der;:
vable from (A2) and (A3) by modus ponens is select. However,
Ay => (A = A1), which is an instance of (Al), is not select, since it takes the
value 2 when A4, is 1 and 4, is 2.

To prove the independence of axiom schema (A2), consider the following

tables:
Y | A B A=2H8
0 1 0 0 0
1 0 1 0 0
2 1 2 0 0
0 1 2
1 1 2
2 1 0
0 2 1
1 2 0
2 2 0

Let us call a wf that always takes the value 0 according to these tables”
grotesque. Modus ponens preserves grotesqueness and it is easy to ven'fy;
that all instances of (Al) and (A3) are grotesque. However, the instance
(A1 = (42 = 43)) = ((41 = 42) => (4] = 43)) of (A2) takes the value 2
when A4, is 0, 4> is 0, and 45 is 1 and, therefore, is not grotesque.

The following argument proves the independence of (A3). Let us call a wf
A super if the wf k(%) obtained by erasing all negation signs in % is a
tautology. Each instance of axiom schemas (A1) and (A2) is super. Also,
modus ponens preserves the property of being super; for if #(# = €) and:
h(#) are tautologies, then /(%) is a tautology. (Just note that #(%# = €) is
(%) = h(%) and use Proposition 1.2.) Hence, every wf # derivable from
(Al) and (A2) by modus ponens is super. But h((—4; = —4;)=
((—IAl :>A1) =>A])) 18 (Al :>A1) = ((A] ::>A1) :$A1), which is not a
tautology. Therefore, (-4, = —4,) = ((—4; = 4,) = 4;), an instance of
(A3), is not super and is thereby not derivable from (Al) and (A2) by modus
ponens.

The idea used in the proof of the independence of axiom schemas (Al)
and (A2) may be generalized to the notion of a muny-valued logic. Select a
positive integer n, call the numbers 0, 1, ..., n truth values, and choose a
number m such that O0<<m < n. The numbers 0,1, ..., m are called desig-
nated values. Take a finite number of “truth tables’ representing functions
from sets of the form {0, 1, ..., n}k into {0, 1, ..., n}. For each truth table,
introduces a sign, called the corresponding connective. Using these con-
nectives and statement letters, we may construct ‘statement forms’, and
every such statement form containing j distinct letters determines a ‘truth
function’ from {0,1, ..., n} into {0,1, ..., n}. A statement form whose
corresponding truth function takes only designated values is said to be
exceptional. The numbers m and n and the basic truth tables are said to
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define a (finite) many-valued logic M. A formal theory involving statement
lettél‘S and the connectives of M is said to be suitable for M if and only if the
theorems of the theory coincide with the exc?ptional statement forms; of M.
All these notions obviously can be generalized to the case of an infinite
pumber of truth values. If n =1 and m = 0 and the truth tables are those
given for — and = in section 1.1, then the Correspoqding two-valued logic is
that studied in this chapter. The exceptional wfs in this case were called
rautologies. The system L is suitable for this logic, as proved in Propositions
[.12 and 1.14. In the proofs of the independence of axiom schemas (Al) and

(A2), two three-valued logics were used.

Fxercises

1.51 Prove the independence of axiom schema (A3) by constructing ap-
;prbpl-iate ‘truth tables’ for - and =.
1,52 (McKinsey and Tarski, 1948) Consider the axiomatic theory P in which
1here is exactly one binary connective *, the only rule of inference is modus
ponens (that is, € follows from % and % * %), and the axioms are all wfs of
the form 2 x 78. Show that P is not suitable for any (finite) many-valued
Jogic.
:1,§3 For any (finite) many-valued logic M, prove that there is an axiomatic
theory suitable for M.

Further information about many-valued logics can be found in Rosser
aiid Turquette (1952), Rescher (1969), Bolc and Borowik (1992) and Mal-
inowski (1993).

6 OTHER AXIOMATIZATIONS

Although the axiom system L is quite simple, there are many other systems
:sthat would do as well. We can use, instead of - and =, any collection of
sprithitive connectives as long as these are adequate for the definition of all
other truth-functional connectives.

“Examples

Ly: V and — are the primitive conectives. We use % = € as an abbreviation
for -#v¥. We have four axiom schemas: (1) BVv X = %, (2)
B=>BVE, 3) BVE>EVH, and @) ($=>9)=> (BVE>
AV @). The only rule of inference is modus ponens. Here and below we
use the usual rules for eliminating parentheses. This system 1s developed
in Hilbert and Ackermann (1950).

La: A and — are the primitive connectives. % = % is an abbreviation for
—(# N—%). There arec three axiom schemas: (1) & = (4N B);
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(2 BNE = B; and B) (B = €)= (~(€ND) = ~(Z NH)). Modus
ponens is the only rule of inference. Consult Rosser (1953) for a detailed
study.

L;: This is just like our original system L except that, instead of the axiom
schemas (A1)-(A3), we have three specific axioms: (1) 4y => (42 = 4));
(2) (4y = (42 = 43)) = (41 = 43) = (41 = A2)); and (3) (~4, =
—A4}) = ((—42 = 41) = 4>). In addition to modus ponens, we have a
substitution rule: we may substitute any wf for all occurrences of g
statement letter in a given wf.

L4: The primitive connectives are =, A, V and —. Modus ponens is the only
rule, and we have ten axiom schemas: (1) # = (¢ = %); (2) (% =
(€= 2)=>(B=>C)=>(B=>9D)); QYBNEC = B, (4 BANE > E
) B= (€= (BNE));,6) B=(BVE);, (T)E€= (BVE); 8) (%=
D)= (€= D)= (BVE = D)); (D (B = 6) > (B = €)= -B);
and (10) ——% = 4. This system is discussed in Kleene (1952).

Axiomatizations can be found for the propositional calculus that contain
only one axiom schema. For example, if — and = are the primitive con-
nectives and modus ponens the only rule of inference, then the axiom
schema

(B=€)=> (- =>-6)=>D)=>F) = (F = B)= (6 = PB))

is sufficient (Meredith, 1953). Another single-axiom formulation, due to
Nicod (1917), uses only alternative denial | . Its rule of inference is: &
follows from % | (¢ | &) and 4, and its axiom schema is

(2|(€12)) | {[€1(E16) | [(Z1N((217)(#19)]}

Further information, including historical background, may be found in
Church (1956) and in a paper by Lukasiewicz and Tarski in Tarski (1956, TV).

Exercises

1.54 (Hilbert and Ackermann, 1950) Prove the following results about the
theory L.

@) =>CH L, IVB=>DVE

b)) b, (F=> €)= (2=>%) = (9=>%))
) =B, B>€+),9=>%

d) b, B = B (e, b, BV B)

(6) = Ll'@ VST |

O FLB=>-H

(g) = Lx—'g = ('@ = (g)

M FELBV(EVD)= ((€V(BV D))V B
D) FL(EVBVIYVB=>CV(BV D)
) FLBV(EVD)=>EV(BVD)
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Ty
1.58P Consider the following axiomatization of the propositional calcujy,
# (due to Lukasiewicz). & has the same wfs as our system L. Its only ryf
of inference is modus ponens. Its axiom schemas are:

@) (~%=>2%)=>H
(b) B = (=F = €)
© (#=%C)=(¢=2) = (%> 9))

Prove that a wf % of & is provable in .¢ if and only if & is a tautology,
[Hint: Show that L and % have the same theorems. However, remembe;
that none of the results proved about L (such as Propositions 1.8-1.13)
automatically carries over to .%. In particular, the deduction theorem is nt
available until it is proved for #.]

1.59 Show that axiom schema (A3) of L can be replaced by the schemg

(=B = —€) = (¥ = %) without altering the class of theorems.

1.60 If axiom schema (10) of L; is replaced by the schema (10y:

~% = (& => ), then the new system Ly is called the intuitionistic propo-

sitional calculus.t Prove the following results about L.

(@) Consider an (n + 1)-valued logic with these connectives: =4 is 0 when @
is n, and otherwise it is #; % N\ % has the maximum of the values of ¢
and %, whereas # v € has the minimum of these values; and # = € is()
if # has a value not less than that of ¢, and otherwise it has the same
value as €. If we take O as the only designated value, all theorems of
are exceptional.

(b) 4; v -4, and ——4, = 4; are not theorems of 1,.

(¢) For any m, the wf

(4 S A)V.. VA & 4,)V (e A3) V...
v (AZ A Am) V...V (Amfl & Am)

is not a theorem of 1
(d) (Gédel, 1933) 11 is not suitable for any finite many-valued logic.
(e) () IfI', B+ €, then T I 1 % = ¥ (deduction theorem)
(i) =€, >, B=>9
() b, B =
(iv) F (% =€) = (—-F = %)
W) LB = (~FB =€)
(Vl) H L;_'—'(—'_"@ = %)
(Vll) —Iﬁ(,@ = %), -~ + LI_'_'%

tThe principal origin of intuitionistic logic was L.E.J. Brouwer’s belief that
classical logic is wrong. According to Brouwer, # V € is proved only when a proof of
% or a proof of € has been found. As a consequence, various tautologies, such as
AV 4, are not generally acceptable. For further information, consult Brouwer
(1976), Heyting (1956), Kleene (1952), Troelstra (1969), and Dumiett (1977). Jas-
kowski (1936) showed that L, is suitable for a many-valued logic with denumerably
many values.
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(viil) F L8 = ~%

r;itf‘—"@ if and only if # is a tautology.

_[4 — if and only if =7 is a tautology.

P 1% has A and — as its only connectives, then |- # if and only if %
is-4 tattology.

61 Let B and € be in the relation R if and only if - | % & €. Show that R

, an_equivalence relation. Given equivalence classes [#] and [¢], let

i) =BV €], [BIn[¥] = [BN€], and [#]=[-#|. Show that the

uni\f{llence classes under R form a Boolean algebra with respect to n, v
ad icalled the Lindenbaum algebra 1.* determined by L. The element 0 of

| - is:the equivalence class consisting of all contradictions (i.c., negations of

tautologies). The unit element 1 of L* 1s the equivalence class consisting of

A1 tautologies. Notice that - (% = € if and only if [#] <[¥] in L*, and that
Ao ¢ifand only if [#] = [€¢]. Show that a Boolean function f (built up

l'roi‘_“/ variables , 0, and 1, using v, nand 7)isequal to the constant function

{ in.all Boolean algebras if and only if - f #, where 7 is obtained from f

by changing U, M, S 0and 1 to v, A, 0, 41 A A4y, and A v -4, re-

-

:.pc(: Uvely .




2.1 QUANTIFIERS

There are various kinds of logical inference that cannot be justified on the
basis of the propositional calculus; for example:

1. Any friend of Martin is a friend of John.
Peter is not John’s friend.
Hence, Peter is not Martin’s friend.

2. All human beings are rational.
Some animals are human beings.
Hence, some amimals are rational.

3. The successor of an even integer is odd.
2 is an even integer.
Hence, the successor of 2 is odd.

The correctness of these inferences rests not only upon the meanings of the
truth-functional connectives, but also upon the meaning of such expressions
as ‘any’, ‘all’ and ‘some’, and other linguistic constructions.

In order to make the structure of complex sentences more transparent, it
is convenient to introduce special notation to represent frequently occurring
expressions. If P(x) asserts that x has the property P, then (Vx)P(x) means
that property P holds for all x or, in other words, that everything has the
property P. On the other hand, (3x)P(x) means that some x has the property
P — that is, that there is at least one object having the property P. In
(Vx)P(x), (¥x) is called a universal quantifier; in (Ix)P(x), ‘(Ix)” is called an
existential quantifier. The study of quantifiers and related concepts is the
principal subject of this chapter.

Examples
1. Inference 1 above can be represented symbolically:

(Vx)(F(x,m) = F(x,}))
~F(p,J)

~F(p,m)
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Here, F(x,y) means that x is a friend of y, while m,j and p denote
Martin, John, and Peter, respectively.
9 Inference 2 becomes:
(Vx)(H(x) = R(x))
() (A(x) A H(x))
()(4() ARE)
Here, H, R and A designate the properties of being human, rational, and

an animal, respectively.
3. Inference 3 can be symbolized as follows:

(Vx)(I(x) A E(x) => D(s(x)))
I(b) AE(b)

D(s(b))
Here, 1, F and D designate respectively the properties of being an integer,
even and odd; s(x) denotes the successor of x; and b denotes the integer 2.

Notice that the validity of these inferences does not depend upon the
particular meanings of ¥,m,j,p,H, R,4,1,E,D,s and b.

Just as statement forms were used to indicate logical structure dependent
upon the logical connectives, so also the form of inferences involving
quantifiers, such as inferences 1 3, can be represented abstractly, as in
I’ — 3. For this purpose, we shall use commas, parentheses, the symbols —
and = of the propositional calculus, the universal quantifier symbol V, and
the following groups of symbols:

Individual variables: x,x2,...,%,, ...

Individual constants: ay,ds, ..., ap,. ..

Predicate letters: 47 (n and k are any positive integers)
Function letters: f;’ (n and k are any positive integers)

The positive integer n that is a superscript of a predicate letter 4} or of a
function letter f}' indicates the number of arguments, whereas the subscript
k is just an indexing number to distinguish different predicate or function
letters with the same number of arguments.]

In the preceding examples, x plays the role of an individual variable;
m, j,p and b play the role of individual constants; F is a binary predicate
letter (i.e., a predicate letter with two arguments); H,R,4,1,E and D are
monadic predicate letters (i.e., predicate letters with one argument); and s is
a function letter with one argument.

The function letters applied to the variables and individual constants
generate the rerms:

tFor example, in arithmetic both addition and multiplication take two argu-
ments. So, we would use one function letter, say fZ, for addition, and a different
function letter, say f7, for multiplication.
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1. Variables and individual constants are terms.
2. If £ is a function letter and 4,13, .. ., 1, are terms, then f!(t1,12,..., 1) is
a term.

3. An expression is a term only if it can be shown to be a term on the basig
of conditions 1 and 2.

Terms correspond to what in ordinary languages are nouns and noun
phrases — for example, ‘two’, ‘two plus three’, and ‘two plus x’.

The predicate letters applied to terms yield the atomic formulas; that is, if
A} is a predicate letter and #y,1, ... ,1, are terms, then A7 (t1,12,...,4) is an
atomic formula.

The well-formed formulas (wfs) of quantification theory are defined as
follows:

1. Every atomic formula is a wf.

2. If # and ¥ are wifs and y is a variable, then (~%), (# = %), and ((Vy)%)
are wis.

3. An expression is a wil only if it can be shown to be a wf on the basis of
conditions 1 and 2.

In ((Vy)#), ‘%’ is called the scope of the quantifier (Vy)’. Notice that % need
not contain the variable y. In that case, we understand ({(Vy)%) to mean the
same thing as %.

The expressions (B N E),(#B V ), and (# < €) are defined as in system
L (see page 36). It was unnecessary for us to use the symbol 3 as a primitive
symbol because we can define existential quantification as follows:

((I)B) stands for (—((Vx)(~%)))

This definition is faithful to the meaning of the quantifiers: 8(x) is true for
some x if and only if it is not the case that %(x) is false for all x.t

Parentheses

The same conventions as made in Chapter 1 (page 20) about the omission of
parentheses are made here, with the additional convention that quantifiers
(Vy) and (dy) rank in strength between —, A,V and =, <.

Examples
Parentheses are restored in the following steps.

1. (vx)Ai(x1) = A3 (x2,31)
((vx1)4](x1)) = 45 (x2,11)
(((¥x1)41 (1)) = A7(x2,x1))

"We could have taken o as primitive and then defined ((Vx)#) as an ab-
breviation for (—~((3x)(—4%))), since #(x) is true for all x if and only if it is not the
case that #(x) is false for some x.
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2. (Va)A}(x1) v 43 (x2,x1)
(Vx1) (A (x1) V A7 (x2,71))
(Vx)(AL(x1)) v 43 (x2,%1)))

3. (Vxi)(Fx2)47(x1,x2)

(Va1 ) (Fx2) 47 (x1,%2))
((vx1)((Fx2) 47 (31, %2)))

Exercises

2.1 Restore parentheses Lo the following.

(@ (vxi)d;(a) A - 4j(x2)

®) ())& 4l (x)

(©) (Vx2)(Fx1)AF(x1, x2)

(d) (vx1)(Vxa)(Vxa)Ad) (1) = A](x2) A — Ay (%)

(@ (Fx)(Vx2)(Fxs)d; (x1) V (Ix2)(Vxs) A7 (x3, x2)

@ (Px2)= Ay () = Aoy, %1, %2) V (V31)4] (1)

@ ~(vx)Ai(x) = (Fx)4](x2) = AF(x1,%2) A 4] (x2)
2.2 Eliminate parentheses from the following wifs as far as is possible.
(@ (((vx1)(A] (1) = 4] (1)) V (Fx)4] (x1)))

b) ((~(Cx2)(4](x2) V A1 (a1)))) & 4] (x2))

© (((vx1)(=(~41(a3)))) = (Ai(x1) = 4] (x2)))

An occurrence of a variable x is said to be bound in a wf 4 if either it is
the occurrence of x in a quantifier ‘(vx)” in 4 or it lies within the scope of a
quantifier ‘(Vx)’ in #. Otherwise, the occurrence is said to be fiee in 4.

Examples

[. A3{(xy,x2)

2 A2(0,3) = (Va)4] ()

3. (Vx1) (A3 (x1,%2) = (Vx1)41(x1))
4. (Elxl)A%(xl,xz)

In Example 1, the single occurrence of x; is free. In Example 2, the first
occurrence of xj is free, but the second and third occurrences are bound. In
Example 3, all occurrences of x; are bound, and in Example 4 both oc-
currences of x; are bound. (Remember that (3x;)A43(x;,x2) is an abbrevia-
tion of —(Vx;)=42(x1,x2).) In all four wfs, every occurrence of x; is free.
Notice that, as in Example 2, a variable may have both free and bound
occurrences in the same wf. Also observe that an occurrence of a variable
may be bound in some wf 4 but free in a subformula of 4. For example, the
first occurrence of x; is free in the wf of Example 2 but bound in the larger
wf of Example 3.

A variable is said to be fiee (bound) in a wt 2 if it has a free (bound)
occurrence in Z4. Thus, a variable may be both free and bound in the same
wif; for example, x; is free and bound in the wf of Example 2.
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Exercises

2.3 Pick out the free and bound occurrences of variables in the following

wis.

(@) (vx3)(((¥x1)4}(x1,%2)) = A3(x3, 1))

(b) (Vx2)47(x3,x2) = (Vx3)47(x3,%2)

(c) ((Vxl)(axl)A:]” (xl,XZ,fIZ(xl,JQ))) V _'(V'xl )A%(xlvffl (xl))

2.4 Indicate the free and bound occurrences of all variables in the wfs of
Exercises 2.1 and 2.2.

2.5 Indicate the free and bound variables in the wfs of Exercises 2.1-2.3.

We shall often indicate that some of the variables Xi 4. oo X;, are free
variables in a wf & by writing 4 as ,@(x,-] yans ,x,-k). This does not mean that
% contains these variables as free variables, nor does it mean that £ does
not contain other free variables. This notation is convenient because we can
then agree to write as #(t, ..., %) the result of substituting in 4 the terms
t,... & for all free occurrences (if any) of x; , ..., x; , respectively.

If 4 is a wf and ¢ is a term, then ¢ is said to be fiee for x; in 4 if no free
occurrence of x; in 44 lies within the scope of any quantifier (Vx;), where x; is
a variable in 7. This concept of ¢ being free for x; in a wf #(x;) will have
certain technical applications later on. It means that, if 7 is substituted for all
free occurrences (if any) of x; in 4(x;), no occurrence of a variable in ¢
becomes a bound occurrence in %(¢).

Examples

1. The term x; is free for x; in 4} (x1), but x; is not free for xy in (¥xz)41(x).

2. The term f{(x1,x3) is free for x; in (Vx2)A43(xy,x2) = A} (x;) but is not free
for xy in (Fxs) (Vo) A2 (x1,%2) = A} (x1)-

The following facts are obvious.

A term that contains no variables is free for any variable in any wf.

. A term ¢ is free for any variable in 4 if none of the variables of ¢ is bound
in 4.

x; is free for x; in any wf.

4. Any term is free for x; in & if 4 contains no free occurrences of x;.

[

e

Exercises

2.6 Is the term f7(x,x;) free for x, in the following wfs?
(@) Af(x1,x2) = (Vx2)A (x2)

(by ((Yx2)A7(x2, ) V (Fx2)A] (x1,%2)

(c) (vxi)Ai(x1,x2)

(d) (vx2)45(x1,x2)

© (oMl (x2) > A2(r1,:)



QUANTIFIERS

55

2.7 Justify facts 1-4 above.

When English sentences are translated imto formulas, certain general
guidelines will be useful:

1. A sentence of the form ‘All 4s are Bs’ becomes (Vx)(4(x) = B(x)). For

example, FEvery mathematician [loves music 1s translated as

(Vx)(M(x) = L(x)), where M(x) means x is a mathematician and L(x)

means x loves music.

A sentence of the form ‘Some 4s are Bs’ becomes (x)(A4(x) A B(x)). For

example, Some New Yorkers are friendly becomes (Ix)(N(x) AF(x)),

where N(x) means x is a New Yorker and F(x) means x is friendly.

3. A sentence of the form ‘No 4s are Bs’ becomes (Vx)(4(x) = —B(x)).! For
example, No philosopher understands politics becomes (Vx)(P(x)
= —U(x)), where P(x) means x is ¢ philosopher and U(x) means x un-
derstands politics.

=

Let us consider a more complicated example: Some people respect ev-
eryone. This can be translated as (Ix)(P(x) A (Yy)(P(y) = R(x,y))), where
P(x) means x is a person and R(x,y) means x respects y.

Notice that, in informal discussions, to make formulas easier to read we
may use lower-case letters u, v, x, y,z instead of our official notation x; for
individual variables, capital letters 4, B, C, ... instead of our official notation
A} for predicate letters, lower-case letters fg,4, ... instead of our official
notation f' for function letters, and lower-case letters a,b,c, ... instead of
our official notation a; for individual constants.

Exercises

2.8 Translate the following sentences into wifs.

(a) Anyone who is persistent can learn logic.

(b) No politician is honest.

(c) Not all birds can fly.

(d) All birds cannot fly.

(e) x is transcendental only if it is irrational.

(f) Seniors date only juniors.

(g) If anyone can solve the problem, Hilary can.

(h) Nobody loves a loser.

(i) Nobody in the statistics class is smarter than everyone in the logic class.

(i) John hates all people who do not hate themselves.

(k) Everyone loves somebody and no one loves everybody, or somebody
loves everybody and someone loves nobody.

(D) You can fool some of the people all of the time, and you can fool all the
people some of the time, but you can’t fool all the people all the time.

TAs we shall see later, this is equivalent to —(3x)(4(x) A B(x)).
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(m) Any sets that have the same members are equal.

(n) Anyone who knows Julia loves her.

(o) There is no set belonging to precisely those sets that do not belong to
themselves.

(p) There is no barber who shaves precisely those men who do not shave
themselves.

2.9 Translate the following into everyday English. Note that everyday

English does not use variables.

(a) (Vx)(M(x) A (Vy)-W(x,y) = U(x)), where M(x) means x is a man,
W(x,y) means x is married to y, and U(x) means x is unhappy.

(b) (Wx)(V(x) A P(x) = A(x,b)), where V(x) means x is an even integer, P(x)
means x is a prime integer, A(x,y) means x = y, and & denotes 2.

() () ) A (¥x)(I(x) = L(x,y))), where I( y) means y is an integer and
L(x,y) means x<y.

(d) In the following wfs, A1(x) means x is a person and A3(x,y) means x
hates y.
() (F)(4!(x) A () AL) = 42(x,2))
(i) (v)(4l(x) = ()AL (3) = A4Lx,))))
(i) (3) (4] () A (D)L ) = (435, 5) S 4, )

(© (WNHE) > (3)E)((3,2) A () (P(u,x) & (A7) V 4 (1,2))))),
where H(x) means x is a person, A(u, v) means ‘v = v, and P(u, x) means
u is a parent of x.

2.2 FIRST-ORDER LANGUAGES AND THEIR INTERPRETATIONS.
SATISFIABILITY AND TRUTH. MODELS

Well-formed formulas have meaning only when an interpretation is given
for the symbols. We usually are interested in interpreting wfs whose symbols
come from a specific language. For that reason, we shall define the notion of

a first-order language.t

tThe adjective ‘first-order” is used to distinguish the languages we shall study
here from those in which there are predicates having other predicates or functions as
arguments or in which predicate quantifiers or function quantifiers are permitted, or
both. Most mathematical theories can be formalized within first-order languages,
although there may be a loss of some of the intuitive content of those theories.
Second-order languages are discussed in the appendix on second-order logic. Ex-
amples of higher-order languages are studied also in Gédel (1931), Tarski (1933),
Church (1940), Hasenjaeger and Scholz (1961) and Van Bentham and Doets (1983).
Differences between first-order and higher-order theories are examined in Corcoran

(1980).
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DEFINITION

A first-order language . contains the following symbols.

(a) The propositional connectives — and =, and the universal quantifier
symbol V.

(b) Punctuation marks: the left parenthesis (, the right parenthesis), and the
comma.f

(c) Denumerably many individual variables x1,x, . . ..

(d) A finite or denumerable, possibly empty, set of function lettess.

(e) A finite or denumerable, possibly empty, set of individual constants.

(/) A non-empty set of predicate letters.

By a term of & we mean a term whose symbols are symbols of ..

By a wf of & we mean a wi whose symbols are symbols of .

Thus, in a language % some or all of the function letters and individual
constants may be absent, and some (but not all) of the predicate letters may
be absent.! The individual constants, function letters and predicate letters of
a language & are called the non-logical constants of ¥. Languages are
designed in accordance with the subject matter we wish to study. A language
for arithmetic might contain function letters for addition and multiplication
and a predicate letter for equality, whereas a language for geometry is likely
to have predicate letters for equality and the notions of point and fine but no
function letters at all.

DEFINITION

Let . be a first-order language. An interpretation M of ¥ consists of the
following ingredients.

(a) A non-empty set D, called the domain of the interpretation.

(b) For each predicate letter 4} of %, an assignment of an n-place relation
(4% ™ in D.

(¢) Vor each function letter /7 of &, an assignment of an #-place operation
( f].”)M in D (that is, a function from D" into D).

(d) For each individual constant @; of &, an assignment of some fixed
element (z;)" of D.

Given such an interpretation, variables are thought of as ranging over the
set D, and —,= and quantifiers are given their usual meaning. Remember
that an n-place relation in D can be thought of as a subset of D", the set of all

tThe punctuation marks are not strictly necessary; they can be avoided by
redefining the notions of term and wf. However, their use makes it easier to read and
comprehend formulas.

Hf there were no predicate letters, there would be no wfs.
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n-tuples of elements of D. For example, if D is the set of human beings, then
the relation ‘father of ’ can be identified with the set of all ordered pairs (x, )
such that x is the father of y.

For a given interpretation of a language %, a wf of % without free
variables (called a closed wf or a sentence) represents a propostion that is
true or false, whereas a wf with free variables may be satisfied (i.e., true) for
some values in the domain and not satisfied (i.e., false) for the others.

Examples
Consider the following wfs:

1. A3(x1,x2)
2. (V) A3 (x1,x2)
3. (Fx1)(¥x2) 43 (x1,x2)

Let us take as domain the set of all positive integers and interpret 43(y, z) as
y<z. Then wf 1 represents the expression ‘x; <x7’, which is satisfied by all
the ordered pairs {a, b} of positive integers such that a <b. Wf 2 represents
the expression ‘For all positive integers x,, x) <x;,”t which is satisfied only
by the integer 1. Wf 3 is a true sentence asserting that there is a smallest
positive integer. If we were to take as domain the set of all integers, then wi 3
would be false.

Exercises

2.10 For the following wfs and for the given interpretations, indicate for

what values the wfs are satisfied (if they contain free variables) or whether

they are true or false (if they are closed wfs).

(i) AF(f(x1,%2), 1)

(i) A7(x1,%2) = A} (x2,%1)

(1i1) (Vxl)(sz)(Vx3)(A‘17‘(x1,xz) A A%(xz,x_:,) = A%(xl,xg))

(a) The domain is the set of positive integers, A3(y,z) is y=z, f2(y,z) is
y-z, and a; 1s 2.

(b) The domain is the set of integers, 43(y,z) is y = z, f(y,2) is y + z, and
(£3] 1S 0.

(c) The domain is the set of all sets of integers, A3(y,z) if y C z, f2(y,z) is
yNz, and a; is the empty set (.

2.11 Describe in everyday English the assertions determined by the fol-

lowing wfs and interpretations.

@ (V)(¥)(x,y) = ()(AL() A3 (x,2) A 43(2,))), where the domain
D is the set of real numbers, 4%(x,y) means x < y, and 4}(z) means z is a
rational number.

In ordinary English, one would say ‘% is less than or equal to all positive
integers’.
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by (¥x) (A‘(x) = (I)(41(v) A 43(»,x))), where D is the set of all days and

people, 41(x) means x is a day, A}(y) means y is a sucker, and A3(y,x)
means y is born on day x.

© (‘v’x Y(Vp) (4] (x) AAL(y) = 45(f7(x,»))), where D is the set of integers,

Al (x) means x is odd, A} (x) means x is even, and f7(x,y) denotes x + y.

(d) For the following wfs, D is the set of all people and 43(u, v) means u

loves v.
0 (Hx)(Vy)(Az(xy
i) (%)(30)43(x,)
(i) (3)(0)((72) (A%y 2) = A3(x,)))
(iv) (Ex)(Vy)-4i(x,»)

The concepts of satisfiability and truth are intuitively clear, but, following
Tarski (1936), we also can provide a rigorous definition. Such a definition is
necessary for carrying out precise proofs of many metamathematical results.

Satisfiability will be the fundamental notion, on the basis of which the
notion of truth will be defined. Moreover, instead of talking about the
n-tuples of objects that satisfy a wf that has » free variables, it is much more
convenient from a technical standpoint to deal uniformly with denumerable
sequences. What we have in mind is that a denumerable sequence
s = (s1,82,53,...) is to be thought of as satisfying a wf % that has
Xji, Xp, -+ -2 %j, as free variables (where j; < j» <...<j,) if the n-tuple
(Sj12 855+ - - »55,) satisfies 4 in the usual sense. For example, a denumerable
sequence (s1,52,53,...) of objects in the domain of an interpretation M will
turn out to sat1sfy the wf 43 (x,, xs) if and only if the ordered pair, {s,s5) is in
the relation (AZ) ass1gned to the predicate letter 47 by the interpretation M.

Let M be an interpretation of a language .¢ and let D be the domain of
M. Let Z be the set of all denumerable sequences of elements of D. For a wf
% of &, we shall define what it means for a sequence s = (s1,52,...) in X to
satisfy % in M. As a preliminary step, for a given s in £ we shall define a
function s* that assigns to each term ¢ of % an element s*(¢) in D.

1. If 7 is a variable x;, let s*(¢) be s;.

2. If ¢ is an individual constant g;, then s*(¢) is the interpretation (a] of
this constant.

3. If f{ is a function letter, (f}c')M is the corresponding operation in D, and
H,....1y are terms, then

St ) = M (1), 57 (0))

Intuitively, s*(¢) is the element of D obtained by substituting, for each j, a
name of s; for all occurrences of x; in ¢ and then performing the operations
of the interpretation corresponding to the function letters of 7. For instance,
if t is f7(x3, ff(x1,a)) and if the interpretation has the set of integers as its
domain, £ and fl2 are interpreted as ordinary multiplication and addition,
respectively, and «, is interpreted as 2, then, for any sequence s = (sy,52,...)
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of integers, s*(¢) is the integer s3 - (s; + 2). This is really nothing more than
the ordinary way of reading mathematical expressions.
Now we proceed to the definition of satisfaction, which will be an in-

ductive definition.

1. If # is an atomic wf 4}(t,...,%,) and (A;;)M is the corresponding
n-place relation of the mterpretatlon then a sequence s = (s1,52,...)
satisfies 4 if and only if (A1) (s*(n1),...,5*(t,)) — that is. if the n-tuple
{s*(#1),-..,8"(t;)) is in the relation (A;;)M f

2. s satisfies — # il and only if s does not satisfy .

s satisfies # = ¥ if and only if s does not satisfy # or s satisfies €.

4. s satisfies (Vx;)4 if and only if every sequence that differs from s in at
most the ith component satisfies 4.}

(N

Intuitively, a sequence s = (sy,57, . . .) satisfies a wf 4 if and only if, when,
for each i, we replace all free occurrences of x; (if any) in 4 by a symbol
representing s;, the resulting proposition is true under the given interpreta-
tion,

Now we can define the notions of truth and falsity of wfs for a given
interpretation.

DEFINITIONS

1. A wf % is true for the interpretation M (written |y #) if and only if every
sequence in T satisfies 4.

2. 4 is said to be false for M if and only if no sequence in X satisfies 4.

An interpretation M is said to be a model for a set I' of wfs if and only if

every wf in I is true for M.

(8

The plausibility of our definition of truth will be strengthened by the fact
that we can derive all of the following expected properties I-XI of the
notions of truth, falsity and satisfaction. Proofs that are not explicitly given
are left to the reader (or may be found in the answer to Exercise 2.12). Most

tFor example, if the domain of the interpretation is the set of real numbers, the
interpretation of A7 is the relation <, and the interpretation of f{ is the function e*,
then a sequence s = (s1,52,...) of reai numbers satisfies 42(f] (x2),xs) 1f and only If
e <s5. If the domain is the set of integers, the interpretation of A}(x,y,u,v) is
x-v=u-y, and the interpretation of a, is 3, then a sequence s = (sl,sz, ) of
integers satisfies 4%(x3,a1,x1,x3) if and only if (.S'3) = 3.

Yn other Words a sequence s = (s,52,...,%;,...) satisfies (Vx;)% if and only if,
for every element ¢ of the domain, the sequence ($1.52,...,¢,...) satisfies 4. Here,
($1,82,--.,¢,...) denotes the sequence obtained from (s, s2,...,5;,...) by replacing

the ith component s; by ¢. Note also that, if s satisfies (Vx;)4, then, as a special case, s
satisfies #.
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of the results are also obvious if one wishes to use only the ordinary intuitive
understanding of the notions of truth, falsity and satisfaction.

)
(1D

(I11)
(1v)
V)

(VD)

(VID)

(VILI)

(a) & is false for an interpretation M if and only if =4 is true for M.

(b} 4 is true for M if and only if -2 is false for M.

It is not the case that both |y % and |y —4; that is, no wf can be

both true and false for M.

If I:M 2 and |:M # = ¢, then |:M B.

B = € is false for M if and only if v # and v —%.

Consider an interpretation M with domain D.

(a) A sequence s satisfies Z A ¥ if and only if s satisfies # and s
satisfies €.

(b) s satisfies 4 V € if and only if s satisfies % or s satifies €.

(c) s satisfies # < @ if and only if s satisfies both % and € or s
satisfies neither &% nor %.

(d) s satisfies (dx;)44 if and only if there is a sequence s’ that differs
from s in at most the ith component such that & satisfies %. (In
other words s = (s1,82,...,5;,...) satisfies (Ix;) if and only if
there is an element ¢ in the domain D such that the sequence
(s1,52,...,¢,...) satisfles 4.)

Em 4 if and only if um (Vx;)%. We can extend this result in the

following way. By the closure’ of % we mean the closed wf obtained

from 4 by prefixing in universal quantifiers those variables, in order
of descending subscripts, that are free in #. If # has no free vari-
ables, the closure of # is defined to be 4 itself. For example, if 4 is

A3(x2,x5) = 2(Ix2)A43(x1,x2,x3), its closure is (Vxs)(Vx3)(Vxz)

(Vx1)4. It follows from (VI) that a wf & is true if and only if its

closure is true.

Every instance of a tautology is true for any interpretation. (An

instance of a statement form is a wf obtained from the statement

form by substituting wfs for all statement letters, with all occurrences
of the same statement letter being replaced by the same wf. Thus, an
instance of A = —4y V Ay is A}(x2) = (=(Vx)A41(x1)) V 4](x2).) To
prove (VII), show that all instances of the axioms of the system L are

true and then use (III) and Proposition 1.14.

If the free variables (if any) of a wf # occur in the list x; ,...,x; and

if the sequences s and ¢ have the same components in the

iith, ..., ith places, then s satisfies & if and only if & satisfies %

[Hint: Use induction on the number of connectives and quantifiers in

4. First prove this lemma: If the variables in a term ¢ occur in the list

Xiyy---,%;, and if s and s have the same components in the

'Remember that BAE, BV €, B« ¢ and (Iy;)# are abbreviations for
(B = %), B =>E,(B=>€) N (€ = #) and (Vx;)~H, respectively.
TA better term for closure would be universal closure.
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iith, ..., ith places, then s*(¢) = (¢)*(¢). In particular, if r contains
no variables at all, s*(f) = (s")"(f) for any sequences s and ']

Although, by (VIII), a particular wt # with k free variables is essentially
satisfied or not only by k-tuples, rather than by denumerable sequences, it is
more convenient for a general treatment of satisfaction to deal with infinite
rather than finite sequences. If we were to define satisfaction using finite
sequences, conditions 3 and 4 of the definition of satisfaction would become
much more complicated.

Let x;,, ..., x; be k distinct variables in order of increasing subscripts. Let
B(xi,,...,x;) bea wl that has x;,. . ., x;, asits only free variables. The set of
k-tuples {(b;,---,by) of elements of the domain D such that any sequence
with by, -+, by inits iyth, ..., i th places, respectively, satisfies Z(x;,,...,x;)
is called the relation (or property') of the interpretation defined by 3. Ex-
tending our terminology, we shall say that every k-tuple (b1,...,b;) in this
relation satisfies #B(x;,,...,x;) in the interpretation M; this will be written
M &by, ..., br]. This extended notion of satisfaction corresponds to the
original intuitive notion.

Examples

1. Tf the domain D of M is the set of human beings, 4%(x, y) is interpreted
as x is a brother of y, and A3(x,y) is interpreted as x is a parent of y,
then the binary relation on D corresponding to the wf #(xy,x3):
(Ix3) (43 (x1,x3) A A3(x3,x2)) is the relation of unclehood. |y #[b, ]
when and only when b is an uncle of c.

2. If the domain is the set of positive integers, 47 is interpreted as=, f7 is
interpreted as multiplication, and a; is interpreted as 1, then the wf
4 (xl):

=47 (01, ar) A (Vo) () A5 (e, S (02, 33)) = A} (x2,%1) V A7 (%2, a1))

determines the property of being a prime number. Thus =y #[k] if and
only if k£ is a prime number.

(IX) If 2 is a closed wf of a language .%, then, for any interpretation M,
either v % or =y — 4 — that is, either 4 is true for M or 4 is false
for M. [Hint: Use (VIII).] Of course, # may be true for some in-
terpretations and false for others. (As an example, consider 4] (a1). If
M is an interpretation whose domain is the set of positive integers, 4]
is interpreted as the property of being a prime, and the interpretation
of a, is 2, then Al(a,) is true. If we change the interpretation by
interpreting a, as 4, then A](¢;) becomes false.)

If 4 1s not closed — that is, if % contains free variables - - 4 may be neither
true nor false for some interpretation. For example, if 4 is A%(x1,x2) and we
consider an interpretation in which the domain is the set of integers and

TA property is defined when k = 1.
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A3(y,z) is interpreted as y < z, then & is satisfied by only those sequences
s = (s1,82,...) of integers in which 51 < s2. Hence, % 1s neither true nor false
for this interpretation. On the other hand, there are wis that are not closed
put that nevertheless are true or false for every interpretation. A simple
example is the wf 4} (x;) V =4} (x), which is true for every interpretation.

(X)  Assume tis free for x; in %(x;). Then (Vx;)%(x;) = %(r) is true for all
interpretations.

The proof of (X) is based upon the following lemmas.

LEMMA 1

If ¢ and u are terms, s is a sequence in Z, ¢ results from ¢ by replacing all
occurrences of x; by u, and §' results from s by replacing the ith component
of s by s*(u), then s*(f') = (s')*(¢). [Hint: Use induction on the length of £.1]

LEMMA 2

Let ¢ be free for x; in %(x;). Then:

(a) A sequence s = (s1,52,...) satisfies #(¢) if ‘and only if the sequence ',
obtained from s by substituting s*(¢) for s; in the ith place, satisfies
HB(x;). [Hint: Use induction on the number of occurrences of con-
nectives and quantifiers in #(x;), applying Lemma 1.]

(b) If (Vx;)%(x;) is satisfied by the sequence s, then #(t) also is satisfied by s.

(XI) If 2 does not contain x; free, then (Vx;)(% = 4) = (# = (Wx;)¥) is
true for all interpretations.

Proof

Assume (X1) is not correct. Then (Vx;)(% = €) = (B = (Vx;)%) is not true
for some interpretation. By condition 3 of the definition of satisfication,
there is a sequence s such that s satisfies (vx;)(# = %) and s does not satisfy
# = (Vx;)€. From the latter and condition 3, s satisfies # and s does not
satisfy (Vx;)%. Hence, by condition 4, there is a sequence <, differing from s
in at most the ith place, such that s does not satisfy 4. Since x; is free in
neither (Vx;)(# = €) nor %, and since s satisfies both of these wis, it follows
by (VIII) that s also satisfies both (Vx;)(# = ¥) and #. Since &' satisfies

"The length of an expression is the number of occurrences of symbols in the
eXpression.




64

QUANTIFICATION THEORY

(Vx:)(# = %), it follows by condition 4 that s’ satisfies # = %. Since '
satisfies # = € and %, condition 3 implies that s satisfies %, which con-
tradicts the fact that s' does not satisfy %. Hence, (XI) is established.

Exercises

212 Verify (I) (X).
2.13 Prove that a closed wf % is true for M if and only if % is satisfied by
sorie sequence s in Z. (Remember that Z is the set of denumerable sequences
of elements in the domain of M.)
2,14 Find the properties or relations determined by the following wfs and
interpretations.
@) [(F)A3(f2(x, u),¥)] A [(A)43(FE(x, 1), z)], where the domain D is the set
of integers, A% is =, and f} is multiplication.
(b) Here, D is the set of non-negative integers, A% 18 =, a; denotes 0, f12 is
addition, and f7 is multiplication.
Q) () (~A2(z, m) A (2, 2),))]
i) @4 £ 0,9)
(€) (Ix3)43(f2(x1,%3),x2), where D is the set of positive integers, 4% is =,
and /7 is multiplication,
(d) Al(x1) A (¥x2)—A42(x1,x2), where D is the set of all living people, 4](x)
means x is a man and 42(x,y) means x is married to y.
(€) () (Ax))(Tx2)(A2(x1,x3) A A%(x2,%4) N AZ(x1,%2))
(i) (Tx3)(A3(x1,x3) A Af(x3,%2))
where D is the set of all people, 42(x,y) means x is a parent of y, and
A%(x,y) means x and y are siblings.
() (Vxs)((Fea) (AF(f{ (xa,x3), 1) A (a)(AT(f (x4, x3),%2)) = Af(x3, 1)),
where D is the set of positive integers, A% Is =, ff is multiplication, and
a; denotes 1.
(@) 42(x2,x1) A (D)AT(, x1) A A5 (32, ),
where D is the set of all people, 4%(x, v) means u is a parent of v, and
A% (u,v) means u is a wife of v.
2.15 For each of the following sentences and interpretations, write a
translation into ordinary English and determine its truth or falsity.
(a) The domain D is the set of non-negative integers, 4% is =, fZ is addi-
tion, f;_,2 is multiplication, a; denotes 0 and a; denotes 1.
@) ()@, 0, 9) VA LU (), 2)))
(i) (V)O)AL(FE0y),an) = A3(xoan) vV (v, @)
(iii) (AR, ), a2)
(b) Here, D is the set of integers, A7 is =, and f{ is addition.
(@) (Vo) (D) AT (FF (1, x2), £ (2, 31))
(i) (Vo) (Vaz) (s A2 (12, £ iz, 3)), S2(f 61, 32),33)
(iii) (Vx1)(Vxp)(Txz) A3 (fE(x1,x3), %2)
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(¢) The wis are the same as in part (b). but the domain is the set of positive
integers, 4% is =, and f{(x,») is .
(d) The domain is the set of rational numbers, 47 is =, 4 is <,f is
multiplication, £ (x) is x+ 1, and «; denotes 0.
M) @), R @)
Gi) (¥) (%) (43(x, ) = (32) (£3(x, 2) A A3(2,9)))
(i) (Vx)(-A2(x,a1) = (A%, 9), fil (@)
(¢) The domain is the set of non-negative integers, A% (u, v) means u<v, and
A3 (u, v, w) means u +v=w.
@ () (W)(V2) (A3 (x,,2) = 43(p,x,2))
(i) (W) (W) (A](x,%,3) = A}(x,7))
(i) (vx)(V)(4](x,) = 4](x,x,))
(iv) (3)(¥9)4](x,,)
V) () (¥x)4i(x, )
(vi) (¥x)(¥9)(41(x,») & (F2) 4} (x,2,7))
() The domain is the set of natural numbers, A%(u,v) means u=uv,
fi(u,0) =u+v, and fF(u,v) =u-v
(vx) ) DA x, F2 (RO, £ (2,2))

DEFINITIONS

A wf # is said to be logically valid if and only it 4 is true for every
interpretation.?

4 is said to be satisfiable if and only if there 1s an interpretation for which
4 is satisfied by at least one sequence.

It is obvious that 4 is logically valid if and only if —4 is not satisfiable,
and & is satisfiable if and only if -4 is not logically valid.

If % is a closed wf, then we know that # is either true or false for any
given interpretation; that is, # is satisfied by all sequences or by none.
Therefore, if 2 is closed, then 47 is satisfiable if and only if Z is true for some
interpretation.

A set I' of wfs is said to be satisfiable if and only if there is an inter-
pretation in which there is a sequence that satisfies every wf of I,

It is impossible for both a wf 4 and its negation ~4 to be logically valid.
For if 4 is true for an interpretation, then — is false for that interpretation.

We say that & is contradictory if and only if 4 is false for every inter-
pretation, or, equivalently, if and only if =4 is logically valid.

% is said to logically imply € if and only if, in every interpretation, every
sequence that satisfies & also satisfies €. More generally, € is said to be a

tThe mathematician and philosopher G.W. Leibniz (1646-1716) gave a similar
definition: # is logically valid if and only if 4 is true in all ‘possible worlds’.

| 65|
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logical consequence of a set I' of wis if and only if, in every interpretation,
every sequence that satisfies every wi in I' also satisfies €.

A and € are said to be logically equivalent if and only if they logically
imply each other.

The following assertions are easy consequences of these definitions.

A logically implies ¥ if and only if & = ¥ is logically valid.

2 and % are logically equivalent if and only if # « € is logically valid.
If 4 logically implies % and # is true in a given interpretation, then so is %
If % is a logical consequence of 4 set I' of wfs and all wfsin I are true in g
given interpretation, then so is €.

B~

Exercise 2.16
Prove assertions 1-4.

Examples

1. Every instance of a tautology is logically valid (VII).

2. If ¢ is free for x in %(x), then (Vx)%(x) = %(t) is logically valid (X).

3. If # does not contain x free, then (Vx)(# = €) = (% = (Vx)¥) is logi-
cally valid (XI).

4. % is logically valid if and only if (Vy1)... (V)@ is logically valid (VI).

5. The wt (¥xz)(3x1)42(x1,x2) = (3x1)(Vx2)42(xy, x2) is not logically valid.
As a counterexample, let the domain D be the set of integers and let
A%(y,z) mean y < z. Then (¥x2)(3x1)A}(x1,x2) is true but (Txy)(Vxy)
A} (x1,x,) is false.

Exercises

2.17 Show that the following wfs are not logically valid.

(@) [(vxr)Al(a) = (ve)Ab()] = [(v) (AL () = AL )]
(b) [(vxr) (Al () VAL ()] = [((¥x)AL(x0)) v ()AL )]
2.18 Show that the following wfs are logically valid.f

(a) B(t) = (I)PB(x;) if t is free for x; in B(x;)

(b) (Vx))% = (Ax;)B

(C) (in)(‘v’xj)% = (ij)(Vx,)L@

d) (Vx)% < —(3x)~H

(€) (Vx:)(% = %)= (V%)% = (Vx;)¥€)

O (%)%) A ()% & (Vi) (BN F)

© (¥)B)V (V)6 = (V) (@ V €)

(h) () (3% < (Ax;)(Ax) B

TAt this point, one can use intuitive arguments or one can use the rigorous
definitions of satisfaction and truth, as in the argument above for (XI). Later on, we
shall discover another method for showing logical validity.

-

[ XY
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O (@) Vx)B = (vx)(In)2
219 (a) If Ais a closed wf, show that 4 logically implies € if and only if ¢
is true for every interpretation for which 4 is true.

(b) Although, by (VI), (Vx;)A}(x;) is true whenever Aj(x,) is true,
find an interpretation for which Al(x1) = (¥x1)4i(x;) is not
true. (Hence, the hypothesis that % i1s a closed wf is essential
in (a).)

2.20 Prove that, if the free variables of # are y,. .., y,, then # is satisfiable
if and only if (Iy1) ... (Fw) 4 is satisfiable.
221 Produce counterexamples to show that the following wfs are not
logically valid (that is, in each case, find an interpretation for which the wf is
fiot true).
(@) [(v0) (W) (V2) (45 (x,3) A A1 (9,2) = 47(x,2)) A (¥x)—A7 (%, )]

= () (W) 47 (x, y)
b)) (VD473 = @4 0,»)
© @)E@40,y) = @N4i0,)
@ [(A4;(x) & (I)A3(0)] = (V) (4](x) & 43(x))

© (GN)]() = 4(x) = (A)4](x) = () 45())

@ (V) () (4F(xp) = 43(0,x)) A (V) (V) (V2) (45 (x, ) A A2 (v, 2)
= A%(x, 2))] = (Vx)A%(x, x)

(©° Ex)(W) (AL (x,p) A 43y, x) = [4}(x,x) & 43(3,)])

() (¥ (V) (Y2)(4](x,%) A (A5 (x.2) = Ai(x,p) V 41(3,2)))
= (Ay)(Y2)41(y,2)

() ()(WED)(A20,2) = £, 2) = (42(x,%) = £(3,x)))

2.22 By introducing appropriate notation, write the sentences of each of

the following arguments as wfs and determine whether the argument is

correct, that is, determine whether the conclusion is logically implied by the

conjunction of the premisses

(@) All scientists are neurotic. No vegetarians are neurotic. Therefore, no
vegetarians are scientists,

(b) All men are amimals. Some animals are carnivorous. Therefore, some
men are carnivorous.

(c) Some geniuses are celibate. Some students are not celibate. Therefore,
some students are not geniuses.

(d) Any barber in Jonesville shaves exactly those men in Jonesville who do
not shave themselves. Hence, there is no barber in Jonesville.

(e) For any numbers x,y,z, if x > y and y > z, then x > z. x > x 1s false for
all numbers x. Therefore, for any numbers x and y, if x > y, then it is
not the case that y > x.
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() No student in the statistics class is smarter than every student in the
logic class. Hence, some student in the logic class is smarter than every
student in the statistics class.

(g) Everyone who is sane can understand mathematics. None of Hegel’s
sons can understand mathematics. No madmen are fit to vote. Hence,
none of Hegel’s sons is fit to vote.

(h) For every set x, there is a set y such that the cardinality of y is greater
than the cardinality of x. If x is included in y, the cardinality of x is not
greater than the cardinality of y. Every set is included in V. Hence, V ig
not a set.

(i) For all positive integers x,x <x. For all positive integers x, y, z, if xgy
and y<z, then x<z For all positive integers x and y, x<y or y<x,
Therefore, there is a positive integer y such that, for all positive integers
X, YEX.

(j) For any integers x,y,z, if x > y and y > z, then x > z. x > x 1s false for
all integers x. Therefore, for any integers x and y, if x > y, then it is not
the case that y > x.

2.23 Determine whether the following sets of wifs are compatible — that is,
whether their conjunction is satisfiable.
@) (@)EF4ix,»)
(Vx) (V) (F2) (4} (x, 2) A 4i(z,9))
(b) (¥x)(In47 (%)
(Vx) (V) (41 (x,y) = =41 (»,x))
(Vx) (V) (V2)(4] (x, ) A A7 (,2) = Ai(x,2))
(c) All unicorns are animals.
No unicorns are animals.

2.24 Determine whether the following wifs are logically valid.
(@) —(Fy)(vx)(45(x,») & —Ai(x,x))

(b) [(Ax)4j(x) = @Ax)45(x)] = (Ix)(4](x) = 43(x))

(©) (I)4l(x) = (W41())

(d) (W) (A](x) Vv 45(x)) = (((¥x)41(x)) v (Tx)45(x))

(€) (@) (IN4i(x,y) = (V2)4i(z,))

0 @)EF) A (x) = 43(0) = (Q)(4i(x) = 45(x))

(@ (Vx)(4}(x) = 43(x)) = ~(¥x)(4;(x) = ~43(x))

(h) (Fx)4}(x,x) = () (Ty)4i(x,»)

2.25 Exhibit a logically valid wf that is not an instance of a tautology.
However, show that any logically valid open wit (that is, a wf without
quantifiers) must be an instance of a tautology.

2.26 (a) Find a satisfiable closed wf that is not true in any interpretation
whose domain has only one member.
(b) Find a satisfiable closed wf that is not true in any interpretation
whose domain has fewer than three members.
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23 FIRST-ORDER THEORIES

[n the case of the propositional calculus, the method of truth tables provides
_an effective test as to whether any given statement form is a tautology.

';However there does not seem to be any effective process for determining
whether a given wf is logically valid, since, in general, one has to check the
guth of a wf for interpretations with arbitrarily large finite or infinite do-
mains. In fact, we shall see later that, according to a plausible definition of
seffective’, it may actually be proved that there is no effective way to test for
jogical validity. The axiomatic method, which was a luxury in the study of
the propositional calculus, thus appears to be a necessity in the study of wfs
involving quantifiers,! and we therefore turn now to the consideration of
first-order theories.

Let & be a first-order language. A first-order theory in the language % will
be a formal theory K whose symbols and wis are the symbols and wfs of .&
and whose axioms and rules of inference are specified in the following way.}

The axioms of K are divided into two classes: the logical axioms and the
proper (or non-logical) axioms.

LOGICAL AXIOMS

If #,% and & are wts of ¥, then the following are logical axioms of K:

(Al) %= (¢ = B)

A2) (B=>(€=>92)= (B=>%)=>(#=>9))

(A3) (¥ = -B)=> (€= H)=> %)

(A4)  (Vx)%B(x;) = B(t) if B(x;) is a wf of & and ¢ is a term of & that is
free for x; in 9%(x;). Note here that t may be identical with x; so that
all wis (Vx;)% = % are axioms by virtue of axiom (A4).

(AS) (Vxi)(# = ¥) = (B = (Vx;)¥) if & contains no free occurrences of
Xi.

TThere is still another reason for a formal axiomatic approach. Concepts and
propositions that involve the notion of interpretation and related ideas such as truth
and model are often called semantical to distinguish them from syntactical concepts,
which refer to simple relations among symbols and expressions of precise formal
languages. Since semantical notions are set-theoretic in character, and since set
theory, because of the paradoxes, is considered a rather shaky foundation for the
study of mathematical logic, many logicians consider a syntactical approach, con-
sisting of a study of formal axiomatic theories using only rather weak number-
theoretic methods, to be much safer. For further discussions, see the pioneering study
on semantics by Tarski (1936), as well as Kleene (1952), Church (1956) and Hilbert
and Bernays (1934).

IThe reader might wish to review the definition of formal theory in Section 1.4.
We shall use the terminology (proof, theorem, consequence, axiomatic, - % etc.) and
notation (I" - 4, 9) introduced there.
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PROPER AXIOMS

These cannot be specified, since they vary from theory to theory. A firsi-
order theory in which there are no proper axioms is called a first-order

predicate calculus.

RULES OF INFERENCE

The rules of inference of any first-order theory are:

1. Modus ponens: € follows from 4 and 4 = %.
2. Generalization: (Vx;)% follows from 4.

We shall use the abbreviations MP and Gen, respectively, to indicate ap-
plications of these rules.

DEFINITION

Let K be a first-order theory in the language .%. By a model of K we mean
an interpretation of % for which all the axioms of K are true.

By (ITT) and (VI) on page 61, if the rules of modus ponens and gen-
eralization are applied to wfs that are true for a given interpretation, then
the results of these applications are also true. Hence every theorem of K s
true in every model of K.

As we shall see, the logical axioms are so designed that the logical con-
sequences (in the sense defined on pages 65-6) of the closures of the axioms
of K are precisely the theorems of K. In particular, if K is a first-order
predicate calculus, it turns out that the theorems of K are just those wfs of K
that are logically valid.

Some explanation is needed for the restrictions in axiom schemas (A4)
and (A5). In the case of (A4), if t were not free for x; in #(x;), the following
unpleasant result would arise: let %(x;) be —»(sz)A%(xl,xz) and let ¢ be x;.
Notice that t is not free for x; in #(x;). Consider the following pseudo-
instance of axiom (A4):

(V) (Vo) (=(¥x2)47 (x1,%2)) = ~(Vx2) 47 (%2, %2)

Now take as interpretation any domain with at least two members and let
A? stand for the identity relation. Then the antecedent of (V) is true and the
consequent false. Thus, (V) is false for this interpretation.

In the case of axiom (AS), relaxation of the restriction that x; not be free

in 2 would lead to the following disaster. Let 4 and % both be A} (x). Thus,
x1 is free in 4. Consider the following pseudo-instance of axiom (A5):

(VV)  (Wxn)(4)(r1) = A1(n)) = (410n) = (¥x1)41(x1))
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The antecedent of (VV) is logically valid. Now take as domain the set of
integers and let 4} (x) mean that x is even. Then (Vx1)A4](x;) is false. So, any
sequence s = (s1, 52, -..) for which s is even does not satisfy the consequent
of (VV).t Hence, (VV) is not true for this interpretation.

Examples of first-order theories

1. Partial order. Let the language .2 have a single predicate letter A% and no
function letters and individual constants. We shall write x; < x; instead of
A2(xi,x;). The theory K has two proper axioms.
(@) (Yx1)(—x <x1) (irreflexivity)
(b) (Vo) (V2) (Vx3)(x1 <x2 Axp < x3 =>x1 <x3) (transitivity)

A model of the theory is called a partially ordered structure.

2. Group theory. Let the language % have one predicate letter A3, one
function letter f]z, and one individual constant a;. To conform with or-
dinary notation, we shall write ¢ = s instead of 42(z,5),¢ + s instead of
fL(t,s), and 0 instead of a,. The proper axioms of K are:

(a) (Vx1)(Wx2)(Vxs)(x1 + (x2 +x3) = (31 +x2) +x3) (assocrativity)
(b) (¥x1)(0+x1 =x1) (identity)
(©) (Vx1)(3xz)(x2 +x1 =0) (inverse)
(d) (Vx1)(x; = x1) (reflexivity of =)
(€) (Vx1)(¥x2)(x1 =x2 = x2 = x1) (symmetry of =)

(0 (1) (Vx2)(Vx3)(x1 = x2 Axz = x3 = x1 = x3) (transitivity of =)
(8) (Vx1)(Vx2)(Vx3)(x2 = x3 =
X1 X2 =X1 +X3 AX2 +X] = X3+ X1) (substitutivity of =)

A model for this theory, in which the interpretation of = is the identity
relation, is called a group. A group is said to be abelian if, in addition, the wf
(V1 ){(Vx2) (%1 +x2 = x5 +x1) 8 true.

The theories of partial order and of groups are both axiomatic. In gen-
eral, any theory with a finite number of proper axioms is axiomatic, since it
is obvious that one can effectively decide whether any given wf is a logical
axiom.

2.4 PROPERTIES OF FIRST-ORDER THEORIES

All the results in this section refer to an arbitrary first-order theory K.
Instead of writing x &, we shall sometimes simply write - %. Moreover,
we shall refer to first-order theories simply as theories, unless something is
said to the contrary.

TSuch a sequence would satisfy 4}(x1), since s; is even, but would not satisfy
(Vx1)43 (x1), since no sequence satisfies (Vx1)4](x1).
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PROPOSITION 2.1

Every wf 4 of K that is an instance of a tautology is a theorem of K, and it
may be proved using only axioms (Al)-(A3) and MP.

Proof

4 arises from a tautology 7 by substitution. By Proposition 1.14, there is a
proof of 7 in L. In such a proof, make the same substitution of wfs of K for
statement letters as were used in obtaining & {rom 7, and, for all statement
letters in the proof that do not occur in &, substitute an arbitrary wf of K.
Then the resulting sequence of wis is a proof of %4, and this proof uses only
axiom schemes (Al) (A3) and MP.

The application of Proposition 2.1 in a proof will be indicated by writing
“Tautology’.

PROPOSITION 2.2

Every theorem of a first-order predicate calculus is logically valid.

Proof

Axioms (A1)-(A3) are logically valid by property (VII) of the notion of
truth (see page 61), and axioms (A4) and (AS5) are logically valid by prop-
erties (X) and (XI). By properties (III) and (VI), the rules of inference MP
and Gen preserve logical validity. Hence, every theorem” of a predicate
calculus is logically valid.

Example

The Wi (Vxz)(Fx;)A%(x1,x2) = (Fn)(Vx2)A4%(x1,x2) is not a theorem of any
first-order predicate calculus, since it is not logically valid (by Example 5,
p- 66).

DEFINITION

A theory K is consistent if no wf 9 and its negation -4 are both provable in
K. A theory is inconsistent if it is not consistent.

COROLLARY 2.3

Any first-order predicate calculus is consistent.

1~
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Proof

If a wf & and its negation % were both theorems of a first-order predicate
calculus, then, by Proposition 2.2, both # and —~% would be logically valid,
which is impossible.

Notice that, in an inconsistent theory K, every wf ¢ of K is provable in
K. In fact, assume that #Z and —~% are both provable in K. Since the wf
A = (—% = ¥) is an instance of a tautology, that wf is, by Proposition 2.1,
provable in K. Then two applications of MP would yield - €.

It follows from this remark that, if some wf of a theory K is not a
theorem of K, then K is consistent.

The deduction theorem (Proposition 1.9) for the propositional calculus
cannot be carried over without modification to first-order theories. For
example, for any wf %, 4 by (¥x;)4, but it is not always the case that
Fk & = (Vx;)4. Consider a domain containing at least two elements ¢ and
d. Let K be a predicate calculus and let & be A](x1). Interpret 4] as a
property that holds only for c. Then 4{(x;) is satisfied by any sequence
s = (81,52, -..) in which s; = ¢, but (¥x)4](x;) is satisfied by no sequence at
all. Hence, 4} (x1) = (Vx;)4}(x1) is not true in this interpretation, and so it is
not logically valid. Therefore, by Proposition 2.2, A} (x1) = (Vxi)4](x1) is
not a theorem of K.

A modified, but still useful, form of the deduction theorem may be de-
rived, however. Let # be a wfin a set I of wfs and assume that we are given
a deduction %4,...,%, from I', together with justification for each step in
the deduction. We shall say that &; depends upon % in this proof if and
only if

(1) ;s & and the justification for &; 1s that it belongs to I', or

(2) &; is justified as a direct consequence by MP or Gen of some preceding
wfs of the sequence, where at least one of these preceding wfs depends
upon 4.

Example

99, (Vxl).@ =€ le)(g

(2,) # Hyp

(2-) (Vx1) % (1), Gen
() ()@ =€ Hyp

(Z4) € (Z2),(23), MP
(2s) (Vxy)¥€ (Z4), Gen

Here, (2;) depends upon %, (Z,) depends upon #,(%3) depends upon
(Vx1)%# = €,(24) depends upon # and (¥x1)# = ¢, and (Zs) depends
upon # and (vxy)# = €.
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PROPOSITION 2.4

If & does not depend upon # in a deduction showing that I', # |- €, then
I'+%.

Proof

Let %1---,%, be a deduction of ¥ from I"' and &, in which ¥ does not
depend upon 4. (In this deduction, Z,, is 4.) As an inductive hypothesis, let
us assume that the proposition is true for all deductions of length less than n.
If € belongs to I' or is an axiom, then I' - . If % is a direct consequence of
one or two preceding wfs by Gen or MP, then, since € does not depend
upon 4, neither do these preceding wfs. By the inductive hypothesis, these
preceding wfs are deducible from I' alone. Consequently, so is €.

PROPOSITION 2.5 (DEDUCTION THECREM)

Assume that, in some deduction showing that I', # } ¢, no application of
Gen to a wf that depends upon % has as its quantified variable a free
variable of 4. The I' - # = .

Proof

Let 21,...,%, be a deduction of € from I' and 4, satisfying the assumption
of our proposition. (In this deduction, 2, 1s €.) Let us show by induction
that I' - # = 9; for each i<n. If &; is an axiom or belongs to I', then
I'- %= 92, since @; = (#=%;) is an axiom. Il P; is 4, then
I'+ 4 = %;, since, by Proposition 2.1, - % = % If there exist j and k less
than i such that % is %; = %;, then, by inductive hypothesis, I' - # = ;
and T4 = (%;= 2;). Now, by axiom (A2), V(%= (2; = %))
= ((# = 9)) = (# = 2)). Hence, by MP twice, I' - # = ;. Finally,
suppose that there is some j < i such that &; is (Vx;)Z;. By the inductive
hypothesis, I' - # = 2;, and, by the hypothesis of the theorem, either &,
does not depend upon 4 or x; is not a free variable of %4. If 2; does not
depend upon &, then, by Proposition 2.4, I' - &; and, consequently, by
Gen, I' F (Vx;)2;. Thus, T + %;. Now, by axiom (Al), - 2; = (4 = @)).
So, ' # = 2; by MP. If, on the other hand, x; is not a free variable of 4,
then, by axiom (AS), F (Vo )(# = %)) = (# = (¥x)9;). Since T+ £ =
9;, we have, by Gen, I' b (Vo )(# = &), and so, by MP, T t+ & = (Vx,)%;;
that is, I' - # = &;. This completes the induction, and our proposition is
just the special case i = n.

The hypothesis of Proposition 2.5 is rather cumbersome; the following
weaker corollaries often prove to be more useful.
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COROLLARY 2.6

If a deduction showing that I', % F & involves no application of Gen of
which the quantified variables is free in &, then I' - # = ¥.

COROLLARY 2.7
If#isaclosed wfand I', #+ %, then I' - % = .
EXTENSION OF PROPOSITIONS 2.4-2.7

In Propositions 2.4-2.7, the following additional conclusion can be drawn
from the proofs. The new proof of I' - # = € (in Proposition 2.4, of ' - &)
involves an application of Gen to a wf depending upon a wf & of T only if
there is an application of Gen in the given proof of I', 4 - ¢ that involves
the same quantified variable and is applied to a wf that depends upon &. (In
the proof of Proposition 2.5, one should observe that %; depends upon a
premiss & of I in the original proof if and only it # = %; depends upon &
in the new proof.)

This supplementary conclusion will be useful when we wish to apply the
deduction theorem several times in a row to a given deduction — for ex-
ample, toobtain I' - @ = (# = €) from I, @, # t €, from now on, it is to
be considered an integral part of the statements of Propositions 2.4 2.7.

Example
(1) (Vx2) B = (Vx2)(Vx )

Proof

1. (Vx1)(Vx2)% Hyp

2. (V1) (Vx2) % = (Vx2)% (A4)

3. (V) # 1, 2, MP
4. (Vx)B = B (A4)

5 % 3, 4, MP
6. (Vx;)% 5, Gen
7. (Vx2)(Vx1 )% 6, Gen

Thus, by 1-7, we have (Vx})(Vx2)% b (Vx2)(Vx) )%, where, in the deduction,
no application of Gen has as a quantified variable a free variable of
(Vx1)(Vx2)4. Hence, by Corollary 2.6, b (Vx; )(Vx2)# = (Vx2){(Vx1)%.

Exercises

2.27 Derive the following theorems.
(@) F ()% = E) = (W)Z = (¥x)€)
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b) F (V)% = €)= (I = (I)F)

© F(X)BANE) < (Vx)B) A (Vx)€

) F (o). (V)P = B

() F-(Vx)8 = (Ix)-#

2.28° Let K be a first-order theory and let K# be an axiomatic theory

having the following axioms:

@ (Yy)...(Vm)%, where 4 is any axiom of K and yy, ..., (n=0) are
any variables (none at all when n = 0);

®) (). (W)(# =€) = (D) --- (D)2 = (Y1) ... (V3,)€] where
and ¢ are any wfs and y; ..., y, are any variables.

Moreover, K*# has modus ponens as its only rule of inference. Show that K#
has the same theorems as K. Thus, at the expense of adding more axioms,
the generalization rule can be dispensed with.

2.29 Carry out the proof of the Extension of Propositions 2.4-2.7 above,

2.5 ADDITIONAL METATHEOREMS AND DERIVED RULES

For the sake of smoothness in working with particular theories later, we
shall introduce various techniques for constructing proofs. In this section it
is assumed that we are dealing with an arbitray theory K.

Often one wants to obtain #(¢) from (Vx)%(x), where ¢ is a term free for x
in %(x). This is allowed by the following derived rule.

PARTICULARIZATION RULE A4

If ¢ is free for x in #(x), then (Vx)#(x) - %#(t).]

Proof

From (Vx)#{(x) and the instance (Vx)%(x) = %(r) of axiom (A4), we obtain
#(t) by modus ponens.
Since x is free for x in #(x), a special case of rule A4 is: (Vx)% - 4.
There is another very useful derived rule, which is essentially the con-
trapositive of rule A4.

TFrom a strict point of view, (Vx)%(x) F #(t) states a fact about derivability.
Rule A4 should be taken to mean that, if (¥x)%(x) occurs as a step in a proof, we
may write (t) as a later step (if # is free for x in #(x)). As in this case, we shall often
state a derived rule in the form of the corresponding derivability result that justifies
the rule.

D
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EXISTENTIAL RULE E4

Let ¢ be a term that is free for x in a wf #(x, 1), and let %(t,r) arise from
A(x,1) by replacing all free occurrences of x by ¢. (#(x,?) may or may not
contain occurrences of ¢.) Then, #(¢t,1) = (3x)HB(x,1).

Proof

It suffices to show that + %(t, 1) = (Ix)%A(x,1). But, by axiom (A4),
- (Vx)9(x, t) = —94(t,1). Hence, by the tautology (4 = —B) = (B = —4)
and MP, & Z(t,1) = —(Vx)~%(x, t), which, in abbreviated form, is - %(t, 1)
= (Ax)#(x,1).

A special case of rule E4 is %(r) | (3x)%(x), whenever 1 is free for x in
#A(x). In particular, when ¢ is x itself, #(x) - (Ix)HB(x).

Example

- (Vx)% = ()%

1. (vx)# Hyp

2. A 1, rule A4

3. (dx)# 2, rule E4

4. (vx)4 & (Ix)H 1-3

5. F (Vx)4 = (Ix)% 1-4, Corollary 2.6

The following derived rules are extremely useful.

Negation elimination: ——% + %
Negation introduction: 4 F ——%
Conjunction elimination;: # A€ + &

BANE-€

~(BNEC) - -ABNV €
Conjunction introduction: #,€+ AN €
Disjunction elimination: #V €, -~# + €

BNE, €+ B

—~(ABNV E) & =% N —F)

B=>9,¢€=DABVE-D
Disjunction introduction: # - # v €

C-BVE

Conditional elimination: 4 = €¢,—¢ + —~#

B =€, €C€r A

-9 = (wﬂ, €+ %

-#B=>—C,EC- B

—l(.%’ = (5) - 4

ﬁ(.@ = (6) F €
Conditional introduction: %, € F ~(%# = €)
Conditional contrapositive: # = €+ 6 = ~H#



U QUANTIFICATION THEORY _j

-6 = -B+H=>€
Biconditional elimination: # < €, #+ % B C ~HBE- %
BesCEHB B = €,~C - K
BobrA=>€ BSCH-E€E=>H
Biconditional introduction: # = 4€,€ = #+ 9B < €
Biconditional negation: BesbCr B €
B C-B <€

Proof by contradiction: If a proof of I', =% I € A —%€ involves no applica-
tion of Gen using a variable free in %, then I' - . (Similarly, one obtaing
I'kF-#fromI,ZF€N-%.)

Exercises

2.30 Justify the derived rules listed above.

2.31 Prove the following.

(@) F (V) ()42(x,p) = (V2)A3(x, )

(b) F [(¥x)4] Vv [(¥x)€] = (¥X)(FB V E)

() F-(3)D = (Vx)~%

(d) F ()8 = (Vx)(ZB V €)

(@ F (V) (W)(Ai(x,) = —4i(y,x)) = (¥x)-4](x,x)

(H +I[(F)D = (W)€ = (V) (B = €)

(8 F (W) (BVE) = [(Wx)H] Vv (Ix)€

®) F (W)(4(x,x) = (BI(x,))

@) F (V) (4 = €) = [(Vx)~€ = (Vx)-H]

B+ @A) = (W4 0)]

(k) F(v¥x)% = (Vx)(#V 6)

M)+ (WD), ) = Blr,2)) A () (F9)(v2) (B, ) A
B(y,2) = B(x,2))] = (V) (W) B(x,p) = Blx,x)).

2.32 Assume that 4 and € are wfs and that x is not free in 4. Prove the

following.

(a) F# = (VX%

(b)) B = ()%

©) (%= (W)%) < (¥x)(4 = €)

(d) F{(Ix)¥¢ = &) < (Vx)(% = B)

We need a derived rule that will allow us to replace a part € of a wf & by
a wi that is provably equivalent to €. For this purpose, we first must prove
the following auxiliary result.

LEMMA 2.8

For any wis 4 and €, | (¥x)(# < €) = ()% & (Vx)€).
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Proof
1. (Vx)(% & €) Hyp
2. (Vx)% Hyp
3. B € 1, rule A4
4. % 2, rule A4
5 ¢ 3, 4, biconditional elimination
6. (¥x)€ 5, Gen
7. (Vx)(# < 6),(Vx)FB - (Vx)€ 1-6
8. (Vx)(# & €) &b (Vx)B = (Vx)€ 1-7, Corollary 2.6
9. (Vx)(# & €) & (¥x)€ = (Vx)# Proof like that of 8
10. (Vx)(# < 6) - (V)8 < (¥x)€ 8, 9, Bioconditional introduction
11. F (Vx)(# & €) = ((¥x)# < (Vx)€) 1-10, Corollary 2.6

PROPOSITION 2.9

If € is a subformula of 4, &' is the result of replacing zero or more oc-
currences of € in # by a wf 9, and every free variable of ¢ or & that is also
a bound variable of # occurs in the list y, ..., ¥, then:

@ F[(¥n)...(Vn)(€ & 2) = (B & #') (Equivalence theorem)
(b) If- € & 2, then - # & # (Replacement .theorem)
(c) If-% < P and F %, then - %'

Example
@ F()(AE) & (40) = (34 (x) & (3x) 45()]

Proof

(@) We use induction on the number of connectives and quantifiers in 4.
Note that, if zero occurrences are replaced, #’ is 4 and the wf to be proved
is an instance of the tautology 4 = (B < B). Note also that, if € is identical
with 4 and this occurrence of € is replaced by %, the wf to be proved,
(D) ... (V)€ & D) = (B < #), is derivable by Exercise 2.27(d).
Thus, we may assume that & is a proper part of % and that at least one
occurrence of € is replaced. Our inductive hypothesis is that the result holds
for all wfs with fewer connectives and quantifiers than 4.

Case 1. 4 is an atomic wf. Then ¥ cannot be a proper part of 4.

Case 2. B is ~&. Let # be =&’ By inductive hypothesis, - [(V31) ... (V3x)
(¢ & D)) = (£ & &'). Hence, by a suitable instance of the tautology
(C= (4 & B))= (C= (-4 & —B)) and MP, we obtain F [(Vy;)... (Vi)
(€ < D)) = (# < F#').
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Case 3. B is & = F. Let # be & = F'. By inductive hypothesis,
FI(Yn)-.. (Vi) (€ & 2)] = (€ & &) and - [(Vn)...()(€ < 2)] = (&
& F'). Using a suitable instance of the tautology

(A=> B C)NA=> (DS E)= (A= |(B=> D) & (C=E))

we obtain - [(Vi) ... (Vm) (¢ & D) = (4 & &').

Case 4. # is (Vx)&. Let 4 be (¥x)&'. By inductive hypothesis,
FIW) ... (Vi) (€ & 2)] = (€ & &). Now, x does not occur free in
(1) - -- (V) (% & 2) because, if it did, it would be free in € or 2 and,
since it is bound in 4, it would be one of yy, ..., and it would not be free
in (Vi) ... (V)(€ & 2). Hence, using axiom (AS), we obtain F (V). .,
(V) (€ & 2) = (¥x)(& < &'). However, by Lemma 2.8, & (Vx)(€ & &)
= ((¥x)& & (Vx)&). Then, by a suitable tautology and MP, I [(Vy)

L A(Y€ & D) = (B & F).

(by From +% & 2, by several applications of Gen, we obtain
F () ... (V) (€ < 2). Then, by (a) and MP, - # < &'

(c) Use part (b) and biconditional elimination.

Exercises

2.33 Prove the following:
(@) F (Ix)~F & ~(Vx)B
(b) F (Vx)B & —(3x)%#
© FE@)NH = A€V D)) = ()P = -CND)
(d) F (W) (INE = €) & ()(D) (-2 Vv 6)
&) F (Vx)(F = ~6) & —~(I)F NE)
2.34 Show by a counterexample that we cannot ormt the quantifiers
(V1) ... (V) in Proposition 2.9(a).
2.35 If % is obtained from # by erasing all quantifiers (Vx) or (Ix) whose
scope does not contain x free, prove that - # & €.
2.36 For each wf # below, find a wf € such that - ¢ & % and negation
signs in € apply only to atomic wfs.
(a) (Vx)(‘v’y)(EIz)Ai'(x,y,z)
(6) (¥e)(z> 0= (F0)(3 > 0 A (V) ([x — cf < 6 = £(x) — f(c)] < &)
(€} (Ve)(e> 0= (Im)(Vm)(m >n = |a, — b| < ¢))
2.37 Let # be a wf that does not contain = and <. Exchange universal
and existential quantifiers and exchange A and V. The result #* is called the
dual of 2.
(a) In any predicate calculus, prove the following.
(1) + % if and only if - ~%#*
(i) - %# = € if and only if - € = #*.
(iil) - # & € if and only if - #* & €.
(iv) F (I)(B V €) < [(3x)D) V (Ix)€]. [Hint: Use Exercise 2.27(c).]
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;:(b) Show that the duality results of part (a), (i) -(ii1}, do not hold for ar-

bitrary theories.

26 RULEC

It is very common in mathematics to reason in the following way. Assume
that we have proved a wf of the form (3x)#(x). Then we say, let b be an
‘object such that Z(b). We continue the proof, finally arriving at a formula
that does not involve the arbitrarily chosen element b.

For example, let us say that we wish to show that

(Ex)(B(x) = €(x)), (Vx)B{x) b (Ix)€(x).

N LA P o e

- () (F(x) = €(x))

. (Vx)#(x)

. B(b) = €(b) for some b
. B(D)

. €(b)

. (Ax)€(x)

Hyp

Hyp

1

2, rule A4
3,4, MP
5. rule E4

Such a proof seems to be perfectly legitimate on an intuitive basis. In fact,
we can achieve the same result without making an arbitrary choice of an
element b as in step 3. This can be done as follows:

10.

11.

NSk W -

(Vx)%(x)

(Vx)—€(x)

#(x)

—6(x)

~(A(x) = €(x))
(Vx)~(B(x) = €(x))
(Vx)%(x), (vx)—€(x) I
(Vx)~(#(x) = €(x))
(Vx)2B(x) b (Vx)=€(x)
= (Vx)~(%(x) = €(x))
(Vx)2(x) b= —(Vx)~(H(x)
= G(x)) = —~(Vx)~€(x)
(Vx)B(x) - (3x)(HB(x) =
€(x)) = (Ix)€(x)

(AN B0) = G(x)),
(Vx)2(x) & (Ix)€(x)

Hyp
Hyp

1, rule A4

2, rule A4

3, 4, conditional introduction
5, Gen

I-6

I- 7, corollary 2.6

8. contrapositive

Abbreviation of 9

10, MP

In general, any wf that can be proved using a finite number of arbitrary

choices can also be proved without such acts of choice. We shall call the rule
that permits us to go from (Ix)%H(x) to B(b), rule C (‘C’ for ‘choice’). More
precisely, a rule C deduction in a first-order theory K is defined in the
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following manner: I' i-¢ 4 if and only if there is a sequence of wfs &y,-- -, 9,
such that 2, is # and the following four conditions hold:

}

1. For each i < n, either
(a) %; is an axiom of K, or
(b) Z;isin T, or
(¢) %; follows by MP or Gen from preceding wfs in the sequence, or
(d) there is a preceding wf (Ix)€(x) such that &; is €(d), where d is a new

individual constant (rule C).

2. As axioms in condition l(a), we also can use all logical axioms that
involve the new individual constants already introduced in the sequence
by applications of rule C.

3. No application of Gen is made using a variable that is free in some
(Ix)€(x) to which rule C has been previously applied.

4. % contains none of the new individual constants introduced in the se-
quence in any application of rule C.

A word should be said about the reason for including condition 3. If an
application of rule C to a wf (2x)€(x) yields €(d), then the object referred to
by d may depend on the values of the free variables in (3x)%€(x). So that one
object may not satisfy €(x) for all values of the free variables in (3x)%(x).
For example, without clause 3, we could proceed as follows:

L (¥)(F)4i(x, ) Hyp

2. ()43 (x,y) 1, rule A4
3. A¥x,d) 2, rule C
4. (vx)43(x,d) 3, Gen

5. (Fy)(¥x)43(x,y) 4, rule F4

However, there is an interpretation for which (vx)(3y)4}(x,») is true but
(F)(¥x)43(x,y) is false. Take the domain to be the set of integers and let
A%(x,y) mean that x < y.

PROPOSITION 2.10

If T Fc &, then T+ #. Moreover, from the following proof it is easy to
verify that, if there is an application of Gen in the new proof of % from I
using a certain variable and applied to a wf depending upon a certain wf of
I", then there was such an application of Gen in the original proof.!

"The first formulation of a version of rule C similar o that given here seems to
be due to Rosser (1953).
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Proof

Let (F31)€101), - - -, () €r(x) be the wis in order of occurrence to which
rule C is applied in the proof of T'k¢ 4, and let d,,...,d; be the corre-
sponding new individual constants. Then I', € (di),...,€r(dr) - B. Now,
by condition 3 of the definition above, Corollary 2.6 is applicable, yielding
I, 6 (d1), ..., 6Cr1(de 1) - Ci(dy) = #B. We replace dy everywhere by a
variable z that does not occur in the proof.

Then

F,(gl(dl), Caey (gk_1(dkf1) H ka(z) = %

and, by Gen,

T, %1(d1), ..., G 1(die1) F (V2)(%(z) = B)
Hence, by Exercise 2.32(d),

I, 61(d),- .-, Ce1(di-1) F (I)6e () = B
But,

T, (1), ..,k 1(de-1) F (Fr)Ce(%)
Hence, by MP,
L, %1(d),- .., 61(de1) - B

Repeating this argument, we can eliminate €4 1(di-1), - .., %1(d;) one after
the other, finally obtaining I' + 4.

Example
F (Wx)(#(x) = €(x)) = (Gx)B(x) = (I)€(x))
1. (v) () =€) Hyp
2. (Fx)HB(x) Hyp
3. B(d) 2, rule C
4. B(d) = €(d) 1, rule A4
5. 6(d) 3, 4, MP
6. (Ix)€(x) 5, rule E4
7. (V) (B(x) = €(x)), (Fx)B(x) Fc (Ax)E(x) 1-6
8. (Vx)(H(x) = €(x)), (Ax)%(x) b (I)E(x) 7, Proposition 2.10
9. (Vx)(#B(x) = €(x)) F (I)B(x) = (Ix)E(x) 1 — 8, corollary 2.6
10. F (Vx)(B(x) = €(x)) = ((I)B(x) = (Ix)€(x)) 1—9,corollary 2.6

Exercises

Use rule C and Proposition 2.10 to prove Exercises 2.38-2.45.

238 + (Ix)9(x) = €(x)) = ((Wx)HB(x) = (Ix)€(x))
239 (@) ()4, 5) & 435, %))
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240+ [(vx)(4](x) = A30x) V A3(x)) A =(Vx)(4] (x) = A3(x))]
= () (4] (x) A A5(x))

2.41 F [(3x)B(x)] A [(vx)€(x)] = Tx)(HB(x) N €(x))

242 (A€ (x) = @) (H(x) Vv E(x)

243 () ()B(xy) < (Fy)(E)2B(x,y)

244+ (Ix) (W) B(x,y) = (Vy)( @) %(x, y)

2.45 F (3x)(B(x) ANE(x)) = (Fx)B(x)) A (Tx)€(x)

2.46 What is wrong with the following alleged derivations?

(a) 1. (Ix)B(x) Hyp
2. #A(d) I, rule C
3. (Ax)€(x) Hyp
4. €¢(d) 3, rule C
5. #(d) nE€(d) 2, 4, conjunction introduction
6. (AN HB(x) A €(x)) 5, rule E4
7. (B)B(), (@)
F (3x)(B(x) A €(x)) 1-6, Proposition 2.10
() 1. (AN(A) = €(x) Hyp
2. ()%(x) Hyp
3. B(d) = €(d) 1, rule C
4. B(d) 2, tule C
5. %(d) 3, 4, MP
6. (Ax)¥(x) 5, rule E4
7. (I B(x) = €(x)),
(Ax)B(x) F (Ix)€(x) -6, Proposition 2.10

2.7 COMPLETENESS THEOREMS

We intend to show that the theorems of a first-order predicate calculus K. are
precisely the same as the logically valid wfs of K. Half of this result was proved
in Proposition 2.2. The other half will follow from a much more general
proposition established later. First we must prove a few preliminary lemmas.

If x; and x; are distinct, then %(x;) and %(x;) are said to be similar if and
only if x; is free for x; in #(x;) and %(x;) has no free occurrences of x;. It is
assumed here that #(x;) arises from 9(x;) by substituting x; for all free
occurrences of x;. It is easy to see that, if #(x;) and %(x;) are similar, then x;
is free for x; in #(x;) and %(x;) has no free occurrences of x;. Thus, if #(x;)
and #(x;) are similar, then #(x;) and #(x;) are similar. Intuitively, %(x;)
and %(x;) are similar if and only if Z(x;) and %(x;) are the same except that
2 (x;) has free occurrences of x; in exactly those places where %(x;) has free
occurrences of x;.

Example
(Vx3)[43 (x1, X3) V 4] (x1)] and (Vx3)[43(x2,x3) V 4]} (x2)] are similar.
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LEMMA 2.11

If ﬁ(x,-) and ﬁ(xj) arc similar, then + (VJCI').@(JC,') <~ (ij).@(xj).

Proof

b (vx:)B(x;) = #(x;) by axiom (A4). Then, by Gen, b (Vx;){((Vx:)B(x;)
= #(x;)), and so, by axiom (AS5) and MP, + (Vx;)%(x;) = (Vx;)9(x;). Si-
milarly, F (Vx;)%(x;) = (¥x;)%(x;). Hence, by biconditional introduction,
- (Vx,-)ﬁ(x,-) = (ij)gﬁ(xj).

Exercises

247 1f B(x;) and B(x;) are similar, prove that - (Ix;)B(x:) < (Ix;)B(x;).
2.48 Change of bound variables. If %(x) is similar to %(y), (Vx)4(x) is a
subformula of €, and %’ is the result of replacing one or more occurrences of
(vx)4(x) in € by (Vy)%(y), prove that - ¢ < ¥'.

LEMMA 2.12

If a closed wf ~4 of a theory K is not provable in K, and if K’ is the theory
obtained from K by adding & as a new axiom, then K’ is consistent,

Proof

Assume K’ inconsistent. Then, for some wf €, Fy € and by ~%. Now,
e € = (€ = —4) by Proposition 2.1. So, by two applications of MP,
' —9. Now, any use of 4 as an axiom in a proof in K’ can be regarded as
a hypothesis in a proof in K. Hence, 4 g —4. Since 4 is closed, we have
Fxk = -# by Corollary 2.7. However, by Proposition 2.1,
Fk (B = ~B) = —%B. Therefore, by MP, ¢ 4, contradicting our hy-
pothesis.

Exercise

2.49 1If a closed wf & of a theory K is not provable in K, and if K’ is the
theory obtained from K by adding % as a new axiom, then K’ is consistent.
LEMMA 2.13

The set of expressions of a language .¢ is denumerable. Hence, the same is
true of the set of terms, the set of wfs and the set of closed wfs.
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Proof

First assign a distinct positive integer g{u) to each symbol u as follows:
g(() =3, g()) =5, a(,) =T, g(—-.):97 g(=) = 11, g(V) = 13, (xk)
134 8k, glag) = 74 8k, g(f7")=1+8(2"3*), and g(4¥) =3+ 8(2"3"2
Then, to an expression wqu; . . . u, associate the number 29(0)390) )
where p; is the jth prime number starting with py = 2. (Example: the
number of Al(x2) is 2°'335%7%.) We can enumerate all expressions in
the order of their associated numbers; so, the set of expressions is denu-
merable,

If we can effectively tell whether any given symbol is a symbol of %, then
this enumeration can be effectively carried out, and, in addition, we can
effectively decide whether any given number is the number of an expression
of %. The same holds true for terms, wfs and closed wfs. If a theory K in
the language % is axiomatic, that is, if we can effectively decide whether
any given wf is an axiom of K, then we can effectively enumerate the
theorems of K in the following manner. Starting with a list consisting of the
first axiom of K in the enumeration just specified, add to the list all the
direct consequences of this axiom by MP and by Gen used only once and
with xy as quantified variable. Add the second axiom to this new list and
write all new direct consequences by MP and Gen of the wis in this aug-
mented list, with Gen used only once and with x; and x, as quantified
variables. If at the kth step we add the kth axiom and apply MP and Gen to
the wis in the new list (with Gen applied only once for each of the variables
xi,.-.,xt), we eventually obtain in this manner all theorems of K. However,
in contradistinction to the case of expressions, terms, wfs and closed wfs, it
turns out that there are axiomatic theories K for which we cannot tell in
advance whether any given wf of K will eventually appear in the list of
theorems.

DEFINITIONS

(i) A theory K is said to be complete if, for every closed wf & of K, either
Fk 4 or bk 8.

(i) A theory K'is said to be an extension of a theory K if every theorem of
K is a theorem of K'. (We also say in such a case that K is a subtheory
of K')

PROPOSITION 2.14 (LINDENBAUM’S LEMMA)

If K is a consistent theory, then there is a consistent, complete extension
of K.
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Proof

Let #1, %2, ... be an enumeration of all closed wfs of the language of K, by
Lemma 2.13. Define a sequence g, J1, 15, ... of theories in the following way.
I, is K. Assume J,, is defined, with »=0. If it is not the case that &) —%,.,,
then let 3,1 be obtained from J, by adding %,,,, as an additional axiom. On
the other hand, if =y —%,4, let 3,1 = J,.. Let J be the theory obtained by
taking as axioms all the axioms of all the J;s. Clearly, J;;, is an extension of
J;, and J is an extension of all the J;s including Jo = K. To show that J is
consistent, it suffices to prove that every J; is consistent because a proof of a
contradiction in J, involving as it does only a finite number of axioms, is also
a proof of a contradition in some J;. We prove the consistency of the J;s, by
induction. By hypothesis, Jo = K is consistent. Assume that J; is consistent.
If J;;1 = Ji, then J;yq is consistent. If J, # J;;,, and therefore, by the defi-
pition of Ji 1, —%:,1 is not provable in J;, then, by Lemma 2.12, J;,, is also
consistent. So, we have proved that all the J;s are consistent and, therefore,
that J is consistent. To prove the completeness of J, let € be any closed wf of
K. Then ¢ = %}, for some j>0. Now, either by, —#;,; or by, %}, since,
if it is not the case that -y, =9;,, then %, is added as an axiom in J;,,.
Therefore, either -y =%, or &y %;,1. Thus, J is complete.

Note that even if one can effectively determine whether any wf is an
axiom of K, it may not be possible to do the same with (or even to enu-
merate effectively) the axioms of J; that is, J may not be axiomatic even if K
is. This is due to the possibility of not being able to determine, at each step.
whether or not —#,,,; is provable in J,.

Exercises

2.49 Show that a theory K is complete if and only if, for any closed wis %4
and € of K, if Fx AV €, then ¢ & or by €.

2.50P Prove that every consistent decidable theory has a consistent, decid-
able, complete extension.

DEFINITIONS

1. A closed term is a term without variables.
2. A theory K is a scapegoat theory if, for any wt #(x) that has x as its only
free variable, there is a closed term ¢ such that

P (Fx) ~B(x) = ~4(1)

LEMMA 2.15

Every consistent theory K has a consistent extension K’ such that K’ is a
scapegoat theory and K’ contains denumerably many closed terms.




88

QUANTIFICATION THEORY

Proof

Add to the symbols of K a denumerable set {b;, s, ...} of new individual
constants. Call this new theory Kg. Its axioms are those of K plus those
logical axioms that involve the symbols of K and the new constants. K is
consistent. For, if not, there is a proofin Ky of a wf # A —28. Replace each
b; appearing in this proof by a variable that does not appear in the proof.
This transforms axioms into axioms and preserves the correctness of the
applications of the rules of inference. The final wf in the proof is still
contradiction, but now the proof does not involve any of the b;s and
therefore is a proof in K. This contradicts the consistency of K. Hence, K,
is consistent.

By Lemma 2.13, let Fi(x;,), Fa(xs,), ..., Fi(x), ... be an enumeration of
all wfs of K¢ that have one [ree variable. Choose a sequence b;,,b;,, ... of
some of the new individual constants such that each b;, is not contained in
any of the wfs Fi(x;,), ..., (x;) and such that b, is different from each of
bj.,...,bj ,. Consider the wf

(Sk) (fofc )_'ﬂ (JC;" ) = ~ff (bf,k )

Let K,, be the theory obtained by adding (S;), ..., (S.) to the axioms of K,
and let K, be the theory obtained by adding all the (S;)s as axioms to K.
Any proof in K, contains only a finite number of the (S;)s and, therefore,
will also be a proof in some K,,. Hence, if all the K,;s are consistent, so is
K. To demonstrate that all the K,s are consistent, proceed by induction.
We know that K is consistent. Assume that K,,_, is consistent but that K,, is
inconsistent (r>1). Then, as we know, any wf is provable in K, (by the
tautology —4 = (4 = B), Proposition 2.1 and MP). In particular,
Fk, —(S,). Hence, (S,) Fk, , =(S4). Since (S,) is closed, we have, by Cor-
ollary 2.7, kg, , (Sy) = —(S,). But, by the tautology (4 = —4) = 4,
Proposition 2.1 and MP, we then have Fg , —(S,); that is,
Fx, ., —[(3x;, ) Fu(x;,) = —F,(b;, ). Now, by conditional elimination, we
obtain kg, , (Tx;, )~ Fulx;,) and by, |, —F,(b;), and then, by negation
elimination, - K, F;,(b;, ). From the latter and the fact that b;, does not occur
in (So),- .., (Sy—1), we conclude k¢, | F,(x,), where x, is a variable that does
not occur in the proof of F,(b;,). (Simply replace in the proof all occurrences
of b; by x.) By Gen, tx, , (¥x,) F,(x.), and then, by Lemma 2.11 and
biconditional elimination, bk, , (¥x;, )F,(x; ). (We use the fact that £, (x,)
and F,(x;, ) are similar.) But we already have ¢, , (3x; )—F,{(x; ), which is an
abbreviation of by, , —(Vx;, )=—F,(x; ), whence, by the replacement theorem,
bk, , —(Vx;, )F,(x;,), contradicting the hypothesis that K, ) is consistent.
Hence, K,, must also be consistent. Thus K, is consistent, it is an extension
of K, and it is clearly a scapegoat theory.
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LEMMA 2.16

Let J be a consistent, complete scapegoat theory. Then J has a model M
whose domain is the set D of closed terms of J.

Proof
For any individual constant a; of J, let (a,-)M = g;. For any function letter f'
of J and for any closed terms f,...1, of J, let ( ,;‘)M(tl, L) =

PG ty). (Notice that f7'(t1,....1,) is a closed term. Hence, ]& ,;’)M is an
p-ary operation on D.) For any predicate letter 47 of J, let (4})™ consist of
all n-tuples {fi,...,%;) of closed terms ¢,...,f, of ] such that
by A2ty - . -, ta). 1t now suffices to show that, for any closed wf € of I:

() l-m € if and only if +Hy &

(If this is established and # is any axiom of J, let & be the closure of %. By
Gen, by €. By (1), Fm €. By (V1) on page 61, =y #. Hence, M would be a
model of J.) The proof of ([]) is by induction on the number r of con-
nectives and quantifiers in €. Assume that ([]) holds for all closed wfs with
fewer than r connectives and quantifiers.

Case 1. € is a closed atomic wf 4(ty,...,t;). Then ([7) is a direct con-
sequence of the definition of (A;;)M.

Case 2. € is =2. If € is true for M, then @ is false for M and so, by
inductive hypothesis, not-y 2. Since J is complete and & is closed, by =% —
that is, iy €. Conversely, if € is not true for M, then & is true for M. Hence,
Fy . Since J is consistent, not-+y -, that is, not-k; €.

Case 3.6 1s @ = &. Since ¥ is closed, so are & and &. If € is false for M,
then & is true and & is false. Hence, by inductive hypothesis, by & and not-
Fy &. By the completeness of J, by —&. Therefore, by an instance of the
tautology D = (—=F = —(D = E)) and two applications of MP,
Fr (% = &), that is, iy =%, and so, by the consistency of J, not-k; %.
Conversely, if not-; ¥, then, by the completeness of J, \y =%, that is,
- —~(% = &). By conditional elimination, by & and +; —~&. Hence, by ([)
for %, Z is true for M. By the consistency of J, not-t-; & and, therefore, by
([1) for &, & is false for M. Thus, since & is true for M and & is false for M,
% is false for M.

Case 4. € is (Vxp) 9.

Case 4a. @ is a closed wl. By inductive hypothesis, v & if and only
if by @. By Exercise 2.32(a), Fy 2 < (Yxp)%. So, Fy & if and only if
Fr (¥x,)%, by biconditional elimination. Moreover, v & if and only
if Em (Wxn)2 by property (VI) on page 61. Hence, =y ¢ if and only if
F %.

Case 4b. 2 is not a closed wi. Since € is closed, & has x,, as its only free
variable, say & is F(xp, ). Then € is (Vx,; ) F(xp).

89
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(i) Assume =y € and not-ky 4. By the completeness of J, Fy =%, that i,
Fy (VX )F (xm). Then, by Exercise 2.33(a) and biconditional eliming.
tion, Fy (Ix,,)-F (xy,). Since J is a scapegoat theory, -y —F(#) for some
closed term ¢t of J. But v €, that is, Fn (VX)) F(x,). Since
(Vxw)F (xm) = F(2) is true for M by property (X) on page 63, |=v F(),
Hence, by ([1J) for F(t), Fy F(#). This contradicts the consistency of J.
Thus, if =m €, then, 1 €.

(@ii) Assume Fy € and not-E=p %. Thus,

(#) |_J (VX’I’)F(XIH)(##) not— |:M (vxm)F(xm)-

By (##), some sequence of elements of the domain D does not satisfy
(VX ) F(x,). Hence, some sequence s does not satisfy F(x,,). Let ¢ be the ith
component of s. Notice that s*(u) = u for all closed terms u of J (by the
definition of (a;)™ and ( f’k')M). Observe also that F(r) has fewer connectives
and quantifiers than ¢ and, therefore, the inductive hypothesis applies to
F(z), that is, ([J) holds for F(¢). Hence, by Lemma 2(a) on page 63, 5 docs
not satisfy (). So, F(¢) is false for M. But, by (#) and rule A4, -y F(¢), and
so, by ([O) for F(#),|=m F(¢). This contradiction shows that, if Fy €, then

v €.

Now we can prove the fundamental theorem of quantification theory.
By a denumerable model we mean a model in which the domain is de-
numerable.

PROPOSITION 2.171

Every consistent theory K has a denumerable model.

Proof

By Lemma 2.15, K has a consistent extension K’ such that K’ is a scapegoat
theory and has denumerably many closed terms. By Lindenbaum’s lemma,
K’ has a consistent, complete extension J that has the same symbols at K'.
Hence, J is also a scapegoat theory. By Lemma 2.16, J has a model M whose
domain is the denumerable set of closed terms of J, Since J is an extension of
K, M is a denumerable model of K.

tThe proof given here is essentially due to Henkin (1949), as simplified by
Hasenjaeger (1953). The result was originally proved by Gdédel (1930). Other proofs
have been published by Rasiowa and Sikorski (1951; 1952) and Beth (1951), using
(Boolean) algebraic and topological methods, respectively. Still other proofs may be
found in Hintikka (1955a, b) and in Beth (1959).

1.
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{OROLLARY 2.18

Any logically valid wf 4 of a theory K is a theorem of K.

Proof

we need consider only closed wis 94, since a wl' & is logically valid if and
only if its closure is logically valid, and & is provable in K if and only if its
closure is provable in K. So, let # be a logically valid closed wf of K.
Assume that not-tx %. By Lemma 2.12, if we add - as a new axiom to K,
the new theory K’ is consistent. Hence, by Proposition 2.17, K’ has a model
M. Since —% is an axiom of K, ~4 is true for M. But, since 4 is logically
valid, 4 is true for M. Hence, 4 is both true and false for M, which is
impossible (by (IT) on page 61). Thus, 4 must be a theorem of K.

COROLLARY 2.19. (GODEL’S COMPLETENESS THEOREM, 1930)

In any predicate calculus, the theorems are precisely the logically valid wis.

Proof

This follows from Proposition 2.2 and Corollary 2.18. (Godel’s original
proof runs along quite different lines. For other proofs, see Beth (1951),
Dreben (1952), Hintikka (1955a, b) and Rasiowa and Sikorski (1951; 1952).)

CORQOLLARY 2.20

Let K be any theory.

(@) A wf # is true in every denumerable model of K if and only if g 4.

(b) If, in every model of K, every sequence that satisfies all wfs in a set I' of
wis also satisfies a wt 94, then T ¢ 4.

(c) If a wt & of K is a logical consequence of a set I' of wfs of K, then
'k 2.

(d) If a wf & of K is a logical consequence of a wf ¢ of K, then € ¢ 4.

Proof

(a) We may assume 9% is closed. If not-tgx %, then the theory
K' = K + {—~#} is consistent. Hence, by Proposition 2.17, K’ has a
denumerable model M. However, =44, being an axiom of K/, is true for

'If K is a theory and A is a set of wfs of K, then K + A denotes the theory
obtained from K by adding the wfs of A as axioms.
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M. By hypothesis, since M is a denumerable model of K, 44 is true for
M. Therefore, # is true and false for M, which is impossible.

(b) Consider the theory K -+ I'. By the hypothesis, 4 is true for every mode]
of this theory. Hence, by (a). | x4r #. So, I' bk 4.

Part (c) is a consequence of (b), and part (d) is a special case of (c).

Corollaries 2.18-2.20 show that the ‘syntactical’ approach to quantifi-
cation theory by means of first-order theories is equivalent to the ‘seman-
tical’ approach through the notions of interpretations, models, logical
validity, and so on. For the propositional calculus, Corollary 1.15 demon-
strated the analogous equivalence between the semantical notion (tautology)
and the syntactical notion (theorem of L). Notice also that, in the propo-
sitional calculus, the completeness of the system L (see Proposition 1.14) led
to a solution of the decision problem. However, for first-order theories, we
cannot obtain a decision procedure for logical validity or, equivalently, for
provability in first-order predicate calculi. We shall prove this and related
results in Section 3.6.

COROLLARY 2.21. (SKOLEM-LOWENHEIM THEOREM, 1920, 1915)

Any theory that has a model has a denumerable model.

Proof

If K has a model, then K is consistent, since no wf can be both true and false
for the same model M. Hence, by Proposition 2.17, K has a denumerable

model.
The following stronger consequence of Proposition 2.17 is derivable.

COROLLARY 2.224

For any cardinal number m =¥y, any consistent theory K has a model of
cardinality .

Proof

By Proposition 2.17, we know that K has a denumerable model. Therefore,
it suffices to prove the following lemma.

LEMMA

If m and n are two cardinal numbers such that m<n and if K has a model of
cardinality m, then K has a model of cardinality n.

-
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Proof

Let M be a model of K with domain D of cardinality m. Let D' be a set of
cardinality n that contains D. Extend the model M to an interpretation M’
that has D' as domain in the following way. Let ¢ be a fixed element of D.
We stipulate that the elements of D' — D behave like c. For example, if BY is
the 1nterpretat10n in M of the predicate letter 47 and (Bj)' is the new in-
terpretation in M’, then for any di,...,d, in D/, (B") holds for (dy, ..., d,) if
and only if B" holds for (uy,...,uy), Where u; = d ifdie Dand u; =cif
deD ~D. The mterpletatlon of the function letters is extended in an
analogous way, and the individual constants have the same interpretations
as in M. It is an easy exercise to show, by induction on the number of
connectives and quantifiers in a wf %, that # is true for M’ if and only if it is
true for M. Hence, M’ is a model of K of cardinality n.

Exercises

2.51 For any theory K, if I Fg 4 and each wf in I is true for a model M

of K, show that 4 is true for M.

2.52 If a wf % without quantifiers is provable in a predicate calculus, prove

that # is an instance of a tautology and, hence, by Proposition 2.1, has a

proof without quantifiers using only axioms (A1)~(A3) and MP. [Hint: if #

were not a tautology, one could construct an interpretation, having the set

of terms that occur in & as its domain, for which 4 is not true, contradicting

Proposition 2.2.] Note that this implies the consistency of the predicate

calculus and also provides a decision procedure for the provability of wfs

without quantifiers.

2.53 Show that ¢ 4 if and only if there is a wf € that is the closure of the

conjunction of some axioms of K such that ¥ = % is logically valid.

2.54 Compactness. If all finite subsets of the set of axioms of a theory K

have models, prove that K has a model.

2.55 (a) For any wf %, prove that there is only a finite number of inter-
pretations of # on a given domain of finite cardinality £.

(b) For any wf 4, prove that there is an effective way of determining
whether 4 1s true for all interpretations with domain of some fixed
cardinality k.

(c) Let a wl 2 be called k-valid it it is true for all interpretations that
have a domain of & elements. Call 2 precisely k-valid if it is k-valid
but not (k£ + 1)-valid. Show that (£ + 1)-validity implies k-validity
and give an example of a wf that is precisely £-valid. (See Hilbert
and Bernays (1934, § 4-5) and Wajsberg (1933).)

2.56 Show that the following wf is true for all finite domains but is false
for some infinite domain.
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(W) (¥9)(V2) |43 (3, %) A (43 (6, 0) A AT (3,2) = A3 (x,2)) A (A3 (5, ) V AT(3,3))]
= (B)(vx)47 (3, %)

2.57 Prove that there is no theory K whose models are exactly the inter-

pretations with finite domains.

2.58 Let # be any wf that contains no quantifiers, function letters, or

individual constants.

(a) Show that a closed prenex wf (Vxi) ... (Vx,)(3y1) - .. (Fym)PB, wWith m>0
and n>=1, is logically valid if and only if it i1s true for every inter-
pretation with a domain of » objects.

(b) Prove that a closed prenex wf (3y1) ... (I, is logically valid if and
only if it is true for all interpretations with a domain of one element.

(¢) Show that there is an effective procedure to determine the logical va-
lidity of all wfs of the forms given in (a) and (b).

2.59 Let K; and K; be theories in the same language .%. Assume that any

interpretation M of .% is a model of K; if and only if M is not a model of

K,. Prove that K; and K are finitely axiomatizable, that is, there are finite

sets of sentences I" and A such that, for any sentence #, bk, 4 if and only if

'+ B, and g, & if and only if A+ .7

2.60 A set I' of sentences is called an independent axiomatization of a

theory K if (a) all sentences in [ are theorems of K, (b) I' - # for every

theorem % of K, and (c) for every sentence € of T, it is not the case that

I' — {#} % 1. Prove that every theory K has an independent axiomatiza-

tion.

2.617 TIf, for some cardinal m>¥y, a wf 4 is true for every interpretation of

cardinality m, prove that # is logically valid.

2.62* If a wf # is true for all interpretations of cardinality m prove that 4 is

true for all interpretations of cardinality less than or equal to m.

2.63 (a) Prove that a theory K is a scapegoat theory if and only if, for any

wf 9(x) with x as its only free variable, there is a closed term ¢ such
that Fx (Ix)B(x) = 2(1).

(b) Prove that a theory K is a scapegoat theory if and only if, for any
wlf #(x) with x as its only free variable such that Fg (Ix)%(x),
there is a closed term t such that k¢ #(z).

(c) Prove that no predicate calculus is a scapegoat theory.

2.8 FIRST-ORDER THEORIES WITH EQUAILITY

Let K be a theory that has as one of its predicate letters A3, Let us write 7 = s
as an abbreviation for A2(t,s), and ¢ # s as an abbreviation for ~42(z,s).

tHere, an expression I' I #, without any subscript attached to -, means that %
is derivable from T using only logical axioms, that is within the predicate calculus.
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~Then K is called a first-order theory with equality (or simply a theory with
equality) if the following are theorems of K:

(A6) (Vx1)x1 =x (reflexivity of equality)
(AT) x =y = (B(x,x) = B(x,y)) (substitutivity of equality)

"where x and y are any variables, #(x,x) is any wf, and #(x, y) arises from
#(x,x) by replacing some, but not necessarily all, free occurrences of x by y,
with the proviso that y is free for x in #(x,x). Thus, #(x,y) may or may not
contain free occurrences of x.

The numbering (A6) and (A7) 1s a continuation of the numbering of the
Jogical axioms.

PROPOSITION 2.23

In any theory with equality,

(a) Ft=tlor any term ;
(b) Ft=s=s=1for any terms ¢ and s;
() Ft=s=(s=r=t=r) for any terms ¢, s and r.

Proof

(@) By (A6), - (Vx;) x; = x;. Hence, by rule A4, Fr=1.

(b) Let x and y be variables not occurring in ¢ or s. Letting #(x,x) be x = x
and %(x,y) be y =x in schema (A7), F x =y = (x = x = y =x). But,
by (a), Fx =x. So, by an instance of the tautology (4 = (B = ())
= (B= (4 = C)) and two applications of MP, we have Fx=y
= y =x. Two applications of Gen yield F (¥x)(Vy)(x =y =y =1x),
and then two applications of rule A4 give Ff=s=>s=1.

(¢) Let x,y and z be three variables not occurring in t,s, or r. Letting
#(y,y) be y=z and #(y,x) be x =z in (A7), with x and y inter-
changed, we obtain Fy=x=(y=z=x=2z). But, by (b),
Fx=p=y=xHence, using an instance of the tautology
A=B)= ((B=C)= (A= C)) and two applications of MP, we
obtain Fx =y = (y=z=x=z). By three applications of Gen,
F (Vx)(Vy)(Vz)(x = y = (y =z = x = z)), and then, by three uses of
rule Ad, Ft=s=(s=r=t=r).

Exercises

2.64 Show that (A6) and (A7) are true for any interpretation M in which
(A%)M is the identity relation on the domain of the interpretation.
2.65 Prove the following in any theory with equality.
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(@) + (W) (4(x) & (I)(x =y AB()))) if y does not occur in #(x)

(b) + (Vx)(B(x) & (W)(x =y = #(y))) if y does not occur in H(x)

© F(vx)(Fy)x=y

(d) Fx=y= f(x)=/f(y), where f is any function letter of one argument
(€) + #(x) Ax=y= B(p),if yis free for x in H(x)

(€) +FBx)N-B(y) = xFy, if yis free for x in #(x)

We can reduce schema (A7) to a few simpler cases.

PROPOSITION 2.24

Let K be a theory for which (A6) holds and (A7) holds for all atomic wfs
#(x,x) in which there are no individual constants. Then K is a theory with
equality, that is, (A7) holds for all wfs Z(x,x).

Proof

We must prove (A7) for all wfs #(x,x). It holds for atomic wfs by as-
sumption, Note that we have the results of Proposition 2.23, since its proof
used (A7) only with aton:ic wfs without individual constants. Note also that
we have (A7) for all atomic wfs #(x,x). For if #(x,x) contains individual
constants, we can replace those individual constants by new variables, ob-
taining a wf #*(x,x) without individual constants. By hypothesis, the cor-
responding instance of (A7) with #*(x,x) is a theorem: we can then apply
Gen with respect to the new variables, and finally apply rule A4 one or more
times to obtain (A7) with respect to #(x,x).

Proceeding by induction on the number # of connectives and quantifiers
in #(x,x), we assume that (A7) holds for all k < n.

Case 1. %B(x,x) is —%(x,x). By inductive hypothesis, we have
Fy=x=r(%(x,») = €(x,x)), since €(x,x) arises from €(x,y) by replacing
some occurrences of y by x. Hence, by Proposition 2.23(b), instances of the
tautologies (4 =» B) => (—# = —4) and (4= B) = ((B= C) = (4 = ())
and MP, we obtain - x = y => (#(x,x) => Z(x,»)).

Case 2. %B(x,x) is €(x,x) = Z(x,x). By inductive hypothesis and Pro-
position 2.23(b), Fx=y= (€(x,y) = €(x,x)) and Fx=y= (P(x,x)
= Z(x,¥)). Hence, by the tautology (4 => (C; => C)) => [(4 = (D => D))
= (A= ((C= D)= (Ci => D)))], we have b x =y = (#(x,x) = B(x,))).

Case 3. #(x,x) is (Vz)€(x,x,z). By inductive hypothesis, Fx =y =>
(€(x,x,2z) = €(x,y,2)). Now, by Gen and axiom (AS), Fx=y=
(Vz2)(€(x,x,z) = €(x,»,2)). By Exercise 2.27(a), - (Vz) (¢(x,x,2z) => €(x,y,2))
= [(V2)€(x,x,z) = (V2)€(x,7,2)], and so, by the tautology (4= B) =
(B=>C)=>A=C),Fx=y=(Bxx)=>B(x,y)).

The instances of (A7) can be still further reduced.
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pROPOSITION 2.25

Let K be a theory in which (A6) holds and the following are true.

(2) Schema (A7) holds for all atomic wfs #(x,x) such that no function
letters or individual constants occur in #(x,x) and #(x,y) comes from
(x,x) by replacing exactly one occurrence of x by y.

®) Fx=y=[(z1,...,2) = f;'(wi,...,wa), where fI' is any function
letter of K, z;,...,z, are variables, and fjf’(wl,...,w,,) arises from
H (z1,.--,2n) by replacing exaclly one occurrence of x by y.

Then K is a theory with equality.

Proof

By repeated application, our assumptions can be extended to replacements
of more than one occurrence of x by y. Also, Proposition 2.23 is still deri-
vable. By Proposition 2.24, it suffices to prove (A7) for only atomic wfs
without individual constants. But, hypothesis (a) enables us easily to prove

F (yl =z1 N AWy :Zn) = (%(yla" . ,yn) = ¢%(Zla-- . ,Zn))

for all variables y,...,¥,, 21,...,2, and any atomic wf Z(y,...,3)
without function letters or individual constants. Hence, it suffices to show:

(¥) If #(x,x) is a term without individual constants and #(x,y) comes from
f(x,x) by replacing some occurrences of x by y, then - x =y = #(x, x)

= t{x,y).1

But (*) can be proved, using hypothesis (b), by induction on the number of
function letters in #(x,x), and we leave this as an exercise.

It is easy to see from Proposition 2.25 that, when the language of K has
only finitely many predicate and function letters, il is only necessary to
verify (A7) for a finite list of special cases (in fact, n wfs for each 47 and n
wfs for each f}’).

Exercises

2.66 Let K, be a theory whose language has only = as a predicate letter
and no function letters or individual constants. Let its proper axioms be
(Vx1) x1 = x1, (Vo) (Vx2)(x1 =x2 = xp ==x1) and  (¥x)(Vx2)(¥x3)(x; = x2
= (x2 = x3 = x1 = x3)). Show that K; is a theory with equality. [Hinz: It

"The reader can clarify how (*) is applied by using it to prove the following
instance of (A7): Fx =y = (A{(f}(x)) = 4} (f} (1)) Let t(x,x) be f](x) and let
i(x,y) be £ ().
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suffices to prove that Fx) =x3= (x;1 =x = x3 =x3) and Fx =y,
= (x1 = x =¥ x1 =x3).] K is called the pure first-order theory of equality.
2.67 Let K, be a theory whose language has only = and < as predicate
letters and no function letters or individual constants. Let K; have the
following proper axioms.

(a) (‘v’xl) X1 =X

(b) (Vxl)(VX2)(X1 =Xy = Xp = xl)

(c) (Vxl)(‘v’xz)(‘v’x3)(x1 =Xy = (x:)_ =X3 =X = JC3))

(d) (Vx;)(fllz)(akg)(xl <x3ANX3 < xl)

(€) (V1) (Vx2)(Vxs)(x1 <x2 Axp < x3 = x1 < x3)

) (Vi) (¥x2) (%) = %2 = = x; < x2)

() (¥x)(Vx2)(x <x2 VX =x2 VX <xp)

(h) (V1) (Vx2) (%) < x2 = (Fxs)(x) <x3Ax3 <x32))

Using Proposition 2.25, show that K, is a theory with equality. K is called
the theory of densely ordered sets with neither first nor last element.

2.68 Let K be any theory with equality. Prove the following.

(@) Fxi=p A AX == X1 X)) =11, 5 0h)s where
t(yl, ... ;,,) arises from the term #(xi,...,x,) by substitution of
Vi,--., ¥ fOr x1,...,%,, respectively.

(b) Fx :yl Ao Nxn=yn=> (Bx1,....,%) & B(Y1,-- -, )n))s where
B(3,...,)w) is obtained by substituting yy,...,3, for one or more
occurrences of xi,...,X%,, respectively, in the wf #(xi,...,x,), and
¥la---,¥n are free for xy,. .., x,, respectively, in the wf Z(xy,...,x,).

Examples.

(In the literature, ‘elementary’ is sometimes used instead of ‘first-order’.)

1. Elementary theory G of groups: predicate letter ==, function letter f,z, and
individual constant a;. We abbreviate /2 (2,5) by t +s and a; by 0. The
proper axioms are the following,

(@) x + (x2 +x3) = (x1 +x2) + 13

(b x; +0=x,

(€) (Vx1)(Fx2)xy +x2 =0

(d) x =x;

(€) x; =x2 = x2=1x

() x =x2= (22 =23 = x1 =x3)

(8 x1=x2= (X1 +x3=X2 +X3Ax3+x =x3+x)

That G is a theory with equality follows easily from Proposition 2.25. If
one adds to the axioms the following wf:

(h) x; +x =x2 +x¢

the new theory is called the elementary theory of abelian groups.

2. Elementary theory F of fields: predicate letter =, function letters f7 and
f#, and individual constants a; and a,. Abbreviate fE(t,s)
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t+s, f#(t,s) by t-s, and a; and a; by 0 and 1. As proper axioms, take
(a)-(h) of Example 1 plus the following.

(i) x1=x2=> (X1 X3 =x2°X3 AX3-X] =X3x2)

G) x1- (22 x3) = (x1-x2) 33

(k) x1- (2 +x3) = (x1 - x2) 4+ (%1 - x3)

@) x1-x2=x2'Xx

(m) x1 -1 =x;

(M) x; 0= (Fn2) x; -2 =1

(0) 0#1

F is a theory with equality. Axioms (a)-(m) define the elementary theory
Rc of commutative rings with unit. If we add to F the predicate letter 43,
abbreviate A%(t,s) by 1<s, and add axioms (e), (f) and (g) of
Exercise 2.67, as well as x1<xp=>x+x3<xp+x3 and
x1 <x2 N0 <x3 =>x;-x3 <x-x3, then the new theory F. is called the
elementary theory of ordered fields.

Exercise

2.69 (a) What formulas must be derived in order to use Proposition 2.25 to
conclude that the theory G of Example 1 is a theory with equality?
(b) Show that the axioms (d)(f) of equality mentioned in Example 1
can be replaced by (d) and
(f’): X1 =X = (JC3 = X7 =7 X] :.)C3).

One often encounters theories K in which = may be defined; that is, there
is a wf &(x,y) with two free variables x and y, such that, if we abbreviate
&(t,s) by t = s, then axioms (A6) and (A7) are provable in K. We make the
convention that, if ¢ and s arc terms that arc not free for x and y, respec-
tively, in &(x, ), then, by suitable changes of bound variables (see Exercise
2.48), we replace &(x,y) by a logically equivalent wf £*(x, y) such that t and s
are free for x and y, respectively, in &*(x,y); then 1 =s is to be the ab-
breviation of £¥(¢,s). Proposition 2.23 and analogues of Propositions 2.24
and 2.25 hold for such theories. There is no harm in extending the term
theory with equality to cover such theories.

In theories with equality it is possible to define in the following way
phrases that use the expression ‘There exists one and only one x such
that. ..’

DEFINITION

(3)B() for (F)B) A (¥) (W) BE) A B(y) = x = )

In this definition, the new variable yp is assumed to be the first variable that
does not occur in #(x). A similar convention is to be made in all other
definitions where new variables are introduced.
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Exercise

2,70 In any theory with equality, prove the following.
(@) F(v)(Fy) x=y

(b) F(Ex)2E) & (I)(W)F=yp e* A(y))

(©) (VX)(J?(X) & €(x)) = [(Fx)Z(x) & (Jix)€(x)]
(d) F Gx)N(FVE) = (Fix)B) v (Tix)€

() F (@A) & (I)(Bx) A (V)IH#(y) =y =x))

In any model for a theory K with equality, the relation E in the mode]
corresponding to the predicate letter = is an equivalence relation (by Pro-
position 2.23). If this relation E is the identity relation in the domain of the
model, then the model is said to be normal.

Any model M for K can be contracted to a normal model M™ for K by
taking the domain D* of M* to be the set of equivalence classes determined
by the relation E in the domain D of M. For a predicate letter 47 and for any
equivalence classes [by],. .., [b;] in D* determined by elements &y, ..., b, in
D, we let (4™ hold for ([b],...,[bs]) if and only if (47)* holds for
(b1,...,b,). Notice that it makes no difference which representatives
by,...,b, we select in the given equivalence classes because, from (A7),
Fxp=p A A X =10 = (A (x1,-- -, %) @A"(y;, ..., ). Likewise, for
any functlon letter /7' and any equ1valence classes [b1],-- ., [ba] in D*, let
(f") ([Ba], -+, [Ba]) = [(f") (b1,...,b,)]. Again note that this is in-
dependent of the choice of the representatives by, ..., by, since, from (A7),
we can prove Fxy=p A Ay == (% %) :f;’(y;,...,y,,).
For any individual constant ; let (a;)™ = [(a))™]. The relation E* corre-
sponding to = in the model M* is the identity relation in D*: E*([b,], [b]) if
and only if E(by,1,), that is, if and only if [b;] = [b2]. Now one can easily
prove by induction the following lemma: If s = (b, b7, ...) is a denumerable
sequence of clements of D, and s' = ([by], [b2],...) is the corresponding se-
quence of equivalence classes, then a wt # is satisfied by s in M it and only if
Z is satisfied by §' in M*. [t follows that, for any wf 8, 2 is true for M if and
only if 4 is true for M*. Hence, because M is a model of K, M™ is a normal
model of K.

PROPOSITION 2.26 (EXTENSION OF PROPOSITION 2.17)

(Godel, 1930) Any consistent theory with equality K has a finite or denu-
merable normal model.

Proof

By Proposition 2.17, K has a denumerable model M. Hence, the contraction
of M to a normal model vields a finite or denumerable normal model M*

.
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because the set of equivalence classes in a denumerable set D is either finite
or denumerable.

COROLLARY 2.27 (EXTENSION OF THE SKOLEM-LOWENHEIM
THEOREM)

Any theory with equality K that has an infinite normal model M has a
denumerable normal model.

Proof

Add to K the denumerably many new individual constants by, b5, . . . together
with the axioms b; # b; for i # j. Then the new theory K' is consistent. If K’
were inconsistent, there would be a proof in K’ of a contradiction € A =€,
where we may assume that € is a wf of K. But this proof uses only a finite
number of the new axioms: b;, # b, ..., b, # b;,. Now, M can be extended
to a model M# of K plus the axioms b;, # bj,, ... ,b;, # b;,;in fact, since M is
an infinite normal model, we can choose interpretations of b;,, b;,, ..., b;,, b;,,
so that the wis b;, # b;,, ..., b;, # b;, are true. But, since € A % is derivable
from these wfs and the axioms of K, it would follow that € A =% is true for
M#*, which is impossible. Hence, K/ must be consistent. Now, by Proposi-
tion 2.26, K’ has a finite or denumerable normal model N. But, since, for
i#J, the wfs b; # b; are axioms of K', they are true for N. Thus, the
elements in the domain of N that are the interpretations of by, b, ... must be
distinct, which implies that the domain of N is infinite and, therefore, de-
numerable.

Exercises

271 We define (3,x)%(x) by induction on #>1. The case n =1 has al-

ready been taken care of. Let (3,,1x)#(x) stand for

@) (#(p) NEwx)(x # ¥ A B(x))).

(a) Show that (3,x)%(x) asserts that there are exactly »n objects for which #
holds, in the sense that in any normal model for (3,x)%(x) there are
exactly n objects for which the property corresponding to #(x) holds.

(b) (i) For each positive integer n, write a closed wf %, such that %, is

true in a normal model when and only when that model contains at
least n elements.

(i) Prove that the theory K, whose axioms are those of the pure theory
of equality K, (see Exercise 2.66), plus the axioms %, %,,..., 1s
not finitely axiomatizable, that is, there is no theory K’ with a finite
number of axioms such that K and K’ have the same theorems.
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(iii) For a normal model, state in ordinary English the meaning of
A1 -
(c) Let n be a positive integer and consider the wf (&,) (3,x)x = x. Let L,
be the theory K; + {&,}, where K, is the pure theory of equality.
(i) Show that a normal model M is a model of L, if and only if there
are exactly n elements in the domain of M.
(ii)) Define a procedure for determining whether any given sentence is 3
thcorem of L, and show that 1L, is a complete theory.
2.72 (a) Prove that, if a theory with equality K has arbitrarily large finite
normal models, then it has a denumerable normal model.
(b) Prove that there is no theory with equality whose normal models
are precisely all finite normal interpretations.
2.73 Prove that any predicate calculus with equality is consistent. (A
predicate calculus with equality is assumed to have (A1)-(A7) as its only
axioms.)
2.74P Prove the independence of axioms (A1)-(A7) in any predicate cal-
culus with equality.
2,75 1If #is a wf that does not contain the = symbol and Z is provable in 3
predicate calculus with equality I, show that & is provable in K without
using (A6) or (A7).
2.76” Show that = can be defined in any theory whose language has only a
finite number of predicate letters and no function letters.
2.77 (a)AFind a non-normal model of the elementary theory of groups G.
(b) Show that any model M of a theory with equality K can be ex-
tended to a non-normal model of K. [Hint: Use the argument in
the proof of the lemma within the proof of Corollary 2.22.]
2.78 Let # be a wf of a theory with equality. Show that 4 is true in every
normal model of K if and only if k¢ #.
2.79 Write the following as wis of a theory with equality.
(a) There are at least three moons of Jupiter.
(b} At most two people know everyone in the class.
2.80 If P(it) means u is a person, G(u,v) means v is a grandparent of v, and
u = v means that # and v are identical, translate the following wf into or-
dinary English:
(V) (P(x) =(Fxp ) (Fx2)(Txz) (Fxa) (1 7 x2 Axy # x3 Axy # xaA
X2 7 X3 Ax2 # Xg Ax3 # 5 A G(x1,x) A Gz, x) A G(xs, x)A
Gxa, ) AN (WG x)=y=x1Vy=xVy=x3Vy=x)))

2.81 Consider the wf

(+) (W)(W)(E) (e #x Az # y AA()).
Show that () is true in a normal model M of a theory with equality if and
only if there exist in the domain of M at least three things having property
A(z).

-
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2.82 Let the language % have the four predicate letters =, P, S and L.
Read u = v as u and v are identical, P(u) as u is a point, S(u) as u is a line, and
L(u,v) as u lies on v. Let the theory of equality G of planar incidence geo-
metry have, in addition to axioms (A1)-(A7), the following non-logical

axioms.

(1) Px)=-Sk)

@) L(x,y) = Px) A S(y)

(3) SG) = (@)(F2)(y #zAL(y,x) AL(z,x))

@) PE)AP(Y) Ax#y = (Fhz)(S(2) A L(x.z) A L(3,2))
(5) () (Fy)(F=)(P(x) A P(y) A P(z) A —€(x,y,2))

where €(x,y,z) is the wf (Ju)(S(u) A L(x,u) A L(y,u) AL(z,u)), which is
read as x, y, z are collinear.

(a) Translate (1)~5) into ordinary geometric language.

(b) Prove bFg (Vu)(Yv) (S(u) AS(v) Au#v=> (¥x)(Vy) (L(x,u) AL(x, v)A
L{y,u) NL(p,v) = x=1y)), and translate this theorem into ordinary
geometric language.

(¢) Let R(u,v) stand for S(u) AS(v) A—=(Fw)(L(w,u) AL(w,v)). Read
R(u,v) as u and v are distinct parallel lines.

(i) Prove: bg R(v,v) = u#v
(ii)) Show that there exists a normal model of G with a finite domain in
which the following sentence is true:

(W) (V) (S() A P(y) A=L(y,x) = (Ji2)(L(», 2) AR(z,x)))

(d) Show that there exists a model of & in which the following sentence is
true:

(W) (W) (S) AS(y) Ax # y = —~R(x,3))

2.9 DEFINITIONS OF NEW FUNCTION LETTERS

AND INDIVIDUAL CONSTANTS q
In mathematics, once we have proved, for any yy,...,,, the existence of a
unique object u that has a property #(u, 1, ...,)), we often introduce a
new function letter f( yy,...,p,) such that B(f(11,-..,30), 31, -- -, ) holds
for all yq,...,»- In cases where we have proved the existence of a unique

object u that satisfies a wf #(u) and %(u) contains u as its only free variable,
then we introduce a new individual constant b such that #(b) holds. It is
generally acknowledged that such definitions, though convenient, add
nothing really new to the theory. This can be made precise in the following
manner.
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PROPOSITION 2.28

Let K be a theory with equality. Assume that Fx (1) B, 1, ..., 30). Let
K# be the theory with equality obtained by adding to K a new function letter
f of n arguments and the proper axiom B( f (1, u)sF1y- -1 1u),| as wel]
as all instances of axioms (A1)-(A7) that involve /. Then there is an effective
transformation mapping each wf ¢ of K¥ into a wf €% of K such that:

(a) 1If f does not occur in €, then €% is €.
(b) (—%)* is ("),

©) (€= )" is €" = a".

@ (@) is (w)(@*),

(e) ’_K# (qg{z} % )

() Ifbys €, then by €7,

Hence, if ¢ does not contain f and Fy+ €, then Fx €.

Proof

By a simple f~term we mean an expression f(fy,...,t,) in which #;, ..., are
terms that do not contain /. Given an atomic wf € of K¥, let €* be the
result of replacing the leftmost occurrence of a simple term f(t1,...,6)In ¥

by the first variable v not in € or 4. Call the wf (Jv)(B(v.11,...,1,) N E)
the f~transform of €. If ¢ does not contain f, then let ¢ be its own f-
transform. Clearly, Fygs ()(P(v,t1,...,4) AN€) <= €. (Here, we use
bk (14)B(u, 1, ..., y,) and the axiom B(f( 1y Iu)s P15« -, 3u) of KF)
Since the f-transform €’ of € contains one less f than € and FK# ¢ < €, if
we take successive f-transforms, eventually we obtain a wf 4# that does not
contain f and such that by %# & €. Call €% the #f ~less transform of €.
Extend the definition to all wfs of K¥ by letting (—2)" be ~(2%), (2 = &)*
be 9% = &*, and ((vx)2)* be (vx)@*. Properties (a)~(c) of Proposition
2.28 are then obvious. To prove property (f), it suffices, by property (€), to
show that, if ¢ does not contain f and by €, then - ¢. We may assume
that € is a closed wf, since a wf and its closure are deducible from each
other.

Assume that M is a model of K. Let M; be the normal model obtained by
contracting M. We know that a wf is true for M if and only if it is true for
M;. Since Fg (Hiu)@(u, F1s--+,Vu)> then, for any by, ..., b, in the domain of
M, there is a unique ¢ in the domain of M; such that I:Ml Ble,by, ..., by If
we define f1(by, ..., by) to be ¢, then, taking f; to be the interpretation of the
function letter f, we obtain from M; a model M* of K¥. For the logical
axioms of K¥ (including the equality axioms of K*) are true in any normal

It is better to take this axiom in the form (Vu)(u=f(31,--.,)
= B,y .., ), since f(y1,...,y,) might not be free for u in B(u,31,...,3)

™
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interpretation, and the axiom B( f(y1,-- ., )s11,- -+, Va) also holds in M#
by virtue of the definition of f;. Since the other proper axioms of K# do not
contain f and since they are true for M,, they are also true for M#. But
by €. Therefore, € is true for M*, but since € does not contain f, € is true
for M; and hence also for M. Thus, % is true for every model of K.
Therefore, by Corollary 2.20(a), Fx 4. (In the case where g (3;2)%(r) and
(1) contains only u as a free variable, we form K¥ by adding a new
individual constant b and the axiom #(b). Then the analogue of Proposition
2.28 follows from practically the same proof as the one just given.)

Exercise

2.83 Find the f-less transforms of the following wis.

@) (V) (@) A0, S 1,m) = f(0x, .., x) =)
) A (- 0)) A @A (a2 00)

Note that Proposition 2.28 also applies when we have introduced several
new symbols f1, ..., f,; because we can assume that we have added each f; to
the theory already obtained by the addition of f7,..., fi_i; then i successive
applications of Proposition 2.28 are necessary. The resulting wf €# of K can
be considered an ( fi,...,fn)-free transform of ¢ into the language of K.

Examples

1. In the elementary theory G of groups, one can prove (J1y) x +y = 0.
Then introduce a new function f of one argument, abbreviate f(¢) by
(—1), and add the new axiom x + (—x) = 0. By Proposition 2.28, we now
are not able to prove any wf of GG that we could not prove before. Thus,
the definition of (—~¢) adds no really new power to the original theory.

2. In the elementary theory F of fields, one can prove that
(FN((x#O0Ax-y=1)V(x=0and y = 0)). We then introduce a new
function letter g of one argument, abbreviate g(¢) by ¢!, and add the
axiom (x Z0Ax-x'=1)V(x=0and x~! =0), from which one can
provex #0=x-x1=1.

From Proposition 2.28 we can see thalt, in theories with equality, only
predicate letters are needed; function letters and individual constants are
dispensable. If fI' is a function letter, we can replace it by a new predicate
letter A7+ if we add the axiom (314)4; (1,31, ..., ). An individual con-
stant is to be replaced by a new predicate letter A} if we add the axiom
(Jien) A} ().

Example

In the elementary theory G of groups, we can replace + and 0 by predicate
letters 43 and Al if we add the axioms (Vx;)(Vx2) (Ellxg)A?(xl,xz,xy,) and
(F1x1)A4)(x), and if we replace axioms (a), (b), (c) and (g) by the following:
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(@) A3(x2,x3,u) A AT (1,0, 0) A AT (31,302, W) AAT (W, x3,9) => 0=y
() Al A A r,9,2) > 2 =
(c) () (Vu) (Vu)(Ai(u) /\A3(x ¥,0) = v=1u)
(&) o1 = x2 A3 (xy,p,2) A AF(x2, 3, 10) A AT (p,x1,0) A A3y, %2, W)]
= Z=UNV=W

Notice that the proof of Proposition 2.28 is highly non-constructive, since
it uses semantical notions (meodel, truth) and is based upon Corollary
2.20(a), which was proved in a non-constructive way. Constructive syntac-
tical proofs have been given for Proposition 2.28 (see Kleene, 1952, § 74),
but, in general, they are quite complex.

Descriptive phrases of the kind ‘the u such that #(u, y1,...,),)” are very
common in ordinary language and in mathematics. Such phrases are called
definite descriptions. We let w(#(u,y,...,),)) denote the unique object y
such that %(u, 1, ...,y,) if there is such a unique object. If there is no such
unique object, either we may let (% (u,yy,...,y,)) stand for some fixed
object, or we may consider it meaningless. (For example, we may say that
the phrases ‘the present king of France’ and ‘the smallest integer’ are
meaningless or we may arbitrarily make the convention that they denote 0.)
There are various ways ofincorporating these r-terms in formalized theories,
but since in most cases the same results are obtained by using new function
letters or individual constants as above, and since they all lead to theorems
similar to Proposition 2.28, we shall not discuss them any further here. For
details, see Hilbert and Bernays (1934) and Rosser (1939; 1953).

2.10 PRENEX NORMAL FORMS

A wf (O131)- . (Ouyn) %, where each (Q;,1y) is either (v);) or (), y; is dif-
ferent from y; for i # j, and % contains no quantifiers, is said to be in prenex
normal form. (We include the case n = 0, when there are no quantifiers at
all.) We shall prove that, for every wf, we can construct an equivalent prenex
normal form.

LEMMA 2.29

[n any theory, if y is not free in 2, and €(x) and ¥(y) are similar, then the
following hold.

@) F((Ww)€x) = 2) < (B)(E(y) = 2)
(b) F((A)€(x) = ) & (W)(4(y) = 2)
© F(2= (x)¢(x)) & (D)2 = %(y))
(d) F (2= (I)€(x)) & ()L = €(y))
() F —(Vx)¥¢ < (Ix)-€
(H —-(Elx)% & (‘v’x)—-%

Tt
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Prool

For part (a):

1. (vx)€(x) = 2 Hyp

2. ~(I(€(y) = ) Hyp

3, -(Vy)(€(y) = %) 2, abbreviation

4. (Vy)-(€(y) => 2) 3, negation elimination

5. (W) (€(y) A D) 4, tautology, Proposition 2.9(c)
6. €(y) A—D 5, rule A4

7. €(») 6, conjunction elimination

8. (v»)€(») 7, Gen

9. (Vx)€(x) 8, Lemma 2.11, biconditional

elimination

10. & I, 9, MP
11. - 6, conjunction elimination
12. @ N-Z 10, 11, conjunction introduction

13. (W)€ (x) = 2,
~(INE(y)=> ) 212 112
14. (Vx)€(x) = &

F (@) (€(y) = 2) 1 -13, proof by contradiction
15. F (Vx)€(x) => @
= (H)E(y) = 2) 1-14, Corollary 2.6

The converse is proven in the following manner.

L (I)(€(y) = 2) Hyp
2. (Vx)€(x) Hyp
3. b)) = 2 1, rule C
4. €(b) 2, rule A4
5 9 3, 4, MP
6. (W(E(y) = D),
(Vx)%(x) |_c 9 1--5
7. (I(E(y) = 2),
(Vx)6(x) - & 6, Proposition 2.10
8. - ()@ = 9)
= (W)€ (x) = 2) 1-7, Corollary 2.6 twice

Part (a) follows from the two proofs above by biconditional introduction.
Parts (b)(f) are proved easily and left as an exercise. (Part (f) is trivial, and
(c) appeared as Exercise 2.33(a); (c) and (d) follow easily from (b) and (a),
respectively.)

Lemma 2.29 allows us to move interior quantifiers to the front of a wf.
This is the essential process in the proof of the following proposition.
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PROPOSITION 2.30

There is an effective procedure for transforming any wf # into a wf % in
prenex normal form such that - # < €.

Proof

We describe the procedure by induction on the number & of occurrences of
connectives and quantifiers in #. (By Exercise 2.32(a, b), we may assume
that the quantified variables in the prefix that we shall obtain are distinct.) If
k = (, then let € be # itself. Assume that we can find a corresponding € for
all wfs with & < n, and assume that # has »n occurrences of connectives and
quantifiers.

Case 1. If # is =9, then, by inductive hypothesis, we can construct g
wf & in prenex normal form such that - 2 < €. Hence, F =% < —& by
biconditional negation. Thus, - # < —&, and, by applying parts (e) and
(f) of Lemma 2.29 and the replacement theorem (Proposition 2.9(b)), we
can find a wtf € in prenex normal form such that - —-& < €. Hence,
F# < €.

Case 2. If # is % = &, then, by inductive hypothesis, we can find wfs g,
and &; in prenex normal form such that - 2 < 2, and |- € & &. Hence,
by a suitable tautology and MP, (2 = &) & (2, = &), that is,
F# < (2, = &)). Now, applying parts (a)~(d) of Lemma 2.29 and the
replacement theorem, we can move the quantifiers in the prefixes of %, and
&y to the front, obtaining a wf ¥ in prenex normal form such that
&< €.

Case 3. If # is (Vx)Z, then, by inductive hypothesis, there is a wf & in
prenex normal form such that - 2 < 2;; hence, - % < (Vx)%, by Gen,
Lemma 2.8, and MP. But (Vx)%; is in prenex normal form.

Examples
L Let # be ()(1(x) = (9)(Blr,) = ~(}43(3,2)). By part (¢ of
Lemma 2.29: (Vx)(4](x) => (vy)[43(x, y) = (Hz)ﬁAz( »,2)])-
By part ()41 > (9)C0lA05) > 0]
By part (¢): (vx)(vo)(4}(x) = (Ju)[A3(x, v) => =43 (v u)]).
By part (d): (vx)(vo)(Tw)(4](x) = (43(x, v) = —uAg(v w))).
Changing bound variables: (‘v’x)(Vy)( YA[ ()= (A3(x,p) = ~A2(,2))).
2. Let 4 be A3 (x,y) = (@A (») = ([(Tx)4; (x)] = Al(y))]
By part (b): 43(x,y) => () (Al(y) = (Vu)[A] (u) = AL(»)]).
By part (0 A1(x,) => B)(W)(41) > 14{(0) = AL,
By part (s () (42(x,9) = (Vo) AL (w) = (1(0) = k).
By part (c): (3w)(vz)(A2(x,y) = [4](w) = (41(z) = A;’,(w))])
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o
‘Fxercise

2.84 Find prenex normal forms equivalent to the following wfs.
(@) [(VX)(A‘(-"C) ;Hiz(x »)] = ([(33')A (M= (F)43(»,2))
(b) (I)4F(x,3) = (4} (x) = ~(Fm4i(x, u))

A predicate calculus in which there are no function letters or individual
constants and in which, for any positive integer n, there are infiitely many
predicate letters with n arguments, will be called a pure predicate calculus.
For pure predicate calculi we can find a very simple prenex normal form
theorem. A wf in prenex normal form such that all existential quantifiers (if
any) precede all universal quantifiers (if any) is said to be in Skolem normal

fornt.

PROPOSITION 2.31

In a pure predicate calculus, there is an effective procedure assigning to each
wf # another wf . in Skolem normal form such that - 4 if and only if - &
(or, equivalently, by Gédel’s completeness theorem, such that 2 is logically
valid if and only if % is logically valid).

Proof

First we may assume that 4 is a closed wf, since a wf is provable if and only
if its closure is provable. By Proposition 2.30 we may also assume that &4 is
in prenex normal form. Let the rank » of % be the number of universal
quantifiers in % that precede existential quantifiers. By induction on the
rank, we shall describe the process for finding Skolem normal forms.
Clearly, when the rank is 0, we already have the Skolem normal form. Let us
assume that we can construct Skolem normal forms when the rank is less
than r, and let r be the rank of #. % can be written as follows:
(I) .. (D) (ViYE(y1y- .-y Yn, 1), where €(3y,...,¥nu) has only
Vis. - -, Vu, U as its free variables. Let A;?“ be the first predicate letter of n + 1
arguments that does not occur in #4. Construct the wf

(%) () - (D)) E Oy ey, 1) = A:;H(J’la <o Yy 1))
= (VLI)A;+1(J;17 ey Yy U ))

Let us show that - # if and only if - &,. Assume - #. In the proof of %,
replace all occurrences of A}f“(zl, oy Zgy,W) by € (21, .. .,2,,w)), where €*
is obtained from € by replacing all bound variables having free occurrences
in the proof by new variables not occurring in the proof. The result is a
proof of
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(B1) - () (V) (B3, - 3y 1) => € (31, -3y 1))
= (V)€ (n,..., i)

(€™ was used instead of € so that applications of axiom (A4) would remain
applications of the same axiom.) Now, by changing the bound variables
back again, we see that

F(3@) .. G [V E (1,3 tt) = E( 3,y Vs 1))
= (th)%d(yl, S T l!)]

Since + (Yu)(€(y1,---sdu, 1) = €(31,-.., ¥, 1)), We obtain, by the re-
placement theorem, + (Fyy)... () M)E( 3, ..., m,u), that is, + 4,
Conversely, assume that - 4. By rule C, we obtain (Vu)€(by, .., by,u).
But, + (V)2 = ((Vu)(Z => &) = (Yu)&) (see Exercise 2.27 (a)) for any
wfs @ and €. Hence Fo (Vu)(€(by,. .., by 1u) = A"“(b y by 1)) =
(‘v’u)A"+1 (b1,...,by,u). So, by rule E4, Fc (3,,)...(In) ([(Vu) (€(b,

by, u) = A"Jrl(y Yo 1))] => (Vu)A”“(yl, ooy Yy Ut)), that is, ¢ 2.
By Proposmon 2.10, I— #,. A prenex normal form of %, has the form
By (In) ... (D ,)(Hu)(lel) (Osz;) (Vv)¥, where 4 has no quantifiers and
(O1,z1) ... (Qszs) is the prefix of ¢. [In deriving the prenex normal form,
first, by Lemma 2.29(a), we pull out the first (Vu), which changes to (Ju);
then we pull out of the first conditional the quantifiers in the prefix of €. By
Lemma 2.29(a, b), this exchanges existential and universal quantifiers, but
then we again pull these out of the second conditional of Z,, which brings
the prefix back to its original form. Finally, by Lemma 2.29(c), we bring the
second (Vir) out to the prefix, changing it to a new quantifier (Vv).| Clearly,
P> has rank one less than the rank of # and, by Proposition 2.30,
b &, < %,. But, - Z if and only if - 4,. Hence, - # if and only if - %,. By
inductive hypothesis, we can find a Skolem normal form for %,, which is
also a Skolem normal form for 2.

Example
A (W) (Vy)(Jz)¥(x,».2z), where € contains no quantifiers
B:(Vx) (VW) I)E (x, 3, 2) = A} (x)) = (Vx)A} (x), where A} is not in %.

We obtain the prenex normal form of #;:

(AN (F)E(x,9,2) = 4}(x)] = (Vx)4}(x)) 2.29(a)
(@) (W(F)E(x,3,2) = 4} (x)] = (¥x)4;(x)) 2.29(a)
(T) (I (V2)[€ (x,3,2) = AL(x)] = (Vx)A}(x)) 2.29(b)

] 2.29(b)

)
)(¥z)

(EN NV (E(x,3,2) = 4;(x)) = (VA)A{(A)

() (7)) (F)([€(x, 3, 2) ffA ()] = (vx)4;(x)) 2.29(a)
(32)(

(@)W (F)(V0)[(B(x, p,2) = A}(x)) = 4}(2)] 2.29(c)
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We repeat this process again: Let 9(x,y,z,v) be (6(x,3,2) = 4](x))
= Aj(v). Let A% not occur in Z. Form:

@A) E V) (@ (x 3,2, 0)) = A (0] = (W9)4i(x, )

@A) @)[(E)(W0) (2(x, 3,2, 0)) = A (x,3)] = (W)L (x, )] 2.29(a)
(@)@ @)V (DX, 3,2, 0) => A3 (x, )] = (V)45 (x,»)) 2.29(a,b)
() () F2) (Vo) (VW) ([F(x,, 2, 0) = A5(x, )] = AF(x, W) 2.29(c)

Thus, a Skolem normal form of # is:

(@) E) (@D V) (YW ([((E(x,3,2) = A4;(3) = 4;(0)) = AR (x,)] = A (x, W)

Exercises

2.85 TFind Skolem normal forms for the following wfs.

() (34} (x) => (¥r) (B) (v (1,3,)

(by (vx)(p) (V) (F0) A} (x,,u,0)

2.86 Show that there is an effective procedure that gives, for each wf % of a
pure predicate calculus, another wf & of this calculus of the form
(V1) .- (93)(Fz1) . . . (Az,) €, such that €is quantifier-free, n,m >0, and % is
satisfiable if and only if & is satisfiable. [ Hinz: Apply Proposition 2.31 to —4.]
2.87 Find a Skolem normal form % for (Vx)(Jy)4%(x,») and show that it is
not the case that - & < (¥x)(Jy)43(x,y). Hence, a Skolem normal form for
a wf 2 is not necessarily logically equivalent to 4, in contradistinction to the
prenex normal form given by Proposition 2.30.

2.11 ISOMORPHISM OF INTERPRETATIONS.
CATEGORICITY OF THEORIES

We shall say that an interpretation M of some language & is isomorphic
with an interpretation M* of ¢ if and only if there is a one -one corres-
pondence g (called an isomorphism) of the domain D of M with the domain
D* of M* such that:

I. For any predicate letter A7 of % and for any bi,....b m
D, Em Ajlbr, . .. , by] if and only if Epp Alg(by), - . . ,g(bn)].

2. For any functlon letter f" of & and for any b,...,b, In

M 1

D, g(£)M b1, b)) = () (glbn)s - (b))

3. For any individual constant a; of & g((aj) ) = (a;)
The notation M = M* will be used to indicate that M is isomorphic with
M*. Notice that, if M =~ M*, then the domains of M and M* must be of
the same cardinality.
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PROPOSITION 2.32

If g is an isomorphism of M with M~, then:

(a) for any wf # of %, any sequence s = (b1,b),...) of elements of
the domain D of M, and the corresponding sequence g(s) =
(g(b1), g(b2), - ..), s satisfies B in M if and only if g(s) satisfies & in M*,

(b) hence, Fp A if and only if - Z.

Proof

Part (b) follows directly from part (a). The proof of part (a) is by induction
on the number of connectives and quantifiers in # and is left as an exercise.

From the definition of isomorphic interpretations and Proposition 2.32
we see that isomorphic interpretations have the same ‘structure’ and, thus,
differ in no essential way.

Exercises

2.88 Prove that, if M is an interpretation with domain D and D* is a set
that has the same cardinality as D, then one can define an interpretation M*
with domain D* such that M is isomorphic with M*.

2.89 Prove the following: (a) M 1s isomorphic with M. (b) If M; is iso-
morphic with M», then M; is isomorphic with M;. (c) If M is isomorphic
with M, and M is isomorphic with M3, then M, is isomorphic with Mj.

A theory with equality K is said to be m — categorical, where m is a
cardinal number, if and only if: any two normal models of K of cardinality
m are isomorphic; and K has al least one normal model of cardinality m (see
Los, 1954c).

Examples

1. Let K? be the pure theory of equality K; (see page 98) to which has been
added axiom (E2): (Ix;)(Ix2)(x1 #x2 A (¥x3) (x3 =x1 Vx3 = x3)). Then
K? is 2-categorical. Every normal model of K? has exactly two elements.
More generally, define (En) to be:

(Eh'l)---(axn)( /\ x £ x; N (W y =x \/...\/y:x,,))

I<i<j<n

where A\ ;. i<n Xi #x; is the conjunction of all wfs x; #x; with

1 <i < j<n. Then, if K" is obtained from K; by adding (En) as an

axiom, K” is n-categorical, and every normal model of K" has exactly »
elements,

2. The theory K; (see page 98) of densely ordered sets with neither first nor

last element is Np—categorical (see Kamke, 1950, p. 71: every denumer-
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able normal model of K5 is isomorphic with the model consisting of the
set of rational numbers under their natural ordering). But one can prove
that K, is not m—categorical for any m different from .

Exercises

2.90* Find a theory with equality that is not Ng—categorical but is m—ca-
tegorical for all m > No. [Hint: Consider the theory Ge of abelian groups
(see page 98). For cach integer n, let ny stand for the term (y +y) +...+y
consisting of the sum of # ys. Add to Gg the axioms (#,): (¥x)(Jiy)(ny = x)
for all n22. The new theory is the theory of uniquely divisible abelian
groups. Its normal models are essentially vector spaces over the field of
rational numbers. However, any two vector spaces over the rational num-
bers of the same non-denumerable cardinality are isomorphic, and there are
denumerable vector spaces over the rational numbers that are not iso-
morphic (see Bourbaki, 1947).]

2.91% Find a theory with equality that is m—categorical for all infinjte
cardinals m. [Hint: Add to the theory G¢ of abelian groups the axiom
(¥x1)(2Zx; = 0). The normal models of this theory are just the vector spaces
over the field of integers modulo 2. Any two such vector spaces of the same
cardinality are isomorphic (see Bourbaki, 1947).]

292 Show that the theorems of the theory K” in Example 1 above are
precisely the set of all wis of K" that are true in all normal models of
cardinality #.

293" Find two non-isomorphic densely ordered sets of cardinality 2% with
neither first nor last element. (This shows that the theory K, of Example 2 is
not 2% —categorical.)

Is there a theory with equality that is m—categorical for some non-
countable cardinal mt but not n—categorical for some other non-countable
cardinal n?7 In Example 2 we found a theory that is only Ny-categorical; in
Exercise 2.90 we found a theory that i1s m—categorical for all infinite m > ¥g
but not ¥g—categorical, and in Exercise 2.91, a theory that is m—categorical
for all infinite m. The elementary theory G of groups is not m—categorical
for any infinite m. The problem is whether these four cases exhaust all the
possibilities. That this is so was proved by Morley (1965).

2.12 GENERALIZED FIRST-ORDER THEORIES.
COMPLETENESS AND DECIDABILITY

If, in the definition of the notion of first-order language, we allow a non-
countable number of predicate letters, function letters, and individual

Presupposed in parts of this section is a slender acquaintance with ordinal and
cardinal numbers (see Chapter 4; or Kamke, 1950; or Sierpinski, 1958).
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constants, we arrive at the notion of a generalized first-order language. Thg-
notions of interpretation and model extend in an obvious way to a gen.
eralized first-order language. A generalized first-order theory in such a lap.
guage is obtained by taking as proper axioms any set of wis of the language,
Ordinary first-order theories are special cases of generalized first-ordey
theories. The reader may easily check that all the results for first-order
theories, through Lemma 2.12, hold also for generalized first-order theorieg
without any changes in the proofs. Lemma 2.13 becomes Lemma 2.13': if the
set of symbols of a generalized theory K has cardinality ¥,, then the set of
expressions of K also can be well-ordered and has cardinality ¥,. (First, fix g
well-ordering of the symbols of K. Second, order the expressions by their
length, which is some positive integer, and then stipulate that if e; and e, are
two distinct expressions of the same length £, amd j is the first place in which
they differ, then e, precedes e, if the jth symbol of e; precedes the jth
symbol of e; according to the given well-ordering of the symbols of K.)
Now, under the same assumption as for Lemma 2.13') Lindenbaum’s
Lemma 2.14' can be proved for generalized theories much as before, except
that all the enumerations (of the wfs %; and of the theories J;) are transfinite,
and the proof that J is consistent and complete uses transfinite induction.
The analogue of Henkin’s Proposition 2.17 runs as follows.

PROPOSITION 2.33

If the set of symbols of a consistent generalized theory K has cardinality N,
then K has a model of cardinality ¥,.

Proof

The original proof of Lemma 2.15 is modified in the following way. Add ¥,
new individual constants by, b2, ...,b3,... . As before, the new theory Ky is
consistent. Let Fy(x; ), ..., Fi(xs;), . - (A < w,) be a sequence consisting of all

wis of Ky with exactly one free varmable. Let (S;) be the sentence
(Zx;, )Fa(x;, ) = —F(b;,), where the sequence b;,,bj,,...bj,,... of distinct
individual constants is chosen so that b;, does not occur in Fg(x;,) for f< 4,
The new theory K, obtained by adding all the wfs {S;) as axioms, is proved
to be consistent by a transfinite induction analogous to the inductive proof
in Lemma 2.15. K is a scapegoat theory that is an extension of K and
contains R, closed terms. By the extended Lindenbaum Lemma 2.14/, K,
can be extended to a consistent, complete scapegoat theory J with ¥, closed
terms. The same proof as in Lemma 2.16 provides a model M of J of
cardinality N,.
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COROLLARY 2.34

(a) If the set of symbols of a consistent generalized theory with equality K
has cardinality ¥, then K has a normal model of cardinality less than
or equal to W,.

(b) If, in addition, K has an infinite normal model (or if K has arbitrarily
large finite normal models), then K has a normal model of any car-
dinality Ng>,.

(c) In particular, if K is an ordinary theory with equality (i.e., ¥, = ¥) and
K has an infinite normal model (or if K has arbitrarily large finite
normal models), then K has a normal model of any cardinality

Ny (f=0).

Proof

(2) The model guaranteed by Proposition 2.33 can be contracted to a normal
model consisting of equivalence classes in a set of cardinality ¥,. Such a set
of equivalence classes has cardinality less than or equal to .

(b) Assume Ng=W,. Let by, by, ... be a set of new individual constants of
cardinality Mg, and add the axioms b, # b, for 4 # pu. As in the proof of
Corollary 2.27, this new theory is consistent and so, by (a), has a normal
model of cardinality less than or equal to Ny (since the new theory has Ng
new symbols). But, because of the axioms b, # b,, the normal model has
exactly N4 elements.

(c) This is a special case of (b).

Exercise

294 If the set of symbols of a predicate calculus with equality K has
cardinality X, prove that there is an extension K’ of K (with the same
symbols as K) such that K’ has normal model of cardinality ®,, but K’ has
no normal model of cardinality less than ¥,.

From Lemma 2.12 and Corollary 2.34(a, b), it follows easily that, if a
generalized theory with equality K has ¥, symbols, is Ng-categorical for
some f#>«, and has no fimite models, then K. is complete, in the sense that,
for any closed wf 4, either ¢ & or bx —~4 (Vaught, 1954). If not -+x % and
not--x —4, then the theories K' =K + {~#} and K'"=K + {#} are
consistent by Lemma 2.12, and so, by Corollary 2.34(a), there are normal
models M’ and M” of K’ and K”, respectively, of cardinality less than or
equal to 1,. Since K has no finite models, M’ and M” are infinite. Hence, by
Corollary 2.34(b), there are normal models N’ and N” of K’ and K”, re-
spectively, of cardinality Yg. By the Rp-categoricity of K, N’ and N” must be

115
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isomorphic. But, since = is true in N” and Z is true in N”, this is impossible
by Proposition 2.32(b). Therefore, etther g # or b —4.

In particular, if K is an ordinary theory with equality that has no finite
models and is Wg-categorical for some >0, then K is complete. As ap
example, consider the theory K, of densely ordered sets with neither first noy
last element (see page 98). Ky has no finite models and is Ng-cateogrical.

If an ordinary theory K 1s axiomatic (i.e., one can effectively decide
whether any wf is an axiom) and complete, then K is decidable, that is, there
is an effective procedure to determine whether any given wfis a theorem. Tq
see this, remember (see page 86) that if a theory is axiomatic, one can
effectively enumerate the theorems. Any wf # is provable if and only if its
closure is provable. Hence, we may confine our attention to closed wfs 2
Since K is complete, either # is a theorem or —# is a theorem, and,
therefore, one or the other will eventually turn up in our enumeration of
theorems. This provides an effective test for theoremhood. Notice, that if K
is inconsistent, then every wf is a theorem and there is an obvious decision
procedure; if I is consistent, then not both # and —# can show up as
theorems and we need only wait until one or the other appears.

If an ordinary axiomatic theory with equality K has no finite models and
is Ng-categorical for some >0, then, by what we have proved, K is de-
cidable. In particular, the theory K, discussed above is decidable.

In certain cases, there is a more direct method of proving completeness or
decidability. Let us take as an example the theory K, of densely ordered sets
with neither first nor last element. Langford (1927) has given the following
procedure for K. Consider any closed wf #. By proposition 2.30, we can
assume that # is in prenex normal form (Q; »i}... (O )%, where € con-
tains no quantifiers. If (0,y,) is (Vy,), replace (Vy,)€ by —(3y,)—€. In all
cases, then, we have, at the right side of the wf, (dy,)%, where 2 has no
quantifiers. Any negation x# y can be replaced by x < yVy <x, and
—(x < y) can be replaced by x = y Vy < x. Hence, all negation signs can be
eliminated from £. We can now put & into disjunctive normal form, thatis, a
disjunction of conjunctions of atomic wfs (see Exercise 1.42). Now
(Fy )2y VDV ...V Dy)isequivalentto (Fy,) 2 V Bya) Do V...V (T %y
Consider each (3y,)%9; separately. &; is a conjunction of atomic wfs of the
form ¢t < s and t = 5. If &; does not contain y,, just erase (3y,). Note that, if
a wf & does not contain y,, then (,)(&AF) may be replaced by
& A (3y,)F . Hence, we are reduced to the consideration of (y,)#, where
F is a conjunction of atomic wfs of the form r < s or r = s, each of which
contains y,. Now, if one of the conjuncts is y, = z for some z different from
¥n, then replace in # all occurrences of y, by z and erase (3y;,). If we have
Yn = Yn alone, then just erase (Iy,). If we have y, =y, as one conjunct
among others, then erase y, = y,. If % has a conjunct y, < y,, then replace
all of (I,)F by ¥ <. X F comsists of y, <z, A... Ay <z
AL < Yu N Aty < ya, then replace (Jy,)% by the conjunction of all the

[N
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wis i < zp for 1 <i<m and 1 <p<j. If all the us or all the z,s are missing,
;r_eplaoe (Jyu)F bY yu = yu- This exhausts all possibilities and, in every case,
we have replaced (3y,)# by a wf containing no quantifiers, that is, we have
eliminated the quantifier (J,). We are left with (¢ V) G 1),
where & contains no quantifiers. Now we apply the same procedure suc-
cessively 10 (Qn-1¥n-1),---,(Q11). Finally we are left with a wf without
quantifiers. built up of wfs of the form x = x and x < x. If we replace x = x
py x=x=>x=x and x <x by —(x = x = x = x), the result is either an
instance of a tautology or the negation of such an instance. Hence, by
proposition 2.1, either the result or its negation is provable. Now, one can
easily check that all the replacements we have made in this whole reduction
procedure applied to # have been replacements of wfs # by other wfs #
quch that g o < % . Hence, by the replacement theorem, if our final result
# is provable, then so is the original wt 4, and, if -2 is provable, then so is
~4. Thus, Ks is complete and decidable.

The method used in this proof, the successive elimination of existential
quantifiers, has been applied to other theories. It yields a decision procedure
(see Hilbert and Bernays, 1934, § 5) for the pure theory of equality K; (see
page 98). It has been applied by Tarski (1951) to prove the completeness and
decidability of elementary algebra (i.c., of the theory of real-closed fields; see
van der Waerden, 1949) and by Szmielew (1955) to prove the decidability of
the theory G¢ of abelian groups.

Exercises

295 (Henkin, 1955) If an ordinary theory with equality K is finitely ax-
iomatizable and ¥ -categorical for some o, prove that K is decidable.
296 (a) Prove the decidability of the pure theory K; of equality.
(b) Give an example of a theory with equality that is ¥,-categorical
for some «. but is incomplete.

Mathematical applications

1. Let F be the elementary theory of fields (see page 98). We let n stand for
the term 1 + 1+ ...+ 1, consisting of the sum of n Is. Then the assertion
that a field has characteristic p can be expressed by the wf%,: p = 0. A field
has characteristic 0 if and only if it does not have characteristic p for any
prime p. Then for any closed wt Z of F that is true for all fields of char-
acteristic 0, there 15 a prime number ¢ such that & is true for all fields of
characteristic greater than or equal to g. To see this, notice that, if Fy is
obtained from F by adding as axioms —%>, %3, ..., %), ... (for all primes
p), the normal models of Fy are the fields of characteristic 0. Hence, by
Exercise 2.77, bg, 4. But then, for some finite set of new axioms
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“Cq, g,y b, WE have *l(gq] y 7€g,. ..., 0%, FE A Let g be 4
prime greater than all ¢, ...,q,, In every field of characteristic greater thay
or equal to g, the wifs g, “'(ng, ..., %, are true; hence, # is also true,
(Other applications in algebra may be found in A. Robinson (1951) ang
Cherlin (1976).)

2. A graph may be considered as a set with a symmetric binary relation g
(i.e., the relation that holds between two vertices if and only if they are
connected by an edge). Call a graph k-colourable if and only if the graph cay
be divided into £ disjoint (possibly empty) sets such that no two elements in
the same set are in the relation R. (Intuitively, these sets correspond to %
colours, each colour being painted on the points in the corresponding set,
with the proviso that two points connected by an edge are painted different
colours.) Notice that any subgraph of a &-colourable graph is k-colourable,
Now we can show that, if every finite subgraph of a graph ¢ is £-colourable,
and if 4 can be well-ordered, then the whole graph % is k-colourable. To
prove this, construct the following generalized theory with equality K (Beth,
1953). There are two binary predicate letters, 43(=) and 43 (corresponding
to the relation R on %); there are k monadic predicate letters A%, . ,A}C
(corresponding to the & subsets into which we hope to divide the graph); and
there are individual constants a., one for each element ¢ of the graph . As
proper axioms, in addition to the usual assumptions (A6) and (A7), we have
the following wfs:

(D —d3(x,x) (irreflexivity of R)
() A3(x,y) = 43(y,%) (symmetry of R)
(1) (Vx)(Al(x) vAal(x) V... v 4l (x)) (division into £ classes)
(V)  (vx)-(4](x) N Al (), for 1 <i < j<k  (disjointness of the k
- classes)

(V) (V)W) (AL (x) A A} (y) = —43(x,y)) for 1 i<k (two elements of the
same class are not in the relation R)

(VD) ap # a., for any two distinct elements b and ¢ of ¥

(VI) Ai(ap,a.), if R(b,c) holds in ¢

Now, any finite set of these axioms involves only a finite number of the
individual constants a.,,...,q.,, and since the corresponding subgraph
{c1s...,¢ca} is, by assumption, £-colourable, the given finite set of axioms
has a model and is, therefore, consistent. Since any finite set of axioms is
consistent, K is consistent. By Corollary 2.34(a), K has a normal model of
cardinality less than or equal to the cardinality of 4. This model is a k-
colourable graph and, by (VI)-{VI11), has ¢ as a subgraph. Hence ¥ is also -
colourable. (Compare this proof with a standard mathematical proof of the
same result by Bruijn and Erdos (1951). Generally, use of the method above
replaces complicated applications of Tychonoff’s theorem or Koénig’s Un-
endlichkeits lemma.)
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Exercises

2.97% (Lo$, 1954b) A group B is said to be orderable if there exists a binary
relation R on B that totally orders B such that, if xRy, then (x + z)R(y + z)
and (z +x)R(z +y). Show, by a method similar to that used in Example 2
above, that a group B is orderable if and only if every finitely generated
subgroup 1s orderable (if we assume that the set B can be well-ordered).
298" Set up a theory for algebraically closed fields of characteristic p (=0)
by adding to the theory F of fields the new axioms F,, where P, states that
every non-constant polynomial of degree » has a root, as well as axioms that
determine the characteristic. Show that every wf of F that holds for one
algebraically closed field of characteristic 0 holds for all of them. [Hint: This
theory is Ng-categorical for > 0, is axiomatizable, and has no finite
models. See A. Robinson (1952).]

2.99 By ordinary mathematical reasoning, solve the finite marriage problem.
Given a finite set M of m men and a set N of women such that each man
knows only a finite number of women and, for 1 <Ak<m, any subset of M
having & elements knows at least £ women of N (i.e., there are at least &
women in N who know at least one of the £ given men), then it is possible to
marry (monogamously) all the men of M to women in N so that every man is
married to a women whom he knows. [Hint (Halmos and Vaughn, 1950):
m = 1 is trival. For m > 1, use induction, considering the cases: (I) for all £
with 1 <k < m, every set of &k men knows at least £ + 1 women; and (II) for
some £ with 1 <k < m, there is a set of £ men knowing exactly £ women.]
Extend this result to the infinite case, that is, when M is infinite and well-
orderable and the assumptions above hold for all finite k. [Hint: Construct
an appropriate generalized theory with equality, analogous to that in Ex-
ample 2 above, and use Corollary 2.34(a).]

2.100 Prove that there is no generalized theory with equality K, having one
predicate letter < in addition to =, such that the normal models of K. are
exactly those normal interpretations in which the interpretation of < is a
well-ordering of the domain of the interpretation.

Let 4 be a wf in prenex normal form. If 4 is not closed, form its closure
instead. Suppose, for example, £ is (Iy1)(vin)(¥)a) () (Gys)(Vre)
E(v1, 2,03, Y4, ¥s, Y6), where ¢ contains no quantifiers. Erase (3y1) and re-
place y; in ¥ by a new individual constant by: (V1n)(Vy3)(Fva) (Fys) (Vye)
G(b1,72, 93, 4,55, ¥6). Erase (Vya) and (V)s), obtaining (Jys)(3ys)(Vys)
(g(bl;y27y3)y47y55y6)' Now erase (3y4) and replace Y4 in% by g(y27y3)’ where
g is a new function letter: (Jys)(Vye)€ (b1, 30,13, 9007, 3),¥s,¥6)- Erase (ys)
and replace ys by h(y2,y3), where h is another new function letter: (Vys)
%(b1,¥2, 13,902, 0),h(32,)3),v6). Finally, erase (Vys). The resulting wf
E(b1,v2, 13, 9002, 33), h(32,13), v6) contains no quantifiers and will be denoted
by #*. Thus, by introducing new function letters and individual constants,
we can eliminate the quantifiers from a wf.
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Examples

1. If & is (V1) (F2)(Ws) (Vya) (Fys)€ (0,0, 35, 04, ¥5), where € is quantifier.
free, then #* is of the form €(n, g(1), 33,4, EOn,13,14)).

2. I£ B 1s (T) (D) (V) (Vye) Bys)E (1,32, 3, 14, ¥5), where € is quantifier-
free, then #* is of the form (b, c, 3,34, 903, 14)).

Notice that #* - %, since we can put the quantifiers back by applicationg
of Gen and rule E4. (To be more precise, in the process of obtaining #*, we
drop all quantifiers and, for each existentially quantified variable y;, we
substitute a term g(z1, ..., zx), where g is a new function letter and zy,. .. z
are the variables that were universally quantified in the prefix preceding
(3y;). If there are no such variables zi,...,z, we replace y; by a new in-
dividual constant.)

PROPOSITION 2.35 (SECOND e THEOREM)

(Rasiowa, 1956; Hilbert and Bernays, 1939) Let K be a generalized theory.
Replace each axiom # of K by #*. (The new function letters and individual
constants introduced foi one axiom are to be different- from those in-
troduced for another axiom.) Let K* be the generalized theory with the
proper axioms #*. Then:

(a) If 2 1s a wlof K and kg £, then ¢ &.
(b) K is consistent if and only if K* is consistent.

Proof

(a) Let & be a wf of K such that ¢~ &. Consider the ordinary theory K°
whose axioms #,, ..., %, are such that #4;,..., 4, are the axioms used in
the proof of &. Let K* be the theory whose axioms are 47, ..., %;. Hence
Fige &. Assume that M is a denumerable model of K°. We may assume that
the domain of M is the set P of positive integers (see Exercise 2.88). Let % be
any axiom of K° For example, suppose that % has the form
(F1) (V) (M13) Bva)€ (01,32, 03, 14), where € is quantifier-free. 4* has the
form %(b,y2,y3,90n,¥3))- Extend the model M step by step in the following
way (noting that the domain always remains P); since & is true for M,
(Fn)(Yy2) (V33) (Fva) € (01, 32, 13, ¥4) 1s true for M. Let the interpretation b* of
b be the least positive integer y; such that (V)2)(Vy3) ()€ 0,12, 13,04) i8
true for M. Hence, (34)%(b,y2,¥3,4) is true in this extended model. For
any positive integers y» and 3, let the interpretation of g(3», y3) be the least
positive integer y4 such that €(b,)»,)3,)4) is true in the extended model.
Hence, € (b, 2, y3, 9(32, 3)) is true in the extended model. If we do this for all
the axioms # of K°, we obtain a model M* of K. Since bg~ &2, & is true
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for M*. Since M* differs from M only in having interpretations of the new
individual constants and function letters, and since & does not contain any
of those symbols, & is true for M. Thus, & is true in every denumerable
model of K°. Hence, Fg- &, by Corollary 2.20(a). Since the axioms of K® are
axioms of K, we have k¢ &. (For a constructive proof of an equivalent
result, see Hilbert and Bernays (1939).)

b) Clearly, K* 1s an extension of K, since #* - #. Hence, if K* is con-
sistent, so is K. Conversely, assume K is consistent. Let & be any wf of K. If
K* is inconsistent, Fx» 9 A—%. By (a), Fx 9 A =2, contradicting the
consistency of K.

Let us use the term generalized completeness theorem for the proposition
that every consistent generalized theory has a model. If we assume that every
set can be well-ordered (or, equivalently, the axiom of choice), then the
generalized completeness theorem is a consequence of Proposition 2.33.

By the maximal ideal theorem (MI) we mean the proposition that every
proper ideal of a Boolean algebra can be extended to a maximal ideal.! This
is equivalent to the Boolean representation theorem, which states that every
Boolean algebra 1s isomorphic to a Boolean algebra of sets. (Compare Stone
(1936). For the theory of Boolean algebras, see Sikorski (1960) or Men-
delson (1970).) The usual proofs of the MI theorem use the axiom of choice,
but it is a remarkable fact that the MI theorem is equivalent to the gen-
eralized completeness theorem, and this equivalence can be proved without
using the axiom of choice.

PROPOSITION 2.36

(Los, 1954a; Rastowa and Sikorski, 1951; 1952) The generalized complete-
ness theorem 1s equivalent to the maximal ideal theorem.

Proof

(a) Assume the generalized completeness theorem. Let B be a Boolean al-
gebra. Construct a generalized theory with equality K having the binary
function letters U and N, the singulary function letter f! fwe denote f1(r) by
7], predicate letters = and 4!, and, for each element » in B, an individual
constant ap. By the complete description of B, we mean the following
sentences: (i) ap # a. if b and ¢ are distinct elements of B; (ii) ap U a. = ag if
b,c,d are elements of B such that bUc =d in B; (iil) ap Na, = a. if b,c, ¢
are elements of b such that bNc¢=¢€in B; and (iv) @, = «. if b and ¢ are
clements of B such that » = cin B, where b denotes the complement of b. As

tSince {0} is a proper ideal of a Boolean algebra, this implies (and is implied by)
the proposition that every Boolean algebra has a maximal ideal.
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axioms of K we take a sct of axioms for a Boolean algebra, axioms (A6) and
(A7) for equality, the complete description of B, and axioms asserting that
A1 determines a maximal ideal (i.e. Al(x NX), 41(x) AA{(¥) => Al(xuy),

Al (x) = A} (xNy), 4{(x) vV 4L(F), and -4} (x UX)). Now K is consistent, for,
1f there were a proof in K of a contradiction, this proof would contain only
a finite number of the symbols ap, a.,...—say, a,,...,a5,. The elements
by,...,by generate a finite subalgebra B’ of B. Every finite Boolean algebra
clearly has a maximal ideal. Hence, B’ is a model for the wfs that occur jp
the proof of the contradiction, and therefore the contradiction is true in B,
which is impossible. Thus, K is consistent and, by the generalized com-
pleteness theorem, K has a model. That model can be contracted to g
normal model of K, which is a Boolean algebra A with a maximal ideal |
Since the complete description of B is included in the axioms of K, Bis g
subalgebra of A, and then I{}B is a maximal ideal in B.

(b) Assume the maximal ideal theorem. Let K be a consistent generalized
theory. For each axiom # of K, form the wf #* obtained by constructing a
prenex normal form for # and then eliminating the quantifiers through the
addition of new individual constants and function letters (see the example
preceding the proof of Proposition 2.35). Let K# be a new theory having the
wfs %%, plus all instances of tautologies, as its axioms, such that its wfs
contain no quantifiers and its rules of inference are modus ponens and a rule
of substitution for variables (namely, substitution of terms for variables).
Now, K7 is consistent, since the theorems of K¥# are also theorems of the
consistent K* of Proposition 2.35. Let B be the Lindenbaum algebra de-
termined by K# (ie., for any wfs ¥ and %, let ¥ Eq & mean that
Fx# € < 2; Bq is an equivalence relation; let [4] be the equivalence class of
¢, define [¥| U [Z] =€V 2], [¢] N (2] = [¢ A D], |¥] = [-¥]; under these
operations, the set of equivalence classes is 2 Boolean algebra, called the
Lindenbaum algebra of K#). By the maximal ideal theorem, let I be a
maximal ideal in B. Define a model M of K# having the set of terms of K#
as its domain; the individual constants and function letters are their own
interpretations, and, for any predicate letter A%, we say that 45 (t, ..., 1, ) is
true in M if and only if [45(#, . . ., #,)] is not in T. One can show easily that a
wf & of K¥ is true in M 1f and only if |¢] is not in I. But, for any theorem &
of K#, [9] = 1, which is not in I. Hence, M is a model for K*. For any
axiom % of K, every substitution instance of 4*(y4,...,)) 1s a theorem in
K#: therefore, &~ (..., ¥a) 18 true for all yy, ..., ), in the model. It follows
easily, by reversing the process through which #* arose from #, that # is
true in the model. Hence, M is a model for K.

The maximal ideal theorem (and, therefore, also the generalized com-
pleteness theorem) turns out to be strictly weaker than the axiom of choice
(see Halpern, 1964).
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Exercise

2,101 Show that the generalized completeness theorem implies that every
set can be totally ordered (and, therefore, that the axiom of choice holds for
any set of non-empty disjoint finite sets).

The natural algebraic structures corresponding to the propositional cal-
culus are Boolean algebras (see Exercise 1.60, and Rosenbloom, 1950,
chaps 1 and 2). For first-order theories, the presence of quantifiers in-
troduces more algebraic structure. For example, il K is a first-order theory,
then, in the corresponding Lindenbaum algebra B, [(Ix)%#(x)] = L,[#(1)],
where X, indicates the least upper bound in B, and 7 ranges over all terms of
K that are free for x in %(x). Two types of algebraic structure have been
proposed to serve as algebraic counterparts of quantification theory. The
first, cylindrical algebras, have been studied extensively by Tarski,
Thompson, Henkin, Monk and others (see Henkin, Monk and Tarski,
1971). The other approach is the theory of polyadic algebras, inventied and
developed by Halmos (1962).

2.13 ELEMENTARY EQUIVALENCE. ELEMENTARY EXTENSIONS

Two interpretations M and M of a generalized first-order language % are
said to be elementarily equivalent (written M; = M) if the sentences of %
true for M, are the same as the sentences true for M,. Intuitively, M; = M;
if and only if M; and M; cannot be distinguished by means of the language
&. Of course, since ¢ is a generalized first-order language, % may have
non-denumerably many symbols.

Clearly, (1) M = M; (2) if M| = M,, then M; = M;; (3) if M} = M; and
M, = M;, then M, = M.

Two models of a complete theory K must be elementarily equivalent,
since the sentences true in these models are precisely the sentences provable
in K. This applies, for example, to any two densely ordered sets without first
or last elements (see page 116).

We already know, by Proposition 2.32(b), that isomorphic models are
clementarily equivalent. The converse, however, is not true. Consider, for
example, any complete theory K that has an infinite normal model. By
Corollary 2.34(b), K has normal models of any infinite cardinality ¥,. If we
take two normal models of K of different cardinality, they are elementarily
equivalent but not isomorphic. A concrete example is the complete theory
K, of densely ordered sets that have neither first nor last element. The
rational numbers and the real numbers, under their natural orderings, are
elementarily equivalent non-isomorphic models of K.
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Exercises

2.102 Let K, the theory of infinite sets, consist of the pure theory K, of

equality plus the axioms #,, where 2, asserts that there are at least 4

elements. Show that any two models of K, are elementarily equivalent (see

Exercises 2.66 and 2.96(a)).

2.103 If M, and M, are elementarily equivalent normal models and M; is

finite, prove that M, and M, are isomorphic.

2.104 Let K be a theory with equality having ¥, symbols,

(a) Prove that there are at most 2% models of K, no two of which are
elementarily equivalent.

(b) Prove that there are at most 2% mutually non-isomorphic models of K,
of cardinality R, where y is the maximum of « and f.

2.105 Let M be any infinite normal model of a theory with equality K

having W, symbols. Prove that, for any cardinal ¥, >¥,, there is a normal

model M* of K of cardinality ¥, such that M = M"*,

A model M, of a language ¥ is said to be an extension of a model M, of
& (written M; C M) if the following conditions hold:

1. The domain D; of M, is a subset of the domain D, of M,.

2. For any individual constant ¢ of %, cM? = Mt where ¢™2 and Mt are
the interpretations of ¢ in M, and M;.

3. For any function letter f}’ of ¥ and any by,...,by In D,
UM Br, - be) = (Y By, Ba).

4. For any predicate letter A7 of ¥ and any by,...,b, in D,
|= MlA}! [bl, . e ,b,,] if and only if }:Mz A}’[bl, ceey b,,].

When M; C M,, one also says that M is a substructure (or submodel) of M,.

Examples

1. If % contains only the predicate letters = and <, then the set of rational
numbers under its natural ordering is an extension of the set of integers
under its natural ordering.

2. If ¥ is the language of field theory (with the predicate letter =, function
letters + and x, and individual constants 0 and 1), then the field of real
numbers is an extension of the field of rational numbers, the field of
rational numbers is an extension of the ring of integers, and the ring of
integers is an extension of the ‘seminng’ of non-negative integers. For
any fields F; and F», F; C F, if and only if F; is a subfield of F; in the
usual algebraic sense.

"The reader will have no occasion to confuse this use of C with that for the
inclusion relation.
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sfxercises

2,106 Prove:

@ MCM;

(b) if Mi € M and My C Mg, then M; C M3;

(©) If M; € M, and M; € My, then M; = M.

7,107 Assume M; C Ms.

:'(a) Let #(x),...,x,) be a wf of the form (V)...(Vyu)E(x1,-. Xu,
W --+,Ym), where € is quantifier-free. Show that, for any b;,...,b, in
the domain of My, if =m, Blbi,-..,ba), then Fw, B, ..., by). In
particular, any sentence (Vy;)... (V3 )€(yy-.-,¥m), Where & is quan-
tifier-free, is true in M; if it is true in M.

(b) Let #B(x1,...,x,) be a wf of the form (Iy1)...( Fym)E(x1,-. %,
Vi, .-, ¥m), Where & is quantifier-free. Show that, for any by,...,5, in
the domain of My, if |=m, #[bi,..., b, then =, Blby, ..., by)- In
particular, any sentence (Iy))... () €04 .- -, m), Where € is quan-
tifier-free, is true in M, if it is true in M;.

2,108 (a) Let K be the predicate calculus of the language of field theory.

Find a model M of K and a non-empty subset X of the domain
D of M such that there is no substructure of M having domain
X.

(b) If K is a predicate calculus with no individual constants or
function letters, show that, if M is a model of K and X is a subset
of the domain D of M, then there is one and only one sub-
structure of M having domain X.

(¢) Let K be any predicate calculus. Let M be any model of K and
let X be any subset of the domain D of M. Let ¥ be the inter-
section of the domains of all submodels M* of M such that X is a
subset of the domain Dy of M*. Show that there is one and only
one submodel of M having domain Y. (This submodel is called
the submodel generated by X.)

A somewhat stronger relation between interpretations than ‘extension’ is
useful in model theory. Let M; and M, be models of some language &. We
say that My is an elementary extension of M; (written M; <. My) if
(1) M; € M5 and (2) for any wf B(y, ...,y,) of & and for any by,...,b, in
the domain Dy of My, =M, 4lb1, ..., by if and only if f=n, b, ..., 0] (In
particular, for any sentence % of ¥, 4 is true for M, if and only if # is true
for M,.) When M, <.M,, we shall also say that M, is an elementary sub-
structure (or elementary submodel) of M.

It is obvious that, if M; <.M,, then M; € M, and M; = M,. The con-
verse is not true, as the following example shows. Let G be the elementary
theory of groups (see page 98). G has the predicate letter =,
function letter +, and individual constant 0. Let / be the group of integers
and E the group of even integers. Then E C I and I = E. (The function g

125
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such that g(x) = 2x for all x in I is an isomorphism of I with E.) Consider the
wf B(y): (Ix)(x +x = y). Then |5, (2], but not-f=g 4[2]. Thus, I is not ap.
elementary extension of E. (This example shows the stronger result that evep
assuming M) € M; and M; &2 M, does not imply M; <.M,.)

The following theorem provides an easy method for showing thay
M, <M.

PROPOSITION 2.37 (Tarski and Vaught, 1957)

Let M; C M,. Assume the following condition:

(8) For every wf #(x),...x;) of the form (Iy)%(xy,...x,y) and for all
b1,..., b in the domain Dy of My, if v, #[by, ..., bz,
then there is some d in D such that =y, €[b1, ..., br, d].

Proof

Let us prove:

(x}  Ewm, Z[bi...., b if and only if Em, @b, ..., b] for any wf
9(x1,...,x) and any by,..., b in Dy.

The proof is by induction on the number m of connectives and quantifiers in
2. If m=0, then (x) follows from clause 4 of the definition of M} C M,.
Now assume that (x) holds true for all wfs having fewer than s connectives
and quantifiers. ,

Case 1. & is €. By inductive hypothesis, =y, &by, . .., b if and only if
Em, €[bi, ..., b). Using the fact that not - v, &[by,..., 5] if and only if
Em, —&1b1, .. ., by, and similarly for M,, we obtain (*).

Case 2. & is & = % . By inductive hypothesis, |y, &by, ..., 0] if and
only if pm, &b1, ..., br] and similarly for #. (x) then follows easily.

Case 3. & is (Ay)&(x1, . . - x», y). By inductive hypothesis,

(*x) [, €[bt,-..,br,d] if and only if |y, E[bi,. .., b, d),
for any by,...,bg,d in Dy.

Case 3a. Assume =y, (I)E(x1,. .. xx,2)[b1,. .., by] for some by, ..., by in
D,. Then M, &lby,...,br,d) for some d in D;. So, by (sx),
Em, &lb1,. .., by, d]. Hence, v, (Av)E(x1, ... x5, 0)b1, - . -, br).

Case 3b. Assume Fy, (A)E(xy, - - xk, )by, - . ., D] for some by, ... by in
Dy. By assumption (3), there exists d in Dy such that |, &lby,. .., by, d].
Hence, by (»x), [=m, b1, ..., bk, d] and therefore v, (I)E(x1, - . . xx, )
[b1, .., bg]-

)
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This completes the induction proof, since any wf is logically equivalent to
a wf that can be built up from atomic wfs by forming negations, condi-
tionals and existential quantifications.

Exercises
2,109 Prove:

(a) M geM;
(b) if M <M and M < M3, then M <. Mj;
© if My <M and M> <M and M; € M,, then M; <. M>.

2110 Let K be the theory of totally ordered sets with equality (axioms
(a)(c) and (e)—(g) of Exercise 2.67). Let M; and M, be the models for K
with domains the set of positive integers and the set of non-negative integers,
respectively (under their natural orderings in both cases). Prove that
M; € M and M; ~ M, but M, £ M.

Let M be an interpretation of a language ¢. Extend ¢ to a language &~
by adding a new individual constant @, for every member d of the domain of
M. We can extend M to an interpretation of ¥* by taking d as the inter-
pretation of ag4. By the diagram of M we mean the set of all true sentences of
M of the forms A;?(adl, eyl —-A;.’(adl, ...,ag ), and fjf’(ad],.. L, dg,) = dg,.
In particular, a4, # a4 belongs to the diagram if d; # db. By the complete
diagram of M we mean the set of all sentences of ¥ that are true for M.

Clearly, any model M# of the complete diagram of M determines an
elementary extension M## of M, and vice versa.

Exercise

2.111 (a) Let M, be a denumerable normal model of an ordinary theory K
with equality such that every element of the domain of M; is the
interpretation of some closed term of K.

(i) Show that, if M; € M, and M; = M,, then M; < M,.
(1) Prove that there is a denumerable normal elementary ex-
tension M3 of M; such that M; and Mj; are not isomorphic.
(b) Let K be a predicate calculus with equality having two function
letters -+ and x and two individual constants 0 and 1. Let M be
the standard model of arithmetic with domain the set of natural
numbers, and +, x,0 and 1 having their ordinary meaning.
Prove that M has a denumerable normal elementary extension
that is not isomorphic to M, that is, there is a denumerable
nonstandard model of anthmetic.

I'The elementary extension M## of M is obtained from M# by forgetting about
the interpretations of the ags.
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PROPOSITION 2.38 (UPWARD SKOLEM-LOWENHEIM-TARSKI
THEOREM)

Let K be a theory with equality having X, symbols, and let M be a normg]
model of K with domain of cardinality Rg. Let p be the maximum of « and g,
Then, for any &>, there is a model M* of cardinality Ns such that M #£ M*
and M < M™.

Proof

Add to the complete diagram of M a set of cardinality s of new individug]
constants b,, together with axioms b, # b, for distinct © and p and axiomg
b # ay for all individual constants a4 corresponding to members d of the
domain of M. This new theory K¥ is consistent, since M can be used as g
model for any finite number of axioms of K¥, (If by, ..., by, aa, - .., aq, arc
the new individual constants in these axioms, interpret b, , ..., b, as distinct
elements of the domain of M different from d,, .. ., d,.) Hence, by Corollary
2.34 (1), K* has a normal model M* of cardinality N5 such that M C M#,

M £ M#, and M < M7,

PROPOSITION 2.39 (DOWNWARD SKOLEM-LOWENHEIM-
TARSKI THEOREM)

Let K be a theory having ¥, symbols, and let M be a model of K with
domain of cardinality N, > N,. Assume 4 is a subset of the domain D of M
having cardinality n, and assume Ny is such that ¥, >Rg> max(R,, n1). Then
there is an elementary submodel M* of M of cardinality Ry and with domain
D* including 4.

Proof

Since n< ¥y <Ry, we can add Ny elements of D to 4 to obtain a larger set B
of cardinality Rg. Consider any subset C of D having cardinality Ng. For
every wf #0n,...,yn,z) of K, and any c¢y,...,¢, in C such that
Env (2B, -y 2)er, .., ¢, add to C the first element d of D (with
respect to some fixed well-ordering of D) such that =y (32)%Blcy, - . ., e, d).
Denote the so-enlarged set by C*. Since K has X, symbols, there are ¥, wfs.
Since N, <Ng, there are at most Ng new clements in C# and, therefore, the
cardinality of C* is Ng. Form by induction a sequence of sets Cp, Cy, ... by
setting Cg = B and Cypyy = C¥. Let D* = |, Cy. Then the cardinality of D*
is Np. In addition, I is closed under all the functions (fj")M (Assume
dy,...,d, in D*. We may assume dy,...,d, in C; for some £. Now

v Go) (/7 (x1, - - %) =2, - ., du]. Hence, (7)Y (dy,- .., d,), being the
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Afirst and only member d of D such that =y (f7'(x1, - -+ 0%) = 2)[dh, ..., d,d],
qust belong to CA = Cpyq € D*.) Similarly, all interpretations (g; )M of in-
.dividual constants are in D*. Hence, D* determines a substructure M* of M.
“To show that M* <M, consider any wf #(y1,...,m,z) and any d, . ..,d, in
D quch that |=v (32)B0n,- - Y0, 2)ld1, -. ., d,]. There exists Cy such that
Ay, .., ds are in Cp. Let d be the ﬁlst element of D such that
=Y [dl, .. dy,d]. Then d € CA = Cry1 € D*. So, by the Tarski-Vaught
theorem (PlOpOSlthl‘l 237y M* < M.

2.14 ULTRAPOWERS. NON-STANDARD ANALYSIS

By a filter! on a non-empty set A we mean a set # of subsets of A such that:

1. Ae &
2 BeFAnCeF =>BNCeF
3. BeFABCC=Cec#F

Examples
Let B C A. Theset 5 ={C|B C C C A} is a filter on 4. # consists of all

subsets of 4 that include B. Any filter of the form % is called a principal
filter. In particular, # 4 = {A} and Fy = P(A) are principal filters. The filter
P(A) is said to be improper and every other filter is said to be proper.

Exercises

2.112 Show that a filter &% on 4 is proper if and only if ) ¢ &

2.113 Show that a filter % on 4 is a principal filter if and only if the
intersection of all sets in % is a member of %.

2.114 Prove that every finite filter is a principal filter. In particular, any
filter on a finite set 4 is a principal filter,

2.115 Let 4 be infinite and let .% be the set of all subsets of 4 that are
complements of finite sets: % = {C|(AW)(C = 4 — W AFin(W)}, where
Fin(W) means that W is finite. Show that % is a non-principal filter on 4.
2.116 Assume A has cardinality Ng. Let 8, <Np. Let % be the set of all
subsets of 4 whose complements have cardinality < N,. Show that % is a
non-principal filter on 4.

2.117 A collection ¢ of sets is said to have the finite intersection property if
BiNByN...NBg # () for any sets By, B,,..., By in 4. If 4 is a collection of

"The notion of a filter is related to that of an ideal. A subset # of 2(4) is a filter
on 4 if and only if the set ¥ = {4 — B | B € %} of complements of sets in & is an
ideal in the Boolean algebra 2/(4). Remember that ##(4) denotes the set of all subsets
of 4.
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subsets of 4 having the finite intersection property and 3 is the set of a}
finite intersections By NBaM...NBr of sets i %, show thy
F = {D|(AC)(B € # NC CD C A)} is a proper filter on A.

DEFINITION

A filter . on a set 4 is called an wltrafilter on A if # is a maximal proper
filter on 4, that is, & is a proper filter on 4 and there is no proper filter ¢ oy,
A such that # C 9.

Example '

Let d € A. The principal filter #4 = {B|d € BA B C A} is an ultrafilter on 4.
Assume that € is a filter on 4 such that #,;, C %. Let C € 4 — % ;. Then
CCAandd¢ C. Hence, d€ A—C. Thus, A—Ce€ F; C%. Since 9 is a
filter and C and 4 — C are both in %, then § = CN (4 — C) € %. Hence, ¥ is
not a proper filter.

Exercises

2.118 Let & be a proper filter on 4 and assume that BC 4Aand 4 - B ¢ &,
Prove that there is a proper filter &' 2 % such that B ¢ &',
2,119 Let % be a proper filter on 4. Prove that # s an ultrafilter on A4 if
and only if, for every BC 4, either Be # orAd—-B c #.
2.120 Let & be a proper filter on A. Show,that % is an ultrafilter on 4 if and
only if, for all B and Cin #(4),if B¢ # and C¢ %,then BUC ¢ #.
2.121 (a) Show that every principal ultrafiiter on 4 is of the form
Fq={Bld € BAB C A} for some d in 4.

(b) Show that a non-principal ultrafilter on 4 contains no finite sets.
2,122 let % be a filter on 4 and let .# be the corresponding ideal: B € .# if
and only if 4 — B € % . Prove that % is an ultrafilter on A4 if and only if .# is
a maximal ideal.
2.123 Let X be a chain of proper filters on 4, that is, for any B and C in X,
eithr B C C or C C B. Prove that the union | JX = {4|(IB)(B € X Aa € B)}
is a proper filter on 4, and B C | X for all B in X.

PROPOSITION 2.40 (ULTRAFILTER THEOREM)

Every proper filter # on a set A can be extended to an ultrafilter on 47

TWe assume the generalized completeness theorem.
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?Proof

1et & be a proper filter on 4. Let .# be the corresponding proper ideal:
pe s if and only if 4 —B € #. By Proposition 2.36, every ideal can be
extended to a maximal ideal. In particular, .# can be extended to a maximal
ideal . If we let % = {B|4 — B € #’}, then % is easily seen to be an ul-
rafilter and & C %.

Alternatively, the existence of an ultrafilter including & can be proved
easily on the basis of Zorn’s lemma. (In fact, consider the set X of all proper
filters %' such that & C &’. X is partially ordered by C, and any C-chain in
X has an upper bound in X, namely, by Exercise 2.123, the union of all
filters in the chain. Hence, by Zorn’s lemma, there is a maximal element %*
in X, which is the required ultrafilter.) However, Zorn’s lemma 1s equivalent
to the axiom of choice, which is a stronger assumption than the generalized
completeness theorem.

COROLLARY 2.41

If 4 is an infinite set, there exists a non-principal ultrafilter on A.

Proof

Let & be the filter on A consisting of all complements 4 — B of finite
subsets B of 4 (see Exercise 2.115). By Proposition 2.40, there is an ul-
trafilter % O % . Assume % is a principal ultrafilter. By Exercise 2.121(a),
4 = F4 for some d € A. Then 4 — {d} € # C %. Also, {d} € 9. Hence,
0= {d}n(4—{d}) € %, contradicting the fact that an ultrafilter is
proper.

Reduced direct products

We shall now study an important way of constructing models. Let K be any
predicate calculus with equality. Let J be a non-empty set and, for each j in
J, let M; be some normal model of K. In other words, consider a function F
assigning to each j in J some normal model. We denote F(j) by M;.

Let % be a filter on J. For each j in J, let D; denote the domain of the
model M;. By the Cartesian product Il ;D; we mean the set of all functions
f with domain J such that f(j) € D; for all jin J. If f € Il;c;D;, we shall
refer to f(j) as the jth component of f. Let us define a binary relation =g in
HjeJDj as follows:

f =7 gifand onlyif {jif(}) =g()} € &

If we think of the sets in % as being ‘large’ sets, then, borrowing a phrase
from measure theory, we read f =z g as ‘f(j) = g(J) almost everywhere’.




132

QUANTIFICATION THEORY !

It is easy to sec that =4 is an equivalence relation: (1) f =z f; (2) if
f=rgtheng=5 [; 3)if f =5 gand g =g h, then f =% h. For the proof
of (3), observe that {1f(j) = g()} N Lla() = H()} € D) = k()Y 1t
LIFO) = g()} and {jlg(j) = h(j)} are in F, then so is their intersection
and, therefore, also {j|f(j) = #(j)}.

On the basis of the equivalence relation =4, we can divide I JD; intp
equivalence classes: for any f in Il;csD;, we define its equivalence class fy ag
{g|f =5 g}. Clearly, (1) f € f#; (2) f# = hr if and only if f =g h; and (3)
if f# # hs, then fz Nhz = (. We denote the set of equivalence classes £,
by I;e7D;/# . Intuitively, I1;c,D;/F is obtained from I;¢;D; by identifying
(or merging) elements of I1;c;D; that are equal almost everywhere.

Now we shall define a model M of K with domain I;e;D;/% .

1. Let ¢ be any individual constant of K and let ¢; be the interpretation of ¢
in M;. Then the interpretation of ¢ in M will be fz, where f is the
function such that /() = ¢; for all jin J. We denote f by {c;}..;.

2. Let f] be any function letter of K and let 4} be any predicate letter of K,
Their interpretations (/)™ and (42) are defined in the following
manner. Let (g1) s, .., (ga)» be any members of I;;D;/F.

@ (V((91)5s- - (g0)5) = b, where B(j) = (5 (g1(/), - - -, ga())) for

all jin J.
() (AN™((91) 55 -+ (gn) &) Dolds if and only if
{J] }:MJ- Ag[gl (J)) Te :gn(j)]} €F.

Intuitively, (f,Z’)M is calculated componentwise, and ( };)M holds if and only
if A7 bolds in almost ail components. Definitions (a) and (b) have to be
shown to be independent of the choice of the representatives gi,...,q, in
the equivalence classes (g1)y,---,(Gn)s: if 1 =5 g, ..,00 =5 ¢}, and
# () = M@ () - --» 50))» then ) b =5 b and (i) {J] Fw, 4o (),
90D} € & if and only if {j] =y, AF[a()),-- -, g5 )]} € 7.
Part (i) follows from the inclusion

Ular () =gt} - N {lga() = g, (N} €
D™ a1 (), - - 9ulD) = B (01 G- 650N}

Part (ii) follows from the inclusions:

() =g1(N} 0. N {ilgn() = g,(N} €
{1 vy, 4Kl (), - -+, 9a ()] if and only if f=ng, AZ[g7(), - - -, g (D]}

and

{l By, 4091 (s - -5 gD} 0 L B, 45191 (), - - - gu())] if and
only if |wm, 4397 (), -- -9, (D] € Ll Enm, 48g1 (), - - -5 g, (D]}

In the case of the equality relation =, which is an abbreviation for 42,

"t
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(4" (95, h7) if and only if {j] rm, 490D, h()} € #
if and only if {jlg(j) = h(j)} € F
if and only if g =5 h

that is, if and only if g = hs. Hence, the interpretation (A%)M is the
identity relation and the model M is normal.

The model M just defined will be denoted ITje;M;/# and will be called a

reduced direct product. When & is an ultrafilter, I1;e;M,; /% is called an
ulrraproduct. When # is an ultrafilter and all the Ms are the same model N,
then I;eyM;/F is denoted N’/ and is called an ultrapower.

Examples

1.

Choose a fixed element » of the index set J, and let % be the principal
ultrafilter #, = {Bjr € B A B C J}. Then. for any f, g in ;e D;, f =5 gif
and only if {|f (/) = g(j)} € &, thatis, if and only if f(r) = g(#). Hence,
a member of I, D;/% consists of all £ in I1;c,D; that have the same rth
component. For any predicate letter 4} of K and any ¢, . .., g, in I;c;D;,
':M A;{I[(gl)fu R (g")fl if and OI]]y if {Jl l: M,A;cl[gl (])1 sy gn(])]} € F,
that is, if and only if v, 47[g1()), - - -, g.(J)]. Hence, it is easy to verify
that the function ¢ : Il D;/% — D,, defined by ¢(gs) =g(r) is an
isomorphism of TT;c;M;/% with M,. Thus, when & is a principal ultra-
filter, the ultraproduct Il;e;M;/# is essentially the same as one of its
components and yields nothing new.

Let # be the filter {J}. Then, for any f£, g in I1;c;D;, f =# g if and only if
Llf () =g()} € &, that s, if and only if f(j) = g(j) for all j in J, or if
and only 1if f = g. Thus, every member of I1,c;D;/F is a singleton {g}
for some g in e, D;. Moreover, (/) ((g1) 4+ -- - (gn) 5 ) = {g}, where g
is such that g(j) = (f,;')M’ (91(j),---,gu(j)) for all j in J. Also,
v A1) 7, -+, (Gn) o] if and only if v, A7[g1(7), - - -, 9a(j)] for all j in
J. Hence, I1;c;M;/ ; is, in this case, essentially the same as the ordinary
‘direct product’ ITjeyM;, in which the operations and relations are de-
fined componentwise.

. Let # be the improper filter Z(J). Then, for any f, g in I1;c/Dj, f =& gif

and only if {j|f(})) =g())} € &, that is, if and only if {j|f(j) =
g(j)} € 2(J). Thus, f =g ¢ for all f and ¢, and I;c,D;/F consists of
only one element. For any predicate letter 4%, =n 47 [f7,-.., f#] if and
only if {/ v, 4E1f (), - -, S (D)} € Z(J); that is, every atomic wf is true.

The basic theorem on ultraproducts is due to Los (1955b).

PROPOSITION 2.42 (LOS’S THEOREM)

Let # be an ultrafilter on a set.J andlet M = I1;;M; /% be an ultraproduct.
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(a) Let s = ((91)%»(92)5,..-) be a denumerable sequence of elements of
jesD;/#. For each j in J, let s; be the denumerable sequence
(91(3), g2(j), - . .) in D;. Then, for any wf # of K, s satisfies # in M ip:
and only if {j)s; satisfies # in M;} € .

(b) For any sentence # of K, # is true in Il;esM;/% if and only if-
{jl Em, #} € #. (Thus, (b) asserts that a sentence # is true in ap
ultraproduct if and only if it is true in almost all components.)

Proof

(a) We shali use induction on the number m of connectives and quantifiers in
#. We can reduce the case m=0 to the following subcases:t (j)
Ap(xayy - o5xq,); (1) xe = fif (%, ..., x;,); and (3ii) x¢ = a;. For subcase (i), s
satisfies AY(x;,...,x,) if and only if v AL [(gi) s, (9i) 5], Which is
equivalent to {j| Fm, A¢ga (), .-+, 9, ()]} € F; that is {j] s; satisfies
AY (%, ..,x,) in M} € . Subcases (i) and (iii) are handled in similar
fashion.

Now, let us assume the result holds for all wfs that have fewer than
connectives and quantifiers.

Case 1. % is —=%. By inductive hypothesis, s satisfies ¥ in M if and only if
{/]s; satisfies ¥ in M;} € . s satisfies -4 in M if and only if
{/ls; satisfies & in M;} ¢ & . But, since & is an ultrafilter, the last condition
is equivalent, by exercise 2.119, to {/|s; satisfies =% in M;} € F.

Case 2. B is ¢ N 2. By inductive hypothesis, s satisfies ¢ in M if and only
if {jls; satisfies ¥ in M;} € &, and s satisfies & in M if and only if
{jls; satisfies @ in M;} € & . Therefore, s satisfies ¢ A & if and only if both
of the indicated sets belong to #. But, this is equivalent to their intersection
belonging to &, which, in turn, is equivalent to {j|s; satisfies € A D
in MJ} cF.

Case 3. & is (Ix;)¥. Assume s satisfies (Ix;)%. Then there exists 4 in
Il;c;D; such that s satisfies 4 in M, where &' is the same as s except that hs
is the ith component of &’. By inductive hypothesis, s’ satisfies % in M if and
only if {jls satisfies ¥ in M;} € #. Hence, {jls; satisfies (Ix;)% in M;}
€ 7, since, if s; satisfies € in M; then s; satisfies (Ix;)% in M;.

Conversely, assume ¥ = {j|s; satisfies(2x;)% in M;} € &. For each j in
W, choose some S_’I such that s is the same as s; except in at most the ith
component and s, satisfies 6. Now define h in IL;c;D; as follows: for jin W,
let A(j) be the ith component of S}, and , for j¢ W, choose h(j) to be an

A wi Alth,...,tx) can be replaced by (Vu)... (V)i =hn A...A
Up =ty = Ay, ..., 1y)), and a wf x=f'(#,...,5,) can be replaced by
(Vz1)...(Vzu)(@n =t Ao Ay =t = x = fl(z1,...,5)). In this way, every wf is
equivalent to a wf built up from wifs of the forms (1)—(1ii) by applying connectives and
quantifiers.
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arbitrary element of D;. Let s” be the same as s except that its ith component
is hz. Then W C {j|s satisfies ¢ in M;} € #. Hence, by the inductive
hypothesis, s” satisfies & in M. Therefore, s satisfies (Ix;)€ in M.

(b) This follows from part (a) by noting that a sentence 4 is true in a
model if and only if some sequence satisfies 4.

COROLLARY 2.43

If M is a model and % is an ultrafilter on J, and if M* is the ultrapower
M’ /&, then M* = M.

Proof

Let 2 be any sentence. Then, by Proposition 2.42(b), # is true in M” if and
only if {j|529 istruein M }€ . #. If 2 is true in M, {j|55‘ is true in M }
=JeF U Bistalsein M, {j/{BistrueinM }=0¢ F

Corollary 2.43 can be strengthened considerably. For each ¢ in the domain
D of M, let ¢* stand for the constant function such that ¢ (j) = ¢ for all j in
J. Define the function ¥ such that, for each ¢ in D, Y(c) = (¢*), € D/ | #F,
and denote the range of ¥ by M¥. M#* obviously contains the interpretations
in M* of the individual constants Moreover M7 is closed under the op—
erations (f7)™; for (/1) ((cf&)f, o (eF) 2) is he, where h(j)= (/1)
(c1,-..,c,) forall jin J, and k) ((Ch ..., cy) is a fixed element b of D. So,

hg = (b%), € M*. Thus, M¥ is a substructure of M*.

COROLILARY 2.44

Y is an isomorphism of M with M¥, and M#* < .M".

Proof

(a) By definition of M#, the range of y is M¥.

(b) ¥ is one—one. (For any ¢, d in D, (¢*); = (d*), if and only if
c* =zd%, which is equivalent to {jlc#(j)=d*(j)} € F; that is,
Lle=dye F. Ite#d, {jlc= d} 0 ¢ &, and, therefore, %I(c) £ Y(d).

(c) For any ¢y, ...,¢, in D, (_f;() (l,b(cl) ,v,b(c,,)) = )%
(c)7) = hs, where h(j) = (}z) (e ), -, cF ) = U"') (01, . cn)
Thus, hy = ((]T)M(cli tery cﬂ)) /="‘r 'Jl( )M (611 cn))

@ e AT - ple)] i and only il ALWE)0) -,
W(en)(j))} € #, which is equivalent to {j| Em 47 (¢, ...,c0)} € F, that is,
Em Aller, - - -, cn]- Thus,  is an isomorphism of M with M7,
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To see that M#* < M?*, let 2 be any wf and (c¥),,..., (c#), € M*,
Then, by proposition 2.42(a), w- Bl(c),,...(¢F),] if and only if
Ul Em BT, - e ()]} € #, which is equivalent to {j] Em Bley, ...,
c,|} € #, which, in turn, is equivalent to |y Bcy,...,q,), that is, to
Ent Bl(F) 5, .-, (c?) ], since Y is an isomorphism of M with M¥,

Exercises

2.124 (The compactness theorem again; see Exercise 2.54) If all finite sub-
sets of a set of sentences I' have a modcl, then I' has a modcl.

2.125

(a) A class # of interpretations of a language % is called elementary if
there is a set I of sentences of .& such that ¥ is the class of all models
of T'. Prove that # is elementary if and only if %" is closed under
elementary equivalence and the formation of ultraproducts.

(b) A class # of interpretations of a language & will be called sentential if
there is a sentence 2 of & such that ¥ is the class of all models of 4.
Prove that a class # is sentential if and only if both #” and its com-
plement # (all interpretations of % not in %) are closed with respect
to elementary equivalence and ultraproducts.

(¢) Prove that theory K of fields of characteristic 0 (see page 117) is
axiomatizable but not finitely axiomatizabie.

Non-standard analysis

From the invention of the calculus until relatively recent times the idea of
infinitesimals has been an intuitively meaningful tool for finding new results
in analysis. The fact that there was no rngourous foundation for in-
finitesimals was a source of embarrassment and led mathematicians to
discard them in favour of the rigorous limit ideas of Cauchy and Weier-
strass. However, about forty years ago, Abraham Robinson discovered that
it was possible to resurrect infinitesimals in an entirely legitimate and precise
way. This can be done by constructing models that are elementarily
equivalent to, but not isomorphic to, the ordered field of real numbers. Such
models can be produced either by using Proposition 2.33 or as uitrapowers.
We shall sketch here the method based on ultrapowers.

Let R be the set of real numbers. Let K be a generalized predicate calculus
with equality having the following symbols:

1. For each real number r, there is an individual constant a,..
2. For every n-ary operation ¢ on R, there is a function letter f,.
3. For every n-ary relation @ on R, there is a predicate letter Ag.

We can think of R as forming the domain of a model # for K; we simply let
(@) = 1, (fp)" = @, and (4o)” = @.

-

£
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Let # be a non-principal ultrafilter on the set @ of natural numbers. We
can then form the ultrapower #* = #Z“ /% . We denote the domain R/ of
#* by R*. By Corollary 2.43, #* = # and, therefore, #* has all the prop-
erties formalizable in K that # possesses. Moreover, by Corollary 2.44, #*
has an elementary submodel #% that is an isomorphic image of #. The
domain R¥ of #* consists of all elements (c#), corresponding to the
constant functions ¢ (i) = ¢ for all i in @. We shall sometimes refer to the
members of R¥ also as real numbers; the elements of R* — R¥ will be called
non-standard reals.

That there exist non-standard reals can be shown by explicitly exhibiting
one. Let 1(j) = j for all jin @. Then 15 € R*. However, (¢#) < 15 for all ¢
in R, by virtue of Loé§s theorem and the fact that
{ile# () < 1(j)} = {jle <j}, being the set of all natural numbers greater
than a fixed real number, is the complement of a finite set and is, therefore,
in the non-principal ultrafilter #. 15 is an ‘infinitely large’ non-standard
real. (The relation < used in the assertion (¢#) ; < 15 is the relation on the
ultrapower #° corresponding to the predicate letter < of K. We use the
symbol < instead of (<) in order to avoid excessive notation, and we shall
often do the same with other relations and functions, such as v+ v, v x v,
and |u].)

Since #* possesses all the properties of # formalizable in K, #* is an
ordered field having the real number field %% as a proper subfield. (#* is
non-Archimedean: the element 17 defined above is greater than all the
natural numbers (n*), of #*.) Let Ry, the set of “finite’ elements of R*,
contain those elements z such that |z| < u for some real number v in R¥. (R,
is easily seen to form a subring of R*.) Let Ry consist of 0 and the ‘in-
finitesimals’ of R*, that is, those elements z # 0 such that |z] <u for all
positive real numbers v in R¥. The reciprocal 1 /17 1s an infinitesimal.) It is
not difficult to verify that Ry is an ideal in the ring R;. In fact, since
x € Ry — Ry implies that 1/x € Ry — Ry, it can be easily proved that Ry is a
maximal ideal in R;.

Exercises

2.126 Prove that the cardinality of R* is 2%,
2.127 Prove that the set Ry is closed under the operations of +, — and x.
2.128 Prove that, if x € Ry and y € Ry, then xy € Ry.
2,129 Prove that, if x € Ry — Ry, then 1/x € R - Ry.

Letx € Ry. Let A = {ulu € R* Au < x} and B = {ulu € R¥ A u > x}. Then
(4,B) is a ‘cut’ and, therefore, determines a unique real number r such that
(1) (vx)(x € 4 = x<r) and (2) (Vx)(x € B = x=r).1 The difference x — 1 is 0

ISee Mendelson (1973, chap. 5).
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or an infinitesimal. (Proof: Assume x — r is not 0 or an infinitesimal. Theg
|x — ¥| > ry for some positive real number ry. If x > », then x —r > ry. So
x>r-+r >r. But then r+r € 4, contradicting condition (1). If x <4,
then ¥ —x > 1, and so ¥ > r — 1 > x. Thus, r — r; € B, contradicting cop.-
dition (2).) The real number r such that x — # is 0 or an infinitesimal is called
the standard part of x and is denoted st(x). Note that, if x is itself a reg|
number, then st(x) =x. We shall use the notation x=y to meap
st(x) = st(y). Clearly, x = y if and only if x — y is 0 or an infinitesimal, If
x =y, we say that x and y are infinitely close.

Exercises

2.130 If x € Ry, show that there is a unique real number » such that x — y g
0 or an infinitesimal. (It is necessary to check this to ensure that st(x) is well-
defined.)

2.131 If x and p are in Ry, prove the following.

(a) st(x +yp) = st(x) + st(y)

(b) st(y) = st)st(r)

(€) st(—x) = —st(x) Ast(y — x) = st(y) — st(x)
(dy x20=st(x)=0

(€) x<y= st{x)<st(y)

The set of natural numbers is a subset of the real numbers. Therefore, in
the theory K there is a predicate letter N corresponding to the property
x € ®. Hence, in R¥, there is a set o* of elements satisfying the wf N(x). An
clement [ of R* satisfies V(x) if and only if {/|/(j) € w} € #. In particular,
the elements nf% for n € w, are the ‘standard’ members of «*, whereas 14,
for example, is a ‘non-standard’ natural number in R*.

Many of the properties of the real number system can be studied from the
viewpoint of non-standard analysis. For example, if s is an ordinary denu-
merable sequence of real numbers and c is a real number, one ordinarily says
that lim s, = ¢ if

(&) (Ve)(e> 0= An)nc o ANVk)kewnkzn= |5 —c| <&)))

Since s € R¥, s is a relation and, therefore, the theory K contains a predicate
letter S(n,x) corresponding to the relation s, = x. Hence, R* will have a
relation of all pairs (n,x) satisfying S(n,x). Since #* = 4, this relation will
be a function that is an extension of the given sequence to the larger domain
w*. Then we have the following result.
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PROPOSITION 2.45

Let s be a denumerable sequence of real numbers and ¢ a real number. Let s*
denote the function from «* into R* corresponding to s in #*. Then
fims, = ¢ if and only if s*(n) = ¢ for all n in @w* — w. (The latter condition
can be paraphrased by saying that s*(n) is infinitely close to ¢ when n is

infinitely large.)

Proof

Assume lim s, = c¢. Consider any positive real &. By (&), there is a natural
pnumber ng such that (Vk)(k € o Ak=ng = |sp — ¢| < £) holds in %. Hence,
the corresponding sentence (VE)(k € w* Ak=ng = |s*(k) — ¢| < &) holds in
@*. For any n in ©* — o, n > ng and, therefore, |s*(n) — ¢| < &. Since this
holds for all positive real g, s*(n) — ¢ is ¢ or an infinitesimal.

Conversely, assume s*(n) =~ ¢ for all n € ©* — . Take any positive real &.
Fix some n1 in @* — w. Then (Vk)(k=n = |s7(k) — ¢| < g). So the sentence
(Fn)(n € o A (VE)k € o Nk2n = [sp — | <g)) is true for #* and, there-
fore, also for %. So there must be a natural number ry such that
(Vk)(k € o Nkzng = |s; —c| <&). Since & was an arbitrary positive real
number, we have proved lim s, = c.

Exercise

2.132 Using Proposition 2.45, prove the following limit theorems for the
real number system. If s and v are denumerable sequences of real num-
bers and ¢; and ¢y are real numbers such that lims, = ¢; and limu, = ¢,
then:

(@) bm{s, +u,) = 1 + ¢2;
(b) lim(srzun) = C1C2,
(©) If ¢y # 0 and all u, # 0, lim(s,/u,) = ¢ /ca.

Let us now consider another important notion of analysis, continuity. Let
B be a set of real numbers, let ¢ € B, and let f be a function defined on B and
taking real values. One says that [ is continuous at c if

() (vVe(e>0=(F)(S6>0A(Vx)(x eBAN|x—¢| <d=|flx)— )| <e))
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PROPOSITION 2.46

Let 1 be a real-valued function on a set B of real numbers. Let ¢ € B. Let B*
be the subset of R* corresponding to B, and let /* be the function corre-
sponding to f.I Then f is continuous at ¢ if and only if (vx)(x € B*

Axmc = () = f(e).

Exercises

2.133 Prove Proposition 2.46.

2.134 Assume f and g are real-valued functions defined on a set B of rea|
numbers and assume that /" and g are continuous at a point ¢ in B. Using
Proposition 2.46, prove the following.

(a) f + g is continuous at c.
(b) f -g is continuous at c.

2.135 Let f be a real-valued function defined on a set B of real numbers
and continuous at a point ¢ in B, and let g be a real-valued function defined
on a set 4 of real numbers containing the image of B under f. Assume that g
is continuous at the point f(c). Prove, by Proposition 2.46, that the com-
position go f is continuous at c.

2.136 Llet CCR.

(@ C is said to be closed if (Wx)((Ve)e>0= )y c CAlx—y| <
£)] = x € C). Show that Cis closed if and only if every real number that
is infinitely close to a member of C* is in C. (b) C is said to be open if
(Vx)(x € C = (F6)(6 > OA (W)(ly — x| < 6 = y € C))). Show that Cis
open if and only if every non-standard real number that is infinitely
close to a member of C is a member of C*.

Many standard theorems of analysis turn out to have much simpler
proofs within non-standard analysis. Even stronger results can be obtained
by starting with a theory K that has symbols, not only for the elements,
operations and relations on R, but also for sets of subsets of R, sets of sets of
subsets of R, and so on. In this way, the methods of non-standard analysis
can be applied to all areas of modern analysis, sometimes with original and
striking results. For further development and applications, see A. Robinson
(1966), Luxemburg (1969), Bernstein (1973), Stroyan and Luxemburg
(1976), and Davis (1977a). A calculus textbook based on non-standard
analysis has been written by Keisler (1976) and has been used in some
experimental undergraduate courses.

ITo be more precise, f is represented in the theory K by a predicate letter 4,
where Ay (x,y) corresponds to the relation f(x) = y. Then the corresponding relation
A7 im R determines 2 function f* with domain B*.
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Exercises

2137 A real-valued function f defined on a closed interval [q,b]
= {x|a <x<b} is said to be uniformly continuous if

(Ve)(e > 0= (F0)(6 > OA(WMx)(W)(asx<bhasy<bA|x—y| <6
= |fx) = fO)] < &)

Prove that f is uniformly continuous if and only if, for all x and y in [, b]",
xmy = [1x) = 0).

2.138 Prove by non-standard methods that any function continuous on
[a,b] is uniformly continuous on g, b].

2.15 SEMANTIC TREES

Remember that a wf is logically valid if and only if it is true for all inter-
pretations. Since there are uncountably many interpretations, there is no
simple direct way to determine logical validity. Gddel’s completeness the-
orem (Corollary 2.19) showed that logical validity is equivalent to deriva-
bility in a predicate calculus. But, to find out whether a wf is provable in a
predicate calculus, we have only a very clumsy method: start generating the
theorems and watch to see whether the given wt ever appears. Our aim here
is to outline a more intuitive and usable approach in the case of wfs without
function letters. Throughout this section, we assume that no function letters
occur in our wis.

A wfis logically valid if and only if its negation is not satisfiable. We shall
now explain a simple procedure for trying to determine satisfiability of a
closed wt 2.1 Our purpose is either to show that 2 is not satisfiable or to
find a model for 4.

We shall construct a figure in the shape of an inverted tree. Start with the
wf 28 at the top (the ‘root’ of the tree). We apply certain rules for writing wfs
below those already obtained. These rules replace complicated wfs by sim-
pler ones in a way that corresponds to the meaning of the connectives and
quantifiers.

'Remember that a wf is logically valid if and only if its closure is logically valid.
So it suffices to consider only closed wis.
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Negation: —% ~(€VZ) —(€=2) —(¥¥E (¥

! L | { L
1A —E & (3);)-‘1(5 (‘v’x)—-%’
~% -
(€ N D) —(¥ & D)
<N <N
- g € —g
-G ]

Conjunction: ¥ A2 Disjunction: ¥V Z

! VY
‘4 ¢ 2
2

Conditional: ¥ =2  Biconditional: C = D

VAN N
—% 9 A ¢
7 -9

Universal quantifier: (¥x)%(x) (Rule U)
{ [Here, b is any individual
%(b)  constant already present.]

Existential quantifier: (3x)%(x)

L [c is a new individual
é(c) constant not already in
the figure.]

Note that some of the rules require a fork or branching. This occurs when
the given wf implies that one of two possible situations holds.

A branch is a sequence of wfs starting at the top and proceeding down the
figure by applications of the rules. When a wf and its negation appear in a
branch, that branch becomes closed and no further rules need be applied to
the wf at the end of the branch. Closure of a branch will be indicated by a
large cross X.

Inspection of the rules shows that, when a rule is applied to a wf, the
usefulness of that wf has been exhausted {the formula will be said to be
discharged) and that formula need never be subject to a rule again, except in
the case of a universally quantified wf. In the latter case, whenever a new
individual constant appears in a branch below the wf, rule U can be applied
with that new constant. In addition, if no further rule applications are possible
along a branch and no individual constant occurs in that branch, then we must
introduce a new individual constant for use in possible applications of rule U
along that branch. (The idea behind this requirement is that, if we are trying
to build a model, we must introduce a symbol for at least one object that can
belong to the domain of the model.)
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BASIC PRINCIPLE OF SEMANTIC TREES

f all branches become closed, the original wf is unsatisfiable. If, however, a
pranch remains unclosed, that branch can be used to construct a model in
which the original wf is true; the domain of the model consists of the in-
dividual constants that appear in that branch.

We shall discuss the justification of this principle later on. First, we shall
give examples of its use.

Examples

1. To prove that (vx)&(x) = %(b) is logically valid, we build a semantic tree
starting from its negation.
i) —((vx)€(x) = 6(b))

(i) (Wx)%(x) (i)

(i) —€(b) (i)

(iv) %(b) (ii)
X

The number to the right of a given wf indicates the number of the line of the
wf from which the given wt is derived. Since the only branch in this tree is
dosed, —{(vx)&(x) =% (b)) is unsatisfiable and, therefore, (Vx)é(x) = €(b))
is logically valid.

2.0) (W) (@) = 2(x)) = (W)€x) = (Wx)2(x))]

(i) (W) (%) = 2(x)) ()
(iii)y —((W)(x) = (Vx)2(x)) (D)
(iv) (Wx)%(x) (iii)
v —(¥)2(x) (iii)
(vi) (Fx)-2(x) (v)
(vii) —2(b) (vi)
(viii) €(b) (iv)
(ix) €(b) = 9(b) (ii)
SN\
x)y —€(b) 2(b) (ix)
X X

Since both branches are closed, the original wf (i) is unsatisfiable and,
therefore, (Vx)(¢(x) = 2(x)) = (W)€ (x) = (¥*)2(x)) is logically valid.

3..()  —[(E)A](x) = (Vx4 (x)]

() (Ex)aix) ()
(iii) —(vx)A{(x) (i)
(iv) 4j(b) (i)
(v) (Fx)-d4ix) (iii)

(vi) -4i{e) V)

143
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No further applications of rules are possible and there is still an opegy
branch. Define a model M with domain {b, c} such that the interpretation op
A4} holds for b but not for c. Thus, (Ix)-4](x) is true in M but (Vx)Al (x) s
false in M. Hence, (dx)4](x) = (Vx)4](x) is false in M and is, therefore, nog;
logically valid.

4. ()  —[@)(vx)B(x,y) = (Vx) (B H(x, )]

() (F)(vx)B(x,») (i)
(i) ~(vx)(Fy)%(x,») @)
(iv) (Vx)#(x,b) (ii)
V) ()~ (3F)%(x,y) (iii)
(i) #(b,b) @iv)
(vii) —~(F)%(c,y) (v)
(viii) %(c, b) (iv)
(ix) (¥y)~%(c,y) (vii)
(X) ~% (Ca b) (IX)

Hence, (Jy) (>\:</x).%’(x, y) = (vx)(Jy)%B(x,y) is logically valid.

Notice that, in the last tree, step (vi) served no purpose but was required
by our method of constructing trees. We should be a little more precise in
describing that method. At each step, we apply the appropriate rule to each
undischarged wf (except universally quantified w{s), starting from the top of
the tree. Then, to every universally quantified wf on a given branch we apply
rule U with every individual constant that has appeared on that branch since
the last step. In every application of a rule to a given wf, we write the
resulting wf(s) below the branch that contains that wf.

5. (@) —l(vx)B(x) = (Ex)%(x)]

() (vx)%(x) ®

(ili) —~(Ix)%(x) @)

(v)  (¥x)-B(x) (i)

v) 2(b) (ii)!

(vi) —%(b) (iv)
X

Hence, (Vx)%(x) = (3x)%(x) is logically valid.
6. 1) —l(wx)=AF(x,x) = (3)(Wy) 4L (x, )]

()  (vx)~d4}(x,x) @)

(i) —(I) ()43 (x,p) (i)
(V) (V)= (Vp)-41(x, ) (i)
v ~di(a,m) (ii)?
(i) —~(Vp)-4}(a1,p) (iv)

tHere, we must introduce a new individual constant for use with rule U since,
otherwise, the branch would end and would not contain any individual constants.
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(viD) () -di(ar,y) (vi)
(viii) ——i(a1, @) (vii)
(ix) Aj{ay,az) (viii)
(x) —-A‘%(ap_, (12) (i1)
(xi) —(Vy)-4i(az,y) (iv)
(xil) (Iy)—-4i(az,y) (xi)
(xiii) ——43 (a2, a3) (xi1)
(xiv) 41(a2, as) (xiii)

‘We can sec that the branch will never end and that we will obtain a sequence
of constants aj, az, . .. with wfs A%(a,,, a,1) and —43(a,, a,). Thus, we con-
struct a model M with domain {ay,as,...} and we define (4)™ to contain
only the pairs {ay,d,+1). Then, (Vx)-4i(x,x) is true in M, whereas
(Fx) (V)43 (x, p) is false in M. Hence, (Vx)-47(x,x) = (Ix)(Vy)-43(x,y) is
not logically valid.

Exercises

2.139 Use semantic trees to determine whether the following wis are logi-
cally valid.

@ (Vx)(A;(x) VA () = (V)4 (x)) V (vx)43(x)

(b) ((W)#(x)) A (vx)€(x) = (vx)(%(x) A €(x)).

© (Vx)(B(x) A E(x)) = ((vx)B(x)) A (Vx)€(x)

(@) @x)Al(x) = 45(x)) = (F)41(x) = (Fx)4,(x))

@ (I)EAL(x,») = (F2)4i(z,2)

O ((v0)4](x)) V (¥x)45(x) = (V) (4](x) V 45 (x))

@ (@)@ Aixr) = (V2)4i(z,y))

(h) The wifs of Exercises 2.24, 2.31(a, ¢, j), 2.39 and 2.40.
() The wfs of Exercise 2.21(a, b, g).

PROPOSITION 2.47

Assume that ' is a set of closed wifs that satisfy the following closure con-
ditions: (a) it —ZAisin T, then ZisinI; (b)if ~(#V €) is in I, then -#
and —% arc in I'; (¢) if «(# = ) is in I', then & and —% are in T; (d) if
~(Vx)4% is in T, then (3x)—4 is in T; () if —=(Ix) % is in I', then (Vx)-4 is in
; () if =(# A€) is in T, then at least one of =% and —% is in I'; (g) if
(% < €) is in I, then either # and -% arein I', or =% and € are in I'; (h)
fH NG isinT, thenso are Zand &, Q) if Z vV € isin I, then at least one of
Band€isin T, (Hif # = €isin T, then at least one of =& and € is in T;
(k)if # & € isin T, then cither # and € are in I’ or -# and % are inT"; (1)
if Vx)Z(x) is in I, then #(b) is in I" (Where b is any individual constant that
oceurs in some wf of T); (m) if (Ix)Z(x) is in I', then #(b) is in T for some
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individual constant b. If no wf and its negation both belong to I' and somge
wifs in ' contain individual constants, then there is a model for I’ whaose
domain is the set D of individual constants that occur in wis of .

Proof

Define a model M with domain D by specifying that the interpretation of any
predicate letter 4} in I' contains an n-tuple (bi,...,b,) if and only f
A¥(by,...,b,) is in I'. By induction on the number of connectives ang
quantifiers in any closed wf &, itis easy to prove: (i} if & isin I', then & is trye
in M; and (i) if =&, isin I', then & is false in M. Hence, M is a model for

If a branch of a semantic tree remains open, the set I' of wfs of that
branch satisfies the hypotheses of Proposition 2.47. If follows that, if 4
branch of a semantic tree remains open, then the set I' of wfs of that branch,
has a model M whose domain is the set of individual constants that appear
in that branch. This yields half of the basic principle of semantic trees,

PROPOSITION 2.48

If all the branches of a semantic tree are closed, then the wf 2 at the root of
the tree is unsatisfiable.

Proof

From the derivation rules it is clear that, if a sequence of wfs starts at % and
continues down the tree through the applications of the rules, and if the wis
in that sequence are simultancously satisfiabie in some model M, then that
sequence can be extended by another application of a rule so that the added
wi(s} would also be true in M. Otherwise, the sequence would form an
unclosed branch, contrary to our hypothesis. Assume now that 4 is sa-
tisfiable in a model M. Then, starting with %, we could construct an infinite
branch in which all the wis are true in M. (In the case of a branching rule, if
there are two ways to extend the sequence, we choose the left-hand wif)
Therefore, the branch would not be closed, contrary to our hypothesis.
Hence, 4 is unsatisfiable.

This completes the proof of the basic principle of semantic trees. Notice
that this principle does not yield a decision procedure for logical validity. If
a closed wf 4 is not logically valid, the semantic tree of =4 may (and often
does) contain an infinite unclosed branch. At any stage of the construction
of this tree, we have no general procedure for deciding whether or not, at
some later stage, all branches of the tree will have become closed. Thus, we
have no general way of knowing whether 4 is unsatisfiable.
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For the sake of brevity, our exposition has been loose and imprecise. A
clear and masterful study of semantic trees and related matters can be found

in-Smullyan ( 1968).

216 QUANTIFICATION THEORY ALLOWING EMPTY DOMAINS

our definition in Section 2.2 of interpretations of a language assumed that
the domain of an interpretation is non-empty. This was done for the sake of
simplicity. 1f we allow the empty domain, questions arise as to the right way
of defining the truth of a formula in such a domain.” Once that is decided,
the corresponding class of valid formulas (that is, formulas true in all in-
ferpretations, including the one with an empty domain) becomes smaller,
and it is difficult to find an axiom system that will have all such formulas as
its theorems. Finally, an interpretation with an empty domain has little or
no importance in applications of logic.

Nevertheless, the problem of finding a suitable treatment of such a more
inclusive logic has aroused some curiosity and we shall present one possible
approach. In order to do so, we shall have to restrict the scope of the
investigation in the following ways.

First, our languages will contain no individual constants or function
letters. The reason for this restriction is that it is not clear how to interpret
individual constants or function letters when the domain of the interpreta-
tion 18 empty. Moreover, in first-order theories with equality, individual
constants and function letters always can be replaced by new predicate
letters, together with suitable axioms.

Second, we shall take every formula of the form (Vx)4(x) to be true in the
empty domain. This is based on parallelism with the case of a non-empty
domain. To say that (¥x)Z(x) holds in a non-empty domain D amounts to
asserting

(x) for any object ¢,if ¢ € D, then %(c)

When D is empty, ‘c € D’ is false and, therefore, ‘if ¢ € D, then Z#(c)’ is true.
Since this holds for arbitrary ¢, (x) is true in the empty domain D, that is,
(Vx)}Z(x) is true in an empty domain. Not unexpectedly, (3x)%(x) will be
false in an empty domain, since (Ix)#(x) is equivalent to —(Vx)—~%(x).
These two conventions enable us to calculate the truth value of any closed
formula in an empty domain. Every such formula is a truth-functional
combination of formulas of the form (Vx)Z(x). Replace every subformula

tFor example, should a formula of the form (Vx)(4}(x) A ~41(x)) be considered
true in the empty domain?
For example, an individual constant » can be replaced by a new monadic
predicate letter P, together with the axiom (Fy)(Vx)(P(x) & x = y). Any axiom #(b)
should be replaced by (Vx)(P(x) = B(x)).

147
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(Vx)48(x) by the truth value T and then compute the truth value of the whq;
formula.

It is not clear how we should define the truth value in the empty domajy,
of a formula containing free variables. We might imitate what we do ip the
case of non-empty domains and take such a formula to have the same tryg,
values as its universal closure. Since the universal closure is automatical]y
true in the empty domain, this would have the uncomfortable consequence
of declaring the formula 4] (x) A 4] (x) to be true in the empty domain. Foy
this reason, we shall confine our attention to sentences, that is, formulag
without free variables.

A sentence will be said to be inclusively valid if it is true in all intep
pretations, including the interpretation with an empty domain. Every ip.
clusively valid sentence is logically valid, but the converse does not hold. Tq
see this, let f stand for a sentence € A %, where € is some fixed sentence,
Now, f is false in the empty domain but (Vx)f is true in the empty domaiy
(since it begins with a universal quantifier). Thus the sentence (Vx)f = f jg
false in the empty domain and, therefore, not inclusively valid. However, it
is logically valid, since every formula of the form (Vx)% = 4 is logically
valid.

The problem of determining the inclusive validity of a sentence is re-
ducible to that of determining its logical validity, since we know how to
determine whether a sentence is true in the empty domain. Since the problem
of determining logical validity will turn out to be unsolvable (by Proposition
3.54), the same applies to inclusive validity.

Now let us turn to the problem of finding an axiom system whose the-
orems are the inclusively valid sentences. We shall adapt for this purpose an
axiom system PP¥ based on Exercise 2.28. As axioms we take all the fol-
lowing formulas (see the Logical Axioms on p. 69):

(Al) %= (¢= %B)

(A2 (B=(F=>9)= (B=%) = (B> 9))

(A3) (=% = %) = ((-€ = %) = %)

(A4) (Vx)B(x) = B(y) if B(x) is a wf of &£ and y is a variable that is free
for x in Z(x). (Recall that, if y is x itself, then the axiom has the form
(V)% = 2. In addition, x need not be free in %(x).)

(AS) (VX)) (& = €) = (% = (Wx)¥) if # contains no free occurrences of x.

(A6) (V1) ...(Viu)(B = €)= [(V») ... (V)8 = (Y1) ... (V,)¥€]

together with all formulas obtained by prefixing any sequence of universal
quantifiers to instances of (A1)}-(A6).

Modus ponens (MP) will be the only rule of inference.

PP denotes the pure first-order predicate calculus, whose axioms are
(A1)-(AS), whose rules of inference are MP and Gen, and whose language
contains no individual constants or function letters. By Gddel’s complete-
ness theorem (Corollary 2.19), the theorems of PP are the same as the
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logically valid formulas in PP. Exercise 2.28 shows first that Gen is a derived
pule of inference of PP#, that is, if Fppr 2, then Fpps (Vx)92, and second that
pp and PP# have the same theorems. Hence, the theorems of PP# are the
fogically valid formulas.

Let PPS¥ be the same system as PP except that, as axioms, we take only
‘the axioms of PP# that are sentences. Since MP takes sentences into sen-
tences, all theorems of PPS* are sentences. Since all axioms of PPS* are
axioms of PP¥, all theorems of PPS? are logically valid sentences. Let us
show that the converse holds.

PROPOSITION 2.49

‘Every logically valid sentence is a theorem of PPS¥.

-Proof

Let 4 be any logically valid sentence. We know that 4 is a theorem of PP#.
;:Let us show that & is a theorem of PPS*. In a proof of 4 in PP#, let
u,. - -, Uty be the free variables (if any) in the proof, and prefix (Vi) ... (Vu,)
to all steps of the proof. Then each step goes into a theorem of PPS*. To see
this, first note that axioms of PP¥ go into axioms of PPS*. Second, assume
that £ comes from ¢ and ¥ = % by MP in the original proof and that
(Vi) - .. (Vup)€ and (Vi) ... (Vi,)(6 = &) are provable in PPS*. Since
(Vi) ... (Vi) (€ = 2) = [(Vur) ... (Vup)¥ = (Vi) ... (Vi,)Z] is an in-
stance of axiom (A6) of PPS7 _ it follows that (Vir1) . .. (Vu, )9 is provable in
PPS*. Thus, (Vu1)...(Vu,)% is a theorem of PPS*. Then n applications of
axiom (A4) and MP show that 4 is a theorem of PPS¥.

Not all axioms of PPS* are inclusively valid. For example, the sentence
(Vx)f = f discussed carlier is an instance of axiom (A4) that is not in-
clusively valid. So, in order to find an axiom system for inclusive validity, we
must modify PPS¥.

If P is a sequence of variables uy,...,u,, then by VP we shall mean the
expression (Vuy) ... (Vuy,).

Let the axiom system ETH be obtained from PPS# by changing axiom
(A4) into:

(A4") All sentences of the form VP[(Vx)%(x) = #(»)], where y is free for x
in #(x) and x is free in #(x), and P is a sequence of variables that
includes all variables free in % (and possibly others).

MP is the only rule of inference.
It is obvious that all axioms of ETH are inclusively valid.
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LEMMA 2.50

If 7 is an instance of a tautology and P is a sequence of variables that
contains all free variables in 7, then bprg VP .

Proof

By the completeness of axioms (A1)~(A3) for the propositional caleylyg .
there is a proof of 7 using MP and instances of (A1)~(A3). If we prefix yp
to all steps of that proof, the resulting sentences are all theorems of ETH, 1p:
the case when an original step % was an instance of (A1)-(A3), VP% is ap
axiom of ETH. For steps that result from MP, we use axiom (A6).

LEMMA 2.51

If P is a sequence of variables that includes all free variables of 4 = €, and
Ferg VP and Fgryg VP [ﬁ = Qﬂ, then Fery VPE.

Proof
Use axiom (A6) and MP.

LEMMA 2.52

If P is a sequence of variables that includes all free variables of %, €, %, and
|_ETH VP [.@ = (g] and |_ETH vP [(g = @], then FETHVP [:@ = @]

Proof

Use the tautology (Z =€) = (¥ = 9) = (# = %)), Lemma 2.50, and
Lemma 2.51 twice.

LEMMA 2.53

If x is not free in & and P 1s a sequence of variables that contains all free
variables of %, bFerg VP[% = (Vx) 4.

Proof

By axiom (AS5), Fgra VP[(Vx)(B = B) = (B = (Vx)B)]. By Lemma 2.50,
Fera VP[(Vx)(Z = #)]. Now use Lemma 2.51.
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COROLLARY 2.54

If # has no free variables, then Fgry 4 = (Vx) 4.

LEMMA 2.55

If x is not free in # and P is a sequence of variables that includes all
variables free in 4, then bgry VP[-(Vx)f = ((W)Z = #)].

Proof

berg VP[4 = (# = )] by Lemma 2.50. By Lemma 2.53, bgry VP
[(# = 1) = (Vx)(# = f)]. Hence, by Lemma 2.52, gy VP[-% = (Vx)
(#=1)]. By axiom (A6), rgm VP[(Vx)(# = 1) = ((vx)4 = (Vx)f)].
Hence, by Lemma 2.52, bFgrg VP[-2 = ((Vx)# = (vx)f)]. Since [-% =
(V)2 = (Vx)f)] = [-(vx)f = ((Vx)% = 2)] is an instance of a tautology,
Lemmas 2.50 and 2.51 yield Ferp VP[-(VX)f = ((Vx)Z = %)].

PROPOSITION 2.56

ETH + {—(Vx)f} is a complete axiom system for logical validity, that is, a
sentence is logically valid if and oniy if it is a theorem of the system.

Proof

All axioms of the system are logically valid. (Note that (Vx)f is false in all
interpretations with a non-empty domain and, therefore, —(Vx)f is true in all
such domains.) By Proposition 2.49, all logically valid sentences are pro-
vable in PPS*. The only axioms of PPS* missing from ETH are those of the
form VP[(Vx)# = 28|, where x is not free in # and P is any sequence of
variables that include all free wvariables of 4. By Lemma 2.55,
Ferg VP[~(vx)f = ((VX)2 = #)]. By Corollary 2.54, VP[-(Vx)f] will be
derivable in ETH + {—(Vx)f}. Hence, VP[(Vx)%# = 4] is obtained by using
axiom (A6).

LEMMA 2.57

If P is a sequence of variables that include all free variables of 4,
Fer VP[(VX)f = ((Vx)% & t)], where t is —f.
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Proof

Since f=-4# is an instance of a tautology, Lemma 2.50 vyields
= (Vx)4]]. Hence, bprn VP[(Vx)f= (Wx)4] by Lemma 2.51. Since
(Vx)% => [(Vx)2 < 1] is an instance of a tautology, Lemma 2.50 yields
tETH VP[(VX).@ = [(Vx)e@' A= t]] NOW, by Lemma 252, FETH VP[(Vx)f
= [(Vx)% & ]

Given a formula %, construct a formula #* in the following way. Moving
from left to right, replace each universal quantifier and its scope by t.

LEMMA 2.58

If P is a sequence of variables that include all free variables of 4%, then

Proof

Apply Lemma 2.57 successively to the formulas obtained in the stepwise
construction of #*. We leave the details to the reader.

PROPOSITION 2.59

ETH is a complete axiom system for inclusive validity, that ié, a sentence #
is inclusively valid if and only if it is a theorem of ETH.

Proof

Assume 4 is a sentence valid for all interpretations. We must show that
et 4. Since 4 is valid in all non-empty domains, Proposition 2.56 implies
that 2 is provable in ETH + {-(¥x)f}. Hence, by the deduction theorem,

(-++) Fem ~(W0)f = 4.

Now, by Lemma 2.58,

(%) ‘em (W = [2 < B

(Since % has no free variables, we can take P in Lemma 2.58 to be empty.)
Hence, [(Vx)f=> [# < #7]] is valid for all interpretations. Since (Vx)f is
valid in the empty domain and # is valid for all interpretations, #* is
valid in the empty domain. But %" is a truth-functional combination of ts.
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So, 4 must be truth-functionally equivalent to either t or f. Since it is
valid in the empty domain, it is truth-functionally equivalent to t. Hence,
‘Vgru #°. Therefore by (%), Ferm (Vx)f = 8. This, together with (+),
yields Fern 4.

The ideas and methods used in this section stem Jargely, but not entirely,
from a paper by Hailperin (1953).! That paper also made use of an idea in
Mostowski (1951b), the idea that underlies the proot of Proposition 2.59.
Mostowski’s approach to the Jogic of the empty domain 15 quite different
from Hailperin’s and results in a substantially different axiom system for
inclusive validity. For example, when 2 does not contain x free, Mostowski
interprets (Vx)2% and (3x)% to be & itself. This makes (Vx)f equivalent to f,
rather than to t, as in our development.

'The name ETH comes from ‘empty domain® and ‘Theodore Hailperin’. My
simplification of Hailperin’s axiom system was suggested by a similar simplification
in Quine (1954).



3.1 AN AXIOM SYSTEM

Together with geometry, the theory of numbers is the most immediately
intuitive of all branches of mathematics. It is not surprising, then, that
attempts to formalize mathematics and to establish a rigorous foundation
for mathematics should begin with number theory. The first semi-axiomatic
presentation of this subject was given by Dedekind in 1879 and, in a slightly
modified form, has come to be known as Peano’s postulates.! It can be
formulated as follows:

(P1) 0 is a natural number.}

(P2) If x is a natural number, there is another natural number denoted by x’
(and called the successor of x).}

(P3) 0 # x’ for every natural number x.

(P4) If x' =/, then x = y.

(P5) If Q is a property that may or may not hold for any given natural

number, and if (I) O has the property Q and (IT) whenever a natural number

x has the property Q, then x’' has the property Q, then all natural numbers

have the property Q (mathematical induction principle).

These axioms, together with a certain amount of set theory, can be used
to develop not only number theory but also the theory of rational, real and
complex numbers (see Mendelson, 1973). However, the axioms involve
certain intuitive notions, such as ‘property’, that prevent this system from
being a rigorous formalization. We therefore shall build a first-order theory
S that is based upon Peano’s postulates and seems to be adequate for the
proofs of all the basic results of elementary number theory.

The language ¥4 of our theory S will be called the language of arithmetic.
%4 has a single predicate letter A2. As usual, we shall write ¢ = s for 43 (1, s).
% 4 has one individual constant ¢;. We shall use 0 as an alternative notation

'For historical information, see Wang (1957).
¥The natural numbers are supposed to be the non-negative integers 0,1,2,....
SThe intuitive meaning of x’ is x + 1.
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for ai. Finally, %, has three function letters, f],f? and f?. We shall
write(?) instead of f!(z), (t+s) instead of flz(t,s), and (7-s) instead of
. f3(t,s). However, we shall write ¢/, + s, and 7 - s instead of ('), (# + s), and
(i - s) whenever this will cause no confusion.
The proper axioms of S are:

(S1) x1 =x2=> (x1 =x3 = x2 = Xx3)

(S2) X1 = X2 => X} =X}

(S3) 0#x|

(84) x| =x3=>x =X,

(85) x1 +0=1x

(S6) x1 +xh=(x +x)

(S7) x-0=0

(S8) x1° (x2)" = (x1-%2) +x1

(89) B(0) = ((Vx)(%(x) = B(")) = (Vx)%(x)) for any wf %(x) of S.

We shall call (S9) the principle of mathematical induction. Notice that
axioms (S1)-(S8) are particular wis, whereas (S9) is an axiom schema pro-
viding an infinite number of axioms.!

Axioms (S3) and (S4) correspond to Peano postulates (P3) and (P4),
respectively. Peano’s axioms (P1) and (P2) are taken care of by the presence
of 0 as an individual constant and f] as a function letter. Our axioms (S1)
and (S2) furnish some needed properties of equality; they would have been
assumed as intuitively obvious by Dedekind and Peano. Axioms (S5)—(S8)
are the recursion equations for addition and multiplication. They were not
assumed by Dedekind and Peano because the existence of operations + and
- satisfying (S5)—(S8) is derivable by means of intuitive set theory, which was
presupposed as & background theory (see Mendelson, 1973, chapter 2,
Theorems 3.1 and 5.1).

Any theory that has the same theorems as S is often referred to in the
literature as Peano arithmetic, or simply PA.

From (S9) by MP, we can obtain the induction rule:

B(0), (vx)(B(x) = B(")) b (Vx)B(x).

It will be our immediate aim to establish the usual rules of equality; that
is, we shall show that the properties (A6) and (A7) of equality (see page 95)
are derivable in S and, hence, that S is a first-order theory with equality.

First, for convenience and brevity in carrying out proofs, we cite some
immediate, trivial consequences of the axioms.

tHowever, (S9) cannot fully correspond to Peano’s postulate (P5), since the
latter refers intuitively to the 2™ properties of natural numbers, whereas (89) can
take care of only the denumberable number of properties defined by wifs of #,.
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LEMMA 3.1

For any terms ¢, s, r of &, the following wfs are theorems of S.

S1) t=r=>(t=s5s=>r=y3)
(S2Y t=r=>1t =7

(S3) 0#£¢

S4) =V =1t=vr
(S5) t+0=1
(S6') t+¥ =(+r)
(S7) t-0=0

S8 -V =(t-r)+1t

Proof

(S1)+(S8) follow from (S1)-(S8), respectively. First form the closure by
means of Gen, use Exercise 2.48 to change all the bound vanables to vari-
ables not occuring in terms ¢, r, s, and then apply rule A4 with the appro-
priate terms ¢, r, 5.1

PROPOSITION 3.2.

For any terms t,s, r, the following wfs are theorems of S.

(a) t=t

b) t=r=>r=1

© t=r=>(r=s=1=ys)
(d) r=t=(s=t=>r=ys)
() t=r=t+s=r+s
) t=0+1¢

() ¢ +r=(t+r)

(h) t+r=r+1

(1) t=r=>s+t=s+vr
) +r)+s=t+(r+s)
k) t=r=>t-s=r-s

M 0-t=0
my¢-r=t-r+vr

TThe change of bound variables is necessary in some cases. For example, if we
want to obtain xp =x; =x; =x] from x =x; = x| =3x), we first obtain
(W) (Wx2) (1 = xp = x| = x5). We cannot apply rule A4 to drop (Vx;) and replace x;
by x3, since x; is not free for x; in (¥x)(x; =x2 = x| = x,). From now on, we shall
assume without explicit mention that the reader is aware that we sometimes have to
change bound variables when we use Gen and rule A4.
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(n) t-r=¥r-t
(o) t=r=s5-t=5"-r

Proof
@ 1.
2

3.
4.
(b) 1.
2.
3.
© L
2.
3.
@) 1.
2.
3.
4.

t+0=t
(t+0=0)=(t+0=t=1=1)
t+0=t=1t=1

=t
(=r=>(t=t=r=t)
I=t=({t=r=>r=1)
f=r=r—=—t1t
F=t=>(r=s=1=y)
t=pr=r—=1
t=r=>(r=s=t=ys)
r=t={=5=>r=5s)
t=s=>F=t=>r=ys)
sS=t=>1t=S¢
s=t=>@F=1=>r=ys)

(859

(S1)

1, 2, MP

1, 3, MP

(S1')

1, tautology, MP
2, part (a), MP
(S1%)

Part (b)

1, 2, tautology, MP
Part (¢)

1, tautology, MP
Part (b)

2, 3, tautology, MP

(e) Apply the induction rule to #(z) :x=y=x+z=y+z.

@ 1.

x+0=x

y+0=y

xX=y

x+0=y

x+0=y+0
Fsx=py=>x+0=p4+0

Thus, Fs .@(0) .

i) 1.

XA RSN

X=y=>Xt+z=y+z

xX=y

x+zZ=(x+z)

y+2=@+z)

x+z=y+z

x+2) =(+2)

x+7 = (y+z)

x+zZ=y+7

Fs(x=y=>x+z=yp+z)=
(x=y=>x+Z=y+7)

(S5

(S5)

Hyp

1, 3, part (c), MP

4, 2, part (d), MP

1-5, deduction theorem

Hyp

Hyp

(S6')

(S6")

1, 2, MP

5, (S2), MP

3, 6, part (c), MP

4, 7, part (d), MP

1-8, deduction theorem twice

Thus, s %(z) = %4(Z'), and, by Gen, ts (Vz)(%(z) = #(<)). Hence,
s (Vz)4(z) by the induction rule. Therefore, by Gen and rule A4,
Fgt=r=1t+s=r+s.
(D Let #(x) be x =0 +x.
(i) ts0=0+0 by (85), part (b) and MP; thus, g %(0).
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. x=0+4x

2. 04+x =(0+x)
3. X =(0+x)

4. ¥ =04+%

5

Fe¢x=04+x=>x =0+

Hyp

(S6')

1, (S2)), MP

3, 2, part (d), MP

- 4, deduction theorem

Thus, - %(x) = %#(x') and, by Gen, s (Vx)(#(x) = %(x")). So, by (i),
(ii) and the induction rule, t-g (Vx)(x = 0 +x), and then, by rule A4

Fst:——0+t.

(g) Let #(y) be x¥' +y = (x +¥)".
() 1. ¥+0=x
2. x+0=x
3. (x+0)=x
4. ¥ 4+0=(x+0)
Thus, kg 2(0).
i 1. X+y=@x+y)
2. X+y =+
3. () =+
4, ¥ +y =(x+p)"
5. x4y =(x+y)
6. (x+3) =@+
7. X +y=@x+y)
8. tgxX+y=(x+y) =
X4y =x+y)

(S5)

(S5)

2, (S2), MP

1, 3, part (d), MP

Hyp

(S6')

1, (S2), MP

2, 3, part (c), MP

(S6')

5, (82"), MP

4, 6, part (d), MP

1-7, deduction theorem

Thus, t-s B(y) = %(Y), and, by Gen, g (V)(%4(y) = %()). Hence, by
(i), (ii) and the induction rule, ks (Vy)(x' +y = (x + y)’), By Gen and rule

Ad vs U +r=(t+7r).

(h) Let #(y) be x +y =y +x.
M1 x+0=x
2. x=0+x
3. x+0=0+x

ThUS, g .@(0)

() 1. x+y=y+ux

2. x+y =(@x+y)
y4+x=p+x)
(x+») =+
x+y =@+x)
Xty =y +x
Fsx+y=y+x=
x+y =y +x

N AW

(S5)
Part (f)
1, 2, part (c), MP

Hyp

(S6')

Part (g)

1, (82"), MP

2, 4, part (c), MP

5, 3, part (d), MP

1 -6, deduction theorem
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Thus, s #(y) = %()) and, by Gen, F-s (Yy)(#(y) = #()). So, by (1), (ii)
and the induction rule, g (Vy)(x +y =y + x). Then, by rule A4, Gen and

mule Ad, s r+rF=r+1.

@lLi=r=ft+s=r+s
2.t+s=s+1

L F+HS=8+4rF

t=vF

tts=r+s

S+r=r+s

sS+t—=s5s+F

st=r=>s+tr=s+vr

(i) Let #B(z) be (x +y)+z=x+ (y+2).

@) L x+»+0=x+y
2.y+0=y
3x+(y+0)=x+y
4. (x+p)+0=x+(y+0)

ThU.S, }—S @(0)

@l x+y)+z=x+(y+z)

2. (x+y)+z’7_((x+y)+z)’ ,
3. ((x+y)+2) :(x+(y+z'))
4 (x+y)+2Z =(x+(+2))
S.y+Z'=(y+z)'
6.x+(+2)=x+(+2)
7.x+(y+z) =@+ (y+2z)
B.x+(+2)=+(+2)
9. x+y)+Z =x+(y+2)

0. ks (x+y)+z=x+(y+2z)=

x+y)+Z=x+{+2)

Part (e)

Part (h)

Part (h)

Hyp

1, 4, MP

2, 5, (S1") MP

6, 3, part (c), MP

1-7, deduction theorem

(85"

(85"

2, part (j), MP

1, 3, part (d), MP

Hyp

(S6')

1, (82", MP

2, 3, part (c), MP

(S6")

5, part (1), MP

(S6")

6, 7, part (c), MP

4, 8, part (d), MP

1-9, deduction theorem

Thus, s B(z) = 4(2') and, by Gen, t-g (V2)}(B(z) = (%(Z)). So, by (i),
(ii) and the induction rule, g (Vz)#(z), and then, by Gen and rule A4,

s (t+r)+s=t+(r+s5).

Parts (k)—(o) are left as exercises.

COROLLARY 3.3

S is a theory with equality.

Proof

By Proposition 2.25, this reduces to parts (a) {(e), (i), (k) and (o) of pro-

position 3.2, and (S2).
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Notice that the interpretation in which:

(a) the set of non-negative integers is the domain

(b) the integer 0 is the interpretation of the symbol 0

(¢) the successor operation (addition of 1) is the interpretation of the *
function (that is, of f})

(d) ordinary addition and multiplication are the interpretations of + and .

(e) the interpretation of the predicate letter = is the identity relation

is a normal model for S. This model is called the standard interpretation or
standard model. Any normal model for S that is not isomorphic to the
standard model will be called a non-standard model for S.

If we recognize the standard interpretation to be a model for S, then, of
course, S is consistent. However, this kind of semantic argument, involving
as it does a certain amount of set-theoretic reasoning, is regarded by some g5
too precarious to serve as a basis for consistency proofs. Moreover, we have
not proved in a rigorous way that the axioms of S are true under the
standard interpretation, but we have taken it as intuitively obvious. For
these and other reasons, when the consistency of S enters into the argument
of a proof, it is common practice to take the statement of the consistency of
S as an explicit unproved assumption.

Some important additional properties of addition and multiplication are
covered by the folowing result.

PROPOSITION 34

For any terms ¢, r,s, the following wfs are theorems of S.

(@) t-(r+s)=(t-r) + (t-s) (distributivity)

(b) (F+s)-t=(r-1t)+ (s-1) (distributivity)

(€) (t-r)-s=1t-(r-s) (associativity of -)

(d) t+5=r+s=t=r (cancellation law for +)

Proof

(a) Prove kg x- (y+z) = (x-y)+ (x-z) by induction on z.

(b) Use part (a) and Proposition 3.2(n).

(¢) Prove s (x-y)-z=x-(y-z) by induction on z.

(d) Provets x+z=y+z=x =y by induction on z. This requires, for the
first time, use of (S4').

The terms 0,0',0",0” ... we shall call numerals and denote by
0,1,2,3,.... More precisely, 0 is 0 and, for any natural number n,n + 1 is
(7). In general, if n is a natural number, 7 stands for the numeral consisting
of 0 followed by r strokes. The numerals can be defined recursively by
stating that 0 is a numeral and, if « is a numeral, then # is also a numeral.
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PROPOSITION 3.5

The following are theorems of S.

@ t+1="¢
(b) 1-1=1
© 1-2=t+t

() t+5s=0=1=0As5=0

(e t#0=>(s-t=0=5=0) N

) t+s=1=(1=0As=1)V(=1A5=0)
@ t-s=1=@t=1As=1)

0 1£0= (=)

@) s#0=>({-s=r-s=>t=r)

G) t#0=(@#1=(I(=y")

Proof

@ 1. t+0 = (t+0) (S6")
2.t4+0=1 (S5
3.(t4+0) =¢ 2, (82, MP
4.t+0 =7 1, 3, Proposition 3.2(c), MP
5.1+1="¢ 4, abbreviation

B 1.t-0'=¢t-0+1 (S8
2.¢-0=0 (S7)
3.t-0+t=0+4+1¢ 2, Proposition 3.2(e), MP
4.1-00=0+1¢ 1, 3, Proposition 3.2(c), MP
50+1t=t¢ Proposition 3.2(f,b), MP
6.1-0/ =t 4, 5, Proposition 3.2(c), MP
7.t-1=t 6, abbreviation

© Lt (1) =(-1)+t (S8")
2.t-1=1 Part (b)
3.(t-1)+t=t+t 2, Proposition 3.2(e), MP
4.t- (1) =t +1t L, 3, Proposition 3.2(c), MP
5.t-2=t+1 4, abbreviation

(d) Let .@(y) bex+y=0=x=0Ay=0.1Itis easy to prove that g %(0).
Also, since g (x + )’ # 0 by (S3') and Proposition 3.2(b), it follows by
(S6¢') that tgx+3' #0. Hence, Fs#()) by the tautology
-4 = (A = B). So, s %(y) = %()/) by the tautology 4 = (B = A4).
Then, by the induction rule, t-g (Vy)%(y) and then, by rule A4, Gen and
rule A4, we obtain the theorem.

(e) The proof is similar to that for part (d) and is left as an exercise.

() Use induction on y in the wf x+yp=1=(x=0Ap=1)V
(x=1ny=0).

(g) Use inductionon yinx-y=1= (x=1Ayp=1).
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(h) Perform induction on x in x # 0 = (Iw)(x = w').
(i) Let B(y)be (Vx)z#0= (x-z=y-z=>x=y)).

0 1.
2.
3,

z#0
xz=0-z
0.z=0

4. x-z=0

5.
6.bsz#0=2>(x-2=0-2=x=0)
7.

x=0

s (V2 z #0 = (x-z2=0-2
= x = 0))

Thus, t5 %(0).
(i) 1. (Wx)(z# 0= (x-z=y-z=x=y))Hyp (B(»))

2
3

4.

8.

9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.

20.

21.

z#£0

x-z=Y -z

Y #0

5.y -z#0
6.
7. x#0

x-z#0

@w)(x =)
x=25

b-z=y -z
b-ztz=y-z+z
b-z=y-z
z#£0=(b-z=y-z=>b=y)

b-z=y.z=b=y

b=y

b=y

x=y

B),z#O0x-z=y -z bsx=y

By)tsz#0=
(x-z=) - -z=>x=))
B(y) s (Vx)(z #£0 =
(x-z=y -z=>x=)))
s A(y) = B(/)

Hyp

Hyp

Proposition 3.2(1)

2, 3 Proposition 3.2(c), MP
1, 4, part(e), MP

1-5, deduction theorem

6, Gen

Hyp

Hyp

(83", Proposition 3.2(b), MP
2, 4, part (e), a tautology, MP
3, 5, (S1"), tautologies, MP
6, (87", Proposition 3.2(o,n),
(819, tautologies, MP

7, part (h), MP

8, rule C

3,9, (A7), MP

10, Proposition 3.2(m,d), MP
11, Proposition 3.4(d), MP
1, rule A4

2,13, MP

12, 14, MP

15, (82", MP

9, 16, Proposition 3.2(c), MP
1--17, Proposition 2.10

18, deduction theorem twice

19, Gen

20, deduction theorem

Hence, by (i), (i), Gen, and the induction rule, we obtain t-g (V¥)%4(y)
and then, by Gen and rule A4, we have the desired result.

()) This is left as an exercise.

PROPOSITION 3.6

(a) Let m and » be any natural numbers.
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(i) If m # n, then \-g m # 7.
(ifr-sm+n=m+7and bg -7 ="MW -7.
(b) Any model for S is infinite.
(¢) For any cardinal number Ry, S has a normal model of cardinality Ng.

Proof
(a)(i) Assume m # n. Either m < n or n <m. Say, m < n.
Lmel e Hyp
2,07, . =0".. 1 is an abbreviation of 2

n—pr times

3. Apply (S4") and MP m times in a row. We get 0=0"..."- Let ¢ be
n—m— 1. Since n > m,n—m— 120, Thus, we obtain 0 = 7.

4047 (S31

50=0rN0#£L 3, 4, conjunction introduction
6. =Tils0=2A0AL 15

7. bsm#EH 1--6, proof by contradiction

A similar proof holds in the case when # < m. (A more rigorous proof can
be given by induction in the metalanguage with respect to #.)

(i) We use induction in the metalanguage. First, m + 0 1s 7. Hence,
F¢m+0=m+0 by (S5). Now assume ts m+n=m+7 Then
Fs (m + 1) =m+ (7) by (S2) and (S€'). But m+ (n+ 1) is (m +n) and
n+1 is (h“)'. Hence, Fs m+ (n+ 1) =m+n+ 1. Thus, ks m+ n=m+ 7.
The proof that b 7 -7 = m - 7 is left as an exercise.

(b) By part (a), (1), in a model for S the objects corresponding to the nu-
merals must be distinct. But there are denumberably many numerals.

(c) This follows from Corollary 2.34(c) and the fact that the standard model
is an infinite normal model.

An order relation can be introduced by definition in S.

DEFINITIONS

t <sfor (Iw)(w#OAw+t=xs)
t<sfort<svit=s
t>sfors <t

tzs for s<t

t £ s for =(t <), and so on

In the first definition, as usual, we choose w to be the first variable not in
tors.
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PROPOSITION 3.7

For any terms #,r,s, the following are theorems.

(@) t £1

) i<s=>(s<r=>t<r)
© t<s=>s&t
dDt<set+r<str
(e) t<t

) 1<s= (s<r=>1t<r)
(g t<set+r<s+r
h)i<s=(s<r=>1t<¥F)
(i) o<t

G o</’

) t<rersr

M) t<sret<?
m)yr<?

0 0<T,T<2,3<3,...

~

(a) l.t<1t

(@)W #OAwWHE=1)
DOAEOND+t =1
b+t=t

=0+t
b+t=0+1

.b=10

b#0

b=0Ab#0
0=0A0+#£0

L t<tts0=0A0#0
st Lt

® l.t<s

.8 <F

(@AWW AOAWHLE =)
NENICEANEERESY
bFEOAND+t=ys
c#FONc+s=r
b+t=s

.et+s=r
.ctr(b+t)=c+s
10. c+(b+1t)=r

IL (ec+b)+t=r

12.-6 #0

[ W ey —
ONAUNAEWRNR,N—~,OLYEIR N W

\O

O t#r=>(<rvr<i)

P) t=rVt<rvr<t

(Q t<srVvr<t

(x) t+r>=t

() r#£0=>t+r>t

) r#0=1-r=t

L r#0<sr>0

V) r>0=>@0>0=r-t>0)
Wr#£0=>(t>1=t-r>¥)
X) r#0=>(t<s&t-r<s-r
) r#£0=> (ISss& t-r<s-r)
(z) t£0

@ t<rAr<t=t=vr

Hyp
1 is an abbreviation of 2

2, rule C

3, conjunction rule
Proposition 3.2(f)

3, 4, Proposition 3.2(c), MP
6, Proposition 3.4(d), MP

3, conjunction elimination
7, 8, conjunction elimination
9, tautology: BA =B = C, MP
1-10, Proposition 2.10

1-11, proof by contradiction
Hyp

Hyp

1 is an abbreviation of 3

2 is an abbreviation of 4

3, rule C

4, rule C

5, conjunction elimination

6, conjunction elimination
7, Proposition 3.2(1), MP

9, 8, Proposition 3.2(c), MP
10, Proposition 3.2(j,c), MP
5, conjunction elimination
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13.c+bh+#0 12, Proposition 3.5(d),
tautology, MP

4. c+b#AON(c+b)+t=r 13, 11, conjunction introduction

15. (Fu)(u #AONu+t=r) 14, rule E4

16. t<r Abbreviation of 15

17.bst<s=>(s<r=>1t<vr) 1-15, Proposition 2.10,

deduction theorem

Parts (c)-(z') are left as exercises.

PROPOSITION 3.8

() For any natural number k,b-s x=0V...Vx=Fk & x<k. B

(a") For any natural number & and any wf @ s B(0) AB) A ... NB(k)
& (Vx)(x<k = B(x)).

(b) For any natural number k> 0, s x=0V...Vx=(k—1) &x <k

(b) For any natural number k >0 and any wf %, t-5 Z(0) AZ(1) A ..
ABE— 1) = (Vx)(x <k = B(x)).

© Fs (W <y = BE) ARy = E6)) = (V) (@) VER)

Proof

(a) We prove Fgx =0V ...Vx =k & x<k by induction in the metalan-
guage on k. The case for k = 0,}-g x = 0 & x<0, is obvious from the defi-
nitions and Proposition 3.7, Assume as inductive hypothesis g x =0V ...
Vx =k < x<k Now assume x=0V...Vx=kVx=k+1. But bgx=
k+1=x<k+1 and, by the 1nduct1ve hypothesis, Fsx=0V...Vx =
f=>x<k. Also tgx<k=x<k+1. Thus, x<k+ 1. So, tgx= OV
Vi=kVx=k+1=>x<k+1. Conversely, assume x<k-+ 1. Then
—k+IVx<k+1.Ifx=k+1, then x=0V...Vx=kVx=k+ 1 If

x < k1, then since k + 1 is (k)', we have x <k by Proposition 3.7(l). By the
inductive hypothesis, x =0V ...Vx=1F, and, therefore, x =0V ...Vx =
kIvx=k+1. In either case, x=0V...Vx=FkVx=k+ 1. This proves
Fsx<k+1=>x=0V...Vx=kVx=k+ 1. From the inductive hypoth-
esis, we have derived Fgx=0V...Vx=k+ | & x<k+ 1 and this com-
pletes the proof. (This proof has been given in an informal manner that we
shall generally use from now on. In particular, the deduction theorem, the
eliminability of rule C, the replacement theorem, and various derived rules
and tautologies will be applied without being explicitly mentioned.)

Parts (a’), (b), and (b') follow easily from part (a). Part (c) follows almost
immediately from Proposition 3.7(0), using obvious tautologies.

There are several stronger forms of the induction principle that we can
prove at this point.
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PROPOSITION 3.9

(a) Complete induction. t-s (Vx)((V2)(z < x = %B(z)) = B(x)) = (Vx)2(x),
In ordinary language, consider a property P such that, for any x, if p
holds for all natural numbers less than x, then P holds for x also. Then p
holds for all natural numbers.

(b) Least-number principle. ‘s (Ix)%(x) = () (B () A (Vz)(z <y = ~%(z2))).
If a property P holds for some natural number, then there is a leagt
number satisfying P.

Proof

(a) Let ¥(x) be (Vz)(z<x = 4(2)).
@) 1. (vx)((V2)(z < x = HB(2)) = H(x)) Hyp

2. (Vz)(z < 0 = #(2)) => #(0) 1, rule A4
3.240 Proposition 3.7(y)
4, (Vz)(z < 0 = %B(2)) 3, tautology, Gen
5, %(0) 2, 4, MP
6. (V2)(z<0 = 9(z)) i.e., €(0) 5, Proposition 3.8(a")
7. (vx)((V2)(z < x = H#(z))
= (x)) -5 %(0) 1-6
(1) 1. (vx)((V2)(z < x => #B(2)) => PB(x)) Hyp
2. €(x), 1e., (Vz)(z<x = B(2)) Hyp
3. (V2)(z < X' => 9(z)) 2, Proposition 3.7(f)
4. (Vz)(z < x' = HB(z)) = B(x) 1, rule A4
5. B(x') 3, 4, MP
6.2<x =2 z<x'Vz=X Definition, tautology
7.z <x' = HB(z) 3, rule A4
8.z=x" = %(z) 5, axiom (A7), Proposition
2.23(b), tautologies
9. (V2)(z<x' = 9B(2)) i.e., G(x") 6, 7, 8, Tautology, Gen
10. (Vx)((V2)(z < x = %#(2)) = H#(x))
s (VX)(6(x) = €(x')) 1-9, deduction theorem, Gen

By (i), (ii) and the induction rule, we obtain & bg (Vx)%(x), that is,
9 tg (¥Vx)(Vz)(z<x = %#(z)), where & is (Vx)((V2)(z < x = H(2)) = B(x)).
Hence, by rule A4 twice, & tg x<x = J(x). But s x<x. So, Z ts #(x),
and, by Gen and the deduction theorem, -5 & = (Vx)%(x).

(B)L. ~(I)B() A (V2)(z <y = ~4(2))) Hyp
2. (W) ~(B(y) A (¥z)(z < y = ~%(z))) 1, derived rule for negation
3. (W ((V2)(z < y = —~9(2)) = —~%(y)) 2, tautology, replacement
4. (W)~%B(y) 3, part (a) with -4 instead of #
5. =(Iv)%(») 4, derived rule for negation
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6. ~(Ix)B(x) 5, change of bound variable
7. bs (BN V2)(z <y =
~%(z))) = —~(Ix)%B(x) 1-6, deduction theorem
8. s (30)B(x) = (I)(BO)A
(V2)(z <y = ~%(2))) 7, derived rule
‘Exercise

3.1 (Method of infinite descent)
Prove bs (Vx)(B(x) = ()(y < xAB(y))) = (¥x)-B(x)

Another important notion in number theory 1s divisibility, which we now

define.

DEFINITION ¢|s for (dz)(s = ¢ - z). (Here, z is the first variable notin ¢ or s.)

PROPOSITION 3.10

The fol
(a)
(b) 1]t
(© to

lowing wfs are theorems for any terms ¢, s, r.

(d) tls Aslr=>tr

(€©) s#OANts=t<s
(0 tsAslt=>s=1
@ s =t

(h) tlsAtlr=t|(s+r)

Proof

@)
)
(0
(d)
(e)

t =t 1. Hence, t|t.

t =1-t. Hence, 1|t

0 =t - 0. Hence, ¢|0.

Ifs=t-zandr=s -w,thenr=¢-(z-w).

If s # 0 and ¢|s, then s = ¢ - z for some z. If z = 0, then s = 0. Hence,

z#0. S0, z=1u/ for some u. Then s =¢- (/) =t -u+t>t.

(£}-(h) These proots are left as exercises.

Exercises

32 Provetbg |l =t =1.
3.3 Prove bs (f|sAtls) = ¢=1.
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It will be useful for later purposes to prove the existence of a unique
quotient and remainder upon division of one number x by another nonzerg
number y.

PROPOSITION 3.11

Fsy# 0= (Fu) A)x=y-ut+tvAv<yn(Vu) Vo) (x=y-w+pnna
n<y)=>u=uy Av="10)

Proof

Let Bx) be y £0= () (F)x=y-u+vAv<y).

@ Ly+#0
. 220=p-0+0
30y
4.0=y-0+0A0<y
5 (F)GFO0 =y -u+vAv<y)
6. y#0= (FI)(F) 0=y -u+v

i) 1.

y#0
(A@Ev)(x=y - utvAv<y)
x=y-a+bAb<y

by

Uy

12.

13.
14.

O 00 N AL W N

Av<y)
B(x) ie., y # 0= (Fu)(o)
(x=y-utvhv<y)

b<yvb =y

W<y X =ya+b AV <y)
W <y= Q@)X =y u

+vAv<y)

W=y=>x=y-at+y1
11.

b=y=@=y-(atl)
+0A0<y)
V=y=0Cu@' =y ut
vAL < y)

(Fu)(F) ' =y -u+vAv<y)
Bx) = (v # 0= (Fu)(Fv)

X' =y-u+vAv<y)

i, Bx) = BE)

Hyp

(85", (87)

1, Proposition 3.7(t)
2, 3, conjunction rule
4, rule E4 twice

1-5, deduction theorem

Hyp

Hyp

1, 2, MP

3, rule C twice

4, conjunction elimination
5, Proposition 3.7(k)

6, definition

4, (S6), derived rules

8, rule E4, deduction theorem
4, (S6"), Proposition 3.5(b)

10, Proposition 3.4, 2,
Proposition 3.7(t), (S5')

11, rule E4 twice, deduction
theorem

7, 9, 12, disjunction elimination
1-13, deduction theorem

By (i), (i1), Gen and the induction rule, b-g (Vx)%(x). This establishes the
existence of a quotient « and a remainder v. To prove uniqueness, proceed
as follows. Assume y#0. Assume x=yp-u+vAv <y and x=y- -+

.
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At <y. Now, u=u or u<uwu or u; <u. If u=uy, then v=1; by
proposition 3.4(d). If u <u(, then u; = u+w for some w# 0. Then
yutv=y- (u+w)+uv =y-ut+y-w+uv. Hence, v=y-w-+ v Since
w#0,y-w=y. So, v=y-w-+tuv 2y, contradicting v < y. Hence, u £ u.
Gimilarly, vy ¢ u. Thus, u =uy. Since y-u+v=x=y-u; +u, it follows
that v = vg.

From this point on, one can generally translate into S and prove the
results from any text on elementary number theory. There are certain
number-theoretic functions, such as ¥ and x!, that we have to be able to
define in S, and this we shall do later in this chapter. Some standard results
of number theory, such as Dirichlet’s theorem, are proved with the aid of the
theory of complex variables, and it 1s often not known whether elementary
proofs (or proofs in S) can be given for such theorems. The statement of
some results in number theory involves non-elementary concepts, such as
the logarithmic function, and, except in special cases, cannot even be for-
mulated in S. More information about the strength and expressive powers of
S will be revealed later. For example, it will be shown that there are closed
wfs that are neither provable nor disprovable in S, if S 1s consistent; hence
there is a wf that is true under the standard interpretation but is not pro-
vable in S. We also will see that this incompleteness of S cannot be attrib-
uted to omission of some essential axiom but has deeper underlying causes
that apply to other theories as well.

Exercises

34 Show that the induction principle (S9) is independent of the other

axioms of S.

3.57

(a) Show that there exist non-standard models for S of any cardinality N,.

(b) Ehrenfeucht (1958) has shown the existence of at least 2% mutually non-
isomorphic models of cardinality ¥,. Prove the special case that there
are 2" mutually non-isomorphic denumerable models of S.

3.6 Give a standard mathematical proof of the categoricity of Peano’s

postulates, in the sense that any two ‘models’ are isomorphic. Explain why

this proof does not apply to the first-order theory S.

3.7° (Presburger, 1929) If we eliminate from S the function letter f2 for

multiplication and the axioms (S7) and (S8), show that the new system S, is

complete and decidable (in the sense of Chapter 1, p. 34).

38

(a) Show that, for every closed term ¢ of S, we can find a natural number »
such that g 1 = 7.

(b) Show that every closed atomic wft =5 of S is decidable — that is, either
bst=sortgt#s.

(¢) Show that every closed wf of S without quantifiers is decidable.
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3.2 NUMBER-THEORETIC FUNCTIONS AND RELATIONS

A number-theoretic function is a function whose arguments and values gre
natural numbers. Addition and multiplication are familiar examples of
number-theoretic functions of two arguments. By a number-theoretic rejq.
tion we mean a relation whose arguments are natural numbers. For example,
= and <« are binary number-theoretic relations, and the expression
x+y <z determines a number-theoretic relation of three argumentgt
Number-theoretic functions and relations are intuitive and are not bound up
with any formal system.

Let K be any theory in the language ., of arithmetic. We say that g
number-theoretic relation R of n arguments is expressible in K if and only if
there is a wf #(x1,...,x,) of K with the free variables xi, .. .,x, such that,
for any natural numbers ki, ..., k,, the following hold:

1. If R(ki,...,ky) is true, then Fi¢ @(EIL. k).
2. If R{ky, ..., k,,) is false, then FI( '—l.@(kl, . ,k,,).

For example, the number-theoretic relation of identity is expressed in §
by the wf x| = x;. In fact, if &y = &y, then & is the same term as &, and so, by
Proposition 3.2(a), -5 k1 = ko. Moreover, if k| # ky, then, by Proposition
3.6(&), FS 76-1 79 Ez.

Likewise, the relation ‘less than’ is expressed in S by the wf x; < x;. Recall
that x; <xz is (Ix3)(x3 ZOAx3+x1 =x2). If k) < Iy, then there is some
non-zero number # such that ko = n+ %;. Now, by Proposition 3.6(a)(i),
s fy = 71+ ky. Also, by (83'), since n # 0,5 7 # 0. Hence, by rule E4, one
can prove in S the wf (Iw)(w # 0 Aw + k; = Iy); that is, \-g k| < k;. On the
other hand, if &y £ ky, then b < k) or ky = k. If ky < Ky, then, as we have
just seen, tg k2 < k1. If ky = ky, then bs &y = k. In either case, g &y <k
and then, by Proposition 3.7(a,c), t-s k1 & ko.

Observe that, if a relation is expressible in a theory K, then it is ex-
pressible in any extension of K.

Exercises

3.9 Show that the negation, disjunction, and conjunction of relations that
are expressible in K are also expressible in K.
3.10 Show that the relation x + y = z is expressible in S.

TWe follow the custom of regarding a number-theoretic property, such as the
property of being even, as a ‘relation’ of one argument.

1
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Let K be any theory with equality in the language ¥4 of arithmetic. A
number-theoretic function f of » arguments is said to be representable in K
if and only if there is a wf &(xy,...,x,,») of K with the free variables
11, -+ -+ %n,y such that, for any natural numbers ki, ..., k&, m, the following
hold:

'1. Iff(kli . ,{(_n) = mithen "‘K -@(El-) ‘e ;Emm).
2. b 3P K ).

If, in this definition, we replace condition 2 by

2. (A Bx, - X0, )

then the function f is said to be strongly representable in K. Notice that 2/
implies 2, by Gen and rule A4. Hence, strong representability implies re-
presentability. The converse is also true, as we now prove.

PROPOSITION 3.12 (V.H. DYSON)

If f(x1,--.,%,) is representable in K, then it is strongly representable in K.

Proof

Assume f representable in K by a wf %#(x1,...,x,,»). Let us show that f is
strongly representable in K by the following wf (xy,...,x,,») :

([(31}').@()61, s Sxfhy)] A ‘@(xl: ve. 7xn:y)) v (—'[(aly)gg(xls ‘.- =xmy)] Ay - 0)

1. Assume f(ki,...,k,) = m. Then tg &(ky,... ki, m) and Fg (3ip)
B(ki, . .., kq,y)- So, by conjunction introduction and disjunction introduc-
tion, we get by G(k1, ..., kn, ).

2'. We must show i (F)€(x1,. .., %0, ¥).

Case 1. Take (3,y)%(x1,...,xs,y) as hypothesis. (i) It is easy, using rule
C, to obtain #(xy,...,x,,b) from our hypothesis, where b is a new in-
dividual constant. Together with our hypothesis and conjunction and dis-
junction introduction, this yields €(xi,...,x,,b) and then, by rule E4,
(IE(x1,. .. %n,p). (i) Assume E(x1,...,%X,, 1) AE(x1,...,%,v). From

€é(x1,...,x,u) and our hypothesis, we obtain %(x1,...,xs,«), and, from
€(x1,...,xn,v) and our hypothesis, we obtain #(xy,...,x,, v). Now, from
B(xt,...,xn,u) and H(xy,...,x,,v) and our hypothesis, we get v = v. The
deduction theorem yields €(xy,...,x5u) A€ (x1,...,%y,v) = u=uv. From

(i) and (i1), (1) (x1,.--,xn,y). Thus, we have proved b (31) B(x1,. ..,
Xn,¥) = (FNE(x1, . - -, Xn, ¥).

Case 2. Take —(31y)B(x(,...,xs,y) as hypothesis. (1) Our hypothesis,
together with the theorem 0 =0, yields, by conjunction introduction,
() B (x1,- .., %, ») A0 = 0. By disjunction introduction, €(x1,...,x,,0),



172

FORMAL NUMBER THEORY
T T
and, by rule E4, (.:_I_}’)qg(xlg . ,xn,)’) (il) Assume %(JC], - xrnl{)/\
€(x1,...,%s, ). From €(x1,...,%,, ) and our hypothesis, it follows casily

that u = 0. Likewise, from %(x, . . ., x,, v) and our hypothesis, v = 0. Henc;
1 = v. By the deduction theorem, ‘é(xl, cs X U) N G(Xy - Xy V) D U=y
From (i) and (i), (F1y)€(x1,- .., %n,¥). Thus we have proved by ~(J1y)
B(x1, .y Xny¥) = (F)E1, -y X0, Y)

By case 1 and case 2 and an instance of the tautology [(D =
E) A (=D = E)] = E, We can obtain byg (Fhy)€(x1, . .., %, ).

Since we have proved them to be equivalent, from now on we shall yge
representability and strong representability interchangeably.

Observe that a function representable in K is representable in any ex.
tension of K.

Examples
In these examples, let K be any theory with equality in the language .2,

1. The zero function, Z(x) =0, is representable in K by the wf x; =
x3Ay=0. For any &k and m, if Z(k)=m, then m=0 and
Fg k =k A0 =0; that is, condition I holds. Also, it is easy to show that
Fk (Giy)(x1 = x Ay = 0). Thus, condition 2’ holds.

2. The successor function, N(x) = x + L, is representable in K by the wf
y =x]. For any k and m, if N(k) = m, then m = k -+ 1; hence, 7 is K. Then
b = . It is casy to verify that Fk (Elly)(y x’)

3. The projection function, U"(xl, X)) = X5, 18 representable in K by
Xp=xiAxag=x2 A .. /\x,,—x,,/\y—xj IfU"(k;, )-—m then m =
k;. Hence, Fg hh=hrb=kA..Nk,= k,, A= kj Thus, condi-
tion 1 holds. Also, kg (Fy)(x1 =x1Ax2 =32 AL  AXy =X Ay =Xx3),
that is, condition 2’ holds.

4. Assume that the functions g(xi,...,xm), li(X1,. .., %), .. (X1, ..o %)
are strongly representable in the theory with equality K by the wfs
%(xl, ce ey Xmy 2), By (xI: s rxm.yl): “es '@m(xly e :xmym), respectively.
Define a new function f by the equation

SO, %) =g(h(xny oo 3 3n)y - ooy Bn(X14 <, %0))

[ is said to be obtained from g, h\, ..., h, by substitution. Then [ is also
strongly representable in K by the following wf @(x, ..., x,, 2):

(Bn) - (@) BrXrs e X V) A A B(X1y - X, V) AEON - Yir 2))

To prove condition 1, let f(ki,... k) =p. Let hi(ky,... k) =#; for
1 <j<m; then g(r1,...,¥m) _p Smce €, B,..., B, represent g  hy,...,
., we have by %; (kl, kn,7;) for 1<j<m and b G(7,...,7m D).
So by conjunction 1ntroduct10n Fk Biky,. ...k, PN N By (K, ..,
o, Fru) NG (71 .. .7m,p). Hence, by rule FE4, I—K D(kiy. .. kn,p). Thus,
condition 1 holds. Now we shall prove condition 2'. Assume %(x,...,
Xy U} N D(xy, ..., %, 1), that 1s
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(A)(Elyl) o (aym)(ggl (xls .- ,xmyl) AooA -@m(xls ves :xmym) A %()’11 « ooy Vs ”))

and
(D)(Hyl) - (aym)('@l(xla .. 1xmyl) AoA '@m(xla . .- :xn:ym) A 45(}’1, -3 ¥Ym, U))

By(A), using rule C m times,
BrXLy e Xy DY AL A B (X1, X B) NE(BY, . - By 1)

By([]) using rule C again,
gl(\xl‘) - 1xﬂjcl) /\ [ /\ gn;(xl, [ ,xn,Cm) /\ fo(cl, . '!CNJ! U)

Since bg (J1y)#j(x1s- .., %, 35), we obtain from %;(x),...,x,,b;) and
Bj(x1,---,%u,¢j), that by =c¢;. From %(by,...,by,u) and by =c¢y,...,
by = cm, W€ have €(c1, . .., Cy, u). This, with F (312)4(x1, ..., x,,2) and
%(c1,---,Cmv) yields w=wv. Thus, we have shown Fg 2(x;,...,
Xy ) ND(Xp, . X)) > u=1v. It is easy to show that kg (I2)
(x1, .- Xn,2). Hence, by (312)2(x1, - - -, Xp, 2).

Exercises

3.11 Let K be a theory with equality in the language . ,. Show that the

following functions are representable in K.

@) Za(x1,..-xn) =0 [Hint :Z,(x1,...,x5) = Z(UT (x1,. . - 1 Xn))-]

(b) Ci(x1,---,%,) =k, where k is a fixed natural number, [Hint: Use
mathematical induction in the metalanguage with respect to £.]

3.12 Prove that addition and multiplication are representable in S.

If R is a relation of n arguments, then the characteristic function Cy is
defined as follows:

_JOo  if R(x,...x,) is true
Crlxt, ) = { 1 ifR(x,....x,) is false

PROPOSITION 3.13

Let K be a theory with equality in the language %4 such that g 0 # 1.
Then a number-theoretic relation R is expressible in K if and only if Cy is
representable in K.

Proof

If R is expressible in K by a wf #(xy,...,x,), it is easy to verify that Cy is
repres_e_ntable in K by the wf (B(xi1,...,x,)Ay=0)V (=B(x1,...,%n)
Ay =1). Conversely, if Cg is representable in K by a wf @(x1,...,x,,»),
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then, using the assumption that g 0 # 1, we can easily show that R g
expressible in K by the wf @(x1,...,x,,0).

Fxercises

3.13 The graph of a function f(x1,...,x,) is the relatiog
[ty ...y Xy) = xpy1. Show that f(x1,...,x,) is representable in S if and only
if its graph is expressible in S.

3.14 If Q and R are relations of n arguiments, prove that Cpor. g = 1 — Cg,
Cio or ry = Cp - Ck, and C(QandR) =Cp+ Cg— Cp- Ck.

3.15 Show that f(x,...,x,) is representable in a theory with equality K in
the language %4 if and only if there is a wf #(x,, . . ., xs,¥) such that, for any
ki, knym, if fka, ... k) = m, then b (W) (H (k. -k y) & y =),

3.3 PRIMITIVE RECURSIVE AND RECURSIVE FUNCTIONS

The study of representability of functions in S leads to a class of number-
theoretic functions that turn out to be of great importance in mathematical
logic and computer science.

DEFINITION

1. The following functions are called initial functions.
(I) The zero function, Z(x) = 0 for all x.
(I1) The successor function, N(x) = x + 1 for all x.
(III) The projection functions, Ul (x1, ..., x,) = x; for all x1,... x,.
2. The following are rules for obtaining new functions from given functions.
(IV) Substitution:
FOus ey Xa) = G KL oo K)o ooy (K15 -+, %))
f is said to be obtained by substitution from the functions
9‘(}’1, .- 7ym),hl (xls s axn), s 1hm(x19 .. ;xn)
(V) Recursion:
f(xlv' - 7x111(_)) = g(xlv- . )xn)
f(xh cea X, ¥+ 1) = h(xh .- 1xn-;y:f(x17 ver ;xmy))
Here, we allow n = 0, in which case we have

f(0) =k where k is a fixed natural number

f+1)=h(rf»)
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We shall say that f is obtained from g and % (or, in the case n = 0, from

h alone) by recursion. The parameters of the recursion are xi,...,x,.
Notice that f is well defined: f(x1,...,x,,0) is given by the first equa-
tion, and if we already know f(xi,...,xs,»), then we can obtain

f(x1,-..,%;,y+ 1) by the second equation.
(VD Restricted p-Operator. Assume that g(xp,...,x,,y) is a function such

that for any xp,...,x, there is at least one y such that
g(x1,...,%,y) =0. We denote by mw(g(xi,...,%s,¥) =0) the least
number y such that g(xi,...,x,,y) = 0. In general, for any relation

R(x1,...,%n,y), we denote by wR(xi,...,x,,y) the least y such that
R(x1,--.,%,,y) is true, if there is any y at all such that R(x;,...,x,,)
holds. Let f(xy,...,x,) = w(g(x1,-..,xn,») = 0). Then f is said to be
obtained from g by means of the restricted p-operator if the given
assumption about g holds, namely, for any xi,...,x,, there is at least
one y such that g(x;,...,x,,y) =0.

3. A function f is said to be primitive recursive if and only if it can be
obtained from the initial functions by any finite number of substitutions
(IV) and recursions (V) — that is, if there is a finite sequence of functions
fos .-, fa such that f,, = f and, for 0<i<n, either f; is an initial function
or f; comes from preceding functions in the sequence by an application of
rule (IV) or rule (V).

4. A function f is said to be recursive if and only if it can be obtained from
the initial functions by any finite number of applications of substitution
(IV), recursion (V) and the restricted p-operator (VI). This differs from
the definition above of primitive recursive functions only in the addition
of possible applications of the restricted p -operator. Hence, every pri-
mitive recursive function is recursive. We shall see later that the converse
is false.

We shall show that the class of recursive functions 1s identical with the
class of functions representable in S. (In the literature, the phrase ‘general
recursive’ is sometimes used instead of ‘recursive’.)

First, let us prove that we can add ‘dummy variables’ to and also permute
and identify variables in any primitive recursive or recursive function, ob-
taining a function of the same type.

PROPOSITION 3.14

Let g(y1, ..., ) be primitive recursive (or recursive). Let xy, ... x, be distinct
variables and, for 1<i<k, let z; be one of x1,...,x,. Then the function f
such that f(x),...,x,) = g(z1,...,2) is primitive recursive (or recursive).



L 176 ] [ FORMAL NUMBER THEORY

Proof
Let z; = x;,, where 1 <j;<{n. Then z; = Ul(x1,- .., %,). Thus,
S, x) = g(Us (a0 Xy Uj (%1, -+ 5 %))

and therefore f is primitive recursive (or recursive), since it arises frop
z ’ -
g, U, .., U, by substitution.

Examples

1. Adding dummy variables. 1f g(xy,x3) is primitive recursive and if
f(x1,%2,x3) = g(x1,x3), then f(x1,x2,x3) is also primitive recursive. [y
Proposition 3.14, let z; = x; and z; = x3. The new variable x; is called 4
‘dummy variable’ since its value has no influence on the value of
f(xlsx23x3)'

2. Permuting variables. 1f g(xy,x3,x3) is primitive recursive and ijf
f(x1,x2,x3) = g(x3,%1,x2), then f(x1,x,,x3) 1s also primitive recursive, [
Proposition 3.14, let zy = x3,z; = x; and z3 = x».

3. Identifying variables. It g(x1,x7,x3) 1s primitive recursive and jf
f(x1,x2) = g(x1,x,x1), then f(x;,x;) is primitive recursive. In Proposi-
tion 3.14, let n =2 and z; = x1,22 = x3 and z3 = xj.

COROLLARY 3.15

(a) The zero function Z,(xi,...,x,;) = 0 is primitive recursive.

(b) The constant function Cj(x1,...,x,) = k, where k is some fixed natural
number, is primitive recursive.

(c) The substitution rule (IV) can be extended to the case where each 4; may
be a function of some but not necessarily all of the variables. Likewise,
in the recursion rule (V), the function g may not involve all of the

variables x1, ..., x,,¥, or f(x1,...,x,,y) and 4 may not involve all of the
variables x,...,%,;,¥, or f(x1,...,Xu,¥).
Proof

(a) In Proposition 3.14, let g be the zero function Z; then k = 1. Take z; to be
X1-

(b) Use mathematical induction. For & = 0, this is part (a). Assume C}
pI:imi.tve recursive. Then C7,,(x1,...,x,) is primitive recursive by the sub-
stitution Cf,; (x1,. .-, %,) = N(C{ (x1, - .. , xn))-

(c) By Proposition 3.14, any variables among xi, ... ,x, not present in a
function can be added as dummy variables. For example, if A(x,x3;) is
primitive recursive, then A*(x1,x2,x3) = A(xy,x3) = h(Ulz’(xl,xg,xa), U33 (x1,
x7,x3)) 1s also primitive recursive, since it is obtained by a substitution.
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PROPOSITION 3.16

The following functions are primitive recursive.
@+
{b) **¥

© ¥ Lo
—Ix— x>
o ={ 0 ifx=0
§ is called the predecessor function.

/ N e if x>y
;{e) x—y—~{0 ifx<y

| ~ _fx—y ifx?}}
(0 Ix }’|—{J,_x ifx <y

0 ifx=0

(8) Sg(x)={1 ifi#o
. I ifx=0
(h) SB(x) = {0 1f}; £0

@ ~

«(j) min(x,y) = minimum of x and y

(k) min(x,, cea ,x,,)

() max(x,y) = maximum of x and y

(m) max(xy,...,x,)

(n) rm(x,y) = remainder upon division of y by x
(0) qt(x,y) = quotient upon division of y by x

Proof
(@) Recursion rule (V)
x+0=x or f(x,0) = Ul(x)

x+(y+1)=Nx+y) flo,y+1)=N(f(x,5))
(b) x-0=0 or g(x,0) = Z(x)

x-(y+1): (x-y)+x (x,y+1) Zf(g(x,y),x)

where f 1s the addition function

) x=1

W = (W) -x
(d) 5(0) =0

S(y+1)=y
(e) x—0=x

x=(y+1) = 8(x—y)
® -y =@xy)+ (-x) (substitution)

(8 sglx) =x=d(x) (substitution)
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(h) 3g(x) = 1-sg(x) (substitution}
(i) or'=1

G+ N=01-0+1)
() minfx,y) = x—(x~y)

(k) Assume min(x,...,x,) already shown primitive recursive.
min(xl, o 1xmxn+1) = min(min(xla S :xn):xn+1)

O max(x,y) =y+ (x—y)

(m) max(xi,...,%n, Xne1) = max(max(x,...,xn),Xnpt1)

(n) rm(x,0) = 0

mm(x,y + 1) = N@rm(x, )) - sg(|x — N(rm(x, y))|)
(o) qt(x,0) =0

qt(x,y + 1) = qt(x,y) +5g(|x — N(rm(x, y))|)

In justification of (n) and (0), note that, if ¢ and » denote the quotient
qt(x,y) and remainder rm(x, y) upon division of y by x, then y = gx + r and
O<r<x. So, y+1=gx+(r+1). If r+1<x (that is, if [x —N(m
(x,3))| > 0), then the quotient gt(x,y + 1) and remainder rm(x,y + 1) upon
division of y + | by x are ¢ and » + 1, respectively. If ¥ + 1 = x (that is, if
x— N(rm(x,»))| =0), then y+1=(g+1)3x and qi(cy+1) and
rm(x,y + 1) are g+ 1 and 0, respectively.!

DEFINITIONS
y(zf(xl,-.-,xnay - f(xu-"7x’“0)+"-+f(x,,...,x",z—1) ifz>0
}:f(x,,---,x,,,y): Z f(xn"-axmy)
ysz y<z+l

m {lifZZO
y(zf(xn---,xmy)‘_ f(xl,...,xn,O)-...-f(xi,...,xn,z—l) ifz>0
Hf(xla---,me’) = II f('xl'l"';xn!y)

¥ysz y<z+l1

These bounded sums and products are functions of xq, ..., x,,z. We can also
define doubly bounded sums and products in terms of the ones already

given; for example,

Z &1,y X, ¥) =S (X o Xu+ D+ o4 f(x, e Xy 0 — 1)

H<y<y

= Z fx, o X, y+u+1)

¥ < &{v—u)

TSince one cannot divide by 0, the values of rm(0,y) and qt(0,y) have no in-
tuitive significance. It can be easily shown by induction that the given definitions
yield rm(0, y) = y and qt(0,y) =0.
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PROPOSITION 3.17

If f(x1,- -+ %n,y) is primitive recursive (or recursive), then all the bounded
sums and products defined above are also primitive recursive (or recursive).

Proof
Let g(x1,- -y X%n,2) = Y f(x1,...,x,,¥). Then we have the following recur-
sion: y<z

g(x1,. .-, x,0) =0
gxi, . Xz + 1) =glxt, . ..y xn,2) + (X100 e X0y 2)
I A, - xmz) = D, f(x1,...,%4,¥), then

£z
h(xl ’Ji v ’x’”Z) = g(JC1, s Xy Z 1) (SlletitlltiOIl)
“The proofs for bounded products and doubly bounded sums and products
‘are left as exercises.

Example
Let 7(x) be the number of divisors of x, if x > 0, and let ©(0) = . (Thus, t(x)

is the number of divisors of x that are less than or equal to x.) Then 7 is
primitive recursive, since

(%) = Y sg(rm(y,x))
y=x

Given expressions for number-theoretic relations, we can apply the
connectives of the propositional calculus to them to obtain new expressions
for relations. For example, if Ri(x,y) and Rp(x,u,v) are relations, then
Ri(x,y) A Ry(x,u,v) is a new relation that holds for x,y,#,v when and only
when both R;(x,y) and Ry (x,u,v) hold. We shall use (Vy)y AR X Y)
to express the relation: for all y, if y is less than z, then R(x,...,x,,y) holds.
We shall use (Vy), <., (3y), ., and (dy), ., in an analogous way; for ex-
ample, (Jy), . R(x1,...,%y,y) means that there is some y < z such that
R(x1,...,xs,y) holds. We shall call (V)yer (W), <.(I)ye and (),
bounded quantifiers. In addition, we define a bounded p-operator:

the least y < z for which R(x,,...,x,,»)
Wy<zR(x1,- - Xn,¥) = { holds if there is such a y
z otherwise

The value z is chosen in the second case because it is more convenient in later
proofs; this choice has no intuitive significance. We also define
19 < R(x1,...,x,,y) to be Wy <z 1 R(x1, .0 x0,y).

A relation R(xp, . . ., x,) is said to be primitive recursive (or recursive) if and
only if its characteristic function Cg(x,...,x,) is primitive recursive (or re-
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cursive). In particular, a set 4 of natural numbers is primitive recursive (or
recursive) if and only if its characteristic function Cy4(x) is primitive recursiye
(or recursive).

Examples

1. The relation x; = xo is primitive recursive. Its characteristic function i§
sg(|x1 — x2|), which is primitive recursive, by Proposition 3.16(f,g).

2. The relation x{ < x, is primitive recursive, since its characteristic functioy
is 8g(x2—x1), which is primitive recursive, by Proposition 3.16(e h).

3. The relation x) )x; is primitive recursive, since its characteristic function j5
sg(rm(xy,x2)).

4. The relation Pr(x),(x) is a prime, is primitive recursive, singe
C,.(x) = sg(|z(x) — 2|). Note that an integer is a prime if and only if it hag
exactly two divisors; recall that 7(0) = 1.

PROPOSITION 3.18

Relations obtained from primitive recursive (or recursive} relations by
means of the propositional connectives and the bounded quantifiers are also
primitive recursive (or recursive). Also, applications of the bounded je-op-
erators (<, and uy, <, lead from primitive recursive (or recursive) rela-
tions to primitive recursive (or recursive) functions.

Proof

Assume Ry(x1,...,x,) and Ry(xi,...,x,) are primitive recursive (or re-
cursive) relations. Then the characteristic functions Cg, and Cg, are primi-
tive recursive (or recursive). But C_g, (x1,...,x,) = 1 -=Cg, (x1, ..., x,); hence
—R; is primitive recursive (or recursive). Also, Cgvg,(*1,-..,%)
= Cg,(x1,---,%xn) - Cry(x1,...,%,); 80, R V Ry is primitive recursive (or re-
cursive). Since all propositional connectives are definable in terms of — and
V, this takes care of them. Now, assume R(xy, ... ,x,, y) is primitive recursive
(or recursive). If O(x1, .. .,x,,2) is the relation (Ely)y <R(x1, ... xs, ), thenit
is easy to verify that Cp(xi,...,x,,2) = II,,Cr(x1,...,%s,y), which, by
Proposition 3.17, is primitive recursive (or recursive). The bounded quan-
tifier (3y), <, is equivalent to (Jy), . ,,,, which is obtainable from (Jy), _, by
substitution. Also, (Vy), ., is equivalent to —(Jy),,~, and (W), ., I8
equivalent to =(3y), ¢, Doubly bounded quantifiers, such as (Iy), ., <w
can be defined by substitution, using the bounded quantifiers already
mentioned. Finally, T1, < yCr(x1, - - . ,x, t1) has the value I for all y such that
R(x1,...,x,,t) is false for all # <y; it has the value 0 as soon as there is some
u < y such that R(x;,...,x,,u) holds. Hence, Z},<Z(Hl, <yCrx1, -« ., Xm 1))
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counts the number of integers from 0 up to but not including the first y < z
guch that R(x1,. .. ,%,,¥) holds and is z if there is no such y; thus, it is equal
10 1wy<zR(x1, .-, %n,») and so the latter function is primitive recursive (or
;recurswe) by Proposmon 3.17.

Examples
1. Let p(x) be the x4 prime number in ascending order. Thus,

p(0) =2, p(1) =3, p(2) =5, and so on. We shall write p, instead of
plx). Then px 18 a primitive recursive function. In fact,

po=2
Petl = Wy < (1 (2 <y API(p))

Notice that the relation # < y APr(y) is primitive recursive. Hence, by
Proposition 3.18, the function py, <, (v <y APr(y)) is a primitive re-
cursive function g(x, v). If we substitute the primitive recursive functions
z and z! + 1 for u and v, respectively, in g(u,v), we obtain the primitive
recursive function

h(z) = Wy < 21{z < y APr(y))

and the right-hand side of the second equation above is A(p,); hence, we
have an application of the recursion rule (V). The bound (p,)! + 1 on the
first prime after p, is obtained from Euclid’s proof of the infinitude of
primes (see Exercise 3.23).

:2. Every positive integer x has a unique factorization into prime powers:
x=po'r ---pi. Let us denote by (x); the exponent «; in this factor-
ization. If x = 1, (x); = 1 for all j. If x = 0, we arbitrarily let (x), = 0 for
all j. Then the function (x); is primitive recursive, since (x); =
Hyyﬁr(p)lX/\ (pH_ |x))-

3. For x > 0, let Eh(x) be the number of non-zero exponents in the factor-
ization of x into powers of primes, or, equivalently, the number of dis-
tinct primes that divide x. Let £i(0) = 0. Then ¢ is primitive recursive.
To see this, let R(x,y) be the primitive recursive relation
Pr(y) Aylx Ax#0. Then €h(x) =3, . 58(Cr(x,y)). Note that this
yields the special cases £h(0) = ¢h(1) = 0. The expression ‘fh(x)’ should
be read ‘length of x’.

4. If the number x = 2%3% ... p* is used to ‘represent’ or ‘encode’ the

sequence of positive integers ay,ay,...,a, and y =230 pﬁ;" ‘re-
presents’ the sequence of positive integers bg,b1,...,b,, then the
number

__ napqa ar. _hp by K
xxy =293 pr Pl Py ijrl+m

‘represents’ the new sequence ay,ay,...,dar, bo,b1,...,b, obtained by
juxtaposing the two sequences. Note that ffi(x) =k + 1, which is the
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length of the first sequence, €h(y) = m 4+ 1, which is the length of th
second sequence, and b; = (y)j. Hence, '

Xy =x- H (Peny )Y
J<Eh(y)
and, thus, = is a primitive recursive function, called the Juxtapositip,,
function. It is not difficult to show that x + (y + z) = (x * y) *z as long 4
y # 0 (which will be the only case of interest to us). Therefore, there js p
harm in omitting parentheses when writing two or more applicationsf'of
*, Also observe that x * 0 =xx 1 = x.

Exercises

3.16 Assume that R(xy,...,x,,y) i a primitive recursive (or recursive) re.:
lation. Prove the following:

(a) (Ely)u<y<uR(x1: U S O (Ely)u gyng(xl’ R axmy) and (EIJ’)".«gy@R (x;‘,
.-.,Xn,¥) are primitive (or recursive) relations.

(b)Ju}’u<y<vR(x1: s ,xmy)a Ju}’u:;ysz(xl: cae ,x,,,y) and Wy <y<olR (xla sy XYY
are primitive recursive (or recursive) functions.

(c) If, for all natural numbers x,, .. ., x,, there exists a natural number y such:
that R(x1,...,x,,¥), then the function f(x1,...,x,) = WR(x1,...,x,y) is.
recursive. [Hint: Apply the restricted p-operator to Cg(x1,...,xy, )]

3.17

(a) Show that the intersection, union and complement of primitive recursive
(or recursive) sets are also primitive recursive (or recursive).

(b) Show that every finite set is primitive recursive,

3.18 Prove that a function f(x1,...,x,) is recursive if and only if its re-

presenting relation f(xj,...,x,) =y is a recursive relation.

3.19 Let [\/n] denote the greatest integer less than or equal to /n, and let

I1(n) denote the number of primes less than or equal to n. Show that [\/s]

and I1(n) are primitive recursive.

3.20 Let e be the base of the natural logarithms. Show that [re], the greatest

integer less than or equal to ne, is a primitive recursive function.

3.21 Let RP(y,z) hold if and only if y and z are relatively prime, that is, y

and z have no common factor greater than 1. Let ¢(n) be the number of

positive integers less than or equal to » that are relatively prime to n. Prove

that RP and ¢ are primitive recursive.

3.22 Show that, in the definition of the primitive recursive functions, one

need not assume that Z(x) = 0 is one of the initial functions.

3.23 Prove that pgy1 <(pop1 - .. pr) + 1. Conclude that pr, 1 <pi!+ 1.

For use in the further study of recursive functions, we prove the following
theorem on definition by cases.
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Let

gi{x1,. .., %) W Ry(x1,...%,) holds

go(x1,...,%,) i Rp(xy,...,x,) holds

f(xl,---,xn): :

gx(x1,---,xn)  if Re(xy,...,x,) holds
if the functions g1, ..., gx and the relations Ry, ..., Ry are primitive recursive
(or recursive), and if, for any x;,...,x,, exactly one of the relations
Ri(X1s- -2 Xn)s- - ,Rp(x1,...,x,) is true, then f is primitive recursive (or re-
cursive).
E{Proof

;f(_xl, - ,x,,) :gl(xl,. .. ,x,,) '@(CRI(}C;[,. .. ,x,,)) + ...+
Q’k(xh ‘e :xn) '@(C&(xli cee :xn))-

‘Exercises

3.24 Show that in Proposition 3.19 it is not necessary to assume that Ry, is
primitive recursive (or recursive).
325 Let

_ | x? if x 1s even
S = {x+1 if x is odd

Prove that f is primitive recursive.

3.26 Let

hix) = 2 if Goldbach’s conjecture is true
11 if Goldbach’s conjecture is false

Is 4 primitive recursive?

It is often important to have available a primitive recursive one—one
correspondence between the set of ordered pairs of natural numbers and the
set of natural numbers. We shall enumerate the pairs as follows:

(0,0), (0,1),(1,0),(1,1), (0,2),(2,0),(1,2),(2,1),(2,2),

After we have enumerated all the pairs having components less than or
equal to k, we then add a new group of all the new pairs having components
less than or equal to k+1 in the following order: (0,k+1),(k+ 1,0),
L+, (k+1L1),...,(kk+1),(k+1,k),(k+1,k+1). If x<y, then
(x,¥) occurs before (y,x) and both are in the (y + 1)th group. (Note that we
start from 1 in counting groups.) The first y groups contain y* pairs, and
(x,y) is the (2x+ 1)th pair in the (y+ 1)th group. Hence, (x,y) is the
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(32 + 2x + 1)th pair in the ordering, and (y,x) is the (2 + 2x + 2)th pair. On

the other hand, if x = y, (x, y) is the ((x + 1) )th pair. This justifies the fof

lowing definition, in which ¢%(x, y) denotes the place of the pair (x, ¥) in the"
above enumeration, with (0,0) considered to be in the Oth place:

dH(x,y) = sg(x-y) - ( + 20 + 1) +3B(x=y) - (7 + 2x)

Clearly, ¢° is primitive recursive.
Let us define inverse functions a’f and 03 such thy
(02(x y)) = x.03(c*(x,¥)) = y and ¢*(c?(z),03(z)) =z. Thus, o(z) and
o3(z) are the first and second components of the zth ordered pair in the givey,
enumeration. Note first that ¢7(0) = 0,63(0) = 0,

a3(n) if o2(n) < 63(n)
(n) o3(n) + 1 if 6t(n) > 63(n)

0 if 62(n) = o3(n)
and
2 [ 6} () if of(n} # o5(n)
oy(n+1) = {a%(n) +1 if 0::2(”) = ‘é(")
Hence,

ot (n+ 1) = o3(n) - (sg(o3(n) 0 (1)) + (03(n) + 1) - (sg(0] (n) 03 (n)))
= @(07(n), 03(n))
o3+ 1) = o3 (n) - (sg(lo3m) — 2D + (2(m) + 1) - GE((n) — GA(m)]))
= Y(o}(n), o3(n))
where ¢ and y are primitive recursive functions. Thus, o2 and o3 are defined
recursively at the same time. We can show that 2 and o2 are primitive
recursive in the following devious way. Let h(u) =27 HORZON Now, £ is
pnmltlve recursive, since #h(0) = 291030300 '= 20 .30 = |, and h(n+1)
— 90 (nH)3ei(n+1) — 240(0201) 2() (a7 ()03 (m) — 2@(Urm)o,(A(m))1)  J((hlm))o,(h(m));)
Remembering that the function (x), is primitive recursive (see Example 2 on
page 181), we conclude by recursion rule (V) that 4 is primitive recursive.
But o63(x) = (h(x)), and ¢Z(x) = (h(x)),. By substitution, ¢? and ¢ are
primitive recursive.

One-one primitive recursive correspondences between all n-tuples of
natural numbers and all natural numbers can be defined step — by — step,
using induction on n. For n = 2, it has already been done. Assume that, for
n =k, we have primitive recursive functions o*(xi,...,x), 0% (x), ..., 05 (x)
such that of(c*(x,...,x)) = x for 1<i<k, and o*(oi(x),...,0f(x) =x
NOW, for n=k+1, define Jk+1(x1, - xk,karl) = O'Z(O'k(x], “a ,xk),kar[),
it (x) = o¥(o?(x)) for 1<i<k and GHl(x) o5(x). Then of*1, k+1,
eeey oj,§ } are all primitive recursive, and we leave it as an exercise to Venfy
that oj‘+1 ((J’k+1 (*1y- .oy X1)) = xifor1 i<k +1, and o (o’k+] (x), -

ok1i() =x.
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It will be essential in later work to define functions by a recursion in
\;,rhiCh the value of f(xi,-,x,,y+ 1} depends not only upon f(xy,...,x,,y)
put also upon several or all values of f(xi,...,x,, ) with u<y. This type of
(eccursion is called a course-of-values recursion. Let f#(x1,...,x,,¥) =
ﬁ" o L) Note that f can be obtained from f# as follows:

;f(XI, X y) = G Xy + 1)))}_

PROPOSITION 3.20 (COURSE-OF-VALUES RECURSION)

If B(x1,- - -, Xa, ¥, 2) 1s primitive recursive (or recursive) and f(xy,...,x,,»)
= B(X1y X Y S (L o X, y)), then fis primitive recursive (or re-
cursive).

Proof

f#(x[,. - -,xn-,O) - 1
f#(xl: Y. TP 4 + 1) - f#()ﬂ, P ,)C,.,,_}I) -p"’r(xl-"-rrm)’)

= f#(x1,- .-, X, ¥) 'P)’f(x' e P S FH e 3))
Thus, by the recursion rule, f# is primitive recursive (or recursive), and

f(xh e :xm.}’) = (.f#(xlﬂ EERE TS 4 + 1))}’

Example
The Fibonacci sequence is defined as follows: f(0) =1,f(1) =1, and

flk+2) = f(k) + f(k+1) for k=0. Then f is primitive recursive, since
F(n) =35g(n) +38(In — 1) + ((F#(n)),y + (FH(1)),22) - sg(n 1)
The function
h(y,z) =SE(y) +8&(|y — 1) + ((2),21 + (2),=2) - sg(y=1)

is primitive recursive, and f(n) = h(n, f#:(n)).

Exercise

327 Let g(0)=2,g(1) =4, and g(k +2) =3g(k + 1) — (2g(k) +1). Show
that g is primitive recursive,

COROLLARY 3.21 (COURSE-OF-VALUES RECURSION
FOR RELATIONS)

If H(xi,...,xs,),2) 1s a primitive recursive (or recursive) relation and
R(xi,...,xy,y) holds if and only if H(xi,- -, %, ¥, (Cr)F(x1, -, Xn, ¥))s
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where Cp is the characteristic function of R, then R is primitive recursive (or
recursive).

Proof

Cr(*1y -« s % ¥) = Cu(%15+ -, X, ¥, (CR)F(x1, . . ., X, ¥)). Since Cy is primi-
tive recursive (or recursive), Proposition 3.20 implies that Cg is primitive
recursive (or recursive) and, therefore, so is R.

Proposition 3.20 and Corollary 3.21 will be drawn upon heavily in what
follows. They are applicable whenever the value of a function or relation for
y is defined in terms of values for arguments less than y (by means of g
primitive recursive or recursive function or relation). Notice in this cop-
nection that R(xi,...,X,, ) is equivalent to Cg(x1,...,xs, u) = 0, which, in
turn, for u < y, is equivalent to ((Cr)#(x1,...,%,»)), =0

Exercises

3.28 Prove that the set of recursive functions is denumerable.

3.29 If fy, A1, /2,-.. is an enumeration of all primitive recursive functions
(or all recursive functions) of one variable , prove that the function f.(y) is
not primitive recursive (or recursive).

LEMMA 3.22 (GODEL’S -FUNCTION)

Let f(x1,x2,x3) = rm(1 + (x3 + 1} - x3,x;). Then § is primitive recursive, by
Proposition 3.16(n). Also , f is strongly representable in S by the following
wi Bt{x1,x;,x3,»):

@AWY =1+ (x3+1)-x2)-wHyAp <1+ (x3+ 1) x2)
Proof

By Proposition 3.11 g (31y)Bt(x1,x2,x3,5). Assume Sk, k»,k3) = m. Then
ki =(1+(ka+1) k) -k+m for some k, and m <1+ (k3+1)-k. So,
Fs by = (1 + (k3 +1)- kz) k+m, by Proposition 3.6(a). Moreover,
e < 1+ (k3 +1) -k, by the expressibility of < and Proposition 3.6(a).
Hence, bs k; = (1 + (k3 +1)- ko) k+mAm< 1+ (k3 + 1) . ky from which
by rule E4, s Bt(ki, k3, k3, 7). Thus, Bt strongly represents f8 in S.

LEMMA 3.23

For any sequence of natural numbers ko, ky,...,ks, there exist natural
numbers b and ¢ such that f(b,c,i) =k; for 0<i<n.

Tt
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Proof

Let j=max(nmko,ki,...,k») and let ¢=j . Consider the numbers
w; = 1+ (i + 1)c for 0<i<n; no two of them have a factor in common other
than 1. In fact, if p were a prime dividing both 1 + (i + 1)cand 1 + (m+ 1)c
with 0<i < m < n, then p would divide their difference (m — i)c. Now, p
does not divide ¢, since, in that case p would divide both (i + 1)c and
1 + (i + 1)c, and so would divide 1, which is impossible. Hence, p also does
not divide (m — i); for m —i<n<j and so, m — i divides j! = ¢. If p divided
m — i, then p would divide ¢. Therefore, p does not divide (m — i)c, which
yields a contradiction. Thus, the numbers u;, 0<i < n, are relatively prime
in pairs. Also, for 0<i < n, b <j<! = ¢ < 1 +(i + 1)c = u;; that is, k; < 1.
Now, by the Chinese remainder theorem (see Exercise 3.30), there is a
pumber b < gy ...u, such that mm(w;,b) =4k for 0<i<n But
p(b, ¢, i) = rm(1 + (i + 1)c, b) = rm{w;, b) = k;.

Lemmas 3.22 and 3.23 enable us to express within S assertions about
finite sequences of natural numbers, and this ability is crucial in part of the
proof of the following fundamental theorem.

PROPOSITION 3.24

Every recursive function is representable in S.

Proof

The initial functions Z, N and U7 are representable in S, by Examples 1- 3
on page 172. The substitution rule (IV) does not lead out of the class of
representable functions, by Example 4 on page 172.

For the recursion rule (V), assume that g(x,...,x,) and A(xy, ..., xu,y,2)
are representable in S by wfs #(xy,...,x,41) and €(xq,...,x,13), respec-
tively, and let

() S, X0, 0) = glxy, - - -, xn)
f(xl’ .. 7xH’y + 1) = h(x17 - 7x11)y7f(x17 b 7xn7y))

Now, f(x1,.-.,xn,y) = z if and only if there is a finite sequence of numbers
by,...,b, such that by=g(x,...,x,), bwy1 =Hh(x1,...,x5,w,by) for
w+ 1 <y, and b, = z. But, by Lemma 3.23, veference to finite sequences can
be paraphrased in terms of the function f and, by Lemma 3.22, f is re-
presentable in S by the wf Bt(x, xz,x3,)).

We shall show that f(xi,...,x,, %) is representable in S by the fol-
lowing wf Z(x1,...,%ns2):

() A)(Ew)(Bt{u, v, 0, w) A B(x, . . ., Xy, W))) A B, 0, Xy 1, Xn2)
A (YWY (w < xq1 = () (@) (Bt(u, v, w,¥) A Bt{u, v,w',2) AG(x1, -, X0, W, 1,2)))]
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(i) First, assume that [(xi,...,x,p) =m. We wish to show tha;
Fs D(ki,y. .-k, B, 7). If p=0, then m=g(k,...,k,). Consider the g
quence consisting of m alone. By Lemma 3.23, there exist b and ¢ such tha¢
B(b, c,0) = m. Hence, by Lemma 3.22, ‘

(X) s Bt(b,c,0,m)

Also, since m = g(ky, ..., k), we have ks Z(ki, ..., k,, 7). Hence, by rule
E4

(XX) ks ()(BB,E,0,w) A B(F, .., Ty )
In addition, since g w40, a tautology and Gen yield
(XXX) (vw)(w <0=(3y)(32)(Bt(b, ¢, w,»)A(BUb, ¢, W, z)AE(k1,. . -, K, w, ,2)))

Applying rule E4 to the conjunction of (X),(XX) and (XXX), we obtain
Fs D(kyy. . . kn, 0,7). Now, for p >0, f(ki,. .., ks, p) is calculated from the
equations (I) in p+ 1 steps. Let » = f(ki,...,k,1). For the sequence of
numbers rp,...,r,, there are, by Lemma 3.23, numbers b and ¢ such
that B(b,c,i) =#; for 0<i<p. Hence, by Lemma 3.22, b5 Bt (b,%,i,7).
In particular, B(b, c,0) =10 = f(ki,..-,kn, 0} = g(k1,. .., ky). Therefore,
ks Bt (b,¢,0 ;O)A%’(kl, . kn, o), and, by rule E4, (i) ks (Gw)(Bt(5,7, 0, w)
AB(EL, . . . Ky W) Smce tp=flk,...,ka,p) =m, we have f(b,c,p)
= m. Henoe (i) s Bt(p, c,p,m) For O<i<p—1, Bb,ci)=rn=f

iyl §) a0d (B, ¢y + 1) = ey = f(kn, - oy + 1) =y
f(kl, ,,,l)) = h(kl, -k, 7). Therefore, ks Bt(b,c, i,7:) A Bt
(b, c,l ,r,+1) /\%”(kl,- ,,,l Fi;Fiy1)- By Rule E4, I (Ely)(Eiz)(Br (b, ¢ v1,y)

ABt(b,z,7,2) NG (ky," - k,,,l ¥,z)) So, by Proposition 3.8(b), (i) Fg
(Yw)(w<p= (EIy)(EIz)(Bt(b z,w,y) ABt(b,&,w',z)A %(kl, ey kny Wy, 2))).
Then, applymg rule E4 twice to the conjunction of (i), (ii) and (111) we obtain
Fs D(ky, - -k, p,m). Thus, we have verified clause 1 of the definition of
representablhty (sce page 171).

(i) We must show that ks (J1x,42)2(ky, . .., kn, B, %ny2). The proof is
by induction on p in the metalanguage. Notice that, by what we have
proved above, it suffices to prove only uniqueness. The case of p = 0 is left
as an easy exercise. Assume kg (E]]x,,+2).@(§1,...,Z,,,ﬁ,x,prz). Let a=g
(k1y. k), B =flkty .o, kuyp), andy = flk,....b,p+ 1) =h (ky,...,
kn, p, B). Then

(1) ks Sky,.. . ks 5, B,7)
(2) s Bk, ... ky,0)
(3) ks 2k, ... kD, P)
(4) s Dk, ..., ky,p+ 1,7)

(5) bs (Dixer2)D(k,- - 1 kny Py Xni2)

>¢"I

Assume
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(6) ki, .. ko + 1, Xny2)

We must prove x,,2 = 7. From (6), by rule C,

() (3w)(Bt(b,c,0,w) A B(Ry, . .., Tn, W)

(b) Bt(b,c,p+ 1,37.2)

(€) (Vw)w < pa 1

= () (32)(Bt(b, c, w,y) ABt(b,c,w,z) NE(ky, ... ky, W, 1,2)))
From (c),
(d)(vw)(w < p = (Fy)(F2)(Bt(b, c, w, ) A Bt(b,c,w',2) ANE(ky,. .. kg, w,1,2)))
From (c) by rule A4 and rule C,
(e) Bi(b,c,p,d) ABt(b,c,p+ 1,e) AN€(k,. .. kn,P,d, €)
From (a), (d), and (e),
) 2(k1s... kD, d)

From (f), (5) and (3),

(g) d=§
From (e) and (g),
(h) g(kla mp:ﬁ: )
Since f§ represents i, we obtain from (1) and (h),
i) 7=

From (e) and (i),
(i) Bt(b,e,p+ 1,7)
From (b), (j), and Lemma 3.22,
(k) xuy2 =7
This completes the induction.
The p-operator (VI). Let us assume, that, for any xy, . . ., x,, there is some
y such that g(xi, ...,xs,y) = 0, and let us assume g is representable in S by a

wf E(x1, ..., xny2)- Let f(x1,...,x0) = py(g(x1,. .., X%, y) = 0). Then we shall
show that f is representable in S by the wf % (xl, X1 )

éﬂ(xls s ;xn+1,0) A (Vy)(y < X1 = —'éa(xl: ceey Xy, Y, 0))

Assume f(ky,...,k;,) =m. Then g(ky,...,k,,m)=0 and, for k <m,
glky, ... ks k) # 0. So, ks &ky,... k,,m,0) and, for k <mbs—¢&
(kl, .k, k,0). By Proposition 3 8(b), ks (W) <= &k, ...,
kns Yy 0)) Hence, s F (ki,...,ky, 7). We must also show: g (F1xs,1)

F (ki . - k,,,x,H_]) It sufﬁces to prove the uniqueness. Assume
Ekry - - kny 11,00 A (W) (¥ < u = =&y, ... kn,y,0)). By  Proposition
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3.7(0"), Fsm <uVHi=uVu<m. Since b5 &(ky,... ks, ,0), we cannor
have m < wu. Since kg (W)(y <% = ~&(k1,...,kn,»,0)), we cannot haye.
u < m. Hence, u = m. This shows the uniqueness.

Thus, we have proved that all recursive functions are representable in

COROLLARY 3.25
Every recursive relation is expressible in S.

Proof

Let R(x1,...,x,) be a recursive relation. Then its chracteristic function Cy js
recursive. By Proposition 3.24, Cg is representable in S and, therefore, by
Proposition 3.13, R is expressible in S.

Exercises
3.30%

(a) Show that, if @ and b are relatively prime natural numbers, then there is
a natural number ¢ such that ac = 1(mod b). (Two numbers a and b are
said to be relatively prime if their greatest common divisor is 1. In.
general, x = y (imod z) means that x and y leave the same remainder upon
division by z or, equivalently, that x — y is divisible by z. This exercise
amounts to showing that there exist integers & and v such that
1 =au+bv)

(b) Prove the Chinese remainder theorem: if x, .. ., x; are relatively prime in
pairs and y1, . ..,y are any natural numbers, there is a natural number z
such that z = yy(modux),...,z = y(modx;). Moreover, any two such zs
differ by a multiple of x;...x;. [Hint: Let x=x;...x; and let
X = WXy = WoXy = ... = Wgxg. Then, for 1 <j<k, wj 1s relatively prime
to x; and so, by (a), there is some z; such that wyz, = 1(mod x;). Now let
z=wiziy +wazor + ... +wizpk. Then z=wpzyy; = yj(modx;). In
addition, the difference between any two such solutions is divisible by
each of xy,...,x; and hence by x1...x;.]

3.31 Call a relation R(x;,...,x,) arithmetical if it is the interpretation of
some wf %(x|,...,x,) in the language %4 of arithmetic with respect to the
standard model. Show that every recursive relation is arithmetical. [Hint:
Use Corollary 3.25.]

3.4 ARTTHMETIZATION. GODEL NUMBERS

For an arbitrary first-order theory K, we correlate with each symbol # of K
an odd positive integer g(u), called the Gddel number of u, in the following
manner:
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9(0) = 3,90) = 59() = 7,9(7) = 9, 9(=) = 11,9(v) = 13,
ggxk) = 13 + 8k fork=1

glay) =7+ 8k for k=1

g(ff) =1-48(2"3%) for k,n>1

g(4?) =3 +-8(2"3%) for k,n=1

Clearly, every Go6del number of a symbol is an odd positive integer.
Moreover, when divided by 8,g(u) leaves a remainder of 5 when u is a
variable, a remainder of 7 when u is an individual constant, a remainder of 1
when u is a function letter, and a remainder of 3 when w is a predicate letter.
Thus, different symbols have different G6del numbers.

Examples

g(%2) =29, glas) =39, g(ff) = 97, g(4}) = 147
Given an expression uou; . . . #,, where each u; is a symbol of K, we define
its Goédel number g(uou; . .. u,) by the equation

gluguy . .. u,) = 200013000} _p;,-(u,)

where p; denotes the jth prime number and we assume that py = 2. For
example,

g(A% (x1, ) = 29(‘1%)39(()59(-"1)79(,) 119(2)1390)
— 299 33 521 77 1 129 1 35

Observe that different expressions have different G6del numbers, by virtue
of the uniqueness of the factorization of integers into primes. In addition,
expressions have different Gddel numbers from symbols, since the former
have even Godel numbers and the latter odd Gédel numbers. Notice also
that a single symbol, considered as an expression, has a different Godel
number from its GOdel number as a symbol. For example, the symbol x; has
Godel number 21, whereas the expression that consists of only the symbol x;
has G6del number 221,

If ey, €1, ..., € 1s any finite sequence of expressions of K, we can assign a
Godel number to this sequence by setting

gleg, €1, ..., ) = 99(e0) 3g(er) -pf(e’)

Different sequences of expressions have different Goédel numbers. Since a
Godel number of a sequence of expressions is even and the exponent of 2 in
its prime power factorization is also even, it differs from G&6del numbers of
symbols and expressions. Remember that a proof in K is a certain kind of
finite sequence of expressions and, therefore, has a Gédel number.

Thus, g is a one-one function from the set of symbols of K, expressions
of K, and finite sequences of expressions of K, into the set of positive
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integers. The range of g is not the whole set of positive integers. For ex.
ample, 10 is not a Godel number.

Exercises

3.32 Determine the objects that have the following Gd6del numbers.
(a) 1944 (b) 49 (c) 15 (d) 13824 (¢) 25'3!'5°

3.33 Show that, if » is odd, 4n is not a Godel number.
3.34 Find the Godel numbers of the following expressions.

@) f{ (a1} (b) ((Vx3)(—di(ar, x3)))

This method of associating numbers with symbols, expressions and se.
quences of expressions was originally devised by Gddel (1931) in order (o
arithmetize metamathematics,’ that is, to replace assertions about a formal
system by equivalent number-theoretic statements and then to express these
statements within the formal system itself. This idea turned out to be the key
to many significant problems in mathematical logic.

The assignment of Gédel numbers given here is in no way unique. Other
methods are found in Kleene (1952, chap. X) and in Smullyan (1961, chap. 1,

§ 6).

DEFINITION

A theory K is said to have a primitive recursive vocabulary (or a recursive
vocabulary) if the following properties are primitive recursive (or recursive):

(a) IC(x): x is the Godel number of an individual constant of K;
(b) FL(x): x is the Godel number of a function letter of K;
(c) PL(x): x is the Godel number of a predicate letter of K.

REMARK

Any theory K that has only a finite number of individual constants, function
letters, and predicate letters has a primitive recursive vocabulary. For ex-
ample, if the individual constants of K are a;,, aj,, ..., a;,, then IC(x) if and
onlyifx=7+8; Vx=T7+8;,V...Vx=7+8; . In particular, any theory

tAn arithmetization of a theory K is a one-one function g from the set of
symbols of K, expressions of K and finite sequences of expressions of K into the set
of positive integers. The following conditions are to be satisfied by the function g: (1)
g is effectively computable; (2) there is an effective procedure that determines whether
any given positive integer m is in the range of g and, if m is in the range of g, the
procedure finds the object x such that g(x) = .
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K in the language 4 of arithmetic has a primitive recursive vocabulary. So,
~g has a primitive recursive vocabulary.

pROPOSITION 3.26

et K be a theory with a primitive recursive (or recursive) vocabulary. Then

sthe following relations and functions (1-16) are primitive recursive (or re-
.cursive). In each case, we give first the notation and intuitive definition for
“the relation or function, and then an equivalent formula from which its
f;-,primitive recursiveness (or recursiveness) can be deduced.

(1) EVbl(x): xis the G6del number of an expression consisting of a vari-
able, (3z),. (1 <z Ax=2"3+%) By Proposition 3.18, this is primitive
recursive.

EIC(x): x is the Godel number of an expression consisting of an in-
dividual constant, (Jy),. (IC(y) Ax =2") (Proposition 3.18).

EFL(x): x is the Godel number of an expression consisting of a func-
tion letter, (dy),. (FL(y) Ax =2”) (Proposition 3.18).

EPL(x) : x is the Godel number of an expression consisting of a pre-
dicate letter, (dy),_,(PL{y») Ax = 2") (Proposition 3.18).

(2) Argr(x) = (qt(8, x—1)),: If x is the Godel number of a function letter
/7, then Argr(x) = n. Argy(x) 1s primitive recursive.

y<x

Argp(x) = (qt(8, x—3)),: If x is the Gédel number of a predicate letter
Aj, then Argp(x) = n. Argp(x) is primitive recursive.

(3) Gd(x): x is the Godel number of an expression of K, EVbl(x)V
EIC(x) V EFL(x) VEPL(x) Vx=2 vx=2°vx=2"vx=2v x=
2y x = 2B v(Ju), . (Fv), . (x = u* v AGd(u) A Gd(v)). Use Corollary
3.21. Here, * is the juxtaposition function defined in Example 4 on
page 181.

(4) MP(x, y, z): The expression with G&del number z is a direct con-
sequence of the expressions with Godel numbers x and y by modus
ponens, y = 23 s x % 211 x 2% 25 A Gd(x) A Gd(2).

(5) Gen(x, y): The expression with Godel number y comes from the ex-
pression with Gédel number x by the generalization rule:

(F),, (EVbLI() Ay = 225 2% 2 23505 2% 5 x 2 25 A Gd(x))

(6) Trm(x): x is the Godel number of a term of K. This holds when and
only when either x is the G6del number of an expression consisting of a
variable or an individual constant, or there is a function letter f}' and
terms 7y, ..., t, such that x is the Godel number of f(11, ..., t,). The
latter holds if and only if there is a sequence of n + 1 expressions
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(N

(&)

©)

ij( ;(Il) fl?(tl: f, ... f}?(tla ooy I, f,‘k(tli cony Ino l)tn)
the last of which, f7'(#1, ..., tn), has Gédel number x. This sequence Can
be represented by its Godel number y. Clearly, y < 2¥3%,
=(2-3 o) < (p) < (px ') Note that £4(y) =n+1 and also

that n = ArgT((x)O), since (x), is the Godel number of ff'. Hence,
Trm(x) is equivalent to the following relation:

EVbl(x) V EIC(x) V (), (uy x = () ra)-1/N
£4(y) = Argr((x)g) + 1 AFL(()g)o) A ((#)e)1 =3 A
[/é((y)(]) =2A (Vu)u([/f(y)i-il (Hv)v<x((y)u+l = (y)u *Ux 27 A TI']’I](U))/\

(av)u-:x((y)fﬁ(y)il - ()’)m@)#z x0%2° A Trm(v))]

Thus, Trm(x) is primitive recursive (or recursive) by Corollary 3.21,
since the formula above involves Trm(v) for only v < x. In fact, if we
replace both occurrences of Trm(v) in the formula by (z), = 0, then the
new formula defines a pr1rmt1ve recursive (or recursive) relation H(x, z),
and Trm(x) < H(x, (Crem)™ (x)). Therefore, Corollary 3.21 is applic-
able.

Atfml(x): x is the Goédel number of an atomic wf of K. This holds if
and only if there are terms #, ..., t, and a predicate letter A} such that x
is the Godel number of Af(t1, ..., t,). The latter holds if and only if
there is a sequence of # + | expressions

An( A"(tla Az(tls Iy, .- A;;(tl) PR S | A;:(tb .- nﬁl; [n)

the last of which, 4%z, ..., t,), has Godel number x. This sequence of
expressions can be represented by its GOdel number y. Clearly,
y < (p!)" (as in (6) above) and n = Argp((x),).- Thus, Atfml(x) is
equivalent to the following: )
(D) <y 8 = ey AEAY) = Arep((x)g) +1 A
PL(((»)o)o) A ((0)e)1 = 3NEA((1)g) =2
(V”)uqﬁ(y);z(30)u<x(0’)u+1 =), *v* 2" A Trm(v)) A
(av)uq((J’)M(y);l = (Vepyyza ¥ V* 2> A Trm(v))]
Hence, by Proposition 3.18, Atfml(x} is primitive recursive (or recursive)
Fml(y): y is the Gédel number of a formula of K:
Atfiml(y) V (3z),  [(Fml(z) Ay =22+ 22 xz%2%) v
(Fml((z)p) AFml((z);) Ay =25 (2) 2" % (2), *2°) v
(Fml((z)) AEVBI((z),) Ay =23+ 22 2P« (2), % 2° % (2), % 2%)]

It is easy to verify that Corollary 3.21 is applicable.

Subst(x, y, u, v): xis the G6del number of the result of substituting in
the expression with Godel number y the term with G6del number v for
all free occurrences of the variable with G6del number v:
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Gd(y) ATmm(u) AEVBIQOYA[(y =2 Ax =u) V

(), v =Ny #2'Ax =y) V

(F2),c,, (GW)yy, (Fml(w) Ay = 2B 224 P wwsz A
(Fo),e (x =2 %21 % 275 2% sy 5 o A Subst(o,, z, u, v))) V
(((F2) ey (FW) e, (FmI(w) Ay = B2 5P swxrz)) A
(B0 g 3,y (1 <2 Ap = 2% 52 Ax = o A
Subst(e, 2Y%, u, v) A Subst(f, z, u, v)))]

wey

Corollary 3.21 is applicable. The reader should verify that this formula
actually captures the intuitive content of Subst(x, y, u, v).

(10) Sub(y, u, v): the Gédel number of the result of substituting the term
with Godel number u for all free occurrences in the expression with
Godel number y of the variable with Godel number v:

Sub(y, 4, v) = [y, o Subst(y, y, u, v)

Therefore, Sub is primitive recursive (or recursive) by Proposition 3.18.
(When the conditions on u, v and y are not met, Sub( y, u, v) is defined,
but its value is of no interest.)

(1) Fr(y, v): yis the Gddel number of a wf or term of K that contains free
occurrences of the variable with Gédel number v

(Fml(y) vV Trm(y)) A EVbI(2") A =Subst(y, y, 213480 1)

(That is, substitution in the wf or term with G&del number y of a certain
variable different from the variable with Gédel number v for all free
occurrences of the variable with Goédel number v yields a different
expression.)
(12) Fi(u, v, w): u is the Godel number of a term that is free for the vari-
able with Gédel number v in the wl with Gédel number w:
Trm(u) A EVDI(2°) A Fml(w) A [Atfml(w)
A (Ely)y<w(1v =285 2% %y 2 AFf(1, v, y))
A (Sy)},<],,(£lz)z<‘1,(~,v =2 b 2Msz2
A Fl(u, v, y) ANFf(u, v, z)) V
(Ely)y<lv(Eiz)z<w(wv =252 2B w275 D uyps P
AEVBI(2) A(z # v = Fi(y, v, y)
A (Fr(u, z) = —Fr(y, v))))]
Use Corollary 3.21 again.
(13) (a) Ax (x): x is the Gbdel number of an instance of axiom schema
(Al):
(A), .. (Fv), .. (Fml(z) A Fml(v)

Ax=2% 5020 w2 502 2M a2 254 29)

U<y
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(b) Axz(x): x is the Gddel number of an instance of axiom schenyy
(A2):
(), (Av), . (@W),, . (Fml(z) A Fml(v) A Fml(w)
Ax=23 52 5020 a 23w 0u 2wy 256255211 523,93 Ly,
22w p2 20 22 2 28w 2 s 223 5 25 4 25)
(¢} Axs(x): x is the Godel number of an instance of axiom schey
(A3):
(Fu), . (30), ., (Fml(z) A Fml(v)
Ax=2 523525225 05 28 % 21 5 235 2% 5y 25 4 25 5 211
#2522 5285275020« 2wy 5 2% 5 21 $px 2 %2%)
(d) Ax4(x): x is the Godel number of an instance of axiom schema
(Ad):
(F1),x (F0) (), e (Fml(¥) A Trm(u) A EVDI(2°) A F(x, v, y)
Ax=23%23%28 %23 42" 4 25 4y« 21 x Sub(y, u, v) % 2°)
(¢) Axs(x): x is the Godel number of an instance of axiom schema
(AS5):
(Fur), (V) (FW),, . (Fmb(20) A Fml(w) A EVDI(2°) A =Fr(u, v)
Ax=2%2x285%2P 5274284 28 sy x 2 w5 25523
22 w2 s 22 205 23 5 2P w2V D w255 254 2%
() LAX(y): y is the Godel number of a logical axiom of K
Axi(¥) v Axa(y) V Axa(y) vV Axy(v) V Axs(¥)

(14) The following negation function is primitive recufsive. Neg(x): the
Godel number of (=) if x is the Godel number of 4:

Neg(x) = 28«22 4 xx2°

(15) The following conditional function is primitive recursive. Cond(x, y):
the Godel number of (# = %) if x is the Godel number of 4 and y is
the Godel number of ¢

Cond(x, y) = 2 sx %2 sy 25

(16) Clos(u): the G6del number of the closure of 4 if u is the Gddel number
of a wl 2. First, let V(1) = pv,<.(EVbI(2°) A Fr(u, v)). ¥ is primitive
recursive (or recursive). V(u) is the least Gédel number of a free vari-
able of u (if there are any). Let Sent(u) be Fml(u) A ~(3Fv), ., Fr(u, v).
Sent is primitive recursive (or recursive). Sent(x#) holds when and only
when u is the Godel number of a sentence (i.c., a closed wf). Now let

G(u) = { 225228352V 5 25 5y 525 if Fml(u) A —Sent(x)
u otherwise
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G is primitive recursive (or recursive). If u is the Godel number of a wf %
that is not a closed wf, then G(u) is the Gédel number of (Vx)#, where x
is the frec variable of # that has the least GOdel number. Otherwise,

G(u) = u. Now, let
H(u, 0) = G(x)
H(x, y+ 1) = G(H(x, y))
H is primitive recursive (or recursive). Finally,
Clos(u) = H(u, pyp<u(H(rt, ¥) = H(ze, y + 1))

Thus, Clos is primitive recursive (or recursive).

PROPOSITION 3.27

Let K be a theory having a primitive recursive (or recursive) vocabulary and
whose language contains the individual constant 0 and the function letter fll
of Z4. (Thus, all the numerals are terms of K. In particular, K can be S
itself.) Then the following functions and relation are primitive recursive (or

recursive).
(17) Num(y): the Gédel number of the expression y
Num(0) = 2!*
Num(y + 1) = 2% % 23 « Num(y) % 23

Num is primitive recursive by virtue of the recursion rule (V).
(18) Nu(x): x is the Godel number of a numeral

(Ely)y (x =Num(y))
Nu is primitive recursive by Proposition 3.18.
(19) D(u): the Godel number of #(i), if u is the Goédel number of a wi
A (xl):
D(x) = Sub(u, Num(x), 21)
Thus, D is primitive recursive (or recursive). D is called the diagonal
Junction.

DEFINITION

A theory K will be said to have a primitive recursive (or recursive) axiom set
if the following property PrAx is primitive recursive (or recursive):

PrAx(y) : y is the Godel number of a proper axiom of K
Notice that S has a primitive recursive axiom set. Let a1, ay, ..., ag be the

Godel numbers of axioms (S1)- (S8). It is easy to see that a number y is the
Go6del number of an instance of axiom schema (A9) if and only if
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(Fv) <, (FW),, <, (EVDI(2°) A Fml(w)
Ay =23 «Sub(iw, 25, 1) = 21 % 23 %23 % 23 5 213 5 2V 4 25
£ 2 w2+ Sub(w, 29423 429425, )% 25« 20 211

222 %235 213 5 205 25 5w % 2% 5 29)

w<y

Denote the displayed formula by Ag(y). Then y is the Godel number of 4
proper axiom of S if and only if

y=aqVy=amV...Vy=aV Ay(y)

Thus, PrAx(y) is primitive recursive for S.

PROPOSITION 3.28

Let K be a theory having a primitive recursive (or recursive) vocabulary ang
a primitive recursive (or recursive) axiom set. Then the following three re-
lations are primitive recursive (or recursive).

(20) Ax(y): y is the Godel number of an axiom of K:
LAX(y) V PrAx(y)

(21) Prf(y): y is the G&del number of a proof in K:

(3”)::<y(Hv)vf.y(Hz)z<y(aw)w<y(b) =2" AN Ax(w)] V

[Prf(u) A Fml((2),,) Ay = u 2" AGen((u),, v)] V

[Prf(u) A Fml((u),) AFmMI((2e),) Ay = = 2" AMP((1),, (u),,, V)]
V [Prf(u) Ay = 1% 2° A Ax(v)]

Apply Corollary 3.21.
(22) Pf(y,x): y is the Godel number of a proof in K of the wf with Godel
number x

Prf(y) Ax = (1) 409 +1

The relations and functions of Propositions 3.26-3.28 should have the
subscript ‘K’ attached to the corresponding signs to indicate the dependence
on K. If we considered a different theory, then we would obtain different
relations and functions.

Exercise

3.35

(a) If K is a theory for which the property Fml(y) is primitive recursive (or
recursive), prove that K has a primitive recursive (or recursive) voca-
bulary.
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.(b) Let K be a theory for which the property Ax(y) is primitive recursive (or

recursive).
(i) Show that K has a primitive recursive (or recursive) vocabulary.

(ii) Assuming also that no proper axiom of K is a logical axiom, prove
that K has a primitive recursive (or recursive) axiom set.

PROPOSITION 3.29

Let K be a theory with equality whose language contains the individual
constant 0 and the function letter f{ and such that K has a primitive re-
cursive (or recursive) vocabulary and axiom set. Also assume:

(%) For any natural numbers » and s,if g # =5, then r =ss.
Then any function f(xi,...,x,) that is representable in K is recursive.
Proof
Let #(xi,---,%n,xny1) be a wf of K that represents f. Let
Py(u, . .., Un, Uny1,y) mean that yis the Gédel number of a proof in K of the

wl By, ..., Un,iipy1). Note that, if Pg(uy, ... uy,tyy1,y), then f(uy, ...,
u) = Upy1. (In fact, let f(uy,...,u,)=r.- Since # represents f in
K, bk By, ... u,,7) and bx (313)% (@, . . -, i, y). By hypothesis, Pg(u,
cooy Uy tiny1,y). Hence, Fx #B(uy, ..., Uy, un,1). Since K is a theory with
equality, it follows that Fx 7 = @,41. By (%), r = ty41.) Now let m be the
Godel number of #(xy, ..., %y, Xp+1). Then Pg(uy, ..., Un, Uyy1,y) 1S equiva-
lent to:

Pf(y, Sub(. . . Sub(Sub(m, Num(i ), 21), Num(z),29) ... Num(t,, 1), 21 + 8#n))

So, by Propositions 3.26-3.28, Pz(uy,..., Uy, Uyy1,y) 1S primitive recursive
(or recursive). Now consider any natural numbers ki,...,k,. Let
flk,... ky) =r. Then bx A(ky,. .., k,, 7). Let j be the Godel number of a
proof in K of #(ky,...,k,,7). Then Pg(ky,... ks, *,j). Thus, for any
X1,-..,Xn, there is some y such that Py(xy,. .., %, ()¢, (v),). Then, by Ex-
ercise 3.16(c), 19(Pu(x1,..., %, (¥)o, (v);)) 18 recursive. But, f(xi,...,x,)
= (t(Pa(x1,. - - yXn, (")g, (")1))) and, therefore, f is recursive.

Exercise

3.36 Let K be a theory whose language contains the predicate letter =, the

individual constant 0, and the function letter f.

(a)If K satisfies hypothesis (%) of Proposition 3.29, prove that K must be
consistent.
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(b)If K is inconsistent, prove that every number-theoretic function is re..
presentable in K.

(c) If K is consistent and the identity relation x = y is expressible in K, shoy,
that K satisfies hypothesis () of Proposition 3.29.

COROLLARY 3.30

Assume S consistent. Then the class of recursive functions is identical with
the class of functions representable in S.

Proof

We have observed that S has a primitive recursive vocabulary and axiom set,
By Exercise 3.36(c) and the already noted fact that the identity relation is
expressible in S, we see that Proposition 3.29 entails that every function
representable in S is recursive. On the other hand, Proposition 3.24 tells ys
that every recursive function is representable in S.

In Chapter 5, it will be made plausible that the notion of recursive
function is a precise mathematical equivalent of the intuitive idea of effec-
tively computable function.

COROLLARY 3.31

A number-theoretic relation R{xi,...,x,) is recursive if and only if it is
expressible in S.

Proof

By definition, R is recursive if and only if Cy, is recursive. By Corollary 3.30,
Cy is recursive if and only if Cy is representable in S. But, by Proposition
3.13, Cp is representable in S if and only if R is expressible in S.

It will be helpful later to find weaker theories than S for which the
representable functions are identical with the recursive functions. Analysis
of the proof of Proposition 3.24 leads us to the following theory.

Robinson’s System

Consider the theory in the language ¥4 with the following finite list of
proper axioms.

(Dx1 =x
(2))61 =Xy = X3 = X1
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(3)x1 =x2 = (X2 = X3 = X1 = X3)

A x1 =x2 = x] =X,

(5)x1 = X2 = (X +x3 =X +x3 Ax3 +x1 = x3 +x2)
(6)x1 =x2 = (1 X3 =x2-x3 AX3-X1 = X3 X2)
(Dx) =x, =>x1=x2

60 %,

9)x1 # 0= (Fx2}(r1 = x3)

(10) x+0=x

(L1) x1 + x5 = (x1 +x2)'

(12) x; -0 =0
(13) X1 JC'Z = (x1 'XZ) + x1
(14) (x2 =x1 - x3 +x4 Axg <X AXp =x1 X5+ X6 NXe < X1) =

x4 = x¢ (uniqueness of remainder)

We shall call this theory RR. Clearly, RR 1s a subtheory of S, since all the
axioms of RR are theorems of S. In addition, it follows from Proposition
2.25 and axioms (1)—(6) that RR is a theory with equality. (The system Q of
axioms (1)-(13) is due to R.M. Robinson (1950). Axiom (14) has been added
to make one of the proofs below easier.) Notice that RR has only a finite
number of proper axioms.

LEMMA 3.32

[n RR, the following are theorems.

(a) n+m =n+m for any natural numbers » and m

(b) 7 -m = w-in for any natural numbers » and m

(¢) n # m for any natural numbers such that » # m

(d) 7 < m for any natural numbers # and m such that n < m

© x£0 )
0 x<n=>x=0Vvx=1V...Vx=rn for any natural number »n
(g) x<nVn<x for any natural number »

Proof

Parts (a)(c) are proved the same way as Proposition 3.6(a). Parts (d)—(g) are
left as exercises.

PROPOSITION 3.33

All recursive functions are representable in RR.
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ﬁ___\_“
Proof

The initial functions Z, N, and U are representable in RR by the same wis
as in Examples 1-3, pagel72. That the substitution rule does not lead out gf
the class of functions representable in RR is proved in the same way as iy
Example 4 on page 172. For the recursion rule, first notice that the proof of
Lemma 3.22 is a demonstration that Godel’s beta function B(x1,x2,x3) is
strongly representable in RR. (Axiom (14) is used for the uniquencss part.)
Now, a careful examination of the treatment of the recursion rule in the
proof of Proposition 3.24 reveals that all the required theorems are the.
orems of RR. The argument given for the restricted p-operator ruyle
also remains valid for RR.

By Proposition 3.33, all recursive functions are representable in any ex-
tension of RR. Hence, by Proposition 3.29 and Exercise 3.36(c), in any
consistent extension of RR in the language ¥, that has a recursive axiom
set, the class of representable functions is the same as the class of recursive
functions. Moreover, by Proposition 3.13, the relations expressible in such a
theory are the recursive relations.

Exercises

3.37° Show that RR is a proper subtheory of S. [Hint: Find a model for RR
that is not a model for S.] (Remark: Not only is S different from RR, but it is
not finitely axiomatizable at all, that is, there is no theory K having only a
finite number of proper axioms, whose theorems are the same as those of S,
This was proved by Ryll-Nardzewski (1953).)

3.38 Show that axiom (14) of RR is not provable from axioms (1)-(13)

and, therefore, that Q is a proper subtheory of RR. [Hint: Find a model of

(1)~13) for which (14) is not true.]

3.39 Let K be a theory in the language ¥, with just one proper axiom:

(Vx1)(Vx2)x1 = x2.

(a) Show that K is a consistent theory with equality.

(b) Prove that all number-theoretic functions are representable in K.

(¢) Which number-theoretic relations are expressible in K? [Hint: Use
elimination of quantifiers.]

(d) Show that the hypothesis k¢ 0 7 1 cannot be eliminated from Propo-
sition 3.13.

(e) Show that, in Proposition 3.29, the hypothesis (*) cannot be replaced by
the assumption that K is consistent.

3.40 Let R be the theory in the language ¥4 having as proper axioms the

equality axioms (1)6) of RR as well as the following five axiom schemas, in

which » and m are arbitrary natural numbers:

RDrn+m=n+m

RYn-in=w-m

t
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(R3)AFmil n#m
(R x<H=>x=0V...VX=TF
{(R5) x<AVALX

Prove the following.

(a) R is not finitely axiomatizable. [Hins: Show that every finite subset of
the axioms of R has a model that is not a model of R.]

(b) R is a proper subtheory of Q.

(c)° Every recursive function is representable in R. (See Monk, 1976, p. 248.)

(d) The functions representable in R are the recursive functions.

(¢) The relations expressible in R are the recursive relations.

35 THE FIXED-POINT THEOREM. GODEL’S INCOMPLETENESS
THEOREM

If K is a theory in the language %4, recall that the diagonal function D has
the property that, if u is the Godel number of a wf %(x;), then D(u) is the
Godel number of the wf %(u).

NOTATION

When & is an expression of a theory and the Godel number of € is ¢, then
we shall denote the numeral g by "% '. We can think of "% ' as being a
‘name’ for ¥ within the language %,.

PROPOSITION 3.34 (DIAGONALIZATION LEMMA)

Assume that the diagonal function D is representable in a theory with
equality K in the language %,. Then, for any wi &(x;) in which x; is the
only free variable, there exists a closed wf ¢ such that

bk €< &(" 6 1)

Proof

Let %(x;,x2) be a wf representing D in K. Construct the wf
(V) (¥n)(@(x,x2) = 6(x2))

Let m be the Godel number of (V). Now substitute i for x; in (V):
(%) (Vi) (2, x2) = E(x2))
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Proof

By Proposition 3.27, D is recursive.! Hence, D is representable in K and
proposition 3.34 is applicable.

By Proposition 3.33, the fixed-point theorem holds when K is RR or any
extension of RR. In particular, it holds for S.

DPEFINITIONS

Let K be any theory whose language contains the individual constant (0 and
the function letter fi. Then K is said to be w-consistent if, for every wf % (x)
of K containing x as its only free variable, if g ~%(#) for every natural
number #, then it is not the case that g (Ix)%(x).

Let K be any theory in the language % ,4. K is said to be a true theory if all
proper axioms of K are true in the standard model. (Since all logical axioms
are true in all models and MP and Gen lead from wfs true in a model to wfs
true in that model, all theorems of a true theory will be true in the standard
model.)

Any true theory K must be w-consistent. (In fact, if Fg ~4(#) for all
natural numbers n, then %(x) is [alse for every natural number and,
therefore, (Ix)#(x) cannot be true for the standard model. Hence,
(Ix)%(x) cannot be a theorem of K.) In particular, RR and S are w-
consistent.

PROPOSITION 3.36

If K is w-consistent, then K is consistent,

Proof

Let &(x) be any wl containing x as its only free variable. Let %(x) be
&(x) A ~&(x). Then % (#n) is an instance of a tautology. Hence, by —%(n)
for every natural number n. By w-consistency, not-g (Ix)4(x). Therefore,
K is consistent. (Remember that every wf is provable in an incounsistent

In fact, D is primitive recursive, since K, being a theory in .%,, has a primitive
recursive vocabulary,
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theory, by virtue of the tautology —4 = (4 = B). Hence, if at least one wfig
nol provable, the theory must be consistent.)

It will turn out later that the converse of Proposition 3.36 does not hold.

DEFINITION

An undecidable sentence of a theory K is a closed wf 4 of K such that neither
2 nor ~# is a theorem of K, that is, such that not-F¢ # and not-t¢ —4.

Godel’s incompleteness theorem

Let K be a theory with equality in the language %4 satisfying the following
three conditions:

1. K has a recursive axiom set (that is, PrAx(y) is recursive).

2. kg 0# 1.
3. Every recursive function is representable in K.

By assumption 1, Propositions 3.26-3.28 are applicable. By assumptions 2
and 3 and Proposition 3.13, every recursive relation is expressible in K. By
assumption 3, the fixed-point theorem is applicable. Note that K can be
taken to be RR, S, or, more generally, any extension of RR having a re-
cursive axiom set. Recall that Pf(y,x) means that y is the Gédel number of a
proof in K of a wf with Gddel number x. By Proposition 3.28, Pf is re-
cursive. Hence, Pf is expressible in K by a wf 2¢/(x;, x1). Let &(x;) be the wf
(Vx2)=##(x3,x1). By the fixed-point theorem, there must be a closed wf ¢
such that

($) bg 9 < (sz)fwg/’f(xz,"_g_')

Observe that, in terms of the standard interpretation, (Vxp)=2¥/(x,7% 1)
says that there is no natural number that is the Gddel number of a proofin
K of the wf ¢, which is equivalent to asserting that there is no proof in K of
%. Hence, % is equivalent in K to an assertion that ¢ is unprovable in K. In
other words, ¢ says ‘I am not provable in K, This is an analogue of the liar
paradox: ‘I am lying’ (that is, ‘I am not true’). However, although the lLar
paradox leads to a contradiction, Godel (1931) showed that % is an un-
decidable sentence of K. We shall refer to & as a Godel sentence for K.

PROPOSITION 3.37 (GODEL’S INCOMPLETENESS THEOREM)

Let K satisfy conditions 1-3. Then:
(a) If K is consistent, not-H¢ %.
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(b) If K is o-consistent, not-+x ~%.
Hence, if K is w-consistent, ¢ is an undecidable sentence of K.

Proof

Let g be the Godel number of %.

(a) Assume g . Let r be the Gbdel number of a proof in K of 4.
Then Pf(r,q). Hence, bx #¥(F,q), that is Fx 24(F,'% ). But, from (8)
above by biconditional elimination, kg (Vixp)=2/(x2," % '). By rule A4,
bk =24 (7," % ). Therefore, K is inconsistent.

(b) Assume K is w-consistent and kg ~%. From (§) by biconditional
elimination, kg —(Vx2)~%¢(x2,7% ), which abbreviates to

(x)  Fr (@)@ (, 97)

On the other hand, since K is w-consistent, Proposition 3.36 implies that K
is consistent. But, Fx —%. Hence, not-l-g %, that is, there is no proof in K of
4. So, Pf(n,q) is false for every natural number » and, therefore,
Fgk ~2¢(7," % ') for every natural number #. (Remember that " %' is g.)
By w-counsistency, not-tg (In)2f (x2,” % ), contradicting ().

REMARKS

Godel’s incompleteness theorem has been established for any theory with
equality K in the language %4 that satisfies conditions 1-3 above. Assume
that K also satisfies the following condition:

(+) K is a true theory.

(In particular, K can be S or any subtheory of S.) Proposition 3.37(a) shows
that, if K is consistent, ¢ is not provable in K. But, under the standard
interpretation, % asserts 1ts own unprovability in K. Therefore, % is true for
the standard interpretation.

Moreover, when K is a true theory, the following simple intuitive argu-
ment can be given for the undecidability of ¢ in K.

(i) Assume bg @. Since bg 9 < (Vip)~?/(x2," ¢ ), il follows that
Fr (Vo) ~P#(x2," % ). Since K is a true theory, (Vip)—Pf (x2," % ) is true
for the standard interpretation. But this wf says that % is not provable in K,
contradicting our original assumption. Hence, not-t¢ %.

(ii) Assume bk —%. Since bk 9 < (V) ~Pf(x," 971,
Fr —(Vx2) =24 (x2," % '). So, bk (Tx2)P¥(x2," ¢ '). Since K is a true
theory, this wf is true for the standard interpretation, that is, % is provable
in K. This contradicts the result of (i). Hence, not--g —%.
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Exercises

3.41 Let @ be a Godel sentence for S. Let S, be the extension of S obtaineq
by adding =% as a new axiom. Prove that, if S is consistent, then Sg is
comnsistent, but not w-consistent.

3.42 A theory K whose language has the individual constant 0 and fuge.
tion letter £ is said to be w-incomplete if there is a wf &(x) with one free
variable x such that g &(7) for every natural number »n, but it is not the
case that g (Vx)&(x). If K is a consistent theory with equality in the lap.
guage ¥4 and satisfies conditions 1-3 on page 206, show that K is .
incomplete. (In particular, RR and S are w-incomplete.)

3.43 Let K be a theory whose language contains the individual constant ¢
and function letter f]. Show that, if K is a consistent and w-inconsistent,
then K is w-incomplete.

3.44 Prove that S, as well as any consistent extension of S having a re-
cursive axiom set, is not a scapegoat theory. (See page 87.)

3.45 Show that there is an w-consistent extension K of S such that K is not
a true theory. [Hint: Use the fixed point theorem.]

The Godel-Rosser incompieteness theorem

The proof of undecidability of a Godel sentence ¢4 required the assumption
of w-consistency. We will now prove a result of Rosser (1936) showing that,
at the cost of a slight increase in the complexity of the undecidable sentence,
the assumption of w-consistency can be replaced by consistency.

As before, let K be a theory with equality in the language %4 satisfying
conditions 1-3 on page 206. In addition, assume:

4 Fy x<fi=x=0Vx=1Vv...Vx=n for evéry natural number 7.
5. bk x<n vV rn<x for every natural number ».

Thus, K can be any extension of RR with a recursive axiom set. In parti-
cular, K can be RR or S.

Recall that, by Proposition 3.26 (14), Neg is a primitive recursive func-
tion such that, if x is the Godel number of a wf %, then Neg(x) is the Godel
number of (—4). Since all recursive functions are representable in K, let
Aeg(x1,x2) be a wf that represents Neg in K. Now construct the following
wf &(x;):

(sz)(.@/(xz,n) = (VX3)(‘/K;3§(JC1,JC3) = (Ebm) (JC4 <xo A ?/(XMJC}))))
By the fixed-point theorem, there is a closed wf # such that
(x) txReER)

A is called a Rosser sentence for K. Notice what the intuitive meaning of #
is under the standard interpretation. & asserts that, if # has a proof in K,

-
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say with G&del number x,, then ~% has a proof in K with Goédel number
smaller than x;. This is a roundabout way for # to claim its own un-
provability under the assumption of the counsistency of K.

PROPOSITION 3.38 (GODEL-ROSSER THEOREM)

Let K satisfy conditions 1-5. If K is consistent, then 22 is an undecidable
sentence of K.

Proof

Let p be the Godel number of 2. Thus, "% ! is p. Let j be the Godel number
of —%.

(a) Assume by #. Since Fx # < &("Z7), biconditional elimination
yields b £(" 2 7), that is:

bi (Vx)(PF (x2, ) => (Vx3) (N eg(p, x3) = (Ixg) (xa <2 A Ff (x4, x3))))
Let k& be the Godel number of a proof in K of #. Then Pf(k,p) and,
therefore, g 2¢(k, p). Applying rule Ad to &(" %), we obtain
Fg gj}f(fc, D) = (Vx3)(Neg(p, x3) = (Fng) (x4 <k A P (x4, x3)))

So, by MP,

(%) Fx (Vxos)(Wenl By x3) = (Fxa) (ks < A PE(xa, 13)))
Since j is the Gédel number of —-%, we have Neg(p, j), and, therefore,
Fg Neg(P, j). Applying rule A4 to (%), we obtain Fg Aeg(p, j) = (Fxq)
(o <k A P# (x4, j)). Hence, by MP, g (Tva)(xs <k A P4 (x4, j)), which is an
abbreviation for
#)  Fr (V)= <k A PH (x4, 1))

Since Fx #, the consistency of K implies not- g —~42. Hence, Pf(n, j) is false
for all natural numbers n. Therefore, by ~2¥(#, j) for all natural numbers
n. Since K is a theory with equality, Fg x4 = 7 = ~%#¥(x4, j) for all natural
numbers #. By condition 4,

(f) FKx4SIE:>x4:0Vx4:1_V...Vx4:K'

(j{f) by xg =7 = P (xg, j) forn=0,1,..., k

So, by a suitable tautology, (§) and (§ §) yield Fg x4 <k = ~P/(xs, J)
and then, by another tautology, Fg —(xs<kAP£(xs, j)). By Gen,

But
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consistency of K.

.

(b) Assume Fg ~#. Let m be the G&del number of a proof of -2 in K.
So, Pf(m, j) is true and, therefore, g Z¢(im, j). Hence, by an application of
rule E4 and the deduction theorem, Fx m<x2 = (Fxa)(xs <o AP (x4, 7).
By consistency of K, not-tx # and, therefore, Pf(n, p) is false for 4
natural numbers n. Hence, by ~#¥(7, p) for all natural numbers
By condition 4, Fxxy<m=>x=0Vx;=1V...Vxy =#m. Hence,

Fr x2 < = P/ (x2, p) . Consider the following derivation.

— e
M=o

[,
td

14,

15.

16.

17.

A -l

'@/(xZ) I—))
ery(ﬁ, JC3)
X<mVmEx

m<xy = (Fxa)(xa <x2 A P~ (x4, J))

X £in = ~P{(x2, D)

Hyp

Hyp
Condition 5
Proved above
Proved above

~PL(x2, P) V (Txa) (x4 <32 N P (xa, J))3-5, tautology

(Fxa) (e <x2 NP (x4, )
Neg(D, J)

(31X32¢f/6g(}3, x3)

x3 =]

. (HX4)(JC4 Lx N .@/(Lq, x3))
. P (x2, p), Neg(p, x3) Fr (Txa)

(JC4 Lxa N .@/(X4, JC3))

. Pf(xa, P) b Neg(P, x3)
= (3374) (JC4 Lxp A .@/(Jm, x3))
'@)f(xzv ﬁ) Fk (Vx:“)(‘/‘/éy(p: JC3)

= (3).74)()(?4 <Xy A .@/(Jm, x3))})
r P12, B) = (Vs (Neg(p, x3)
= (Ixq) (xa <x2 A P (x4, x3)))
Fx (Vo) (24 (x2, p) = (Va3)
(Neg(p, x3) = (Fxg) (xa <x2A

G (x4, x3))))
Fx 2

1, 6, disjunction rule
Proved in part (a)

Aeg represents Neg

2, 8, 9, properties of =
7, 10, substitutivity of =
1-11

1-12, Corollary 2.6
13, Gen
1-14, Corollary 2.6

15, Gen

(*1, biconditional elimination)

Thus, g # and F¢ ~#, contradicting the consistency of K.

and Paris, 1978).

The Godel and Rosser sentences for the theory S are undecidable sen-
tences of S. They have a certain intuitive metamathematical meaning; for
example, a Godel sentence ¥ asserts that 4 is unprovable in S. Until re-
cently, no undecidable sentences of S were known that had intrinsic math-
ematical interest. However, in 1977, a mathematically significant sentence of
combinatorics, related to the so-called finite Ramsey theorem, was shown to
be undecidable in S (see Kirby and Paris, 1977; Paris and Harrington, 1977;

—— s

Fr (Vaa)—(xa <k NP4 (xa, 7). This, together with (#), contradicts the



E{E FIXED-POINT THEOREM. GODEL’'S INCOMPLETENESS THEOREM

[211

DEFINITION

A theory K is said to be recursively axiomatizable if there is a theory K*
having the same theorems as K such that K* has a recursive axiom set.

COROLLARY 3.39

Let K be a theory in the language %4. If K is a consistent, recursively
axiomatizable extension of RR, then K has an undecidable sentence.

Proof

Let K* be a theory having the same theorems as K and such that K* has a
recursive axiom set. Conditions 1-5 of Proposition 3.38 hold for K*. Hence,
a Rosser sentence for K* is undecidable in K* and, therefore, also un-
decidable in K.

An effectively decidable set of objects is a set for which there is a me-
chanical procedure that determines, for any given object, whether or not
that object belongs to the set. By a mechanical procedure we mean a pro-
cedure that is carried out automatically without any need for originality or
ingenuity in its application. On the other hand, a set A of natural numbers is
said to be recursive if the property x € 4 is recursive.! The reader should be
convinced after Chapter 5 that the precise notion of recursive set corresponds
to the intuitive idea of an effectively decidable set of natural numbers. This
hypothesis is known as Church’s thesis.

Remember that a theory is said to be axiomatic if the set of its axioms is
effectively decidable. Clearly, the set of axioms is effectively decidable if and
only if the set of Godel numbers of axioms is effectively decidable (since we
can pass cffectively from a wf to its Godel number and, conversely, from the
Godel number to the wf). Hence, if we accept Church’s thesis, to say that K
has a recursive axiom set is equivalent to saying that K is an axiomatic
theory, and, therefore, Corollary 3.39 shows RR is essentially incomplete,
that is, that every consistent axiomatic extension of RR has an undecidable
sentence. This result is very disturbing; it tells us that there is no complete
axiomatization of arithmetic, that is, there is no way to set up an axiom
system on the basis of which we can decide all problems of number theory.

Exercises

3.46 Church’s thesis is usually taken in the form that a mumber-theoretic
Junction is effectively computable if and only if it is recursive. Prove that this is
equivalent to the form of Church’s thesis given above.

tTo say that x € A is recursive means that the characteristic function C, is a
recursive function, where C4(x) =0 if x € 4 and Cy(x) = 1 if x ¢ A4 (see page 180).
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3.47 Let K be a true theory that satisfies the hypotheses of the Godel
Rosser theorem. Determine whether a Rosser sentence £ for K is true fop
the standard interpretation.
3.48 (Church, 1936b) Let 7r be the set of Gédel numbers of all wfs in the
language ¥4 that are true for the standard interpretation. Prove that 7y i
not recursive. (Hence, under the assumption of Church’s thesis, there is g
effective procedure for determining the truth or falsity of arbitrary sentenceg
of arithmetic.)

3.49 Prove that there is no recursively axiomatizable theory that has 7 a¢
the set of GOdel numbers of its theorems.

3.50 Let K be a theory with equality in the language %, that satisfieg
conditions 4 and 5 on page 208. If every recursive relation is expressible i
K, prove that every recursive function is representable in K.

Godel’s Second Theorem

Let K be an extension of S in the language %4 such that K has a recursive
axiom set. Let @0k be the following closed wf of K:

(Vxl)(ng)(ng,)(qu)ﬁ(,@/(xl, JC3) N ,@f(xg, X4) AN JVeg(Jg, X4))

For the standard interpretation, %sszx asserts that there are no proofs in K
of a wf and its negation, that is, that K is consistent.
Consider the following sentence:

(G) Cong = G

where % is a (GoOdel sentence for K. Remember that & asserts that & is
unprovable in K. Hence, (G) states that, if K is consistent, then % is not
provable in K. But that is just the first half of Godel’s incompleteness
theorem. The metamathematical reasoning used in the proof of that theo-
rem can be expressed and carried through within K itself, so that one ob-
tains a proof in K of () (sce Hilbert & Bernays, 1939, pp. 285-328;
Feferman, 1960). Thus, Fx $enx = 4. But, by Go6del’s incompleteness
theorem, if K is consistent, ¥ is not provable in K. Hence, if K is consistent,
€ osrr. IS not provable in K.

This is Gddel’s second theorem (1931). One can paraphrase it by stating
that, if K is consistent, then the consistency of K cannot be proved within K,
or, equivalently, a consistency proof of K must use ideas and methods that
go beyond those available in K. Consistency proofs for S have been given by
Gentzen (1936; 1938) and Schiitte (1951), and these proofs do, in fact,
employ notions and methods (for example, a portion of the theory of de-
numerable ordinal numbers) that apparently are not formalizable in S.

Godel’s second theorem is sometimes stated in the form that, if a ‘suffi-
ciently strong” theory K is consistent, then the consistency of K cannot be
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;proved within K. Aside from the vagueness of the ‘sufficiently strong’ (which
can be made precise without much difficulty), the way in which the con-
sistency of K is formulated is crucial. Feferman (1960, Cor. 5.10) has shown
‘that there is a way of formalizing the consistency of S — say, €es§ — such
that Fs Gesg. A precise formulation of Godel second theorem may be found
;n Feferman (1960). (See Jeroslow (1971; 1972; 1973) for further clarification
and development.)

 In their proof of Godel's second theorem, Hilbert and Bernays (1939)
‘hased their work on three so-called derivability conditions. For the sake of
ideﬁniteness, we shall limit ourselves to the theory S, although everything we
say also holds for recursively axiomatizable extensions of S. To formulate
the Hilbert—Bernays results, let $eco(x) stand for (Ixp)P4(x2, x1). Thus,
ander the standard interpretation, #es(x;) means that there is a proofin S
of the wf with Gédel number x;; that is, the wf with G6del number x; is
provable in S.I Notice that a Godel sentence @ for S satisfies the fixed-point
condition; kg ¥ & —lgﬁ’ew(rgj).

THE HILBERT-BERNAYS DERIVABILITY CONDITIONS?

(HB1) If s &, then Fs Beco(" € ).
(HB2) s Beco(" € = D7) = (Bece(" €7 = Becc("27))
(HB3) s Bero(" € ) = Beowo(" Beco("€ 1) )

Here, ¥ and & are arbitrary closed wfs of S. (HB1) is straightforward and
(HB2) is an easy consequence of properties of #¢. However, (HB3) requires
a careful and diflicult proof. (A clear treatment may also be found in Boolos
(1993, chap. 2), and in Shoenfield (1967, pp. 211-213).)

A Godel sentence ¥ for S asserts its own unprovability in S:
bs @ < —Beco(" % 7). We also can apply the fixed-point theorem to obtain
a sentence ¢ such that g # < .%‘ew(rj‘? ). o is called a Henkin sentence
for S. #° asserts its own provability in S. On intuitive grounds, it is not clear
whether 3# is true for the standard interpretation, nor is it easy to determine
whether 5% is provable, disprovable or undecidable in S. The problem was
solved by Lob (1955) on the basis of Proposition 3.40 below. First, however,
let us introduce the following convenient abbreviation.

*Bew’ consists of the first three letters of the German word beweisbar, which
means ‘provable’.

tThese three conditions are simplifications by Léb (1955) of the original Hil-
bert-Bernays conditions.
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NOTATION

Let (1% stand for Bew(" € '), where € is any wf. Then the Hilbert-Bernayg:
derivability conditions become:

(HB1) If -5 %, then s []¥.
(HB2) ks (% = 2) = (O% = O2)
(HB3) s 0% = [ %

The Godel sentence % and the Henkin sentence # satisfy the equivalences
e % < —[]% and g # < [,

PROPOSITION 3.40 (LOB’S THEOREM)
Let & be a sentence of S. If kg [J¥ = ¥, then ¢ %.

Proof

Apply the fixed-point theorem to the Wi #ee(x)) = € to obtain a sentence
% such that bg £ & (Beeo(" L) = €). Thus, g ¥ < (0.% = 4). Then
we have the following derivation of €.

. £ & (0% = %) Obtained above

2 by = (OF = 6) 1, biconditional elimination
3. bs O(Z = (0L = ©)) 2, (HB1)

4. +s Y = O(OZ = %) 3, (HB2), MP

5.k O(0OY = %) = (DOZL = %) (HB2)

6. /s 0.2 = (O 0Z = [19%) 4, 5 tautology

T HOY=00% (HB3)

8. s [ = ¥ 6, 7, tautology

O.Fs [1¥ = € Hypothesis of the theorem
10.Fs .Y = € 8, 9, tautology
1. kg 7 1, 10, biconditional elimination
12. s .92 11, (HBI)
13. ks € 10, 12, MP

COROLILARY 3.41

Let 3 be a Henkin sentence for S. Then g # and # is true for the
standard interpretation.

Proof

Fs o < [#. By biconditional elimination, g [J# = #. So, by Lob’s
theorem, kg 5. Since 3 asserts that # is provable in S, # is true
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. Lob’s theorem also enables us to give a proof of Godel’s second theorem
for S.

PROPOSITION 3.42 (GODEL’S SECOND THEOREM)

[f S is consistent, then not-tg €ous.

Proof

Assume S consistent. Since kg 0 # 1, the consistency of S implies not-
s 0=1. By Lob’s theorem, not-ks [1(0 =1) = 0= 1. Hence, by the
tautology =4 = (4 = B), we have:

(%) not- kg =[J(0 = 1)

But, since Fg 0 # 1, (HB1) yields +g (0 # i). Then it is easy to show that
bg G ons = =[1{0 = T) So, by (*), not-+g @esns.

Boolos (1993) gives an elegant and extensive study of the fixed-point
theorem and Lob’s theorem in the context of an axiomatic treatment of
provability predicates. Such an axiomatic approach was first proposed and
developed by Magan (1975).

Exercises

351 Prove (HB1) and (HB2).

3.52 Give the dptails of the proof of Fg Goaug = ﬁ.@m(ro = 1), which
‘was used in the proof of Proposition 3.42,

353 If 4 is a ‘Godel sentence of S, prove Fs % < ~Heo(" 0=17).
(Hence, any two Gddel sentences for S are provably equivalent. This is an

“instance of a more general phenomenon of equivalence of fixed-point sen-
tences, first noticed and verified independently by Bernardi (1975; 1976), De
Jongh, and Sambin (1976). See Smorynski (1979; 1982).)

*3.54 In each of the following cases, apply the fixed-point theorem for S to
obtain a sentence of the indicated kind; determine whether that sentence is
provable in S, disprovable in S, or undecidable in S; and determine the truth
or falsity of the sentence for the standard interpretation.

(a) A sentence ¢ that asserts its own decidability in S (that is, that g & or
ks —%).

(b)A sentence that asserts its own undecidability in S.

(c) A sentence ¥ asserting that not-l-g —%.

(d)A sentence ¢ asserting that g —%.




216 J

FORMAL NUMBER THEORY

3.6 RECURSIVE UNDECIDABILITY. CHURCH’S THEOREM

If K is a theory, let T be the set of Gdédel numbers of theorems of K

DEFINITIONS

K is said to be recursively decidable if Tk is a recursive set (that is, the
property x € Tk is recursive). K is said to be recursively undecidable if Ty i
not recursive. K is said to be essentially recursively undecidable if K and g
consistent extensions of K are recursively undecidable.

If we accept Church’s thesis, then recursive undecidability is equivalent ¢
cffective undecidability, that is, non-existence of a mechanical decisioﬁ
procedure for theoremhood. The non-existence of such a mechanical pro-
cedure means that ingenuity is required for determining whether arbitrary
wfs are theorems.

Exercise

3.55 Prove that an incomnsistent theory having a recursive vocabulary is
recursively decidable.

PROPOSITION 3.43

Let K be a consistent theory with equality in the languaée Z 4 1in which the
diagonal function D is representable. Then the property x € Tk is not ex-
pressible in K.

Proof
Assume x € 7y is expressible in K by a wf .7 (x;). Thus:

@)If n € T, Fx 7 (7).

Of n ¢ Tx, Fx ~T (7).

By the diagonalization lemma applied to =7 (x1), there is a sentence € such
that Fx € < ~7 ("€ ). Let ¢ be the Gédel number of €. So:

)k € & ~F(g).

Case 1: g €. Then g € Tk. By (a), Fx 7 (g). But, from k¢ € and (c), by
biconditional elimination, Fx =7 (g). Hence K is inconsistent, contradicting
our hypothesis.
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Cuse 2: not+g €. So, g ¢ Tx. By (b), Fx =7 (g). Hence, by (c) and
‘hiconditional elimination, g €.
Thus, in either case a contradiction is reached.

'DEFINITION

A set B of natural numbers is said to be arithmetical if there is a wf 2(x) in
the language .74, with one free variable x, such that, for every natural
pumber r, # € B if and only if #(#) is true for the standard interpretation.

COROLLARY 3.44 [TARSKI’S THEOREM (1936)]

Let 7r be the set of Godel numbers of wfs of S that are true for the standard
interpretation. Then 7 is not arithmetical.

Proof

Let .4 be the extension of S that has as proper axioms all those wis that are
true for the standard interpretation. Since every theorem of ../” must be true
for the standard interpretation, the theorems of 4" are identical with the
axioms of .¥". Hence, 7 - = 7. Thus, for any closed wf %4, # holds for the
standard interpretation if and only if - 2. It follows that a set B is ar-
ithmetical if and only if the property x € B is expressible in /. We may
assume that 4" is consistent because it has the standard interpretation as a
model. Since every recursive function is representable in S, every recursive
function is representable in ¥ and, therefore, D is representable in .47. By
Proposition 3.43, x € Tr is not expressible in .4". Hence, 7r is not ar-
ithmetical. (This result can be roughly paraphrased by saying that the no-
tion of arithmetical truth is not arithmetically definable.)

PROPOSITION 3.45

Let K be a consistent theory with equality in the language %4 in which all
recursive functions are representable. Assume also that Fx 0 £ 1. Then K. is
recursively undecidable.

Proof

D is primitive recursive and, therefore, representable in K. By Proposition
3.43, the property x € T¢ is not expressible in K. By Proposition 3.13, the
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characteristic function Cr, is not representable in K. Hence, Cy is not 4
recursive function. Therefore, Tk is not a recursive set and so, by definition,
K is recursively undecidable.

COROLLARY 3.46

RR is essentially recursively undecidable.

Proof

RR and all consistent extensions of RR satisfy the conditions on K ip
Proposition 3.45 and, therefore, are recursively undecidable. (We take for
granted that RR is consistent because it has the standard interpretation as a
model. More constructive consistency proofs can be given along the same
lines as the proofs by Beth (1959, § 84) or Kleene (1952, § 79).)

We shall now show how this result can be used to give another derivation
of the Godel-Rosser theorem.

PROPOSITION 3.47

Let K be a theory with a recursive vocabulary. If K is recursively ax-
iomatizable and recursively undecidable, then K is incomplete (i.e., K has an
undecidable sentence).

Proof

By the recursive axiomatizability of K, there is a theory J with a recursive
axiom set that has the same theorems as K. Since K and J have the same
theorems, 7Tk = 7; and, therefore, J is recursively undecidable, and K is
incomplete if and only if T is incomplete. So, it suffices to prove J incomplete.
Notice that, since K and J have the same theorems, J and K must have the
same individual constants, function letters, and predicate letters (because all
such symbols occur in logical axioms). Thus, the hypotheses of Propositions
3.26 an 3.28 hold for I. Moreover, J is consistent, since an inconsistent
theory with a recursive vocabulary is recursively decidable.

Assume T is complete. Remember that, if x is the Gédel number of a wf,
Clos(x) is the G6del number of the closure of that wf. By Proposition 3.26
(16), Clos is a recursive function. Define:

H(x) = py[(Fml(x) A (Pf(y, Clos(x)) v Pf(y, Neg(Clos(x))))) vV —Fml(x)]

Notice that, if x is not the G&édel number of a wf, H(x) = 0. If x is the Godel
number of a wf %, the closure of 4 is a closed wf and, by the completeness
of J, there is a proof in J of either the closure of & or its negation. Hence,
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_H(x) is obtained by a legitimate application of the restricted y-operator and,
therefore, H is a recursive function. Recall that a wfis provable if and only if
its closure is provable. So, x € Ty if and only if Pf(H(x), Clos(x)). But
Pf(H(x), Clos(x)) is recursive. Thus, 7} is recursive, contradicting the re-
cursive undecidability of J.

The intuitive idea behind this proof is the following. Given any wf 4, we
form its closure ¥ and start listing all the theorems in J. (Since PrAx is
recursive, Church’s thesis tells us that J is an axiomatic theory and, there-
fore, by the argument on page 86, we have an effective procedure for gen-
erating all the theorems.) If J is complete, either € or =% will eventually
appear in the list of theorems. If € appears, % is a theorem. If =% appears,
then, by the consistency of J, € will not appear among the theorems and,
therefore, # is not a theorem. Thus, we have a decision procedure for
theoremhood and, again by Church’s thesis, J would be recursively decidable.

COROILARY 3.48 (GODEL-ROSSER THEOREM)

Any consistent recursively axiomatizable extension of RR has undecidable
sentences.

Proof

This is an immediate consequence of Corollary 3.46 and Proposition 3.47.

Exercises

3.56 Prove that a recursively decidable theory must be recursively ax-
iomatizable.

3.57 Let K be any recursively axiomatizable true theory with equality. (So,
Tk C Tr.) Prove that K has an undecidable sentence. [Hint: Use Proposition
3.47 and Exercise 3.48.]

3.58 Two sets 4 and B of natural numbers are said to be recursively in-
separable if there is no recursive set C such that 4 C C and B C C. (C is the
complement @ — C.) Let K be any consistent theory with equality in the
language %, in which all recursive functions are representable and such that
Fg 0+ 1. Let Refk be the set of Gédel numbers of refutable wis of K, that
is, {x[Neg(x) € Tx }. Prove that 7x and Refk are recursively inseparable.

DEFINITIONS

Let K; and K, be two theories in the same language.

(@) K, is called a finite extension of K, if and only if there is a set 4 of wfs
and a finite set B of wfs such that: (1) the theorems of K; are precisely
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the wfs derivable from A; and (2) the theorems of K; are precisely tfe
wis derivable from AUB.

(b) Let K;UK; denote the theory whose set of axioms is the union of the gey
of axioms of K and the set of axioms of K;. We say that K; and K, are
compatible i K1 UK is consistent.

PROPOSITION 3.49

Let K; and K; be two theories in the same language. If K, is a finite
extension of K; and if K, is recursively undecidable, then K; is recurswely
undecidable.

Proof

Let 4 be a set of axioms of K; and AU{#,...,%,} a set of axioms for K,
We may assume that %, ..., %, are closed wfs. Then, by Corollary 2.7, it is
easy to see that a wf € is provable in Ky if and only if (%, A ... A%,) = €is
provable in K;. Let ¢ be a Gédel number of (%) A...A%,). Then b is a
Gédel number of a theorem of Ky when and only when 23 % ¢ %21 5 p 5 25 js.
a Godel number of a theorem of Iy; that is, b is in 7k, if and only it
23 % 0% 2 % px 2’ is in Tk, . Hence, if T, were recursive, T, would also be
recursive, contradicting the recursive undecidability of K.

PROPOSITION 3.50

Let K be a theory in the language .%,4. If K is compatible with RR, then K is
recursively undecidable.

Proof

Since K is comptatible with RR, the theory KURR is a consistent extension
of RR. Therefore, by Corollary 3.46, KURR is recursively undecidable.
Since RR has a finite number of axioms, K URR is a finite extension of K.,
Hence, by Proposition 3.49, K is recursively undecidable.

COROLLARY 3.51

Every true theory K is recursively undecidable.

Proof

K URR has the standard interpretation as a model and is, therefore, con-
sistent. Thus, K is compatible with RR. Now apply Proposition 3.50.



RECURSIVE UNDECIDABILITY. CHURCH’S THEOREM

221

COROLLARY 3.52

Let Ps be the predicate calculus in the language .#4. Then Ps is recursively
l]ndecidable.

proof

psURR = RR. Hence, Pg is compatible with RR and, therefore, by Pro-
position 3.50, recursively undecidable.

By PF we mean the fidl first-order predicate calculus containing all
‘predicate letters, function letters and individual constants. Let PP be the
pure first-order predicate calculus, containing all predicate letters but no
function letters or individual constants.

LEMMA 3.53

“There is a recursive function / such that, for any wf 4 of PF having Godel
-number u, there is a wf %' of PP having Gédel number /() such that 4 is
-provable in PF if and only if #' is provable in PP.

:Proof

‘Let # be a wl of PF. With the distinct function letters f7' in %, associate
«distinct predicate letters 47'! not occurring in 4, and with the distinct
“individual constants a; In %, associate distincl predicate letters A,l( not oc-
“curring in 4. Find the first individual constant ¢; in # (if any). Let z be the
first variable not in & and let 4™ result from & by replacing all occurrences
of a; by z. Form the wf %y : (3z)4}(z) = (32)(4L(z) A B*), where 4 is the
predicate letter associated with a;. It is easy to check (see the proof of
Proposition 2.28) that 4 is logically valid if and only if #, is logically valid.
Keep on performing similar transformations until a wf ¢ without individual
constants is reached; then € is logically valid if and only if & is logically
valid. Next, take the leftmost term f'(t1,...,%,) in €, where 1, ...,t, do not
contain function letters. Let w be the first variable not in %, let €* result
from € by replacing f;(t1,...,t,) by w, and let ¥; be the wf
@A (wy 1y, .. 1) = (AW AT (W, 11, .. ., 1a) AET), where 4™ is the
predicate letter associated with f7'. It is easy to verify that € is logically valid
if and only if €, is logically valid. Repeat the same transformation on €,
and so on, until a wf %’ is reached that contains no [unction letters. Then %’
is a wl of PP, and ' is logically valid if and only if 4 is logically valid. By
Godel’s completeness theorem (Corollary 2.19), 4 is logically valid if and
only if Fpr 4, and &' is logically valid if and only if Fpp %’. Now, if i is the
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Gédel number of 4, let /(u) be the Godel number of #'. When u is not ghe
Gédel number of a wf of PF, define #(u) to be 0. Clearly, % is effectively
computable because we have described an effective procedure for obtaining’
F' from %. Therefore, by Church’s thesis, % is recursive. Alternatively, gy
extremely diligent reader could avoid the use of Church’s thesis by ;.
ithmetizing’ all the steps described above in the computation of A,

PROPOSITION 3.54 (CHURCH’S THEOREM (1936a))

PF and PP are recursively undecidable.

Proof

(a) By Godel’s completeness theorem, a wf % of Pg is provable in Pg if and
only if 4 is logically valid, and 4 is provable in PF if and only if 4 is
logically valid. Hence, bFp, # if and only if Fpr #. However, the set
Fmlp, of Go&del numbers of wfs of Ps is recursive. Then
Tp, = TprnFmlpg, where Tp, and Tpp are, respectively, the sets of Godel
numbers of the theorems of F, and PF. If Tpr were recursive, 7p, would
be recursive, contradicting Corollary 3.52. Therefore, PF is recursively
undecidable.

(b) By Lemma 3.53, u is in Tpp if and only if #(u) is in Tpp. Since % is
recursive, the recursiveness of 7pp would imply the recursiveness of Tpg,
contradicting (a). Thus, 7pp is not recursive; that is, PP is recursively
undecidable.

If we accept Church’s thesis, then ‘recursively undecidable’ can be re-
placed everywhere by ‘effectively undecidable’. In particular, Proposition
3.54 states that there is no decision procedure for recognizing theoremhood,
either for the pure predicate calculus PP or the full predicate calculus PF. By
Godel’s completeness theorem, this implies that there is no effective method
for determining whether any given wf is logically valid.

Exercises

3.59P

(a) By a wf of the pure monadic predicate calculus (PMP) we mean a wf of
the pure predicate calculus that does not contain predicate letters of
more than one argument. Show that, in contrast to Church’s theorem,
there is an effective procedure for determining whether a wf of PMP is
logically valid. [Hint: Let By, B», . .., By, be the distinct predicate letters in
a wf Z. Then # is logically valid if and only if % is true for every
interpretation with at most 2% elements. (In fact, assume # is true for
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every interpretation with at most 2¥ elements, and let M be any inter-
pretation. For any elements b and c of the domain D of M, call b and ¢
equivalent if the truth values of B,(b),Ba(b),...,Bi(b) in M are, re-
spectively, the same as those of Bi(c),Ba(c),...,Bi(c). This defines an
equivalence relation in D, and the corresponding set of equivalence
classes has at most 2¥ members and can be made the domain of an
interpretation M* by defining interpretations of By,..., By, in the ob-
vious way, on the equivalence classes. By induction on the length of wis
% that contain no predicate letters other than By, ..., B;, one can show
that & is true for M if and only if it is true for M*. Since % is true for
M, it is also true for M. Hence, & is true for every interpretation.) Note
also that whether & is true for every interpretation that has at most 2
elements can be effectively determined.]’

(b) Prove that a wf % of PMP is logically valid if and only if 8 1s true for all
finite interpretations. (This contrasts with the situation in the pure
predicate calculus; see Exercise 2.56 on page 93.)

3.60 If a theory K" is consistent, if every theorem of an essentially recur-
-sively undecidable theory K, is a theorem of K*, and if the property
Fmig, (v) is recursive, prove that K* is essentially recursively undecidable.

3.61 (Tarski, Mostowski and Robinson, 1953, I)

(a) Let K be a theory with equality. If a predicate letter 47, a function letter
ST and an individual constant g; are not symbols of K, then by possible
definitions of A7, {7 and a; in K we mean, respectively, expressions of the
form

@ (vx1) . (O (A (xn, X)) & B(x, . X))

@) (Vx1) ... (¥x,) (Vy)(f (X1y. ooy dXp) =y & E(x1,..., %))

(i) (V) (@) = » & D))

where #, ¢ and 9 are wis of K; moreover, in case (i1), we must also have
Fr (Vx1) ... (V%) (310)6(x1, - - ., Xa, »), and, in case (iii), bk (313)2(y). If
K is con31stent, prove that addition of any possible definitions to K as
new axioms (using only one possible definition for each symbol) yields a
consistent theory K’, and K’ is recursively undecidable if and only if K is.

(b) By a non-logical constant we mean a predicate letter, function letter or
individual constant. Let K; be a theory with equality that has a finite
number of non-logical constants. Then K is said to be interpretable in a
theory with equality K if we can associate with each non-logical con-
stant of K; that is not a non-logical constant of K a possible definition

IThe result in this exercise is, in a sense, the best possible. By a theorem of
Kalmar (1936), there is an effective procedure producing for each wf # of the pure
predicate calculus another wf %, of the pure predicate calculus such that #, contains
only one predicate letter, a binary one, and such that 4 is logically valid if and only if
%, is logically valid. (For another proof, see Church, 1956, § 47.) Hence, by Church’s
theorem, there is no decision procedure for logical validity of wfs that contain only
binary predicate letters. (For another proof, see Exercise 4.68 on page 271.)
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in K such that, if K* is the theory obtained from K by addirig
possible definitions as axioms, then every axiom (and hence eyeny
orem) of K, is a theorem of K*. Notice that, if K is interpretable ,
it is interpretable in every extension of K. Prove that, if K i i
pretable in K and K is consistent, and if K, is essentidlly recypg
undecidable, then K is essentially recursively undecidable,
3.62 Let K be a theory with equality and 4} a monadic predicate letiey
in K. Given a closed wf €, let &) (called the relativization of € with Tes
to Ajl.) be the wi obtained from ¢ by replacing every subformulg ista;
from the smallest subformulas) of the form (Vx)#(x) by (Vx)(4!(x) = 4
Let the proper axioms of a new theory with equality K% be: (ii all wfs ¢
where € is the closure of any proper axiom of K; (ii) (Hx)A} (x); (iii) A1
for each individual constant a, of K; and (iv) Al(x )_t,\'
1 1 7 - : ( J ;
A; (xn) = A;(ff (..., x)) for any function letter £} of K. Prove the |
lowing,
(a) As proper axioms of K% we could have taken all wis ¢ (A}), where «
the closure of any theorem of K.
(b) K% is interpretable in XK.
(c) K4 is consistent if and only if K is consistent.

(d) K4 is essentially recursively undecidable if and only if K is {Tars
Mostowski and Robinson, 1953, pp. 27-28). ‘
3.63 K is said to be relatively interpretable in X' if there is some predic;
letter A} not in K such that K is interpretable in K. If K is relatjv
interpretable in a consistent theory K’ and K is essentially recursivély w

decidable, prove that K’ is essentially recursively undecidable. '
3.64 Call a theory K in which RR is relatively interpretable sufficien
strong. Prove that any sufficiently strong consistent theory K is essentian
recursively undecidable, and, if K is also recursively axiomatizable,-pro
that K is incomplete. Roughly speaking, we may say that K is sufficient
strong if the notions of natural number, 0, I, addition and multiplication ar
‘definable’ in K in such a way that the axioms of RR (relativized fo 1
‘natural numbers’ of K) are provable in K. Clearly, any theory adequate ...
present-day mathematics will be sufficiently strong and so, if it is consistent
then it will be recursively undecidable and, if it is recursively axiomatizable
then it will be incomplete. If we accept Church’s thesis, this implies that ar
consistent sufficiently strong theory will be effectively undecidable and, if
is axiomatic, it will have undecidable sentences. (Similar results also hold f¢
higher-order theories; for example, see Godel, 1931.) This destroys all
for a consistent and complete axiomatization of mathematics.
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1 AN AXIOM SYSTEM

prime reason for the increase in importance of mathematical logic in the
.enficth century was the discovery of the paradoxes of set theory and the
.d-for a revision of intuitive (and contradictory) set theory. Many dif-
rent axiomatic theories have been proposed to serve as a foundation for
 theory but, no matter how they may differ at the fringes, they all have as
. common core the fundamental theorems that mathematicians require for
eir’ dally work. We make no claim about the superiority of the system we
“.alluse except that, from a notational and conceptual standpoint, it is a
onvenient basis for present-day mathematics.
We shall describe a first-order theory NBG, which is basically a system of
he same type as one originally proposed by von Neumann (1925; 1928) and
la(.eri’-githoroughly revised and simplified by R. Robinson (1937), Bernays
1937-1954); and Godel (1940) (We shall follow Godel’s monograph to a
reat extent, although there will be some significant differences.)
NBG has a single predicate letter 43 but no function letter, or individual
constants.” In order to conform to the notation in Bernays (1937-1954) and
Godel (1940), we shall use capital italic letters X;, X, X3, ... as variables

mstéad of x1, xp, x13, ... . (Asusual, we shall use X, ¥, Z, ... to represent
rbitrary variables.) We shall abbreviate A5(X,Y) by X € Y, and ~A5(X, Y)
y X¢Y.

Intuitively, € is to be thought of as the membership relation and the
values of the variables are to be thought of as classes. Classes are certain
collections of objects. Some properties determine classes, in the sense that a
property P may determine a class of all those objects that possess that
property. This ‘interpretation’ is as imprecise as the notions of ‘collection’
nd ‘property’. The axioms will reveal more about what we have in mind.
hey will provide us with the classes we need in mathematics and appear
modest enough so that contradictions are not derivable from them.

- We use A2 instead of A2 because the latter was used previously for the equality
elation.
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Let us define equality in the following way.

DEFINITION
X=Yfor(VZ)(Zex e zecY)

Thus, two classes are equal when and only when they have the same
members.

DEFINITIONS
XCY for (VY (ZeX=ZeY) (inclusion)
XcY for XCYAX#£Y (proper inclusion)

When X C Y, wesay that X isa subclass of Y. When X C Y, we say that X ig

a proper subclass of Y.
As easy consequences of these definitions, we have the following,

PROPOSITION 4.1}

() FX=Y & (XCYAYCX)
b) FX=X

© FX=Y=Y=X

@ FX=Y=(Y=Z=X=2)

We shall now present the proper axioms of NBG, interspersing among
the axioms some additional definitions and various consequences of the

axioms.
We shall define a class to be a set if it is a member of some class. Those

classes that are not sets are called proper classes.

DEFINITIONS
M(X) for ANXer) (X is a set)
Pr(X) for “M(X) (X is a proper class)

It will be seen later that the usual derivations of the paradoxes now no
longer lead to contradictions but only yield the results that various classes
are proper classes, not sets. The sets are intended to be those safe, com-
fortable classes that are used by mathematicians in their daily work, whereas

tAs usual, Z is to be the first variable different from X and Y.
The subscript NBG will be omitted from Fypgc; in the rest of this chapter.
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-proper classes are thought of as monstrously large collections that, if per-
mitted to be sets (i.e., allowed to belong to other classes), would engender

contradictions.

Exercise 4.1 Prove - X € Y = M(X).

The system NBG is designed to handle classes, not concrete individuals.!
The reason for this is that mathematics has no need for objects such as cows
and molecules; all mathematical objects and relations can be formulated in
terms of classes alone. If non-classes are required for applications to other
sciences, then the system NBG can be modified slightly so as to apply to
both classes and non-classes alike (see the system UR in Section 4.6 below).

Let us introduce lower-case letters x;, x;, ... as special restricted vari-
ables for sets. In other words, (¥x;)%(x;) stands for (VX)(M(X) = Z(X)),
that is, % holds for all sets, and (dx;)#(x;) stands for (AX)(M(X) A B(X)),
that is, # holds for some set. As usual, the variable X used in these defi-
nitions should be the first one that does not occur in #(x;). We shall use
X, ¥, 2, ... to stand for arbitrary set variables.

Example
(VX)) (9x) () (AX:)(X) € x Ay € X3) stands for
(VA1) (VX2)(M(X2) = (X)) (M(Xy) A (3X3) (X1 € X2 A X € X3)))

Exercise 4.2

Prove that FX =Y & (Vz)(z € X & z€ Y). This is the so-called exten-
sionality principle: two classes are equal when and only when they contain
the same sets as members.

AXIOM T
X =X= X eXzs & X €X)

This axiom tells us that equal classes belong to the same classes.

Exercise

4.3 Prove that - M(Z) A Z =Y = M(Y).

tIf there were concrete individuals (that is, objects that are not classes), then the
definition of equality would have to be changed, since all such individuals have the
same members (namely, none at all).
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value for {X, Y} for any classes X and Y, not only for sets x and y. We shall
let {X,Y} be 0 whenever X is not a set or ¥ is not a set. One can prove:
F (HEZ)([(_'M(X) VaMYNAZ=0]VMX)AMIY)ANVu)(ueZ e u=
-y v u = Y)]). This justifies the introduction of a term {X, Y} satisfying the
following condition:

MEI)AMI)AVu)(ue {X, Y} Su=XVu=7Y)
vV [(=ME) V-M(Y)) AMX, Y} = 0]

©One can then prove + (Vx)(W)(Vu)(z€ {x,y} e u=xVu=y) and
F(PO(YYM{X, Y}).

DEFINITION
{X} for {X,X}

For a set x, {x} is called the singleton of x. It is a set that has x as jts only

‘member.
In connection with these definitions, the reader should review Section 2.9

and, in particular, Proposition 2.28, which assures us that the introduction
of new individual constants and function letters, such as {) and {X, ¥}, adds
nothing essentially new to the theory NBG.

Exercise
4.7 (a) Prove F{X,Y} = {Y,X}.
(b) Prove - (Wx)(W»)({x} = {y} = x=y).

DEFINITION

(X, Y) for {{X},{X,Y}}
For sets x and y, (x,y) is called the ordered pair of x and y.

The definition of (X, Y) does not have any intrinsic intuitive meaning. It
is just a convenient way (discovered by Kuratowski, 1921) to define ordered

pairs so that one can prove the characteristic property of ordered pairs
expressed in the following proposition.

PROPOSITION 4.3

= (W) (W) (Vi) (Vo) ((x,3) = (1, 0) > x=u Ay =1)
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Proof

Assume {x,y) = (u,v). Then {{x},{x,y}} = {{u}, {u, v}}. Since {x} {{x),
{x,9}}, {x} € {{u}, {w, v}}. Hence, {x} = {u} or {x} = {u,v}. In cither cage,
x = u. Now, {u,v} € {{u}, {u,v}}; so, {u,0} € {{x}, {x,}}. Then {u,v} =
{x} or {u,v}={xy}. Similarly, {xy}={u} or {x3}={u}.
{u,v} = {x} and {x,y} ={u}, then x=p=w=v; if not, {u,v} = {x,»}.
Hence, {u, v} = {u,y}. So, if v # u, then y = v; if v = u, then y = v. Thus, i
all cases, y = v.

Notice that the converse of Proposition 4.3 holds by virtue of the sup-
stitutijvity of equality.

Exercise

4.8 (a) Show that, instead of the definition of an ordered pair given in the
text, we could have used (X, ¥) = {{0, X}, {{(}, Y}}; thatis, Proposition 4.3
would still be provable with this new meaning of (X, ¥).

(b) Show that the ordered pair also could be defined as {{{,{X}},
{{Y¥}}}. (This was the first such definition, discovered by Wiener (1914). For
a thorough analysis of such definitions, see A. Oberschelp (1991).)

We now extend the definition of ordered pairs to ordered #-tuples.

DEFINITIONS
X) =X
(X1, X K1) = XL, - - X, K1)

Thus, (X,Y,Z) = {((X,Y),Z) and (X,Y,Z,U) = (((X.Y),Z),U).
It is easy to establish the following generalization of Proposition 4.3.

F (o) e (90 (W) o o (D) (XL e X} = (V1 e ) =
XI=M A AX =)

AXIOMS OF CLASS EXISTENCE

(B1) AX)(Vu)(Vo)({u,v) € X & u € v) (€ -relation)
B2) (VXY(VPEZY(Vu)(ueZeueX huel) (intersection)
(B3) (VX)(A2)(Vu)(u € Z & u¢ X) (complement)
(B4) (VX)(AZ)(Vu)(u € Z & (Fv){({u, v) € X)) (domain)

(B5) (vX)(32)(Vu){(Vo)({ir,v) € Z & u € X)
(B6) (VX)(IAZ)(Vu)(Vo)(Yw){{u,v,w) € Z & (v, w,u) € X)
(B7) (VX)) AZ)(Vi)(Vo)(Yw)({u, v, w) € Z & (u,w,0) € X)

-
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From axioms (B2){(B4) and the extensionality principle, we obtain:
FVX)(VD)(@Z)(Vu)ueZSue X AucY)

F (X)) QD) (V) € Z & ug X)

F (VX)) (A1 Z) (V) (u € Z & (F)({u, 1) € X))

These results justify the introduction of new function letters: n, ™ and 2.

DEFINITIONS

(ViYueXnY ueXhucy)
Vu)(u € X & ugX)

(Vu)(u € 2(X) < (Fo)((u, 1) € X))
XY =XnY

V=10 .

X-Y=XnY

Exercises

4.9 Prove:

(intersection of X and Y)
(complement of X)
(domain of X)

(union of X and Y)
(universal class)'
(difference of X and Y)

@ FMVu)(ueXuwYsueXVvuey)

(b) F (Vu)(u e V)

© FViueX—-YeoucXAu¢Y)

4,10 Prove:
(@) FXAY =YX
(b) F XUY = YUX
) FXCY&eXnY=X
dFXCYeXuy=Y
) F(XnY)nZ =X(YnZ)
6 FXuuZ =Xu(YuZ)
() FXnX=X
(h) FXUuX =X

i FXnp=10
G FXUl=X
& FXAV =X

4.11 Prove the following wfs.

) FXuV =V

(m) FXUY = XY

(n) FXAY =XuY

(0 FX—-X=10

P FV-X=X

Q@ FX-—(X-Y)=XnY

@ FYCX=X-Y=X

() FX=X

O FV=0

() FXN(YTUZ) = (XnF)u(XnZ)
(V) FXU(YnZ) = (XuY)n(XuZ)

(@) F (VX)EZ2) (V) (vo){({u,v) € Z & (v,u) € X) [Hint: Apply axioms
(BS),(B7),(B6) and (B4) successively.]
(b) F (VX)PAZ)(Vur) (Vo) (Yw)({u, v, w) € Z & (u,w) € X) [Hint: Use

(BS) and (B7).]

(©) F (¥X)FZ)(Y0)(Wx1) . . . (Pn) ({51, -« Xy 0) EZ 5 (1, . -

[Hint: Use (BS).]

S Xn) €X)

It will be shown later that V is a proper class, that is, V' is not a set.
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(d) E (VX)(BZ)(Vor) - . . (Vo) (Vx1) . (VX) (515 o X DL -y ) €7
< (X1,...,%,) €X) [Hint: Iteration of part (c).]

(e) F (VX)3Z) (Vv1)...(Vom) (Vx1)...(¥%,) (&1, - - o s Xpet, U1 - - » iy X}
€Z & (x1,...,%4) € X) [Hint: For m =1, use (b), substituting
(x1,...,%,1) for u and x, for w; the general case then follows by
iteration.]

0 +FX)EZ)(vx) (Vo) ... (Vou)({v1,. .., 0mx) EZ & x €X) [Hing
Use (B5) and part (a).]

(8) - (VX) (3Z) (vx1) ... (Vx) (Gtoe-ooxn) €Z & () (14,3, 3)
€ X)) [Hint: In (B4), substitute (x,,...,x,) for u and y for v.]

(h) F (vX)(3Z) (Vi) (Vo) (YW)((v,u,w) € Z & (u, w) € X) [Hint: Substj.
tute (u, w) for # in (B5) and apply (B6).]

() F(vX) (3Z) (Vvi) ... (Vor) (V) (VW) ((v1, .- o, w) € Z & {1, w)
€ X) [Hint: Substitute (vy,...,vy) for v in part (h).]

Now we can derive a general class existence theorem. By a predicative vf
we mean a wf @(Xy,..., X, 1,...,Y,) whose variables occur among
Xiy.-y X 11,..., ¥y and in which only set variables are quantified (i.e., ¢
can be abbreviated in such a way that only set variables are quantified).

Examples
(3x1)(x; € }) is predicative, whereas (3Y;)(x; € 17) is not predicative.

PROPOSITION 4.4 (CLASS EXISTENCE THEOREM)

Let o(Xy,..., X, 11, ..., V) be a predicative wf. Then
F@Z)(Wx1) ... (V) (X1 o0 Xn) €EZ S @K1y, X Y1y oy Tar))e

Proof

We shall consider only wfs ¢ in which no wf of the form ¥; € W occurs, since
Y; € W can be replaced by (3x)(x = Y¥; Ax € W), which is equivalent to (dx)
[(Vz)(z € x & z € ¥;) Ax € W]. Moreover, we may assume that ¢ contains
no wf of the form X € X, since this may be replaced by (Ju)( = X Au € X),
which is equivalent to (3u)[(Vz)(z € u & z € X) Au € X|. We shall proceed
now by induction on the number & of connectives and quantifiers in ¢
(written with restricted set variables).

Base: k=0. Then ¢ has the form x; € x; or x; € x; or x; € ¥, where
1<i < j<n. For x; € x;, axiom (B1) guarantees that there is some #; such
that (Vx;)(Vx;)((x,x;) € W & x; € x;). For x; € x;, axiom (B1) implies that
there is some W such that (Vx;)(Vx;)((x,x;) € W5 < x; € x;) and then, by
Exercise 4.11(a), there is some W such that (vx;)(x;)({x;,x;) € W3 & x; € xp).
So, in both cases, there is some W such that (Vx,)(Vx;)((x,x) € W &
O(x1y. 3%, Y1y .., Ym)). Then, by Exercise 4.11(1) with 7 =X, there is

-

[N
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gome Z; such that (¥xy)...(¥xi—1)(Vx:) (VX)) (X1, - oy Xty Xe, X5) € Zy &=
PR CITRRRPE TP (PO Y.)). Hence, by Exercise 4.11(e) with Z; = X, there exists
7 such that (vx1) ... (V) (Vxip1) ... (Vx) (X1, -0 %5) € Z1 & @(xy, .. -, X,
¥, .- > Yw)). Then, by Exercise 4.11(d) with Z, = X, there exists Z such that
(xi) - - (Vx)({x15- -, %n) €EZ S @(*1,..., %, 11, .., Yu)). In the remaining
case, x; € Yy, the theorem follows by application of Exercise 4.11(f,d).

Induction step. Assume the theorem provable for all k < # and assume
that ¢ has r connectives and quantifiers.

() ¢ is —1f. By inductive hypothesis, there is some W such that
(vx1)- - - (V) (X1, .-y xm) EW S Y (xy,. ., xn, 1,0 1)) Let Z=W.

(b) @ is Y = 9. By inductive hypothesis, there are classes Z; and Z, such

that  (Vx1)...(V%) (X1, ., Xn) EZy &Y (31, .oy x0, Ny, V) _and (V)
(V) (X1 -y Xn) € Zp & FHxy, .. %0, Ny o 0, ). Let Z =702,
(c) ¢ is (Vx){. By inductive hypothesis, there is some W such that
(Vx1). - (P} (V) (%1, -y X0, %) € W (xgye .y %0, %, 11y oo, ). Apply
Exercise 4.11(g) with X =W to obtain a class Z; such that
(Vx1)- . (V) (X1, .-y %n) € 21 & ()W (X1, %0, %, Y1, ..., Ya)) Now let
7 = 7, noting that (Vx)i is equivalent to —(Zx)—).

Examples

1. Let X, 1, 1) be (Qu)(F)X =(y,v) hue 1 Ave)l,). The only
quantifiers in ¢ involve sel variables. Hence, by the class existence the-
orem, F (Z)(¥vx)(x € Z & (Fu)(Fo)(x = (u,v) Au € Y] Av € 1)). By the
extensionality principle,

F(G2)(Wx)(x € Z & (Tu)()(x = (o) hue hh Ave ).

So, we can introduce a new function letter x.

DEFINITION

(Cartesian product of Y| and 1>)
(Wxeh xhe @@)x=wv)Auecl Ave )

DEFINITIONS
Y2 for¥xY

Y forY"!'xY¥Y  whenn>2
Rel(X) forXx C V2 (X is a relation)’

72 is the class of all ordered pairs, and V" is the class of all ordered
n-tuples. In ordinary language, the word ‘relation’ indicates some kind of
connection between objects. For example, the parenthood relation holds

tMore precisely, Rel(X) means that X is a binary relation.
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between parents and their children. For our purposes, we interpret e
parenthood relation to be the class of all ordered pairs (i, v} such that 4 ISa
parent of v. ‘

2. Let ¢(X,Y) be X CY. By the class existence theorem and the ey.
tensionality principle, - (3,Z)(Vx)(x € Z < x C Y). Thus, there is a yy.
ique class Z that has as its members all subsets of Y. Z is called the poyyey
class of Y and is denoted Z(Y).

DEFINITION
(Vx)(x e 2(Y) <= xCY)

3. Let (X,Y) be (Av)(X € vAv € Y)). By the class existence theorem and
the extensionality principle, F (31 2)(Vx)(x € Z < (Tv)(x € vA v e ).
Thus, there is a unique class Z that contains all members of members of
Y. Z is called the sum class of ¥ and is denoted (Y.

DEFINITION
(W) (xel Y & ()(xevAveY))

4. Let ¢(X) be (Ju)(X = (u,u)). By the class existence theorem and the
extensionality principle, there is a unique class Z such that (vx)(x € Z
& (Fu)(x = (u,u))). Z is called the identity relation and is denoted [.

DEFINITION
(Vx)(x € I & (Fu)(x = (u, 1))
COROILILARY 4.5

If p(X1,...,X%,, 7,...,T,) is a predicative wf, then
FEYW VAV - (V) (X, x) €W S Xy ey X, Yooy Ya)))

Proof

By Proposition 4.4, there is some Z such that (Vxp)... (Vx,)({x1,---, %)
eZ< ox,-., X%, N,..., ). Then W =ZnV" satisfies the corollary,
and the uniqueness follows from the extensionality principle.

DEFINITION
Given a predicative wf ¢(Xy,..., X, 11,..., 1), let
{1, xd|@(xry-- oy Xy Y1,...,¥u)} denote the class of all s-tuples

{x1,...,xz) that satisfy @(x1,...,%, 11,...,Y,); that is,
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(Vu)(u e {(xl) .. .,xn)lq)(XI, L Jxl'h }/1) ey Kﬂ)} <:>
(Fx1) ... (B) (= (X1, X)) A@X1, - X Yis e, )

~This definition is justified by Corollary 4.5. In particular, when »n =1,
4+ (Vu)(u € {xlo(x, T, ..., )} & o, 1,y 0, Tan))

- Examples y
1. Take ¢ to be (x2,x;)€Y. Jlet Y be an abbreviation for

{{x1, X2} |{x2,x1) € Y}. Hence, Y C V2 A (V) (V) ({x1,x2) € ¥ & (x2,x1)
g€ Y). Call Y the inverse relation of Y.

2. Take ¢ to be (Jv)({v,x) € ¥). Let Z(Y) stand for {x|(3v)({v,x} € ¥)}.
Then F (Vu)(u € Z(Y) < (Fv)({v,x) € Y)). Z(Y) 1s called the range of Y.
Clearly, - Z(Y) = 2(Y).

Notice that axioms (B1)-(B7) are special cases of the class existence
theorem, Proposition 4.4. Thus, instead of the infinite number of instances
of the axiom schema in Proposition 4.4, it sufficed to assume only a finite
number of instances of that schema.

Exercises

4.12 Prove:
@ FU0=90
(b) FU{0} =0
o FUvr=vr
) F2WM)Y=V
() FXCY=UXCUYAPX)C P2(Y)
O FUP(X) =X
(&) Fx c2(UX)
(b)) F(XnY) x (WnZ)=(X x W)n(Y x Z)
D) FXUY)x (WuZz) = (X x W)yu(X x Z)u(Y x W)n(Y x Z)
() F2(XAY)=2(X)nP(Y)
(k) F 2(XYyu2(Y) C (X uUY)
() What simple condition on X and Y is equivalent to
PXUY) C PX)uP(Y)T?
(m) - U oY) = (Ux)o(UY)
@ FUXnY) € (UX)n(UY)
O FZ=Y=Z=YNnV?
(p) FRel()AT =1
(@) F2(0) = {0}
) =20} ={0,{0}}
(s) F (vx)(vy)(x x y C P(P(xy)))
(1) FRel(Y)=Y C9(Y) x A(Y)
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Until now, although we can prove, using Proposition 4.4, the existence of
a great many classes, the existence of only a few sets, such as 0, {0}, {0, {m}}
and {{0}}, is known to us. To guarantee the existence of sets of greate;'
complexity, we require more axioms.

AXIOM U (SUM SET)

(W) () Vu)ucy e Tv)(u e vAv Ex))

This axiom asserts that the sum class | Jx of a set x is also a set, which we
shall call the sum set of x, that is, - (Vx)M({x). The sum set | Jx is usualfy
referred to as the union of all the sets in the set x and is often denoted Uva v.

Exercises

4.13 Prove:

(@) F (V) (Vy)(UH{x, y} = xuy)

(b) - (vx)(Vy)M(xuyp)

(©) F (vx)(H{x} =x)

(@) F (vx) (V) (Ulxp) = {x,»})
4.14 Define by induction {x1,...,x,} to be {x1,...,x,.1}u{x,}. Prove
(W) ... (Vxn) (Vi) (e € {x, ., © u=x, V...V u=x,) Thus, for any
sets xi,...,X,, there is a set that has x,,...,x, as its only members.

Another means of generating new sets from old is the formation of the set
of subsets of a given set.

AXIOM W (POWER SET)

(V) () (Vu)(u € y & u C x)
This axiom asserts that the power class 2(x) of a set x is itself a set, that is,
F (vx)M(2(x)).
A much more general way to produce sets is the following axiom of
subsets.

AXIOM S (SUBSETS)

(W) (VY () (Ve)(u ez uexAucy)
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COROLLARY 4.6

@@ F (vx)(vY)M(xnY) (The intersection of a set and a class is a set.)
) F (vx)(vY)(Y Cx= M(Y)) (A subclass of a set is a set.)
(c) For any predicative wf #(y),F (Vx)M({y|y € x A Z#(»)}).

Proof

(a) By axiom S, there is a set z such that (Vu)(u €z uexnuel),
which implies (Vu)(u € z < u € xnY). Thus, z=xnY and, therefore,
xnY is a set.

(b) If Y C x, then xnY =Y and the result follows by part (a).

© LetY={lyexn %’(y)}f. Since Y C x, part (b) implies that Y is a set.

Exercise

4.15 Prove:

@ F (¥)M(Z(x)) A M(Z(x))).

(b) F (vx)(Vy)M(x x y). [Hint: Exercise 4.12(s).]

© FM(@(T)AM(A(Y))ARel(Y) = M(Y). [ Hint: Exercise 4.12(t).]
d) FP(Y)AY CX = Pr(X).

On the basis of axiom S, we can show that the intersection of any non-
empty class of sets is a set.

DEFINITION
X for {y|(Vx)(x € X = y € x)} (intersection)

PROPOSITION 4.7

(@) F(vx)xeX=NXCx)
(b) FX £0= M(NX)
) FN0=V

Proof

(a) Assume u € X. Consider any y in [X. Then (Vx)(x € X =y € x).
Hence, y € u. Thus, (X C u.

(b) Assume X #£ (). Let x € X. By part (a), [\ X C x. Hence, by Corollary
4.6(b), [ X is a set.

tMore precisely, the wf ¥ € X A (Y) is predicative, so that the class existence
theorem yields a class {y|y € X A #(y)}. In our case, X is a sel x.
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(c) Since | (vx)(x ¢ 0), F (W)(Vx)(x € 0 = y € x), from which we obtaiy
F (W)(» € N0). From - (vy)(y € V) and the extensionality principle,
FAO=7.

Exercise

4.16 Prove:
(@ FN{xy}=xny

(b) F({x}=x
) FXCY=NYCNx

A stronger axiom than axiom S will be necessary for the full development
of set theory. First, a few definitions are convenient.

DEFINITIONS

Fne(X) for Rel(X) A (¥x)(W)(V2)({x,y) EX A {x,2) € X = y=2)
(X is a function)

X:Y—Zfor Func(X)ADX)=YNAX) CZ (Xisa function from Y into Z)
Y[Xx for Xn(Y x V) (restriction of X to the domain Y)
Fnc (X) for Fnc(X)AFnc(X) (X is a one — one function)
¥y — {z if (Vu)({Y,u)eX & u=z)

() otherwise
XY = R(V [X)

If there is a unique z such that (y,z) € X, then z = X‘y; otherwise,
Xy = 0. If X is a function and y is a set in its domain, X‘y is the value of the
function applied to y. If X is a function, X*‘Y is the range of X rcstricted to
Y.t

Exercise

4.17 Prove:

() FEnc(X)Ay€e 2(X)= (Vo)(X'y=z< (yz2) € X)

(b) + Fne(X)AY C 9(X) = Frc(Y[X) AD(Y[X) =Y A (W) e Y=
X'y = (Y{X)'y)

() F Fne(X) = [Fnc|(X) & (VW)(V2)(y € 2X)Nz€ GX)Ny #z=
X'y # X'z)]

() F Fnc(X)AY C 9(X) = (Vo) (z € X°Y & (F)(y € Y A X'y = 2))

fIn traditional set-theoretic notation, if F is a function and y is in its domain, F'y
is written as F(y), and if ¥ is included in the domain of F, F*Y is sometimes written
as F[Y].
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AXIOM R (REPLACEMENT)

Fne(Y) = (Vx)(@)(Vu)(u € y & (Fv)({v,u) € ¥ Av € x))

Axiom R asserts that, if Y is a function and x is a set, then the class of second
components of ordered pairs in ¥ whose first components are in x is a set
(or, equivalently, Z(x[Y) is a set).

Exercises

4.18 Show that, in the presence of the other axioms, the replacement axiom
(R) implies the axiom of subsets (S).

4.19 Prove - Fne(Y) = (Vo) M(Y*x)).

4.20 Show that axiom R is equivalent to the wf

Fnc(Y) AM(2(Y)) = M(Z(Y)).

4.21 Show that, in the presence of all axioms except R and S, axiom R is
equivalent to the conjunction of axiom S and the wf

Fnc(Y) A M(2(Y)) = M(Z(Y)).

To ensure the existence of an infinite set, we add the following axiom.

AXIOM I (AXIOM OF INFINITY)

() (@ € x A (V) (u € x = uo{u} €x))

Axiom I states that there is a set x that contains () and such that, whenever a
set u belongs to x, then u L {u} also belongs to x. Hence, for such a set x,
{0} € x, {0,{0}} €x, {0,{0},{0,{0}}} € x, and so on. If we let 1 stand for
{0}, 2 for {0, 1}, 3 for {0,1,2},...,n for {0,1,2,...,n— 1}, etc., then, for
all ordinary integers n >0, nex, and 0 #1, 0£2, 1£2, 0#£3, 1+#3,
243, ...

Exercise

4.22 (a) Prove that any wf that implies (1X)M(X) would, together with
axiom S, imply axiom N.
(b) Show that axiom I is equivalent to the following sentence (I*):

@NE e x A (V) (u ¢ y) A (Vu)(u € x = uo{u} € x))

Then prove that (I*) implies axiom N. (Hence, if we assumed (/*) instead of
(I), axiom N would become superfluous.)

239
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This completes the list of axioms of NBG, and we see that NBG has only 4
finite number of axioms — namely, axiom T, axiom P (pairing), axiom N
(null set), axiom U (sum set), axiom W (power set), axiom S (subsets), axiom
R (replacement), axiom 1 (infinity), and the seven class existence axiomg
(B1)-(B7). We have also seen that axiom S is provable from the othey
axioms; it has been included here because it is of interest in the study of
certain weaker subtheories of NBG.

Let us verify now that the usual argument for Russell’s paradox does not
hold in NBG. By the class existence theorem, there is a class ¥ = {x|x ¢ x}.
Then (Vx)(x €Y < x¢x). In unabbreviated notation this becomes
(VX)(M(X) = (X € Y & X¢X)). Assume M(Y). Then Y €Y < Yy,
which, by the tautology (4 & —4) = (A A —~A4),yields Y € Y AY¢ Y. Hence,
by the derived rule of proof by contradiction, we obtain - -M(Y). Thus, in
NBG, the argument for Russell’s paradox merely shows that Russell’s clasg
Y is a proper class, not a set. NBG will avoid the paradoxes of Cantor and
Burali-Forti in a similar way.

Exercise

4.23 Prove - ~M(V'), that is, the universal class V' is not a set. [Hint: Apply
Corollary 4.6(b) with Russell’s class Y.]

4.2 ORDINAL NUMBERS

Let us first define some familiar notions concerning relations.

DEFINITIONS
X Irr Y for Rel(X) A (W) (y € Y = (y,y) ¢ X)
(X 1s an irreflexive relation on Y)
X Tr ¥ for Rel(X) A (Vi)(Vo)(Yw)([uc Y Ave Y AwC YA
(,v) e X A (v,w) € X] = (u,w) € X)
(X 1s a transitive relation on Y)
X Part ¥ for (X Irr Y)A(X Tr ¥) (X partially orders Y)
X Con Y for Rel(X) A (Vi)(Vo)(ueYhveY Au#v]=
{,v) c X V {v,u) € X)
(X is a connected relation on ¥)
X Tot Y for (X It Y)A(X Tr Y A (X Con Y) (X totally orders Y)
XWeYfor XIm )ANZD(ZCYNZ#V = (I eZA
(W)veZAv#y= (,v) € X A(v,p)¢X)))
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L

(X well-orders Y, that 1s, the relation X is irreflexive on ¥ and every non-
empty subclass of Y has a least element with respect to X)

Exercises

424 Prove - X We Y = X Tot Y. [Hint : To show X Con Y,letx € Y Ay
€ Y Ax #y. Then {x, y} has a least element, say x. Then (x,y) € X. To show
XTrY,assumexe YAye YAze Y A{x,y) € XA (y,z) € X. Then {x,y,z}
has a least element, which must be x.]

425 ProveF X WeYAZCY = X We Z.

Examples (from intuitive set theory)

1. The relation < on the set P of positive integers well-orders P.

2. The relation < on the set of all integers totally orders, but does not well-
order, this set. The set has no least element.

3. The relation C on the set ¥ of all subsets of the set of integers partially
orders W but does not totally order W. For example, {1} ¢ {2} and

{2} ¢ {1}

DEFINITION

Simp(Z, Wi, Wa) for

(30) (Fx2) (Fr1) Fr2) (Rek(r1) A Rel(ra) A Wy = 1, 30) A T = (12, 2)
AFuci(Z2)AND(Z) = NR(Z) =x2 A (Vu)(Ve)(u €Exy Av €Exp =

({u,v) € 11 & {Z'u, Z'v) € ry)))

(Z is a similarity mapping of the relation r; on x| onto the relation #, on x,.)

DEFINITION
Sim(W;, W) for (3z)Simp(z, W, W3)

(W and W are similar ordered structures)
Example

Let r; be the less-than relation < on the set 4 of non-negative integers
{0,1,2,...}, and let #, be the less-than relation < on the set B of positive
integers {1,2,3,...}. Let z be the set of all ordered pairs (x,x + 1) for x € 4.
Then z is a similarity mapping of {#,4) onto (#,, B).

DEFINITION

Xi o Xy for {{u,v)|(Fz)({u,2z) € X5 Az, 0) € X1)}
(the composition of X3 and Xi)
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Exercises

4.26 Prove:

(a) FSimp(Z,X,Y) = M(Z) AM(X) A M(Y)

(b) F Simp(Z,X,Y) = Simp(Z, ¥, X)

4.27

(a) Prove: F Rel(Xj) A Rel(X3) = Rel(X) 0 X3)

(b) Let X; and X, be the parent and brother relations on the set of humap
beings. What are the relations X; o X7 and X o X3?

(c) Prove: - Fnc(X;) A Fne(X;) = Fne(X; o X3)

(d) Prove: - Fnc (X;) A Fnc (X2) = Fnc) (X 0 X))

(€ ProveF(X1:Z-oWAX Y =Z)=>X0X: Y > W

DEFINITIONS

Fld(X) for 2(X)uZ(X) (the field of X)
TOR(X) for Rel(X) A (X Tot (FId(X))) (X is a total order)
WOR(X) for Rel(X) A (X We (FId(X))) (X is a well — ordering relation)

Exercise
4.28 Prove:

(@) F Sim(W, W) = Sim(W4, W)

(b) F Sim(#, W) A Sim(W, #3) = Sim(W,, W)

(©) F Sim((X, Fld(X)}, (¥, Fld(Y))) = (TOR(X) < TOR(Y)) A (WOR(X)
= < WOR(Y))

If x is a total order, then the class of all total orders similar to x is called
the order type of x. We are especially interested in the order types of well-
ordering relations, but, since it turns out that all order types are proper
classes (except the order type {0} of 0), it will be convenient to find a class W
of well-ordered structures such that every well-ordering is similar to a un-
ique member of . This leads us to the study of ordinal numbers.

DEFINITIONS
E for {({x,y}|x € y} (the membership relation)
Trans(X) for (Vu)(u € X = u C X) (X is transitive)

Secty (X, Z) for

ZCXANNu)Vo)([ueXANveZA{u,vy € Y| = ueZ)
(Z is a Y-section of X, that is, Z is a subclass of X and every
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member of X that Y-precedes a member of Z is also a
member of Z.)

Segy(X, W) for {xjx e X A (x, W} € Y}(the Y-segment of X determined
by W, that is, the class of all members of X that Y-precede W)

Exercises

4.29 Prove:

(a) F Trans(X) < (Vu)(Vo)(v €EuhueX = v e X)

() +Trans(X) & [UX CX

() F Trans(0)

(d) + Trans({0})

(¢) F Trans(X) A Trans(Y) = Trans(XuUY) A Trans(XNY)
(f) F Trans(X) = Trans(JX)

(g F (Vu)(u € X)= Trans(u)) = Trans(|JX)

4.30 Prove:

(@) + (Vu)[Segg(X,u) = X A M(Segg (X, u))]

(b) F Trans(X) < (Vu)(u € X = Segg(X,u) = u)

() F EWe X ASectg(X,Z) NZ#X = (Fu)(u € X NZ = Sege(X, u))

DEFINITIONS

Ord(X) for E We X ATrans(X) (X is an ordinal class if and
only if the € -relation well-orders X and any member
of X is a subset of X)

On for {x|Ord(x)} (The class of ordinal numbers)

Thus, F (Vx)(x € On < Ord(x)). An ordinal class that is a set is called an
ordinal number, and On is the class of all ordinal numbers. Notice that a wf
x € On 1s equivalent to a predicative wf — namely, the conjunction of the
following wfs:

(@ (Vu)(u € x=udu)
B Vi) uCxhutl= )veur(W(weurw#v=vE WA
wév)))

(© (Vu)(uex=uCx

(The conjunction of (a) and (b) is equivalent to E We x, and (c) is Trans(x).)
In addition, any wf On €Y can be replaced by the wf (y)(y € YA
(Vz)(z € y & z € On)). Hence, any wf that is predicative except for the
presence of ‘On’ 1s equivalent to a predicative wf and therefore can be used
in connection with the class existence theorem.
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Exercise

4.31 Prove: (a) -0 € On. (b) F 1 € On, where 1 stands for {0}.

We shall use lower-case Greek letters «, f, 7,9, 1, . .. as restricted variabjes

for ordinal numbers. Thus, (Va)%(«) stands for (Vx)(x € On = %(x)), ang
(Fe) B () stands for (Ix)(x € On A B(x)).

PROPOSITION 4.8

(a)
(b)
(©)
(d

FOrd(X) = (X¢X A (Vu)(u€ X = udu))
FOrd(X)AY C X ATrans(Y) = Y € X

FOrd(X)AOrd(Y) = (Y CX & Y eX)

- Ord(X) AOTd(¥) = [(X EYVX =YVY EX)A-(X EYAY € X)
A(X e YVX =T)

() FOrdX)AY eX =Y e€On

) HE We On

(g) + Ord(On)

(h) F-M(On)

(i) FOrd(X)=X=0nvX €On

() FyC OnnTrans(y) =y €On

k) FxeOnAyeOn= (xCyVyCx)

Proof

(@) If Ord(X), then E is irreflexive on X; so, (Vu)(u € X*= u¢ u); and, if
X eX, X ¢X Hence, X ¢ X.

(b) Assume Ord(X) A Y C X ATrans(Y). Itis easy to see that Y is a proper
E-section of X. Hence, by Exercise 4.30(b,c), Y € X.

(¢} Assume Ord(X) AOrd(Y). If ¥ € X, then ¥ C X, since X is transitive;
but ¥ # X by (a); so, ¥ C X. Conversely, if ¥ C X, then, since Y is
transitive, we have ¥ € X by (b).

(d) Assume Ord(X) AOrd(Y)AX #Y. Now, XnY CX and XnY C7.
Since X and Y are transitive, so is XnY. If XnY C X and XnY C ¥,
then, by (b), XnY € X and XY € Y; hence, XnY € XY, contra-
dicting the irreflexivity of E on X. Hence, either XnY =X or
XnY =7;thatis, X CYorY CX.ButX +# Y. Hence, by (¢), X € Y or
Y€ X.Also,if X € Yand Y € X, then, by (¢}, X C Y and Y C X, which
is impossible. Clearly, X € ¥ AX =7 is impossible, by (a).

() Assume Ord(X) A Y € X. We must show E We Y and Trans(Y). Since

Y € X and Trans(X), Y C X. Hence, since E We X, E We Y. Moreover,
if u€Y and v € u, then, by Trans(X), v € X. Since E Con X and
YeXrveX,thenveYVov=YVYecvyp Ifeither v=Y or Yeu,
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then, since E Tr X and u € Y Av € u, we would have u € u, contra-
dicting (a). Hence v € Y. So, if u € ¥, then # C ¥, that is, Trans(Y).

() By (a), E Irr On. Now assume X C OnAX #0. Let a € X. if o is the
least element of X, we are done. (By least elemment of X we mean an
element v in X such that (Vu)(u € X Au# v = v € u).) If not, then E
We o and X o # (; let S be the least element of X n «. It is obvious,
using (d), that f§ is the least element of X.

() We must show E We On and Trans(On). The first part is (f). For the
second, if # € On and v € u, then, by (e), v € On. Hence, Trans(On).

(h) If M(On), then, by (g), On € On, contradicting (a).

() Assume Ord(X). Then X C On. If X' # On, then, by (c), X € On.

() Substitute On for X and y for Y in (b). By (h), y C On.

(k) Use parts (d) and (c).

We see from Proposition 4.8(i) that the only ordinal class that is not an
ordinal number is the class On itself.

DEFINITIONS

x<oyforxe OnAyeOnhxey

x<yforye Onn(x=yVx<,y)

Thus, for ordinals, <, is the same as €; so, <, well-orders On. In particular,
from Proposition 4.8(¢) we see that any ordinal x is equal to the set of
smaller ordinals.

PROPOSITION 4.9 (TRANSFINITE INDUCTION)

FWD)IVe)(eecp=ueX)=>pecX]|=0nCX

(If, for every f5, whenever all ordinals less than f are in X, f must also be in
X, then all ordinals are in X.)

Proof

Assume (Vf)[(Va)(« € f = « € X) = f € X]. Assume there is an ordinal in
On — X. Then, since Orn is well-ordered by E, there is a least ordinal f in
On — X. Hence, all ordinals less than £ are in X. So, by hypothesis, fis in X,
which is a contradiction.

Proposition 4.9 is used to prove that all ordinals have a given property
B(e). We let X = {x|#(x) Ax € On} and show that (Vp)[(Ve)(e € f=
B(e)) = B(B)].
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DEFINITION

x' for xu{x}

PROPOSITION 4.10

(@) F(Vx)(x € On<x' € On)
(b) F (Vo)=(3p) (e <o B <o &)
(€) F (Yo)(VB) (o = f = o= f)

Proof

(a) x €x'. Hence, if x' € On, then x € On by Proposition 4.8(¢). Conversely,
assume x € On. We must prove E We (xu{x}) and Trans(xu{x}). Since
E We x and x ¢ x, E Irr (xu{x}). Also, if y # 0 Ay C xw{x}, then either
y = {x}, in which case the least element of y is x, or ynx # () and the
least element of y nx is then the least element of y. Hence, E We
(xu{x}). In addition, if y exu{x} and u €y, then u €x. Thus,
Trans(xu{x}).

(b) Assume o <, ff <o ¢'. Then,a e fAS €. Since « € f, f¢ e and f+£¢
by Proposition 4.8(d), contradicting f € o'.

(c) Assume o/ = f. Then f <, « and, by part (b), f< 0.
Similarly, «<,f. Hence, « = f.

Exercise

4.32 Prove: F (Vu)(« C o)

DEFINITIONS
Suc(X) for X € On A (Jou)(X =d) (X is a successor ordinal)
K, for {x|x = 0 v Suc(x)} (the class of ordinals of the first kind)

o for {xx c Ky AVu)(r € x = u € K;)} (wis the class of all ordinals o of the first
kind such that all ordinals smaller

than o are also of the first kind)
Example
FOewAlew (Recall that 1 = {0}.)

PROPOSITION 4.11

(a) F(Va)(euewed €w)
(b) +M(w)
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(;) FleX AV (ueX=2veX)=0CX
(d) F(Va)(e €EwAf <,o= fEw)

Proof

{a) Assume « € . Since Suc(«), o € K. Also, if f e, then o or
g = «. Hence, f € K;. Thus, « € w. Conversely, if ¢’ € w, then, since
o€« and (VB)(B € a = f €d), it follows that « € .

{b) By the axiom of infinity (I), there is a set x such that () € x and

© (Vu)(u € x = u' €x). We shall prove @ C x. Assume not. Let « be the
least ordinal in @ — x. Clearly, « # (), since ) € x. Hence, Suc(«). So,
(3B)(« = B'). Let & be an ordinal such that o = & Then § <, « and, by
part (a), & € w. Therefore, 6 € x. Hence, § € x. But « = §'. Therefore,
o € x, which yields a contradiction. Thus, @ C x. So, M(w) by Corol-
lary 4.6(b).

(c) This is proved by a procedure similar to that used for part (b).

{d) This is left as an exercise.

The elements of « are called finite ordinals. We shall use the standard
potation: | for ¢, 2 for 1/, 3 for 2, and so on. Thus,
few,l €wecwldeow,...

The non-zero ordinals that are not successor ordinals are called
limit ordinals.

DEFINITION

Lim(x) forx € On Ax ¢ K

Exercise

4.33 Prove:
(@) F Lim(w)
(b) F (V) (V) (Lim(e) A B <o = f' <o ).

PROPOSITION 4.12

@ FMVX)xCOn=UxeOnnVu)(oex=a<oUx) A VE)((Ve)
(0 € x = a<off) = Ux<op)]). (Ifx is a set of ordinals, then [ Jx is an
ordinal that is the least upper bound of x.)

b)) FWVX)ECOnAx£DONVa)(eex= 3B)(BExru<,p))]

= Lim(|x)). (If x is a non-empty set of ordinals without a maximum, |,

then [ Jx is a limit ordinal.)
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Proof

(a) Assume x C On. | Jx, as a set of ordinals, is well-ordered by E. Also_ if
a€|Jx AP €a, then there is some y with y€x and o cy, Then
Beana€y; since every ordinal is transitive, f €7y. So, f¢ Ux.
Hence, | x is transitive and, therefore, [ Jx € On. In addition, if ¢ ¢
then o C [Jx; so, a<,Jx, by Proposition 4.8(c). Assume now tha{
(Vo) (e € x = a<of). Clearly, if 6 € [ Jx, then there is some y such thy
d € y Ay €x. Hence, y<,f and so, 6 <, f. Therefore, | Jx C g and, by
Proposition 4.8(c), Ux <4

(b) Assume x C OnAx#DA(Vo)( €x = FF)B ExNe <o f)). I Ux =4,
then « € x implies « ={. So, x =0 or x = 1, which contradicts oy
assumption. Hence, | Jx # 0. Assume Suc(( Jx). Then (Jx =’ for somg
y. By part (a), [ Jx is a least upper bound of x. Therefore, y is not gp:
upper bound of x; there is some 0 in x with y <, 4. But then § =y
since [ x is an upper bound of x. Thus, | Jx is a maximum element ofx,f
contradicting our hypothesis. Hence, —Suc((Jx), and Lim(| Jx) is the.
only possibility left.

Exercise

4.34 Prove;
(@) F (Vo)([Suc(e) = (Ua) = o] A [Lim(e) = Ju = «).
(b) If @ # x C On, then [x is the least ordinal in x.

We can now state and prove another form of transfinite induction.

PROPOSITION 4.13 (TRANSFINITE INDUCTION: SECOND FORM)

@) F[0eXAVa)laeX=>d €X)A (Va)(Lim(a) A (VB)(F <o a=F €X)
>0eX)=0nCX.

(b) (nduction up to 5) F [0 e X AN (Vo)(e <o A EX
= o« € X) A (Vo) (ot <o 6 A Lim(e) A (VB) (B <o &
=pfeX)=aeX)=>6CX.

(€} (Induction up tow.)Fde XANVe)(a <o haeX = d €X)=> 0w CX.

Proof

(a) Assume the antecedent. Let Y = {x|x € On A (Vo) (o <ox = 0 € X)}. It
is easy to prove that (Vo)(« <,y =« € ¥) = 9y € Y. Hence, by Pro-
position 4.9, On C Y. But ¥ C X. Hence, On C X.

(b) The proof is left as an exercise.

(¢) This is a special case of part (b), noting that + (Va)(o <, 0=
—~Lim(x)).
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Set theory depends heavily upon definitions by transfinite induction,
‘which are justified by the following theorem.

PROPOSITION 4.14

@ FEX)EY)Fnc(Y)AD(Y) =On A (Vo) (Ya=X(aY))). (Given X,

: there is a unique function ¥ defined on all ordinals such that the value
of Y at o is the value of X applied to the restriction of ¥ to the set of
ordinals less than «.)

® F ()X (VX)) (G Y)(Fue(Y)AD(Y) = O0nAYD=xA Vo) (T(o) =
X{(Y'a)) A (Vo) (Lim(e) = Yoo = Xo* (el Y)))-

(¢) (nduction up to 6.) & (Vx)(VX1)(VX2)(F1 Y )(Fne(Y) A D(Y) = A YD =
x A (Va)(o <o 8= Y() =X (Y'e)) A (Vo) (Lim(et) Ao <o 6 = Y =
X' (el T))).

Proof

(a) Let Y = {u|Fnc(u) A D(u) € On A (Vo) (o« € D(u) = v'a = X (a{u))}.
Now, if uyy €Y, and u, € Y;, then 1y Cuy or uy Cuy. In fact, let
y1 = P(u) and y, = D(wp). Either y; <opp-0r ¥, Soyy; 2y, y; Sopy- Let
w be the set of ordinals o <, 9, such that u;‘« # 1, °«; assume w #£ () and
let 17 be the least ordinal in w. Then for all § <, #, u;‘f = uz‘f. Hence,
wmao=nlu. But mi'n=X‘(nl{w) and w'n=X‘(y{u); and so,
'y = uy'y, contradicting our assumption. Therefore, w = {); that is, for
all x<oyy, t1'a = up‘a. Hence, v) = y1{uy = 9, {ua C uy. Thus, any two
functions in ¥ agree in their common domain. Let ¥ = [ J ;. We leave
it as an exercise to prove that Y is a function, the domain of which 1s
either an ordinal or the class On, and (Va)(« € 9(Y)= Yoo = X (alY)).
That 2(Y) == On follows easily from the observation that, if 2(Y) = ¢
and if we let W=Yu{{6,X‘Y)}, then WeY;; so, WCY and
6 € 9(Y) = o, which contradicts the fact that é ¢ &. The uniqueness of
Y follows by a simple transfinite induction (Proposition 4.9).

The proof of part (b) is similar to that of (a), and part (c) follows from (b).
Using Proposition 4.14, one can introduce new function letters by
transfinite induction.

Examples
1. Ordinal addition. In Proposition 4.14(b), take

x=p  Xi={wo)lv=u} X ={@w1)l=JRw)}
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Hence, for each ordinal §, there is a unique function ¥z such that
Yp = B A (Ver) (¥p'(e) = (¥po)' A[Lim() = Yy'e = (%))

Hence there is a unique binary function +, with domain (On)” such that, fo,
any ordinals § and y, +o(f,7) = ¥3'7. As usual, we write f§ +, y instead of
+o(f,v). Notice that:

fHol0=2p
B +o ('.'VI) = (B+o 7)’
Lim(@) = oo = [ (60 )

<ol

In particular,
frol=f+o(0)=(F+0)=F

2. Ordinal multiplication. In Proposition 4.14(b), take
x=0 XY= {@wo)l=u+oft X ={o)lv=|]R0w}
Then, as in Example 1, one obtains a function i x, y with the properties
ﬁ Xo @ = @
Bxo ()= (Bxc?)+o B
Lim(c) = fi xo 0= U (B %o 1)

<o

Exercises

435 Prove: F fxo 1l =FAB %o 2=+, B
4.36 Justify the following definition of ordinal exponentiation.

exp(f, 0) =1
exp(f, ) = exp(f,3) Xo
Lim(e) > exp(fa) = | exp(p,7)

@<QT<QC(

For any class X, let Ex be the membership relation restricted to X; that is,
Ex ={{u,v)lucvrhueX hnveX}

TWe use the notation exp(f, ¢) instead of f* in order to avoid confusion with the
notation X! to be introduced later.

]
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PROPOSITION 4.15!

Let R be a well-ordering relation on a class Y; that is, R We Y. Let F be a
function from Y into Y such that, for any « and » in Y, if (u,v} € R, then
(F‘u,F‘v} € R. Then, for all uin ¥, u = F‘u or {u,F'u) € R.

Proof

Let X = {u|(F‘u,u) € R}. We wish to show that X = (). Assume X # (. Since
X CY and R well-orders Y, there is an R-least element 1y of X. Hence,
(F‘uo, uo) € R. Therefore (F*(F‘ug), F'uo) € R. Thus, F'ug € X, but Fluy is
R-smaller than ug, contradicting the definition of .

COROLLARY 4.16

If Y is a class of ordinals, F: Y — ¥, and F is increasing on Y (that is,
neYABeEYNu<o = Foa<, F'fl), then a<< F‘a for all «in Y.

Proof

In Proposition 4.15, let R be Ey. Note that Ey well-orders Y, by Proposition
4.8(f) and Exercise 4.25.

COROLLARY 4.17

Leta <, fandy C «; that is, let y be a subset of a segment of §. Then (Eg, f)
is not similar to (E,, y).

Proof

Assume (Eg, f) is similar to (E,, y). Then there is a function f from f onto y
such that, forany v and vin f,u <, v & f‘u <, f‘v. Since the range of f is y,
fla€y. But y C . Hence f‘a <, «. But, by Corollary 4.16, « <, f*e, which
yields a contradiction.

tFrom this point on, we shall express many theorems of NBG in English by
using the corresponding informal English translations. This is done to avoid writing
lengthy wfs that are difficult to decipher and only in cases where the reader should be
able to produce from the English version the precise wf of NBG.

251
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COROLLARY 4.18

(a) For o # B, (E,, o) and (Eg, f) are not similar.
(b) For any o, if f is a similarity mapping of (E,, ) with (E,, o), then fis
the identity mapping, that is, f°f = f for all § <, c.

Proof

(a) Since a # B, it follows by Proposition 4.8(d,c) that one of & and £ is »
segment of the other; say, o is a segment of f. Then Corollary 4.17 tejls
us that (Eg, f) is not similar to (E,, o).

(b) By Corollary 4.16, f‘f=.p for all f <, a. But, noting by Exercise
4.26(b) that f is a similarity mapping of (Ey, o) with (E,, o), we again
use Corollary 4.16 to conclude that ()26 for all § <, o. Hence
B = (F)(f*B)>of ‘B2 off and, thercfore, ff = f.

PROPOSITION 4.19

Assume that a non-empty set u is the field of a well-ordering ». Then there is
a unique ordinal y and a unique similarity mapping of (E,,y) with (r,u).

Proof

Let F={{v,w)lweu—vA(NVz)zeu—v= (z,w)¢r)}. F is a function
such that, if vis a subset of u and u — v #£ (), then F*v is the r-least element of
u—uv. Let X = {{v,w)|{Z#(v), w) € F}. Now we use a definition by transfinite
induction (Proposition 4.14) to obtain a function ¥ with On as its domain
such that (Vo)(Y'a=X‘(«[Y)). Let W={o¥*“a Cunu—TY 50}
Clearly, if ¢ € W and f§ € o, then § € W. Hence, either W = On or W is some
ordinal p. (If W # On, let y be the least ordinal in On — W.) If o € W, then
Y'ao=X(a[7Y) 1s the r-least element of u-Y“«; so, Yo € v and, if f € q,
Y‘o # Y*f. Thus, Y is a one—one function on ¥ and the range of Y restricted
to W is a subset of u. Now, let A = (W[Y) and f = 71; that is, let /" be the
inverse of Y restricted to W. So, by the replacement axiom (R), W is a set.
Hence, W is some ordinal y. Let g = p{Y. Then g is a one—one function with
domain y and range a subset #; of #. We must show that #; = u and that, if o
and f are in y and ff <, &, then {g‘B, g‘c) € . Assume « and f are in y and
f <o 0. Then ¢““f C g“« and, since g‘c € u — ¢*‘a, g'a € u — g*“f. But g‘f is
the r-least element of u — g*“f. Hence, (g‘f, g‘a) € r. It remains to prove that
u; = u. Now, 1y = Y*y. Assume v — uy # (). Then y € W. But W = y, which
yields a contradiction. Hence, u# = u;. That y is unique follows from Cor-
ollary 4.18(a).

Tt



EQUINUMEROSITY. FINITE AND DENUMERABLE SETS 253

Exercise

4.37 Show that the conclusion of Proposition 4.19 also holds when 1 = ()
and that the unique ordinal y is, in that case, (.

PROPOSITION 4.20

Let R be a well-ordering of a proper class X such that, for each y € X, the
class of all R-predecessors of y in X (i.e., the R-segment in X determined by
y) is a set. Then R is ‘similar’ to Ep,; that is, there is a (unique) one—one
mapping H of On onto X such that « € § & (H'a, H'f}) € R.

Proof

Proceed as in the proof of Proposition 4.19. Here, however, W = On; also,
one proves that Z(Y) = X by using the hypothesis that every R-segment of
X is a set. (If X — R(Y) # 0, then, if w is the R-least element of X — Z2(Y),
the proper class On is the range of ¥, while the domain of ¥ is the R-segment
of X determined by w, contradicting the replacement axiom.)

Exercise

4.38 Show that, if X is a proper class of ordinal numbers, then there is a
unique one—one mapping H of On onto X such that a« € f & H'a € H'B.

4.3 EQUINUMEROSITY. FINITE AND DENUMERABILE SETS

We say that two classes X and Y are equinumerous if and only if there is a
one-one function F with domain X and range Y. We shall denote this by
X=Y.

DEFINITIONS ‘
X=2¥ for Fney(F) A2(F) = X AR(F) =Y
X 22 for (3F)(x=2Y)

Notice that F (Vx)(Vy)(x = y & (3z)(x=y)). Hence, a wf x 2¢ y is predicative
z

(that is, is equivalent to a wi using only set quantifiers).
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Clearly, if X Y, then ¥ == X where G = F. Also, if X Yand ¥ =~z
then X NZ where H is the composmon F, o Fi. Hence, we have theFfol

lowing result

PROPOSITION 4.21

(a) FX=X
b)) FX=2Y=Y=X
() FX2YANY=2Z=X2Z

PROPOSITION 4.22

(@) FXZYANZXWAXNZ=0AYnW=0)=>XuZ=YnW
) F(XZYNZEW)=>XXZ2Y x W

() FX x{y}=X

(d FXxY=YxX

€) FX xY)xZ=2X x (Y xZ)

Proof
(a) LetX %Yand V4 %W. Then XuZ %YUW, where H = FUG.

(b) LetXNYand Z"“W Let
H= { u, u)f(Hx)(Ely)(x EXAy€EZAu={xy) ANv={(Fx%GY)}
Then X x Z = = Y x W.

(c) Let F={{u,v)|t € X ANv={(u,y)}. Then X%X x {y}.

(d) Let F= {(1,)|(I)(I)x € X Ay € Y Au= {x,y) Nv=(yx))}.
Then X x Y=Y x X.

() Let F= {(Z, HMNEN @ () xeXAyeEYAzEZANu=({x,)),2) Av
= {x,(»,2)))}. Then (X x ¥Y) x Z =X x (Y x 7).
DEFINITION

XY for {uju: Y — X}
X7 is the class of all sets that are functions from Y into X.
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Jxercises
prove the following.

439 F (VX)Y)EX)EN)X =X AY =21 AXinY = ()
4.40 + P(y) = 2’ (Recall that 2 = {(,1} and 1 = {0}.)
441 (a) F-M(Y)= XY =0
(b) + (Vx)(Vy)M(¥)
442 (@) FXY =1
(b) H 17 =1
(© FY#0=0" =
443 X = xtd
444 FX 2 YNZ 2 W =X YV
445 FXNY =0 = ZX0Y = 72X x 77
4.46 + (vx)(Vy) é\/z) [(0)° =2 )
447 F (X x Y)Y = X% x y?
4.48 + (Vx)(VR)(R We x = (Fu)(x = o))

We can define a partial order < on classes such that, intuitively, X <Y if
and only if ¥ has at least as many elements as X.

DEFINITIONS

X<Y for (AZ)(ZC Y AX =7)

(X 1s equinumerous with a subclass of Y')
X <Y for XY A~(X 22 7Y)

(Y is strictly greater in size than X)

Exercises

Prove the following.

449 FXY & X <YVX2Y)

4.50 FX%Y A '—IM(X) = _lM(Y)

451 FX<YNQ@Z)Z We Y) = (32)(Z We X)

452 + (Vo)(VB)(a<xp V p=0a) [Hint: Proposition 4.8(k).]

PROPOSITION 4.23

(@) FX<XA-(X <X)

(b) FXCY=X<Y

©) FASYAYSZ=>X<Z

(d) FXSYAYTX=>X=Y (Bernstein’s theorem)
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Proof

(a), (b) These proofs are obvious.
(¢} Assume X %Yl AR CYAY %ZI NZy C Z. Let H be the composition of

F and G. Then %(H) C Z ANX=9(H). So, X<Z.

(d) There are many proofs of this nontrivial theorem. The following ope
was devised by Hellman (1961). First we derive a lemma.

Lemma. Assume XNY =0, XnZ =0 and YNnZ = 0, and let X= =Xuyuz,
Then there is a & such that X _.XUY

Proof. Define a function H on a subclass of X xw as follows:
({u,k),v) € H if and only if ¥ € X and &k € w and there is a function f with
domain & such that /*0 = F‘u and, if j € £, then f*j € X and /*{}') = F*(y*})
and f‘k = uv. Thus, H'((,0)) = Fu H‘((u, 1)) = F{(F‘u) if F'rue X, angd
H'({u,2)) = F(F‘(F‘u)) if F‘u and F*(F‘u) are in X, and so on. Let X* be the
class of all u in X such that (3y)(y € oA {u,y) € Z(H) NH((1,3)) € Z). Let
Y* be the class of all w in X such that (Vy)(y € @A (u,y) € 2(H)
= H'((u,y))¢ Z). Then X =X*uY*. Now define G as follows: (G) =x
and, if u € X*, then G'u =u, whereas, if v € Y*, then G‘u = F'u. Then
X % XuY. (This is left as an exercise.)

Now, to prove Bernstein’s theorem, assume X % AN CYAYZHA
G

X1 CX. Letd=G"Y) CX; CX.ButdAn(X; —4) =0,An(X — X1) = 0 and
(X-*)fl)ﬂ(Xl —A) = {. AlSO, X = (X—Xl)U(Xl ——A)UA, and the com-
positon H of F and G is a one-one function with domain X and range 4.
Hence, A_X So, by the lemma, there is a one-one function D such that
4 Xl (smce (X1 — 4)ud = X1). Let T be the composition of the functions

H, D and G; that is, T‘u = (G)‘(D‘(H‘«)). Then X Y, since X = A and
A= X; and)(} ~Y.

Exercises

4.53 Carry out the details of the following proof (due to J. Whitaker) of
Bernstein’s theorem in the case where X and Y are sets. Let
X % nanc Y/\Y%Xl AXi CX. We wish to find a set Z C X such that
G, restricted to ¥ — F°Z, is a one—one function of ¥ — F*“Z onto X — Z. [If
we have such a set Z, let H = (Z[F)U((X — Z)[G); that is, Hx = Fx for
x€Z, and Hx=G% for x€ X —Z. Then X%Y.] Let Z = {x]|(3u)(u
CXAx€uNnGY —Fu) CX —u)}. Notice that this proof does not
presuppose the definition of @ nor any other part of the theory of ordinals.
454 Prove: (a) FX X XUY(B)FX <Y =2(Y <X)()FX < YANYZ
=>X<Z
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PROPOSITION 4.24 Assume X=<XY and 4=<(B. Then:

(@) YnB=0= XUA<YUB
(b) X x A<Y x B
© X<Y?ifBisasetand «(X =4=Y=0AB#0)

Proof

(a) Assume X %Yl C Y and A%Bl C B. Let H be a function with domain

XuAdsuch that H'x = F'xforx € X, and Hx = G‘x forx € A — X. Then
XUA%H“(XUA) C YUB.

(b) and (c) are left as exercises.

PROPOSITION 4.25

(@) F-3)Fnc(f)AND(f)=xNA(f) = P(x)). (There is no function
from x onto 2(x).)
(b} Fx < 2(x) (Cantor’s theorem)

Proof

(a) Assume Fuc(f/)AD(f)=xNA(f)=P(x). Let y={uluecxA
ué f‘u}. Then y € ?(x). Hence, there is some z in x such that 7z = y.
But, (Vu)(u €y ucxAud f'u). Hence, (Vu)(u € f'zuc€xAu
¢ fu). By rule Ad, z€ f'ze zexNz¢ fz. Since z € x, we obtain
z € 'z < z¢ f‘z, which yields a contradicition.

(b) Let f be the function with domain x such that f*u = {u} for each u in x.
Then f“x C #(x) and f is one-one. Hence, x<XZ2(x). By part (a),
x 22 P(x) is impossible. Hence, x < #(x).

[n naive set theory, Proposition 4.25(b) gives rise to Cantor’s paradox. If
we let x=F, then ¥V < 2(V). But (V) CV and, therefore, (V) V.
From V < 2(V), we have V<<#?(V). By Bernstein’s theorem, V = 2(V),
contradicting V' < 2(V). In NBG, this argument is just another proof that
V is not a set.

Notice that we have not proved F (Vx)(Vy)(x<XyVy=(x). This in-
tuitively plausible statement is, in fact, not provable, since it turns out to be
equivalent to the axiom of choice (which will be discussed in Section 4.5).

The equinumerosity relation = has all the properties of an equivalence
relation. We are inclined, therefore, to partition the class of all sets into
equivalence classes under this relation. The equivalence class of a set x
would be the class of all sets equinumerous with x. The equivalence classes
are called Frege-Russell cardinal numbers. For example, if v is a set and
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x = {u}, then the equivalence class of x is the class of all singletons {v} and js
referred to as the cardinal number .. Likewise, if u # v and y = {u, v}, thep
the equivalence class of y is the class of all sets that contain exactly twq
elements and would be the cardinal number 2 that is 2, js
{x|(Aw)(z)(w # z Ax = {w, z})}. All the Frege-Russell cardinal numbers,
except the cardinal number O. of § (which is {0}), turn out to be proper
classes. For example, V = 1.. (Let F'x = {x} for all x. Then V= 1.) But,
~M(¥V). Hence, by the replacement axiom, ~M(1.).

Exercise

4.55 Prove + -M(2,).

Because all the Frege—Russell cardinal numbers (except O.) are proper
classes, we cannot talk about classes of such cardinal numbers, and it g
difficult or impossible to say and prove many interesting things about them,
Most assertions one would like to make about cardinal numbers can be
paraphrased by the suitable use of 22, <{ and <. However, we shall see later
that, given certain additional plausible axioms, there are other ways of de-
fining a notion that does essentially the same job as the Frege—Russell
cardinal numbers.

To see how everything we want to say about cardinal numbers can be
said without explicit mention of cardinal numbers, consider the following
treatment of the ‘sum’ of cardinal numbers.

DEFINITION

X +. Y for (X x {0})u(Y x {1})

Note that - () # 1 (since 1 is {0}). Hence, X x {0} and ¥ x {1} are disjoint
and, therefore, their union is a class whose ‘size’ is the sum of the ‘sizes’ of X
and Y.

Exercise

4.56 Prove:

@) FXX 4. VAYSKX+.Y

b FX2AANYZEZB=>X 4+ Y =2A4+.B

) FX+ . Y=Y+ X

(d) FM(X 4. Y) e MX)AM(Y)

@ X4+ (Y4 D) 2 X+ Y)+c Z

) HFX<Y=2X+2Z<XY 7

(g) FX+.X =X x 2 (Recall that 2 is {0, 1}.)
(h) FX¥Z o X7 x X7

A Fx=zx4.1=2>2"4x=22"

M
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Finite sets

Remember that o is the set of all ordinals o such that a and all smaller
ordinals are successor ordinals or (). The elements of w are called finite
ordinals, and the elements of On — w are called infinite ordinals. From an
intuitive standpoint, @ consists of §,1,2,3,..., where each term in this
sequence after 0 is the successor of the preceding term. Note that () contains
no members, 1 = {0} and contains one member, 2 = {0, 1} and contains
two members, 3 = {0, 1,2} and contains three members, etc. Thus, it is
reasonable to think that, for each intuitive finite number », there is exactly
one finite ordinal that contains exactly » members. So, if a class has »
members, it should be equinumerous with a finite ordinal. Therefore, a class
will be called finite if and only if it is equinumerous with a finite ordinal.

DEFINITION
Fin(X) for (Jo)(e € w AX = o) (X is finite)

Exercise

4.57 Prove:

(a) + Fin(X) = M(X) (Every finite class is a set)
(b) + (Vo)(o € @ = Fin(a)) (Every finite ordinal is finite.)
(c) +Fin(X) A X 2Y = Fin(Y)

PROPOSITION 4.26

(@ +(Vo)(ogt w=>a=d).

(b) + (Vo)(VB) (e € 0 A o # f§ = ~(a =2 f)). (No finite ordinal is equinu-
merous with any other ordinal.)

© + (Ve)(Wx){oe € oAx Ca= —(x=x)). (No finite ordinal is equinu-
merous with a proper subset of itself.)

Proof

(a) Assume o ¢ . Define a function f with domain o as follows: f‘6 = &'
ifédem fO=0ifded Nd¢ wu{a}; and ffoa=10. Thenoz’%a.

(b) Assume this is false, and let o be the least ordinal such that « € @ and
there is f§ # o such that o = f. Hence, o <, . (Otherwise, ff would be a

smaller ordinal than « and f would also be in w, and § would be
equinumerous with another ordinal, namely, «.) Let a%ﬁ. If o =0,
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then /=0 and f =0, contradicting o«# B. So, a#0. Since
o € w,o = &' for some & € . We may assume that § =y’ for some y, (¢

p € w, then f # 0; and if f ¢ o, then, by part (a), = and we can
take f' instead of f.) Thus, §' = a?y Also, § # y, since o # f.

Case 1. f*6 =y. Then ¢ =7, where g = 6(f.
Case 2. f*60 #7y. Then there is some p € such that f'u=1y. Lg

h=((80F) — {{mo{ln,f O} that is, let h't=fc if ©¢ {5, 1}, and
hu=f‘6. Then o % V.

In both cases, d is a finite ordinal smaller than a that is equinumeroyg
with a different ordinal y, contradicting the minimality of a.

(¢} Assume € wAx C B AP =x holds for some f, and let o be the least
such f5. Clearly, o # (); hence, o = 7' for some y. But, as in the proof of
part (b), one can then show that y is also equinumerous with a proper
subset of itself, contradicting the minimality of «.

Exercises

4.58 Prove: I (Va)(Fin(a) & o € w).
4.59 Prove that the axiom of infinity (I) is equivalent to the following
sentence.

() () (Au)(uex) AWy eEx= (el zex Ay C 2)))

PROPOSITION 4.27

(a) FFin(X)AY CX = Fin(Y)
(b) F Fin(X) = Fin(Xu{y})
() F Fin(X) A Fin(Y) = Fin(XuY)

Proof

(a) Assume Fin(X) AY C X. Then X = o, where o € w. Let g = Y{f and
W = g“Y C o. Wis aset of ordinals, and so, Ey is a well-ordering of 7.
By Proposition 4.19, (Ep, W) is similar to {Ej, i} for some ordinal f.
Hence, W = . In addition, f<,o. (If o <, f§, then the similarity of
(Eg,p)y to (Ew, W) contradicts Corollary 4.17.) Since o € w,f € .
From ¥ = W AW = f, it follows that Fin(Y).

(b) If y € X, then Xu{y} = X and the result is trivial. So, assume y ¢ X.
From Fin(X) it follows that there is a finite ordinal o and a function f
such that aNX Let g=fu{{e,y)}. Then o Xu{y}. Hence,
Fin(X u{y})
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(o) Let Z={uluec wA (Vx)(Vy)(Vf)(x % uAFin(y) = Fin(x uy))}. We

must show that Z = . Clearly, 0 € Z, for if x =20, then x=0 and
x Uy =Y. Assume that « € Z. Let x=2¢/ and Fin(y). Let w be such that

Fw=o and let x; =x — {w}. Then x; = a. Since a € Z, Fin(x; U y).
But x Uy = (x1 Uy)u{w}. Hence, by part (b), Fin{x U y). Thus, o' € Z.
Hence, by Proposition 4.11(c), Z = «.

DEFINITIONS

DedFin(X) for M(X) A (VY)(Y CX = ~(X = Y))
(X is Dedekind-finite, that is, X is a set that is not equinumerous

with any proper subset of itself)
DedInf(X) for M(X) A -DedFin(X)

(X 1s Dedekind-infinite, that is, X is a set that is equinumerous
with a proper subset of itself)

COROLLARY 4.28

(vx)(Fin(x) = DedFin(x)) (Every finite set is Dedekind-finite)t

Proof
This follows easily from Proposition 4.26(c) and the definition of ‘finite’.

DEFINITIONS
Inf(X) for —Fin(X) (X is infinite)
Den(X) for X = w (X is denumerable)

Count(X) for Fin(X) V Den(X) (X is countable)

Exercise

4.60 Prove:

(@) FInf(X)AX =Y = Inf(Y)

(b) +Den(X)AX =Y = Den(Y)

(c) + Den(X) = M(X)

(d) + Count(X)AX Y = Count(Y)
(e) t+ Count(X) = M(X)

TThe converse is not provable without additional assumptions, such as the ax-
iom of choice.
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PROPOSITION 4.29

(a) +Inf(X)AX C Y= Inf(Y)
(b) F Inf(X) < Inf(XU{y})

(c) + DedInf(X) = Inf(X)

(d) t+ Inf(w)

Proof

(a) This follows from Proposition 4.27(a).

(b) + Inf(X) = Inf(X'u{y}) by part (a), and F Inf(XU{y}) = Inf(X) by
Proposition 4.27(b)

() Use Corollary 4.28.

(d) +w¢ o. If Fin(w), then o = o for some « in o, contradicting Propo-
sition 4.26(b).

PROPOSITION 4.30

- (Vv)(Vz)(Den(r) Az C v = Count(z)). (Every subset of a denumerable set
is countable.)

Proof

It suffices to prove that z C @ = Fin(z) V Den(z). Assume z C o A =Fin(z).
Since —Fin(z), for any o in z, there is some f in z with o < ,f. (Otherwise,
z C of and, since Fin(a'), Fin(z).), Let X be a function such that, for any « in
@, X*o is the least ordinal § in z with o <, f. Then, by Proposition 4.14(c)
(with & = w), there is a function ¥ with domain ¢« such that ¥*0 is the least
ordinal in z and, for any y in o, Y*(}’) is the least ordinal f in z with
B >, Y. Clearly, Y is one-one, #(Y) =, and Y*“w C z. To show that
Den(z), it suffices to show that Y*'w = z. Assume z — Y@ # (. Let 0 be the
least ordinal in z — Y%, and let 7 be the least ordinal in Y“w with 7 >, .
Then 7 == Y*¢ for some ¢ in . Since & <, 7,0 # 0. So, ¢ = ' for some pin
. Then 7= Y'‘c is the least ordinal in z that is greater than Y‘y. But
0 >, Yu, since 7 is the least ordinal in Y*w that is greater than 4. Hence,
T< 0, which contradicts & <, 7.

Exercises

4.61 Prove: - Count(X)AY C X = Count(Y).
4.62 Prove:

(a) + Fin(X) = Fin(#(X))

(b) F Fin(X) A (Vy)(y € X = Fin(y)) = Fin(|_x)

2.
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(© FX=<Y AFin(Y) = Fin(X)

(d) - Fin(Z(X)) = Fin(X)

€ + Fin(UX) = Fin(X) A (Vy)(y € X = Fin(y))

® +Fin(X) = (X<YVY=<X)

(g) FFin(X)AInf(Y) =X <Y

(h) FFIn(X)AY CX =Y <X

@ F Fin(X) AFin(Y)= Fin(X x Y)

() *+ Fin(X) AFin(Y) = Fin(X")

(k) FFin(X)Ay¢d X =X <Xu{y}

4.63 Define X to be a minimal (respectively, maximal) element of Y if and

only if X €Y and (Vy)(y € ¥ = =(y C X))(respectively, (Vy)(y € ¥ = -

(X C y))) Prove that a set Z is finite if and only if every non-empty set of

subsets of Z has a minimal (respectively, maximal) element (Tarski, 1925).

4.64 Prove:

(a) + Fin(X) A Den(Y) = Den(XuY)

(b) +Fin(X) ADen(¥Y)AX # (0 = Den(X x Y)

(c) F (vx)[DedInf(x) < (Fy)(y C x ADen(y))]. (A set is Dedekind-infinite
il and only if it has a denumerable subset)

() = (W)[(F)( € xADen(y)) & o <]

() F (Vo)[(e ¢ w = DedInf(e)) A (Vo) (Inf(a) = o ¢ w)

() + (vx)(W)(r ¢ x = [DedInf(x) & x = xU{y}])

(g) (W) (exxex+.12x)

4.65 If NBG is consistent, then, by Proposition 2.17, NBG has a denu-

merable model. Explain why this does not contradict Cantor’s theorem,

which implies that there exist non-denumerable infinite sets (such as 2(w)).

This apparent, but not genuine, contradiction is sometimes called Skolem’s

paradox.

4.4 HARTOGS’ THEOREM. INITIAL ORDINALS.
ORDINAL ARITHMETIC

An unjustly neglected proposition with many uses in set theory is Hartogs’
theorem.
PROPOSITION 4.31 (HARTOGS, 1915)

F (Vx)(Fe) (Vy)(y Cx = (o 22 3)). (For any set x, there is an ordinal that is
not equinumerous with any subset of x.)
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Proof

Assume that every ordinal o is equinumerous with some subset y of .
Hence, y=2a for some f. Define a relation r on y by stipulating that (x, vy ey
if and only if f“u € f‘v. Then r is a well-ordering of y such that (s, y) is
similar to (Eg, ). Now define a function F with domain On such that, for
any o, Fo is the set w of all pairs (z,y) such that y C x, zis a well-ordering of
y, and (E,, o) is similar to (z,)). (w 1s a set, since w C P(x X x) x P(x).)
Since, F*(On) C P(P(x x x) x P(x)), F*(On) is a set. F is one-one; hence,
On = F“(F“(On) ) 1s a set by the replacement axiom, contradicting Propo-
sition 4.8(h).

DEFINITION

Let 5 denote the function with domain ¥ such that, for every x, 7 x is the
least ordinal o that is not equinumerous with any subset of x. (5 is called
Hartogs* function.)

COROLLARY 4.32

(V) (Hx < PPPP(x))

Proof

With each f# <, " x, associate the set of relations r such that  C x x x,risa
well-ordering of its field y, and {r,y) is similar to (Ej, 8). This defines a one—
one function from #x into Z2(x x x). Hence, #*x < #P(x x x). By Ex-
ercise 4.12(s), x x x € #P(x). So, PP(x x x) C PPPP(x), and therefore,
Hx X PPPP(x).

DEFINITION

Init(X) for X € OnA (VB)(f <o X = —(ff = X))
(X is an initial ordinal)

An initial ordinal is an ordinal that is not equinumerous with any smaller
ordinal.

Exercises

4.66 (a) + (Vo)(o € o = Init(ar)). (Every finite ordinal is an initial ordinal.)
(b) F Init{w). [Hint: Use Proposition 4.26(b) for both parts.]
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4.67 Prove:

(a) For every x, #x is an initial ordinal.

(b) For any ordinal o, 5o is the least initial ordinal greater than o.

(c) For any set x, #x = w if any only if x is infinite and x is Dedekind-
finite. [Hint: Exercise 4.64(c).]

Definition by transfinite induction (Proposition 4.14(b)) yields a function
G with domain On such that

Gh=ow
G'() = #*(G'¢) for every «
G'2=| J(G“(2)) for every limit ordinal

PROPOSITION 4.33

(a) F (Vo)(Init(G'o) A o< oGa A (VB (B <o a0 = G'B <, G'ar))
(b) F (Vo)(a<,G'a)
© F (VA (w<of AInit(f) = (Fu)(Ga = f))

Proof
(@) Let X = {o|Init(G'a) A o< oGa N (VB (B <o 0= GB <, G'o)}.

We must show that On C X. To do this, we use the second form of trans-
finite induction (Proposition 4.13(a)). First, (# € X, since G'0 = . Second,
assume o € X. We must show that o € X. Since a € X, G is an infinite
initial ordinal such that (VB)(f <, o= G‘f <, G‘x). By definition,
G'(of) = #*(G'a), the least initial ordinal >, G*(a). Assume f <, o/. Then
f<caVf=a lf §<,a, then,since o € X, G'f <, G'a <, G*(). If f =,
then G'ff = G'a <, G*(¢'). In either case, G‘ff <, G'(¢/), Hence, o’ € X. Fi-
nally, assume Lim(a) A (VB)(f <o 0 = f € X). We must show that o € X.
By definition, G‘o=|J(G(«)). Now consider any f <,a. Since
Lim(a), f <, o. By assumption, f € X, that is, G*(f') is an infinite initial
ordinal such that, for any y <, ff, Gy <, G*(ff'). It follows that G*(a) is a
non-empty set of ordinals without a maximum and, therefore, by Proposi-
tion 4.12, G'a, which is | J(G*“(«)), is a limit ordinal that is the least upper
bound of G*“(a). To conclude that G'a € X, we must show that G'o is an
initial ordinal. For the sake of contradiction, assume that there exist § such
that § <, G*(a) and 4 = G'a. Since G‘n is the least upper bound of G“(),
there must exist some pin G*“(o) such that 6 <, u. Say, up = G*f with § <, .
So, 8Cu=GBCG(f)CGa=s Since §CG(f),deG(f) and
< G(f). On the other hand, since G'(ff) C G'a=3,G(f)=<<5. By
Bernstein’s theorem, 6 = G*(ff'), contradicting the fact that G*(f') is an in-
itial ordinal.
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(b) This follows from Corollary 4.16 and part (a).

(c) Assume, for the sake of contradiction, that there is an infinite Initjz}
ordinal that is not in the range of G, and let ¢ be the least such. By part (p),
0 <,G'c and, by part (a), G'o is an iniual ordinal. Since ¢ is not in the rangé
of G, <, G'o. Let p be the least ordinal such that ¢ <, G'p. Clearly, y s ¢
since G = @ <, 0. Assume first that p is a successor ordinal y’. Then, by:
the minimality of p, G'y <, 0. Since G'(y) = #(G'y), G‘(¥') is the least:
initial ordinal greater than G'y. However, this contradicts the fact that ¢ jg
an initial ordinal greater than G'y and ¢ <, G'(}'). So, p must be a limj;
ordinal. Since G‘u = [J(G“(n)), the least upper bound of G*“(y), angd
o <, G'pi, there is some & <, p such that ¢ <, G¢ <, G'u, contradicting the
minimality of .

Thus, by Proposition 4.33, G is a one-one <,-preserving function from
On onto the class of all infinite initial ordinals.

NOTATION

w, for G'a

Hence, (a) wy = w; (b) we is the least initial ordinal greater than cw,; (c) for a
limit ordinal A, w; is the initial ordinal that is the least upper bound of the
set of all w, with y <, A. Moreover, w, >, a for all a. In addition, any
infinite ordinal « is equinumerous with a unique initial ordinal cg< 0,
namely, with the least ordinal equinumerous with o.

Let us return now to ordinal arithmetic. We already have defined ordinal
addition, multiplication and exponentiation (see Examples 1-2 on pages
249-50 and Exercise 4.36).

PROPOSITION 4.34

The following wfs are theorems.

(@) f+ol=p

(b) 0+ p=p

(C) ®<oﬁ:>(a<oa+0ﬁ/\ﬁ§oa+oﬁ)
d)y p<oy=>a+of<octd+toy

€ otof=o0+od=>p=0

(f) 0t<oﬁ=>(315)(06+05:ﬁ)

® 0#AxCOn= o0+, Up=U(a+op)
(h) (Z)<00t/\1<0ﬁ:>aﬁeéoa>€?ﬁ

() 0<,anl <of=a<onxof

() P<cPAD<ca=aXey <ot Xof

k) xCOn=ax, | Jp=U(ax,p)
» fiex fiex

Y-
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proof
(a) ﬁ+01:18+0(@,) :(AB"_O(D),:E’

©

()

©

9

(8

{b) Prove 0+, ff=p by transfinite induction (Proposition 4.13(a)). Let

X={p|0+,p=p}. First, D € X, since 0 4+, 0 = 0. If 0 4, y =y, then
040y = (0 +oy) =%. If Lim(e) and @ +, 7= 7 for all T <, o, then
D4+oa= U@ +o7)= |J7T=0,since |J 7isthe least upper bound of

Tl T 0 <l

the set of all T <, &, which is .

Let X ={B|0 <, f = o <, 0.+, fi}. Prove X = On by transfinite in-
duction. Clearly, feX. If yeX, then a<,0+4,7, hence
0K o0 +o ¥ <o (t+o7) =0 +oy. If Lim(A) and t € X for all t <, 2,
then o <, o =0t +o 1< | (046 7) = ¢+, A. The second part is left
as an exercise. <ol

Let X = {y| (Va)(VB) (f <o = &40 B <o &% +o })} and use transfinite
induction. Clearly, § € X. Assume y € X and 8 <, y. Then f8 <, y or
f=y. If <,y then, since P EX, o4, f <o tt—4oy <o (t+07)
=049 . If f=19, then o4, f =046 y <o (4o y)' == 0+, y'. Hence,
Y € X. Assume Lim (4) and 7 € X for all © <, A. Assume ff <, A. Then
B <.t for some t<,A, since Lim(%). Hence, since 1€ X,
oto fl <o O +oT<0 UKO;L(Ot +o7) = ot 4+, A. Hence, 4 € X.

Assume o+, f = o+, 9. Now, either f <, d or d <, f or 6=4. If
f<o,0d, then o+, <,0+,6 by part (d), and, if & <, f, then
o +o 6 <, 0+, f§ by part (d); in either case, we get a contradiction with
% +o f = o+, 0. Hence, 6 = f.

The uniqueness follows from part (e). Prove the existence by induction
on ff. Let X = {filo <, f= (F10)(0e +, 6 = f)}. Clearly, 0 € X. Assume
yeX and o<,). Hence, a=p or a<,y. If a=y, then
(F0)(x+o0=17"), namely, d=1. If o <.y, then, since y€JX,
(310){0e+, 6 =y). Take an ordinal ¢ such that a+,¢ =7y. Then
o +o @ = (a+,0) =1y; thus, (38)(a 4, & = 7'); hence, Y € X. Assume
now that Lim(A) and 7 € X for all 7 <, A. Assume a <, . Now define a
function f such that, for o <, pt <, A, f*u is the unique ordinal é such
that o +o d= M- But A= ch<0,u<0/l H= Ua<uu<gl(a +o f‘”) Let
P = U, pe,n (f'1). Notice that, if o <, p <o 4, then f‘u <o f(1);
hence, p is a limit ordinal. Then 1=, . (¢+of W)=
Uy, (0 +0 ) = 0+ p-

Assume 0 #x C On. By part (f), there is some & such that
o +o 6 = Upe, (e +o ). We must show that & = |, . If f €x, then
& +o B0+, 0. Hence, f<,0 by part (d). Therefore, 4 is an upper
bound of the set of all g in x. So, | e, f<od. On the other hand, if
pEx, then o+s <ot +o Uﬁe_x B. Hence, o +,0= Uﬁe_r (o +o f)
<00 o Uﬁa— f. Hence, o+, = UpeI(a +o f) <ot 4o Uﬂe\_ﬁ and so,
by part (d), 0<, Uﬁer 3. Therefore, 6 = pex B.

(h)—(k) are left as exercises.
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PROPOSITION 4.35 The following wfs are theorems.

(a)
(b)
©
(d)
(e)
)
(8

fxol=FAN1X%X=F§

ODx, f=10

(4o f) +op=0+0{(f+o?)

(o %o f) Xo ¥ =0 X0 (ff X0 })

o Xo (f+o7) = (& Xo ) +o (& X0 )
exp(f,1) = frnexp(l, ) =1
exp(exp(f,v), ) = exp(f,y X, 6)

(h) exp(, 7 +o 8) = exp(B.7) Xo cxp(B, 5)!

(1) a>; LAS <oy = exp(e, f) <o exp(a,y)

Proof

(@) Bxol =00 =(f xo0)+, i =0+, = p, by Proposition 4. 34(b).
Prove 1 x, f = f§ by transfinite induction.

(b) Prove 0 x, f = 0 by transfinite induction.

) Let X={y|(Vo)(VB)((oe+oB)+ov=0c+o (f+op)} B EX, since

(4o ) +o 0= (040 f) =0 +o (f +0o ). Now assume y € X. Then
(40 B) +o ¥ = ({o 40 B) +o '}’), = (a+o (B +o '}’)), = o +o (f+o }’)’ =
o+ (f+o0 7). Hence, y € X. Assume now that Lim(1) and t € X for
all 7<,A Then (0+,p)40i= U,t< Hetoe f)+o 1) = UT< S (o
(B+o 7)) =040 U 2 (B +0 7), by Proposition 4. 34(g), and this is equal
to o+, (f +o 4)-

(d)—(i) are left as exercises.

We would like to consider for a moment the properties of ordinal addi-
tion, multiplication and exponentiation when restricted to w.

PROPOSITION 4.36
Assume o, f#,y are in . Then:

(a)
(b)
(c)
(d)
(e)
(f)
(2)

o+, fl E

X ff €@

exp(e, ff) € @

tto f=f+o00

oXofi=f %o

(40 ) Xop = (& Xo V) o (f %o ¥)
exp(a o f£,7) = exp(a, ) X, exp(fi, y)

fIn trad1t1onal notat1on the results of (f)-(h) would be written as f' = f,

W L () = e, e = 9 o
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Proof

(a) Use induction up to @ (Proposition 4.13(c)). Let X ={f|f € wA
(Va)(o € w) = o+, f € w)}. Clearly, () € X. Assume f € X. Consider
any o € . Then a +, f € w. Hence, o+, ff = (¢ +o ) € @ by Prop-
osition 4.11(a). Thus, f' € X.

(b) and (c) are left as exercises.

) Lemma. FocoAfeo=d+.f=a+.f. Let Y={p|fcaw
AVe) (h€w=d +of=0a+,f)} Cleatly, B €Y. Assume €Y.
Consider any o € w. S0, ¢ 4o =0+, f. Then o/ +, f = (¢ +o ﬁ)' =
(4o Y =0+, (f). Hence, f € Y,

To prove (d), let X ={B|fcwn Va)(a Ew= a4, f=f+,0)}.
Then () € X and it is easy to prove, using the lemma, that f€ X = f € X.

(e)-(g) are left as exercises.

The reader will have noticed that we have not asserted for ordinals cer-
tain well-known laws, such as the commutative laws for addition and
multiplication, that hold for other familiar number systems. In fact, these
laws fail for ordinals, as the following examples show.

Examples

1. (Bo)3Ep) (e +o B # P +o o)
I+, 0= U(1+Ooc)=w

o)
o+l =0 >
2. (Hoc)(Elﬁ)(oc Xo B # B X0 )
2X,m= U (Zxo0) =m
<ol

wXg2=0x 1+ ) =(oXxc D)+ (X, )=+, 0>, @

3. (Fo)(3B)(F)(( +o B) Ko ?Ié) (& %o 3)2+o (B X0 7))
(1 xo @) o (1 X0 @) = @ 4o @ >0 @
4. (3)(3F) (Fy){exp(o xo B,7) # exp(a, y) Xo exXP(f, 7))
exp(2 X, 2, w) = exp(4, w) = U exp(4,¢) =

<o

exp(2,w) = U exp(2,0) = w
0 <Cpl
So, exp(2, ) X, exp(2,®) = w X, @ >, O.
Given any wf # of formal number theory S (see Chapter 3), we can
associate with 4 a wf #* of NBG as follows: first, replace every “ -+’ by ‘+,’,
every * by ‘X, and every ‘f1(1)’ by ‘tU {r}1’; then, if # is € = @ or —%,

"In abbreviated notation for S, ‘f (¢)’ is written as ¢, and in abbreviated no-
tation in NBG, ‘tU {¢}’ is written as ¢. So, no change will take place in these
abbreviated notations.
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respectively, and we have already found €™ and @7, let #* be €* = g* o
~%”*, respectively; if 4 is (Vx)€(x), replace it by (Vx){x € @ = €*(x)). This.
completes the definition of #*. Now, if xq,...,x, are the free variableg @f
any) of 4, prefix (x; € @A ... Ax, € @)= to #*, obtaining a wl %} This
amounts to restricting all variables to w and interpreting addition, muit;-
plication and the successor function on natural numbers as the corre.
sponding operations on ordinals. Then every axiom £ of S is transformeg
into a theorem %## of NBG. (Axioms (S1)-(S3) are obviously transformed
into theorems, (S4)# is a theorem by Proposition 4.10(c), and (S)H(SB)#
arc properties of ordinal addition and multiplication.) Now, for any wl & of
S. %4 is predicative. Hence, by Proposition 4.4, all instances of (S9) are
provable by Proposition 4.13(c). (In fact, assume B#(0) A (Vx)(x € o
= (H#(x) = B#()))). Let X ={y |y € o A B#(y)}. Then, by Proposi-
tion 4.13(c), (Vx)(x € @ = #H#(x)).) Applications of modus ponens
are easily seen to be preserved under the transformation of # into @4
As for the generalization rule, consider a wf #(x) and assume that
#BH(x) is provable in NBG. But ##(x) is of the form
XEOAY €EWA... Ny, € 0= H(x). Hence, yy EO A ... Ny, € 0 = (Vx)
(x € w = #*(x)) is provable in NBG. But this wf is just ((Vx)%(x))#. Hence,
application of Gen leads from theorems to theorems. Therefore, for every
theorem % of S, ## is a theorem of NBG, and we can translate into NBG
all the theorems of S proved in Chapter 3.

One can check that the number-theoretic function 4 such that, if x is the
Godel number of a wf & of S, then A(x) is the G&del number of %, and if x
is not the Godel number of a wf of S, then %(x) = 0, is recursive (in fact,
primitive recursive). Let K be any consistent extension of NBG. As we saw
above, if x is the Godel number of a theorem of S, then A(x) is the G6del
number of a theorem of NBG and, hence, also a theorem of K. Let S(K) be
the extension of S obtained by taking as axioms all wfs 4 of the language of
S such that ## is a theorem of K. Since K is consistent, S(K) must be
consistent. Therefore, since S is essentially recursively undecidable (by
Corollary 3.46), S(K) is recursively undecidable. Now, assume K is recur-
sively decidable; that is, the set Tx of Godel numbers of theorems of K is
recursive. But Cry, (x) = Cr (h(x)) for any x, where Cr,, and Cy, are the
characteristic functions of Tgk) and 7k. Hence, Tgk) would be recursive,
contradicting the recursive undecidability of S(K). Therefore, K is recur-
sively undecidable, and thus, if NBG is consistent, NBG is essentially re-
cursively undecidable. Recursive undecidability of a recursively
axiomatizable theory implies incompleteness (see Proposition 3.47). Hence,
NBG is also essentially incomplete. Thus, we have the following resuit: if’
NBG is consistent, then NBG is essentially recursively undecidable and es-
sentiglly incomplete. (It is possible to prove this result directly in the same
way that the corresponding result was proved for S in Chapter 3.)
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Exercise

4.68 Prove that a predicate calculus with a single binary predicate letter is
recursively undecidable. [Hirt: Use Proposition 3.49 and the fact that NBG
has a finite number of proper axioms.]

There are a few facts about the ‘cardinal arithmetic’ of ordinal numbers that
we would like to deal with now. By ‘cardinal arithmetic’ we mean properties
connected with the operations of union (| j), Cartesian product (x) and X7,
as opposed to the properties of +,, X, and exp. Observe that x is distinct
from X,; also notice that ordinal exponentiation exp(«, ff) has nothing to do
with X7, the class of all functions from ¥ into X. (From Example 4 on page
269 we see that exp(2, ) is w, whereas, from Cantor’s theorem, w < 2%,
where 2% is the set of functions from  into 2.

PROPOSITION 4.37

(@) F oxo=w
b) F 22X A2KY > XUY<X x Y
(¢) F Den(x) A Den(y) = Den(xUy)

Proof

(a) Let f be a function with domain  such that, if o € c, then /e = (o, 0).
Then f 1s a one—one function from @ into a subset of @ x w. Hence,
ao<w X w. Conversely, let g be a function with domain w x @ such
that, for any (o, ) in @ x w,g*{(e, f) = exp(2,a) X, exp(3, ff). We leave
it as an exercise to show that g is a one-one function from w x @ into
. Hence, v x o=<w. So, by Bernstein’s theorem, w x © = .

(b) Assume g € X,a3 € X,a1 # a3,b) €7, by € Y, by # by. Define

(al,b[) if x cX
fx=< {a,x) fxe¥—X andx#bh
(az,bz) fx=b andxec¥—-X

Then f is a one one function with domain X UY and range a subset of
X xY. Hence, X UY<X x Y.

(¢) Assume Den(x) and Den(y). Hence, each of x and y contains at least
two elements. Then, by part (b), x U y<x X y. But x 2 @ and y & .
Hence, x X y = @ X @. Therefore, x Uy<Xw x @ = @. By Proposition
4.30, either Den (x Uy} or Fin (x U y). But x C x U y and Den(x); hence,

For the further study of ordinal addition and multiplication, it is quite
useful to obtain concrete interpretations of these operations.



272

AXIOMATIC SET THEORY | ‘

PROPOSITION 4.38 (ADDITION)

Assume that (,x) is similar to (E,, o), that {s, y) is similar to (Eg, ), and that
xNy=0. Let ¢ be the relation on x Uy consisting of all (u,v) such that
(u,vy ExXyoruexAvexA(uuv) crorucyAveyAn (u) € s (that ig

t is the same as r in the set x, the same as s in the set y, and every element of ;
t-precedes every element of y). Then r is a well-ordering of x Uy, and
(t,x Uy) is similar to (E.y g, 4o f).

Proof

First, it is simple to verify that 7 is a well-ordering of x Uy, since r is a well-
ordering of x and s is a well-ordering of y. To show that (¢, x U v) is similar to
(Betop, % +o ), use transfinite induction on f. For =0, y = (. Hence,
t=rxUy=x, and a +, f=a. So, (t,aU ) is similar to (Eoy g, +, ).
Assume the proposition for y and let § = 7. Since (s, ) is similar to (Eg, f )

we have a function f* with domain y and range f§ such that, for any u, v in
v, {u,v) € s if and only if fu € f'v. Let b= (f) 7, let y1 =y — {b} and let
s1 =sN{y x y). Since b is the s-maximum of y, it follows easily that s,
well-orders y;. Also, y{f is a similarity mapping of y; onto y. Let
fh =10 ((x Uy) x (x Uyr)). By inductive hypothesis, {(t;,x U ;) is similar to
(Eeitoy, 0 +o 1), by means of some similarity mapping g with domain x Uy,
and range o +, y. Extend g to g; = gU{(b,a 4, 7)}, which is a similarity
mapping of x Uy onto (& 4o7) = & 407 = o+, f. Finally, if Lim(f) and
our proposition holds for all T <, f, assume that f is a similarity mapping
of y onto . Now, for each 7 <, f, let 3, = (f)*“1, s, = s N (3 X 3,), and
t: =tN{{(xUy) % (x Uy;)). By inductive hypothesis and Corollary 4.18(b),
there is a unique similarity mapping g, of (t;,xUy,) with (Euy o, 0 +, 1T);
also, if 1) <, 12 <, f§, then, since (x Uy, ){g., 1s a similarity mapping of
(t,,xUyy) with (Eyy ,0 40 71) and, by the uniqueness of g, (x Uyy)
(g, = gr,; that is, g,, is an extension of g,. Hence, if g = UT< g. and
A=, plo+o 7), then g is a similarity mapping of (¢, |, ﬂ(nyT)) with
(E;, ). But U s Uxe) =xUy and U, (et +07) = e +o . This com-
pletes the transfinite induction.

PROPOSITION 4.39 (MULTIPLICATION)

Assume that (r,x) is similar to (E,, o) and that (s, y} is similar to (Eg, f5). Let
the relation f on x x y consist of all pairs {(i, v}, {w,z)) such that u and w are
in x and v and z are in y, and either (v,z) € sor (v =z A (u,w) € ¥). Then ¢ is
a well-ordering of x X y and (t,x x y) is similar to (Eyx,p, o Xo f).1

tThe ordering ¢ is called an inverse lexicographical ordering because it orders
pairs as follows: first, according to the size of their second components and then, if
their second components are equal, according to the size of their first components.

-,
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Proof

This is left as an exercise. Proceed as in the proof of Proposition 4.38.

Examples

1. 2 X0 0= . Let (r,x) = (Ey,2) and (s,y) = (E,®). Then the Cartesian
product 2 x « is well-ordered as follows: (@,0),(l,0), (@,1),{1,1)},
(0.2), (1,2), ., @), (1, @1+ 1), (L + 1),

2. By Proposition 4.34(a), 2 =1' = 1 +, 1. Then by Proposition 4.35(e,a),
W Xo2=(wx51) 4o (@x51) =w+,w. Let (r,x)=(E, w) and
{s,¥) = (E2,2). Then the Cartesian product w x 2 is well-ordered as
follows: (0,0),(1,0),(2,0),...,(0,1),{1,1),(2,1),...

PROPOSITION 4.40

For all o, cwy X @y &2 @y

Proof

(Sierpinski, 1958) Assume this is false and let o be the least ordinal such that
Wy X Wy = g is false. Then wp x wg =2 wp for all f <, a. By Proposition
4.37(a), a >, 0. Now let P = @, x @, and, for f <, w,, let Py = {(y,8)|y
+,0 = f}. First we wish to show that P=|J f<otns Pp. Now, if
Y 4o 0= fi <o @y, then y<f <, 0y and 6K f <, w,; hence, (p,d) € w,
xwy = P. Thus, U, . Pp C P. To show that P C Up<oen £ it suffices to
show that, if y <, @, and é <, w,, theny +, & <, wy. This is clear when y or
d is finite. Hence, we may assume that p and & are equinumerous with initial
ordinals w, <oy and w, <0, respectively. Let { be the larger of ¢ and p.
Since y <, wy and & <, wy, then w; <, w,. Hence, by the minimality of
o, X p =y, Let x =y x {0} and y =6 x {1}. Then, by Proposition
438, xUy=~y+,0. Since y=w, and 62w, x=w,x {0} and
y 2w, x {1}. Hence, since x Ny = 0,x Uy = (w, x {0}) U (e, x {1}). But,
by Proposition 4.37(b), (s x {0}) U (w, x {1})<(ws x {0}) x{w,x
1}) = w, X w,<og X oy 22 wp. Hence, y+, 0wy <, w,. It follows that
Yo 6 <o @y (If 0, <y 40 8, then w,=<{w;. Since wy <, g, wr=<w,. So, by
Bernstein’s theorem, w, = wy, contradicting the fact that ¢, is an initial
ordinal.) Thus, P = Uﬁ <.a, P Consider Pp for any 8 <, wy. By Proposition
4.34(f), for each p<,pf, there is exactly one ordinal é such that y +,6 = .
Hence, there is a similarity mapping from g onto Pp, where Py is ordered
according to the size of the first component y of the pairs (p, 8). Define the
following relation R on P. For any y <, @y, d <o Wy U <o Wy, V <o Oy,
{{y,0),(,v)) €R if and only if either py+od <o pu+ov or (p4o0=
H~4o VA <o p). Thus, if B <, f <o @., then the pairs in Py R-precede the
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pairs in Pp,, and, within each Py, the pairs are R-ordered according to the gjy,
of their first components. One easily verifies that R well-orders P, Since
P = wy X (3, it suffices now to show that (R, P) is similar to (E,, NGBy By
Proposition 4.19, (R, P) is similar to some (E¢,¢), where ¢ is an ording]
Hence, P = £. Assume that { >¢ w,. There is a similarity mapping f bet.
ween (B¢, &) and (R, P). Let b = f“(w,); then b is an ordered pair (y, 8} witl
P <o Wy, 0 <o Wy, and wy [ f 1s a similarity mapping between (E,, ,mu) and;.
the R-segment ¥ = Segg(P, (, 0)) of P determined by (y, ). Then ¥ 2~ @y, If:
we let B =17+, 0, then, if (o, p) € Y,we have 0+, p<oy 40 6 = f5; hence,

o0 <op and pé_oﬁ Therefore, ¥ C ' x . But f <, w,. Since f is 0bv10ualy
not finite, ' = w, with ¢ <, o. By the minimality of o, w, x @, = Wy So,
@y = Y=<y, contradicting wy, < w,. Thus, {< 0, and, therefore, P,

Let / be the function with domain @, such that k‘f = (f,0) for every
P <o @,. Then h is one-one correspondence between w, and the subget
wy X {0} of P and, therefore, w,=<P. By Bernstein’s theorem, w, = p,
contradicting the definition of . Hence, wp x wp = wp for all f.

COROLLARY 4.41

If x = w, and y = wp, and if y is the maximum of « and f, then x x y =~ w,
and x Uy = @,. In particular, @, x wg 2 @,.

Proof

By Propositions 4.40 and 4.37(b), @, <x Uy=<x X y = w, X 0p=<Xwy X @y,
w,. Hence, by Bernstein’s theorem, x X y 2 @, and x U y & @,

Exercises

4.69 Prove that the following are theorems of NBG.

(2) x<wy=>xUw; = w,

(b) Wy ¢ g = Wy

© D#x<xX0y =X X 0y =

@) 0#x<0=(w) = wy

4.70. Prove that the following are theorems of NBG

(a) P(wa) x P(wg) = P(we)

(b) *<XP(wn) = xU P(wy) = P(wy,)

©) 0 #x<XP(w,) = x X P(0,) = P(w,)

d) 0 #x<wx = (P(04))" = Pwa)

(G) 1< xﬁwa = X = (ma)ma = (gj(mm))ma = f}'(wa)

4.71 Assumey # () Ay =y 4. y. (This assumption holds for y = w, by Cor-
ollary 4.41 and for y = #(w,) by Exercise 4.70(b). Tt will turn out to hold
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for all infinite sets y if the axiom of choice holds.) Prove the following
properties of y.

@ 1)

b)) y=l+cy

© (Fu)@E)y=uvvAunv=0Au=yAv=y)

@ {ez Cynz=y}=20)

) {zlz CyAlnf(z)} = Z(y)

() (Hf)(y?’y A(Vu)(u €y = f'u # u))

4,72 Assume y =y x y Al < y. (This holds when y = w, by Proposition
4.40 and for y = #(w,) by Exercise 4.70(a). It is true for all infinite sets y if
the axiom of choice holds.) Prove the following properties of y.

@) yEy+cy
(b)° Let Permy(y) denote {f |y? y}. Then Perm(y) = 2(y).

4.5 THE AXIOM OF CHOICE. THE AXIOM OF REGULARITY

The axiom of choice is one of the most celebrated and contested statements
of the theory of sets. We shall state it in the next proposition and show its
equivalence to several other important assertions.

PROPOSITION 4.42

The following wfs are equivalent.

(@) Axiom of choice (AC). For any set x, there is a function f such that, for
any non-empty subset y of x, fy € y. (f is called a choice function for
x.)

(b) Multiplicative axiom (Mult). If x is a set of pairwise disjoint non-empty
sets, then there is a set y (called a choice set for x) such that y contains
exactly one element of each set in x:

Vi wex=>u#0AW)(vexnv#u=vNu=10)=
(I)(Vu)(u € x = (Frw)(w e uny))

(c) Well-ordering principle (WQ). Every set can be well-ordered:
(V@) We x).
(d) Trichotomy (Trich). (Vx)(Vy)(x<y V y=<x)!

P'This is equivalent to (Vx)(Vy)(x <y Vx 2y Vy < x), which explains the name
‘trichotomy’ for this principle.
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(€) Zorn's Lemma (Zorn). Any non-empty partially ordered set x, in whig},.
every chain (i.e., every totally ordered subset) has an upper bound, hag
a maximal element: '

(vx) (W) ([(y Part x) A (Vi) (e Cx Ay Tot u =
@A) vexn(Vw)weu=w=vV{wv) €)=
(T} (v e x A (Yw)(w e x= (v,w) ¢ »)))

Proof

1. F WO = Trich. Given sets x and y, then, by WO, x and y can be well-
ordered. Hence, by Proposition 4.19, x = « and y = f§ for some ordinals o
and f. But, by Exercise 4.52, a=<Xf§ or f=<Xa.. Therefore, x<{y or y=<x.

2.  Trich = WO. Given a set x, Hartogs’ theorem yields an ordina]
such that o is not equinumerous with any subset of x, that is, a<x is false.
So, by Trich, x<{«, that is, x is equinumerous with some subset y of «. Hence,
by translating the well-ordering E,, of y to x,x can be well-ordered.

3. = WO=- Mult. Let x be a set of non-empty pairwise disjoint sets. By
WO, there is a well-ordering R of | Jx. Hence, there is a function f with
domain x such that, for any u in x, f‘u is the R-least element of . (Notice
that u is a subset of | Jx.)

4.+ Mult = AC. For any set x, we can define a one—one function g such
that, for each non-empty subset » of x, g'u = u x {u}. Let x| be the range of
g. Then x, is a set of non-empty pairwise disjoint sets. Hence, by Mult, there
is a choice set y for x;. Therefore, if « is 2 non-empty subset of x, then
u x {u} is in x;, and so y contains exactly one element (v, #) in # x {u}. Then
the function f such that fu = v is a choice function for x.

5.F AC = Zorn. Let y partially order a non-empty set x such that every
y-chain in x has an upper bound in x. By AC, there is a choice function f for
x. Let b be any element of x. By transfinite induction (Proposition 4.14(a)),
there is a function F such that FQ) = b and, for any « >, (), Fée is f‘u, where
u is the set of y-upper bounds v in x of F*‘a such that v ¢ F“a. Let § be the
least ordinal such that the set of y-upper bounds in x of F*f that are not in
F“f is empty. (There must be such an ordinal. Otherwise, F' would be a one-
one function with domain On and range a subset of x, which, by the re-
placement axiom R, would imply that On is a set.) Let g = {F. Then it is
easy to check that g is one-one and, if « <, v <, B, (g‘e, g'y) € y. Hence, g“f
is a y-chain in x; by hypothesis, there is a y-upper bound w of g f. Since the
set of y-upper bounds of F*“f(= g“p) that are not in g*f is empty, w € g*“f5
and w is the only y-upper bound of g“f (because a set can contain at most
one of its y-upper bounds). Hence, w is a y-maximal element. (If (w,z) € y
and z € x, then z is a y-upper bound of g“f, which is impossible.)
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. 6. F Zorn = WO. Given a set z, let X be the class of all one—one functions
with domain an ordinal and range a subset of z. By Hartogs’ theorem, X is a
set. Clearly, ) € X. X is partially ordered by the proper inclusion relation C.
Given any chain of functions in X, of any two, one is an extension of the
other. Hence, the union of all the functions in the chain is also a one—one
function from an ordinal into z, which is a C-upper bound of the chain.
Hence, by Zorn, X has a maximal element g, which is a one—one function
from an ordinal o into z. Assume z —g“o # () and let b € z— g*“‘o. Let
f=gU{<o,pf >} Then f € X and g C f, contradicting the maximality of
g. S0, g‘a = z. Thus, « % z. By means of g, we can transfer the well-ordering

E, of « to a well-ordering of z.

Exercises

4.73 Show that each of the following is equivalent to the axiom of choice.

(a) Any set x i8S equinumerous with some ordinal.

(b) Special case of Zorn’s lemma. If x 1s a non-empty set and if the union of
each non-empty C-chain in x is also in x, then x has a C-maximal
element.

(c) Hausdorfi maximal principle. If x is a set, then every C-cham in xis a
subset of some maximal C-chain in x.

(d) Teichmiiller—Tukey Lemma. Any set of finite character has a C-maximal
element. (A non-empty set x is said to be of finite character if and only
if: (1) every finite subset of an element of x is also an element of x; and
(ii) if every finite subset of a set y is 2 member of x, then y € x.)

© (W(Rel() = F)(Fuc(y) A 9(x) = 2() Ay C %)

(f) For any non-empty sets x and y, either there is a function with domain x
and range y or there is a function with domain y and range x.

4.74 Show that the following finite axiom of choice is provable in NBG: if x

is a finite set of nonempty disjoint sets, then there is a choice set y for x.

[Hint: Assume x = o where « € . Use induction on a.]

PROPOSITION 4.43

The following are consequences of the axiom of choice.

(@) Any infinite set has a denumerable subset.

(b) An infinite set is Dedekind-infinite.

(c) If x is a denumberable set whose elements are denumerable sets, then
|x is denumerable.
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Proof

Assume AC.

(a) Let x be an infinite set. By Exercise 4.73(a), x is equinumerous witp,
some ordinal «. Since x is infinite, so is «. Hence, w<,0; therefore, ¢, is
equinumerous with some subset of x.

(b) The proof is by part (a) and Exercise 4.64(c).

(c) Assume x is a denumerable set of denumerable sets. Let f be ,
function assigning to each u in x the set of all one—one correspondenceg
between u and w. Let z be the union of the range of f. Then, by AC applied
to z, there is a function g such that g'v € v for each non-empty » C 7, I
particular, if # € X, then g*(f‘w) is a one—one correspondence between u and
w. Let k be a one-one correspondence between w and x. Define a function F
on | x as follows: let y € | Jx and let n be the smallest element of @ such that
y € h'n. Now, h'n € x; so, g*(f‘(h‘n)) is a one-one correspondence betweep
h'n and . Define F'y = {(n, (g‘(f‘(h‘n)))‘y). Then F is a one-one function
with domain | Jx and range a subset of w x . Hence, | Jx<Xw x @. But
w X @ & @ and, therefore, | Jx=<{w. If v € x, then v C Jx and v =2 . Hence,
o< {Jx. By Bernstein’s theorem, | Jx = w.

Exercises

4.75 If x is a set, the Cartesian product I, ¢ yu is the set of functions f with
domain x such that fu € u for all u € x. Show that AC is equivalent to the
proposition that the Cartesian product of any set x of non-empty sets is also
non-empty.
4.76 Show that AC implies that any partial ordering of a set x is included in
a total ordering of x. ‘
4.77 Prove that the following is a consequence of AC: for any ordinal o, if x
is a set such that x<Xw, and such that (Vu){(v € x = u<Xw,), then | Jx<w,.
[Hint: The proof is like that of Proposition 4.43(c).]
4.78 (2) Prove y<Xx = (3f)(Fne(f) A 2(f) =x AN R(f) = y).
(b) Prove that AC implies the converse of part (a).
4.79P (a) Prove (i 4 ) 22 1% 4 (2 % (1 X v)) +¢ 02
(b) Assume y is a well-ordered set such that x x y =~ x4,y and
—(y=<x). Prove that x<{y.
(¢) Assume y =2y x p for all infinite sets y. Prove that, if Inf(x) and
z=4"x,then x X z= x4,z
(d) Prove that AC is equivalent to (Vy)(Inf(y) = y = y x ») (Tarski,
1923).

A stronger form of the axiom of choice is the following sentence (UCF):
(3X) (Fre(X) A (V) (u # () = X'u € u)). (There is a universal choice function
— that is, a function that assigns to every non-empty set # an element of #.)
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UCF obviously implies AC, but W.B. Easton proved in 1964 that UCF is
got provable from AC if NBG is consistent. However, Felgner (1971b)
proved that, for any sentence # in which all quantifiers are restricted to sets,
if 4 is provable from NBG + (UCF), then # is provable in NBG +(AC).
(See Felgner (1976) for a thorough treatment of the relations between UCF
and AC.)

The theory of cardinal numbers can be simplified if we assume AC; for
AC implies that every set is equinumerous with some ordinal and, therefore,
that every set x is equinumerous with a unique initial ordinal, which can be
designated as the cardinal number of x. Thus, the cardinal numbers would be
identified with the initial ordinals. To conform with the standard notation
for ordinals, we let ¥, stand for «,. Proposition 4.40 and Corollary 4.41
establish some of the basic properties of addition and multiplication of
cardinal numbers.

The status of the axiom of choice has become less controversial in recent
years. To most mathematicians it seems quite plausible, and it has so many
important applications in practically all branches of mathematics that not to
accept it would seem to be a wilful hobbling of the practising mathemati-
cian. We shall discuss its consistency and independence later in this section.

Another hypothesis that has been proposed as a basic principle of set
theory is the so-called regularity axiom (Reg):

(V)X #0 = () eX rynXx =0))

(Every non-empty class X contains a member that is disjoint from X.)

PROPOSITION 4.44

(@) The regularity axiom implies the Fundierungsaxiom:
=(3f)Fnc(f) A 2(f) = o A (Vu)(u € 0 = f(i') € fu))
that 1s, there is no infinitely descending e-sequence xp 2 x1 2x, > ...

(b) If we assume AC, then the Fundierungsaxiom implies the regularity
axiom.

(¢) The regularity axiom implies the non-existence of finite €-cycles that
is, of functions f on a mnon-zero finite ordinal o such that
fOefle...efaecfD Inparticular, it implies that there is no set y
such that y € y.

Proof

(@) Assume Fnc{f) A 2(f) =onVu)(u € w = (W) € f'u). Let z = f“w.
By (Reg), there is some element y in z such that y Nz = (). Since y € z, there
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o
is a finite ordinal o such that y = f‘a. Then f‘(«/) e y Nz, contradlct;ng;
ynz={.

(b) First, we define the transitive closure TC(u) of a set u. Intultlvely we
want TC(u) to be the smallest transitive set thai contains u. Define by:
induction a function g on  such that g = {1} and g*(o) = {J(g‘«) for each:
« in @ Thus, gl=ug2=Uug3=UUx), and so on [e
TC(u) = [ J(g“‘w) be called the transitive closure of u. For any u, TC(y) js
transitive; that is, (Vv)(v € TC(u) = v C TC(u)). Now, assume AC and the
Fundierungsaxiom; also, assume X # () but there is no y in X such thai
yNX =@ Let b be some element of X; hence, bNX £ Let
¢ =TC(b) N X. By AC, let 1 be a choice function for c. Define a function
on o such that £ = b and, for any o in w, (o) = A((f*x) N X). It follows
easily that, for each « in w, (o) € f«, contradicting the Fundierungsaxi-
om. (The proof can be summarized as follows: we start with an element p of
X, then, using h, we pick an element f“1 in b N.X; since, by assumption, £
and X cannot be disjoint, we pick an element 2 in ‘1 N.X, and so on.)

(c) Assume given a finite e-cycle: f'hefle... € f'ue 9. Let X be
the range of f: {f0, f‘1,..., f'n}. By (Reg), there is some f*j in X such that
f‘jNnX = (). But each element of X has an element in common with X1,

Exercises

4.80 If z is a transitive set such that » & z, prove that TC(u) C z.

4.81 By the principle of dependent choices (PDC) we mean the following: if
is a non-empty relation whose range is a subset of its domain, then there is a
function f: @ — 2(r) such that (Vu)(v € @ = {f‘u, f(«')) € r) (Mostowski,
1948).

(a) Prove HF AC = PDC.

(b) Show that PDC implies the denumerable axiom of choice (DAC):

Den(x) A (Vi)(u ex=>u#0)= 3 )(f:x— Ux/\ (Vu)(u €x = f'u €u))

() Prove - PDC = (vx)(Inf(x) = @=<x) (Hence, by Exercise 4.64(c), PDC
implies that a set is infinite if and only if it is Dedekind-infinite.)
(d) Prove that the conjunction of PDC and the Fundierungsaxiom implies
(Reg).
Let us define by transfinite induction the following function ¥ with do-
main On:

tThe use of AC in deriving (Reg) from the Fundierungsaxiom is necessary.
Mendelson (1958) proved that, if NBG is consistent and if we add the Fundie-
rungsaxiom as an axiom, then (Reg) is not provable in this enlarged theory.

-
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do—
PP =0
P (o) = P(V'0)
Lim(4) = YA= | ] ¥p
B <o 4

Let H stand for | J(W*On), that is, I consists of all members of sets of the
form o Let Hy stand for W(f'). Thus, Hy = 2(¥‘f) and Hy = 2(¥(fi'))
= P(Hp). In particular, FHy= P(YP) =20) = {0}, H =PHy) =
2({0}) = {0,{0}}, and H=2H)=2{0,{0}}) ={0,{0},{{0}}.
{0.{01}}-

Define a function p on H such that, for any x in H, p‘x is the least ordinal
o such that x € Wa. p‘x is called the rank of x. Observe that p‘x must be a
successor ordinal. (In fact, there are no sets of rank ), since W) = (). If Lis a
limit ordinal, every set in W‘A already was a member of WS for some
i <o ) As examples, note that p‘) =1,p{0} =1,p{,{0}} =2, and
p{{0}} =2.

Exercise 4.82. Prove that the following are theorems of NBG.

(@) (Vo)Trans(¥ o)

(b) Trans(H)

© (Va)(Fa C W)

(@ (Vo)(V)(e <o f = Fa C W'P)

) On CH

O (Vo)(p'a=10)

(g (Vu)(Vo)(ue HAveHNuev= pu<, p'v)
h) (Vu)(uCH=ueH)

PROPOSITION 4.45

The regularity axiom is equivalent to the assertion that V' = H, that is, that
every set is a member of H.

Proof

(@) Assume V = H. Let X # {). Let « be the least of the ranks of all the
members of X, and let b be an element of X such that p‘b = a. Then
bNX =; for, if u € bNX, then, by Exercise 4.82(g), p‘u € p'b = «,
contradicting the minimality of o.

(b) Assume (Reg). Assume ¥V # H. Then V — H # {). By (Reg), there is
some y in ¥ — H such that yN (V' — H) = (. Hence, ¥y C H and so, by
Exercise 4.82(h), y € H, contradicting y ¢ V' — H.

281
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Exercises

4.83 Show that (Reg) 1s equivalent to the special case: (V) (x )
= (I)y exAynx=10)).

4.84 Show that, if we assume (Reg), then Ord(X) is equivalent tq
Trans(X) A E Con X, that is, to the wf

Vi peX =>uCX)A(M)WV)ucXhveXAutv=uecvVoeuy)

Thus, with the regularity axiom, a much simpler definition of the notion of
ordinal class is available, a definition in which all quantifiers are restricted to
sets.

4.85 Show that (Reg) implies that every non-empty tramsitive class con-
tains

Proposition 4.45 certainly increases the attractiveness of adding (Reg) as
a new axiom to NBG. The proposition V = H asserts that every set can be
obtained by starting with ) and applying the power set and union operations
any transfinite number of times. The assumption that this is so is called the
iterative conception of set. Many set theorists now regard this conception as
the best available formalization of our intuitive picture of the universe of
sets.t

By Exercise 4.84, the regularity axiom would also simplify the definition
of ordinal numbers. In addition, we can develop the theory of cardinal
numbers on the basis of the regularity axiom; namely, just define the car-
dinal number of a set x to be the set of all those y of lowest rank such that
y = x. This would satisfy the basic requirement of a theory of cardinal
numbers, the existence of a function Card whose domain is ¥ and such that
(Vx)(Vy)(Card‘x = Card’y & x =2 y).

There is no unanimity among mathematicians about whether we have
sufficient grounds for adding (Reg) as a new axiom, for, although it has
great simplifying power, it does not have the immediate plausibility that
even the axiom of choice has, nor has it had any mathematical applications.
Nevertheless, it is now often taken without explicit mention to be one of the
axioms.

The class H determines an inner model of NBG in the following sense.
For any wf 4 (written in unabbreviated notation), let Rely (%) be the wf
obtained from 4% by replacing every subformula (VX)%(X) by
(VX)(X CH = %(X)) (in making the replacements we start with the in-

'The iterative conception seems to presuppose that we understand the power set
and union operations and that ordinal numbers (or something essentially equivalent
to then) are available for carrying out the transfinite iteration of the power set and
union operations.

7
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nermost subformulas) and then, if # contains free variables. Yp,..., ¥,
prefixing (W CHAL CHA...ANY, CH) =

In other words, in forming Rely (%), we interpret ‘class’ as ‘subclass of
H'. Since M(X) stands for (3Y)X € Y),Rely(M(X)) is
ENY CHAX € Y), which is equivalent to X € H; thus, the ‘sets’ of the
model are the elements of H. Hence, Rely((Vx)#) is equivalent to
(Vx)(x € H = #*), where %" is Rely(#). Note also that
FXCHAY CH=[Relg(X =Y) < X =7Y]. Then it turns out that, for
any theorem # of NBG, Rely (%) is also a theorem of NBG.

Exercises

4.86 Verify that, for each axiom % of NBG, Fnpe Rely(4). If we adopt a
semantic approach, one need only show that, if .# is a model for NBG, in
the usual sense of ‘model’, then the objects X of .# that satisfy the wf X C H
also form a model for NBG. In addition, one can verify that (Reg) holds in
this model; this is essentially just part (a) of Proposition 4.45. A direct
consequence of this fact is that, if NBG is consistent, then so is the theory
obtained by adding (Reg) as a new axiom. That (Reg) is independent of
NBG (that is, cannot be proved in NBG) can be shown by means of a model
that is somewhat more complex than the one given above for the consistency
proof (see Bernays, 1937-1954, part VII). Thus, we can consistently add
either (Reg) or its negation to NBG, if NBG is consistent. Practically the
same arguments show the independence and consistency of (Reg) with re-
spect to NBG + (AC).

4.87 Consider the model whose domain is H,, and whose interpretation of &
is Eg, , the membership relation restricted to H,. Notice that the "sets’ of this
model are the sets of rank <.« and the “proper classes’ are the sets of rank
of. Show that the model H, satisfies all axioms of NBG (except possibly the
axioms of infinity and replacement) if and only if Lim(«). Prove also that H,
satisfies the axiom of infinity if and only if & >, .

4.88 Show that the axiom of infinity is not provable from the other axioms
of NBG, if the latter form a consistent theory.

4.89 Show that the replacement axiom (R) is not provable from the other
axioms (T, P, N, (BI) (B7), U, W, S) if these latter form a consistent theory.
4.90 An ordinal « such that H, is a model for NBG is called inaccessible.
Since NBG has only a finite number of proper axioms, the assertion that o is
inaccessible can be expressed by the conjunction of the relativization to H,
of the proper axioms of NBG. Show that the existence of inaccessible or-
dinals is not provable in NBG if NBG is consistent. (Compare Shepherdson
(1951-53), Montague and Vaught (1959), and, for related results, Bernays
(1961) and Levy (1960).) Inaccessible ordinals have been shown to have
connections with problems in measure theory and algebra (see Ulam, 1930;
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Zeeman, 1955; Erdos and Tarski, 1961).! The consistency of the theory
obtained from NBG by adding an axiom asserting the existence of an in-
accessible ordinal is still an open question. More about inaccessible ordinalg
may be found in Exercise 4.91.

The axiom of choice turns out to be consistent and independent with
respect to the theory NBG + (Reg). More precisely, if NBG is consistent
AC is an undecidable sentence of the theory NBG+ (Reg). In fact, G('jdei
(1938; 1939; 1940) showed that, if NBG is consistent, then the theory NBG
+ (AC) + (Reg) + (GCH) is also consistent, where (GCH) stands for the
generalized continuum hypothesis:

(Vx)(Inf(x) = —(I)x <y Ay < Z(x)))

(Our statement of Godel’'s result is a bit redundant, sjnce
Fneg (GCH) = (AC) has been proved by Sierpinski (1947) and Specker
(1954). This result will be proved below.) The unprovability of AC from
NBG + (Reg), if NBG is consistent, has been proved by P.J. Cohen (1963
64), who also has shown the independence of the special contimumm hy-
pothesis, 2® = w;, in the theory NBG + (AC) + (Reg). Expositions of the
work of Cohen and its further development can be found in Cohen (1966)
and Shoenfield (1971b), as well as in Rosser (1969) and Felgner (1971a). For
a thorough treatment of these results and other independence proofs in set
theory, Jech (1978) and Kunen (1980) should be consulted.

We shall present here a modified form of the proof in Cohen (1966) of
Sierpinski’s theorem that GCH implies AC.

DEFINITION

For any set v, let 2°(v) = v, #'(v) = P(v), #*(v) = P(P(v)), o, P
= P(F*(v)) for all k in o.

LEMMA 4.46

H w=<0v, then Z(v) 4 P*(v) = #*(v) for all k=,1.

tInaccessible ordinals are involved also with attempts to provide a suitable set-
theoretic foundation for category theory (see MacLane, 1971; Gabriel, 1962; Sonner,
1962; Kruse, 1966; Isbell, 1966).
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Proof

Remember that #(x) =2 2* (see Exercise 4.40). From w=<v we obtain
w=<P*(v) for all k in w. Hence, #*(v) 4+, 1 = #*(v) for all £ in », by Ex-
ercise 4.64(g). Now, for any k >, 1,

?"(U) +c 9”‘(1;) = gpk(v) % D = ?7(."‘?"—4(1))) % 2 o 9P o 9
o~ 25“*‘1(1:) w 21 o 2,}»1“1(!7)-&1 o 2}*—1 () o ;J?’(g’l‘ l(v)) _ g’k(v)

LEMMA 4.47

If y 4¢x = Z(x 4+ x), then Z(x)xy.

Proof

Notice that P(x 4 x) o2 2%e¥ = 2V x 2% o2 P(x) x P(x). Let y* =y x {0}
and x* =x x {1}. Since y +¢x = P(x 4+, x) = P(x) x P(x), there is a func-
tion f such that y* Ux*=%(x) x 2(x). Let h be the function that takes each
i x* into the first co(nponent of the pair f‘u. Thus, h:x* = #(x). By
Proposition 4.25(a), there must exist ¢ in 2(x) — h*“(x*). Then, for all z in
P(x), there exists a unique v in y* such that f‘v = (¢, z). This determines a
one-one function from £(x) into y. Hence, 2(x)=<y.

PROPOSITION 4.48

Assume GCH.

(a) If u cannot be well-ordered and v +. # =2 u and f is an ordinal such that
p=<2%, then f=<u.
(b) The axiom of choice holds.

Proof

(a) Notice that v +. » = u implies | +¢ 1 = u, by Exercise 4.71(b). Therefore,
by Exercise 4.55(1), 2" +, u =2 2*. Now, u<Xf +c u<x2"+. u = 2", By GCH,
either () w==2f+.u or (@) PfHeu=x=x24 If (i) holds,
PHcu=2"+.u=2Pu+c.u). Hence, by Lemma 4.47, P(«)<f and,
therefore, u=<fi. Then, since ¥ would be equinumerous with a subset of an
ordinal, # could be well-ordered, contradicting our assumption. Hence, (i)
must hold. But then, < +c v = u.

(b) We shall prove AC by proving the equivalent sentence (WQ) asserting
that every set can be well-ordered. To that end, consider any set x and
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assume, for the sake of contradiction, that x cannot be well-ordered. Ler
p=22V® Then w=<xUw=<v. Hence, by Lemma 4.46, 2*(v)+, PH(v)
=~ Z*(v) for all k=,1. Also, since x=<x U w=<v < Z(v) < P(P(v)) < ...
and x cannot be well-ordered, each #%(v) cannot be well-ordered., for & ;0()?
Let ff = #*v. We know that f<X2*(v) by Corollary 4.32. Hence, by part (a),
with u = #%(v), we obtain <% (v). Using part (a) twice more (successively
with ¥ = 2*(v) and u = 2(v)), we obtain #*v = f<{v. But this contradicts
the definition of #‘v as the least ordinal not equinumerous with a subget
of v.

Exercise

4.91 An a-sequence is defined to be a function f whose domain is o. If the
range of f consists of ordinals, then f is called an ordinal o-sequence and, if,
in addition, f <,y <o« implies f‘f <, f‘y, then f is called an
increasing ordinal a-sequence. By Proposition 4.12, if f is an increasing

ordinal a-sequence, then | J(f“‘«) is the least upper bound of the range of 7,

An ordinal § is said to be regular if, for any increasing ordinal o-sequence

such that o« <, 6 and the otrdinals in the range of f are all

<o &, U(f“e) +0 1 <o 8. Non-regular ordinals are called singular ordinals.

(a) Which finite ordinals are regular?

(b) Show that y is regular and @y, is singular

(¢) Prove that every regular ordinal is an initial ordinal.

(d) Assuming the axiom of choice (AC), prove that every ordinal of the
form @y, 1 1s regular.

(e) If e, is regular and Lim(«), prove that e, = a. (A regular ordinal ¢,
such that Lim(«) is called a weakly inaccessible ordinal.)

(f) Show that, if , has the property that y <, @, implies (y) < w,, then
Lim(e). The converse is implied by the generalized continuum hypoth-
esis. A regular ordinal ¢, such that & >, {) and such that y <, @, implies
P(y) < wy, is called strongly inaccessible. Thus, every strongly inacces-
sible ordinal is weakly inaccessible and, if (GCH) holds, the strongly
inaccessible ordinals coincide with the weakly inaccessible ordinals.

(g) (Sheperdson 1951-53; Montague and Vaught, 1959) (i) If y is inacces-
sible (i.e., if H, 1s a mode] of NBG), prove that y is weakly inaccessible.
(ii)D In the theory NBG + (AC), show that v is inaccessible if and only
if y is strongly inaccessible.

(h) If NBG is consistent, then in the theory NBG + (AC) + (GCH), show
that it is impossible to prove the existence of weakly inaccessible or-
dinals.
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v
4.6 OTHER AXIOMATIZATIONS OF SET THEORY

We have chosen to develop set theory on the basis of NBG because it is
relatively simple and convenient for the practising mathematician. There
are, of course, many other varieties of axiomatic set theory, of which we will
now make a brief survey.

Morse-Kelley (MK)
Strengthening NBG, we can replace axioms (B1)—-(B7) by the axiom schema:
(O) (AV)(VX)(x € ¥ & H(x))

where %(x) is any wf (not necessarily predicative) of NBG and Y is not free
in #(x). The new theory MK, called Morse—Kelley set theory, became well-
known through its appearance as an appendix in a book on general to-
pology by Kelley (1955). The basic idea was proposed independently by
Mostowski, Quine, and Morse (whose rather unorthodox system may be
found in Morse (1965)). Axioms (B1)-(B7) follow easily from ([]) and,
therefore, NBG is a subtheory of MK. Mostowski (1951a) showed that, if
NBG is consistent, then MK is really stronger than NBG. He did this by
constructing a ‘truth definition’ in MK on the basis of which he proved
Fymi Bosnpa, Where Bonngg 1s a standard arithmetic sentence asserting the
consistency of NBG. On the other hand, by Godel’s second theorem,
%oxnpG 18 not provable in NBG if the latter is consistent.

The simplicity and power of schema ([]) make MK very suitable for use
by mathematicians who are not interested in the subtleties of axiomatic set
theory. But this very strength makes the consistency of MK a riskier gamble.
However, if we add to NBG + (AC) the axiom (In) asserting the existence
of a strongly inaccessible ordinal 6, then Hp is a model of MK. Hence, MK
involves no more risk than NBG + (AC) + (In).

There are several textbooks that develop axiomatic set theory on the basis
of MK (Rubin, 1967; Monk, 1980; Chuquai, 1981). Some of Cohen’s in-
dependence results have been extended to MK by Chuquai (1972).

Exercises

4.92 Prove that axioms (B1)}-(B7) are theorems of MK.
4.93 Verify that, if 6 is a strongly inaccessible ordinal, then Hy is a model of
MK.
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Zermelo-Fraenkel (ZF)

The earliest axiom system for set theory was devised by Zermelo (1908). The
objects of the theory are thought of intuitively as sets, not the classes of
NBG or MK. Zermelo’s theory Z can be formulated in a language that
contains only one predicate letter €. Equality is defined extensionally: x = y
stands for (Vz)(z € x < z € y). The proper axioms are:

T. x=y=>(xcz& yecz) (substitutivity of =)
P: @)(Vu)(uezeu=xVu=y) (pairing)
N: (@) () (r¢ x) (null ser)
U: (@) (Vu)(u ey (Fu)uevnvex)) (sum set)
W: (3y)(Vu)(u € y < u C x) (power set)
S*: () (Vu)(u € ¥y & (1 € x ANH(u))), where H(u) is any wf not containing y

free (Selection)
I (x)0 € xA(V2){z€ex=2zU{z} €x)) (infinity)

Here we have assumed the same definitions of C,0, v and {u} as in
NBG.

Zermelo’s intention was to build up mathematics by starting with a few
simple sets () and ) and then constructing further sets by various well-
defined operations (such as formation of pairs, unions and power sets). In
fact, a good deal of mathematics can be built up within Z. However,
Fraenkel (1922a) observed that Z was too weak for a full development of
mathematics. For example, for each finite ordinal #, the ordinal @ +, n can
be shown to exist, but the set 4 of all such ordinals cannot be proved to
exist, and, therefore, w +, w, the least upper bound of 4, cannot be shown
to exist. Fraenkel proposed a way of overcoming such difficulties, but his
idea could not be clearly expressed in the langudge of Z. However, Skolem
(1923) was able to recast Fraenkel’s idea in the following way: for any wf
HB(x,y), let Fun(%) stand for (vx)(Ve)(Vv)(B(x,u) A B(x,v) = u = v). Thus,
Fun (4) asserts that & determines a function. Skolem’s axiom schema of
replacement can then be formulated as follows:

(R*) Fun(#) = (vw)(A2)(Vo)(v € z & (Fu) (1 € w A B(u, 1))
for any wf #(x,y)

This is the best approximation that can be found for the replacement axiom
R of NBG.

The system Z + (R*) is denoted ZF and is called Zermelo—Fraenkel set
theory. In recent years, ZF is often assumed to contain a set-theoretic reg-
ularity axiom (Reg*): x # ) = (3y)(y e xAyNx = ). The reader should
always check to see whether (Reg*) is included within ZF. ZF is now the
most popular form of axiomatic set theory; most of the modern research in
set theory on independence and consistency proofs has been carried out with
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respect to ZF. For expositions of ZF, see Krivine (1971), Suppes (1960),
7Zuckerman (1974), Lévy (1978) and Hrbacek and Jech (1978).

ZF and NBG yield essentially equivalent developments of set theory.
Every sentence of ZF is an abbreviation of a sentence of NBG since, in
NBG, lower-case variables x,y,z,... serve as restricted set variables. Thus
axiom N is an abbreviation of (2x)(M(x) A (Vy)(M(y) = y¢x)) in NBG. It
is a simple matter to verify that all axioms of ZF are theorems in NBG.
Indeed, NBG was originally constructed so that this would be the case. We
can conclude that, if NBG is consistent, then so is ZF. In fact, if a con-
tradiction could be derived in ZF, the same proof would yield a con-
tradiction in NBG.

The presence of class variables in NBG seems to make it much more
powerful than ZF. At any rate, it is possible to express propositions in NBG
that either are impossible to formulate in ZF (such as the universal choice
axiom) or are much more unwieldy in ZF (such as transfinite induction
theorems). Nevertheless, it is a surprising fact that NBG is no riskier than
ZF. An even stronger result can be proved: NBG is a conservative extension
of ZF in the sense that, for any sentence 4 of the language of ZF, if Fnpg 4,
then Fzr # (see Novak (Gal) 1951; Rosser and Wang, 1950; Shoenfield,
1954). This implies that, if ZF is consistent, then NBG is consistent. Thus,
NBG is consistent if and only if ZF is consistent, and NBG seems to be no
stronger than ZF. However, NBG and ZF do differ with respect to the
existence of certain kinds of models (see Montague and Vaught, 1959).
Moreover, another important difference is that NBG is finitely axiomatiz-
able, whereas Montague (1961a) showed that ZF (as well as Z) is not finitely
axiomatizable. Montague (1961b) proved the stronger result that ZIF cannot
be obtained by adding a finite number of axioms to Z.

Exercise

4.94 Let H = | H, (see page 281).

(@) Verify that I} consists of all sets of rank less than o.

(b) If o is a limit ordinal >, @, show that H is a model for Z.

(c)® Find an instance of the axiom schema of replacement (R*) that is false

in H, . [Hint: Let #(x,y) be x€ o Ay=w+ox. Observe that
@ +o 0 Hy, , and o+, 0 = {v | (Fu)(v € 0 A HB(u,v))}]

(d) Show that, if ZF is consistent, then ZF is a proper extension of Z.

The theory of types (ST)

Russell’s paradox is based on the set K of all those sets that are not members
of themselves: K = {x | x¢ x}. Clearly, K € K if and only if K¢ K. In NBG
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this argument simply shows that K is a proper class, not a set. In ZF the
conclusion is just that there is no such set K.

Russell himself chose to find the source of his paradox elsewhere. He
maintained that x € x and x¢x should be considered ‘illegitimate’ ang
‘ungrammatical’ formulas and, therefore, that the definition of K makes 1o
sense. However, this alone is not adequate because paradoxes analogous to
Russell’s can be obtained from slightly more complicated circular prop-
erties, ike x e y Ay € x.

Exercise

4.95 (a) Derive a Russell-style paradox by usingx € y Ay € x.
(b)y Usex €y Ayt €2 Aooo AYu1 € Yy A Yy € X to obtain a paradox,
where n > 1.

Thus, to avoid paradoxes, one must forbid any kind of indirect circu-
larity. For this purpose, we can think of the universe divided up into types in
the following way. Start with a collection W of non-sets or individuals. The
elements of W are said to have type 0. Sets whose members are of type 0 are
the objects of type 1. Sets whose members are of typel will be the objects of
type 2, and so on.

Our language will have variables of different types. The superscript of a
variable will indicate its type. Thus, x¥ is a variable of type 0, 3! is a variable of
type 1, and so on. There are no variables other than type variables. The atomic
wfs are of the formx” € "', where # is one of the natural numbers 0, 1,2, ... .
The rest of the wfs are built up from the atomic wfs by means of logical
conneclives and quantifiers. Observe that —(x € x) and -(x € y Ay € x) are
not wfs.

The equality relation must be defined piecemeal, one definition for each
type.

DEFINITION

¥ =" for (V") (x" € 2! & y" € Z'*1) Notice that two objects are de-
fined to be equal if they belong to the same sets of the next higher type. The
basic property of equality is provided by the following axiom scheme.

ST1 (EXTENSIONALITY AXIOM)
(Vxn)(xn eywH <:}xn € Z"+l) :>yu+l :Zn+l

This asserts that two sets that have the same members must be equal. On the
other hand, observe that the property of having the same members could

-,
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pot be taken as a general definition of equality because it is not suitable for

objects of type 0.
Given any wf Z(x"), we wish to be able to define a set {x" | #(x")}.

ST2 (COMPREHENSION AXIOM SCHEME)

For any wf Z(x"), the following wf is an axiom:

Here, y"*! is any variable not free in #(x"). If we use the extensionality
axiom, then the set y"*! asserted to exist by axiom ST2 is unique and can be
denoted by {x" | Z(x")}.

Within this system, we can define the usual set-theoretic notions and
operations, as well as the natural numbers, ordinal numbers, cardinal
numbers and so on. However, these concepts are not unique but are re-
peated for each type (or, in some cases, for all but the first few types). For
example, the comprehension scheme provides a null set A™' =
{x" | x* #x"} for each non-zero type. But there is no null set per se. The
same thing happens for natural numbers. n type theory, the natural numbers
are not defined as they are in NBG. Here they are the finite cardinal
numbers. For example, the set of natural numbers of type 2 is the inter-
section of all sets containing {A'} and closed under the following successor
operation: the successor S(37) of a set y* is {vo'|(Fu)(F) (! €
ALt At = ! U{z°})}. Then, among the natural numbers of type 2,
we have 0 = {A'}, 1 = S(0), 2 = S(1), and so on. Here, the numerals 0, 1, 2,
... should really have a superscript ? to indicate their type, but the super-
scripts were omitted for the sake of legibility. Note that 0 is the set of all sets
of type 1 that contain no elements, 1 is the set of all sets of type 1 that
contain one element, 2 is the set of all sets of type 1 that contain two
elements, and so on.

This repetition of the same notion in different types makes it somewhat
inconvenient for mathematicians to work within a type theory. Moreover, it
is easy to show that the existence of an infinite set cannot be proved from the
extensionality and comprehension schemas.! To see this, consider the
‘model’ in which each variable of type » ranges over the sets of rank less
than or equal to n 4, 1. (There is nothing wrong about assigning overlap-
ping ranges to variables of different types.)

We shall assume an axiom that guarantees the existence of an infinite set.
As a preliminary, we shall adopt the usual definition {{x"}, {x",)"}} of the
ordered pair: (x",y"), where {x",)"} stands for {#" |v" =x" V" ="}

tThis fact seemed to undermine Russell’s doctrine of logicism, according to
which all of mathematics could be reduced to basic axioms that were of an essentially
logical character. An axiom of infinity could not be thought of as a logical truth.
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Notice that {x",y") is of type n + 2. Hence, a binary relation on a set 4, being
a set of ordered pairs of elements of A, will have type 2 greater than the type
of A. In particular, a binary relation on the universe V! = {x0 | 20 = 2 of
all objects of type 0 will be a set of type 3.

ST3 (AXIOM OF INFINITY)

(AY([BLY YO, ) € xH]A
(Vi YVOY (o) (0, °) ¢ P A [, 1) e P A (0 wP) e X =
10, w"y € ) A [0, % € 2 = (FO)((P,20) € X))

This asserts that there is a non-empty irreflexive, transitive binary relation x3
on V! such that every member of the range of x* also belongs to the domain
of x3. Since no such relation exists on a finite set, ! must be infinite.

The system based on ST1- ST3 is called the simple theory of types and is
denoted ST. Because of its somewhat complex notation and the repetition of
concepts at all (or, in some cases, almost all) type levels, ST is not generally
used as a foundation of mathematics and is not the subject of much con-
temporary research. Suggestions by Turing (1948) to make type theory more
usable have been largely ignored.

With ST we can associate a first-order theory ST*. The non-logical
constants of ST* are € and monadic predicates 7, for each natural number
n. We then translate any wtf # of ST into ST” by replacing subformulas
(vx")% (x") by (¥x)(Tu(x) = €(x")) and, finally, if y/!,... y/* are the free
variables of 4, prefixing to the result 7;,()1) A... AT, (3x) = and changing
each y/ into y;. In a rigorous presentation, we would have to specify clearly
that the replacements are made by proceeding from smaller to larger sub-
formulas and that the variables x, y;, . . ., y; are new variables. The axioms of
ST* are the translations of the axioms of ST. Any theorem of ST translates
into a theorem of ST*.

Exercise

4.96 Exhibit a model of ST* within NBG.

By virtue of Exercise 4.96, NBG (or ZF) is stronger than ST: (1) any
theorem of ST can be translated into a corresponding theorem of NBG; and
(2) if NBG is consistent, so is ST.!

To provide a type theory that is easier to work with, one can add axioms
that impose additional structure on the set V! of objects of type 0. For

TA stronger result was proved by John Kemeny (1949) by means of a truth
definition within Z: if Z is consistent, so is ST.

N
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example, Peano’s axioms for the natural numbers were adopted at level 0 in
Godel’s system P, for which he originally proved his famous incompleteness
theorem (see Godel, 1931).

In Principia Mathematica (1910-1913), the three-volume work by Alfred
North Whitehead and Bertrand Russell, there is a theory of types that is
further complicated by an additional hierarchy of orders. This hierarchy was
introduced so that the comprehension scheme could be suitably restricted in
order not to generate an impredicatively defined set, that is, a set A defined by
a formula in which some quantified variable ranges over a set that turns out
to contain the set 4 itself. Along with the mathematician Henri Poincare,
Whitehead and Russell believed impredicatively defined sets to be the root
of all evil. However, such concepts are required in analysis (for example, in
the proof that any non-empty set of real numbers that is bounded above has
a least upper bound). Principia Mathematica had to add the so-called axiom
of reducibility to overcome the order restrictions imposed on the compre-
hension scheme. The Whitehead—Russell system without the axiom of re-
ducibility is called ramified type theory, it is mathematically weak but is of
interest to those who wish an extreme constructivist approach to mathe-
matics. The axiom of reducibility vitiates the effect of the order hierarchy;
therefore, it is much simpler to drop the notion of order and the axiom of
reducibility. The result is the simple theory of types ST, which we have
described above.

[n ST, the types are natural numbers. For a smoother presentation, some
logicians allow a larger set of types, including types for relations and/or
functions defined on objects taken from previously defined types. Such a
system may be found in Church (1940).

Principia Mathematica must be read critically; for example, it often
overlooks the distinction between a formal theory and its metalanguage.
The idea of a simple theory of types goes back to Ramsey (1925) and,
independently, to Chwistek (1924-25). Discussions of type theory are found
in Andrews (1986), Hatcher (1982) and Quine (1963).

Quine’s theories NF and ML

Quine (1937) invented a type theory that was designed to do away with some
of the unpleasant aspects of type theory while keeping the essential idea of
the comprehension axiom ST2. Quine’s theory NF (New Foundations) uses
only one kind of variable x,y,z,... and one binary predicate letter €.
Equality is defined as in type theory: x = y stands for (Vz)(x € z < y € z).
The first axiom is familiar:
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NF1 (EXTENSIONALITY)

(Vo)zexwzey)=x=y

In order to formulate the comprehension axiom, we introduce the notiop
of stratification. A wi 2 1s said to be stratified if one can assign integers to
the variables of # so that: (1) all occurrences of the same free variable are
assigned the same integer; (2) all bound occurrences of a variable that are
bound by the same quantifier must be assigned the same integer; and (3) for
every subformula x € y of 4, the integer assigned to y is | greater than the
integer assigned to x.

Examples
1. (Iy)(x ey Ay €2) Vu € x is stratified by virtue of the assignment indj-
cated below by superscripts:

@HHE €yt nyt ey vl ex!

2. (I)(x € y)) A (Fy) (¥ € x) is stratified as follows:
(B e N A GBI ex')
Notice that the ys in the second conjunct do not have to have the same
integers assigned o them as the ys in the first conjunct.
3. x € yVy € x is not stratified. If x is assigned an integer #», then the first y
must be assigned n 4 1 and the second y must be assigned n — 1, con-

tradicting (1).

NF2 (COMPREHENSION)

For any stratified wf 2(x), .
(I (W) x € y <> #(x))

is an axiom. (Here, y is assumed to be the first variable not free in #(x).)
Although NF?2 is an axiom scheme, it turns out that NF is finitely axi-
omatizable (Hailperin, 1944).

Exercise

4.97 Prove that equality could have been defined as follows: x =y for
(Vz)(x € z = y € z) (More precisely, in the presence of NF2, this definition is
equivalent to the original one.)

The theory of natural numbers, ordinal numbers and cardinal numbers is
developed in much the same way as in type theory, except that there is no
longer a multiplicity of similar concepts. There is a unique empty set
A = {x|x# x} and a unique universal set ¥ = {x | x = x}. We can easily
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prove V € V, which immediately distinguishes NF from type theory (and
from NBG, MK and ZF).

The usual argument for Russell’s paradox does not hold in NF, since
x ¢ x is not stratified. Almost all of standard set theory and mathematics is
derivable in NF; this is done in full detail in Rosser (1953). However, NF
has some very strange properties. First of all, the usual proof of Cantor’s
theorem, 4 < #(A), does not go through in NF; at a key step in the proof, a
set that is needed is not available because its defining condition is not
stratified. The apparent unavailability of Cantor’s theorem has the desirable
effect of undermining the usual proof of Cantor’s paradox. If we could
prove A < P(4), then, since Z(V) =V, we could obtain a contradiction
from V < Z(V). In NF, the standard proof of Cantor’s theorem does yield
USC(4) < #(A), where USC(4) stands for {x | Gu)(u € AAx = {u})}. If
we let 4 =V, we conclude that USC(V) < V. Thus, V has the peculiar
property that it is not equinumerous with the set of all unit sets of its
elements. In NBG, the function f, defined by f(i) = {u} for all « in 4,
establishes a one—-one correspondence between 4 and USC(A4) for any set 4.
However, the defining condition for f is not stratified, so that f may not
exist in NF. If f does exist, 4 is said to be strongly Cantorian.

Other surprising properties of NF are the following.

. The axiom of choice is disprovable in NF (Specker, 1953).

2. Any model for N must be non-standard in the sense that a well-ordering
of the finite cardinals or of the ordinals of the model is not possible in the
metalanguage (Rosser and Wang, 1950).

3. The axiom of infinity is provable in NF (Specker, 1953).

(S

Although property 3 would ordinarily be thought of as a great advan-
tage, the fact of the provability of an axiom of infinity appeared to many
logicians to be too strong a result. If thar can be proved, then probably
anything can be proved, that is, NF is likely to be inconsistent. In addition,
the disprovability of the axiom of choice seems to make NF a poor choice
for practising mathematicians. However, if we restrict attention to so-called
Cantorian sets, sets 4 for which 4 and USC(4) are equinumerous, then it
might be consistent to assume the axiom of choice for Cantorian sets and to
do mathematics within the universe of Cantorian sets.

NF has another atfractive feature. A substantial part of category theory
(see MacLane, 1971) can be developed in a straightforward way in NF,
whereas this is not possible in ZF, NBG or MK. Since category theory has
become an important branch of mathematics, this is a distinct advantage for
NF,

If the system obtained from NF by assuming the existence of an inac-
cessible ordinal is consistent, then ZF is consistent (see Orey, 1956a; Collins
1955). If we add to NF the assumption of the existence of an infinite strongly
Cantorian set, then Zermelo’s set theory Z is consistent (see Rosser, 1954).
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The question of whether the consistency of ZF implies the consistency of N
is still open (as is the question of the reverse implication).

Let ST~ be the simple theory of types ST without the axiom of infinity,
Given any closed wf # of ST, let " denote the result of adding 1 to the
types of all variables in #. Let SP denote the theory obtained from ST- by
adding as axioms the wis # < # for all closed wfs #. Specker (1958; 1962)
proved that NF is consistent if and only if SP is consistent.

Let NFU denote the theory obtained from NF by restricting the ext.
ensionality axiom to non-empty sets:

NFI* (Fu(uex)rn(V2)(zeEx S zEY) =K =Y

Jensen (1968-69) proved that NFU is consistent if and only if ST~ is con-
sistent, and the equiconsistency continues to hold when both theories are
supplemented by the axiom of infinity or by axioms of infinity and choice,

Discussions of NF may be found in Hatcher (1982) and Quine (1963).
Forster (1983) gives a survey of more recent results.

Quine also proposed a system ML that is formally related to NF in much
the same way that MK is related to ZF. The variables are capital italic
letters X,Y,Z,...; these variables are called class variables. We define
M(X),X isa set,! by (AY)(X € Y), and we introduce lower-case italic letters
x,¥,2,...asvariables restricted to sets. Equality is defined as in NBG: X = ¥
for (V2)(7Z € X & Z € Y). Then we introduce an axiom of equality:

MLL: X=YNXe€eZ=>YecZ

There is an unrestricted comprehension axiom scheme:
ML2: (AY)(¥x)(x € ¥ & F(x))

where Z(x) is any wf of ML. Finally, we wish to introduce an axiom that has
the same effect as the comprehension axiom scheme NF2:

ML3:  (Vu)... (V1) (32} (Vx)(x € z & #(x))

where %(x) is any stratified wf whose free variables are x,y,...,y,(n > 0)
and whose quantifiers are set quantifiers.

All theorems of NF are provable in ML. Hence, if ML is consistent, so is
NF. The converse has been proved by Wang (1950). In fact, any closed wf of
NF provable in ML is already provable in NT-.

ML has the same advantages over NF that MK and NBG have over ZF:
a greater ease and power of expression. Moreover, the natural numbers of
ML behave much better than those of NF; the principle of mathematical
induction can be proved in full generality in ML.

tQuine uses the word ‘element’ instead of ‘set’.
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The prime source for ML is Quine (1951).7 Consult also Quine (1963) and
Fraenkel, Bar-Hillel and Lévy (1973).

Set theory with urelements

The theories NBG, MK, ZF, NF and ML do not allow for objects that are
not sets or classes. This is all well and good for mathematicians, since only
sets or classes seem to be needed for dealing with mathematical concepts and
problems. However, if set theory is to be a part of a more inclusive theory
having to do with the natural or social sciences, we must permit reference to
things like electrons, molecules, people, companies, etc., and to sets and
classes that contain such things. Things that are not sets or classes are
sometimes called wurelements} We shall sketch a theory UR similar to NBG
that allows for the existence of urelements.® Like NBG, UR will have a finite
number of axioms.

The variables of UR will be the lower-case Latin boldface letters
X1, X2, ... . (As usual, let us use x,y,z, ... to refer to arbitrary variables.) In
addition to the binary predicate letter 43 there will be a monadic predicate
letter A]. We abbreviate 43(x,y) by x € y,~43(x,y) by x ¢ y, and 4}(x) by
Cls (x). (Read ‘Cls(x)’ as “x is a class’.) To bring our notation into line with
that of NBG, we shall use capital Latin letters as restricted variables for
classes. Thus, (VX)Z(X) stands for (vx) (Cls (x) = #(x)), and (AX)Z#(X)
stands for (Ix) (Cls(x) A #(x)). Let M(x) stand for Cls(x) A (Jy(x € y), and
read ‘M(x) as ‘x is a set’. As in NBG, use lower-case Latin letters as
restricted variables for sets. Thus, (Vx)Z(x) stands for (Vx) (M(x) = #(x)),
and (3x)%(x) stands for (Ix) (M(x) AZ(x)). Let Pr(x) stand for Cls(x) A
—-M(x), and read ‘Pr(x)’ as ‘x is a proper class’. Introduce Ur(x) as an
abbreviation for —Cls(x), and read ‘Ur(x)’ as ‘x is an urelement’. Thus, the
domain of any model for UR will be divided into two disjoint parts con-
sisting of the classes and the urelements, and the classes are divided into sets
and proper classes. Let EI(x) stand for M(x) V Ur(x), and read ‘El(x)’ as x is
an element’. In our intended interpretation, sets and urelements are the
objects that are elements (i.e., members) of classes.

tQuine’s earlier version of ML, published in 1940, was proved inconsistent by
Rosser (1942). The present version is due to Wang (1950).

Ur is a German prefix meaning primitive, original or earliest. The words
‘individual’ and ‘atom’ are sometimes used as synonyms for ‘urelement’.

SZermelo’s 1908 axiomatization permitted urelements. Fraenkel was among the
first to draw attention to the fact that urelements are not necessary for mathematical
purposes (see Fraenkel, 1928, pp. 355f). Von Neumann’s (1925; 1928) axiom systems
excluded urelements.
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Exercise

4.98 Prove: Fur (Vx)(El(x) < —Pr(x)).

We shall define equality in a different way for classes and urelemeptg

DEFINITION x =y is an abbreviation for:

[Cls(x) A Cls(y) A (V2)(z € x ez€ NIVUx) AU AV (x €z ye 7))

Exercise

4.99 Prove :Fyr (Vx)(x = x).

AXIOM URI1

(Vx)(Ur(x) => (W) (y ¢ x)]

Thus, urelements have ne members.

Exercise

4.100 Prove: Fyr (VX)(Vy)(x € y = Cls(y) A EI(x)).

AXIOM UR2
(VXYVY)VZ)(X =Y AX €Z= ¥ €Z)
Exercise
4,101 Show:
(@ Fur (W(W)x=y=> Vz)(zex s zcy))
(b) Fur (W) (Wy)x=y= (Vz)(x €z & yE€17))

(c)
(d)

()

Fur (Vx)(VY)(x =y = [Cls(x) & Cls(y)] A [Ur(x) < Ur(y)]A

M(x) & M)

Fur (VX)(VY)[x =y = (2(x,X) = H(x,v))], where Z(x,y) arises from
#(x,x) by replacing some, but not necessarily all, free occurrences of x
by y, with the proviso that y is free for x in %(x, x).

UR is a first-order theory with equality (with respect to the given
definition of equality).
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;xIéM UR3 (NULL SET)
(D) (V¥ )}y ¢ x)

This tell us that there is a set that has no members. Of course, all urelements

jso have no elements.
[ &3

fxercise

4102 Show:
For (Fix)(¥¥)(¥ £ x). On the basis of this exercise we can introduce a new

individual constant ) satisfying the condition M(() A (Vy)(y ¢ 0).

AXIOM UR4 (PAIRING)

\ (Vx)(VY)(El(x) AElYy) = @z)(Vu)m ez u=xVu=Yy])
Exercise

4112 Prove: Fyr (VX)(VY)(Fiz) ([El(x) AE(y) A (Vu)(u€z & u=xVu
=¥V [(SEI(x) V =EL(y)) Az = 0]

On the basis of this exercise we can introduce the unordered pair notation
{x,y}. When X and y are elements, {x,y} is the set that has x and y as its
+only members; when x or y is a proper class, {x, y} is arbitrarily chosen to be
‘the empty set ). As usual, the singleton notation {x} stands for {x,x}.

DEFINITION (ORDERED PAIR)

Let (x,y) stand for {{x}, {x,y}}. Asin the proof of Proposition 4.3, one can
-show that, for any elements X,y,u,v,(X,y) = (u,v) & [x =uAy=v]. Or-
~dered n-tuples can be defined as in NBG.

The class existence axioms B1-B7 of NBG have to be altered slightly by
sometimes replacing universal quantification with respect to sets by uni-
versal quantification with respect to elements.

AXTOMS OF CLASS EXISTENCE

(URS) (AX)(Vu)(v¥)(El(u) AEl(V) = [{u,v) €X & u€v])
(UR6) (VXYVY)(AZ)(Vu)ueZ cue X AueY)

(UR7) (VX)(3Z)(Vu)(El(w) = [u € Z & u¢ X))

(UR8) (VX)(FZ)(Vu)(El(u) = (u € Z < (Iv)({u,¥) € X))
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(UR9) (VX)(3Z)(Vu)(W¥)(El(u) A EL(v) = ((u,V) € Z & u € X))
(UR10) (VX)(32)(Vu) (v) (vw) (El(u) A El(v)

A Bl(w) = [{u,v,w) € Z & (v,w,u) € X])
(URIT) (VX)(32)(¥u)(v¥) (Yw)(El(u) A E1(v) A Ei(w)

= [(u,v,w) € Z & (u,w,V) € X])

As in NBG, we can prove the existence of the intersection, complemen;
and union of any classes, and the existence of the class I of all elementsg, ﬁm
in UR we also need an axiom to ensure the existence of the class 15, 0(;5“
sets, or, equivalently, of the class ¥, of all urelements. )

AXIOM URI1Z

(AX)(Yu)(u € X & Ur(u))

This yields the existence of ¥ and implies the existence of ¥y, that g

(2X)(Vu)(u € X & M(u)). The dass ¥y of all elements is then the union

Vir U T, Note that this axiom also yields (AX)(Vu)(El(w) = ue X &

Cls(u)]), since T can be taken as the required class X. ‘
As in NBG, we can prove a general class existence theorem.

Exercise

4.104. Let ¢o(X1,...,Xn,¥Y1,---, Y, be a formula in which guantification.
takes place only with respect to elements, that is, any subformula (Vu)% has
the form (Vu)(El(u) = ¥). Then

Fur (3Z)(¥%1) . . (V&) (El(x1) A ... ABI(X,) =
[(xly---axn) EZ@@(Xl:---:XIHYD-' -:Ym)])'

The sum set, power set, replacement and infinity axioms can be translated
into UR. )

AXIOM URI13

(V%) (3y) (Vu)(u € y & (FV)(u Ev Av €x))

AXIOM UR14

(V) (H)(VMu)(u €y S uCx)

where u C x stands for M{u) A M(x) A (V¥)(v €Eu= v € x).
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AXIOM URIS

(VY)(¥x)(Un(Y) = (B)(Va)[u € y ¢ (F¥)({v,u) € ¥ Av €x)])

where Un(z) stands for (Vx)(Vx2)(Vx3)[El(x;) A El(x3) A El(x3) = ({x1,X%2)
€ Z A (X1,X3)Z = X3 = X3)]

AXIOM UR16

()0 € x A (Vu)(u € x = uU {u} € x))

From this point on, the standard development of set theory including the
‘theory of ordinal numbers, can be imitated in UR.

PROPOSITION 4.49

NBG is a subtheory of UR.

Proof

It is easy to verify that every axiom of NBG is provable in UR, provided
that we take the variables of NBG as restricted variables for ‘classes’ in UR.
The restricted variables for sets in NBG become restricted variables for ‘sets’

in UR.T

PROPOSITION 4.50

UR is consistent if and only if NBG is consistent.

Proof

By Proposition 4.49, if UR is consistent, NBG is consistent. For the con-
verse, note that any model of NBG yields a model of UR in which there are
no urelements. In fact, if we replace ‘Cls(x)’ by the NBG formula ‘x = x’,
then the axioms of UR become theorems of NBG. Hence, a proof of a
contradiction in UR would produce a proof of a contradiction in NBG.

The axiom of regularity (Reg) takes the following form in UR.

fIn fact, a formula (Vx)#(x) in NBG is an abbreviation in NBG for
(VXWOY)X € Y) = #(X)). The latter formula is equivalent in UR to
(Vx)(M(x) = #(x)), which is abbreviated as (Vx)%(x) in UR.
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.

(Regyur) (VX)X # 0 = (Fu){u e X A=(Fv)(v €X Av eu)))

It is clear that an analogue of Proposition 4.49 holds: UR + (Regyy) is 4y,
extension of NBG + (Reg). Likewise, the argument of Proposition 4'°50
shows the equiconsistency of NBG + (Reg) and UR + (Regyg).

Since definition by transfinite induction (Proposition 4.14(b)) holds jy-
UR, the cumulative hierarchy can be defined

Y =0
V(o) = P(F'e)
Lim(d) = WA= | ] ¥B
f<ad

and the union H = | J(W*“‘On) is the class of "pure’ sets in UR and forms a
model of NBG + (Reg). In NBG, by Proposition 4.45, (Reg) is equivalent
to ¥ = H, where V is the class of all sets.

If the class ¥ of urelements is a set, then we can define the following by
transfinite induction:

B = er
EX() = 2(2'a)
Lim(4) =>E2=| | 28
P<od

The union Hy, = |J(E*“On) is a model of UR + (Regyy), and (Regyyg) holds
in UR if and only if H,, is the class ¥ of all elements.

If the class I, of urelements is a proper class, it is possible to obtain an
analogue of Hy; in the following way. For any set x whose members are
urelements and any ordinal y, we can define a2 function' E! by transfinite
induction up to y:

B0 =x
Sr(of) = P(E? ‘o) ifad' <,y
Lim(4) = =i = | =B if A <o 7
JiE

Let A, be the class of all elements v such that, for some x and y, v is in the
range of ZX. Then H; determines a model of UR + (Regyg), and, in UR,
(Regy ) holds if and only if H, is the class If of all elements.

The equiconsistency of NBG and UR can be strengthened to show the
following result.

PROPOSITION 4.51

If NBG is consistent, then so is the theory UR + (Reg,,) + ‘¥, is denu-
merable’.
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proof

within NBG one can define a model with domain w that is a model of NBG
without the axiom of infinity. The idea is due to Ackermann (1937). For any
 and m in o, define m € nto mean that 2” occurs as a term in the expansion
of n as a sum of different powers of 2.1 If we take ‘4-sets’ to be members of w
fz;nd ‘proper A-classes’ to be infinite subsets of , it is easy to verify all
axioms of NBG + (Reg) except the axiom of infinity.? (See Bernays (1954,
fpp. 81-82) for a sketch of the argument.) Then we change the ‘membership’
felation on w by defining m € n to mean that 2" en. Now we define a *set’ to
‘be either 0 or a member # of w for which there is some m in w such that
'm €; n. We take the ‘urelements’ to be the members of © that are not ‘sets’.
For example, 8 is an ‘urelement’, since 8 = 23 and 3 is not a power of 2.
Other small ‘urelements’ are 1, 9, 32, 33 and 40. In general, the ‘urelements’
are sums of one or more distinct powers 2%, where k is not a power of 2. The
‘proper classes’” are to be the infinite subsets of w. Essentially the same
argument as for Ackermann’s model shows that this yields a model .4 of all
axioms of UR + (Regyg) except the axiom of infinity. Now we want to
extend .4 to a model of UR. First, let r stand for the set of all finite subsets
of o that are not members of w, and then define by transfinite induction the
following function ©.
b=
O () = #(O'a) —r
Lim(1) = 04 = | | @
f<od

Let Hy = | J(©“On). Note that Hg contains no members of r. Let us define a
membership relation €* on . For any members x and y of Hp, define
X €* y to mean that either x and y are inmw and x €; y, or y¢ w and x € y.
The ‘urelements’ will be those members of  that are the ‘urelements’ of .//.
The ‘sets’ will be the ordinary sets of Hg that are not ‘urelements’, and the
‘proper classes’ will be the proper classes of NBG that are subclasses of Hp.
It now requires a long careful argument to show that we have a model of
UR + (Regyy) in which the class of urelements is a denumerable set.

A uniform method for constructing a model of UR + (Regy) in which
the class of urelements is a set of arbitrary size may be found in Brunner
(1990, p.65).% If AC holds in the underlying theory, it holds in the model as
well.

TThis is equivalent to the statement that the greatest integer k such that k- 2" <n
is odd.

tFor distinct natural numbers #y,. .., n;, the role of the finite set {ny,...,m} is
played by the natural number 2% 4 ... 4 2™,

YBrunner attributes the idea behind the construction to J. Truss.
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The most important application of axiomatic set theories with urelements-
used to be the construction of independence proofs. The first independencg®
proof for the axiom of choice, given by Fraenkel (1922b), depended esgep..
tially on the existence of a denumerable set of urelements. More precise-
formulations and further developments may be found in Lindenbaum ang
Mostowski (1938) and Mostowski (1939).7 Translations of these proofs into
set theories without urelements were found by Shoenfield (1955), Mendelsop
(1956b) and Specker (1957), but only at the expense of weakening the axjor,
of regularity. This shortcoming was overcome by the forcing method of
Cohen (1966), which applies to theories with (Reg) and without urelements

TFor more information about these methods, see Levy (1965), Pincus (1972),
Howard (1973) and Brunner (1990).

bl
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An algorithim is a computational method for solving each and every problem
from a large class of problems. The computation has to be precisely specified
so that it requires no ingenuity for its performance. The familiar technique
for adding integers is an algorithm, as are the techniques for computing the
other arithmetic operations of subtraction, multiplication and division. The
truth table procedure to determine whether a statement form is a tautology
is an algorithm within logic itself.

It is often easy to see that a specified procedure yields a desired algorithm.
[n recent years, however, many classes of problems have been proved not to
have an algorithmic solution. Examples are:

1. Is a given wf of quantification theory logically valid?

2. Is a given wf of formal number theory S true (in the standard interpre-

tation)?

Is a given wf of S provable in S?

4. Does a given polynomial f(x,...,x,) with integral coefficients have
integral roots (Hilbert’s tenth problem)?

[F%)]

In order to prove rigorously that there does not exist an algorithm for
answering such questions, it is necessary to supply a precise definition of the
notion of algorithm.

Various proposals for such a definition were independently offered in
1936 by Church (1936b), Turing (1936-37), and Post (1936). All of these
definitions, as well as others proposed later, have been shown to be equiv-
alent. Moreover, it is intuitively clear that every procedure given by these
definitions is an algorithm. On the other hand, every known algorithm falls
under these definitions. Our exposition will use Turing’s ideas.

First of all, the objects with which an algorithm deals may be assumed to
be the symbols of a finite alphabet A = {ag,a1,...,a,}. Non-symbolic
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Figure 5.1

objects can be represented by symbols, and languages actually used for
computation require only finitely many symbols.!

A finite sequence of symbols of a language A is called a word of A, Tt jg
convenient to admit an empty word A consisting of no symbols at all. If p.
and Q are words, then PQ denotes the word obtained by writing Q to the.
right of P. For any positive integer k, P shall stand for the word made up 0[)
k consecutive occurrences of P.

The work space of an algorithm often consists of a piece of paper or 5
blackboard. However, we shall make the simplifying assumption that ajj
calculations take place on a tape that is divided into squares (see Figure 5.1),
The tape is potentially infinite in both directions in the sense that, although
at any moment it is finite, more squares always can be added to the right-
and left-hand ends of the tape. Each square contains at most one symbol of
the alphabet A. At any one time, only a finite number of squares contain
symbols, while the rest are blank. The symbol ag will be reserved for the
content of a blank square. ( In ordinary language, a space is sometimes used
for the same purpose.) Thus, the condition of the tape at a given moment
can be represented by a word of A; the tape in Figure 5.1 is apapasa;. Our
use of a one-dimensional tape does not limit the algorithms that can be
handled; the information in a two-dimensional array can be encoded as a
finite sequence.?

Our computing device, which we shall refer to as a Turing machine, works
in the following way. The machine operates at discrete moments of time, not
continuously. It has a reading head which, at any moment, will be scanning
one square of the tape. (Observation of a larger domain could be reduced to
consecutive observations of individual squares.) The device then reacts in
any of four different ways:

1. It prints a symbol in the square, erasing the previous symbol.
2. It moves to the next square to the right.

3. It moves to the next square to the left.

4. It stops.

TIf a language has a denumerable alphabet {ap, ay, ...}, then we can replace it by
the alphabet {b,x}. Each symbol a, of the old alphabet can be replaced by the
expression bx - - - %, consisting of b followed by # occurrences of .

'This follows from the fact that there is an effective one—one correspondence
between the set of pairs of natural numbers and the set of natural numbers. For the

details, see pp. 1834.
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“What the machine does depends not only on the observed symbol but also
_on the internal state of the machine at that moment (which, in turn, depends
Zon the previous steps of the computation and on the structure of the ma-
schine). We shall make the plausible assumption that a machine has only a
finite number of internal states {qq,q;,...,d,}. The machine will always
spegin its operation in the initial state qy.

A step in a computation corresponds to a quadruple of one of the fol-
‘lowing three forms: (1) q;a;24q,; (2) q;2:Rq,; (3) q;a;Lq,. In each case, g; is
sthe present internal state, a; is the symbol being observed, and g, is the
jnternal state after the step. In form (1), the machine erases a; and prints a;.
In form (2), the reading head of the machine moves one square to the right,
and, in form (3), it moves one square to the left. We shall indicate later how
the machine is told to stop.

Now we can give a precise definition. A Turing machine with an alphabet
A of tape symbols {ap,ay, .. .,a,} and with internal states {qy,q,,-..,q,}is
a finite set 7 of quadruples of the forms (1) q;a;a:q,, (2) g;a;Rq,, and (3)
qa:Ld, such that no two quadruples of 7 have the same first two symbols.

Thus, for fixed q,a;, no two quadruples of types (1), (2) and (3) are in 7.
This condition ensures that there is never a situation in which the machine is
instructed to perform two contradictory operations. ‘

The Turing machine 9 operates in accordance with its list of quadruples.
This can be made precise in the following manner.

By a tape description of 9 we mean a word such that: (1) all symbols in
the word but one are tape symbols; (2) the only symbol that is not a tape
symbol is an internal state q;; and (3) g; is not the last symbol of the word.

A tape description describes the condition of the machine and the tape at
a given moment. When read from left to right, the tape symbols in the
description represent the symbols on the tape at that moment, and the tape
symbol that occurs immediately to the right of q; in the tape description
represents the symbol being scanned by the reading head at that moment. If
the internal state q; is the initial state qg, then the tape description is called
an initial tape description.

Example
The tape description ajapq;apa;a; indicates that the machine is in the in-
ternal state gy, the tape is as shown in Figure 5.2, and the reading head is
scanning the square indicated by the arrow.

We say that J moves one tape description o into another one B (ab-
breviated a—;B) if and only if one of the following is true.

1. auis of the form Pq;a;Q, B is of the form Pq,a,Q, and q;a;a,q,.is one of the
quadruples of 7.1

THere and below, P and Q are arbitrary (possibly empty) words of the alphabet
of 7.
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2. wis of the form Pa,q;a,Q, B is of the form Pq,a,a;Q, and q;a;L.q, is one of
the quadruples of

3. ais of the form q;a,Q, B is of the form q,apa,;QQ, and q,a;Lq, is one of the
quadruples of 7.

4. ais of the form Pq;a;a,Q, P is of the form Pa,q,a;Q, and q;8;Rq, is one of
the quadruples of 9

5. a is of the form Pq;a;, p is of the form Pa;q,ay, and d;8;Rq, is one of the
quadruples of 7

According to our intuitive picture, ‘9 moves o into ” means that, if the
condition at a time ¢ of the Turing machine and tape is described by o, then
the condition at time ¢+ 1 is described by B. Notice that, by clause 3,
whenever the machine reaches the left-hand end of the tape and is ordered to
move left, a blank square is attached to the tape on the left; similarly, by
clause 5, a blank square is added on the right when the machine reaches the
right-hand end and has to move right.

We say that 7 stops at tape description o if and only if there is no tape
description 3 such that Ot—»B This happens when g;a; occurs in o but q;a; is
not the beginning of any quadruple of 7

A computation of F is a finite sequence of tape descriptions
o, - .., 0 (k > 0) such that the following conditions hold.

1. o is an initial tape description, that s, the internal state occurring in ois ¢,
2. Clj? Oli1 for 0<i< k
3. 9 stops at o.

This computation is said to begin at oy and end at oy. If there is a compu-
tation beginning at o, we say that 7 is applicable to ag.
The algorithm Alg, determined by 7 is defined as follows:

For any words P and Q of the alphabet A of 7, Alg,(P) = Q if and
only if there is a computation of J that begins with the tape de-
scription q,P and ends with a tape description of the form R;q;Ry,
where Q = R;R».

This means that, when .7 begins at the left-hand end of P and there is
nothing else on the tape, .7 stops with Q as the entire content of the tape.
Notice that Alg, need not be defined for certain words P. An algorithm
Alg, determined by a Turing machine .7 is said to be a Turing algorithm.

.
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Example
in any computation of the Turing machine .7 given by

do2oRdy, Goa1aoqs, Gpa2804y, - - - » Go&ad0
7 locates the first non-blank symbol (if any) at or to the right of the square
scanned at the beginning of the computation, erases that symbol, and then
stops. If there are only blank squares at or to the right of the initial square,
7 keeps on moving right for ever.

Let us now consider computations of number-theoretic functions. For
convenience, we sometimes will write | instead of a; and B instead of ay.
(Think of B as standing for ‘blank’.) For any natural number £, its tape
representation k will stand for the word |k+l, that is, the word consisting of
k+ 1 occurrences of |. Thus, 0 = |, 1 = ||,2 = |||, and so on. The reason why
we represent k by & + 1 occurrences of | instead of £ occurrences is that we
wish 0 to be a non-empty word, so that we will be aware of its presence. The
tape representation (kj,kz,...,k,) of an n-tuple of natural numbers
(k, k2, ..., k) is defined to be the word kB kB ---BFk,. For example,
(3,1,0,5) is |I[[BIBIBIII.

A Turing machine 7 will be thought of as computing the following
partial function f71 of one variable.!

fr(k) =m if and only if the following condition holds: Alg, (k) is

defined and Alg, (k) = Ey m Ea, where E; and E; are certain (possibly
empty) words consisting of only Bs (blanks).

The function fy is said to be Turing-computable. Thus, a one-place partial
function f is Turing-computable if and only if there is a Turing machine
such that f = f7 .

For each n > 1, a Turing machine 4 also computes a partial function
fon of n variables. For any natural numbers ki, . .., k;:

fralky, ..., k) = mif and only if the following condition holds:

Alg,((ki,k2,...,k,)) is defined and Algs((ki,ka,...,k,)) =E,m E,,
where E; and E; are certain (possibly empty) words consisting of only Bs
(blanks).

The partial function fg, is said to be Turing-computable. Thus, an n-place
partial function f 1s Turing-computable if and only if there is a Turing
machine 7 such that f = f7,.

Notice that, at the end of a computation of a value of a Turing-com-
putable function, only the value appears on the tape, aside from blank
squares at either or both ends, and the location of the reading head does not
maftter. Also observe that, whenever the function is not defined, either the

tRemember that a partial function may fail to be defined for some values of its
argument. Thus, a total function is considered to be a special case of a partial
function.
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Turing machine will never stop or, if it does stop, the resulting tape is not of
the appropriate form E; m E;.

Examples

1. Consider the Turing machine 7, with alphabet {B,|}, defined by
qolLa;,q;Blg,. 7 computes the successor  function N(x), singe
qok—;ql Bk—;qzk-{— 1, and J stops at qyk + 1. Hence N(x) is Turing-
computable.

2. The Turing machine 4 defined by

qo|Bdy; 91 BRay, 9o Blq,
computes the zero function Z(x). Given k on the tape, 9 moves right,
erasing all |s until it reaches a blank, which it changes to a|. So, 0 is the
final result. Thus, Z(x) is Turing-computable.
3. The addition function is computed by the Turing machine 7 defined by
the following seven quadruples:

do|Bdg, doBR4y, q;[Rqy, q;B|q,, 95|Rq,,q;BL[g3, q3|Bas
In fact, for any natural numbers m and n,

Ty » 41 m i+l m
Qo{m, n) = qq +1B|'+ ?QOB|'B| N ;,':’BQ1| Blnﬂ

m m+1 " mel_
- 2BlMq; Bl B|"q,][" >

F

?Br"|"+2q2B—;_+B|”H4'+lq3|B;_+B|"'+"+lq3BB = Bm + nq;BB

and Z stops at Bm + nq;BB.

Exercises

5.1 Show that the function U? such that U3(x;,x;) = x, is Turing-com-
putable.

5.2 (a) What function f(x1,x2,x3) is computed by the following Turing
machine?

doll91,91[{Bqg, qyBRqy, q; BRq;,
d;|Rqy,9,BRqj3, q3|Bqy, q4BRq;

(b) What function f(x) is computed by the following Turing machine?

do|Bgy, 91 BRq,, q;B|q;,

5.3 (a) State in plain language the operation of the Turing machine, de-
scribed in Example 3, for computing the addition function.

(b) Starting with the tape description qg||B||||, write the sequence of
tape descriptions that make up the computation by the addition machine of
Example 3.

5.4 What function f(x) is computed by the following Turing machine?
AT
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do|Rq;  q4|Rq,  qeBlqg
q1|Bg,  q4Blgs  qiBlg;
q,BRqg; g5 |LQS ds | Lq,;
qs3|Rqs  gsBLgg g:BRqg
q3;BRq, qg¢|lLgs  gs|Bgs

:55 Find a Turing machine that computes the function sg(x). (Recall that
-sg(0) = 0 and sg(x) = 1 for x > 0.)
5,6° Find Turing machines that compute the following functions.

(@ x-y (Remember that x=y=x—yifx >y, and x=y =0if x < y.)
(b) /2] (Recall that [x/2] is the greatest integer less than or equal to x/2.
Thus, [x/2] =x/2 if x is even, and [x/2] = (x — 1)/2 if x is odd.)

(c) x-y, the product of x and y.
5.7 If a function is Turing-computable, show that it is computable by
infinitely many different Turing machines.

5.2 DIAGRAMS

Many Turing machines that compute even relatively simple functions (like
multiplication) require a large number of quadruples. It is difficult and
tedious to construct such machines, and even more difficult to check that
they do the desired job. We shall introduce a pictorial technique for con-
structing Turing machines so that their operation is easier to comprehend.
The basic ideas and notation are due to Hermes (1965).

l.Let 7 ,...,9, be any Turing machines with alphabet A =
{ao, al, ... ,ak}.
2. Select a finite set of points in a plane. These points will be called vertices.
3. To each vertex attach the name of one of the machines 7 ,...,7,.
Copies of the same machine may be assigned to more than one vertex.
4, Connect some vertices to others by arrows. An arrow may go from a
vertex to itself. Each arrow is labelled with one of the numbers 0,1, ..., k.
No two arrows that emanate from the same vertex are allowed to have
the same label.

5. One vertex is enclosed in a circle and is called the initial vertex.

The resulting graph is called a diagram.

Example
See Figure 5.3.

We shall show that every diagram determines a Turing machine whose
operation can be described in the following manner. Given a tape and a
specific square on the tape, the Turing machine of the initial vertex V of the
diagram begins to operate, with its reading head scanning the specified
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Figure 5.3

square of the tape. If this machine finally stops and the square being scanneqd
at the end of the computation contains the symbol a;, then we look for an
arrow with label i emanating from the vertex V. If there is no such arrow
the computation stops. If there is such an arrow, it leads to a vertex to whicl;
another Turing machine has been assigned. Start that machine on the tape
produced by the previous computation, at the square that was being scan-
ned at the end of the computation. Repeat the same procedure that was just
performed, and keep on doing this until the machine stops. The resulting
tape is the output of the machine determined by the diagram. If the machine
never stops, then it is not applicable to the initial tape description.

The quadruples for this Turing machine can be specified in the following
way.

1. For each occurrence in the diagram of a machine 7, write its quadruples,
changing internal states so that no two machine occurrences have an
internal state in common. The initial vertex machine is not to be changed.
This retains g as the initial internal state of the machine assigned to the
initial vertex. For every other machine occurrence, the original initial
state qp has been changed to a ncw internal state.

2. If an occurrence of some % is connected by an arrow — 1o some 7, then,
for every (new) internal state q, of that occurrence of 4 such that no
(new) quadruple of 4 begins with q,a,, add the quadruple g,a,a,q,,
where q, is the (new) initial state for Z. (Step 2 ensures that, whenever 9
stops while scanning a,,.7 will begin operating.)

The following abbreviations are used in diagrams:

. 0 1 k
1. If one vertex is connected to another vertex by all arrows —, —,...,—,

we replace the arrows by one unlabelled arrow.

2. If one vertex is connected to another by all arrows except —, we replace
all the arrows by g

3. Let 719 standfor 91 — T, let 71,9 ,9 3stand for 91 — T2 — T3,
and soon. Let 72 be .7, let 73 be .97, and so forth.

4. If no vertex is circled, then the leftmost vertex is to be initial.

To construct diagrams, we need a few simple Turing machines as building
blocks.
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1. r (right machine). Let {ag,a,...,a;} be the alphabet. r consists of the
quadruples gpa;Rq; for all a;. This machine, which has k 4 1 quadruples,
moves one square to the right and then stops.

2.1 (left machine). Let {ag,ai,...,a;} be the alphabet. 1 consists of the
quadruples qpa;Lq; for all a;. This machine, which has &+ 1 quadruples,
moves one square to the left and then stops.

3. a; (constant machine) for the alphabet {ao,a,...,a;}. a; consists of the
quadruples qga;a;q; for all a;. This machine replaces the initial scanned
symbol by a; and then stops. In particular, ag erases the scanned symbol,
and a; prints |.

Examples of Machines Defined by Diagrams

1. P (Figure 5.4) finds the first blank to the right of the initially scanned
square. In an alphabet {ay, a;, ...,ax}, the quadruples for the machine P
are: qoa;Rq; for all a;, and q,a;a;q, for all a; # ay.

0

———-

Figure 5.4

2. A (Figure 5.5) finds the first blank to the left of the initially scanned
square.

* 0

Figure 5.5

Exercises

5.8 Describe the operations of the Turing machines p (Figure 5.6) and A
(Figure 5.7) and write the list of quadruples for each machine.

—

Figure 5.6
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0

L l —
Figure 5.7
5.9 Show that machine S in Figure 5.8 searches the tape for a non-blang

square. If there are such squares, S finds one and stops. Otherwise, S never
stops.

b l

0 0 0
r —» a;l —» ajpagr — aphag

L#: 0 l#: 0
pagh hagp
Figure 5.8
To describe some aspects of the operation of a Turing machine on part of

a tape, we introduce the following notation:

arbitrary symbol

B...B sequence of blanks

B... everything blank to the right

...B everything blank to the left

\WY non-empty word consisting of non-blanks
X WiBW:2B...W,(n > 1), a sequence of

nonempty words of non-blanks, separated
by blanks

Underlining will indicate the scanned symbol.

More Examples of Turing Machines Defined by Diagrams
3. Z (right-end machine). See Figure 5.9.

~XBB => ~ XBB
Squares on the rest of the tape are not affected. The same assumption is made
in similar places below. When the machine 2 begins on a square preceding a

sequence of one or more nonempty words, followed by at least two blank
squares, it moves right to the first of those blank squares and stops.

F0

—Pr—

0

Figure 5.9



T DIAGRAMS

315

4. & (left-end machine) See Figure 5.10.
BBX~ => BBX ~

%0

— Al |

0
Figure 5.10
5. T (left-translation machine) See Figure 5.11.1
~BWB = ~ WBB
This machine shifts the whole word W one square to the left.

Figure 5.11

6. o (shift machine). See Figure 5.12.
BW;BW;B = BW,B...B

In the indicated situation, W is erased and W5, is shifted leftward so that it
begins where W originally began.

Voso ]

Al i ﬂnT

Lo

T

Figure 5.12

7. C (clean-up machine) See Figure 5.13.
~ BBXBWB => ~ WB...B

"There is a separate arrow from r? to each of the groups on the right and a
separate arrow from each of these, except lag, back to r2.
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‘a0 |

Al — % rPo
lo
TAIT
Figure 5.13

8. K (word-copier) See Figure 5.14.
BWB...=> BWBWB...

P
0
a,P%a;A%a;
2
Ar “ :
3, P2a, Aay
Figure 5.14

9. K,, (n-shift copier) See Figure 5.15.
BW,BW, B...W,B... = BW,BW,_B...W,BW,B. ..

Prl
P g Aty
A'r

2y Pr=+1 ay An+l ay

N

Figure 5.15

Exercises

5.10. Find the number-theoretic function f(x) computed by each of the
following Turing machines.

(@ 1ay

(b) Figure 5.16

© PKAa;A(rag)’

5.11. Verify that the given functions are computed by the indicated Turing
machines.

.
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+ 0
Rl aray
Figure 5.16
(a) |x—y| (Figure 5.17)
1 0

agr — P?la,] — Aaq,

11

A?r
|

Figure 5.17

(b) x+ y PajA(rap)?
(© x-y (Figure 5.18)

I |

1 1
@ — lay(r?) — 13, RK¥

Jo o

Pra;rC r —lajA(ra)’P
t i
Figure 5.18

5.12. Draw diagrams for Turing machines that will compute the following
functions: (a) max(x, y) (b) min(x,y) (c) x=y (d) [x/2]

5.13. Prove that, for any Turing machine 7~ with alphabet {ay,...,a;}, there
is a diagram using the Turing machines r, I, ag, . . . ,ax that defines a Turing
machine % such that 7 and % have the same effect on all tapes. (In fact, &
can be defined so that, except for two additional trivial initial moves left and
right, it carries out the same computations as .7.)

5.3 PARTIAL RECURSIVE FUNCTIONS.
UNSOLVABLE PROBLEMS

Recall, from Section 3.3, that the recursive functions are obtained from the
initial functions (the zero function Z(x), the successor function N{x), and the
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projection functions UJ'(x1, ... ,%,)) by means of substitution, recursion ang
the restricted p-operator. Instead of the restricted p-operator, let us intrg.
duce the unrestricted p-operator:

Iff(xla o ,Jt'n) = ﬂy(g(xl, .- :xmy) = 0)
= the least y such that g(x|,...,x,,y} =0
then £ is said to arise from g by means of the unrestricted p-operator.

Notice that, for some xi, . .., x,, the value f(x;,...,x,) need not be defined-
this happens when there is no y such that g(x;,...,x,,y) = 0. ’

If we replace the restricted p-operator by the unrestricted p-operator in
the definition of the recursive functions, we obtain a definition of the partia}
recursive functions. In other words, the partial recursive functions are those
functions obtained from the initial functions by means of substitution, re-
cursion and the unrestricted p-operator.

Whereas all recursive functions are total functions, some partial recursiyve
functions will not be total functions. For example, py(x + y = 0) is defined
only when x = 0.

Since partial recursive functions may not be defined for certain arguments,
the definition of the unrestricted p-operator should be made more precise:

wlg(xy,...,xay) =0) =k means that, for 0<u <&,
g(x1,y ..., xa,u) is defined and g(x1,...,x,,u) # 0, and
glx1,. .., xmy) = 0.
Observe that, if R{xi,...,x,,¥y) is a recursive relation, then

W (R(x1,...,x,,»)) can be considered an admissible application of the un-

restricted p-operator. In fact, py(R(x1,...,%,,»)) = wy(Crx1,...,x4,)
= 0), where Cy is the characteristic function of R. Since R is a recursive
relation, Cy is, by definition, a recursive function.

Exercises

5.14 Describe the following partial recursive functions.

() wx+y+1=0)
(®) w(y>x)
© w+x=x)

5.15 Show that all recursive functions are partial recursive.
5.16 Show that every partial function whose domain is a finite set of natural
numbers is a partial recursive function.

It is easy to convince ourselves that every partial recursive function
f(x1,...,x,) is computable, in the sense that there is an algorithm that
computes f{x,,...,x,) when f(xi,...,x,) is defined and gives no result when
f(x1,...,x,) is undefined. This property is clear for the initial functions and
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is inherited under the operations of substitution, recursion and the unre-
stricted p-operator.

It turns out that the partial recursive functions are identical with the
Turing-computable functions. To show this, it is convenient to introduce a
different kind of Turing-computablility.

A partial number-theoretic function f(x,,...,x,) is said to be standard
Turing-computable if there is a Turing machine .9~ such that, for any natural
numbers ki, ...,k,, the following holds.

Let B% BB . .. Bk, be called the argument strip.! Notice that the ar-
gument strip is B (&1, .. .,%,). Take any tape containing the argument
strip but without any symbols to the right of it. (It may contain
symbols to the left.) The machine 9 is begun on this tape with its
reading head scanning the first | of %;. Then:

[—

. 7 stops if and only if f(ki,...,k,) is defined.
2. If 7 stops, the tape contains the same argument strip as before, followed
by Bf (k1,...k,). Thus, the final tape contains

BkiBk;B... Bk, Bf (k1. ., kn)
Moreover:

3. The reading head is scanning the first | of f(ki, ..., k).

4. There is no non-blank symbol on the tape to the right of f(ki,..., k).

5. During the entire computation, the reading head never scans any square
to the left of the argument strip.

For the sake of brevity, we shall say that the machine 9~ described above
ST-computes the function f(xi,...,x,).

Thus, the additional requirement of standard Turing computability is
that the original arguments are preserved, the machine stops if and only if
the function is defined for the given arguments, and the machine operates on
or to the right of the argument strip. In particular, anything to the left of the
argument strip remains unchanged.

PROPOSITION 5.1

Every standard Turing-computable function is Turing-computable.

Proof

Let & be a Turing machine that ST-computes a partial function
f(x,...,x,). Then f is Turing-computable by the Turing machine 4 PC. In

tFor a function of one variable, the argument strip is taken to be Bk;.
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fact, after 7~ operates, we obtain Bx|B...B%,Bf(xi, .. .,x,), with the reading.
head at the leftmost | of f(xi,...,x,). P then moves the reading head to the.
right of f(xy,...,%,), and then C removes the original argument strip,

PROPOSITION 5.2

Every partial recursive function is standard Turing-computable.

Proof

(a)
(b)
©

(d)

(e)

(f)

Pra; ST-computes the zero function Z(x).

The successor function N(x) is ST-computed by PKajAr.

The projection function Ul(xi,...,x,) =x is ST-computed by
-@K,,_H_] Ar.

(Substitution.) Let f(x1,...,%,) =g(hi(x1,. .- %)y« hu(xi, . .. VX )¥
and assume that J~ ST-computes g and % ST-computes ; for 1 <j<m;
Let &; be the machine ZPo”(K,1,)"A"r. The reader should verify thaL:
[ is ST-computed by

.,q"]P(K,,_H )"A"r.?’z.ffg . qulg"mPGHAml'g'ﬂmAl'

We take advantage of the ST-computability when, storing %, ...,%,,
hi(X1,. .. %y)y. ., Bi(x1,...,x,) on the tape, we place (x1,...,x,) on the
tape to the right and compute /1 (xi, . .. ,x,) without disturbing what
we have stored on the left.

(Recursion.) Let

Fleg, a2, 0) =gy, ... x)
S, xy+ 1) =y, x i f (- Xy ¥))
Assume that ¥ ST-computes g and 9 ST-computes 4. Then the reader
should verify that the machine in Figure 5.19 ST-computes f.
Unrestricted p-operator. Let f(xy,...x,) = wy(g(x1,- .., X, ) = 0) and
assume that 9~ ST-computes g. Then the machine in Figure 5.20 ST-
computes f.

ra.rK;(K...,.,)"A"“lagrPr?PK”;laol
\

1

CAr
)

1
(K, 2" a1 T Ky 3 A" 2 r 7 PKypglagl ——— 1Ky o™

! l

Figure 5.19
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Exercise
5,17 For a recursion of the form

f0)y =k
JO+1) =k f(»)

show how the diagram in Figure 5.19 must be modified.

COROLLARY 5.3

Every partial recursive function is Turing-computable.

Exercise

5.18 Prove that every partial recursive function is Turing-computable by a
Turing machine with alphabet {ag,a; }.

In order to prove the converse of Corollary 5.3, we must arithmetize the
language of Turing computability by assigning numbers, called Gddel
numbers, to the expressions arising in our study of Turing machines. ‘R* and
‘L’ are assigned the G6del numbers 3 and 5, respectively. The tape symbols
a; are assigned the numbers 7 + 4i, while the internal state symbols q; are
given the numbers 9 4 4i. For example, the blank B, which is ag, receives the
number 7; the stroke |, which is a;, has the number 11; and the initial
internal state symbol q; has the number 9. Notice that all symbols have odd
Godel numbers, and different symbols have different numbers assigned to
them.

As in Section 3.4, a finite sequence ug, uy, ..., of symbols is assigned
the Godel number pg(““)pf(u') - pg(u"') , where pg, p1, p2,... are the prime
numbers 2,3, 5,... in ascending order and g(v;) is the Gddel number as-
signed to v;. For example, the quadruple qpapa;qp receives the Godel
number 22375179,

By an expression we mean a finite sequence of symbols. We have just
shown how to assign G6del numbers to expressions. In a similar manner, to
any finite sequence Ep, Ei,...,E,, of expressions we assign the number
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pO(E") pg(E‘) . p;‘f,(E"‘). For example, this assigns Godel numbers to finite ge.
quences of Turing machine quadruples and to finite sequences of tape de.
scriptions. Observe that the Gddel number of an expression is even and,
therefore, different from the Gédel number of a symbol, which is odd.
Moreover, the Godel number of a sequence of expressions has an evep
number as an exponent of py and is, therefore, different from the Gode]
number of an expression, which has an odd number as an exponent of Po.
The reader should review Sections 3.3 and 3.4, especially the functiong
£4(x), (x);), and x = y. Assume that x is the Godel number of a finite se.
g(wo) _g(wi) g(wy)
quence Wo, Wi, ..., W; that is, x = pgp;" " ...pp ', where g(w;) is the
Godel number of w;. Recall that £4(x) = k + 1, the length of the sequence,
and (x); = g(w;), the Godel number of the jth term of the sequence. If in
addition, y is the G6del number of a finite sequence vo, vy, . . ., Vy, then x x
1s the G6del number of the juxtaposition wg, Wi, ..., Wk, Vo, V1, - . ., V,, Of the
two sequences.

PROPOSITION 5.4

The following number-theoretic relations and functions are primitive re-
cursive. In each case, we write first the notation for the relation or function,
then, the intuitive interpretation in terms of Turing machines, and, finally,
the exact definition. (For the proofs of primitive recursiveness, use Propo-
sition 3.18 and various primitive relations and functions defined in Section
3.3. At afirst reading, it may be advisable to concentrate on just the intuitive
meanings and postpone the technical verification until later.)

IS(x): x is the Gddel number of an internal state symbol q,,:

(Fu), o (x=9+4u)
Sym(x): x is the G6del number of an alphabet symbol a,:

(T = T+ 4u)
Quad(x): x is the Gddel number of a Turing machine quadruple:
£4(x) =4 N1S((x)o) A Sym((x);) A IS((x);)
A [Sym((x)y) V (x); = 3V (x), = 5]

TM(x): x is the Godel number of a Turing machine (in the form of a finite
sequence of appropriate quadruples):

(V1) cpny Quad((x),) Ax > 1A (Y18}, g (V0)ycpyy (1t # 0

= [(()uo # ((K)o)o V () )1 # (o))
TD(x): x is the Godel number of a tape description:

x> 1A (Vu)u<£’ﬁ(x) [IS((J")H) N Sym((‘l)u)] A (-:-Ilu)u<£’fz(_t)ls((x)u)
A (Vu)u(m(x) (IS{(x),) = u+ 1 < £4(x))



PARTIAL RECURSIVE FUNCTIONS. UNSOLVABLE PROBLEMS 323

Cons(x, y,z): x and y are G6del numbers of tape descriptions o and f, and
z is the Godel number of a Turing machine quadruple that transforms o
into f3:
TD(J") A TD(_))) A Quad(z) A (;Iw)n(ﬂ/}(x)—'-l [IS((JL)W)
A (x)w = (Z)U A (‘x)erl = (Z)l/\
I ([Sym((z)Z) A (y)w+l = (Z)Z A (y)w = (2)3 A Eﬁ(‘l) - Eﬂ(y)
/\(Vu)u<£’ﬁ(x)(u :Ié wAu :Ié w+1l= (‘x)u = (y)u)]v
( [(2)2 =3 A (y)w = (x)erl A (}’)w+1 - (2)3/\
(Vu)u<£’fz(x) (“ ?é wAU 7& wtl= (y)u = (x)u)/\
(I + 2 < £A(x) A LA(Y) = £A(X)] V [w + 2 = EA()A
4(y) = EA(x) + 1A (), =TIV
([(2), =5A{lw#0A Dper = @3 A0, = (),
N LAy} = LA(x) N (Vi) g £ w1 Aufw=
0y = @NVIv=0A(B) = ()3 A ) =TA
L Eis(y) - E/é(l) + LA (Vlt)(](tl([’ﬁ(x) (y)LH-] = (‘l)u]}])]
I corresponds to a quadruple q;2:2x9,,1I to a quadruple q;a;Rq,, and 111
to a quadruple q;a;Lq,.
NTD(x): x is the Godel number of a numerical tape description — that is,
a tape description in which the tape has the form E;kE;, where each of E;

and E, is empty or consists entirely of blanks, and the location of the
reading head is arbitrary:

TD(x) A (Vtt)cppy (Sym((x),) = (x), = 7V {x), = 11)
A (Vu)u<£h(x) (Vv)vvil,’h(x) (Vw)1v<flz(x) (u <UAD<WA (x)u =11 A
(x)w =1= (x)u :Ié 7) (Elu)u<fh(x)((x)u = 11)

Stop(x,z): z is the G6del number of a Turing machine 4 and x is the
Godel number of a tape description o such that 9 stops at «:

TM(z) A TD0) A (30 IS (X)) A (F0)p gy (((2))o
= (%) M@ = ()]
Comp(y,z): z is the Godel number of a Turing machine J and y is the
Godel number of a computation of 9;
¥ > TATM(z) A (Y21) e,y TDAD),) A SOD(() g5y -1,2) A
(Vi) ucry o ) s OIS s () A
(VU)U<M((y)U) IS(((e)) = (o), =9)

Num(x): The G6del number of the word x — that is, of ["*':

Num(x) = H it

HX

IIq

JILE
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TR(x1,...,x,): The G6del number of the tape representation m
of the n-tuple (xi,...,%,): ’

TR(x1,..-,%) = Num(xr) * 27 = Num(xp) % 27 % -+ % 27 « Num(x,)

U(y): If y is the G6del number of a computation that results in a .
merical tape description, then U(y) is the number represented on thgt
final tape.!

b= 3 O~ D] <1

u<bA((M)eusy-1)

[Let w be the number, represented by [**', on the final tape. The cal.

cualtion of U(y) tallies a 1 for every stroke | that appears on the fing]
tape. This yields a sum of w+ 1, and then 1 is subtracted to obtain w.]

T.(z,x1, - ., %,,»): ¥ is the G6del number of a computation of a Turing
machine with Godel number z such that the computation begins on the
tape (X7, - -,%,), with the reading head scanning the first | in ¥;, and ends

with a numerical tape description:
Comp(y,2) A (M)g = 2° * TR(x1,. .., %) ANTD(() 501

When n=1, replace TR(xi,...,x,) by Num(x;). (Observe that, if
T(z,x1, - .-, %my 1) and T(z,x1,...,%s,)2), then y; = y2, since there is at
most one computation of a Turing machine starting with a given initial
tape.)

PROPOSITION 5.5

If 7 is a Turing machine that computes a number-theoretic function
f(x1,...,x,) and ¢ is a G6del number of .7, thent

f(xl, .- )xﬂ) - U(.‘D"El(e1xlj .- )xl‘hy))

Proof

Let ky,...,k, be any natural numbers. Then f(ky,...,k,) is defined if and
only if there is a computation of &~ beginning with (k,...,%,) and ending
with a numerical tape description — that is, if and only if

(W) Tn(e, k1, .-y xn,»). So, flki,...,k,) is defined if and only if
wl(e k... k,y) is defined. Moreover, when f(ki,...,k,) is defined,

If vy is not the Gédel number of a computation that yields a numerical tape
description, U(y) is defined, but its value in such cases will be of no significance.

fRemember that an equality between two partial functions means that, when-
ever one of them is defined, the other is also defined and the two functions have the
same value.

T
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wii(e ki, .., ky, y) is the Godel number of a computation of 7~ beginning
with (k1,...,k,) and U(wT,(e,ki,--.,kn,y)) is the value yielded by the
computation, namely, f(ki,..., &,).

COROLLARY 5.6

Every Turing-computable function is partial recursive.

Proof

Assume f(xy, ...,x,) is Turing-computable by a Turing machine with Godel
number e. Then f(xy,...,x,) = U(wT.(e,x1, .., %, ¥)). Since 7, is primitive
recursive, pyT,(e,x1,...,%,,y) is partial recursive. Hence, U{(wT,(e,xi,

..., Xn,y)) is partial recursive.

COROLLARY 5.7

The Turing-computable functions are identical with the partial recursive
functions.

Proof
Use Corollaries 5.6 and 5.3.

COROLLARY 5.8

Every total partial recursive function is recursive.

Proof

Assume that the total partial recursive function f(x;,...,x,) is Turing-
computable by the Turing machine with G6del number e. Then, for all
X1, -2 Xn, (V) Tu(e, %1, . . ., X4, ). Hence, pyTo(e,x1, .. .,%n,») is produced by
an application of the restricted p-operator and is, therefore, recursive. So,
U(yT,(e,xy,. .. %, p)) is also recursive. Now use Proposition 5.5.

COROLLARY 5.9

For any total number-theoretic function f, f is recursive if and only if f is
Turing-computable.
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Proof

Use Corollaries 5.7-5.8 and Exercise 5.15.

Church’s thesis amounts to the assertion that the recursive functions gye
the same as the computable total functions. By Corollary 5.9, thijs is
equivalent to the identity, for total functions, of computability and Turing
computability. This strengthens the case for Church’s thesis because of the
plausibility of the identification of Turing computability with computab;].
ity. Let us now widen Church’s thesis to assert that the computable fypc.
tions (partial or total) are the same as the Turing-computable functions, By
Corollary 5.7, this implies that a function is computable if and only if it jg
partial recursive.

COROLLARY 5.10

Any number-theoretic function is Turing-computable if and only if it is
standard Turing-computable.

Proof
Use Proposition 5.1, Corollary 5.6 and Proposition 5.2.

COROLLARY 5.11 (KLEENE’S NORMAL FORM THEOREM)

As z varies over all natural numbers, U(uyT,(z,xy,...,%,;,¥)) enumerates
with repetitions all partial recursive functions of » variables.

Proof

Use Corollary 5.3 and Proposition 5.5. The fact that every partial recursive
function of n variables reappears for infinitely many z follows from Exercise
5.7. (Notice that, when z is not the G6del number of a Turing machine, there
is no y such that 7,,(z,x1, . .. ,%,, ), and, therefore, the corresponding partial
recursive function is the empty function.!)

COROLLARY 5.12

For any recursive relation R(xy, ..., x,, y), there exist natural numbers z, and
ve such that, for all natural numbers xp, ..., x,:

IThe empty function is the empty set (). It has the empty set as its domain.
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(a) (EIy)R(ﬁcl, .oy X, ) if and only if (Ay) T (z0,x15 -« -2 Xn, V)
(b) (V9)R(x1,...,x,,y) if and only if (Vy)-T, (v, X1,...,%4,))

Proof

(a) The function f(xy,...,x.) = pyR{x1, ..., %a,y) is partial recursive. Let zg
be a Go6del number of a Turing machine that computes f. Hence,
f(x1,...,%,) 1s defined if and only if (3y)T,(zo,x1,...,%:,¥). But
f(xq1,...,%,) is defined if and only if (AY)R(xy,...,x.,¥).

(b) Applying part (a) to the recursive relation —R(x;,...,x,,»), we obtain a
number vy such that:

() -R(xi, - - -, X, p) if and only if (Ay)T,(vo,x1, - .-, X0, ¥)

Now take the negations of both sides of this equivalence.

Exercise

5.19 Extend Corollary 5.12 to two or more quantifiers. For example, if
R(x1,...,xn,»,z) Is a recursive relation, show that there are natural numbers
zp and vy such that, for all x;,...,x,:

(@) (Vz)(Iy)R(x1,...,x,»,2) if and only if (Vz)(Iy)T,+1(z0,%1, - - -, %0, ¥, 2)-
(b) (A2)(WY)R(x1,...,%,,¥,2) if and only if (z)(Vy)Tsp1(vo, %1, - . ., X, ¥, 2).

COROLLARY 5.13

(@) (Iy)T.(x1,%1,%2,...,%,,¥) is not recursive.
(b) (I)Tu(z,x1,...,%n ) is nOt recursive.

Proof

(a) Assume (dy)T,(x1,x1,x2,...,%,,)) is recursive. Then the relation
—(I) T (x1,x1,%2, ..., Xn, ¥) Az =z is recursive. So, by Corollary 5.12(a),
there exists zp such that:

A ()T (xy, x1, X2, - - -, X, ) Az = z) if and only if
(F2)Tu(z0,x1,%2, . - - ; Xn, Z)
Hence, since z obviously can be omitted on the left,
() (xq, X1, %2, . - ., X, p} if and only if (32)7,(z0,x1,%2, - . - , X, Z)
Let x; = xp = --- = x, = z9. Then we obtain the contradiction
=(Iy)T.(z0. 20, 20, . - - » 20, ) if and only if (3z)7,(zo, 20, 20, - - - , z0,2)

(b) If (3y)Tu(z,x1,%2, . ..,%,,y) Were recursive, so would be, by substitu-
tion, ()T, (x1,x1,X2, ..., %,,¥), contradicting part (a).
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Exercises

5.20 Prove that there is a partial recursive function g{z,x) such that, for
any partial recursive function f(x), there is a number z for which
f(x} = g(z0,x) holds for all x. Then show that there must exist a number y,
such that g(vg, vp) is not defined.

5.21 Let hy(xiy... %), Ax(x1,...,x,) be partial recursive functions, and
let Ry (x1,.-.,%n), -y Re(x1,...,%,) be recursive relations that are exhaustive
(i.e., for any xi,...,x,, at least one of the relations holds) and pairwise
mutually exclusive (i.e., for any x;,...,x,, no two of the relations hold).
Define

g(xl;.---

h(xr,...,x)  ifRi(xy,...,x,)
,JC,,) =
Pe(xpy - eyxn)  1f Re(xy, ... %)

Prove that g is partial recursive.
5.22 A partial function f(x) is said to be recursively completable if there is a
recursive function /(x) such that, for every x in the domain of £, h{x) = f(x).

(a) Prove that uyT(x,x,y) is not recursively completable.

(b) Prove that a partial recursive function f(x) is recursively completable if
the domain D of fis a recursive set — that is, if the property ‘x € D’ is
recursive.

(c) Find a partial recursive function f(x) that is recursively completable but
whose domain is not recursive.

5.23 If R(x,y) is a recursive relation, prove that there are natural numbers
zp and vy such that:

(@) —[(@)R(z0,¥) & (¥)~T1(20,20, )]
(b) —[(¥»)R(vo,») & (I¥)Ti(vo, vo, )]

5.24 If S(x) is a recursive property, show that there are natural numbers z,
and »y such that:

(@) -[S(z0) & (vy)~T1(20,20,¥)]
(b) [S(v) & (Av)7i(vo, vo, )]

5.25 Show that there is no recursive function B(z,x;, .. .,x,) such that, if z
is a Godel number of a Turing number & and kq, . . ., k, are natural numbers
for which fg ,(k1, ..., k,) is defined, then the number of steps in the com-
putation of f7 ,(ki,...,k,) is less than B(z, ki, ..., k,).

Let 7 be a Turing machine. The halting problem for 4 is the problem of
determining, for each tape description B, whether 7 is applicable to B, that
is, whether there is a computation of .7~ that begins with p.

We say that the halting problem for 7 is algorithmically solvable if there
is an algorithm that, given a tape description {3, determines whether 7 is

-
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applicable to P. Instead of a tape description [, we may assume that the
algorithm is given the G&del number of B. Then the desired algorithm will
be a computable function Hs such that:

to which 7 is applicable

0 if x is the Gddel number of a tape description B
Hy (x)
I otherwise

If we accept Turing algorithms as exact counterparts of algorithms (that is,
the extended Church’s thesis), then the halting problem for .7 is algorith-
mically solvable if and only if the function Hg is Turing-computable, or
equivalently, by Corollary 5.9, recursive. When the function H is recursive,
we say that the halting problem for 7 is recursively solvable. If Hg is not
recursive, we say that the halting problem for 7 is recursively unsolvable.

PROPOSITION 5.14

There is a Turing machine with a recursively unsolvable halting problem.

Proof

By Proposition 5.2, let 7 be a Turing machine that ST-computes the partial
recursive function py7i(x,x,y). Remember that, by the definition of stan-
dard Turing computability, if & is begun on the tape consisting of only x
with its reading head scanning the leftmost |, then 7 stops if and only if
w1 (x,x,y) is defined. Assume that 4 has a recursively solvable halting
problem, that is, that the function Hs is recursive. Recall that the Gddel
number of the tape description goX is 2° * Num(x). Now,

(I)T1(x,x,y) if and only if 7} (x,x,y) is defined
if and only if .7, begun on gox, performs a computation
if and only if Hgz(2° * Num(x)) = 0

Since Hy, Num and * are recursive, (y)7i(x,x, y) is recursive, contradicting
Corollary 5.13(a) (when # = 1).

Exercises

5.26 Give an example of a Turing machine with a recursively solvable
halting problem.

5.27 Show that the following special halting problem is recursively un-
solvable: given a Godel number z of a Turing machine .7 and a natural
number x, determine whether & is applicable to ggx.

5.28 Show that the following self-halting problem is recursively unsolvable:
given a Godel number z of a Turing machine .7, determine whether 7 is
applicable to gpz.
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5.29 The printing problem for a Turing machine 7 and a symbol a;, is the
problem of determining, for any given tape description «, whether 7, begyn
on o, ever prints the symbol a. Find a Turing machine 7~ and a symbol] g,
for which the printing problem is recursively unsolvable,

5.30 Show that the following decision problem is recursively unsolvable:
given any Turing machine 77, if 7 is begun on an empty tape, determine
whether 7 stops (that is, whether 7 is applicable to gyB).

5.31° Show that the problem of deciding, for any given Turing machine,
whether it has a recursively unsolvable halting problem is itself recursively
unsolvable.

To deal with more intricate decision problems and other aspects of the
theory of computability, we need more powerful tools. First of all, let ys
introduce the notation

QD;I(JC[,. e ?x") = U(Hyﬂl(z)xl'l ... Jxﬂ!y))

Thus, by Corollary 5.11, @f, @], ¢4, ... is an enumeration of all partial re-
cursive functions of » variables. The subscript j is called an index of the
function ¢}. Each partial recursive function of » variables has infinitely

many indices.

PROPOSITION 5.15 (ITERATION THEOREM
OR s-m-n THEOREM)

For any positive integers m and #, there is a primitive recursive function
S::l(z1 Yy 1ym) SllCh that

n-4-n

(Pz (xl'l - an)yl‘l e 1ym) - q)s;'(z‘yl’___'ym)(xl) L Sx;l)

Thus, not only does assigning particular values to zyi,...,¥, in
@M1, . Xy V1, - -+, ¥m) Yield @ new partial recursive function of » vari-
ables, but also the index of the resulting function is a primitive recursive
function of the old index z and of yy,...,Vn-

Proof

If 7 is a Turing machine with G6del number z, let 7 ,, , be a Turing

machine that, when begun on (xi,...,x,), produces (X1,...,Xn,Yi,--s¥u)s
moves back to the leftmost | of *7, and then behaves like 7. Such a machine

is defined by the diagram
Rr{arr) r(ar)? . r(arymH erg

The Godel number 57(z, y1, - - - , ) of this Turing machine can be effectively
computed and, by Church’s thesis, would be partial recursive. In fact, s can
be computed by a primitive recursive function g(z, 1, - - ., ym) defined in the
following manner. Let t=yp +...4+yn+2m+ 1. Also, let u(i)=

T



PARTIAL RECURSIVE FUNCTIONS. UNSOLVABLE PROBLEMS 1 331

29+437511 79441 and p(7) = 29+431153713+41 Notice that u(i) is the Godel
number of the quadruple ¢;Blg; and (i) is the G6del number of the quad-
ruple gi|Rg,1. Then take g(z,y,...,yn) to be:

94115359 91753713 1371153 1379757517
[223 5732357 52 3 57972 37577 ]*

N2 (i) () 94y +3) 37 5379447 +4)
(i vl 2 ' 1+3)37 5372+ +
HP12:'—4|P12:--3| *2 *

=

n+mt+d
H (i) u(i) *
Poli— i+ ) P2 (o +4) |1
i=y+4
229+4(y;+Jz+5)375379+4()'1+12+6) ... %

29+Ay ot +2m—1) 3753794400+t 2}

2

V14tV t2m
u(i) () .
Pl (-t Ay +20) P 20— 1+ b1+ 2m) 1
=1 ted Y +2m

229+4r3 11 55 79+4t 329+4I 3‘!55 79+4(t+l) 529+4(r+l) 311 5579+4t

29+4(t+1} 37 53 79+4(r+2) 29+4(.!+2) 37 53 79+4(t+3) "

7

5(¢4(2))
H pz((z)i)o+4(‘+3)3((3)f)1 5z} 7UR;)3+4(+3)
i

11

i=0

g is primitive recursive by the results of Section 3.3. When z is not a Gddel
number of a Turing machine, " is the empty function and, therefore,
s"(z,y1,...,¥m) must be an index of the empty function and can be taken to
be 0. Thus, we define:

Sz V0 dm) = {g(z’yl 2 Lther\&fzi)se

Hence, s7' is primitive recursive.

COROLLARY 5.16
For any partial recursive function f(x;,...,%;,¥,...,¥m), there is a recur-
sive function g()1,...,¥m) such that
FOn XY 5 3m) = @ 0n,am) X -2 %)
Proof
Let e be an index of f. By Proposition 5.15,
P Xy X Vs e s Vm) = Psmienn,gn) Koo -2 %)

Let gOn, ..o, ) =80 (e, 31, -« Vm)-
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Examples

1. Let G(x) be a fixed partial recursive function with non-empty domaijn_
Consider the following decision problem: for any u, determine whether
@, = G. Let us show that this problem is recursively unsolvable, that is,
that the property R(u), defined by ¢! = G, is not recursive. Assume, for
the sake of contradiction, that R is recursive. Consider the function
S, u) = G(x)- N(Z(T1(u,1,y))). (Recall that N(Z(#)) =1 for all g,
Applying Corollary 5.16 to f(x,u), we obtain a recursive function g(u)
such that f(x,u) = @, (x). For any fixed u, CD;(H) = G if and only if
()71 (2, u,y). (Here, we use the fact that G has non-empty domain.)
Hence, (3y)71(w,u,y) if and only if R(g(u)). Since R(g(u)) is recursive,
()T (u, 1, y) would be recursive, contradicting Corollary 5.13(a).

2. A umiversal Turing machine. Let the partial recursive function
U(uyTi(z,x,y)) be computed by a Turing machine ¥~ with G6del number
e. Thus, U(wyTi(z,x,¥)) = U(wT:(e,z,x,y)). ¥ is universal in the fol-
lowing sense. First, it can compute every partial recursive function f (x) of
one variable. If z is a G6del number of a Turing machine that computes £,
then, if #” begins on the tape (z,x), it will compute U(uyTi(z,x,y)) = f(x).
Further, ¥~ can be used to compute any partial recursive function
h(xi,...,x,). Let vp be a Godel number of a Turing machine that com-
putes s, and let f(x)=h((x)y,(x);,.--,(x), 1) Then h(x;,... x,)
=f(gg --.p; ). By applying Corollary 5.16 to the partial recursive
function U(uy T,(v, (x)g, ®),- - -, (x),_(,¥)), we obtain a recursive func-
tion g(v) such that U(uy T,(v, (x)g, (®);5- -+, (¥),_1,5)) = @y, (). Hence,
f(x) = go;(v) (x). So A(xy,-..,x,) is computed by applying ¥~ to the tape

(g(vo), g - - - 1)-

Exercises

5.32 Find a superumiversal Turing machine ¥ such that, for any Turing
machine 7 . if zis a G6del number of 7 and x is the Gddel number of an initial
tape description o of 77, then ¥ is applicable to go(z,x) if and only if 7 is
applicable to o; moreover, if 7, when applied to ¢, ends with a tape description
that has Godel number w, then ™, when applied to go(z, x), produces w.
5.33 Show that the following decision problem is recursively unsolvable: for
any u and v, determine whether ¢! = ¢!,

5.34 Show that the following decision problem is recursively unsolvable: for
any u, determine whether ¢! has empty domain. (Hence, the condition in
Example 1 above, that G(x) has non-empty domain is unnecessary).

5.35

(2) Prove that there is a recursive function g(u, v) such that

(p;(u,v) (x) = (pzl;(l) ) (95 (‘1)

(b) Prove that there is a recursive function C(u, v) such that

Tt
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Piiun *) = oh(or(x))

5.4 THE KLEENE-MOSTOWSKI HIERARCHY.
RECURSIVELY ENUMERABLE SETS

Consider the following array, where R(xy,...,Xn,J1,--.,Ym) IS @ recursive
relation.
R(xh .- :xn)
(Ivi)R(x1, -« s Xy 1) (VY1 )R(X1, -« oy Xy 1)
(In) (D) R (15 - -+ 3 X, 115 32) (W) (A2)R(x1y - - - X, 31, 32)

(—:—Iyl)(vyl) (—:—Iy3)R(x17 e 1)“Ir1yl:y21y3) (vyl)(ﬂyZ)(vy3)R(1h e 7-xrhyl:y2:y3)

Let ) o = I = the set of all #-place recursive relations. For k£ > 0, let ) ;
be the set of all w-place relations expressible in the prenex form
(In)(V) .. (Ow)R(x1, .. ., %0, 1, - - -, 1), consisting of k alternating quan-
tifiers beginning with an existential quantifier and followed by a recursive
relation R. (Here, ‘(Qy;)’ denotes (dyx) or (Vyx), depending on whether & is
odd or even.) Let IT; be the set of all »-place relations expressible in the
prenex form (Vy1)(In)...(Ow)R(x1,- .., X%u, V1, --,3%), consisting of k al-
ternating quantifiers beginning with a universal quantifier and followed by a
recursive relation R. Then the array above can be written
0

" n
i 1

I n
A
" n
3 3

This array of classes of relations is called the Kleene—Afostowski hierarchy,
or the arithmetical hierarchy.

PROPOSITION 5.17

(a) Every relation expressible in any form listed above is expressible in all
the forms in lower rows; that is, for all j > k,

n

YL e [LeSnlL

(b) There is a relation of each form, except Y y, that is not expressible in
the other form in the same row and, hence, by part (a), not in any of the
rows above; that is, for £ > 0,




334

-

(d)

(€)
(f)

COMPUTABILITY

Zk— 79 and ka L0
Every arithmetical relation is expressible in at least one of thege
forms.
(Post) For any relation Q(xi, .. .,x,), O is recursive if and only if both 0
and —Q are expressible in the form (3y1)R(x1,...,%,, 1), where R ig
recursive; that is, ) | NI} =3 4.
If Qe and O, € Y, then Q1 vV, and Q) AQ; are in S If
01 € T} and O, € IT}, then O; V O and Q1 A Q7 are in IT}.
In contradistinction to part (d), if k& > 0, then

(Zhan I ) - (S I #9

Proof

(a)

(b)

©

(d)

(©)

(Az1) (W) - . Ba) (W )R(X 1, - oo Xy 20, V0, - 5 20, Wi) S

(Vi) (@z1) (V1) - - (Fz) (V) (R(x L - - X, 200 -2l ) AU = 1) &

(FAz) (W) - .- (Fz) (D) (Fe) (R(Xty « X 2 Wy - - 5 Zhy i) AN 2t = 1)

Hence, any relation expressible in one of the forms in the array is
expressible in both forms in any lower row.

ILet us consider a typical case, say 3. Take the relation
(Fv)(V2) () T2 (1, %1, %2, . . . s X, U, 2, ), Which is in > 3. Assume that
this is in IIj, that is, it is expressible in the form (Vv)(3z)(vy)
R(xy,...,x,,v,2,¥), where R is recursive. By Exercise 5.19, this relation
is equivalent to (Vo)(32)(Vy)— T 2(e,x1, . - ., X4, 1, 2, ») for some e. When
x1 = e, this yields a contradiction.

Every wf of the first-order theory S can be put into prenex normal form.
Then, it suffices to note that (Ju)(Iv)R(u, v) is equivalent to (Az)R((z),,
(),), and (Vu)(Vv)R(u,v) is equivalent to (Vz)R((z),,(z),). Hence,
successive quantifiers of the same kind can be condensed into one such
guantifier.

If Q is recursive, so is ~Q, and, if P(x;,...,x,) is recursive, then
P(x1,...,x,) € (@(Plx1, ..., %) Ay =y). Conversely, assume Q is
expressible as (3Iy)Ri(x1,-..,x,,¥) and ~Q as (F)Ra(x1,...,%,)),
where the relations R; and R; are recursive. Hence, (Vxi)...
(Vx,) (Fy) (R (k1523 %0, p) V Ro(Xr, .. ,x,3))- So, ¥ (x1,...,%,) =
Ry (X1, %0, ¥) V R2(X1,. .., Xy, ¥)) is recursive. Then, Q(x1,. .., %)
& Ri(x1, ... X, Y{x1, ... ,x,)) and, therefore, Q is recursive.

Use the following facts. If x is not free in <.
FE)(ZVE) & (L V(@AND), F ()L AD) S (& A (D),
F (V) VB) & (ZV(VW)B), | (Vx)(ZAB) S (A (Vx)D)
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~(f) We shall suggest a proof in the case n= 1; the other cases are then easy
consequences. Let Q(x) € 3 ~ Hk Deﬁne P(x) as (E|z) [(x = 2zA
O@E))V (x =2z + 1 A-Q(2))]. It is easy to prove that P ¢ >, U TI; and
that P € 3 ,,. Observe that P(x) holds if and only if

() = 22 A Q@) V ((B2)er(r = 224 1) A (W) (x = 22 + 1 = —0()))
Hence, P € H}( 1 (Rogers, 1959).

Exercises

5.36 For any relation W of n variables, prove that W € ) | if and only if
W €[], where W is the complement of W with respect to the set of all
n-tuples of natural numbers.
5,37 For each k >0, find a universal relation ¥; in Y_3"'; that is, for any
relation W of n variables: (a) if W € )}, then there exists zg such that, for all
X1so ey Xny, W(x1,...,x,) if and only if ¥i(zo,xy,...,x,); and (b) if W € [T},
there exists vy such that, for all x;,...,x,, W(x,...,x,) if and only if
—Vi(vo,X1, .- ,%s). [Hint: Use Exercise 5.19.]

The s-m-n theorem (Proposition 5.15) enables us to prove the following
basic result of recursion theory.

PROPOSITION 5.18 (RECURSION THEOREM)

If n>1and f(x1,...,x,) is a partial recursive function, then there exists a
natural number e such that

Fxn, . x,€) = qo'ef‘l(xl, ey Xn1)

Proof

Let d be an index of f(x1,...,%-1,5% ;(xn,%,)). Then
f(xh :lnfl;sn_]()‘m-xn)) = (pd(xh :xn~1,xn)

By the s-m-n theorem, fpd(xl,...,xn):co;’rl(dx)(xl,...,x,ﬂ)_ Let e =
s} (d,d). Then: !,

f()q,...,x",l.,E)”—“f(Xl,...’xn_l, ,1' 1(d d)): n(x[,...,xnﬁl)d)
= @f]:]l(d,d)(xh K1) = q)n l("Lls ey Xpo1)
COROLLARY 5.19 (FIXED-POINT THEOREM)

If A(x) is recursive, then there exists e such that ¢, = @j,.
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Proof

Applying the recursion theorem to f(x,u) = qo},(u) (x), we obtain number p
such that f(x,e) = ¢l (x). But f(x,e) = GD;I,(E)(X)-

COROLILARY 5.20 (RICE’S THEOREM) (RICE, 1953)

Let & be a set consisting of at least one, but not all, partial recursive
functions of one variable. Then the set 4 = {u|p) € #} is not recursive.

Proof

By hypothesis, there exist numbers u; and u such that uy € 4 and u, ¢ 4.
Now assume that 4 is recursive. Define
v _Ju ifxégA4a
h(x) = {uz ifxeAd
Clearly, A(x) € 4 if and only if x ¢ A. & is recursive, by Proposition 3.19. By

the fixed-point theorem, there is a number e such that q); = GDilz(e)- Then we
obtain a contradiction as follows:

ecA ifand onlyif ¢ cF
if and only if ¢,y € F
ifand only if h(e) € 4
ifand only if e ¢ 4

Rice’s theorem can be used to show the recursive unsolvability of various
decision problems.

Example
Consider the following decision problem: for any u, determine whether ¢!
has an infinite domain. Let % be the set of all partial recursive functions of
one variable that have infinite domain. By Rice’s theorem, {u]ep! € #} is
not recursive. Hence, the problem is recursively undecidable.

Notice that Example 1 on page 332 and Exercise 5.34 can be handled in

the same way.

Exercises

5.38 Show that the following decision problems are recursively unsolvable.
(a) TFor any u, determine whether ¢! has infinite range.

(b) For any u, determine whether ¢! is a constant function.

(c) For any u, determine whether ¢ is recursive.

T
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5.39

(a) Show that there is a number e such that the domain of ¢, is {e}.

(b) Show that there is a number e such that the domain of ¢! is w—{e}.

5.40 This exercise will show the existence of a recursive function that is not

primitive recursive.

(a) Let [\/x] be the largest integer less than or equal to +/x. Show that [\/x]
is defined by the recursion

k(0) =0
wlx + 1) = x(x) +5g|(x + 1) — (r(x) + 1]

Hence, [/x] is primitive recursive.

(b) The function Quadrem(x) = x-[/x]* is primitive recursive and rep-
resents the difference between x and the largest square less than or equal
to x.

() Let p(x,y)=((x 9 49 +x, py2) = Quadrem(z), and p,(z) =
Quadrem([y/z]). These functions are primitive recursive. Prove the
following;:

(@) pi(p(x,y)) =x and py(p(x,y)) = y.
(ii) p is a one—one function from w? into .
(iii) py(0) = p2(0) =0 and

pr(x+1)=p(x)+1
if 1) £0
pafx + 1) = py(x) }l Pl ) #

(iv) Let p2 denote p, and, for n >3, define p"(x1,...,x,)
= p(p"1(x1,...,%-1),%,)- Then each p” is primitive recursive.
Define pi(x) = gt '(py(x) for L<i<n—1, and pi(x) = py(x).
Then each pf,1<i<n, is primitive recursive, and

pi(p"(x1,. .. ,x,)) = x;. Hence, p" is a one—one function of «” into
. The p”s and the pls are obtained from p, p; and p, by sub-
stitution.

(d) The recursion rule (V) (p. 174) can be limited to the form

F(xh - :xn-l-iio) = Xnt1 (n 2 0)
F(xlz cey Xy L, Y+ 1) - G(X], T ,X,H_l,y,F(JC],. - )xn-l—])y))
[Hint: Given
Sty ey x0,0) = glxy, ..., xn)
f(xla e Jxmy+ 1) = h(X], s :xmy:f(xlz .- axmy))
define F as above, letting G(xy,...,%1,¥,2) = h(x1,...,X;,»,2). Then

f(xly' .- )-xrhy) :F(JC1,.. . :xmg(xlz . "7xn)7y)']

(¢) Taking x + y,x -y, and [4/x] as additional initial functions, we can limit
the recursion rule to the one-parameter form:
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(f)

(2)

(h)

F(x,0) = G{x)
F(x,y+1)=H(x,y,F(x))

[Hint: Let n > 2. Given

f(xlz e 7x1130) = g(xla"'?xﬂ)
S xny+ D) =hx, oy, f (X e X, YY)

let F(u,y) = f(pi(u),.-.,p;(u),»). Define F' by a permissible recursjon,
(Note that &(x),x=y,p" and p! are available.) f(x,... s X, ¥)

= F(p"(x1,---,%n);¥)-]
Taking x + y, x -y, and [/x] as additional initial functions, we can use
h{(y,F(x,y)) instead of H(x,y, F(x,y)) in part (e).
[Hint: Given
F(x,0) = G(x)
Flx,y+1) = Hix,y,F(x,y))

let Fi(x,y) = plx,Flx,y)). Then x=p(Flx,y)) and F(xy)
= p2(Fi(x,¥)). Define Fi(x,y) by a permissible recursion.]

Taking x + y, x -y, and [\/x] as additional initial functions, we can limit
uses of the recursion rule to the form

f(x,0) =x
flxy+1) =hy, f(x,3)

Hint: Given

F(x,0) = G(x)
F(x,y+ l) = h(y¢F(x7y))

define f as above. Then f(x,y) = f(G(x),y).

Taking x + y, x - y, [v/x] and x =y as additional initial functions, we can
limit uses of the recursion rule to those of the form

9(0) =0
gy + 1) =H(y,g(»))

[Hint: First note that |x — y| = (x+y) + (y-+x) and that [\/x] is defin-
able by a suitable recursion. Now, given

f(x,0) =x
fx,y+1) =h(y, f(x,»)

let g(x) = £(ps(x), py (¥)). Then
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§(0) = 1(0(0), ;(0)) = £(0,0) = 0
g(x + 1) = f(p(x+ 1), py(x + 1))

_ {pz(x+1) if px+1)=0
Mpi(x+1)=1, flpa(x + 1), o (x + 1) =1))  if py(x+1) #0

I{Pz(x+1) ifpy(x+1)=0
h(py (x), £ (p1 (%), p2(x))) if py(x+1)£0

:{Pz(x+1) if py(x+1)=0
h{p,(x), 9(x)) if py(x+1)#0

= py(x + 1) - 58(p1 (5 + 1)) + A(p (), g(x)) - sepy (x + 1))

= H(x, g(x))

Then f(x,y) = g(p(y.x)). (Note that sg is obtainable by a recursion of
the appropriate form and sg(x) = 1 =x.)

() In part (h), H(y,g(y)) can be replaced by H(g(y)).
IHint: Given

g{0) =0
g(y+ 1) =H{y,g(»))

let f(u) = p(u, g(u)) and o(w) = p(pi(w) + 1.H(p;(w), p2(w))). Then

f(O)=0
fy+D=e(f(»)

and g(u) = p(f(u)). (Note that sg(x) is given by a recursion of the
specified form.)
() Show that the equations

gl/(x,O) =x+1
Y(0,y +1) = y(L,y)
Y(x + Ly+1) =y(yix,y+1),)

define a number-theoretic function. In addition, prove:

O Ylx,y) >x

(I) ¢ (x,y) is monotonic in x, that is, if x <z, then Y(x,y) < Y(z,).

(D) Y(x + 1,y) <y(x,y + 1),

(IV) Y(x,y) is monotonic in y, that is, if y < z, then Y (x, y) < y(x,z).

(V)P Use the recursion theorem to show that i is recursive. [Hint: Use
Exercise 5.21 to show that there is a partial recursive function g such
that g(x,0,u) =x 4+ 1,g(0,y+ 1,u) = ¢*(1,), and g{x + L,y + L,u) =
@2 (¢*(x,y +1),»). Then use the recursion theorem to find e such that
g(x,y,e) = ¢(x,y). By induction, show that g(x,y,e) = ¥ (x,).]

(VI) For every primitive recursive function f(x, .. .,x,), there is some fixed
m such that

Jlxn, -y X)) < Y(max(xy,...,x,),mn)
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for all x1, . .., x,. [Hint: Prove this first for the initial functions Z, N, /»
x4y, x Xy, [«/x] and x =y, and then show that it is preserved 63;
substitution and the recursion of part (i).] Hence, for every primitjve
recursive function f (x), thereis some m such that f(x) < y(x, m) forafl
(V1) Prove that y(x,x) + | is recursive but not primitive recursive.
For other proofs of the existence of recursive functions that are not
primitive recursive, see Ackermann (1928), Péter (1935; 1967), and
R.M. Robinson (1948).

A set of natural numbers is said 1o be recursively enumerable (r.e.) if
and only if it is either empty or the range of a recursive function. If we
accept Church’s thesis, a non-empty recursively enumerable set is g
collection of natural numbers generated by some mechanical procesg
or effective procedure.

PROPOSITION 5.21

(a) A set Bisr.e. if and only if x € B is expressible in the form (Iy)R(x, y),
where R is recursive. (We even can allow R here to be primitive re-
Cursive.)

(b) Bisr.e. if and only if B is either empty or the range of a partial recursive
function.

(¢) Bisr.e. if and only if B is the domain of a partial recursive function.

(d) B is recursive if and only if B and its complement B are r.e.}

(¢) The set K = {x|(3y)T1(x,%,¥)} is r.e. but not recursive.

Proof

(a) Assume Bis re. If Bisempty, thenx € B& (Jy) (x #x Ay #y). If Bis
non-empty, then B 1is the range of a recursive function g. Then
x € B < (Iy)(g( y) = x). Conversely, assume x € B & (Jy)R(x, y), where R is
recursive. If B is empty, then B is r.e. If B is non-empty, then let k be a fixed
element of B. Define

(kiR )
6(z) = {(2)0 if R((Z)an(z)l)

0 is recursive by Proposition 3.19. Clearly, B is the range of 6. (We can take
R to be primitive recursive, since, if R is recursive, then, by Corollary 5.12(a),
(I)R(x,y) & (Fy)T1(e, x,y) for some e, and Ti(e, x,y) is primitive recursive.)

tSince the empty function is partial recursive and has the empty set as its range,
the condition that B is empty can be omitted.
YB = w — B, where o is the set of natural numbers.
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(b) Assume B is the range of a partial recursive function g. If B is empty,
then B is r.e. If B is non-empty, then let £ be a fixed element of B. By
Corollary 5.11, there is a number e such that g(x) = U{(wyTi(e, x,y)). Let

_ [ U({2)y) if Ti(e, (2, (2)1)
hiz) = {k 1 if =7 (e, (23)0, (Z)ll)

By Proposition 3.19, / is primitive recursive. Clearly, B is the range of 4.
Hence, B is r.e.

(c) Assume B is r.e. If B is empty, then B is the domain of the partial
recursive function py(x +y + 1 = 0). If B is non-empty, then B is the range
of a recursive function g. Let G be the partial recursive function such that
G(y) = px(g(x) = y). Then B is the domain of G. Conversely, assume B is
the domain of a partial recursive function H. Then there is a number ¢ such
that H(x) = U(wTi(e,x,y)). Hence, H(x) = z if and only if (Iy)(71(e,x,y)A
U(y) = z). But, x € B if and only if (3z)(H (x) = z). So, x € B if and only if
(F2)(3y) (T1(e,x,¥) A U(y) = z), and the latter is equivalent to (Ju)(Ti(e,x,
(1)) A U(();) = (u)y)- Moreover, Ti(e,x,(u);) A U((u);) =(u), is recur-
sive. Thus, by part (a), Bisr.c.

(d) Use part (a) and Proposition 5.17(d). (The intuitive meaning of part
(d) is the following; if there are mechanical procedures for generating B and
B, then to determine whether any number # is in B we need only wait until »
is generated by one of the procedures and then observe which procedure
produced it.)

(¢) Use parts (a) and (d) and Corollary 5.13(a).

Remember that the functions ¢! (x) = U(wTi(n,x,y)) form an enumer-
ation of all partial recursive functions of one variable. If we designate the
domain of ¢! by W, then Proposition 5.21(c) tells us that Wy, W, Wa, ... is
an enumeration (with repetitions) of all r.e. sets. The number # is called the
index of the set W,.

Fxercises

5.41 Prove that a set B is r.c. if and only if it is either empty or the range of

a primitive recursive function. [Hint: See the proof of Proposition 5.21(b).]

5.42

(a) Prove that the inverse image of a r.e. set B under a partial recursive
function f is r.e. (that is, {x|f(x) € B} is r.e.).

(b) Prove that the inverse image of a recursive set under a recursive func-
tion 1s recursive.

(c) Prove that the image of a r.e. set under a partial recursive function is
r.c.

(d) Using Church’s thesis, give intuitive arguments for the results in parts

(a)~(c).
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(e) Show that the image of a recursive set under a recursive function need-
not be recursive.

5.43 Prove that an infinite set is recursive if and only if it is the range of 3

strictly increasing recursive function, (g is strictly increasing if x < y implies

g(x) <g(»).)

5.44 Prove that an infinite set is r.e. if and only if it is the range of a one-

one recursive function.

5.45 Prove that every infinite r.c. set contains an infinite recursive subset,

5.46 Assume that A and B are r.e. sets.

(a) Prove that AUB is r.e. [In fact, show that there is a recursive function
g(u,v) such that W,y = W, U W,]

(b) Prove that AnB is r.c. [In fact, show that there is a recursive function
h(u,v) such that Wy, = W.nW,.]

(¢) Show that 4 need not be r.e.

(d) Prove that |, 4 W is re.

5.47 Show that the assertion

(V) A set B is r.e. if and only if Bis effectively enumerable (that is,
there is a mechanical procedure for generating the numbers in B)
is equivalent to Church’s thesis.
5.48 Prove that the set 4 = {u|W, = w} is not r.c.
5.49 A set Bis called creative if and only if B is r.e. and there is a partial
recursive function % such that, for any #, if W, C B, then A(n) € B — W,.

(a) Prove that {x|(3y)T1(x,x,y)} is creative.
(b) Show that every creative set is non-recursive.

550° A set B is called simple if B is r.e., B is infinite, and B contains no
infinite r.e. set. Clearly, every simple set is non-recursive. Show that a simple
set exists.

5.51 A recursive permutationis a one—one recursive function from @ onto o.
Sets A and B are called isommorphic (written A ~ B) if there is a recursive
permutation that maps 4 onto B.

(a) Prove that the recursive permutations form a group under the opera-
tion of composition.

(b) Prove that ~ is an equivalence relation.

(¢) Prove that, if 4 is recursive (r.e., creative, simple) and 4 ~ B, then B is
recursive (r.e., creative, simple).

Myhill (1955) proved that any two creative sets are isomorphic. (See also
Bernays, 1957.)

5.52 A is many-one reducible to B (written AR,B) if there is a recursive
function f such that u € 4 if and only if (1) € B. (Many-one reducibility of
A to B implies that, if the decision problem for membership in B is recur-
sively solvable, so is the decision problem for membership in 4.) 4 and B are

K™
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called many—one equivalent (written 4 =, B) if AR, B and BRA. A is one-

one reducible to B (writtten AR B) if there is a one—one recursive function f

such that u € 4 if and only if f(u) € B. A and B are called one-one equivalent

(written 4 =, B) it AR;B and BR, 4.

(a) Prove that =; and =; are equivalence relations,

(b) Prove that, if 4is creative, B is r.e., and AR B, then B is creative.
[Myhill (1955) showed that, if 4 is creative and B is r.¢., then BRp4. |

(c) (Myhill, 1955) Prove that, if AR;B then AR,B, and if 4 =; B then
A =p B. However, many-one reducibility does not imply one-one re-
ducibility, and many—one equivalence does not imply one—one equiv-
alence. [Hint: Let 4 be a simple set, C an infinite recursive subset of 4,
and B=A —C. Then AR;B and BR4 but not-(BRy4).] Il can be
shown that 4 = B if and only if 4 ~ B.

5.53 (Dekker, 1955) A4 is said to be productive if there is a partial

recursive function f such that, if W, C 4, then f(n) € A — W,. Prove the

following.

(a) If 4 is productive, then 4 is not r.e.; hence, both 4 and A are infinite.

(b)PIf 4 is productive, then 4 has an infinite r.e. subset. Hence, if 4 is
productive, 4 is not simple.

(c) If Ais re., then A4 is creative if and only if 4 is productive.

(d)P There exist 2% productive sets.

5.54 (Dekker and Myhill, 1960) 4 is recursively equivalent to B (written

A ~ B) if there is a one—one partial recursive function that maps 4 onto B.

(a) Prove that ~ is an equivalence relation.

(b) A is said to be immune if A is infinite and 4 has no infinite r.e. subset. 4
is said to be isolated if A is not recursively equivalent to a proper subset
of A. (The isolated sets may be considered the counterparts of the
Dedekind-finite sets.) Prove that an infinite set is isolated if and only if
it is immune.

(c)® Prove that there exist 2" immune sets.

Recursively enumerable sets play an important role in logic because, if we
assume Church’s thesis, the set T of Gddel numbers of the theorems of any
axiomatizable first-order theory K is r.e. (The same holds true of arbitrary
formal axiomatic systems.) In fact, the relation (see page 198)

Pfi(y,x): y is the Godel number of a proof in K of a wf with Goédel
number x

is recursive if the set of Goédel numbers of the axioms is recursive, that is, if
there is a decision procedure for axiomhood and Church’s thesis holds.
Now, x € Tk if and only if (3y)Pfk (y,x) and, therefore, Tk is r.e. Thus, if we
accept Church’s thesis, K is decidable if and only if the r.e. set Tk is re-
cursive. It was shown in Corollary 3.46 that every consistent extension K of
the theory RR is recursively undecidable, that is, Tk is not recursive.
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Much more general results along these lines can be proved (see Smullyap,
1961; Feferman, 1957; Putnam, 1957; Ehrenfeucht and Feferman, 1960; ang
Myhill, 1955). For example, if K is a first-order theory with equality in the
language %4 of arithmetic: (1) if every recursive set is expressible in K, thep
K is essentially recursively undecidable, that is, for every consistent exten.
sion K' of K, Tk is not recursive (see Exercise 5.58); (2) if every recursive
function is representable in K and K satisfies conditions 4 and 5 on page
208, then the set T is creative. For further study of r.e. sets, see Post (1944)
and Rogers (1967); for the relationship between logic and recursion theory,
see Yasuhara (1971) and Monk (1976, part III).

Exercises

5.55 Let K be a first-order theory with equality in the language %, of
arithmetic. A number-theoretic relation B(xy,...,x,) is said to be weak/y
expressible in K if there is a wf #(x1,...,x,) of K such that, for any naturgi]
numbers ky, ..., k,, B(ki,..., k&) if and only if Fg HB(ky, ... ,?E,,).

(a) Show that, if K is consistent, then every relation expressible in K is
weakly expressible in K.

(b) Prove that, if every recursive relation is expressible in K and K is o-
consistent, every r.e. set is weakly expressible in K. (Recall that, when
we refer here to a r.e. set B, we mean the corresponding relation
‘xeB.)

(¢) If K has a recursive vocabulary and a recursive axiom set, prove that
any set that is weakly expressible in K is r.e.

(d) If formal number theory S is w-consistent, prove that a set B is r.e. if
and only if B is weakly expressible in S.

5.56

(a) (Craig, 1953) Let K be a first-order theory such that the set 7x of Godel
numbers of theorems of K is r.e. Show that K is recursively axiom-
atizable.

(b) For any wf # of formal number theory S, let ## represent its trans-
lation into axiomatic set theory NBG (see page 269. Prove that the set
of wis & such that Fnps ## is a (proper) recursively axiomatizable
extension of S. (However, no ‘natural’ set of axioms for this theory is
known.)

5,57 Given a set 4 of natural numbers, let u € A* if and only if u is a Godel

number of a wf #(x;) and the G&édel number of #(%) is in 4. Prove that, if 4

is recursive, then A* is recursive.

5.58 Let K be a consistent theory in the language ¥4 of arithmetic.

(a) Prove that (7T )* is not weakly expressible in K.

(b) If every recursive set is weakly expressible in K, show that K is re-
cursively undecidable.
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(¢) If every recursive set is expressible in K, prove that K is essentially
recursively undecidable.

55 OTHER NOTIONS OF COMPUTABILITY

Computability has been treated here in terms of Turing machines because
Turing’s definition is probably the one that makes clearest the equivalence
between the precise mathematical concept and the intuitive notion.t We
already have encountered other equivalent notions: standard Turing com-
putability and partial recursiveness. One of the strongest arguments for the
rightness of Turing’s definition is that all of the many definitions that have
been proposed have turned out to be equivalent. We shall present several of
these other definitions.

Herbrand—Godel Computability

The idea of defining computable functions in terms of fairly simple systems

of equations was proposed by Herbrand, given a more precise form by

Godel (1934), and developed in detail by Kleene (1936a). The exposition

given here i1s a version of the presentation in Kleene (1952, chap. XI.)
First let us define the terms.

. All variables are terms.

. 01is a term.

. If tis a term, then (7)' is a term.

I h,..., ty are terms and f7' is a function letter, then filt, .. ) is a
term.

P W DN =

For every natural number n, we define the corresponding numeral i as
follows: (1) 0is 0 and (2) n + [ is (7). Thus, every numeral is a term.

An eguation is a formula r = 5 where r and s are terms. A system E of
equations is a finite sequence ry = 851,/ = 53,.. ., = 5 of equations such
that ry is of the form f}’(rl, ey t)-

The function letter /7 is called the principal letter of the system E. Those
function letters (if any) that appear only on the right-hand side of equations
of E are called the initial letters of E; any function letter other than the
principal letter that appears on the left-hand side of some equations and also
on the right-hand side of some equations is called an auxifiary letter of E.

We have two rules of inference:

tFor further justification of this equivalence, see Turing (1936-37), Kleene
(1952, pp. 317-323, 376-381) and Mendelson (1990).
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Ri: An equation e; is a consequence of an equation e; by Ry if and only if
e, arises from e; by substituting any numeral 7 for all occurrences of 5

variable.

R2: An equation e is a consequence by Ry of equations f3" (71, ..., Hy) =5
and » = s if and only if e arises from » =5 by replacmg One or more
occurrences of f" (71, . .., 7in) in s by p, and r = s contains no variables,

A proof of an equation e from a set B of equations is a sequence ¢y, ... , ¢,
of equations such that e, is e and, if 0<<i<n, then: (1) ¢; is an equation of B,
or (2) e; is a consequence by R; of a preceding equation e;(j < i), or 3) e;is a
consequence by Ry of two preceding equations e; and e,,(j < i,m < i). We
use the notation B |- ¢ to state that there is a proof from B of e (or, in other
words, that e is derivable from B).

Example
Let E be the system

fila) = (1)
SR x2) = 7 (2, x2, £ (1))
The principal letter of E is f1 , f{ is an auxiliary letter, and f3 is an initial
letter. The sequence of equations
[, x2) = 112 %2, f{ (1))
fi2ox) = £7(2,%, 1(2))
RQD=E1A2)
fll(xl) = (x})’
@)= (e, f(D=3)
2N =213
is a proof of f2(2,1) = f{(2,1,3) from E.

A number-theoretic partial function ¢(x1,...,x,) is said to be computed
by a system E of equations if and only if the pnnmpal letter of E is a letter f"
and, for any natural numbers &,..., k,, p,

Et+f] (ky, ... ky) = pif and only if ¢(ky, ..., k) =p

The function ¢ is called Herbrand-Gddel-computable (for short, HG-com-
putable) if and only if there is a system E of equations by which ¢ is
computed.

Examples
1. Let E be the system f{(x;) = 0. Then E computes the zero function Z.

Hence, Z is HG-computable.
2. Let E be the system fl(x1) = (x;). Then E computes the successor
function N. Hence, &V is HG-computable.
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3. Let E be the system f"(x1,...,%,) = x;. Then E computes the projection
function U'. Hence, U} is HG-computable.
4. Let E be the system

SE0x1,0) =x,
Siler, (2)) = (fEx1,x2))

Then E computes the addition function.
5. Let E be the system

fl)=0
fi(x) =x

The function ¢(x;) computed by E is the partial function with domain {0}
such that ¢(0) =0. For every k#£0, E I f] (k) =0 and E  f} (k) = k.
Hence, ¢(x;) is not defined for x; # 0.

Exercises

5.59
(a) What functions are HG-computable by the following systems of

equations ?
@ f0)=0, fl((x))=x
@) fP(x1,0)=x1, f{(0,x2)=0, fi((x)(x))=170r1,%2)
(i) f1(n)=0, fl(x)=0
(IV) flz(xlao) = X1, flz(xly (x2),) = (flz(xlaxQ))’J .f]l (—xl) :flz(xlaxl)

(b) Show that the following functions are HG-computable.
@®  a—xl

Gi)  x1 - f
_ J0 ifxiseven
<60 (iii) o(x) = { 1 ifxis odd

(a) Find a system E of equations that computes the r-place function that is
nowhere defined.

(b) Let f be an n-place function defined on a finite domain. Find a system
of equations that computes f.

() If f(x) i1s an HG-computable total function and g(x) is a partial func-
tion that coincides with f(x) except on a finite set 4, where g is unde-
fined, find a system of equations that computes g.

PROPOSITION 5.22

Every partial recursive function is HG-computable.
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Proof

(a) Examples 1 -3 above show that the initial functions Z, N and U” are HG-
computable.

(b) (Substitution rule (IV).) Let @(x1,...,x,) = (¥ (x1,-..,%,), ...,
W (%1,. .-, %)) where 1, ¥y, . ... ¥, have been shown to be HG-computable,
Let E; be a system of equations computing ¥, with principal letter 7, and
let E,11 be a system of equations computing i, with principal letter f,,,;. By

changing indices we may assume that no two of Ey,...,E, 1 have any
function letters in common. Construct a system E for ¢ by listing
Ei,...,Bpy1 and then adding the equation f ,(x),...,x)= ™
] 7 " m+1
P, Xa)y e (X, -2, %)), (We may assume that /7., does not oc-
cur in Ey, ... Epyr.) It is clear that, if go(kl,.;: ) =p, then E I 42
(kt,....ku) =p. Conversely, if E +fl  (ki,...,k,)=p, then E
i, k) = EF Sk, k) =P, and E - £ (B, ..., P,
=p. Hence, it readily follows that EiF f'(ki,-..,k:) =P, ..., B,k

;f(%l,...,%,,) =pn. and E, /2 .(p1,...,P,) =P. Consequently, W,

(kty.- k) =p1y o ¥ulk, - k) =pa and  y(pr,...,pm) =p.  So,
¢(ki,...,k;) = p. [Hints as to the details of the proof may be found in

Kleene (1952, chap. XI, especially, pp. 262-270).] Hence, ¢ is HG-com-
putable.
(c) (Recursion rule (V).) Let

@X1y .3 Xn, 0) =YXy, -2y x)
Q(x1y ey XX 1) =91,y Xagt, @(x1, - oo, Xnp1)
where i and ¢ are HG-computable. Assume that E; is a system of equations
computing ¥ with principal letter /7' and that E; is a system of equations
computing ¢ with principal letter f72. Then form a system for computing ¢
by adding to E; and E,
A Geny ey %0, 0) = f1H(x0, - vy %)
B g ey Xy (xni1)) = 200 e X, S (1, - - X))

(We assume that E; and E, have no function letters in common.) Clearly, if
ok, ... by, k) = p, then E + f"*(ky, ...k, k) =p. Conversely, one can
prove easily by induction on k that, if E + f"'(ky,... k,,k) =P, then
o(k,..., ki, k) = p. Therefore, ¢ is HG-computable. (The case when the
recursion has no parameters is even easier to handle.)

(d) (p-operator rule (VI).) Let o(xi,...,x,) = w((x1,--.,%,y) =0)
and assume that v is HG-computable by a system E; of equations with
principal letter f1"+1- By parts (a)-(c), we know that every primitive recursive
function is HG-computable. In particular, multiplication is HG-comput-
able; hence, there is a system E, of equations having no function letters in
common with E; and with principal letter f7 such that E; - f2(ky, k) = pif
and only if k| - ki = p. We form a system E; by adding to E; and E; the
equations

“
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3n+l(xl,--.,xn,0) — 1
f;}n+l(x[5 -t 5x1” (xll+1),) = ﬁ(ﬁl+l (xl‘) === 3x11!x?l+i)7f;r+l(xlj R 1xnxn+l))

One can prove by induction that E; computes the function
Il (.. x,,,y)' that is, Bs+ f3*+'(ki,...,k,, k) =p if and only if
I, <Zw(k1, .., ku,¥) = p. Now construct the system E by adding to E; the
equations

f‘?((xl),: 0,.1'3) =X3
;r(xh s an) :fg(_f;,+l(x11 - 7xn)xn+l)1f;+l (xl, c ey Xy (anrl)’)yxn—H)

Then E computes the function ¢(x1, ..., %) = w(Y(x1, . - -, %, 3) = 0). If py
Wk, ... kayy) =0) =g, then Ey '1+1(k1, Ky, @) =7, where p+1 =
quw(zq, . n,y) and E, I—f’“(kl, .. ,,,q) — 0. Hence, EW I—f;’
(ki, . . kn)—f4(p’ 0,7). But, E I—_f;l(p’ 0 q)—q, and so, E F fJ'(ki, ..

k) =g. Conversely, if E - f2(ky,... k,) =4, then E \ f3(#, 0 ,G) = q,
where Bs b ik, ...k, g) = (M) and Es+ [k, ... k. T) = 0.
Hence, HJ,<qx//(k1, .. ,,,y) =m+1#£0and ] ,<Q+1l,b(k1, i k,z,y) = 0. So,
I,D(kla- --:kmy) :I'é 0 fOI' Yy < q, and lnh(kl) v mQ) = 0. ThllS HJ’(‘ﬁ(kl,

ka,y) = 0) = ¢g. Therefore, ¢ is HG—Computable.

We now shall proceed to show that every HG-computable function is
partial recursive by means of an arithmetization of the apparatus of Her-
brand-Godel computability. We shall use the same arithmetization that was
used for first-order theories (see Section 3.4). (We take the symbol / to be an
abbreviation for f]. Remember that » = s is an abbreviation for 42(r,s). The
only individual constant is 0.) In particular, the following relations and
functions are primitive recursive (see pages 192-4):

FL(x): x is the Godel number of a function letter
(B)y (), o x=148(2-F) Ay >0n2>0)

EVbl(x): x is the Gddel number of an expression consisting of a variable

EFL(x): x is the Gdédel number of an expression consisting of a function
letter

Nu(x): x is the Godel number of a numeral

Trm(x): x is the Gédel number of a term

Num(x) = the Gédel number of the numeral x

Arg(x) = the number of arguments of a function letter, f, if x is the G&del
number of f

x * y = the Gddel number of an expression AB if x is the Gddel number of
the expression 4 and y is the Gédel number of B

Subst(x,y,u,v): v is the Gbdel number of a variable x;, u is the Gdédel
number of a term ¢, y is the G6del number of an expression 4, and x is
the G6del number of the result of substituting ¢ for all occurrences of x;
in %
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The following are also primitive recursive:
Eqt(x): x is the Go6del number of an equation:
£4(x) = 3 ATrm((x),) A Trm((x),) A (x), = 99
(Remember that= is A%, whose Godel number is 99.)

Syst(x): x is the G6del number of a system of equations:
(V) < ra BG((®),) A FLI((%) 140~ 1)1)0)
Occ(u, v): 1 is the Godel number of a term 7 or equation B and v is the Gédel
number of a term that occurs in 7 or 8:
(Trm(w) V Eqt(u)) A Trm(v) A (), ., (), o (u=x*xvxy
Vu=xxvVu=vxyVu=ro)
Cons; (4, v): u is the Godel number of an equation e;, v is the G6del number
of an equation e;, and e is a consequence of e; by rule Ry:
Eqt(u) A Eqt(p) A (), <u(3y)y <»{(Nu(y) A Subst(v, 1, y,x) A Occ(u, x))
Consy(u,z,v): u, z, v are Godel numbers of equations e, e, e, respec-
tively, and e3 is a consequence of ¢; and ¢; by rule Ry:
Eqt{x) A Eqt(z). A Eqt{v) A —(3x), _,(EVDI(x) A Oce(z, x))
AFL(((2)1)) A (¥X)g <x<m((z),)"FL(((Z)1)x)
A (Vx)x<Jﬁ((z)2)_'FL(((Z)2)x) A Oce((n),, (2);)
A, <@ ci () = y# (2)y ¥ w A v = 27300 5Oy
(), = (), A v =2730h5Eh))

Ded(u,z): u is the Godel number of a system of équations E and z is the
Godel number of a proof from E:

Syst(z)A(Vx), < £1(2) ((3“’)w<//,(u) (1), = (2),
V (), < Consi((2),, (2),) V (), < (Ip), . Consa((2),, (2),, (2),))
Su(tt,X1, ... ,Xn,2) : uis the Gédel number of a system of equations E whose

principal letter is of the form f7, and z is the G6del number of a proof
from E of an equation of the form f7(%1,...,%,) = p:

Ded(u, z) A Argr ()40~ 1)1)0 = 71 A (((2) 49 - 1)1 )0

= (=110 A (D0 <y < (@) gy ) FAUE sy - D1 )y)

ANU(((2) g0 =1)2) A (D sy =11 = 2(ray1)ido 5 23 5 NOMED) 4 57

" 2Num(x3) +27 % o x27 g oNum(x) o 23

Remember that g{() = 3,9()) =5 and g(,) =17.

K
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Ux) = wy<x(Num(y) = ((x), 4(;»)*1)2)- (If x is the Godel number of a proof
of an equation » = p, then U(x) = p.)

PROPOSITION 5.23

(Kleene, 1936a) If ¢(x1, ... ,x,) is HG-computable by a system of equations
E with G6del number e, then

@(x1,. .- %) = UQuy(Sa(e,x1, . - -, %0, ¥)))

Hence, every HG-computable function ¢ is partial recursive, and, if ¢ is
total, then ¢ is recursive.

Proof

@(ky, ... kn) = p if and only if E & f7(ky,..., k) =P, where f7 is the
principal letter of E. ¢(k,...,k) is defined if and only if
(Iy)Sale, ki, .. k). ok, ... k) is defined, uy(Si(e, ki,... ks, ))1s the
Godel number of a proof from E of an equation fjf' (k1,-..,ky,) = p. Hence,
U(uw(S.u(e, ka, ...k, ¥))) =p = @(ky,... k). Also, since S, is primitive
recursive, y(S,(e,x1,...,%,,y)) 1s partial recursive. If ¢ is total, then
(vx1) ... (Vx)(Ty)Sule, %1, . . ., %, ¥); hence, py(Sy(e,x1,...,%,,y)) is recur-
sive, and then, so is U(wy(S,(e,x1,...,%n¥)))

Thus, the class of HG-computable functions is identical with the class of
partial recursive functions. This is further evidence for Church’s thesis.

Markov algorithms

By an algorithm in an alphabet A we mean a computable function 2 whose
domain is a subset of the set of words of A and the values of which are also
words in A. If P is a word in A, 2 is said to be applicable to P if P is in the
domain of 2; if 2 is applicable to P, we denote its value by 2(P). By an
algorithm over an alphabet A we mean an algorithm 2 in an extension B of
A.T Of course, the notion of algorithm is as hazy as that of computable
function.

Most familiar algorithms can be broken down into a few simple steps.
Starting from this observation and following Markov (1954), we select a
particularly simple operation, substitution of one word for another, as the
basic unit from which algorithms are to be constructed. To this end, if P and
Q are words of an alphabet A, then we call the expressions P — Q and
P — - Q productions in the alphabet A. We assume that ‘—’ and ‘- are not
symbols of A. Notice that P or Q is permitted to be the empty word. P — Q

tAn alphabet B is an extension of A if A C B.
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is called a simple production, whereas P — - Q is a terminal production. Leg
us use P — (-) Q to denote either P — Q or P — - Q. A finite list of pro-
ductions in A

Pr —=() @
P, — () Q
PJ' _’ () Qr

is called an algorithm schema and determines the following algorithm 9y
in A. As a preliminary definition, we say that a word T occurs in a word
Q if there are words U, V (either one possibly the empty word A) such
that Q = UTV. Now, given a word P in A: (1) We write U: P23 if none
of the words Pj,...,P, occurs in P. (2) Otherwise, if m is the least in-
teger, with [ <m<r, such that P,, occurs in P, and if R is the word that
results from replacing the leftmost occurrence of P, in P by Q,,, then we
write

(a) W:PHR
if P, — (-) Q,, is simple (and we say that 2 simply transforms P into R);
(b) A:PF.R

if P, — (-) Q,, is terminal (and we say that 2 terminally transforms P into
R). We then define A:P} R to mean that there is a sequence
Ro, Rl: veny Rk such that:

(i) P=R,.

(i) R=Ry.

(].ll) For Oéj-.{k—z, A Rj [ Rj+1.

(iv) Either 2 : Ry H Ry or N : Ry F - Ry, (In the second case, we write
A:PE-R.)

We set 2A(P) =R if and only if either A:P[- R, or A: PR and
2 : RO. The algorithm thus defined is called a normal algorithm (or a
Markov algorithm) in the alphabet A.

The action of 2 can be described as follows: given a word P, we find the
first production P,, — (-) Q,, in the schema such that P,, occurs in P. We
then substitute Q,, for the leftmost occurrence of P,, in P. Let R; be the new
word obtained in this way. If P,, — (-} Q,, was a terminal production, the
process stops and the value of the algorithm is Ry. If P, — (-) Q,, was
simple, then we apply the same process to R as was just applied to P, and so
on. If we ever obtain a word R; such that 21 : R;3, then the process stops
and the value 2(P) is R;. 1t is possible that the process just described never
stops. In that case, 2 is not applicable to the given word P.

Our exposition of the theory of normal algorithms will be based on
Markov (1954).
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Examples

1. Let A be the alphabet {b, c}. Consider the schema
b-—-A
c—cC

The normal algorithm A defined by this schema transforms any word
that contains at least one occurrence of b into the word obtained by
erasing the leftmost occurrence of b. 2 transforms the empty word A into
itself. A is not applicable to any non-empty word that does not contain b.

. Let A be the alphabet {ag,ay,...,a,}. Consider the schema

a0—>A

aIHA

a, = A

We can abbreviate this schema as follows:
E— A (Ein A)

(Whenever we use such abbreviations, the productions intended may be
listed in any order.) The corresponding normal algorithm transforms
every word into the empty word. For example,

N :ajarajaszag - ajaa a3 F azajaz Hazas Fas A and : A, Hence,
QI(aiagalag;ao) = A.

. Let A be an alphabet containing the symbol a;, which we shall abbre-
viate |. For natural numbers », we define 7 inductively as follows: 0 =|
and 7+ [ =7 |. Thus, I = ||, 2 =|||, and so on. The words 7 will be called
numerals. Now consider the schema A — - |, defining a normal algorithm
A. For any word P in A, A(P) =| P.I In particular, for every natural
number n, A7) =n + 1.

.Let A be an arbitrary alphabet {ag,ay,... ,apy. Given a word
P=aj;a; --a;,let P=a,; ---a; a; be the inverse of P. We seek a nor-
mal algorithm 2 such that 2(P) = P. Consider the following (abbrevi-
ated) algorithm schema in the alphabet B = Au{e, B}.

(a) oo— P

(b) PE—E¢B (£in A)

(© Pa—pP

d Pp—-A

€) ong—&om (&min A)
(f) A - o

TTo see this, observe that A occurs at the beginning of any word P, since

P = AP.
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This determines a normal algorithm A in B. Let P =a;a; ---a; be any
word in A. Then 2 : P + P by production (f). Then, «P & aj0a5a;,...a i
aja,0@pay, .. -ay. . Fajag, .. .a50a,, all by production (e). Thuys,
WU: Plajaj...a;0a,. Then, by production (f), U: P aaya, ...
a;0a;j,. Applying, as before, production (e), U: P ajay, ... a;,0a;, e,
Iterating this process, we obtain 2 : P |- caj,ca, 0. ..0a;0a). Then, by
production (f), U : P |r awajoa;, 0. .. 0a;0a;, and, by production (a),
A: P Pajcay, o...ca;0a;. /-}pplying productions (b) and (c) and §-
nally (d), we arrive at 2 : P |= - P. Thus, 2 is a normal algorithm over A
that inverts every word of A.

Exercises

5.61 Let A be an alphabet. Describe the action of the normal algorithms
given by the following schemas.

(a) Let Q be a fixed word in A and let the algorithm schema be: A — - QQ,
(b) Let Q be a fixed word in A and let & be a symbol not in A. Let
B = Au{«}. Consider the schema

ok — Eo (& in A)
«—-Q

Ao

() Let Q be a fixed word in A. Take the schema
E— A (€ in A)
A—-Q

(d) Let B= Au{[}. Consider the schema

E-| (EmA-{})

A -
5.62 Let A be an alphabet not containing the symbols o, f,y. Let B=
Au{a} and C = Au{, B, 7}

(a) Construct a normal algorithm 2 in B such that U(A)=A and
W(EP) = P for any symbol £ in A and any word P in A. Thus, 2 erases
the first letter of any non-empty word in A.

"The distinction between a normal algorithm in A and a normal algorithm over
A is important. A normal algorithm in A uses only symbols of A, whereas a normal
algorithm over A may use additional symbols not in A. Every normal algorithm in A
is a normal algorithm over A, but there are algorithms in A that are determined by
normal algorithms over A but that are not normal algorithms in A (for example, the
algorithm of Exercise 5.62(d)).

"3
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(b) Construct a normal algorithm D in B such that D(A) =A and
D(PE) = P for any symbol € in A and any word P in A. Thus, D erases
the last letter of any non-empty word in A.

(c) Construct a normal algorithm € in B such that €(P) equals A if P
contains exactly two occurrences of o« and G(P) is defined and is not
equal to A in all other cases.

(d) Construct a normal algorithm % in C such that, for any word P of A,

B(P) =
5.63 Let A and B be alphabets and let « be a symbol in neither A nor B. For
certain symbols aj,...,a; in A, let Qy, ..., Q; be corresponding words in B.

Consider the algorithm that associates with each word P of A the word
Su bél 1A (P) obtained by simultaneous substitution of each Q; for a;
i=1,. k) Show that this is given by a normal algorithm in AuBuU{«}.
5.64 Let H = {|} and M = {|, B}. Every natural number # is represented by
its numeral 7, which is a word in H. We represent every k-tuple
(11,12, .. ., n;) of natural numbers by the word 71B7;B ... B7; in M. We
shall denote this word by (m,m,...,n;). For example, (3,1,2) is ||||B||Bl||-

() Show that the schema

B—B
of| — o
of — - |
A—a

defines a normal algorithm 2z over M such that 2;(77) = 0 for any #, and
21 is applicable only to numerals in M.

(b) Show that the schema

B—B
of -l

A—qo

defines a normal algorithm 2y over M such that Uy (77) =n + 1 for all n,
and Ay is applicable only to numerals in M.

(¢) Letoy,...,0 be symbols not in M. Let 1 < j < k. Let % be the list

0i—t B — op;—1B
O‘2ifl| — 052f|
062i| —r O2;

o B — i1
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If1 < j < kconsider If j= 1, consider If j =k, consider

the algorithm schema the schema the schema
.901 o 4] B - O!;B .9/)1
5 ay| — o] :
i | — o2 St
tgj—1 B — o1 B o2 B — o3 O2k--1 B — o5 B
oy 1] — o A oot | — oty
opj| — |otaj : clar] — |otox
o2 B — opjpt S i1 ox B — o B
i oi2x 1 B — o 1B Oz — -+ A
: otgr—1] — ora| A— oy
S r1 oiox B — oy
tior—1 B — oo B oz B — o B
o1 | — oy oo — - A
oo | — o A — oy
O(sz - (x2kB
ooy, — - A
A— o

Show that the correspondmg normal algorithm QI i1s such that
Q{"( (ny, ..., m) ) =n;; and QI is applicable to only words of the form
(m)-

(d) Construct a schema for a normal algorithm in M transforming (n;, n,)
into |n; — m|.

(e) Construct a normal algorithm in M for addition.

(f) Construct a normal algorithm over M for multiplication.

Given algorithms U and 8 and a word P, we write A(P) ~ B(P) if and
only if either 2 and B are both applicable to P and 21(P) = B(P) or neither
Yl nor B is applicable to P. More generally, if C and D are expressions, then
C =~ D is to hold if and only if neither C nor D is defined, or both C and D
are defined and denote the same object. If A and B are algorithms over an
alphabet A, then we say that U and B are fully equivalent relative to A if
and only if 2(P) = B(P) for every word P in A; we say that 2 and B are
equivalent relative to A if and only if, for any word P in A, whenever 2(P) or
B(P) exists and is in A, then 2(P) ~ B(P).

Let M be the alphabet {], B}, as in Exercise 5.64, and let m be the set of
natural numbers. Given a partial number-theoretic function ¢ of k£ argu-
ments, that is, a function from a subset of w* into ®, we denote by B, the
corresponding function in M; that is, B,((m, ...,m)) = @(ny,...,m)
whenever either of the two sides of the equation is defined. B, is assumed to
be inapplicable to words not of the form (n,, ... ,n;). The function ¢ is said
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to be Markov-computable if and only if there is a normal algorithm 21 over
M that is fully equivalent to B, relative to M.!

A normal algorithm is said to be closed if and only if one of the pro-
ductions in its schema has the form A — - Q. Such an algorithm can end
only terminally — that is, by an application of a terminal production. Given
an arbitrary normal algorithm U, add on at the end of the schema for 2 the
new production A — - A, and denote by . the normal algorithm deter-
mined by this enlarged schema. 21- is closed, and .- 1s fully equivalent to I
relative to the alphabet of 2.

Let us now show that the composition of two normal algorithms is again
a normal algorithm. Let % and B be normal algorithms in an alphabet A.
For each symbol b in A, form a new symbol b, called the correlate of b. Let
A be the alpbabet consisting of the correlates of the symbols of A. We
assume that A and A have no symbols in common. Let « and B be two
symbols not in AUA. Let Gg be the schema of 2. except that the terminal
dot in terminal productions is replaced by o. Let &g be the schema of B-
except that every symbol is replaced by its correlate, every terminal dot is
replaced by B, productions of the form A — Q are replaced by « — «Q, and
productions A — - Q are replaced by o — affQ. Consider the abbreviated
schema

ax —oa (ain A)
va —o@ (ain A)
ab--ab (a, binA)
af—pa (ainA)
Ba—fa (ainA)
ab-sab (a, bin A)

This schema determines a normal algorithm & over A such that
G(P) = B(U(P)) for any word P in A. G is called the composition of U and
B and is denoted BoA. In general, by A,o...c%A; we mean
Wyo(...o(Wzo(Uyo2y))...).

Let ) be an algorithm in an alphabet A and let B be an extension of A. If
we take a schema for 9) and prefix to it the production b — b for each
symbol bin B — A, then the new schema determines a normal algorithm %)y
in B such that 9y(P) =~ Y(P) for every word P in A, and 9y is not appli-

tIn this and in all other definitions in this chapter, the existential quantifier
‘there is” is meant in the ordinary ‘classical’ sense. When we assert that there exists an
object of a certain kind, we do not necessarily imply that any human being has found
or ever will find such an object. Thus, a function ¢ may be Markov-computable
without our ever knowing it to be so.
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cable to any word in B that contains any symbol of B — A. 9y is fully
equivalent to ) relative to A and is called the propagation of 9 onto B.

Assume that 9 is a normal algorithm in an alphabet A; and B is a
normal algorithm in an alphabet A;. Let A = AjUA;. Let Uy and B, be
the propagations of U and B, respectively, onto A. Then the composition
G of Ap and By is called the normal composition of A and B and ig
denoted by B o A. (When A = A;, the normal composition of U and B ig
identical with the composition of ¥ and B; hence the notation Bo A is
unambiguous.) ® is a normal algorithm over A such that G(P) =~ B(2(P))
for any word P in A,, and ® is applicable to only those words P of A
such that P is a word of A, U is applicable to P, and B is applicable 1o
U(P).

PROPOSITION 5.24

Let 9 be a Turing machine with alphabet A. Then there is a normal al-
gorithm 9 over A that is fully equivalent to the Turing algorithm Alg,
relative to A.

Proof

Let D = {qy,,---,q%,}, where qg,...,q, are the internal states of 7 and
qz, = go. Write the algorithm schema for U as follows: First, for all qua-
druples q;a;a;q, of 7, take the production g;a; — q,a;. Second, for each
quadruple g;a;Lq, of 7, take the productions a,q;a; — q,2,a; for all sym-
bols a, of A; then take the production q;a; — q,apa;. Third, for each qua-
druple q;a;Rq, of 7, take the productions g;a;a, — a;q,a, for all symbols 4,
of A; then take the production q;a; — a;q,a. Fourth, write the productions
q;, — - A for each internal state q, of ., and finally take A — qg. This
schema defines a normal algorithm 21 over A, and it is easy to see that, for
any word P of A, Alg(P) = A(P).

COROLLARY 5.25

Every Turing-computable function is Markov-computable.

Proof

Let f(xi,-..,x,) be standard Turing-computable by a Turing machine .7
with alphabet A D {|,B}. (Remember that B is ap and | is a;.) We know
that, for any natural numbers &y, ..., k,, if f(ki,...,k,) is not defined, then
Alg s is not applicable to (ky,...,k,) , whereas, if f(k;,...,k,) is defined,
then
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Algy((kr,.... k) = Ri(ky,...,k) B fku, ..., k)R

where R; and R are (possibly empty) sequences of Bs. Let B be a normal
algorithm over A that is fully equivalent to Alg, relative to A. Let ® be the
normal algorithm over {|,B} determined by the schema

B — o
| —B|
Bl—|B
pB - By
=Bl
yB—7yp
By — - A
B—-A

A—ou

If R, and R, are possibly empty sequences of Bs, then ®, when applied to
R, (ky,...,k) B f(ki,...,k,) Ro, will erase Ry and R;. Finally, let QI:::[%
be the normal ‘projection’ algorithm defined in Exercise 5.64(c). Then the
normal composition ‘i’lﬁi} o ® o B is a normal algorithm that computes f.

Let U be any algorithm over an alphabet A = {a;,...,a; }. We can
associate with U a partial number-theoretic function Yy such that
Yor(n) = m if and only if either » is not the G6del number! of a word of A
and m = 0, or n and m are G6del numbers of words P and Q of A such that
WUP) = Q.

PROPOSITION 5.26

If Wis a normal algorithm over A = {a;,,...,a; }, then Yy is partial re-
Cursive.

Proof

We may assume that the symbols of the alphabet of U are of the form a;.
Given a simple production P — Q, we call 2139(P)59(Q) jt5 index; given a
terminal production P —-Q, we let 2239®)59(Q) pe jts index. If
Py — ()Qq, ..., Pr — (-)Q, is an algorithm schema, we let its index be
2k3k | pk where k; is the index of P; — (-)Q;. Let Word(x) be the recur-
sive predicate that holds if and only if u is the Go6del number of a finite
sequence of symbols of the form a;:

fHere and below, we use the G6del numbering of the language of Turing
computability given in Section 5.3 (p. 321). Thus, the Godel number g(a;) of a; is
7+ 4i. In particular, g(B) = g(ag) = 7 and ¢g(|) = g(a;) = 11.
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0N u=1vV{F2)(z < 6w) = Q)N (y <un(),=7+4y)]

Let ST(x) be the recursive predicate that holds when u is the index of a simple
production: £4(u) =3 A (u)g =1 A Word((u),) A Word((u),). Similarly,
TI(#) is the recursive predicate that holds when # is the index of a terminal
production: £4(u) =3 A (u)y =2 A Word((u);) A Word((u),). Let Ind(x)
be the recursive predicate that holds when « is the index of an algorithm
schema: u > 1 A (Vz)(z < £4(u) = SI((u),) v TI((),)). Let Lsub(x,y, ¢) be
the recursive predicate that holds if and only if e is the index of a production
P — (-)Qandxand y are Godel numbers of words U and V such that P occurs
in U, and V is the result of substituting Q for the leftmost occurrence of P in U:

Word(x) A Word(y) A (SI(e) V THe)) A (Tu), ¢ (F), o (x=u+(e); *v
ANy =ux(e)yxvA~(Fw), o (Fz), . x=wx(e) xzAw < 1))

Let Occ(x, y) be the recursive predicate that holds when x and y are Gédel
numbers of words U and V such that V occurs in U: Word(x) A Word(y)
A@D), < (F2), < (x = v*y=*z). Let End(e, z) be the recursive predicate that
holds when and only when z is the Gddel number of a word P, and e is the
index of an algorithm schema defining an algorithm 2 that cannot be ap-
plied to P (i.e, A : PI):Ind(e) A Word(z) A (W), < sy —Oce(z, ((€),,),).
Let SCons(e, y, x) be the recursive predicate that holds if and only if ¢ is the
index of an algorithm schema and y and x are G6del numbers of words V
and U such that V arises from U by a simple production of the schema:

Ind(e) A Word(x) A Word(y) A (Fv), . ) [SI{(e),) A Lsub(x, y, (e),)
A (V2), ,—Occ(x, ((e).)1)]

Similarly, one defines the recursive predicate TCons(e, y,x), which differs
from SCons(e, y,x) only in that the production in question is terminal. Let
Der(e, x, y) be the recursive predicate that is true when and only when e is the
index of an algorithm schema that determines an algorithm %I, x is the
Godel number of a word Uy, y is the G6del number of a sequence of words
Ug, ..., Ur(k > 0) such that, for 0<i < k=1,U;,, arises from U; by a
production of the schema, and either 2 : Uz - -Up or A : U, F Ug and
A : Up J(or,if £ =0, just A: Up):

Ind(e) A Word(x) A (V2), s,y Word((y),) A (¥)g =x
AVZ), < ra(y)=25C0nS(e, (3) 41, (¥).) A (£4(y) = 1 A End(e, (x)))
V(¢4(y) > 1L A {TCons(e, (¥)r05 =15 (Mg -2) V (SCons(e, (¥)r4, -1
(M esyy=2) A End(e, (¥)45-1)) 1]

Let Wa(u) be the recursive predicate that holds if and only if u is the
Godel number of a word of A:

uFON(u=1v (vz)z<[/§(1|)((l£)z =T7+4;,V---v(u),=T7+4;)
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Let e be the index of an algorithm schema for 2. Now define the partial
recursive  function  @(x) = wy((Wa(x) A Der(e,x,y)) V TWa(x)). But
Yor(x) = (@(¥))s4 (90 ~1- Therefore, iy is partial recursive.

COROLLARY 5.27

Every Markov-computable function ¢ is partial recursive.

Proof

Let 21 be a normal algorithm over {1, B} such that ¢(ki,...,k,) =1 if and
only if A((ky,...,k,)) = 1. By Proposition 5.26, the function v is partial
recursive. Define the recursive function y(x) = Z4(x)=1. If x = T}, p!!,
then » = p(x). (Remember that a stroke |, which is an abbreviation for ay,
has GOdel number 11. So, if x is the Gb&del number of the numeral 7, then
y{x) = n.) Let &(ky, ..., k,) be the Godel number of (ki,...,k):

6(](11 L 1kn) :g((kl, e ,k")) = g(‘kl"_lBlkZJr]B .. .Bikn—H)
k1 bl

=1 - i) - (J [ Prrnsa)™) - Brrtass) -+
=0 i=0

byt

7 i
) (.pk1+---+kn+2n;3) : (H (pi+k1+...+k"+2";2) )
i=0

& is clearly recursive. Then ¢ = y o g © & is partial recursive.

The equivalence of Markov computability and Turing computabihty
follows from Corollaries 5.25 and 5.27 and the known equivalence of Turing
computability and partial recursiveness. Many other definitions of com-
putability have been given, all of them turning out to be equivalent to
Turing computability. One of the earliest definitions, A-computability, was
developed by Church and Kleene as part of the theory of A-conversion (see
Church, 1941). Its equivalence with the intuitive notion of computability is
not immediately plausible and gained credence only when A-computability
was shown to be equivalent to partial recursiveness and Turing comput-
ability (see Kleene, 1936b; Turing, 1937). All reasonable variations of Tu-
ring computability seem to yield equivalent notions (see W. Oberschelp,
1958; Fischer, 1965).

5.6 DECISION PROBLEMS

A class of problems is said to be unsolvable if there is no effective procedure
for solving each problem in the class. For example, given any polynomial
£(x) with integral coefficients (for example, 3x° — 4% + 7x% — 13x + 12), is

361




COMPUTABILITY

there an integer k such that f(k) = 07 We can certainly answer this question
for various special polynomials, but is there a single general procedure that
will solve the problem for every polynomial f(x)? (The answer is given
below in paragraph 4.)

If we can arithmetize the formulation of a class of problems and assign to
each problem a natural number, then this class is unsolvable if and only if
there is no computable function / such that, if » is the number of a given
problem, then k(n) yields the solution of the problem. If Church’s thesis is
assumed, the function 4 has to be partial recursive, and we then have a more
accessible mathematical question.

Davis (1977b) gives an excellent survey of research on unsolvable prob-
lems. Let us look at a few decision problems, some of which we already have
solved.

1. Is a statement form of the propositional calculus a tautology? Truth
tables provide an easy, effective procedure for answering any such question.

2. Decidable and undecidable theories. Is there a procedure for deter-
mining whether an arbitrary wf of a formal system & is a theorem of &7 If
so, & 1s called decidable; otherwise, it is undecidable.

(a) The system L of Chapter 1 is decidable. The theorems of L are the
tautologies, and we can apply the truth table method.

(b) The pure predicate calculus PP and the full predicate calculus PF were
both shown to be recursively undecidable in Proposition 3.54.

(c) The theory RR and all its consistent extensions (including Peano
arithmetic S) have been shown to be recursively undecidable in Cor-
ollary 3.46.

(d) The axiomatic set theory NBG and all its consistent extensions are
recursively undecidable (see pages 269-70).

(e) Various theories concerning order structures or algebraic structures
have been shown to be decidable (often by the method of quantifier
elimination). Examples are the theory of unbounded densely ordered
sets (see page 116 and Langford, 1927), the theory of abelian groups
(Szmielew, 1955), and the theory of real closed fields (Tarski, 1951). For
further information, consult Kreisel and Krivine (1967, Chap. 4);
Chang and Keisler (1973, Chap. 1.5); Monk (1976, Chap. 13); Ershov
et al. (1965); Rabin (1977); and Baudisch er al. (1985). On the other
hand, the undecidability of many algebraic theories can be derived from
the results in Chapter 3 (see Tarski, Mostowski and Robinson, 1953,
I1.6, III; Monk, 1976, Chap. 16).

3. Logical validity. 1s a given wf of quantification theory logically valid?
By Goédel’s completeness theorem (Corollary 2.19), a wf is logically valid if
and only if it is provable in the full predicate calculus PF. Since PF is
recursively undecidable (Proposition 3.54), the problem of logical validity is
recursively unsolvable.

T
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However, there is a decision procedure for the logical validity of wifs of
the pure monadic predicate calculus (Exercise 3.59).

There have been extensive investigations of decision procedures for
various important subclasses of wfs of the pure predicate calculus; for ex-
ample, the class (V 3 V) of all closed wfs of the form (Vx)(3y)(Vz)%(x,y,z),
where %(x, y,z) contains no quantifiers. See Ackermann (1954), Dreben and
Goldfarb (1980) and Lewis (1979).

4. Hilbert’s Tenth Problem. If f(x,, ... ,x,) is a polynomial with integral
coefficients, are there integers ky, ... ,k, such that f(k, ... ,k,) = 07 This
difficult decision problem is known as Hilbert’s tenth problem.

For one variable, the solution is easy. When aq, ay, ... , g, are integers,
any integer x such that &' + ...+ aix +ay =0 must be a divisor of ay.
Hence, when gy # 0, we can test each of the finite number of divisors of «.
If ag = 0, then x = 0 is a solution. However, there is no analogous proce-
dure when the polynomial has more than one variable. It was finally shown
by Matiyasevich (1970) that there is no decision procedure for determining
whether a polynomial with integral coefficients has a solution consisting of
integers. His proof was based in part on some earlier work of Davis, Put-
nam and Robinson (1961). The proof ultimately relies on basic facts of
recursion theory, particularly the existence of a non-recursive r.e. set
(Proposition 5.21(e)). An up-to-date exposition may be found in Mat-
iyasevich (1993).

5. Word problems.

(a) Semi-Thue Systems. Let B={b),...,b,} be a finite alphabet.
Remember that a word of B is a finite sequence of elements of B.
Moreover, the empty sequence A is considered a word of B. By a pro-
duction of B we mean an ordered pair {u,v), where u and v are words of
B. If p = {u,v) is a production of B, and if w and w' are words of B, we
write w =, w' if W' arises from w by replacing a part u of w by v. (Recall
that u is a part of w if there exist (possibly empty) words w; and w, such
that w = wjuws.)

By a semi-Thue systent on B we mean a finite set & of productions of B.
For words w and w' of B, we write w =4 W' if there is a finite sequence wy,
Wi, ... ,Wr(k>0) of words of B such that w=wy,w' =wy, and, for
0 <i < k, there is a production p of % such that w; =, w;, ;. Observe that
w = ¢ W for any word w of B. Moreover, if w; = ¢ w; and wa = w3, then
w; =« ws. In addition, if w; = w, and w3 =& Wy, then W w3 = ¢ Wowy.
Notice that there is no fixed order in which the productions have to be
applied and that many different productions of & might be applicable to the
same word.

By a Thue system we mean a semi-Thue system such that, for every
production {(u,v), the inverse (v,u) is also a production. Clearly, if & is a
Thue system and w = W, then w' =, w. Hence, = 1s an equivalence
relation on the set of words of the alphabet of &.
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Example

Let &% be the Thue system that has alphabet {b} and productions (b*, A)
and (A, b°). It is easy to see that every word is transformable into b2, b, or
A.

By a semigroup we mean a non-empty set G together with a binary op-
eration on G (denoted by the juxtaposition uv of elements u and v) that
satisfies the associative law x(yz) = (xy)z. An element y such that
xy = yx = x for all x in G is called an identity element. If an identity element
exists, it is unique and is denoted 1.

A Thue system & on an alphabet B determines a semigroup G with an
identity element. In fact, for each word w of B, let [w] be the set of all words
w' such that w =, W'. [w] is just the equivalence class of w with respect to
=¢. Let G consist of the sets [w] for all words w of B. If U and V are
elements of G, choose a word uin U and a word vin V. Let UV stand for
the set Juv]. This defines an operation on G, since, if U is any word in U and
V' is any word in V, [uv] = [u'V].

Exercises

5.65 For the set G determined by the Thue system &, prove:

(a) (UV)W = U(VW) for all members U, V and W of G.

(b) The equivalence class [A] of the empty word A acts as an identity
element of G.

5.66

(2) Show that a semigroup contains at most one identity element.

(b) Give an example of a semigroup without an identity element.

A Thue system & provides what is called a finite presentation of the
corresponding semigroup G. The elements by, ..., b, of the alphabet of &
are called generators, and the productions {u,v) of & are written in the form
of equations u = v. These equations are called the relations of the presen-
tation. Thus, in the example above, b is the only generator and b®> = A can
be taken as the only relation. The corresponding semigroup is a cyclic group
of order 3.

If & is a semi-Thue or Thue system, the word problem for & is the
problem of determining, for any words w and w', whether w =4 W/,

Exercises

5.67 Show that, for the Thue system &7 in the example, the word problem
is solvable.

5.68 Consider the following Thue system &. The alphabet is {a,b,c,d} and
the productions are {ac, A),{ca, A), (bd, A}, {db, A), (a®, A), (b* A),
(ab, ba), and their inverses.

-~
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(a) Show that c =¢ a? and d =« b.

(b) Show that every word of & can be transformed into one of the words a,
aZ, b, ab, a%b, and A.

(c) Show that the word problem for & is solvable. [Hint: To show that the
six words of part (b) cannot be transformed into one another, use the
cyclic group of order 6 generated by an element g, with a = g* and
b=g]

PROPOSITION 5.30

(Post, 1947) There exists a Thue system with a recursively unsolvable word
problem.

Proof
Let  be a Turing machine with alphabet {ag,ai, ... ,a,} and internal
states {qg,q;, --- ,q,}- Remember that a tape description is a sequence of

symbols describing the condition of & at any given moment; it consists of
symbols of the alphabet of 7 plus one internal state q;, and ¢ is not the last
symbol of the description. 7 is in state q;, scanning the symbol following ¢,
and the alphabet symbols, read from left to right, constitute the entire tape
at the given moment. We shall construct a semi-Thue system & that will
reflect the operation of .7 : each action induced by quadruples of .7 will be
copied by productions of . The alphabet of % consists of
{ag, a1, .-« ,81,90,915 - - 1 Qs P50, E}. The symbol B will be placed at the
beginning and end of a tape description in order to ‘alert’ the semi-Thue
system when it is necessary to add an extra blank square on the left or right

end of the tape. We wish to ensure that, if W — W', then BW{ =« BW'f.
2
The productions of & are constructed from the quadruples of .7 in the

following manner.

(a) If q;a;a,q, is a quadruple of 7, let {q;a;,a,q;) be a production of &.

(b) If qa;Rq, is a quadruple of 7, let (q;a:a¢,a:q,a¢) be a production of &
for every a;. In addition, let (q;a;8a;,q,a9f) be a production of &. (This
last production adds a blank square when & reaches the right end of
the tape and is ordered to move right.)

(€) Ifq;aLq, is a quadruple of 7, let {acq;a;, q,a¢a;) be a production of &
for each a;. In addition, let {Bq;a;, Bq,a¢a;) be a production of &. (This
last production adds a blank square to the left of the tape when this is
required.)

(d) If there is no quadruple of ~ beginning with q;a;, let & contain the
following productions: (q;a;,d), (dag, 6) for all ag; {6 B, E), (a.&,8) for
all a; and (BE,&).

365
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J stops when it isin a state g, scanning a symbol a;, such that q;a; does not
begin a quadruple of 7. In such a case, & would replace ¢;a; in the fina]
tape description of 4 by d. Then & proceeds to annihilate all the other
symbols to its right, including the rightmost 3, whereupon it changes to £, ¢
then annihilates all symbols to its left, including the remaining . The final
result is £ alone. Hence:

(1) For any initial tape description o, & halts when and only when Boff =4 &

Now, enlarge & to a Thue system %' by adding to & the inverses of all
the productions of &. Let us show that:

(V) For any initial tape descriptioncof 7, Bef =+ Lif and only if pop = &

Clearly, if foff =« E, then Pof = E. Conversely, assume for the sake of
contradiction that faff = £, but it is not the case that Buff =« &. Consider
a sequence of words leading from Baf to £ in &

PBoff = Wo g Wi =gt 0 Sgr Wil =g Wy =&

Here, each arrow is intended to indicate a single application of a production.
It is clear from the definition of & that no production of & applies to £
alone. Hence, the last step in the-sequence w,_; = ¢ £ must be the result of a
production of &. So, W, =« £. Working backward, let us find the least p
such that w,, =5 &. Since we have assumed that it is not true that Buff = £,
we must have p > 0. By the minimality of p, it is not true that w,—1 = W,
Therefore, w, = w,—1. Examination of the productions of & shows that
each of the words wg,wp, ..., W, must contain exactly one of the symbols
do,dy, - - -,y 0, OF &, and that, to such a word, at most one production of
& is applicable. But, w, is transformed into both w,,; and w,_; by pro-
ductions of &. Hence, wW,_1 = Wy+1. But, Wpy =« §. Hence, w,_ | =« &,
contradicting the definition of p. This establishes (V).

Now, let . be a Turing machine with a recursively unsolvable halting
problem (Proposition 5.14). Construct the corresponding Thue system &' as
above. Then, by ([J) and (V), for any tape description o,  halts if and only
if Bap = o E. So, if the word problem for &' were recursively solvable, the
halting problem for 4 would be recursively solvable. (The function that
assigns to the Godel number of o the Gbdel number of {Buf, £) is clearly
recursive under a suitable arithmetization of the symbolism of Turing ma-
chines and Thue systems.) Thus, &' has a recursively unsolvable word
problem.

That the word problem is unsolvable even for certain Thue systems on a
two-element alphabet (semigroups with two generators) was proved by Hall

(1949).
(b) Finitely presented groups. A finite presentation of a group consists of a
finite set of generators gp,...,g, and a finite set of equations W, =

Wi, ...,W, =W between words of the alphabet B={g], ...,

T



DECISION PROBLEMS ! | 367

g.er!, ... ,g7'}. What is really involved here is a Thue system & with
alphabet B, productions {W1,W}), ..., (W,, W!) and their inverses, and all
the productions {g;g; !, A), (g 'g;, A) and their inverses. The corresponding
semigroup G is actually a group and is called a finitely presented group. The
word problem for G (or, rather, for the finite presentation of G) is the word
problem for the Thue system ..

Problems that concern word problems for finitely presented groups are
generally much more difficult than corresponding problems for finitely
presented semigroups (Thue systems). The existence of a finitely presented
group with a recursively unsolvable word problem was proved. indepen-
dently, by Novikov (1955) and Boone (1959). Other proofs have been given
by Higman (1961), Britton (1963), and McKenzie and Thompson (1973).
(See also Rotman, 1973.) Results on other decision problems connected with
groups may be found in Rabin (1958). For corresponding problems in
general algebraic systems, consult Evans (1951).



Our treatment of quantification theory in Chapter 2 was confined to first-
order logic, that is, the variables used in quantifiers were only individual
variables. The axiom systems for formal number theory in Chapter 3 and set
theory in Chapter 4 also were formulated within first-order languages. This
restriction brings with it certain advantages and disadvantages, and we wish
now to see what happens when the restriction is lifted. That will mean
allowing quantification with respect to predicate and function variables.
Emphasis will be on second-order logic, since the important differences
between first-order and higher-order logics already reveal themselves at the
second-order level. Our treatment will offer only a sketch of the basic ideas
and results of second-order logic.

Let L1C be the first-order language in which C is the set of non-logical
constants (that is, individual constants, function letters, and predicate let-
ters). Start with the language L1C, and add function variables gf and pre-
dicate variables RY, where n and i are any positive integers.! (We shall use
g W ... to stand for any function variables of » arguments, and
R", 8", ..., X", Y", Z" to stand for any predicate variables of n arguments.
We shall also omit the superscript » when the value of » is clear from the
context.) Let («), stand for any sequence of individual variables u,, ..., u,}
and let V{u), stand for the expression (V1) ... (V). Similarly, let (¢), stand
for a sequence of terms 7y, ..., t,. We expand the set of terms by allowing
formation of terms g”({¢),), where g” is a function variable, and we then
expand the set of formulas by allowing formation of atomic formulas

TWe use bold letters to avoid confusion with function letters and predicate
letters. Note that function letters and predicate letters are supposed to denote specific
operations and relations, whereas function variables and predicate variables vary
over arbitrary operations and relations.

Hn particular, (x), will stand for xi, ..., x,.

D
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A?({t),) and R"((#},) where (), is any sequence of the newly enlarged set of
terms, 47 is any predicate letter of C and R” is any n-ary predicate variable.
Finally, we expand the set of formulas by quantification (Vg")% and
(VR with respect to function and predicate variables.

Let L2C denote the second-order language obtained in this way. The
language 1.2C will be called a full second-order language. The adjective ‘full’
indicates that we allow both function variables and predicate variables and
that there is no restriction on the arity #» of those variables. An example of a
non-full second-order language is the second-order monadic predicate lan-
guage in which there are no function letters or variables, no predicate letters,
and only monadic predicate variables.t

It is not necessary to take = as a primitive symbol, since it can be defined
in the following manner.

DEFINITIONS

t = u stands for (VR)(R!7 < R'y)
g" = h" stands for V{x), (g"({x),) =h"({x),))
R” = S" stands for V{x} (R"((x),) & S"({x),))

STANDARD SECOND-ORDER SEMANTICS FOR L2C

For a given language 1.2C, let us start with a first-order interpretation with
domain D. In the first-order case, we defined satisfaction for the set > of
denumerable sequences of members of D. Now, instead of >, we use the set
> of functions s that assign to each individual variable a member of D, to
each function variable g” some n-ary operation s(g") on D, and to each
predicate variable R” some n-ary relation? s(R") on D. For each such s, we
extend the denotations determined by s by specifying that, for any terms

f, ..., t, and any function variable g", the denotation s(g"(¢, ..., t,)) is
s(g")(s(t1), . ... s(t,)). The first-order definition of satisfaction is extended as
follows:

(a) For any predicate variable R" and any finite sequence (f), of terms, s
satisfies R"({#),) if and only if (s(t1), ..., 5(t,)) € s(R");

IThird-order logics are obtained by adding function and predicate letters and
variables that can have as arguments individual variables, function and predicate
letters, and second-order function and predicate variables, and then allowing
guantification with respect to the new function and predicate variables. This pro-
cedure can be iterated to obtain nth-order logics for all n > 1.

tAn n-ary relation on D is a subset of the set D" of n-tuples of D. When n = 1, an
n-ary relation is just a subset of D.
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(b) s satisfies (Vg")4 if and only if s satisfies # for every 5" in Z that
agrees with s except possibly at g”;

(¢) s satisfies (VR")Z if and only if ' satisfies 4 for every s’ in Z that
agrees with s except possibly at R”.

The resulting interpretation .# is called a standard interpretation of the
given language.

A formula # is said to be frue for a standard interpretation .# (written,

A | B)if A is satisfied by every 5 in 2 2 1s false for .#% if no sequence s ip
> satisfies 4.

‘A formula 4 is said to be standardly valid if 9 is true for all standard
interpretations. 4 is said to be standardly satisfiable it 4 is satisfied by some
s in Z in some standard interpretation. A formula € is said to be a stap-
dard logical consequence of a set I' of formulas if, for every standard in-
terpretation, every s in E that satisfies every formula in T also satisfies ¢,
A formula 4 is said to standar dly logically imply a formula % if € is a logical
consequence of {#}.

The basic properties of satisfaction, truth, logical consequence, and lo-
gical implication that held in the first-order case (see (1)-(XI) on pp. 61-3)
also hold here for their standard versions. In particular, a sentence # is
standardly satisfiable if and only if 4 is true for some standard interpreta-
tion.

We shall see that second-order languages have much greater expressive
power than first-order languages. This is true even in the case where the set
C of non-logical constants is empty. The corresponding language 120} will be
denoted 1.2 and called the pure full second-order language. Consider the
following sentence in 1.2.

(1) (Fe) (L) (VR)[(R(x) A (W) (R(v) = R{g()))) = (Vx)R(x)]

This sentence is true for a standard interpretation if and only if the domain
D is finite or denumerable. To see this, consider an operation g and element
x given by this sentence. By induction, define the sequence x, g{x),
g(g(x)), g(g(g(x))),..., and let R be the set of objects in this sequence. R is
finite or denumerable, and (1) tells us that every object in D is in R. Hence,
D = R and D is finite or denumerable. Conversely, assume that D is finite or
denumerable. Let F' be a one-one function from D onto @ (when D is
denumerable) or onto an initial segment {0, 1, ..., n} of @ (when D is
finite).! Let x = F!(0) and define an operation g on D in the following
manner. When D is denumerable, g(¢) = F~1(F(u) + 1) for all  in D; when
D is finite, let g(u) = F7'(F(u) + 1)) if F(u) < n and g(u) = x if F(u) =n.
With this choice of g and x, (1) holds.

tRemember that the domain of an interpretation is assumed to be non-empty.
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Exercise

A.1 Show that there is no first-order sentence % such that & is true in an
interpretation if and only if its domain is finite or denumerable. [Hint:
Use Corollary 2.22.]

Let us introduce the abbreviations Y' C X' for (vu)(Y!(n) = X'(v)),
NonEm(X!) for (3u)(X!'(x)), and Asym(R?, X!) for (Vu)(Vo)(X'(z) AX' ()
A R%(u, v) = —-R?*(v, u)). Let R? We X! stand for the second-order formula

Asym(R?, XH) A (vYH)(Y! € X' A NonEm(Y!)
= (EIu)(YI(u) A (Vo) (YI (VyAv#u= R? (1, v))))

Then R? We X! is satisfied by an assignment in a given standard inter-
pretation if and only if the binary relation assigned to R? well-orders the set
assigned to X!.

Let Suc(u, v, R?) stand for R*(v, u) A (Vw)-(R%(v, w) A R*(w, u)), and
let First(u, R*) stand for (Vv)(v # u = R*(, v)). Consider the following
second-order formula.

(2) (AR?)(IXN)(R? We X! A (V)X () A (Vo) (-First(u, R?)
= (Av)Suc(u, v, R?)) A (Fu)(Vo)(v # u = R (v, 1))

This is true for a standard interpretation if and only if there is a well-
ordering of the domain in which every element other than the first is a
successor and there is a last element. But this is equivalent to the domain
being finite. Hence, (2) is true for a standard interpretation if and only if its
domain is finite.

Exercise

A.2 (a) Show that, for every natural number n, there is a first-order sentence
the models of which are all interpretations whose domain contains at
least n elements. (b) Show that, for every positive integer n, there is a
first-order theory the models of which are all interpretations whose
domain contains exactly # elements. (c) Show that there is no first-order
sentence % that is true for any interpretation if and only if its domain is
finite.

The second-order sentence (1) A —(2) is true for a standard interpretation
if and only if the domain is denumerable.

Exercises

A.3 Show that there is no first-order sentence % the models of which are all
interpretations whose domain is denumerable.
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A.4 Construct a second-order formula Den(X') that is satisfied by an gs.
signment in a standard interpretation if and only if the set assigned t¢
X! is denumerable.

SECOND-ORDER THEORIES

We define a second-order theory in a language L2C by adding the following
new logical axioms and rules to the first-order axioms and rules.

(Bda) (VR")Z(R") = #(W"), where Z(W") arnises from A(R") by
replacing all free occurrences of R” by W” and W” is free for R” in
B(R").

(Bdb) (Vg")#(g") = #(W"), where Z(h") arises from #(g") by replacing all
free occurrences of g" by h" and k" is free for g" in #(g").

(BSa) (VR")(# = ¥) = (# = (VR")¥), where R" is not free in 4.

(BSb) (Vg (F = %) = (# = (Vg")¥), where g" is not free in 4.

COMPREHENSION SCHEMA (COMP)

(IR™")(V{x), }(R"((x),) < #), provided that all free variables of # occur in
(x), and R" is not free in #.

FUNCTION DEFINITION SCHEMA (FUNDEF)

(YRD[(0),) )R (8),03) = GV IR (), 2(00),)]

NEW RULES

(Gen2a) (VR")# follows from #
(Gen2b) (Vg")# follows from %

Exercises

A.5 Show that we can prove analogues of the usual equality axioms (A6)-
(A7) in any second-order theory:

1 Ft=trhg'=g"AnR"=R"

(i) Ft=s= (%t ) = PB(t, 5)), where (¢, 5) arises from (¢, t) by re-
placing zero or more occurrences of ¢ by s, provided that s is free for ¢ in
Bt, ).
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(iii) - g" =h" = (#(g", g") = #(g", h")), where #(g", h') arises from
%(g", g") by replacing zero or more occurrences of g by k", provided
that h" is free for g" in %(g", g").

(iv) FR"=S" = (#(R", R") = #(R", §")), where #(R", §") arises from
Z(R", R") by replacing zero or more occurrences of R” by §”, provided
that S” is free for R” in #(R", R").

A.6 Formulate and prove a second-order analogue of the first-order de-
duction theorem (Proposition 2.5).

Let PC2 denote the second-order theoty in the langnage L2C without any
non-logical axioms. PC2 is called a second-order predicate calculus.

PROPOSITION A.1 (SOUNDNESS)

Every theorem of PC2 is standardly valid.

Proof

That all the logical axioms (except Comp and FunDef) are standardly valid
and that the rules of inference preserve standard validity follow by argu-
ments like those for the analogous first-order properties. The standard va-
lidity of Comp and FunDef follows by simple set-theoretic arguments.

We shall see that the converse of Proposition A.1 does not hold. This will
turn out to be not a consequence of a poor choice of axioms and rules, but
an inherent incompleteness of second-order logic.

Let us consider the system of natural numbers. No first-order theory will
have as its models those and only those interpretations that are isomorphic
to the system of natural numbers. However, a second-order characteriza-
tion of the natural numbers is possible. Let AR2 be the conjunction of the
axioms (S1)-(S8) of the theory S of formal arithmetic (see p. 155), and the
following second-order principle of mathematical induction:

(289)  (VRH[R'(0) A (Vx)(R'(x) = R'(x")) = (vx)R'(x)]

Notice that, with the help of (Comp), all instances of the first-order axiom
schema (S9) can be derived from (259).}

Let K be any first-order theory in the language of arithmetic whose axioms are
true in the system of natural numbers. Add a new individual constant # and the
axioms b # 7 for every natural number ». The new theory K* is consistent, since any
finite set of its axioms has a model in the system of natural numbers. By Proposition
2.17, K* has a model, but that model cannot be isomorphic to the system of natural
numbers, since the object denoted by b cannot correspond to a natural number.

Tn AR2, the function letters for addition and multiplication and the associated
axioms (S5)—(S8) can be omitted. The existence of operations satisfying (S5)—(58) can
then be proved. See Mendelson (1973, Sections 2.3 and 2.5).
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For any standard interpretation that is a model of AR2 we can prove the
following result that justifies inductive definition.

PROPOSITION A.2 (ITERATION THEOREM)

Let .# be a standard interpretation that is a model of AR2, and let D be the
domain of .#. Let ¢ be an element of an arbitrary set ¥ and let g be a
singulary operation of W. Then there is a unique function F from D into W

such that D(0) = ¢ and (Vx)(x € D = F(x") = g(F({x))).t

Proof

Let € be the set of all subsets H of D x W such that (1, ¢) € H and
(Vx)(Vw)({x, w) € H = (x', g(w)) € H). Note that D x W € €. Let F be the
intersection of all sets H in €. We leave it to the reader to prove the fol-
lowing assertions:

(a) Fe®

(b) Fis a function from D into W. [Hint: Let B be the set of all x in D for
which there is a unique w in W such that (x, w) € F. By mathematical
induction, show that B = D.]

(©) F(1)=c.

(d) F(x')=g(F(x)) for all x in D.

The uniqueness of F' can be shown by a simple application of mathematical
induction.

PROPOSITION A.3 (CATEGORICITY OF AR2)

Any two standard interpretations .# and .#~ that are models of AR2 are
isomorphic.

Proof

Let D and D* be the domains of .# and .#", 0 and 0% the respective zero
elements, and f and f* the respective successor operations. By the iteration
theorem applied to .4, with W =D* ¢=0* and g = f*, we obtain a
function F from D into D* such that F(0) = 0% and F( f(x)) = f*(F(x)) for
any x in D. An easy application of mathematical induction in .#™* shows that
every element of D* is in the range of F. To show that F is one—one, apply

tIn order to avoid cumbersome notation, ‘0’ denotes the interpretation in .# of
the individual constant ‘0’, and ‘x”” denotes the result of the application to the object
x of the interpretation of the successor function.

-,
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mathematical induction in .# to the set of all x in D such that
(W € DAy #x) = F(x) £ FO)

Let .o/ consist of the non-logical constants of formal arithmetic (zero,
successor, addition, multiplication, equality). Let .4” be the standard inter-
pretation of L2.«7 with the set of natural numbers as its domain and the
usual interpretations of the non-logical constants.

PROPOSITION A.4

Let 4 be any formula of L2.¢/. Then 4 is true in .4/ if and only if AR2 = %
is standardly valid.

Proof

Assume AR2 = 4 is standardly valid. So, AR2 = % is true in ./". But AR2
is true in .4". Hence, 4 is true in .4". Conversely, assume 4 is true in .4". We
must show that AR2 = 4 is standardly valid. Assume that AR2 is true in
some standard interpretation .# of L2.«/. By the categoricity of AR2, . is
isomorphic to .4”. Therefore, since 4 is true in A", 4 is true in .#. Thus,
AR2 = 4% is true in every standard interpretation of L2/, that is,
AR2 = % is standardly valid.

PROPOSITION A.5

(a) The set SV of standardly valid formulas of L2/ is not effectively
cnumerable.

(b) SV is not recursively enumerable, that is, the set of Godel numbers of
formulas in SV is not recursively enumerable.

Proof

(a) Assume that SV is effectively enumerable. Then, by Proposition A4, we
could effectively enumerate the set 7% of all true formulas of first-
order arithmetic by running through SV, finding all formulas of the
form AR2 = %4, where 4 is a formula of first-order arithmetic, and
listing those formulas Z. Then the theory 9 % would be decidable,
since, for any closed formula %, we could effectively enumerate .9 #
until either ¥ or its negation appears. By Church’s thesis, 7 % would be
recursively decidable, contradicting Corollary 3.46 (since 7 % is a
consistent extension of RR).

(b) This follows from part (a) by Church’s thesis.

TDetails of the proof may be found in Mendelson (1973, Section 2.7).
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The use of Church’s thesis in the proof could be avoided by a consistent
use of recursion-theoretic language and results. The same technique as the
one used in part (a), together with Tarski’s theorem (Corollary 3.44), would
show the stronger result that the set (of G6del numbers) of the formulas in
SV is not arithmetical.

COROLLARY A.6

The set of all standardly valid formulas is not effectively (or recursively)
enumerable.

Proof

An enumeration of all standardly valid formulas would yield an enumera-
tion of all standardly valid formulas of L2.<Z, since the set of formulas of
L.2.¢/ is decidable (recursively decidable).

COROLLARY A.7

There is no axiomatic formal system whose theorems are the standardly
valid formulas of L2.¢7.

Proof

If there were such an axiom system, we could enumerate the standardly valid
formulas of 1.2.«Z, contradicting Corollary A.5.

PROPOSITION A.8 INCOMPLETENESS
OF STANDARD SEMANTICS)

There is no axiomatic formal system whose theorems are all standardly valid
formulas.

Proof

If there were such an axiom system, we could enumerate the set of all
standardly vahd formulas, contradicting Corollary A.6.

Proposition A.8 sharply distinguishes second-order logic from first-order
logic, since Godel’s completeness theorem tells us that there is an axiomatic
formal system whose theorems are all logically valid first-order formulas.

-
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Here are some additional important properties enjoyed by first-order the-
ories that do not hold for second-order theories.

(I) Every consistent theory has a model. To see that this does not hold
for second-order logic (with ‘model’ meaning ‘model in the sense of the
standard semantics’), add to the theory AR2 a new individual constant 5.
Let 7 be the theory obtained by adding to AR?2 the set of axioms b +£ 7 for
all natural number #. 7 is consistent. (Any proof involves a finite number of
the axioms b # f. AR2 plus any finite number of the axioms b # 7 has the
standard interpretation as a model, with b mmterpreted as a suitable natural
number. So, every step of the proof would be true in 4. Therefore, a
contradiction cannot be proved.). But 4 has no standard model. (If .# were
such a model, AR2 would be true in ./#. Hence, .4 would be isomorphic to
A and so, the domain of ./#/ would consist of the objects denoted by the
numerals 7i. But this contradicts the requirement that the domain of .#
would have to have an object denoted by ‘4’ that would satisfy the axioms
b # n for all natural numbers n.)

(II) The compactness property: a set I of formulas has a model if and
only if every finite subset of I" has a model. A counterexample is furnished
by the set of axioms of the theory 9 in (1) above.

(II) The upward Skolem-Ldwenheim theorem: every theory that has an
infinite model has models of every infinite cardinality. In second-order logic
this fajls for the theory AR2. By Proposition A.3, all models of AR must be
denumerable.

(IV) The downward Skolem—Léwenheim theorem: every model .# of a
theory has a countable elementary submodelt. In second-order logic, a
counterexample is furnished by the second-order categorical theory for the
real number system.! Another argument can be given by the following
considerations. We can express by the following second-order formula
2(Y', X!) the assertion that Y! is equinumerous with the power set of X!

(AR (V1) (vx2) (X (1) A XA (x2) A (WPH(YH(3) = [R¥(x1,3) &
R¥(x2,7)]) = x1 =) AYWHW! C Y = (3 x)(X'()A
(W)(W' () & R (x,)))]

R? correlates with each x in X! the set of all y in ¥' such that R?(x, ). Now
consider the following sentence Cont:

(XN EYH Den(X') A (W)Y (3) A 2(Y!, X))

tFor a definition of elementary submodel, see Section 2.13,

iThe axioms are those for an ordered field (see p.99) plus a second-order
completeness axiom. The latter can be taken to be the assertion that every nonempty
subset that is bounded above has a least upper bound (or, equivalently, that no
Dedekind cut is a gap). For a proof of categoricity, see Mendelson [1973], Section
54.
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Then Cont is true in a standard interpretation if and only if the domain of
the interpretation has the power of the continuum, since the power set of a
denumerable set has the power of the continuum. See Shapiro (1991, Section
5.1.2) and Garland (1974) for more information about the definability of
cardinal numbers in second-order logic.

Exercises

A.7 Show that a sentence of pure second-order logic is true in a standard
interpretation .# if and only if it is true in any other standard inter-
pretation whose domain has the same cardinal number as that of ..

A.8 (a) Show that there is a formula Cont (X') of pure second-order logic

that is satisfied by an assignment in an interpretation if and only if
the set assigned to X' has the power of the continuum.

(b) Find a sentence CH of pure second-order logic that is standardly
valid if and only if the continuum hypothesis is true.!

HENKIN SEMANTICS FOR L2C

In light of the fact that completeness, compactness and the Skolem-Low-
enheim theorems do not hold in second-order logic, it is of some interest
that there 1s a modification of the semantics for second-order logic that
removes those drawbacks and restores a completeness property. The fun-
damental jdeas sketched below are due to Henkin (1950).

Start with a first-order interpretation with domain D. For each positive
integer n, choose a fixed collection Z(n) of n-ary relations on D, and a fixed
collection & (n) of n-ary operations on D. Instead of ) | , we now use the set
ZH of assignments s in Z such that, for each predlcazte variable R”, s(R")
is in 2(n) and, for each function variable g", s(g") isin & (n). The definitions
of satisfaction and truth are the same as for standard semantics, except that
Zz is replaced by Z Such an interpretation will be called a Henkin
interpretation. Using a Henkin interpretation amounts to restricting the
ranges of the predicate and function variables. For example, the range of a
predicate variable R! need not be the entire power set (D) of the domain
D. In order for a Henkin interpretation 3 to serve as an adequate semantic
framework, we must require that all instances of the comprehension schema
and the function definition schema are true in #°. A Henkin interpretation

tWe take as the continuum hypothesis the assertion that every subset of the set
of real numbers is either finite or denumerable or is equinumerous with the set of all
real numbers.

-,
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for which this condition is met will be called a general model. A formula that
is true in all general models will be said to be generally valid, and a formula
that is satisfied by some assignment in some general model will be said to be
generally satisfiable. We say that % generally implies € if % = € is generally
valid, and that & is generally equivalent to € if # < € is generally valid.

A standard interpretation on a domain D determines a corresponding
general model in which Z(n) is the set of all n-ary relations on D and # (n) is
the set of all n-ary operations on D. Such a general model is called a full
general model. Standard satisfaction and truth are equivalent to Henkin
satisfaction and truth for the corresponding full general model. Hence, the
following statements are obvious.

PROPOSITION A.9

(a) Every generally valid formula is also standardly valid.
(b) Every standardly satisfiable formula is generally satisfiable.

We also have the following strengthening of Proposition Al.

PROPOSITION A.10

Every theorem of PC2 is generally valid.

Proof

The general validity of (Comp) and (FunDef) follows from the definition of
a general model. The proofs for the other logical axioms are similar to those
in the first-order case, as is the verification that general validity is preserved
by the rules of inference.

PROPOSITION A.11 (GENERAL SECOND-ORDER
COMPLETENESS)

The theorems of PC2 coincide with the generally valid formulas of 1L2C.

Proof

Let & be a generally valid formula of L2C. We must show that 4 is a
theorem of PC2. (It suffices to consider only closed formulas.) Assume, for
the sake of contradiction, that 4 is not a theorem of PC2. Then, by the
deduction theorem, the theory PC2 + {~%} is consistent. If we could prove

379
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that any consistent extension of PC2 has a general model, then it would
follow that PC2 -+ {—%} has a general model, contradicting our hypothesis
that 4 is generally valid. Hence, it suffices to establish the following result.

HENKIN’S LEMMA

Every consistent extension 7 of PC2 has a general model.

Proof

The strategy is the same as in Henkin’s proof of the fact that every con-
sistent first-order theory has a model. One first adds enough new individual
constants, function letters and predicate letters to provide ‘witnesses’ for all
existential sentences. For example, for each sentence (3x)%(x) there will be a
new individual constant b such that (3x)%(x) = €(b) can be consistently
added to the theory. (See Lemma 2.15 for the basic technique.) The same
thing is done for existential quantifiers (3g") and (3IR"). Let 7" be the
consistent extension of 4 obtained by adding all such conditionals as ax-
ioms. Then, by the method of Lindenbaum’s lemma (Lemma 2.14), we
inductively extend 4 * to a maximal consistent theory 7 %. A general model
A of F can be extracted from 7. The domain consists of the constant
terms of .7 #. The range of the predicate variables consists of the relations
determined by the predicate letters of 7%, A predicate letter B determines
the relation B# such that B#(r), holds in .# if and only if B¥(f)  is a theorem
of 7#. The range of the function variables consists of the operations de-
termined by the function letters of 7% If f is a function letter of 7#, define
an operation f# by letting f#((t),) = f({t),). A proof by induction shows
that, for every sentence €, % is true in .# if and only if ¥ is a theorem of
F#_In particular, all theorems of J~ are true in .#.

The compactness property and the Skolem—Ldéwenheim theorems also
hold for general models. See Manzano (1996, Chapter 1V), or Shapiro
(1991) for detailed discussions.f

COROLLARY A.12

There are standardly valid formulas that are not generally valid.

fLindstrém (1969) has shown that, in a certain very precise sense, first-order
logic is the strongest logic that satisfies the countable compactness and Skolem-—
Léwenheim theorems. So, general models really are disguised first-order models.

i
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Proof

By Corollary A.7, there is no axiomatic formal system whose theorems are
the standardly valid formulas of L2.«/. By Proposition A.11, the generally
valid formulas of L2/ are the theorems of the second-order theory Ps??2.
Hence, the set of standardly valid formulas of L.2.¢7 is different from the set
of generally valid formulas of L2.¢7. Since all generally valid formulas are
standardly valid, there must be some standardly valid formula that is not
generally valid.

We can exhibit an explicit sentence that is standardly valid but not
generally valid. The Godel-Rosser incompleteness theorem (Proposition
3.38) can be proved for the second-order theory AR2. Let # be Rosser’s
undecidable sentence for AR2.1 If AR2 is consistent, 2 is true in the stan-
dard model of arithmetic. (Recall that # asserts that, for any proof in AR2
of Z, there is a proof in AR2, with a smaller G6del number, of -Z. If AR2
is consistent, # 1s undecidable in AR2 and, therefore, there is no proof in
AR2 of #, which makes # trivially true.) Hence, AR2 = & is standardly
valid, by Proposition A.4. However, AR2 = 2 is not generally valid. For, if
AR2 = # were generally valid, it would be provable in P.</2, by Proposi-
tion A.11. Hence, #Z would be provable in AR2, contradicting the fact that it
is an undecidable sentence of AR2.

Exercise

A9 (a) Show that the second-order theory AR2 is recursively undecid-
able.
(b) Show that the pure second-order predicate calculus P.c72 is re-
cursively undecidable.?

It appears that second-order and higher-oider logics were the implicitly
understood logics of mathematics until the 1920s. The axiomatic char-
acterization of the natural numbers by Dedekind and Peano, the axiomatic
characterization of the real numbers as a complete ordered field by Hilbert
in 1900, and Hilbert’s axiomatization of Euclidean geometry in 1902 (in the
French translation of his original 1899 book) all presupposed a second-
order logic in order to obtain the desired categoricity. The distinction be-
tween first~-order and second-order languages was made by Lowenheim
(1915) and by Hilbert in unpublished 1917 lectures, and was crystal-clear in

tWe must assume that AR is consistent.

{The pure second-order monadic predicate logic MP2 (in which there are no
nonlogical constants and no function variables, and all second-order predicate
variables are monadic) is recursively decidable. See Ackermann (1954) for a proof.
The earliest proof was found by Lowenheim (1915), and simpler proofs were given
by Skolem (1919) and Behmann (1922).
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Hilbert and Ackermann’s (1950),! where the problem was posed about the
completeness of their axiom system for first-order logic. The positive sol-
tion to this problem presented in G&del (1930), and the compactness and
Skolem-Ldwenheim theorems that followed therefrom, probably made the
use of first-order logic more attractive. Another strong point favoring first-
order logic was the fact that Skolem in 1922 constructed a first-order system
for axiomatic set theory that overcame the imprecision in the Zermelo and
Fraenkel systems.! Skolem was always an advocate of first-order logic,
perhaps because it yielded the relativity of mathematical notions that Sko-
lem believed in. Philosophical support for first-order logic came from WV,
Quine, who champijoned the position that logic is first-order logic, and that
second-order logic is just set theory in disguise.

The rich lodes of first-order model theory and proof theory kept logicians
busy and satisfied for over a half-century, but recent years have seen g
revival of interest in higher-order logic and other alternatives to first-order
logic. and the papers in the book Model-Theoretic Logics (edited by Barwise
and Feferman (1985)) offer a picture of these new developments.® Barwise
(1985) lays down the challenge to the old first-order orthodoxy, and Shapiro
(1991) and Corcoran (1987) provide philosophical, historical and technical
support for higher-order logic. Of course, we need not choose between first-
order and higher-order logic; there is plenty of room for both.

tHilbert and Ackermann (1950) is a translation of the second (1938) edition of a
book which was first published in 1928 as Grundziige der theoretischen Logik.

tSee Moore (1988) and Shapiro (1991) for more about the history of first-order
logic. Shapiro (1991) is the most reliable and thorough study of the controversies
involving first-order and second-order logic.

*Van Benthem and Doets (1983) also provides a high-level survey of second-
order logic and its ramifications.

.



Exercises
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CHAPTER 1
11 4 B
T T F
F T T
T F T
F F F
124 B 14 A=B (4=B)Vv 4
T T F T T
FT T T T
T F F F F
F F T T T
1.3 (A= B)AA4)
TTTTT
FTT FF
TFF FT
FTF FF
14 (a) (4 = (—B) A((—4) = (—B)))
(©) (4= B), A: x is prime, B: x is odd.
(d) (4 = B), A: the sequence s converges,

B: the sequence s is bounded.
© (4 (BA(CAD))
A: the sheikh is happy,
B: the sheikh has wine,
C: the sheikh has women,
D: the sheikh has song,
(f) (4= B), A: Fiorello goes to the movies.
(i) ((—4) = B), A: Kasparov wins today,
B: Karpov will win the tournament.
1.5 (¢), (d), (f), (g), (1), (J) are tautologies.
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ANSWERS TO SELECTED EXERCISES

1.6 (a), (b), (d), (), (f) are logically equivalent pairs.

1.11 All except (i).

1.13 Only (¢) and (e).

1.15 (a) (B=>4)NC (e) A< Be ~(CVD)

(c) Drop all parentheses. (g) ~(——(BV C) < (B < (C))

1.16 (a) (CV((-4)AB)) (© ((C= ((~((4VB)=C))A4)) < b)

1.17 (a) (((=(-4)) & 4) < (BV C)) (d) and (f) are the only ones that are
not abbreviations of statement forms.

118 (a) V= C-4B and vC= AB-DC

(c) (@A) A= B-4C (b)vAVBC
(d) (@) isnot. (ii) (4 = B) = ((B= C) = (-4 = ())

1.19 (f) is contradictory, and (a), (d), (), (g}(J) are tautologies.

1.20 (b)A(d) are false.

1.21 (a) T (b) T (c) indeterminate

1.22 (a)4is T, BisF,and -4v (4= B) is F.

(©)A4isT,CisT,BisT.
1.29 (©) (i) AAN((BACYV(-BA-C)) ([)AABA-C
(iii) =4 V (—lB AC)

1.30 (a) If # is a tautology, the result of replacing all statement letters by
their negations is a.tautology. If we then move all negation signs
outward by using Exercise 1.27 (k) and (1), the resulting tautology
is =% . Conversely, if =4’ is a tautology, let ¥ be ~4'. By the first
part, =%’ is a tautology. But =%’ is ~—4.

(C) (—lA A-B A —|C) \Y (A AB A —ID)

1.32 (a) For figure 1.4:

A\

n B\

1.33 (a), (d) and (h) are not correct.
1.34 (a) Satisfiable: Let 4, B, and C be F, and let D be T.
1.36 For £,

(ANBAC)V(AABAC)V(AA-BAC)V (=4 A—-BA-C)

1.37 For = and v, hotice that any statement form built up using = and Vv
will always take the value T when the statement letters in it are T. In the case
of = and <, using only the statement letters 4 and B, find all the truth
functions of two variables that can be generated by applying — and < any

number of times.
140 (@) 2°=16 (b)2”

"y
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141 A(C,C,C)=~-C and h(B,B,~C) is B= C.

1.42 (b) For —=(4 = B) v (=4 A C), a disjunctive normal form is (4 A =B)V
(=4 A C), and a conjunctive normal formis (4 V C) A (=B V —4)A (=B Vv C).
(c) () For (AAB)V—4,afulldnfis (AAB)V (-4 AB)V (=4 A —-B), and
a full enf is BV 4.

143 (b) (i) Yes. A: T, B: T, C: F (ii) Yes. A: T, B: F, C: T

1.45 (b) A conjunction & of the form B} A ... A B}, where each B; is either
B; or —B;, is said to be eligible if some assignment of truth values to the
statement letters of # that makes 4 true also makes & true. Let & be the

disjunction of all eligible conjunctions.

147 (b) 1.€¥=2 Hypothesis
2. B=% Hypothesis
3. = (¢=9)=>(#=>%) Axiom (A2)
= (# = 9))
4. (€= 2)= (¥ = (¢=2) Axiom (Al)
5 8= (¢=>9) 1, 4, MP
6. (#=%)=> (%= 9) 3,5 MP
1 %=9 2,6, MP
148 (@) |l. 4= B Lemma 1.11(b)
2. =—A4B = (-B = %) Lemma 1.11(c)
3. %= (% = %) 1, 2, Corollary 1.10(a)
4. B = (BVE) 3, Abbreviation
c) I. €= 4% Hypothesis
2. (06 = B) = (~FB = %) Lemma 1.11(e)
3. "% = % 1, 2, MP
4. 6 =€ Lemma 1.11(a)
5. # =% 3, 4, Corollary 1.10(a)
6. € =>AB+--B=>€ 1-5
7. = (% = %) = (~% = 6) 6, deduction theorem
B.H(EVH)= (BVE) 7, abbreviation

1.50 Take any assignment of truth values to the statement letters of 4 that
makes 7 false. Replace in 4 each letter having the value T by 4, V =4, and
each letter having the value F by 4; A —4,. Call the resulting statement form
%. Thus, % is an axiom of L*, and , therefore, -1~ €. Observe that ¥ always
has the value F for any truth assignment. Hence, =% is a tautology. So
-, =% and, therefore, by« —%.

151 (Deborah Moll) Use two truth values. Let = have its usual table and
let — be interpreted as the constant function F. When Bis F, (0B = —-4) =
((-B=A4)= B)is F.

1.52 The theorems of P are the same as the axioms. Assume that P is
suitable for some n-valued logic. Then, for all values &, kxk will be a
designated value. Consider the sequence of formulas %y = 4, %41 = A * %;.
Since there are n" possible truth functions of one variable, among
Ao, . .., B» there must be two different formulas %; and % that determine
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the same truth function. Hence, %; * %; will be an exceptional formula that
is not a theorem.

1.53

Take as axioms all exceptional formulas, and the identity function as

the only rule of inference.

CHAPTER 2

2.1

2.2
2.3

2.6
2.8

29
2.10

2,11
2.12

(@) (V1) (Ai(x1) A (T141(22)))) (B) (V)41 (x2)) & 4](x2))
(d) (1) (V) ((Fxa) 41 (x1)))) = (4l(x2) A (=l (1))

(a) (V1) (4l (1) = 41 (a))) v (3x)Al (x1)

(a) The only free occurrence of a variable is that of x;.

(b) The first occurrence of xj3 is free, as is the last occurrence of x;.
Yes, in parts (a), (¢) and (e)

(a) (Vx)(P(x) = L(x))

(b) (Vx)(P(x) = T1H(x)) or "1(Ix)(P(x) AH(x))

(c) T1(vx)(B(x) = F(x))

(d) (Vx)(B(x) = =F(x)) (e) T{x) = I(x)

(F) (vx)(Vp)(S(x) A D(x,y) = J(»))

(3) (¥x)(=H (x,x) = H(j,x)) or (Vx)(P(x) A ~H(x,x) = H(j,x))

(In the second wf, we have specified that John hates those persons

who do not hate themselves, where P(x) means x is a person.)

(a) All bachelors are unhappy. (c¢) There is no greatest integer.

(a) (i) is satisfied by all pairs (x;,x;) of positive integers such that
xX)-xp > 2.

(i1) is satisfied by all pairs {x;,x;) of positive integers such that
either x; < x; (when the antecedent is false) or x; = x; (when
the antecedent and consequent are both true).

(iii) is true.

(a) Between any two real numbers there is a rational number.
() A sequence s satisfies 14 if and only if s does not satisfy %.

Hence, all sequences satisfy 714 if and only if no sequence satisfies

%; that is, 14 is true if and only if 4 is false.

(II) There 1s at least one sequence s in . If s satisfies #, % cannot be
false for M. If s does not satisfy %, % cannot be true for M.
(IIDIf a sequence s satisfies both % and % = ¢, then s satisfies ¥ by

condition 3 of the definition.

(V) (a) s satisfies # A & if and only if s satisfies 1(# = %)

if and only if s does not satisfy #Z = ¢

if and only if s satisfies #Z but not 1%

if and only if s satisfies # and s satisfies &

(VI)(a) Assume |y #. Then every sequence satisfies 4. In particular,
every sequence that differs from a sequence s in at most the ith
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place satisfies 4. So, every sequence satisfies (Vx;)4; that is,
Fm (Vx:) 2
(b) Assume [ (Vx)4. If s is a sequence, then any sequence that
differs from s in at most the ith place satisfies 4, and, in particular,
s satisfies #. Then every sequence satisfies 4; that is, p 4.
(VIID) Lemma. If all the variables in a term ¢ occur in the list x;,...,x;
(k > 0; when £ =0, r has no varables), and if the sequences s
and &' have the same components in the i th,...,ith places,
then s*(¢) = ()" (¥).
Proof. Induction on the number m of function letter in . Assume
the result holds for all integers less than m.
Case I. t 1s an individual constant a,. Then s*(a,) = (ap)M
(S')*(ap)
Case 2. 1 is a variable x;,. Then 5*(x;)) = s, = 5}, = (¢ ) ()
Case 3. t is of the form f”(tl, ,1,). For q<n each ¢, has fewer
than m function 1etters and all its varlables occur among
Xiyy -y X By 1nduct1ve hypothesm s*(ty) = }/gtq Then

-
(f"(tla e ty)) = (f") (s*(t1),-- -, 5" (1)) = (fn ({s")"(t1)
() (tn)) = (s)" (f’(tl,-- fn))
Pr oof of (vian. Inductlon on the number r of connectives and
quantifiers in 4. Assume the result holds for all g < r.
Case 1. %4 is of the form A;?(tl,..._,r,,); that is, r=0. All the

variables of each # occur among x;,...,x;. Hence, by the
lemma, s*(t,) = (s')*(t;). But s satisfies A"(tl, ., t,) if and only
if (s*(#1),...,5%(t,)) is in (A") that is, 1f and only if

() (1), ..., (s')*(t,,)) is in A")M, which is equivalent to
satisfying A;?(tl, cees ).

Case 2. 9 is of the form 1%.

Case 3. % is of the form € = <. Both cases 2 and 3 are easy.

Case 4. # 1s of the form (Vx;)¥. The free variables of % occur
among x;,,...,%;, and x;. Assume s satisfies 4. Then every se-
quence that differs from s in at most the jth place satisfies €. Let
s* be any sequence that differs from s in at most the jth place.
Let s* be a sequence that has the same components as s in all but
the jth place, where it has the same component as s#, Hence, s
satisfies %. Since 52 and s* agree in the i;th,...,7th and jth
places, it follows by inductive hypothesis that s? satisfies % if
and only if s7 satisfies . Hence, s satisfies . Thus, s satisfies
2. By symmetry, the converse also holds.

(IX) Assume Z is closed. By ( VIII), for any sequence s and ', s satisfies
# if and only if § satisfies #. If =% is not true for M, some
sequence s does not satisfy —4; that is, &' satisfies 4. Hence, every
sequence s satisfies %; that is, =y 4.
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(X) Proof of Lemma 1: induction on the number m of function letters

n ¢.

Case 1. t is a;. Then t' is a;. Hence,

(1) = s (ey) = (@)™ = (¢) (a)) = ()"(0)

Case 2. t is x;, where j # i. Then t” is x;. By the lemma of ( VIII),
s*(t") = (s')"(z), since s and s have the same component in the
Jth place.

Case 3. t is x;. Then t' is u. Hence, s*(t') = s*(u), while (s')*(¢) =
()" (u) = s = 57 (u)-

Case 4. t is of the form f}’(tl,...,t,,). For 1<g<n, let tq’ result

from ¢, by the substitution of u for x;. By inductive hypothesis,
s*(t]) = (s')"(t;). But

(¢ = ST o t) = UM E D08 @)
= (ME) @), - () (@) = () (s 1)) = () (0)

Proof of Lemma 2(a): induction on the number m of connectives
and quantifiers in Z(x;).

Case 1. m = 0. Then #(x;) is Aj,?(tl, ..o ty). Let tq’ be the result of
substituting ¢ for all occurrences of x; in #,. Thus, Z() is
A4tf,...,1,). By Lemma 1, 5°(1)) = (s')(#;). Now, s satisfies
A(t) if and only if (s*(#),...,s*(#;))) belongs to (A}’)M, which is
equivalent to ((s")*(r1),- .., (s")"(#,)) belonging to (A?)M—— that
is, to ¢’ satisfying 4(x;).

Case 2. 9(x;) is —€(x;); this is straightforward.

Case 3. H(x;) 1s €(x;)=>D(x;); this is straightforward.

Case 4. B(x;) is (Vx;)B(x;).

Case 4a. x; is x;. Then x; is not free in #(x;), and (1) is H#(x;).
Since x; is not free in %(x;), it follows by (VIII) that s satisfies
24(t) if and only if s’ satisfies 2 (x;).

Case 4b. x; is different from x;. Since 1 is free for x; in #(x;), ¢ is also
free for x; in (x;).

Assume s satisfies (Vx;)%(¢). We must show that & satisfies
(Vx;)%(x:). Let s differ from s’ in at most the jth place. It
suffices to show that s% satisfies %(x;). Let s® be the same as s7
except that it has the same ith component as 5. Hence, s° is the
same as s except in its jth component. Since s satisfies (Vix;)4(1),
s? satisfies €(f). Now, since 7 is free for x; in (Vx;)¥(x;), t does
not contain x;. (The other possibility, that x; is not free in € (x;),
is handled as in case 4a.) Hence, by the lemma of (VIII),
(s)*(t) = s*(¢). Hence, by the inductive hypothesis and the fact
that s# is obtained from s? by substituting (s®)*(¢) for the ith
component of s?, it follows that s# satisfies %(x;), if and only if
b satisfies %(¢). Since s® satisfies %(t), s* satisfies €(x;).
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Conversely, assume s’ satisfies (Vx;)%(x;). Let s® differ from s
in at most the jth place. Let 5% be the same as s’ except in the jth
place, where it is the same as s*. Then s* satisfies €(x;). As
above, s*(f) = (s*)*(¢). Hence, by the inductive hypothesis, s
satisfies €(¢) if and only if s satisfies %(x;). Since s* satisfies
%(x:),s® satisfies €(¢). Therefore, s satisfies (Vx;)€(r).

Proof of Lemma 2(b). Assume s satisfies (Vx;)Z(x;). We must
show that s satisfies (). Let s’ arise from s by substituting s*(¢)
for the ith component of s. Since s satisfies (Vx;)%(x;) and ¢
differs from s in at most the ith place, s satisfies %#(x;). By
Lemma 2(a), s satisfies Z(t).

2.13 Assume 4 is satisfied by a sequence s. Let s be any sequence. By (VIII),
' also satisfies . Hence, 4 is satisfied by all sequences; that is, Fu 4.
2.14 (a) x is a common divisor of y and z. (d) x; is a bachelor.

2.15 (a) (1) Every non-negative integer is even or odd. True.

(ii) If the product of two non-negative integers is zero, at least one

of them is zero. True. (ii1) 1 is even. False.

2.17 (a) Consider an interpretation with the set of integers as its domain.

Let 4l(x) mean that x is even and let 4}(x) mean that x is odd.

Then (Vx;)4}(x1) is false, and so (Vx;)A4] (x1)==(Vx; )41 (x;) is true.

However, (Vx;)(4}(x))=>4(x1)) is false, since it asserts that all

even integers are odd.

218 (a) [(Vx)~ZB(x;)=>—B(t)|==[B(t)=—(Vx;)~B(x;)] is logically valid
because it is an instance of the tautology (A=—=-B)=—=(B=—4).

By (X), (Vxi)~%#(x;)=—%(t) is logically valid. Hence, by (III),

HB(t)=—(Vx;) ~%(x;) is logically valid.

(b) Intuitive proof: If % is true for all x;, then % 1s true for some x;.

Rigorous proof: Assume (Vx;)#—=-(3x;)% is not logically valid.

Then there is an interpretation M for which it is not true. Hence,

there is a sequence s in »_ such that s satisfies (Vx;)% and s does

not satisfy —(Vx;)—4. From the latter, s satisfies (Vx;)—4. Since s

satisfies (Vx;)%, s satisfies 4, and, since s satisfies (Vx;)—%, s sat-

isfies =4. But then s satisfies both % and -4, which is impossible.
2.19 (b) Take the domain to be the set of integers and let 41 (x) mean that u
is even. A sequence s in which s is even satisfies A1(x;) but does

not satisfy (Vx;)4] (x)).

2.21 (a) Let the domain be the set of integers and let 4%(x,y) mean that

x < y. (b) Same interpretation as in (a).

2.22 (a) The premisses are (i) (Vx)(S(x)= N(x)) and (i) (Vx)(V(x) =

—N(x)), and the conclusion is (Vx)(¥ (x)==—S(x)). Intuitive proof:

Assume V(x). By (i1), =N (x). By (i), =S(x). Thus, =S(x) follows

from ¥V (x), and the conclusion holds. A more rigorous proof can

be given along the lines of (1)~ XI), but a better proof will become
available after the study of predicate calculi.
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2.26 (2) (3x)(Fy) (Al (x) A 4L (»))

227 (a) 1. (‘(/)O(ﬁ:}fg) Hyp

2. (Wx)% Hyp

3. (V)(B=>6)=(B=>%) Axiom (A4)

4, B=—=C 1,3, MP

5. (Vx)HB=—=F Axiom (A4)

6. B 2,5, MP

1. € 4,6, MP

8. (Vx)¥ 7, Gen

9. (Vx)(#=%), (Vx)% + (vx)¥ I 8
10. (Vx)(#B=%) - (Vx)B—=>(Vx)¥ 1-9, Corrollary 2.6
11. b (Vx)(#=€)=((Vx)B=(¥x)¥) 1-10, Corollary 2.6

2.28 Hint: Assume g 4. By induction on the number of steps in the
proof of % in K, prove that, for any variables y,...,y,(n > 0),

Fre (Y1) ... (Vo) ®.

231 (a) 1. (Vx)(Vy)43(x,y) Hyp
2. (V)43 (x, ) 1, Rule A4
3. A%(x,x) 2, Rule A4
4. (Vx)43(x,x) 3, Gen
5. (V) (Vy)A3(x, y) b (Vx)43(x, x) 14
6. F (Vx)(Vy)A%(x, y)=>(¥x) 4} (x, x) 1-5, Corollary 2.6

2.33 (a) b —(Vx)—~Z<=—(Vx)~# by the replacement theorem and the fact
that - -—#<=4%. Replace —(V¥x)-—~4 by its abbreviation (3x)—%.
2.36 (b) (Be)(e > 0 A (V8)(6 > 0=(Bx)(|x — c| < § A ~|f(x) — f(c)] < &)))
2.37 (a) (i) Assume F %. By moving the negation step-by-step inward to
the atomic wfs, show that - -%#*<=%, where ¢ is obtained
from & by replacing all atomic wfs by their negations. But,
from F44 it can be shown that - &. Hence, - —~#*. The converse
follows by noting that (#*)" is 4.
(i) Apply (i) to ~# V €.

239 1. () ()3 (x,y) e=3(x,x)) Hyp
2. (Vx)(43(x, b)<=—4%(x, x)) 1, Rule C
3. A}(b,y) =41 (b, b) 2, Rule A4
4. € N % 3, Tautology

(¢ is any wf not containing b.) Use Proposition 2.10 and proof by con-

tradiction.

2.46 (a) Instep 4, bis not a new individual constant. It was already used in
step 2.

2.49 Assume K is complete and let % and ¢ be closed wfs of K such that

Fx BV €. Assume not--¢ 4. Then, by completeness, Fiy 4. Hence, by the

tautology ~d==((4V #)=—=-%),tx %. Conversely, assume K is not com-

plete. Then there is a sentence % of K such that not-t¢ 4 and not-+¢ —4.

However, tx # Vv 4.

2.50 See Tarski, Mostowski and Robinson (1953, pp. 15-16).
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2.55 (b) It suffices to assume % is a closed wf. (Otherwise, look at the
closure of %4.) We can effectively write all the interpretations on a
finite domain {by,...,b}. (We need only specify the interpreta-
tions of the symbols that occur in #.) For every such interpre-
tation, replace every wf (Vx)%(x), where %(x) has no quantifiers,
by €(b1) A ... AE{br), and continue until no quantifiers are left.
One can then evaluate the truth of the resulting wf for the given
interpretation.

2.59 Assume K is not finitely axiomatizable. Let the axioms of K; be

B, H2,..., and let the axioms of K, be #,%2,.... Then

{B,,61,52,%2,...} 1s consistent. (If not, some finite subset {4,

By ..., By, €1,...,6n} is inconsistent. Since K; is not finitely axiomatiz-

able, there is a theorem % of K| such that %, %#,, ..., %, + % does not hold.

Hence, the theory with axioms {%, %3, ..., %, ~#} has a model M. Since

tx 4, M must be a model of K;, and, therefore, M is a model of

(B, Ba,..., Bk, €1,...,6n}, contradicting the inconsistency of this set of

wfs.) Since {#,, €1, $2, %, ...} is consistent, it has a model, which must be

a model of both K and K.

2.60 Hint: Let the closures of the axioms of K be #;,#,,.... Choose a

subsequence %4;,, %}, , ... such that 4, | is the first sentence (if any) after %;,

that is not deducible from %; A...A%; . Let € be By NBj,N --- N B,

Then the %;s form an axiom set for the theorems of K such that

F € 1=% but not-+ €,=-%4,,. Then {&, €1=%2, 62=—>%3,...} is an

independent axiomatization of K.

2.61 Assume 4 is not logically valid. Then the closure 4 of 4 is not logi-

cally valid. Hence, the theory K with —% as its only proper axiom has a

model. By the Skolem—Léwenheim theorem, K has a denumerable model

and, by the lemma in the proof of Corollary 2.22, K has a model of car-
dinality m. Hence, % is false in this model and, therefore, 4 is not true in

some model of cardinality m.

265 (¢) l.x=x Proposition 2.23(a)
2.3y =y 1, rule E4
3. (Vx)3Fy)x =y 2, Gen

2.68 (a) The problem obviously reduces to the case of substitution for a
single variable at a time: - x; = yy==#{x1) = t(3y). From (A7),
Ex1 = y=(t{(x1) = t{(x;)==t(x1) = 1(31)). By Proposition 2.23
(@), F t{x;) = t(x1). Hence, b x; = yi=>#(x1) = t().
2.70 (a) By Exercise 2.65(c), F (3y)x=y. By Proposition 2.23(b,c),
F (V) (Vz)(x =y Ax = z=—>y =2z). Hence, + (31y)x =y. By Gen,
- (vx)(By)x = .
2.71 (b) (i) Let Argicj<nXi # x; stand for the conjunction of all wis of the
form x; # x;, where 1<i < j<n. Let %, be (3x;)...(3x,)
N <icjnXi F Xj.
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(if) Assume there is a theory with axioms 71, ..., .o, that has the
same theorems as K. Each of «7y,..., &, is provable from K;
plus a finite number of the wis %,,%,,.... Hence, K, plus a
finite number of wis 4;,,...,%;, suffices to prove all theorems
of K. We may assume jj < --- <j,. Then an interpretation
whose domain consists of j, objects would be a model of K,
contradicting the fact that %;  is an axiom of K.
2.74 For the independence of axioms (A1) — (A3), replace all ¥ = s by the
statement form A = A4; then erase all quantifiers, terms and associated
commas and parentheses; axioms (A4) — (A6) go over into statement forms
of the form P = P, and axiom (A7) into (P = P) = (Q = Q). For the
independence of axiom (Al), the following four-valued logic, due to Dr
D.K. Roy, works, where 0 is the only designated value.

A B A=B A B A=>B A B A=B A B A—B 4 "4
0 0 0 1 0 0 2 0 0 3 0 0 0 1
0 1 1 1 1 0 2 1 0 3 1 1 I 0
0 2 1 1 2 0 2 2 0 3 2 1 2 0
0 3 1 1 3 0 2 3 0 3 3 0 3 0

When 4 and B take the values 3 and 0, respectively, axiom (Al) takes the
value 1. For the independence of axiom (A2), Dr Roy devised the following
four-valued logic, where 0 is the only designated value.

A B A=B A B A=B A B A=B A B A=B A 4
0 0 0 L 0 0 2 0 0 3 0 0 0 1
0 1 1 L 1 0 2 1 0 31 0 1 0
0 2 | 1 2 0 2 2 0 3 2 1 2 0
0 3 L 1 3 0 2 3 0 3 3 0 3 0

If A, B and C take the values 3, 0 and 2 respectively, then axiom (A2) is 1.
For the independence of axiom (A3), the proof on page 44 works. For
axiom (A4), replace all universal quantifiers by existential quantifiers. For
axiom (A5), change all terms ¢ to x; and replace all universal quantifiers by
(¥x;). For axiom (A6), replace all wfs t = s by the negation of some fixed
theorem. For axiom (A7), consider an interpretation in which the inter-
pretation of = is a reflexive non-symmetric relation.

283 @ (W)@ ENB@ 00 -9) Ax0,2) = @) BE 5, . 12)
Az = x))

284 (2) (F)(w) (3 (A (x) = 42(x, )] = [Ab(w) = A43(,2)

2.87 & has the form (Ix)(Iy)(V2)([43(x,y) = Al(x)] = 4}(2)). Let the

domain D be {1,2}, let 42 be <, and let 4 () stand for 1 = 2. Then & is

true, but (Vx)(Iy)4%(x,y) is false.

2.88M*Let g be a oneilcl)pe correspondence betl\\dveen D* and D. Define:

(@)™ = g((@)™); (S @1,---,60) = g " (9Br), -, a(Ba))];

Eme Aj[by,. .., b,] if and only if =m A7[g(by), - - -, 9(ba)].

-



ANSWERS TO SELECTED EXERCISES

393

2.95 Hint: Extend K by adding axioms %,,, where 9%, asserts that there are

at least n elements. The new theory has no finite models.

2.96 (a) Hint: Consider the wis %4,, where %, asserts that there are at least
n elements. Use elimination of quantifiers, treating the #,s as if
they were atomic wis.

2.101 Let W be any set. For each b in W, let a; be an individual constant.

Let the theory K have as its proper axioms: ap # a, for all b, ¢ in W such

that b # ¢, plus the axioms for a total order. K 1s consistent, since any finite

subset of its axioms has a model. (Any such finite subset contains only a

finite humber of individual constants. One can define a total order on any

finite set B by using the one-one correspondence between B and a set

{1,2,3,...,n} and carrying over to B the total order < on {1,2,3,...,n}.)

Since K is consistent, K has a model M by the generalized completeness

theorem. The domain D of M is totally ordered by the relation <™; hence,

the subset D,, of D consisting of the objects (ab)M is totally ordered by <M

This total ordering of D,, can then be carried over to a total ordering of

W:b <, cif and only if a5 <M a..

2.103 Assume M, is finite and M; = M,. Let the domain D; of M; have n

elements. Then, since the assertion that a model has exactly » elements can

be written as a sentence, the domain D5, of M; must also have rn elements.

Let Dy = {b],...,bn} and D, = {C],...,Cn}.

Assume M, and M; are not isomorphic. Let ¢ be any one of the n! one-one
correspondences between Dy and Dj. Since ¢ 1s not an isomorphism, either:
(1) there is an individual constant @ and an element b; of Dy such that either
(i) b; = a™ A (b)) # a™ or (i) b; #a™ A @(b;) = a™?; or (2) there is a
function letter f;* and bs, b;,,. .., b;, in Dy such that

be = (i By, - -, bj,) and o(be) # (Y (@b, - - -, 0(B)))

or (3) there is a predicate letter 47 and b b;, In Dy such that either

ITIRERE)

(1) |:M| Am[bjn .- 7bjm] and |:M2 jA}T[q’(bj;) 790( _fm)] or

(i) Em, 14705, - -+, by ] and Ewm, 47 [@(b)), - - -, (b, )]. Construct a wf
%, as follows

Xj=4a if (1) (i) holds
xj a if (1) (i) holds
Byis { x¢ = fM(xj,,...,x;,) i (2) holds
A;:’(xj” 3 X,) if (3) (i) holds
AR (x5 - -5 X5,) if (3) (ii) holds
Let ¢y,..., ¢, be the one—one correspondences between Dy and D;.

Let o7 be the wf

(Ix1) ...(Hx,,)( [\ Xi XN By N By N+ A .@%!)

1gi<j<n

Then &7 is true for M; but not for M,.
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2.104 (a) There are R, sentences in the language of K. Hence, there are 2%
sets of sentences. I’ M; = M5 does not hold, then the set of sen-
tences true for M; is different from the set of sentences true for
Mo.

2.105 Let K* be the theory with R, new symbols b, and, as axioms, all

sentences true for M and all b; # b, for T # p. Prove K* consistent and

apply Corollary 2.34.

2.108 (a) Let M be the field of rational numbers and let X = {—1}.

2.110 Consider the wf (3x;) x2 < xj.

2.111 (a) (ii) Introduce a new individual constant b and form a new theory

by adding to the complete diagram of M, all the sentences
b # ¢t for all closed terms ¢ of the language of K.

2112 If G ¢ &, & # P(4). Conversely, if ) € &, then, by clause (3) of

the definition of ﬁlter F = P(A4).

2113 If & = Fp, then(\ces C =B € F. Conversely, if B =(oce CE€EF

then & = Fp.

2.114 Use Exercise 2.113.

2115 (@) A € F,since 4 =4 — 0.

bYIfB=A-MWMe€F and C=4—-W € F, where W; and W, are
finite, then BNC = A4 — (W uUl) € &, since Wy UMW, is finite.

() If B=A4A—W €%, where W is finite, and if B C C, then
C=4— (W —C) €%, since W — C s finite.

(d) Let BC C. So, B=A — W, where W 1is finite. Let b € B. Then
Wu{b} is finite. Hence, C = 4 — (Wu{b}) € #. But, B € C, since
b & C. Therefore, # # F 5.

2118 Let F' = {DIDC AN (3C)C e F NBNC C D)}.

2.119 Assume that, forevery B C 4, eitherB€ # orA—B € % .Let%bea

filtersuchthat # C 4. letBc % — % .ThendA—Be€ % .Hence,d —B € %.

So, § = Bn(4 — B) € % and ¥ is improper. The converse follows from Ex-

ercise 2.118.

2.120 Assume £ i1s an ultrafilter and B ¢ #,C ¢ % . By Exercise 2.119,

A—Be€F and A-C€ #. Hence, 4 — (BUC) = (4 —B)n(4d—-C) e &F.

Since # is proper, BuC & %. Conversely, assume BE€F NCE&F

= BuC & #. Since Bu(4 — B) = %, this implies that, if B ¢ &, then

A— B e % . Use Exercise 2.119.

2.121 (a) Assume % ¢ is a principal ultrafilter. Let a € C and assume
C # {a}. Then {a} & F ¢ and C — {a} & F ¢. By Exercise 2.120,
C = {a}u(C —{a}) € F ¢, which yields a contradiction.

(b) Assume a non-principal ultrafilter # contains a finite set, and let B
be a finite set in & of least cardinality. Since % is non-principal,
the cardinality of B is greater than 1. Let b € B. Then B — {b} # (.
Both {b} and B — {b} are finite sets of lower cardinality than B.
Hence, {b}¢ % and B—-{b}¢%. By Exercise 2.120,
B = {b}u(B — {b}) ¢ #, which contradicts the definition of B.
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2.124 1et J be the sct of all finite subsets of I'. For each A in .J, choose a

model Mp of A. For Ain J, let A* = {A"|A € J A A C A'}. The collection %

of all A*s has the finite-intersection property. By Exercise 2.117, there is a

proper filter % O %. By the ultrafilter theorem, there is an ultrafilter

F' D F D% Consider [[pc; Ma/F'. Let #€T. Then {B} €4 C F'.

Therefore, {#} C {A|A € 9N F=m, #} € F'. By Lo§’s theorem, 4 is true in

HAeJ MA/ 7'

2.125 (a) Assume ¥~ is closed under elementary equivalence and ultra-
products. Let A be the set of all sentences of ¥ that are true in
every interpretation in #". Let M be any model of A. We must
show that M is in #". Let I be the set of all sentences true for M.
Let J be the set of finite subsets of T'. For I' = {%,,...,4%,} € J,
choose an interpretation Ny in % such that #; A\ ... A%, is true
in Np. (If there were no such interpretation, —(% A ... A %,),
though false in M, would be in A.) As in Exercise 2.124, there is an
ultrafilter &' such that N* =[], N /#" is a model of T'. Now,
N* € ¥ . Moreover, M = N*. Hence, M € ¥

(b) Use (a) and Exercise 2.59.

(c) Let # be the class of all fields of characteristic 0. Let % be a non-
principal ultrafilter on the set P of primes, and consider
M = TI1,ep %/ F . Apply (b).

2.126 R* C R*. Hence, the cardinality of R* is > 2", On the other hand, R®

is equinumerous with 2¢ and, therefore, has cardinality 2%. But the cardi-

nality of R* is at most that of R®.

2.127 Assume x and y are infinitesimals. Let £ be any positive real. Then

x| <&/2 and |y| <&/2. So, |x+y|<x|+ | < &/2+ ¢/2 =&y = [x||y]

<l-g=glx—y|<i|+|—yl<e/2+e/2=c¢.

2.128 Assume |x| < ry and |p| < & for all positive real ¢. Let ¢ be a positive

real. Then ¢/r; is a positive real. Hence |y| <eg/ry, and so,

byl = Ixlivl < #i(e/m) = e.

2.130 Assume x — r; and x — #, are infinitesimals, with #; and #, real. Then

(x —r1) — (x — r2) = r2 — 1y is infinitesimal and real. Hence, r» — r1 = 0.

2.131 (a) x —st(x) and y —st(y) are infinitesimals. Hence, their sum

(x +y) — (st(x) +st(y)) is an infinitesimal. Since st(x)+st(y) is real,

st(x) + st(y) = st(x + y) by Exercise 2.130.

2.132 (a) By Proposition 2.45, s*(n) = ¢; and u*(n) = ¢, for all n € 0* — .
Hence, s™(n)4u*(n)~c +c; for all ne€eow*—w But
s*(n) + u*(n) = (s + u)"(n). Apply Proposition 2.45.

2.133 Assume f continuous at c¢. Take any positive real . Then there is a

positive real 6 such that (Vx)(x e BA|x —¢| < d = | f(x) — f(c)| < €) holds

in #. Therefore, (Vx)(x € B* N |x—¢| < =|f"(x) — f(c)| < &) holds in

#*. So, if xeB* and x=¢c, then |x—c|<é and, therefore,

| £*(x) — f(c)| < e. Since & was arbitrary, f*(x) = f(c). Conversely, assume

x € B* Ax =~ c¢ = f*(x) = f(c). Take any positive real €. Let §) be a positive
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infinitesimal. Then (Vx)(x € B*Alx—¢] < do = [f*(x) — f(c)] < &) holds

for ##*. Hence, (36)(6 > 0N (Vx)(x € B* AN |x—c| < 6 = | f'(x) —f(c)]| < &)

holds for #*, and so, (F)(6>0AN(Vx)xEBAIx—c|<d =|f(x)

—f{(c)| < €)) holds in £.

2.134 (a) Since x € B* Ax = c = (f*(x) = f(c) A g*(x) = g(c)) by Proposi-
tion 2.46, we can conclude x€B*Ax=~c= (f+ g)"(x)
~ (f + g)(c), and so, by Proposition 2.46, f + ¢ is continuous

at c.
2.139 (a) () 1[(vx)(4](x) VA3 (x)) = ((vx)4](x)) V (¥x)4) (x)]
(i) (vx)(4(x) v 4}(x)) @
(i) 1{((vx)4}(x)) V (vx)44(x)] @)
(iv) _I(Vx)A,' (x) (1ii)
(v) TT(vx)45(x) (iid)
(vi) (3x) 14}(x) (iv)
(vii) (3x) 145(x) v)
(viii) T14}(b) (vi)
(ix) 43 (c) (vii)
(x) A}(b) vV A%(b) (1)
SN
(xi) A} (b) Ay(b) )
(xii) X Aj(c) v AX(c) (ii)
VAN
(xiii) 4j(e) A3(c) (xii)

X

No further rules are applicable and there is an unclosed branch. Let the
model M have domain {b,c}, let (4})™ hold only for ¢, and let (44)™ hold
for only b. Then, (¥x)(4l(x) V4l(x)) is true for M, but (¥x)41(x) and
(Vx)Al(x) are both false for M. Hence, (Vx)(4](x) Vv 4}(x)) = ((vx)4i(x))
V (Vx)43(x) is not logically valid.

CHAPTER 3

3.4 Consider the interpretation that has as its domain the set of polynomials
with integral coefficients such that the leading coefficient is non-negative.
The usual operations of addition and multiplication are the interpretations
of + and -. Verify that (S1)—(S8) hold but that Proposition 3.11 is false
(substituting the polynomial x for x and 2 for y).
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3.5 (a) Form a new theory S’ by adding to S a new individual constant b
and the axioms b £ 0,b #A1,b£2,...,b#n, ... . Show that § is
consistent, and apply Proposition 2.26 and Corollary 2.34(c).

(b) By a cortége let us mean any denumerable sequence of Os and 1s.
There are 2™ cortéges. An element ¢ of a denumerable model M of
S determines a cortége (so,s;,s2,...) as follows: s; = 0 if |=m pilc,
and s; = 1 if =m 1(pi|e). Consider now any cortége s. Add a new
constant b to S, together with the axioms %;(b), where 2;(b) is p;|b
if s; = 0 and %;(b) is "1(ps|b) if s; = 1. This theory is consistent and,
therefore, has a denumerable model Mg, in which the interpretation
of b determines the cortége s. Thus, each of the 2% cortéges is
determined by an element of some denumerable model. Every
denumerable model determines denumerably many cortéges.
Therefore, if a maximal collection of mutually non-isomorphic
denumerable models had cardinality m < 2%, then the total num-
ber of cortéges represented in all denumerable models would be
<m x Ry < 280, (We use the fact that the elements of a denumer-
able model determine the same cortéges as the elements of an iso-
morphic model.)

3.6 Let (D,0,”) be one model of Peano’s postulates, with 0 € D and ’ the

successor operation, and let (D#,04,* ) be another such model. For each x

in D, by an x-mapping we mean a function f from S, = {ulu € D Au<x}

into D# such that f(0) = 04 and f(«/) = (f(¢))” for all u < x. Show by
induction that, for every x in D, there is a unique x-mapping (which will be

denoted f;). It is easy to see that, if x; < x», then the restriction of f,, to S

must be f,,. Define F(x) = f.(x) for all x in D. Then F is a function from D

into D+ such that F(0) = 0# and F(¥') = (F(x))" for all x in D. It is easy to

prove that F is one—one. (If not, a contradiction results when we consider
the least x in D for which there is some y in D such that x #y and

F(x) = F(y).) To see that F is an isomorphism, it only remains to show that

the range of F is D#. If not, let z be the least element of D# not in the range

of F. Clearly, z # 0#. Hence, z = w* for some w. Then w is in the range of F,

and so w= F(u) for some u in D. Therefore, F(¢') = (F(u))" =w* =z,

contradicting the fact that z is not in the range of F.

The reason why this proof does not work for models of first-order
number theory S is that the proof uses mathematical induction and the least-
number principle several times, and these uses involve properties that cannot
be formulated within the language of S. Since the validity of mathematical
induction and the least-number principle in models of S is guaranteed to
hold, by virtue of axiom (59), only for wfs of S, the categoricity proof is not
applicable. For example, in a non-standard model for S, the property of
being the interpretation of one of the standard integers 0, 1,2,3,... is not
expressible by a wf of S. If it were, then, by axiom (89), one could prove that
{0,1,2,3,...} constitutes the whole model.
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3.7  Use a reduction procedure similar to that given for the theory K, on
pages 116-17. For any number %, define £ -¢ by induction: 0-¢ is 0 and
(k+ 1) -tis (k-t) +1 thus, k- ¢ is the sum of ¢ taken k times. Also, for any
given k, let 1 = s(mod k) stand for (Ix)(t =s+k-xvs=1t+k-x). In the
reduction procedure, consider all such wfs # = s(mod k), as well as the wfs
t < s, as atomic wfs, although they actually are not. Given any wfs of S, , we
may assume by Proposition 2.30 that it is in prenex normal form. Describe a
method that, given a wf (Jy)¥, where ¥ contains no quantifiers (remem-
bering the convention that ¢+ = s(modk) and ¢ < s are considered atomic),
finds an equivalent wf without quantifiers (again remembering our con-
vention). For help on details, see Hilbert and Bernays (1934, 1, pp. 359-366).
3.8 (b) Use part (a) and Proposition 3.6(a)(i).
(c) Use part (b) and Lemma 1.12.

3.13  Assume f(x,...,Xs) = X,41 Is expressible in S by #(x1,...,x.4). Let
%(xl,...,x,,_H) be %’(xl,...,x,prl)/\(Vz)(z<x,z+1 = —l.@(xl,...,xn+])),
Show that ¢ represents f(xi,...,x,) in S. [Use Proposition 3.8(b).] Assume,
conversely, that f(xi,...,x,) is representable in S by &/(x;, ...,xn;1). Show
that the same wf expresses f(xj,...,%;) = X4 In S.

3.16 (@) (I)yepcRO, -, %0, ») 18 equivalent to (Jz), - )R-, %,

z+ u+ 1), and similarly for the other cases.
3.18 If the relation R(xq,...,xs,»): f(x1,...,x,) = y is recursive, then Cr

is recursive and, therefore, so is f(x1,...,x,) = w(Cr(x1,. .., %0, ) = 0).
Conversely, if  f(x1,...,x,) is  recursive, Cr(xi,...,%,y) =
sg|f(x1,..., x,) — y| is recursive.

3.19

V] = 61y <ni1 (37 > 1))
T(n) = > 5g(Cer( )

y<n

320 [ne] = [n(14+ 1+ +4+---+5)], since n((n_ll)!-'—_(n—l{_ﬁ!+“') <

Let 1+ 1 +2'—!~+---+l~m. Theng(0) =landg(rn+1) = (n+ Dg(n) +1.

T nl
Hence, g is primitive recursive. Therefore, 50 is [re] = [5‘-’-(1)] = qt(n!, ng(n)).

!
3.21 RP(y,z) stands for (Vx), ¢, (x|y Axlz = x=1).

e(n) =) 5E(Cre(y,n))

y<n

322 Z(0) =0,Z(y + 1) = U7 (», Z(»)).

323 Letv=(popr-..p)+ 1. Some prime g is a divisor of v. Hence, g<v.
But g is different from po,p1,...,pe. If ¢ = p;, then p;lv and pilpop; . .. px
would imply that p;|/1 and, therefore, p;=1. Thus, pry<g<

(popr .. .px) + 1.

R
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3.26 If Goldbach’s conjecture is true, % is the constant function 2. If Gold-
bach’s conjecture is false, /4 is the constant function 1. In either case, 4 is
primitive recursive.

3.28 List the recursive functions step by step in the following way. In the
first step, start with the finite list consisting of Z(x), N (x), and U} (x). At the
(n + 1)th step, make one application of substitution, recursion and the p-
operator to all appropriate sequences of functions already in the list after the
nth step, and then add the n+ 1 functions U™ (x),...,x,41) to the List.
Every recursive function eventually appears in the list.

3.29 Assume f(y) is primitive recursive (or recursive). Then so is
fo(x)+ 1. Hence, f.(x)+1 is equal to fi(x) for some k. Therefore,
Jfi(x) = fi(x) + 1 for all x and, in particular, fi(k) = fi(k) + 1.

3.30 (a) Let d be the least positive integer in the set Y of integers of the
form au + bv, where v and v are arbitrary integers — say, d = aug + bvy. Then
dla and d|b. (To see this for a. let a=gqd + r, where 0<r < d. Then
r=a—qd =a—qlaup + bvy) = (1 — quo)a+ (—que)b € Y. Since d is the
least positive integer in ¥ and r < d,r must be 0. Hence d|a.) If a and b are
relatively prime, then d = 1. Hence, 1 = auy+ bvy. Therefore, aug =1
(mod b).

3.32 (a) 1944 = 233°, Hence, 1944 is the Gddel number of the expression

()
(b) 49 = 1 + 8(2'3"). Hence, 49 is the Gddel number of the function
letter f].

3.34 (a) g(f]) =49 and g(a;) = 15. So, g(f(a))) = 29335157,

3.37 Take as a normal model for RR, but not for S, the set of polynomials
with integral coeflicients such that the leading coefficient is non-negative.
Note that (vx)(I)(x=y+yvx=y+y+1) is false in this model but is
provable in S.

3.38 Let oo be an object that is not a natural number. Let oo’ = o0, 00
+x=x4+o00=o0c for all natural numbers x,c0-0=0-0c0c=0, and
oo-x =x-00 = oo for all x # 0.

341 Assume S is consistent. By Proposition 3.37(a), % is not provable in S.
Hence, by Lemma 2.12, the theory S, is consistent. Now, ¥ is equivalent
t0 (Ix2) P4 (x2,™ % ). Since there is no proof of % in S, #¢(k, q) is false for
all natural numbers &, where ¢ =" ¢ '. Hence, ks 1Pf(k, g) for all natural
numbers k. Therefore, b, 12/ (k,§). But, |, (3x2)24(x2,G). Thus S is @-
inconsistent.

3.45 (G. Kreisel, Mathematical Reviews, 1955, Vol. 16, p. 103) Let %(x;)
be a wf of S that is the arithmetization of the following: x; is the Godel
number of a closed wf # such that the theory S + {#} is w-inconsistent.
(The latter says that there is a wf £(x) such that, for every n, &(n) is provable
in S + {#}, and such that (3x)—~&(x) is provable in S + {#}.) By the fixed-
point theorem, let ¥ be a closed wf such that bg ¥<=%(" ¢ ). Let
K =S+ {%}. (1) ¥ is false in the standard model. (Assume % true. Then K
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is a true theory. But, ¥<=%(" ¢ ') is true, since it is provable in S. So,

#(" ¢ ") is true. Hence, K is w- inconsistent and, therefore, K is not true,

which yields a contradiction.) (2) K is w-consistent. (Assume K w-incon-

sistent. Then #(" € ') is true and, therefore, € is true, contradicting (1).)

3.46 (a) Assume the “function’ form of Church’s thesis and let 4 be an
effectively decidable set of natural numbers. Then the character-
istic function Cy is effectively computable and, therefore, recur-
sive. Hence, by definition, 4 is a recursive set.

(b) Assume the ‘set’ form of Church’s thesis and let f(x,...,x,) be
any effectively computable function. Then the relation
fxi,...,x,) = yis effectively decidable. Using the functions ¢*, 6%
of pages 1834 let 4 be the set of all z such that
£ (z),...,a""(z)) = 0”1} (z). Then A is an effectively decid-
able set and therefore, recursive. Hence, f(xi,...,x,)
= ot} (1z(Cy(z) = 0)) is recursive.

3.48 Let K be the extension of S that has as proper axioms all wfs that are

true 1n the standard model. If 7r were recursive, then, by Proposition 3.38, K

would have an undecidable sentence, which is impossible.

3.49 Use Corollary 3.39.

3.50 Let f(x;,...,%:) be a recursive function. So, f(xj,...,x,) =y is a

recursive relation, expressible in K by a wf .7(x,...,x,,y). Then f is rep-

resentable by o7(x1,...,x,,¥) A (V2)(z <y = VA (x},...,X,,2)), where

z < y stands for z<y Az # y.

353 (a) FO=1=%. Hence, F Hecr("0=1")V=Beer("%") and,
therefore, - (Heeo(" % )= 1Becr("0=1"). Thus, F ¥—>
1 BT 0 =17).

(b) F .@ew(rg—l):%@ew(r.@ew(rgj)ﬁ). Also, F 19 <—=PBee
("% "), and 50, b Bew(" NG ") <= Beoer(” Beer(" ) ).
Hence F Bew(" 67) —=Beer(" 19 '). By a tautology,
F @= (9= (% A 19)); hence, + Beco(" % V= RBeco(T 1%
= (% N _[g)j). Therefore, - .@ew(rgj) = (Beer(™ _lg_l)
= Bee(" (% N _l.@) )). Tt follows that F Hew(" 9 ") =
Beer(" (G N _l%) ). But, F .‘4/\ 1%=0=1; so, + Bew
("(%n19)" )z:»%’.ew(ro =1"). Thus - @ew(r%j)ﬁ
Beer(T0 = =1 ) and |— NBeew(" 0= 1 ) :)'_I.@ew(rgﬁl)
Hence, - 1Becr(70 =1 )=%.

3.56 If a theory K is recursively decidable, the set of G6del numbers of
theorems of K is recursive. Taking the theorems of K as axioms, we obtain a
recursive axiomatization.

3.58 Assume there is a recursive set C such that 7x C C and Refx C C. Let
C be expressible in K by «7(x). Let &, with Godel number £, be a fixed point
for ~o/(x). Then, by F <= 1./(k). Smce </ (x) expresses C in K, Fg (k)
or Fg 1./ (k)
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(a) If by of(k), then g 1%. Therefore, k eRefx CC. Hence,

Fk 1.4 (k), contradicting the consistency of K.

(b) If Fx 1(k), then Fx #. So, k € Tx C C and therefore, by (%),

contradicting the consistency of K.

3.60 Let K, be the theory whose axioms are those wfs of K; that are
provable in K*. The theorems of K, are the axioms of K;. Hence, x € T, if
and only if Fmly, (x) A x € Tg-. So, if K* were recursively decidable — that is,
if Tx» were recursive — Tx, would be recursive. Since K; is a consistent
extension of K;, this would contradict the essential recursive undecidability
of K] .

3.61 (a) Compare the proof of Proposition 2.28.

(b) By part (a), K* is consistent. Hence, by Exercise 3.60, K* is es-
sentially recursively undecidable. So, by (a), K is recursively un-
decidable.

3.62 (b) Take (Vx)(A} (x)<=>x = x) as a possible definition of A}.
3.63 Use Exercises 3.61(b) and 3.62.
3.604 Use Corollary 3.46, Exercise 3.63, and Proposition 3.47.

CHAPTER 4

4.12 (s) Assume u € x x y. Then u = {v,w) = {{v}, {v,w}} for some v in x
and w in y. Then v € xuy and w € xUy. So, {v} € Z(xuy) and
{v,w} € P(xuy). Hence, {{v}, {v,w}} € P(P(xLy)).

4.15 (a) 2(x) C UUx) and Z(x) C J(Ux). Apply Corollary 4.6(b).

(b) Use Exercise 4.12(s), Exercise 4.13(b), axiom W, and Corollary
4.6(b).

(¢) If Rel(Y), then ¥ C &(Y) x 2(Y). Use part (b) and Corollary
4.6(b).

418 Let X = {{v,y2)1 =12 Ay € Y}, that is, X is the class of all or-

dered pairs (u,u) with we€Y. Clearly, Fnc(X) and, for any set x,

(F)({v,u) € X ANv € x)<=u € Ynx. So, by axiom R, M(Ynx)

4.19 Assume Fnc(Y). Then Fne(x[Y) and Z2(x[Y) C x. By axiom R,

M (Y*x).

4.22 (a) Let () be the class {u|u # u}. Assume M(X). Then ) C X. So, 0 =
0 nX. By axiom S, M (().

4.23 Assume M(V). Let ¥ = {x|x¢x}. It was proved above that -M(Y).

But ¥ C V. Hence, by Corollary 4.6(b), ~-M (¥).

4.30 (c) Let u be the least e-element of X — Z.

4.33 (a) By Proposition 4.11(a), Trans(w). By Proposition 4.11(b) and
Proposition 4.8()), w € On. If v € K, then o € o, contradicting
Proposition 4.8(a). Hence, o ¢ K;.

439 LetX;j=Xx{0}and 1, =Y x {1}
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4.40 For any u C y, let the characteristic function C, be the function with
domain y such that C,'w = 0 if w €vand C,'w=1ifw € y — u. Let F be the
function with domain 2( y) such that F'u = C, for u € 2(y). Then gv(x)%zy

4.41 (a) For any set u, 9(u) is a set by Exercise 4.15(a).
(b) Ifu €x, then u Cy x x. So, ¥ C P(y x x).
4.42 (a) 0 is the only function with domain ().
(©) If D(u) £ 0, then R(u) # 0.
4.43 Define a function F with domain X such that, for any xo in X, F(x,) is
the function g in X} such that g‘u == xg. Then X NX {u},
4.44 Assume X% Y and Z%’ w. If -M(W), then —nM(Z) and X% = Y% =

by Exercise 4.41(a). Hence, we may assume M(#) and M(Z). Define a
function @ on X< as follows: if f € X%, let &'f = Fo f o G". Then XZayV
4.45 1If X or Y is not a set, then Z¥“Y and Z¥ x Z¥ are both (. We may
assume then that X and Y are sets. Define a function @ with domain ZX“¥ ag
follows: if f € ZXY, let ®'f = (X [ f,Y [ f). Then ZXUYNZX x Z¥,

4.46 Define a function F with domain () as follows: for any f in ('),
let F'f be the function in ¥™* such that (F‘f)"(u,v) = (f“v)'u for all
(u,v) € y x z. Then (@) %xy"z.

447 If -M(Z), (X xY)* =0=0x0=X%x Y% Assume then that
M(Z). Define a function F: X% x ¥Z — (X x ¥)* as follows: for any
feXxégeY? (F‘gf,g))z— (f'z,g'z) for all z in Z  Then
X% x Y%= = (X x ¥)°.
4.48 ThlS is a direct consequence of Proposition 4.19.
4.54 (b) Use Bernstein’s theorem ( Proposition 4.23(d)).

(¢) Use Proposition 4.23(c,d).
4.55 Define a function F from V into 2. as follows: F‘u = {u, (@} if
u # 0; F0 = {1, 2}. Since, F is one-one, V' <2.. Hence, by Exercises 4.23 and
4.50, —M(2e).
4.56 (h) Use Exercise 4.45.

() 252 4o w2 40 25 = 2% x 2 22 0% x 2} o Qxhel o Ox,

Hence, by Bernstein’s Theorem, 2* 4 x == 27,

4,59 Under the assumption of the axiom of infinity, o is a set such that
(Fu)(u e o) AWy € 0= (32)(z € w Ay C z)). Conversely, assume (*)
and let b be a set such that (i) (Ju)(wed) and (i) (Vy)(yeb
= (Fz)(ze bNy Cz)). Letd = {u|(Fz)(z € b AuCz)}. Sinced C 2 (|J(D)),
d is a set. Define a relation R = {{n,v)[n € o A v={u|u € d Nu = n}}. Thus,
(n,v) € R is and only if » € w and v consists of all elements of 4 that are
equinumerous with z. R is a one—one function with domain @ and range a
subset of 2(d). Hence, by the replacement axiom applied to R~!,  is a set
and, therefore, axiom 1 holds.

4.62 (a) Induction on ain (Vx)(x 2 a Ao € w = Fin(2(x))).
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(b) Induction on o in (Vx)(x = ara € o (¥y)(y€x= Fin(y)) =
Fin(( Jx)).

(¢) Use Proposition 4.27(a).

(d) xC 2(Jx) and yex=y CJx.

() Induction on ¢ in (W)(x Zanao € o = (xXyV y<x))

(2) Induction on « in (Vx)(x = aAa € o AInf(Y) = x<¥)

(h) Use Proposition 4.26(c).

() ¥ C2(yxx)

4.63 Let Z be a set such that every non-empty set of subsets of Z has a
minimal element. Assume Inf(Z). Let Y be the set of all infinite subsets of Z.
Then Y is a non-empty set of subsets of Z without a minimal element.
Conversely, prove by induction that, for all « in @, any non-empty subset of
%() has a minimal element. The result then carries over to non-empty
subsets of #(z), where z is any finite set.

4.64 (a) Induction on « in (Vx){(x 2 a Aa € o A Den(y) = Den(xuy)).

(b) Induction on a in (¥x)(x = « Ax # 0 A Den(y) = Den(x x y))

(¢) Assume z C x and Den(z). Let z=2 w. Define a function g on x as
follows: gu =u if u € x —z; gu'= (N(fu)) if u € z. Assume x
is Dedekind-infinite. Assume z C x and x=z. Let v € x — z. Define
a function # on o such that A0) = v and ‘f?‘(oc’) = f*(h'a) if « € .
Then / is one—one. So, Den{#“w) and A“w C x.

(f) Assume y & x. (i) Assume xu {y} = x. Define by induction a
function g on @ such that g'0 =y and ¢g‘(n+ 1) = f(¢'n). g is a
one—one function from w into x. Hence, x contains a denumerable
subset and, by part (c), x is Dedckind-infinite. (ii) Assume x is
Dedekind-infinite. Then, by part (c), there is a denumerable subset
z of x. Assume z=m. Let ¢g={f"1)‘0. Define a function F as
follows: F'u=ufor'u € x —z; Fico=y; Fru= (f~)((f'u — 1) for
u € z— {co}. Then x% xu{y} If zis {co, 1, €2, ...}, F takes ciyy
into ¢; and moves ¢ into y.

(g) Assume w=x. By part (c), x is Dedekind-infinite. Choose y ¢ x.
By part (f), x=xu{y}. Hence, x+.1= (x x {0})w{{0,1)}
>~ xu {y} =x

4.65 Assume M is a model of NBG with denumerable domain D. Let z be
the element of D satisfying the wf x = 2¢. Hence, z satisfies the wf —(x = o).
This means that there is no object in D that satisfies the condition of being a
onc—one correspondence between z and w. Since D is denumerable, there is a
one—one correspondence between the set of ‘elements’ of z (that is, the set of
objects v in D such that =0 v € z) and the set of natural numbers. However,
no such one—one correspondence exists within M.

4.68 NBG is finitely axiomatizable and has only the binary predicate letter
A3. The argument on p. 26970 shows that NBG is recursively undecidable.
Hence, by Proposition 3.49, the predicate calculus with 43 as its only non-
logical constant is recursively undecidable.
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4.69 (a)

(b)
4.70 (a)

(b)
4.71 (a)

(b)

©

4.72 (a)
(b)

4.73 (a)
(b)

(d)

Assume x=<{0,. If 2=<x, then, by Propositions 4.37(b) and 4.40,
Wy X U W X X 0 KXWy X @y = . If x contains one element,
use Exercise 4.64(c,f).

Use Corollary 4.41.

Py X Plawy) 22 2% x 29 22 Q0atells o2 202 o P((y,,)

(Plaon))* == (20" 2 2065 22 2 2 ()

If y were non-empty and finite, y = y 4.y would contradict Ex-
ercise 4.62(b).

By part (¢),lety =uwuv,unv=0,u=yv=>y Lety=v. Definea
function g on #(y) as follows: for x C y, let g'x = ul(f “x). Then
g'x Cy and y =2 u<g'x<xy. Hence, g’x=2y. So, g is a one-one
function from #(y) into A = {z|]z C y Az =2 y}. Thus, 2(y)<A4.
Since 4 C 2(y), AXZ(y).

Use part (d): {z]z C y Az =y} C {z|z C y A Inf(z)}.

By part (¢), let y = vov,unv =0, u =2 y,v = y. Let U=, Define f

on y as follows: fx=h'x ifx €u and f'x = (h)x if x € 0.

Use Proposition 4.37(b).

(i) Perm (y) Cy’<(2) = 2>V =2 =2 P(y).

(ii) By part (a), we may use Exercise 4.7 (c). Let
y=uupnunv=0u=yov=y Let U=v and y 2 u. Define a
function F: 2(y) — Perm () in the following way: assume
zeP(y). Let y,:y—y be defined as follows: %
=Hx if x€ Gz y,'x = (H V% if (H )% € G Y, x=x
otherwise. Then ¥, € Perm(y). Let F‘'z=1,. F is one—one.
Hence, #(y) =< Perm(y).

Use WO and Proposition 4.19.

The proof of Zorn = WO in Proposition 4.42 uses only this

special case of Zorn’s Lemma.

To prove the Hausdorff maximal principal (HMP) from Zorn,

consider some C-chain Cy in x. Let y be the set of all C-chains C in

x such that Cp C C and apply part (b) to y. Conversely, assume

HMP. To prove part (b), assume that the union of each non-

empty C-chain In a given non-empty set x is also in x. By HMP

applied to the C-chain {, there is some maximal C-chain C in x.

Then | J(C) is an C-maximal element of x.

Assume the Teichmiiller—Tukey lemma (TT). To prove part (b),

assume that the union of each non-empty C-chain in a given non-

empty set x is also in x. Let y be the set of all C-chains in x. y is

easily seen to be a set of finite character. Therefore, y contains a C-

maximal element C. Then | J(C) is a C-maximal element of x.

Conversely, let x be any set of finite character. In order to prove

TT by means of part (b), we must show that, if C is a C-chain in x,

then | J(C) € x. By the finite character of x, it suffices to show that

every finite subset z of | J(C) is in x. Now, since z is finite, z is a



ANSWERS TO SELECTED EXERCISES

405

(©)

()

subset of the union of a finite subset ¥ of C. Since C is a C-chain,
W has a C-greatest element w € x, and z is a subset of w. Since x is
of finite character, z € x.

Assume Rel(x). Let u= {z|(Fv)(v € @(x) Nz = {v}{ x}; that is,
z € uif z is the set of all ordered pairs (v, w) in x, for some fixed v.
Apply the multiplicative axiom to u. The resulting choice set y C x
is a function with domain %(x). Conversely, the given property
easily yields the multiplicative axiom. If x is a set of disjoint non-
empty sets, let # be the set of all ordered pairs (u, v) such that u € x
and v € u. By parl (e), there is a function f Cr such that
9(f) = %(r) = x. The range Z( f) is the required choice set for x.
By trichotomy, either x < y or y < x. If x < y, there is a function
with domain y and range x. (Assume x % n C y. Take ¢ € x. Define

gu=c if u€y—y, and g'u= (fDu if u € y;.) Similarly, if
y < x, there is a function with domain x and range y. Conversely,
to prove WO, apply the assumption (f) to x and #*(#(x)). Note
that, if (3f)(/ : v — v A R(f) = v), then P(v) < P(u). Therefore,
if there were a function f from x onto #°(%(x)), we would have
H(P(x)) < P(H(P(x))) < P(x) contradicting the definition of
A (P(x)). Hence, there is a function from #(#(x)) onto x. Since
H#(%(x)) is an ordinal, one can define a one -one function from x
into #(2(x)). Thus x < #*(P(x)) and, therefore, x can be well-
ordered.

4.76 If < is a partial ordering of x, use Zorn’s lemma to obtain a maximal
partial ordering <* of x with < C <*. But a maximal partial ordering must
be a total ordering. (If u, v were distinct elements of x unrelated by <*, we
could add to <* all pairs {(, 1)) such that u; <*u and v<<*1v;. The new
relation would be a partial ordering properly containing <*.)

4.79 (b)

(€)

(d)

Since x X y=2x+.y x X y=aub with anb=4¢, a=x, b=y.
Let » be a well-ordering of y. (i) Assume there exists ¥ in x such
that (u,v) € a for all v in y. Then y=<a. Since ¢ = x, y=<x, con-
tradicting —( y=<Xx). Hence, (ii) for any » in x, there exists v in y
such that (u,v) € b. Define f: x — b such that f‘u = (u, v), where v
is the r-least element of y such that (1, v) € b. Since f is one-one,
x<b=y.

Clearly Inf(z) and Inf(x +. z). Then

x+cz%(x+c2)2%.\2+c2>< (x%2) 42 2x 42 % (xxz2) 4oz

Therefore, x x z<X2 X (x X z)=<x 42 X (x X z) +¢ 2z = x +z. Con-
versely, x +. z=<x x z by Proposition 4.37(b).

If AC holds, (Vy)(Inf(y) = y= y x y) follows from Proposition
4.40 and Exercise 4.73(a). Conversely, if we assume y =2 y x y for
all infinite y, then, by parts (¢) and (b), it follows that x=< 5#"x for
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any infinite set x. Since #“x is an ordinal, x can be well-ordered.
Thus, WO holds.

4.81 (a) Let {be a well-ordering of the range of r. Let f‘0 be the (-least
element of %(r), and let f‘n be the (-least element of those v in
A(r) such that ( fn,v) € r.

(b) Assume Den(x) A (Vu)(u € x = u # 0). Let w =2 x. Let r be the set
of all pairs (a, b) such that a and b are finite sequiences (vo,v1,...0,)
and (vo,vq,...,0n41) Such that, for O0<ig<n+1,v; € gi. Since
#(r) C 2(r), PDC produces a function h: w — 2(r) such that
(h'n, h*(n")} € rfor allnin w. Define the choice function f by taking,
for each u in x, f‘u to be the (¢g‘u)th component of the sequence
h(g‘u).

(c) Assume PDC and Inf(x). Let r consist of all ordered pairs
(u,u{a}), where uu{a} Cx, Fin(uu{a}), and a¢u. By PDC,
there is a function f: w — 2(r) such that{ f‘n, f(#')) €  for all n
in . Define g: @ — x by setting g‘n equal to the unique element of
fi(#)—f‘n. Then g is one—one, and s0, w=<Xx.

(d) In the proof of Proposition 4.44(b), instead of using the choice
function A, apply PDC to obtain the function f. As the relation r,
use the set of all pairs (u,v) such that u € c,v € c,v € un X.

4.82 (a) Use transfinite induction.

(d) Use induction on f.

(e)—(f) Use transfinite induction and part (a).

(h) Assume u C H. Let v be the set of ranks p‘x of elements x in u. Let
f=Uv. Then u C ¥‘fi. Hence u € (V') = V() C H..

4.83 Assume X # O A~(Iy)(y € X AynX =0). Choose u € X. Define a
function g ¢‘0 =unX, ¢'(r') = U(g‘n)nX. Let x =U(%(g)). Then
x # 0 and (Wp)(y € x = ynx #£ 0).

4.88 Hint: Assume that the other axioms of NBG are consistent and that
the Axiom of Infinity is provable from them. Show that H,, is a model
for the other axioms but not for the Axiom of Infinity.

4.89 Use Hy 4,0

4.95 (a) Let C={x| ~(I)(x €y Ay ex)}.

CHAPTER 5

5.1 q[Bqy
qoBRq,
;190
q;BRq,
52 (a) Uj (b) 6(x)
5.7 Let a Turing machine % compute the function f. Replace all occur-
rences of g in the quadruples of % by a new internal state ,. Then add the

kT
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quadruples qua;a;q, for all symbols a; of the alphabet of % . The Turing
machine defined by the enlarged set of quadruples also computes the
function f.

510 @ N(x)=x+1 (c) 2x

5.12 (a)

T —

R(Ky)’lagl —= Lragr —= R

o I

C RK,;C

5.14 (a) The empty function (b) N(x) =x+ 1 (¢) Z(x)
5.16 If f(a1) = by,...,f{a,) = b,, then

fY=wlx=ary=b)V---V(x=day Ay = by)]

520 Let g(z,x) = U(wyTy(z,x,y)) and use Corollary 5.11. Let vy be a
number such that g(x,x)+1 = g(vg,x). Then, if g(ve,vg) is defined,
g(vo, vo) + 1 = g(vo, vo), which is impossible.

5.21 g(x], - ,x,,) =M (xl, e ,JC,,) . -SE(CRl (x] yoee ,‘xn)) + ...+

hk(x; yoroo ,x,,) . @(CRA,(JC] go- ,xn))

5.22 (a) Assume that A(x) is a recursive function such that A(x) =
wTi(x,x,y) for every x in the domain of puyT(x,x,y). Then
(Iy)Ti(x,x,y) if and only if T7(x,x, h(x)). Since 73(x,x, h(x)) is a
recursive relation, this contradicts Corollary 5.13(a).

(b) Use Exercise 5.21.
() Z(pwyTi(x,x,y)) is recursively completable, but its domain is
{x}() 11 (x,x, )}, which, by Corollary 5.13(a), is not recursive,

5.29 Let  be a Turing machine with a recursively unsolvable halting

problem. Let a; be a symbol not in the alphabet of 7. Let q, be an internal

state symbol that does not occur in the quadruples of 7. For each q; of 7

and a; of 7, if no quadruple of & begins with g;a;, then add the quadruple

q;a;axq,. Call the new Turing machine &*. Then, for any initial tape de-
scription o of .7, 7, begun on a, prints a; if and only if 7 is applicable to

o. Hence, if the printing problem for .7 and a; were recursively solvable,

then the halting problem for .7 would be recursively solvable.

5.31 Let & be a Turing machine with a recursively unsolvable halting

problem. For any initial tape description « for .7, construct a Turing ma-

chine .7, that does the following: for any initial tape description f3, start 7

on o if 7 stops, erase the result and then start 7 on f. It is easy to check

that % is applicable to « if and only if %, has a recursively unsolvable
halting problem. It is very tedious to show how to construct %, and to
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prove that the Godel number of 7, is a recursive function of the Gédel
number of .

5.33 Let o be the index of a partial recursive function G(x) with non-empty
domain. If the given decision problem were recursively solvable, so would be
the decision problem of Example | on page 332

5.34 By

Corollary 5.16, there is a recursive function g(x) such that

Py ®) = X i (u,u,y). Then @), has an empty domain if and only if
=() Ty (u, u, ). But, =(Ip)7T; (1, u, ) is not recursive by Corollary 5.13(a).

5.39 (a)

(b)

5.42 (a)

(b)

©

(d)

(€)

By Corollary 5.16, there is a recursive function g(u) such that
@y (*) = py(x =u Ay =x). The domain of ¢, is {u}. Apply
the fixed-point theorem to g.

There is a recursive function g(u) such that ¢} (x)=
w(x # u Ay = 0). Apply the fixed-point theorem to g.

Let 4 = {x| f(x) € B}. By Proposition 5.21(c), B is the domain of a
partial recursive function g. Then 4 is the domain of the compo-
sition g o f. Since g o f is partial recursive by substitution, 4 is r.e.
by Proposition 5.21(c).

Let B be a recursive set and let D be the inverse image of B under a
recursive function f. Then x € D if and only if Cg( f(x)) =0 and
Cs(f(x)) = 0 is a recursive relation.

Let B be an r.e. set and let 4 be the image {f(x)|x € B} under a
partial recursive function f. If B is empty, so is 4. If B is non-
empty, then B is the range of a recursive function g. Then 4 is the
range of the partial recursive function f(g(x)) and, by Proposition
5.21(b), A is r.e.

Consider part (b). Given any natural number x, compute the value
f(x) and determine whether f(x) is in B. This is an effective pro-
cedure for determining membership in the inverse image of B.
Hence, by Church’s thesis, B is recursive.

Any non-empty r.e. set that is not recursive (such as that of
Proposition 5.21(e)) is the range of a recursive function g and is,
therefore, the image of the recursive set w of all natural numbers
under the function g.

5.43 The proof has two parts:

L.

Let A4 be an infinite recursive set. Then 4 is the range of a recursive
function f, by Proposition 521(d). Since A is infinite,
h(v) = w(f(y) > u) is recursive. Let gy be the least element of 4.
Define g(0) = ay, g(n + 1) = f(h(g(n)). Then g is a strictly in-
creasing function with range A.

Let 4 be the range of a strictly increasing recursive function g.
Then g(x) > x for all x (by the special case of Proposition 4.15).
Hence, x € 4 if and only if(Fu), . .g(v) = x. So, 4 is recursive by
Proposition 3.18.
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5.44 Assume 4 is an infinite r.e. set. Let 4 be the range of the recursive
function g(x). Define the function f by the following course-of-values re-

cursion:

f (1) = g ((V2),<,9(¥) # £(2))) = 9(y((V2), <, 9(») # (f#(n)).))

Then A4 is the range of A, h is one—one, and A is recursive by Propositions
3.18 and 3.20. Intuitively, f(0) = g(0) and, for » > 0, f(n) = g(v), where y is
the least number for which g(y) is different from f(0), f(1),...,f(n —1).
5.45 Let 4 be an infinite r.e. set, and let 4 be the range of the recursive
function g. Since 4 is infinite, F(u) = py(g(y) > u) is a recursive function.
Define G(0) = g(0), G(n + 1) = g(uy(9(y) > G(n))) = g(F(G(n))). G is a
strictly increasing recursive function whose range is infinite and included in
A. By Exercise 5.43, the range of G is an infinite recursive subset of 4.
5.46 (a) By Corollary 5.16, there is a recursive function g(u, v) such that
o)) = w(Ti(w,x,¥) V T (0, %, ).

5.47 Assume 8V) Let f(x,...,x,) be effectively computable. Then the set
B ={u|f((v),,--.,(u),) = (u),,1} is effectively enumerable and, therefore,
by (V), r.c. Hence, u € B<=(dy)R(u, y) for some recursive relation R. Then

S, %) = ([uo(((0)e)y =210 A= A((©)0)y = X AR((0)g, (©)1))]0) 1

So, f is recursive. Conversely, assume Church’s thesis and let 7 be an
effectively enumerable set. If /¥ is empty, then W is r.e. If W is non-empty,
let W be the range of the effectively computable function ¢g. By Church’s
thesis, g is recursive. But, x € W<=(3u)(g(v) = x). Hence, W is r.e. by
Proposition 5.21(a).

5.48 Assume 4 isr.e. Since 4 # (), A4 is the range of a recursive function g(z).

So, for each z, U(wyTi(g(z),x,y)) is total and, therefore, recursive. Hence,

U(wTi(g(x),x,y)) + 1 is recursive. Then there must be a number z; such

that U(wyT1(g(x),x,y)) +1 = U(wTi(g(z0),x,y)). A contradiction results

when x = z.

5.49 (a) Let ¢(n) =n for all n.

550 Let o(z) = o2(w[Ti(z, 03(3), 62(¥)) A a3 (y) > 22]), and let B be the

range of ¢.

5.55 (b) Let 4 be r.e. Then x € A<=-(3y)R(x,y), where R is recursive. Let
R(x,y) express R(x,y) in K. Then k € A<= Fx (Fy)%(k,y).

(c) Assume k € A<= g ./ (k) for all natural numbers k. Then k € 4
<= (3y)By(k,y) and B, is recursive (see the proof of Proposition
3.29 on page 199.

5.56 (a) Clearly Tx is infinite. Let f(x) be a recursive function with range
Tx. Let Bg, %y, ... be the theorems of K, where %; is the wf of K
with G6del number f(). Let g(x,y) be the recursive function such
that, if x is the Godel number of a wf €, then g(x, j) is the Godel
number of the conjunction € A€ N --- A€ consisting of j con-
juncts; and, otherwise, g(x,7) = 0. Then g(f(j),j) is the Godel
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number of the j-fold conjunction %; A %; A --- AN %;. Let K’ be the
theory whose axioms are all these j-fold conjunctions, for
j=0,1,2,... Then K’ and K have the same theorems. Moreover,
the set of axioms of K' is recursive. In fact, x is the Gédel number
of an axiom of K' if and only if x # 0 A (Fy), . (9(/ (¥),y) = x).
From an intuitive standpoint using Church’s thesis, we observe
that, given any wf &/, one can decide whether &/ is a conjunction
ENEN--- NE; if it is such a conjunction, one can determine the
number j of conjuncts and check whether € is 4;.
(b) Part (b) follows from part (a).

5.58 (a) Assume %(x,) weakly expresses (Tx)" in K. Then, for any

n, bx 9(n) if and only if n € (Tk)". Let p be the Gédel number of
%(x1). Then Fx Z(p) if and only if p € (Tx)". Hence, Fx #(p) if
and only if the Godel number of #( p) is in Tx; that is, Fx %(p) if
and only if not-tx %(p).

(b) If K is recursively decidable, Tk is recursive. Hence, Ty is recursive
and, by Exercise 5.57,(Tx)" is recursive. So, (Tx)" is weakly ex-
pressible in K, contradicting part (a).

() Use part (b); every recursive set is expressible, and, therefore,
weakly expressible, in every consistent extension of K.

559 (@) (i) §(x).

(i1) x1 =2
(iii) The function with empty domain.
(iv) The doubling function.

(b) @ fE(x,0) =x
flz(osxz) = X2
A, 62)) = £ a,x)
i) 0,0 =x
R0, (2)) = (fF (e x2))
Fx,0) =0
f2 00, (02)) = SR (1, x2), 31)
i) AHO=T
Alx))=0
£(0)=0
H@)) = AARE)

5.61 (a) Any word P is transformed into QP.

(b) Any word P in A is transformed into PQ.

(¢) Any word P in A is transformed into Q.

(d) Any word P in A is transformed into 7, where » is the number of
symbols in P.
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562 (a) et —-A (£inA)
o — - A
Ao

(b) o&— e (£in A)
Eo— - A (&in A)
o— -« A

A—o

() &¢—A (ZinA)
oL — - A

A— o

(d) &np— Pt  (&yin A)
al — Efo (& in A)
B—v
y— A
o0 — - A
A—o

563 oa; - Qo (i=1,...,k)
C{(:—)ia (6inA_{a11"';ak})

o— A
A—o
5.64 (d) |B| — B
B — |
() |B| —|
(f) Let «, f and é be new symbols.
Bl — 1B
of — |fo
o — A
||(5—) | o
|6 — |
|| — 4|
3| — |
J— |
g—|

|B| — &




Listed here are not only books and papers mentioned in the text but also
some other material that will be helpful in a further study of mathematical
logic. We shall use the following abbreviations.

AMI.  for Annals of Mathematical Logic

AMS  for American Mathematical Society

Arch.  for Archiv fiir mathematische Logik wund Grundlagenforschung

FM for Fundamenta Mathematicae

HMI.  for Handbook of Mathematical Logic, Springer-Verlag

HPL for Handbook of Philosophical Logic, Reidel

JSL for Journal of Symbolic Logic

MTL  for Model-Theoretic Logics, Springer-Verlag

NDJFL for Notre Dame Journal of Formal Logic

NH for North-Holland Publishing Company

ZMIL  for Zeitschrift fiir mathematische Logik und Grundiagen der
Mathematik (since 1993, Mathematical Logic Quarterly)

Ackermann, W. (1928) Zum Hilbertschen Aufbau der reellen Zahlen, Marh. Annalen,
99, 118-133. (1937) Die Widerspruchsfreiheit der allgemeinen Mengenlehre, ibid.,
114, 305 -315. (1940) Zur Widerspruchsfreiheit der Zahlentheorie, ibid., 117, 162—
194. (1954) Solvable Cases of the Decision Problent, NH.

Andrews, P. (1965) Transfinite Type Theory with Type Variables, NH. (1986) An
Introduction to Mathematical Logic and Type Theory. To Truth Through Proof,
Academic.

Barwise, J. (1985) Model-theoretic logics: Background and aims, MTL, 3-23.

Barwise, J. and S. Feferman (eds) (1985) Model-Theoretic Logics, Springer.,

Baudisch, A., D. Seese, P. Tuschik and M. Weese (1985) Decidability and quantifier
elimination, MTL, 235-268

Behmann, H, (1992) Beitrige zur Algebra der Logik, insbesondere zum Entschei-
dungsproblem, Math. Annalen, 86, 163-229.

Bell, J.L. (1977) Boolean-Valued Models and Independence Proofs in Set Theory,
Oxford University Press.

Bernardi, C. (1975) The fixed-point theorem for diagonalizable algebras, Smdia
Logica, 34, 239-252. (1976) The uniqueness of the fixed-point in every diago-
naljfzable algebra, ibid., 35, 335-343.



BIBLIOGRAPHY 413

Bernays, P. (1937-54) A system of axiomatic set theory, I, JSL, 2 (1937), 65-77; 11, 6
(1941), 1-17; 11, 7 (1942), 65-89; IV, 7 (1942), 133-145; V, 8 (1943), 89-104; VI, 13
(1948), 65-79; VII, 19 (1954), 81-96. (1957) Review of Myhill (1955), JSIL., 22, 73
76. (1961) Zur Frage der Unendlichkeitsschemata in der axiomatischen Men-
genlehre, Essays on the Foundations of Mathematics, Jerusalem, 3—49. (1976) On
the problem of schemata of infinity in axiomatic set theory, Sets and Classes, NH.

Bernstein, A.R. (1973) Non-standard analysis, Studies in Model Theory, Math. As-
soc. of America, 35 58.

Beth, E. (1951} A topological proof of the theorem of Léwenheim-Skolem—Godel,
Indag. Math., 13, 436-444. (1953) Some consequences of the theorem of Low-
enheim-Skolem-Go&del-Malcev, ibid., 15, 66-71. (1959} The Foundations of
Mathematics, NH.

Bezboruah, A. and J.C. Shepherdson (1976) G&del’s second incompleteness theorem
for Q, JSL, 41, 503-512.

Bolc, L. and P. Borowik (1992) Many-Valued Logics. Vol, I: Theoretical Foundations,
Springer.

Boolos, G. (1984) Trees and finite satisfiability: proof of a conjecture of Burgess,
NDJFL, 25, 193-197. (1989) New proof of the Godel incompleteness theorem,
Notices of the AMS, 36, 388-390. (1993) The Logic of Provability, Cambridge
University Press.

Boone, W. (1959) The word problem, Ann. Math., 70, 207-265.

Bourbaki, N. (1947) Algébre, Hermann, Paris, Book II, Chap. II.

Britton, J.L. (1963) The word problem, Ann. Math., 77, 16-32.

Brouwer, L.E.J. (1976) Collected Works, Vol. 1, Philosophy and Foundations of
Mathematics, NH.

Bruijn, N.G. de and P. Erdds (1951) A colour problem for infinite graphs and a
problem in the theory of relations. Indag. Math., 13, 369-373.

Brunner, N. (1990) The Fraenkel-Mostowski method revisited, NDJFL, 31, 64-75.

Carnap, R. (1934) Die Logische Syntax der Sprache, Springer (English translation,
The Logical Syntax of Language, Routledge & Kegan Paul, 1937; text edition.
Humanities, 1964.)

Chaitin, G. (1992) Information-Theoretic Incompleteness, World Scientific.

Chang, C.C. and H.J. Keisler (1973) Model Theory, second edition, NH (third edi-
tion, 1990).

Cherlin, G. (1976) Model Theoretic Algebra, Selected Topics, Springer.

Chuquai, R. (1972} Forcing for the impredicative theory of classes, JSL, 37, 1-18.
(1981) Axiomatic Set Theory. Impredicative Theories of Classes, NH.

Church, A. (1936a) A note on the Entscheidungsproblem, JSI., 1, 40-41; correction,
ihid., 101-102 (reprinted in Davis, 1965). (1936b) An unsolvable problem of el-
ementary number theory, Am. J. Math., 58, 345-363 (reprinted in Davis, 1965).
(1940) A formulation of the simple theory of types, JSL, 5, 56-68. (1941) The
Calculi of Lambda Conversion, Princeton University Press (second printing, 1951).
(1956) Introduction to Mathematical Logic, 1, Princeton University Press.

Chwistek, L. (1924-25) The theory of constructive types, Annales de la Soc. Polonaise
de Math., 2, 948; 3, 92-141.

Cohen, P.J. (1963—-64) The independence of the continuum hypothesis, Proc. Natl.
Acad. Sci. USA, 50, 1143-1148; 51, 105--110. 1966. Set Theory and the Contirmim
Hypothesis, Benjamin.



414

BIBLIOGRAPHY j

Collins, G.E. (1955) The modeling of Zermelo set theories in New Foundations,
Ph.D. thesis, Cornell.

Corcoran, J. (1980) Categoricity, History and Philosophy of Logic, 1, 187-207. (1987)
Second-order logic, Proceedings ference OUIC 86 (eds D. Moates and R. Bu-
trick), Ohio University Press, 7-31.

Craig, W. (1953) On axiomatizability within a system, JSI, 18, 30-32.

Curry, H.B. and R. Feys (1958) Combinatory Logic, I, NH.

Curry, H.B., J.R. Hindley and J. Seldin (1972} Combinatory Logic, II. NH.

Davis, M. (1958) Computability and Unsolvability, McGraw-Hill (Dover, 1983).
(1965) (ed.). The Undecidable: Basic Papers on Urnidecidable Propositions, Un-
solvable Problems, and Computable Functions, Raven. (1973) Hilbert’s tenth
problem is unsolvable, Api. Math. Monthly, 80, 233-269. (1977a) Applied Non-
standard Analysis, Wiley. (1977b) Unsolvable problems, HML, 567-594. (1982)
Why Godel didn’t have Church’s thesis, Information and Control, 54, 3-24.

Davis, M., H. Putnam and J. Robinson (1961) The decision problem for exponential
Diophantine equations, Annals of Math., 74, 425-436.

Dedekind, R. (1901) Essays on the Theory of Numbers. Open Court (Dover, 1963).

Dekker, J.C.E. (1953} Two notes on recursively enumerable sets, Proc. AMS, 4, 495
501. (1955) Productive sets, Trans. AMS, 78, 129-149.

Dekker, J.C.E. and J, Myhill (1960) Recursive equivalence types, Univ. Calif. Publ.
Math., 3, 67-213.

Denyer, N. (1991) Pure second-order logic, NDJFL, 33, 220-224.

Dreben, B. (1952) On the completeness of quantification theory, Proc. Natl. Acad.
Sci. USA, 38, 1047-1052.

Dreben, B. and W.D. Goldfarb (1980) Decision Problems, Solvable Classes of
Quantificational Formulas, Addison-Wesley.

Dummett, M. (1977) Elements of I[ntuitionism. Oxford Unjversity Press.

Easton, W.B. (1970) Powers of regular cardinals, AML, 1, 139-178,

Ehrenfeucht, A. (1957) On theories categorical in power, FM, 44, 241-248. (1958)
Theories having at least continuum non-isomorphic models in each infinite power
(abstract), Notices AMS, 5, 680.

Ehrenfeucht, A. and S. Feferman (1960) Representability of recursively enumerable
sets in formal theories, Arch., 5, 37-41.

Engeler, E. (1968) Formal Languages: Automata and Structures, Markham. (1973)
Introduction to the Theory of Computability, Academic,

Frdos, P. and A. Tarski (1961) On some problems involving inaccessible cardinals,
Essays on the Foumdations of Mathematics, Magnes, Jerusalem, 50-82.

Ershov, Yu., L. Lavrov, A. Taimanov and M. Taitslin (1965) Elementary theorics,
Russian Mathematical Surveys, 20, 35-105.

Evans, T. (1951) The word problem for abstract algebras, J. London Math. Soc., 26,
64-71.

Feferman, S. (1957) Degrees of unsolvability associated with classes of formalized
theories, JSI., 22, 165-175. (1960) Arithmetization of metamathematics in a
general setting, FM, 49, 35-92. (1962) Transfinite recursive progressions of axi-
omatic theories, JSL, 27, 259-316.

Felgner, U. (1971a) Models of ZF-Set Theory, Springer. (1971b) Comparisons of the
axioms of local and universal choice, FM, 71, 43-62. (1976) Choice functions on
sets and classes, Sets and Classes, NH, 217-255.

=



BIBLIOGRAPHY

415

Fischer, P.C. (1965) On formalisms for Tuning machines, J. Assoc. Comp. Mach., 12,
570-580.

Fitting, M. (1983) Proof Methods for Modal and Intuitionistic Logics, Reidel.

Forster, T.E. (1983) Quine’s New Foundations (An Introduction), Cahiers du Centre
de Logique 5, Université Catholique de Louvain. (1992) Set Theory with a Uni-
versal Set: Exploring an Untyped Universe, Oxford University Press.

Fraenkel, A A. (1922a) Zu den Grundlagen der Cantor-Zermeloschen Mengenlehre,
Math. Annalen, 86, 230- 237. (1922b) Der Begriff ‘definit’ und die Unabhéngigkeit
des Auswahlaxioms, Sitzungsberichte der Preussischen Akademie der Wis-
senschaften, Physikalisch-mathematische Klasse, 253-257. (1928) Einleitung in die
Mengenlehre (third edition), Springer.

Fraenkel, A., Y. Bar-Hillel, and A. Lévy. (1973) Foundations of Set Theory, NH
(second revised edition).

Frayne, T., A. Morel and D. Scott. 1956. Reduced direct products, FM, 51, 195-
228.

Frege, G. (1893, 1903) Grundgesetze der Arithmetik, Begriffschriftlich Abgeleitet, Vols
1-2, Jena (partial English translation in The Basic Laws of Arithmetic: Exposition
of the System, University of California Press, 1964).

Gabriel, P. (1962) Des catégories abéliennes, Bull. Soc. Math. France, 90, 323-448.

Gandy, R. (1988) The confluence of ideas in 1936, The Universal Turing Machine — a
Half-century Survey (ed. R. Herken), Oxford University Press, 55-111.

Garey, M.R. and D.S. Johnson. (1978} Computers and Intractability: A Guide to the
Theory of NP-Completeness. Freeman.

Garland, S.J. (1974) Second-order cardinal characterizability, Axiomatic Set Theory,
Proc. of Symposia in Pure Mathematics, Vol. XIII, Part II, American Mathe-
matical Society, 127-146,

Gentzen, G. (1936) Die Widerspruchsfreiheit der reinen Zahlentheorie, Math. Ann.,
112, 493-565. (1938) Neue Fassung des Widerspruchsfreiheitsbeweises fiir die
reine Zahlentheorie, Forschungen zur Logik, 4, 5-18. (1969) Collected Papers (ed.
M.L. Szabo), NH.

Gillies, D.A. (1982) Frege, Dedekind, and Peano on the Foundations of Arithmetic,
Van Gorcum. (1992} The Fregean revolution in logic, Revolutions in Mathematics
(ed D.A. Gillies), Oxford University Press, 265-305.

Godel, K. (1930) Die Vollstindigkeit der Axiome des logischen Funktionenkalkiils,
Monatsh. Math. Phys., 37, 349-360 (English translation in Van Heijenoort, 1967,
582-591). (1931) Ueber formal unentscheidbare Sétze der Principia Mathematica
und verwandter Systeme, I, ibid., 38, 173—198 (English translation in Davis, 1965).
(1933) Zum intuitionistischen Aussagenkalkill; Zur intuitionistischen Arithmetik
und Zahlentheorie, Frgeb. Math. Koll., 4, 34-38 and 40 (translation in Davis,
1965). (1934) On undecidable propositions of formal mathematical systems,
Lecture Notes, Institute for Advanced Study, Princeton University Press (reprinted
in Davis, 1965, 39-73). (1938) The consistency of the axiom of choice and the
generalized continuum hypothesis, Proc. Natl. Acad. Sci. USA, 24, 556-557.
(1939) Consistency proof for the generalized continuum hypothesis, ibid., 25, 220-
226. (1940} The Consistency of the Axiom of Choice and the Generalized Contin-
wm Hypothesis with the Axioms of Set Theory, Princeton University Press. (1947)
What is Cantor’s continuum problem? Amier. Math. Monthly, 54, 515-525, (1986,
1990, 1995) Collected Works, Vohane I, Publications 1929-1936. Volume II,



416

BIBLIOGRAPHY

Publications 1938-1974. Volume III, Unpublished Essays and Lectures, Oxford
University Press.

Hailperin, T. (1944) A set of axioms for logic, JSL, 9, 1-19. (1953) Quantification
theory and empty individual domains, JSZ, 18, 197-200.

Hajek, P. (1993) Metamathematics of First-Order Arithmetic, Springet.

Hall, M., Jr (1949) The word problem for semigroups with two generators, JSI., 14,
115-118.

Halmos, P. (1960) Naive Set Theory, Van Nostrand (Springer, 1974). (1962) Alge-
braic Logic, Chelsea. (1963) Lectures on Boolean Algebra, Van Nostrand
(Springer, 1977)

Halmos, P. and H. Vaughn (1950) The marriage problem, Amer. J Math., 72, 214—
215.

Halpern, J.D. (1964) The independence of the axiom of choice from the Boolean
prime ideal theorem, FM, 55, 57-66.

Halpern, J.D. and A. Lévy (1971) The Boolean prime ideal theorem does not imply
the axiom of choice, Proc. Symp. in Pure Math., 13 AMS, 83—134,

Hartogs, F. (1915) Uber das Problem der Wohlordnung, Math. Annalen, 76, 438
443.

Hasenjaeger, G. (1953) Eine Bemerkung zu Henkin’s Beweis fiir die Volistdndigkeit
des Pridikatenkalkiils der ersten Stufe, JSL, 18, 42-48.

Hasenjaeger, G. and H. Scholz (1961) Grundziige der mathematischen Logik,
Springer.

Hatcher, W. (1982) The Logical Foundations of Mathematics, Pergamon.

Heijenoort, J. van (1967) (ed.). From Frege to Gidel (A Source Book in Mathematical
Logic, 1879-1931). Harvard University Press.

Hellman, M. (1961) A short proof of an equivalent form of the Schrider Bernstein
theorem, Am. Math. Monthly, 68, 770.

Henkin, L. (1949) The completeness of the first-order functional calculus, JSL, 14,
159-166. (1950) Completeness in the theory of types, ibid., 15, 81-91. (1955) On a
theorem of Vaught, JSL, 20, 92-93.

Henkin, L., J.D. Monk and A. Tarski. (1971, 1985) Cylindric Algebras, Vol. 1 (1971),
Vol. IT (1985), NH.

Herbrand, J. (1930) Recherches sur la théorie de la démonstration, Travaux de la
Sociéte des Sciences et des Lettres de Varsovie, I, 33, 33-160. (1971} Logical
Writings. Haryard University Press and Reidel.

Hermes, H. (1965) Enumerability, Decidability, Computability, Springer (second
edition, 1969)

Heyting, A. (1956) Intuitionism, NH.

Higman, G. (1961) Subgroups of finitely presented groups, Proc. Royal Soc., Ser. A,
262, 455 475. '

Hilbert, D. and W. Ackermann (1950) Principles of Mathematical Logic, Chelsea.

Hilbert, D. and P. Bernays (1934, 1939) Grundlagen der Mathematik, Vol. 1 (1934),
Vol. II (1939), Springer (second edition, 1968, 1970).

Hintikka, J. (1955a) Form and content in quantification theory, Acta Phil. Fennica,
11-55. (1955b) Notes on the quantification theory, Conunent. Phys.-Math., Soc.
Sci. Fennica, 17, 1-13.

Howard, P.E. (1973) Limitations on the Fraenkel-Mostowski method, JSL, 38, 416
422.

-

i



BIBLIOGRAPHY

417

Hrbacek, K. and T. Jech (1978) Imtroduction to Set Theory, Academic, (second
edition, Dekker, 1984).

Hughes, G.E. and M.J. Creswell (1968) An Introduction to Modal Logic, Methuen.

Isbell, J. (1966) Structure of categories, Bull. AMS, 72, 619-655.

Jaskowski, S. (1936) Recherches sur le systéme de la logique intuitioniste, Acta Sci.
Ind., Paris, 393, 58-61.

Jech, T. (1973) The Axiom of Choice, NH. (1978). Set Theory, Academic.

Jensen, R.B. (1968-69) On the consistency of a slight (7} modification of Quine’s New
Foundations, Synthese, 19, 250-263.

Jeroslow, R.G. (1971} Consistency statements in formal theories, FM, 72, 17-40.
(1972) On the encodings used in the arithmetization of mathematics, unpublished
manuscript. (1973) Redundancies in the Hilbert—Bernays derivability conditions
for Godel’s second incompleteness theorem, JSI., 38, 359-367. (1976} Consistency
statements in formal theories, FM, 72, 17-40.

Kalmar, L. (1935) Uber die Axiomatisierbarkeit des Aussagenkalkiils, Acta Sci.
Math., 7, 222-243. (1936) Zuruckfithrung des Entscheidungsproblems auf den
Fall von Formeln mit einer einzigen bindren Funktionsvariablen, Comp. Math., 4,
137-144.

Kamke, E. (1950) Theory of Sets, Dover.

Kanamori, A. (1994) The Higher Infinite, Springer.

Kaye, R. (1991) Models of Peano Arithmetic, Oxford University Press, (1994) Au-
tomorphisms of First Order Structures, Oxford University Press.

Keisler, H.J. (1976) Elementary Calculus: An Approach Using Infinitesimals, Prindle,
Weber & Schmidt.

Kelley, J. (1955) General Topology, Van Nostrand (Springer, 1975).

Kemeny, J. (1949) Type theory vs. set theory, Ph.D. thesis, Princeton,

Kirby, L. and J. Paris (1977} Initial segments of models of Peano’s axioms, Proc.
Bierutowice Conf. 1976, Lecture Notes in Math., Springer, 211- 226.

Kleene, S.C. (1936a) General recursive functions of natural numbers, Math. Ann.,
112, 727-742 (reprinted in Davis, 1965). (1936b) A-definability and recursiveness,
Duke Marh. J., 2, 340-353. (1943) Recursive predicates and quantifiers, 7rans.
AMS, 53, 41-73 (reprinted in Davis, 1965). (1952) Introduction to Metamathe-
matics, Van Nostrand. (1955a) Hierarchies of number-theoretic predicates, Bull.
AMS, 61, 193-213. (1955b) Arithmetical predicates and function quantifiers,
Trans. AMS, 79, 312-340.

Kleene, S.C. and E.L. Post (1954) The upper semi-lattice of degrees of recursive
unsolvability, 4nn. Math., 59, 379-407.

Kleene, S.C. and R.E. Vesley (1965) The Foundations of Intuitionist Mathematics, NH.

Koslow, A. (1992} A Structuralist Theory of Logic, Cambridge Untversity Press.

Kreisel, G. and J.-L. Krivine (1967) Elements of Mathematical Logic, NH.

Krivine, J.-L. (1971) Introduction to Axiomatic Set Theory, Reidel.

Kruse, A.H. (1966) Grothendieck universes and the super-complete models of
Shepherdson, Comp. Math., 17, 86101,

Kunen, K. (1980) Set Theory. An Introduction to Independence Proofs, NH.

Kuratowski, K. (1921) Sur la notion d’ordre dans la théorie des ensembles, FM., 2,
161-171.

Lambek, J. (1961) How to program an infinite abacus, Canadian Math. Bull, 4, 295
302; 5, 297.




418

BIBLIOGRAPHY

Langford, C.H. (1927) Some theorems on deducibility, Ann. Math., 1, 28, 16-40; 11,
28, 459-471.

Lévy, A. (1960) Axiom schemata of strong infinity, Pacific J. Math., 10, 223-238.
(1965) The Fraenkel-Mostowski methoed for independence proofs in set theory,
The Theory of Models, Proceedings of the 1963 International Symposium at
Berkeley, NH, 221-228. (1978) Basic Set Theory, Springer.

Lewis, C.I. and C.H. Langford (1960) Symbolic Logic., Dover (reprint of 1932 edi-
tion).

Lewis, H.R. (1979) Unsolvable Classes of Quantificational Fornmlas, Addison-Wes-
ley.

Lindenbaum, A. and A. Mostowski (1938) Uber die Unabhiingigkeit des Auswahl-
axioms und einiger seiner Folgerungen, Comptes Rendus Sciences Varsovie, 111,
31, 27-32.

Lindstrom, P. (1969) On extensions of elementary logic, Theoria, 35, 1-11.

Lob, M.H. (1955) Solution of a problem of Leon Henkin, JSZ, 20, 115-118.

Lo$, J. (1954a) Sur la théoréme de Godel sur les theories indénombrables, Bull. de
I’Acad. Polon. des Sci., 111, 2, 319-320. (1954b) On the existence of a linear order in
a group, ibid., 21-23. (1954c) On the categoricity in power of elementary deductive
systems and some related problems, Coll. Math., 3, 58-62, (1955a) The algebraic
treatment of the methodology of elementary deductive systems, Studia Logica, 2,
151-212. (1955b) Quelques remarques, théorémes et problémes sur les classes
definissables d’algébres, Math. Interpretations of Formal Systems, NH, 98-113.

Lowenheim, L. (1915) Ueber Moglichkeiten im Relativkalkiil, Math. Ann., 76, 447—
470.

Luxemburg, W.A.L. (1962) Non-Standard Analysis, Caltech Bookstore, Pasadena.
(1969) Applications of Model Theory to Algebra, Analysis, and Probability, Holt,
Rinehart and Winston. (1973) What is non-standard analysis? Papers in the
Foundations of Mathematics, Amer. Math. Monthly, 80, No. 6, Part I1, 38-67.

Machtey, M., and P. Young (1978) An Introduction to the General Theory of Algo-
rithms, NH.

MacLane, S. (1971) Categorical algebra and set-theoretic foundations, Proc. Symp.
Pure Mathematics, AMS, XIII, Part I, 231-240.

Maclaughlin, T. 1961. A muted variation on a theme of Mendelson, ZM1., 17, 57-60.

Magari, R. (1975) The diagonalizable algebras, Bofl. Unione Mat. Italiona (4), 12,
117-125.

Malinowski, G. (1993) Many-Valued Logics, Oxford University Press.

Manzano, M. (1996) Extensions of First Order Logic, Cambridge University Press.

Margaris, A. (1967) First-Order Mathematical Logic, Blaisdell (Dover, 1990).

Markov, A.A. (1954) The Theory of Algorithms, Tr. Mat. Inst. Steklov, XLII
(translation: Office of Technical Services, U.S. Department of Commerce, 1962).

Matiyasevich, Yu. (1970) Enumerable sets are Diophantine, Doklady Akad. Nauk
SSSR, 191, 279-282 (English translation, Soviet Math. Doklady, 1970, 354-357).
(1993) Hilbert’s Tenth Problem, MIT Press.

McKenzie, R. and R.J. Thompson (1973) An elementary construction of unsolvable
word problems in group theory, Word Problems (eds W.W. Boone, F.B. Canno-~
nito and R.C. Lyndon), NH.

McKinsey, J.C.C. and A. Tarski (1948) Some theorems about the sentential calculi
of Lewis and Heyting, JSL, 13, 1-15.

[EY



BIBLIOGRAPHY

419

Melzak, Z.A. (1961) An informal arithmetical approach to computability and
computation, Canadian Math. Bull., 4, 279-293,

Mendelson, E. (1956a) Some proofs of independence in axiomatic set theory, JSL,
21, 291-303. (1956b) The independence of a weak axiom of choice, ibid., 350-366.
(1958) The axiom of Fundierung and the axiom of choice, Arch., 4, 65-70. (1961)
On non-standard models of number theory, Essays on the Foundations of Math-
ematics, Magnes, Jerusalem, 259-268. (1970) Introduction to Boolean Algebra and
Switching Circuits, Schaum, McGraw-Hill. (1973} Number Systems and the
Foundations of Analysis, Academic. (reprint Krieger, 1985). (1990) Second
Thoughts about Church’s thesis and mathematical proofs, J. Philosophy, 225
233.

Meredith, C.A. (1953) Single axioms for the systems (C,N), (C,0) and (A,N) of the
two-valued propositional calculus, J. Comp. Syst., 3, 155-164.

Monk, 1.D. (1976) Mathematical Logic, Springer. (1980) Introduction to Set Theory,
Krieger.

Montagna, F. (1979) On the diagonalizable algebra of Peano arithmetic, Boll. Un.
Ma. Ital, 5, 16-B, 795-812,

Montague, R. (1961a) Semantic closure and non-finite axiomatizability, Infinitistic
Methods, Pergamon, 45-69. (1961b) Fraenkel’s addition to the axioms of Zer-
melo, Essays on the Foundations of Mathematics, Magnes, Jerusalem, 91-114.

Montague, R. and R.1L. Vaught (1959) Natural models of set theories, FM, 47, 219-
242,

Moore, G.H. (1980) Beyond first-order logic: The historical interplay between
mathematical logic and set theory, History and Philosophy of lLogic, 1, 95-137.
(1982) Zermelo’s Axiom of Choice: Its Origin, Development and Influence,
Springer. (1988) The emergence of first-order logic, History and Philosophy of
Modern Mathematics (eds W. Aspray and P. Kitcher), University of Minnesota
Press, 95-135.

Morley, M. (1965) Categoricity in power, Trans. AMS, 114, 514-538.

Morse, A. (1965) A Theory of Sets. Academic.

Mostowski, A. (1939) Ueber die Unabhiingigkeit des Wohlordnungsatzes vom Or-
dnungsprinzip, FM, 32, 201-252. (1947) On definable sets of positive integers,
ibid., 34, 81-112. (1948) On the principle of dependent choices, ibid., 35, 127-130.
(1951a) Some impredicative definitions in the axiomatic set theory, ibid., 37, 111—
124 (also 38, 1952, 238). (1951b) On the rules of proof in the pure functional
calculus of the first order. JSL, 16, 107-111.

Myhill, J. (1955} Creative sets, ZML, 1, 97-108.

Nerode, A. (1993) Logic for Applications, Springer.

Neumann, J. von (1925) Eine Axiomatisierung der Mengenlehre, J. fiir Math., 154,
219240 (also 155, 128) (English translation in Van Heijenoort, 1967, 393-413).
(1928) Die Axiomatisierung der Mengenlehre, Math. Z., 27, 669-752.

Nicod, J.G. (1917) A reduction in the number of primitive propositions of logic,
Proc. Camb. Phil. Soc., 19, 32-41.

Novak, L.L. (Gal, L.N.) (1951} A construction for models of consistent systems, FM,
37, 87-110.

Novikov, P.S. (1955} On the algorithmic unsolvability of the word problem for
group theory, Tr. Mat. Inst. Steklov, 44 (Amer. Math. Soc. Translations, Series 2,
9, 1-124)




420

BIBLIOGRAPHY

Oberschelp, A. (1991) On pairs and tuples. ZML, 37, 55-56.

Oberschelp, W. (1958) Varianten von Turingmaschinen, Arch., 4, 53—62.

Orey, S. (1956a) On w-consistency and related properties, JSL, 21, 246-252. (1956b)
On the relative consistency of set theory, ibid., 280-290.

Parikh, R. (1971) Existence and feasibility in arithmetic, JSL, 36, 494-508.

Paris, J.B. (1972) On models of arithmetic, Conference in Math. Logic — London,
1970, Springer, 251-280. (1978) Some independence results for Peano arithmetic,
JSL, 43, 725-731.

Paris, J, and L. Harrington (1977) A mathematical incompleteness in Peano arith-
metic, HML, 1133-1142.

Peano, G. (1891) Sul concetto di numero, Rivista di Mat., 1, 87-102.

Péter , R, (1935) Konstruktion nichtrekursiver Funktionen, Math. Ann., 111, 42-60.
(1967} Recursive Functions, Academic.

Pincus, D. (1972) ZF consistency results by Fraenkel-Mostowski methods, JSL, 37,
721-743.

Post, E.L. (1921) Introduction to a general theory of elementary propositions, Am. J.
Math., 43, 163—185. (1936} Finite combinatory process-formulation 1, JSL, 1,
103-105 (reprinted in Davis, 1965). (1941) The Tw-Valued Iterative Systems of
Mathematical Logic, Princeton University Press. (1943) Formal reductions of the
general combinatorial decision problem, Ani. J. Math., 65, 197-215. (1944) Re-
cursively enumerable sets of positive integers and their decision problems, Bull.
AMS, 50, 284-316 (reprinted in Davis. 1965). (1947) Recursive unsolvability of a
problem of Thue, JSL, 12, 1-11 (reprinted in Davis, 1965). (1994) Solvability,
Provability, Definability: The Collected Works of Emil L. Post (ed. M. Davis),
Birkhiuser.

Presburger, M. (1929) Ueber die Vollstindigkeit eines gewissen Systems der Ari-
thmetik ganzer Zahlen in welchem die Addition als einziger Operation hervortritt,
Comptes Rendus, 1 Congrey des Math. des Pays Slaves, Warsaw, 192-201, 395.

Putnam, H. (1957) Decidability and essential undecidability, JSL., 22, 3954,

Quine, W.V. (1937) New foundations for mathematical logic, Am. Math. Monthly,
44, 70-80. (1951) Mathematical Logic (second revised edition), Harvard Univer-
sity Press. (1954) Quantification and the empty domain, JSL, 19, 177-179 (re-
printed in Quine, 1965, 220-223). (1963) Set Theory and its Logic, Harvard
University Press. (revised edition, 1969) (1965) Selected Logical Papers, Random
House.

Rabin, M. (1958) On recursively enumerable and arithmetic models of set theory,
JSL, 23, 408-416. (1977) Decidable theories, HML, 595-629.

Ramsey, F.P. (1925) New foundations of mathematics, Proc. London Math. Soc., 25,
338-384.

Rasiowa, H. (1956) On the e-theorems, FM, 43, 156-165. (1974} An Algebraic Ap-
proach to Non-Classical Logics, NH.

Rasiowa, H. and R. Sikorski (1951) A proof of the completeness theorem of Godel,
FM, 37, 193-200. (1952) A proof of the Skolem—Loéwenheim theorem, ibid., 38,
230-232. (1963) The Mathematics of Metamathematics, Panstwowe Wydawnictwo
Naukowe.

Rescher, N. (1969) Many-Valued Logics, McGraw-Hill.

Rice, H.G. (1953) Classes of recursively enumerable sets and their decision problems,
Trans. AMS, 74, 358-366.

t~



BIBLIOGRAPHY

421

Robinson, A. (1951} On the Metamathematics of Algebra, NH. (1952) On the appli-
cation of symbolic logic to algebra, Int. Cong. Math., Cambridge, 1, 686—694. (1966)
Non-Standard Analysis, NH. (1979) Selected Papers, Vol. 1, Model Theory and
Algebra, NH; Vol. 2, Nonstandard Analysis and Philosoply, Yale University Press.

Robinsen, J.A. (1965) A machine-oriented logic based on the resolution principle,
J. Assoc. Comp. Mach., 12, 23-41.

Robinson, Julia. (1949) Definability and decision problems in arithmetic, JSL, 14,
98—114. (1950} General recursive functions, Proc. AMS, 1, 703-718. (1952) Ex-
istential definability in artthmetic, Trans. AMS, 72, 437-449.

Robinson, R.M. (1937) The theory of classes. A modification of von Neumann’s
system, JSL, 2, 69-72. (1947) Primitive recursive functions, Bull. AMS, 53, 925-
942. (1948) Recursion and double recursion, Bull. AMS, 54, 987-993. (1950) An
essentially undecidable axiom system, Proc. Int. Cong. Math., Cambridge, 1, 729~
730.

Rogers, H., Jr (1959) Computing degrees of unsolvability, Math, Ann., 138, 125-140.
(1967} Theory of Recursive Functions and Effective Computability, McGraw-Hill.

Rosenbloom, P. (1950) Elements of Mathematical Logic, Dover.

Rosser, J.B. (1936} Extensions of some theorems of Gddel and Church, JSI., 87-91
(teprinted in Davis, 1965). (1937) Godel theorems for non-constructive logics,
JSL, 2, 129-137. (1939) An informal exposition of proofs of Gédel’s theorem and
Church’s theorem, JSL, 53-60 (reprinted in Davis, 1965). (1942) The Burali-Forti
paradox, JSL, 7, 1-17. (1953) Logic for Mathematicians, McGraw-Hill (second
edition, Chelsea, 1978). (1954) The relative strength of Zermelo’s set theory and
Quine’s New Foundations, Proc. Int. Cong. Math., Amsterdam, 111, 289-294.
(1969) Simplified Independence Proofs, Academic.

Rosser, J.B., and A. Turquette (1952) Many-Valued Logics, NH (second edition,
1977, Greenwood).

Rosser, J.B., and H. Wang (1950) Non-standard models for formal logics, JSL, 15,
113-129.

Rotman, J.J. (1973) The Theory of Groups. Allyn & Bacon (second edition).

Rubin, H. and J. Rubin (1963) Eguivalents of the Axiom of Choice, NH.

Rubin, J. (1967) Set Theory for the Mathematician, Holden-Day.

Russell, B. (1908) Mathematical logic as based on the theory of types, Am. J. Math.,
30, 222-262.

Ryll-Nardzewski, C. (1953) The role of the axiom of induction in elementary
arithmetic, FM, 39, 239-263.

Sambin, G. (1976) An effective fixed point theorem in intuitionistic diagonalizable
algebras, Studia Logica, 35, 345-361.

Schiitte, K. (1951). Beweistheoretische Erfassung der unendlichen Induktion in der
Zahlentheorte, Math. Ann., 122, 368-389.

Shannon, C. (1938) A symbolic analysis of relay and switching circuits, Trans. Amer.
Inst. Elect. Eng., 57, 713-723.

Shapiro, S. (1988) The Lindenbaum construction and decidability, NDJFL, 29, 208—
213. (1991) Foundations without Foundationalisni. A Case for Second-order Logic,
Oxford University Press.

Shepherdson, J.C. (1951-53) Inner models for set theory, JSL, 1, 16, 161-190; I1, 17,
225-237; 111, 18, 145-167. (1961) Representability of recursively enumerable sets
in formal theories, Arch., 5, 119-127,




422

BIBLIOGRAPHY

Shepherdson, J.C. and H.E. Sturgis (1963) Computability of recursive functions,
J. Assoc. Comp. Mach., 10, 217-255.

Shoenfield, J. (1954) A relative consistency proof, JSL, 19, 21-28. (1955) The in-
dependence of the axiom of choice, Abstract, ibid., 20, 202. (1961) Undecidable
and creative theories, FM, 49, 171-179, (1967) Mathematical Logic. Addison-
Wesley. (1971) Unramified forcing, Proc. Symp. Pure Math., 13, AMS, 357-381.

Sierpinski, W. (1947) L’Hypothese gencralisee du continu et Paxiome du choix, FM,
34, 1-5. (1958} Cardinal and Ordinal Numbers, Warsaw,

Sikorski, R. (1960) Boolean Algebra, Springer (third edition, 1969).

Skolem, T. (1919) Untersuchungen iiber die Axiome des Klassenkalkiils und iiber
Produktations- und Summationsprobleme, welche gewisse Klassen von Aussagen
betreffen. Skrifter-Vidensk, Kristiana, I, 1-37. (1920) Logisch-kombinatorische
Untersuchungen iiber die Erfiillbarkeit oder Beweisbarkeit mathematischer Sitze,
ibid., 1-36 (English translation in Van Hetjenoort, 1967, 252-263). (1923) Einige
Bemerkungen zur axiomatischen Begriindung der Mengenlehre, Wiss. Vortrige
gehalten auf dem 5. Kongress der skandinav. Mathematiker in Helsingfors, 1922,
217-232 (reprinted in Van Heijenoort, 1967, 290-301). (1934) Ueber die Nicht-
Characterisierbarkeit der Zahlenreihe mittels endlich oder abzdhlbar unendlich
vieler Aussagen mit ausschiiesslich Zahlenvariablen, FM, 23, 150-161.

Smorynski, C. (1977) The incompleteness theorems, HML, 821-866. (1981) Fifty
years of self-reference, NDJFL, 22, 357-374. (1985) Self-Reference and Modal
Logic, Springer. (1991) Logical Number Theory I, Springer.

Smullyan, R. (1961) Theory of Formal Systenis, Princeton University Press. (1968)
First-Order Logic, Springer (reprint Dover, 1995). (1978) What is the Name of
This Book, Prentice Hall. (1985) To Mock a Mockingbird, Knopf. (1992) Gddel’s
Incompleteness Theorems, Oxford University Press. (1993) Recursion Theory for
Meramathematics, Oxford University Press. (1994) Diagonalization and Self-
Reference, Oxford University Press.

Solovay, R.M. (1976) Provability interpretations of modal logic, Israel J. Math., 25,
287-304.

Sonner, J. (1962) On the formal definition of categories, Math. Z., 80, 163—176.

Specker, E. (1949) Nicht-konstruktiv beweisbare Sitze der Analysis, JSL, 14, 145—
148. (1953) The axiom of choice in Quine’s ‘New Foundations for Mathematical
Logic’, Proc. Natl. Acad. Sci. USA, 39, 972-975. (1954) Verallgemeinerte Ko-
ntinuumhypothese und Auswahlaxiom, Archiv der Math., 5, 332 337. (1957) Zur
Axiomatik der Mengeniehre (Fundierungs- und Auswahlaxiom), ZML, 3, 173—
210. (1958) Dualitét, Dialectica, 12, 451-465. (1962) Typical ambiguity, Logic,
Methodology and Philosophy of Science, Proc. Int. Cong., 1960, Stanford, 116-124.

Stone, M. (1936) The representation theorem for Boolean algebras, Trans. AMS, 40,
37-111.

Stroyan, K.D. and W.A.J. Luxemburg (1976) Introduction to the Theory of Infini-
tesimals, Academic,

Suppes, P. (1960) Axiomatic Set Theory, Van Nostrand (Dover, 1972).

Szmielew, W. (1955) Elementary properties of abelian groups, FM, 41, 203-271.

Takeuti, G. and W.M. Zaring (1971) Introduction to Axiomatic Set Theory, Springer.
(1973) Axiomatic Set Theory, Springer.

Tarski, A. (1923) Sur quelques théorémes qui equivalent a I’axiome de choix, FM, 5,
147-154. (1925) Sur les ensembles finis, ibid., 6, 45-95. (1933} Einige Berach-

i~



BIBLIOGRAPHY

423

tungen iiber die Begriffe der w-Widerspruchsfreiheit und der w-Vollstandigkeit,
Monatsh. Math. Phys., 40, 97-112. (1936) Der Wahrheitsbegriff in den formal-
isierten Sprachen, Studia Philos., 1, 261-405 (English translation in Tarski, 1956).
(1938) Ueber unerreichbare Kardinalzahlen, FM, 30, 68-89. (1944) The semantic
conception of truth and the foundations of semantics, Philos. and Phenom. Res.,
4, 341-376. (1951) A Decision Method for Elementary Algebra and Geometry,
Berkeley. (1952) Some notions and methods on the borderline of algebra and
metamathematics, Inz. Cong. Math., Cambridge, Mass, 1950, AMS, 705-720.
(1956) Logic, Semantics, Metamathematics, Oxford University Press. (second
edition, 1983, J. Corcoran (ed.), Hackett).

Tarski, A., A. Mostowski and R. Robinson (1953) Undecidable Theories, NH.

Tarski, A. and R.L. Vaught (1957) Arithmetical extensions of relational systems,
Comp. Math., 18, 81-102.

Troelstra, A.S. (1969) Principles of Intuitionism, Springer.

Turing, A. (1936-37) On computable numbers, with an application to the Ent-
scheidungsproblem, Proc. London Math. Soc., 42, 230-265; 43, 544-546. (1937)
Computability and A-definability, JSI,, 2, 153-163. (1948) Practical forms of type
theory, ibid., 13, 80-94. (1950a) The word problem in semigroups with cancel-
lation, Ann. Math., 52, 491- 505 (review by W.W. Boone, ibid., 1952, 74-76).
(1950b) Computing machinery and intelligence, Mind, 59, 433-460.

Ulam, S. (1930} Zur Masstheorie in der allgemeinen Mengenlehre, £M, 16, 140- 150.

Van Benthem, J. and K. Doets. (1983) Higher-order logic. HPL, I, 275-330.

Vaught, R.L. (1954) Applications of the Lowenheim-Skolem-Tarski theorem to
problems of completeness and decidability, Indag, Math., 16, 467-472.

Waerden, B.L. van der (1949) Modern Algebra, Ungar.

Wajsberg, M. (1933) Untersuchungen iiber den Funktionenkalkiil fiir endliche In-
dividuenbereiche, Math. Annalen, 108, 218-228.

Wang, H. (1949) On Zermelo’s and von Neumann’s axioms for set theory, Proc.
Natl. Acad. Sci. USA, 35, 150-155. (1950) A formal system of logic, JSI, 15, 25—
32. (1957) The axiomatization of arithmetic, ibid., 22, 145-158,

Whitehead, A.N., and B. Russell (1910-13) Principia Mathematica, Vols HIII,
Cambridge University Press.

Wiener, N. (1914) A simplification of the logic of relations, Proceedings of the
Cambridge Philosophical Society, 17, 387-390 (reprinted in Van Heijenoort, 1967,
224-227).

Yasuhara, A. (1971) Recursive Function Theory and Logic, Academic.

Zeeman, E.C. (1955) On direct sums of free cycles, J. London Math. Soc., 30, 195-
212.

Zermelo, E. (1904) Beweis, dass jede Menge wohlgeordnet werden kann, Marh.
Annalen, 59, 514-516 (English translation in Van Heijenoort, 1967, 139—-141).
(1908) Untersuchungen iiber die Grundlagen der Mengenlehre, ibid., 65, 261281
(English translation in Van Heijenoort, 1967, pp. 199 215).

Zuckerman, M. (1974) Sets and Transfinite Numbers, Macmillan,




Notation

Y
P(Y)

€, ¢
{x|P(x)}
C,C

=, #

U, [

¢

x—y

{b1,. .., b}
{x, ¥} {x}

(bla b2)7 (bl! .

Xk

[¥]

VAONACITNS

fz
fog
1-1
X=Y
NU,ZNU
LA
T, F
V,=
L=t

Ll

dnf, cnf
Res( st )
wif

.-, br)

axn) 6,

2
2, 234

5, 225

4

5, 226

5, 94, 226
5

5, 228

5

5

5, 228, 229
5, 229

5, 233

6, 233

6

6, 246

6

Rt LN IREN IR I B o Y

11
11, 12
13
29
30
32
34

|._

L

MP

Hyp

L —1,

(vx), (3x)

Ap, 1 a;

gl;f)M, (M, (@)™

*

s
Em

}:M J#[blr--:bk]
Gen

A4, E4

Fe

)

Ky, K,

G, GC, F, RC, F<
(F1x)

(an)

1

K% K"
M[ = M2
Ko

M; C M,
1Vj[l -<-.eM2
I D;
jgeJ
=z,f%

Il D/ &
jeg

{Cj} j€J

35
35
35
38
45, 46
50
51

57

59

59

60

62

70

76, 77
82

86, 190, 321
97, 98
98, 99
99

101
106
111, 138
112
123
124
124
125
131

131, 132
132

132



NOTATION | 425

N M,/ 133 | IC, FL, PL 192
je EVbl, EIC, EFL, EPL 193
NYZ 133 1 Argr, Argp, Gd 193
c’, M I35 MP(x, v, z), Gen(x,y), Trm(x) 193
R, A . 136 1 Atfml, Fml 194
R %", RY, A 1371 Subst, Sub 194, 195
st(x) 38 1 o pr, Ax; 195, 196
X 142 LAX, Neg, Cond, Clos 196
f ,148 Num, Nu, D 197
pp” 148 | poAx, Ax, Prf, P 197, 198
PPS# 149} RR, Q 201
ETH 1499 | o 02
%, 154 |, 206
S,¢,+,0 154, 155 P, 208
PA 155 | 7, 512
7 Y601 & i, Beco 212, 213
<K, 2 163 1 (HB1)~(HB3) 213
t|s 167 w 913
S, 169 | T 516
z 172 | pE, PP, Pg 221
N, U} 172 1 pmp 222
R I73 | NBG 225
M 175 1 M, pr 226
&, = 77\~ X, @,0,v,— 231
b=y 1771 Rel 233
52,58 770 Lt o6} 234
min, max 177 Li(Y), 2(Y) 234
rm, gt Ty 234, 235
22,11 1] 781 () 235
y<z y<z y<z y<z

) 178 | Userv 236
H<y<v Fnc 238
(x) 19 x.v >z 238
(My<rr Wy Iyern Iy 179 [ ¥ [ x 238
Hy<z 179 1 x¢y Xx*¥,Fnc, (X) 238
Pr 180 | 1rr, Tr, Part, Con, Tot, We 240
Pr 181 | gjm 241
(x);, £ 4(x) 181 | Fld, TOR, WOR 242
X*y 181 E, Trans, Secty, Segy 242, 243
W], T1(n), RP(y, z) 182 Ord, On 243
0%, 03,03 184 | 1 244
a¥, J:.‘ 184 | <o, <o 245
f# 185 | ¥ 246
B, Bt 186 | Suc, K 246




426

NOTATION

Inf, Den, Count, Dedfin,
DedInf

H'x

Init

Wy,

AC, Mult, WO,
Trich, Zorn

UCF

Reg

TC(u)

PDC, DAC

b Y

H, Hg

p'x

GCH

MK

ZF, Z

ST

NF

ST—,NFU, ML

247
247
250
250
253

254
255
258
259

261
264
264
266

275, 276
278
279
280
280
280
281
281
284
287
288
289
293
296
297
302
306
308

308
309
309
309
309

r.la, P A p 313
AS 313, 314
~ W, X 314
R 314
&L, T,6,C 315
KK, 316
ST 319
[S, Sym, Quad, TM,

TD, NTD 322 323
Stop, Comp, Num,

TR, U, T, 323, 324
¢, 330
S 330

o1 333
r.e. 340
W, 341
HG 346
Eqt, Syst, Occ, Cons;, Cons; 350
Ded, S, U 350, 351
—,— - 351
A:P1O 352
A:PFR 352
A(P) =~ B(P) 356
Sor 357
BoUA Dy 357
Vor 359
L1C 368
L2C, %, 369
L2 370
COMP, FUNDEF 372
Gen 2a, Gen 2b 372
PC, 373
AR> 373
L2.of 375
SV 375
Cont 377
S 378

&) V

AT Jevlgy



Index

Abbreviated truth table 14
Abelian group 71, 98
Absolute consistency 43
AC, see axiom of choice
Ackermann’s model 303
Addition, ordinal 249
Adequate sets of connectives 27
Algebra

Boolean 9

cylindrical 123

Lindenbaum 49

polyadic 123
Algebraically closed fields 119
Algorithm 305, 351

closed 357

(fully) equivalent 356

Markov 352

normal 352

over an alphabet 351

schema 352

Turing 308
Algorithmically solvable 328
o-sequence 286
Alphabet of a Turing machine 305
Alternative denmial 29
Analysis, nonstandard 136
And 11
Antecedent 12
Applicable 308, 351
AR2 373
Argument strip 319
Arguments, logically correct 26
Arguments of a function 7
Arithmetic, langauge of 154
Anthmetical

hierarchy 333

relation 190

set 217

Arithmetization 190, 192, 349
Arrows in diagrams 311
Associativity
of conjunction, disjunction 23
Atom 297
Atomic formula 52
Auxiliary letter 345
Axiom 34
of choice 9, 275
of class existence 230
comprehension scheme 291, 294
extensionality 290, 294
finite, of choice 277
Fundierungs- 279
of infinity 239, 288, 292
logical 69
multiplicative 275
null set 228, 288
pairing 228, 288
power set 236, 288
proper (nonlogical) 69, 70
of reducibility 293
of regularity 279, 288
of replacement 239, 288
schema 36
selection 288

set (primitive recursive, recursive) 197

of subsets 236

sum set 236, 288
Axiomatic theory 34, 211
Axiomatizable

fimtely 94

recursively 211
Axiomatization, independent 94

Basic principle of semantic trees 143
Bernstein’s theorem 8, 255
Berry’s paradox 3
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INDEX

Beta function of Godel 186
Biconditional 13
associativity, commutativity 23
elimination, introduction,
negation 78
rules 78
Binary relation 6
Blank square 306
Blatant contradiction 32
Boolean algebra 9

Boolean represcntation theorem 121

Bounded
[-operator
quantifiers 179
sums and products 178
Bound occurrence 53
Bound variables 53
change of 85
Branch 142
closed 142
Brouwer, L.E.J. 4
Burali-Forti’s paradox 2, 4

Cantorian (strongly) 295
Cantor’s paradox 2, 4, 257, 295
Cantor’s theorem 2, 257, 295
Cardinal
arithmetic 271
Frege-Russel 257
number 2, 8, 279, 282
sum 258
Cartesian product 6, 233
Categorical 112
Categoricity of AR2 374
Category theory 295
Causal laws 12
Chain 276
Change of bound variables 85
Characteristic of a field 117
Characteristic function 173
Chinese remainder theorem 190
Choice
axiom of, (AC) 9, 275
denumerable axiom of 280
finite axiom of 277
function 275
principle of dependent 280
set 9, 275
universal, function 278
Church, A.
Church’s theorem 222
Church’s thesis 211, 326

[

Circuit, electrical 24
Class 5, 225
existence axioms 230
finite 259

general, existence theorem 232

ordinal 243
power 234
proper 226
sum 234
universal 231
‘Classical’ sense of existential
quantifier 357
Clean-up machine (C) 315
Closed
normal algorithm 357
set 140
term 87
wf 58
Closure
transitive, 280
(universal), of a formula 61
Commutativity
of biconditional, conjunction,
disjunction 23
Compactness theorem 93, 136
failure of, in standard second-
order logic 377
validity of, for general models
Compatible theories 220
Complement 231
relative 5
Complete
diagram 127
induction 8, 9, 166
NP- 31
theory 86
Completeness theorem
general second-order 379
generalized 121
Godel’s 91
for L 42
Composition 7, 241, 357
normal, of algorithms 358

380

Comprehension axiom scheme 291,

294

in second-order theories (Comp) 372

Computable

A-, 361
Herbrand-Godel 346
Markov- 356-7
standard Turing- 319
Turing- 309
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Computation of a Turing machine 3
Conditional 12

contrapositive 77

counterfactual 12

elimination, introduction 77

function (Cond)} 196

rules for the 77
Conjunct 11
Conjunction 11

assoclativity, commutativity 23

elimination, introduction 77

rules 77
Conjunctive normal form (cnf) 30
Connected relation 240
Connective 13, 44

primitive 35

principal 14
Consequence 34

direct 34

logical 16, 66

standard second-order logical 370
Consequent 12
Conservative extension 289
Consistency 72

absolute 43

of L 42

of a predicate calculus 72

of S 160, 212

w- 205
Constant

individual 51

nonlogical 57

(Turing) machine 313
Continuous 139

uniformly 141
Continuum §

hypothesis 284

generalized, hypothesis 284
Contracted model 100
Contradiction, proof by 78
Contradictory 18, 65
Contrapositive 23, 77
Correlate 357
Correspondence, one—one 7
Countable 8, 261
Counterfactual conditional 12
Course-of-values recursion 185
Cowen, R. 32
Craig’s interpolation theorem 33
Creative 342
Cretan ‘paradox’ 2
Cylindrical algebras 123

08 Decidable
effectively 211
recursively 216
theory 34, 362
wl 169
Decision problem 361
Dedekind, R. 154
Dedekind-finite, Dedekind-infinite 261
Deduction 35
Deduction theorem
for first-order theories 734
for L 37
Definite description 106
Definition
by cases 1823
of new function letters
and constants 103
possible 223
by transfinite induction 249
De Morgan’s law 23
Densely-ordered sets, theory of 98
Denumerable 8, 261
axiom of choice 280
model 90
sequence 8
Dependent choice, principle of 280
Depends 73
Derivability conditions 213
Derivable from a set
of equations 346
Derived rules 76-7
Designated values 44
Detachment rule 35
Diagonal function 197
Diagonalization lemma 203
Diagram (complete) of a model 127
Diagrams of Turing machines 311
Difference 5, 231
Direct consequence 34
Discharged wf of a semantictree 142
Disjoint sets 5
Disjunct 12
Disjunction 12
associativity, commutativity 23
elimination, introduction 77
rules 77
Disjunctive normal form (dnf) 30
Distributive law 23
Domain
empty 147
of an interpretation 57
of a relation 6, 231
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Downward Skolem-Léwenheim
theorem 128
failure of, in standard second-
order logic 377

validity of, for general models 380

Duality 23
Dummy variables 176
Dyson, V.H. 171

Easton, W.B. 279

Effectively computable function 200

Effectively decidable 211
Electric circuit 24
Element 1, 5, 296
Elementarily equivalent 123
Elementary
class of models 136
extension 125
submodel 125
substructure 125
theory 98
theory of groups, fields, ordered
fields 98
Elimination of existential
quantifiers 117
Empty
domain 147
function 326
set 5
word 306
Epimenides 2
Equality
in second-order languages 369
in set theory 226
in type theory 290
pure first-order theory of 98
reflexivity of 95
substitutivity of 95
theory with 94-5, 99
Equation 345
Equinumerous 7, 253
Equivalence
class 6
logical 16
recursive 343
relation 6
theorem 79
Equivalent
elementarily, interpretations 123
(fully), algorithms 356
logically 16, 66
recursively 343

AN

INDEX

Essential incompleteness 211
Essential recursively
undecidable 216

Exclusive ‘or’ 11
Existential

quantifier 50

rule B4 77
Exponentiation, ordinal 250
Expressible relation 170

weakly 344
Expression 34, 321
Extension

of an alphabet 351
conservative 289
elementary 125
finite, of a theory 219
of a model 124
submodel 125
substructure 125
of a theory 86
Extensionality 290, 294
axiom 290, 294
principle 227
extremal clause 35

False
for an interpretation 60
for a standard second-order
interpretation 370

logically 18
Field of a relation 6, 242
Fields

algebraically closed 119
elementary theory of 98
ordered 98
real-closed 362

Filter 129
proper, improper, principal 129
ultra- 130

Finitary 36
Finite
axiom of choice
Dedekind- 261

e-cycles 279

extension 219
intersection property 129
marriage problem 119
ordinal 259
presentation 364
Ramsey theorem 210
sequence 8

set 8, 259
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Finitely
axiomatizable theory 94
presented group 366
First-order language 56
generalized 114
First-order predicate calculus 70
First-order vs. second-
order logic 381-2
full 221
pure 221
First-order theory 69
of densely ordered sets 98
of equality 98
with equality 94-5
generalized 114
Fixed-point theorem 204
Fixed-point theorem in recursion
theory 335
F-less transform 104
Follows from 34
Form, statement 13
Formal
number theory 154
theory 18, 34
Formula
atomic 52
well-formed 34, 52
Fraenkel, A.A. 288
Free
occurrence 53
variable 53
for x;in a formula 54
Frege-Russell cardinal numbers 257
F-transform 104
Full first-order predicate calculus 221
Full general model 379
Full normal form 31
Full Second-order language 369
pure 370
Fully equivalent algorithms 356
Function 6, 238
characteristic 173
conditional (Cond) 196
definition of new, letters 103
diagonal 197
effectively computable 200
empty 326
Godel’s beta 186
Herbrand-Godel (HG)-
computable 346
initial 174
into 7

Function (continued)
juxtaposition 182

letter 51
Markov-computable 356-7
maximum, minimum 177
negation (Neg) 196
number-theoretic 170
one—one 7

onto 7

partial 7, 309

partial recursive 318
predecessor 177
primitive recursive 175
projection 174

quotient 177

recursive 175

recursively completable 328
remainder 177

(strongly) representable 171
successor 174

total 7, 309

truth 14-5
Turing-computable- 309
variables 368

zero 174
Function definition schema
(Fundef) 372
Fundierungsaxiom 279

Gch, see Generalized continuum
hypothesis
Gen 70
General class existence theorem 232
General model 379
Full 379
General recursive 175
General second-order
completeness 379
Generalization (Gen) rule 70
second-order 372
Generalized completeness theorem 121
Generalized continuum hypothesis 284
Generalized first-order

language 114
theory 114
Generally

implies, 1s equivalent to 379
satisfiable, valid 379

Generators 364

Godel, K.
Herbrand-Godel-computable 346
number 190, 321
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INDEX

Rosser theorem 208 9, 219
sentence 206
Godel’s
f-function 186
completeness theorem 91
incompleteness theorem 206
second theorem 212, 215
Graph 118
Graph of a function 174
Grelling’s paradox 3
Groups
finitely presented 366
orderable 119
theory of 71, 98

Halting problem 328

self- 329

special 329
Hartogs’ function 264
Hartogs’ theorem 263
Hausdorfl maximal principle 277
Henkin, L.

second-order interpretation 378
second-order semantics 378
sentence 213
Henkin’s lemmma 380
Herbrand, J. 345
Herbrand-Godel-(HG)-
computable 346
Heterological 3
Higher-order

languages 56

theories 56, 381
Hilbert, D. 381

Inaccessible ordinal (continued)
weakly 286
Inclusion 5, 226
Inclusive ‘or’ 11
Inclusively valid 148
Incompleteness
essential 211
Godel-Rosser, theorem 208
Gaodel’s theorem 206
of standard second-order
semantics 376
w- 208
Inconsistent theory 72
Increasing function 251
Increasing ordinal o-sequence 286
Independence 43
Independent axiomatization 94
Index 330, 341
Individual 227, 297
constants 51
variables 51
Induction
complete &, 9, 166
mathematical 8
principle 8, 154-5
rule 155
transfinite 9, 245, 2489
up to w, up to & 248
[nductive hypothesis 8
Inference, rules of 34
Infinite 8, 261
Dedekind- 261
ordinal 259
Infinitely close [38

Bernays derivability conditions 213  Infinitely descending e-sequences 279

Hilbert’s tenth problem 305, 363
Hyp 38

Hypothesis 35

inductive 8

Ideal (maximal, proper) 9
Identifying variables 176
Identity element 364
Identity relation 6, 234
Image 7
inverse 7
Immune 343
Implication, logical 16, 65
Impredicatively defined set 293
Improper filter 129
Inaccessible ordinal 283
strongly 286

-

Infinitesimal 136
Infinity, axiom of 239
in type theory 292
Initial

functions 174

fetter 345

ordinal 264

state 307

tape description 307
vertex 311

Inner model 282
Inseparable, recursively 219
Instance 61

Internal state 307
Interpolation theorem 33
Interpretable 223
relatively 224
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Interpretation 57
Henkin second~order 378
standard 160
standard second-order 370
Intersection 5, 231, 237
Intuitionism 4
Intuitionistic propositional calculus 48
Inverse 7
Image 7
lexicographical ordering 272
relation 6, 235
of a word 353
Iota term 106
Trreflexive 240
Isolated 343
Isomorphic
interpretations 111
recursively 342
Iteration theorem 330
for models of AR2 374

Iterative conception of set 282
Joint denial 29
Juxtaposition function 181-182

k-colourable graph 118
Kleene, S.C.

-Mostowski hierarchy 333
Normal form theorem of 326
Ko6nig’s Unendlichkeitslemma 118
Kreisel, G. 399

k-valid 93

A-computability 361

L 35

language

of arithmetic 154
first-order 56
generalized first-order 114
higher-order 56

meta- 36

object 36
law of the excluded middle 4, 16
Least

element 9, 245

number principle 166
Left

-end machine 315

machine 313

-translation machine 315
Leibniz, G.W. 65

Length of an expression 181
Letter
auxiliary 345
function 51
initial 345
predicate 51
principal 345
statement 13, 35
Liar paradox 2
Limit ordinal 247
Lindenbaum, A.
algebra 49
Lindenbaum’s lemma 86
Literal 30
Léb, M.H.
L&b’s paradox 3
L&éb’s theorem 214
Logic 1
many-valued 44-5
second-order 368
third and higher-order
Logical
axioms 69
consequence 16, 66
implication 16
equivalence 16
paradoxes 3
standard, consequence 370
validity 362
Logically
correct arguments 26
equivalent 16, 66
false 18
imply 16, 65
standardly second-order, imply 370
true 18
valid 65
Logicism 291
Los® theorem 133
Lowenheim, L.
Downward Skolem-Léwenheim-
Tarski theorem 128
Skolem-Léwenheim theorem 92
Upward Skolem-Lowenheim-
Tarski theorem 128

369

p-operator (mu-operator) 175
bounded 179
unrestricted 318

Machine, Turing 306
clean-up 315
constant 313
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Machine, Turing (continued)

left 313

lefl-end 315

left-translation 315

n-shift copier 316

right 313

right-end 314

shift 315

super-universal 332

universal 332

word-copier 316
Many-one

equivalent 343

reducible 342
Many-valued logic 44 5
Maps 7
Markov, A A.

algorithm 352

-computable 3567
Marriage problem 119
Mathematical induction 8, 154-5
Mathematical logic 1, 4
Maximal ideal 9

theorem 121
Maximum function 177
m-categorical 112
Mechanical procedure 211
Member 1,5
Membership relation 225, 242
Metalanguage 36
Metamathematics 36
Metaproof, metatheorem 36
Method of infinite descent 167
Minimum function 177
Minimal (maximal) element 263
ML 296
Model 60, 70

contracted 100

denumerable 90

(full) general 379

inner 282

nonstandard 160

normal 100

standard 160
Modus ponens (MP) 34-5
Moll, D. 385

Monadic predicate calculus, pure 222

Monadic predicate letters 51

Morse-Kelley set theory (MK) 287

Mostowski, A. 287
Kleene-, hierarchy 333
Moves 307

2~

MP, see Modus ponens
Multiplication, ordinal 250
Multiplicative axiom (Mult) 275

Natural number 154

NBG 225

Negation 11

elimination, introduction 77
function (Neg) 196

rules 77

NF (Quine’s New Foundations)
NFU 296

Non-class 227

Nonlogical

axioms 69-70

constants 57

Nonstandard 160, 295
analysis 136

model 160, 295

reals 137

Normal

algorithm 352

closed, algorithm 357
composition 358

forms 30

model 100

prenex, form 106

Skolem, form 109
Normal form theorem, Kleene’s
NP-complete 31

N-shift copier (K,;) 316

Null set 5

axiom 228

Number

cardinal 2, 8, 279, 282

of divisors 179

Godel 190, 321

natural 154

ordinal 243
Number-theoretic

function 170

relation 170

Numeral 160, 345
Numerical tape description 323

Object language 36
Occurrence (free, bound) 53
Occurs 352

w246

-consistency 205
-incompleteness 208

On 243

293

326
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One—one 7
correspondence 7
equivalent 343
function 238
reducible 343

Open
set 140
wl 68

Operation, n-place 7
Or 11

Order

partial 8

total 9, 242

type 242

well- 9
Orderable group 119
Ordered

fields 98

k-tuple 5, 230
pair 5, 229
Ordinal

o-sequence 286
addition 249
class 243
exponentiation 250
fimte 259

of first kind 246
inaccessible 283

infinite 259
mitial 264
limit 247

multiplication 250
number 243

regular 286

singular 286

strongly inaccessible 286
successor 246

weakly inaccessible 286
Owings, J.C., Jr. 12

PA, see Peano arithmetic
Pair

ordered 5, 229
unordered 5, 228
Pairing axiom 228
Paradox

Berry’s 3
Burali-Forti’s 2, 4
Cantor’s 2, 4
Cretan 2
Grelling’s 3

liar 2

Paradox (continued)

Léb’s 3

logical 3

Richard’s 2

Russell’s 1, 4

semantical 3

Skolem’s 263
Parameters of a recursion 175
Parentheses 20, 52
Partial

function 7

order 8, 71, 240

recursive 318
Particularization rule A4 76
Peano arithmetic (PA) 155
Peano’s postulates 154

categoricity of 169
Permutation, recursive 342
Permuting variables 176
PF 221
Poincaré, H. 293
Polish notation 21
Polyadic algebras 123
Possible definitions 223
Possible worlds 65
Post, E.L. 334
Power

class 234

of the continuum 8

sel axiom 236
PP 221
Precisely k-valid 93
Predecessor function 177
Predicate

calculus 70

calculus, full 221

calculus, pure 109, 221

calculus, pure monadic 222

letter 51

variables 368
Predicative wf 232
Premiss 35
Prenex normal form 106
Prenex wf 94
Presburger arithmetic 169
Prime number function 181
Prime number property 180
Primitive connectives 35
Primitive recursive

axiom set 197

function 175

relation 179
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Primitive recursive (continued)
vocabulary 192
Principal
connective 14
filter 129
letter 345
Principia Mathematica 4, 293
Principle
of complete induction 8§, 9
of dependent choices (PDC) 280
extensionality 227
least-number 166
of mathematical induction 8, 154-5
well-ordering 9, 275
Printing problem 330
Product
bounded 178
Cartesian 6, 233
Production (simple, terminal) 351-2,
363
Productive 343

- Projection functions 174

Proof 34-6

by contradiction 78

of an equation 346
Propagation 358
Proper

axioms 69-70

class 226

filter 129

ideal 9

inclusion 226

initial segment 21

subclass 226

subset 5

Property 6, 62
Proposition 36
Propositional calculus 11
intuitionistic 48
Propositional connective 13

Pure

first-order predicate calculus 109, 221
first-order theory of equality 98
full second-order language 370
monadic predicate calculus 222

Q 201
Quadruple of a Turing machine 307
Quantification theory 50
Quantifiers 50

bounded 179

function and predicate 369

.,

RN

Quine, W.V. 287, 293, 296, 382
Quotation marks 13
Quotient function 177

R 202
Ramified type theory 293
Range 6, 235
Rank 28]
R.e., see Recursively enumerable
Reading head 306
Real-close field 362
Real numbers, nonstandard 137
Recursion 174
course-of-values 185
theorem 335
Recursive
axiom set 197
function 175
partial 318
permutation 342
relation 179
set 211
vocabulary 192
Recursive, but not primitive recursive
function 340
Recursively
axiomatizable 211
completable 328
decidable 216
enumerable (r.e.) 340
equivalent 343
essentially, undecidable 216
inseparable 219
solvable 329
undecidable 216
unsolvable 329
Reduced direct product 133
Reducibility, axiom of 293
Reducible
one-one 343
many-one 342
Reflexive 6
partial order 8
total order 9
Regular ordinal 286
Regularity axiom 279, 288
Relation 6, 62, 233
arithmetical 190
binary 6, 233
connected 240
equivalence 6
expressible 170
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Relation (continued)

identity 6, 234

inverse 06, 235

irreflexive 240

membership 242

n-place 6

number-theoretic 170

primitive recursive 179

recursive 179

reflexive 6

symmetric 6

transitive 6, 240

universal 335

weakly expressible 344

well-ordering 242
Relations of a finite

presentation 364

Relative complement 5
Relatively interpretable 224
Relatively prime 190
Relativization 224
Remainder function 177
Replacement

axiom 239, 288

theorem 79
Representation function 171
Resolution 32
Restricted p-operator 175
Restriction of a function 7, 238
Rice’s theorem 336
Richard’s paradox 2

Right
-end machine 314
machine 313

Robinson, A. 136
Robinson, R.M.
Robinson’s system Q 201
Rosser, J.B.
Godel-, theorem 208 9, 219
sentence 208
Roy, D.K. 392
RR 200
Rule
Ad 76
C 812
E4 77
Generalization (Gen) 70
U 142
Rules of inference 34
derived 768
for semantic trees 142
for systems of equations 346

Russell, B. 4, 293
Russell’s paradox 1, 4

S (first-order arithmetic) 154
consistency of 160, 212
Satisfaction relation 60-2
second-order 369
Satisfiable 59, 65
generally 379
standardly second-order 370
statement form 31
Scapegoat theory &7
Scope 52
Second e-theorem 120
Second form of transfinite
induction 248
Second-order
general, completeness theorem 379
generalization rules 372
language (full) 369
logic 368
predicate calculus 373
semantics 368
soundness of, logic 373
Second-order theory 372
comprehension schema in 372
function definition schema in 372
Second-order vs. first-order
logic 381-2
Section 242
Segment 21, 243
Self-halting problem 329
Semantic
paradoxes 3
trees 141
Semantical 69, 92
Semantics, second-order 369
Henkin 378
Semigroup 364
Semi-Thue system 363
Sentence
Godel 206
Henkin 213
Rosser 208
undecidable 206
Sentential class of models 136
Sequence
o- 286
denumerable 8
finite 8§
Set 1, 5, 226
arithmetical 217
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Set (continued)

Cantorian (strongly) 295
closed 140

countable 8

creative 342
Dedekind-finite 261
Dedekind-infinite 261
denumerable 8
effectively decidable 211
empty (null) 5

finite 8

immune 343
impredicatively defined 293
infinite 8

isolated 343

iterative conception of 282
open 140

power 236

productive 343
recursive 211

simple 342

sum 236

unit 5

well-ordered 9

Set theory with urelements 297
Sets

disjoint 5

recursively inseparable 219
Shannon, C, 24

Shift machine 315
Sierpinski, W. 284
Similar

ordered structures 241
wis 84

Similarity mapping 241
Simple

f-term 104

production 352

set 342

theory of types (ST) 292
Singleton 229

Singular ordinal 286

Skolem-Lowenheim theorem 92, 101

Downward 128
Upward 128
Skolem, T. 288, 382
normal form 109
Skolem’s paradox 263
S-m-n theorem 330
Solvable

algorithmically 328
recursively 329

Soundness of second-order logic 373

Special halting problem 329
ST (simple theory of types) 373
ST~ 296
ST-computable 319
ST (simple theory of types) 289
Standard
interpretation (model) 160
part 138
second-order interpretation 370
second-order logical
consequence 370
Standard semantics, incompleteness
of 376
Standard Turing-computable 319
Standardly (second-order)
logically imply 370
satisfiable, vahid 370
State
initial 307
internal 307
valid formulas (SV) 375
Statement
form 13
letter 13, 35
Stops 308
Stratified wf 294
Strongly
Cantorian 295
inaccessible 286
representable 171
Subclass 226
proper 226
Submodel 124
generated by 125
Subset 5
proper 5
Subsets axiom 236
Substitution 174
Substitutivity of equality 95, 288
Substructure 124
Subtheory 86
Successor 154, 291
function 174
ordinal 246
Sufficiently strong theory 212, 224
Suitable 45
Sum
bounded 178
of cardinals 258
class 234
set axiom 236
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Super-universal Turing machine
SV 375

Symbol 34

Symmetric 6

Syntactical 69, 92

System of equations 345

Tape 306
description 307
description, numerical 323
representation 309
symbols 307
Tarski, A.
Tarski’s theorem 217
-Vaught theorem 126
Tautology 16
Teichmiiller-Tukey lemma 277
Term 51, 345
closed 87
Terminal production 352
Theorem 34
Theory 71
axiomatic 34, 211
complete 86
consistent 72
decidable 34, 362
of densely ordered sets 98
of equality 98
with equality 94-5, 99
essentially incomplete 211
essentially recursively
undecidable 216
first-order 69
formal 18, 34
generalized first-order 114
inconsistent 72
ramified type 293
recursively axiomatizable 211
recursively decidable 216
recursively undecidable 216
scapegoat 87
second-order 372
sufficiently strong 212
true 205
of types 289, 292
undecidable 34, 362
Thue system 363
Tx 216
Total
function 7
order 9, 240, 242

Tr 212
Transfinite induction 9
definition by 249
principle of 245
second form 248
up to w,upto & 248
Transitive
class 242
closure 280
relation 6, 240
Trees, semantic 141
basic principle of 143
rules for 142
Trichotomy (Trich) 275
True
for an interpretation 60
for a standard second-order
interpretation 370
logically 18
theory 205
Truss, J. 303
Truth
function 14-5
value 11
Truth-functional combination 11
Truth table 11, 14
abbreviated 14
Turing, A.M. 305
algorithm 308
-computable 309
-computable, standard 319
Turing machine 306-7
alphabet 3067
clean-up 315
computation 308
Godel number of 321
halting problem 328
left-end 315
left-translation 315
n-shift copier 316
quadruples 307
right, left, constant 313
right-end 314
shift 315
stops 308
superuniversal 332
universal 332
word-copier 316
Tychonoff’s theorem 118
Types, theory of 289
ramified 293
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Ultrafilter 130

theorem 130
Ultrapower 133
Ultraproduct 133
Undecidable

recursively 216

sentence 206

theory 34, 362
Uniformly continuous 141
Union 5, 231, 236
Unit set 5
Universal

choice function 278

class 231

closure 61

quantifiers 50

relation 335

Turing machine 332
Unordered pair 5, 228
Unrestricted p-operator 318
Unsolvable 329, 361
Upward Skolem-Loéwenheim-

Tarski theorem 128
failure of, in standard second-
order logic 377

validity of, for general models
UR 297
Urelements 297

Vs, Ve 300

Valid

generally 379

inclusively 148

logically 65, 362
standardly second-order 370
Variable

free (bound) 53

380

function 368
individual 51
predicate 368

Vertices (of a diagram) 311
initial 311

Vocabulary, primitive recursive
(recursive) 192

Weakly

expressible relation 344

inaccessible ordinal 286
Well-formed formula (wf) 34, 52

closed 58

decidable 169

open 68

predicative 232

prenex 94

similar wfs 84

stratified 294
Well-ordered set 9
Well-ordering 9, 240, 242

principle (WQO) 9, 275
WI, see Well-formed formula
Whitaker, J. 256
Whitehead, AN. 4, 293
Word 306

-copier (K) 316

empty 306

problem 364

Zermelo, E. 4

Zermelo’s system 7. 288
Zermelo-Fraenkel set theory (ZF) 288
Zero function 174
Zorn’s lemma 276

special case of 277






